Sample records for boundary layer case

  1. Practical calculation of laminar and turbulent bled-off boundary layers

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1978-01-01

    Bleed-off of boundary layer material is shown to be an effective means for reducing drag by conserving the laminar boundary layer and preventing separation of the turbulent boundary layer. The case in which the two effects of bleed-off overlap is examined. Empirical methods are extended to the case of bleed-off. Laminar and turbulent boundary layers are treated simultaneously and the approximation differential equations are solved without an uncertain error. The case without bleed-off is also treated.

  2. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  3. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  4. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  5. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  6. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  7. An experimental investigation of the flow physics of high-lift systems

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.

    1995-01-01

    This progress report is a series of overviews outlining experiments on the flow physics of confluent boundary layers for high-lift systems. The research objectives include establishing the role of confluent boundary layer flow physics in high-lift production; contrasting confluent boundary layer structures for optimum and non-optimum C(sub L) cases; forming a high quality, detailed archival data base for CFD/modelling; and examining the role of relaminarization and streamline curvature. Goals of this research include completing LDV study of an optimum C(sub L) case; performing detailed LDV confluent boundary layer surveys for multiple non-optimum C(sub L) cases; obtaining skin friction distributions for both optimum and non-optimum C(sub L) cases for scaling purposes; data analysis and inner and outer variable scaling; setting-up and performing relaminarization experiments; and a final report establishing the role of leading edge confluent boundary layer flow physics on high-lift performance.

  8. Interferometric data for a shock-wave/boundary-layer interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Brown, James L.; Miles, John B.

    1986-01-01

    An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.

  9. Time-Accurate Computations of Isolated Circular Synthetic Jets in Crossflow

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Schaeffler, N. W.; Milanovic, I. M.; Zaman, K. B. M. Q.

    2007-01-01

    Results from unsteady Reynolds-averaged Navier-Stokes computations are described for two different synthetic jet flows issuing into a turbulent boundary layer crossflow through a circular orifice. In one case the jet effect is mostly contained within the boundary layer, while in the other case the jet effect extends beyond the boundary layer edge. Both cases have momentum flux ratios less than 2. Several numerical parameters are investigated, and some lessons learned regarding the CFD methods for computing these types of flow fields are summarized. Results in both cases are compared to experiment.

  10. Simulations of laminar boundary-layer flow encountering large-scale surface indentions

    NASA Astrophysics Data System (ADS)

    Beratlis, N.; Balaras, E.; Squires, K.; Vizard, A.

    2016-03-01

    The transition from laminar to turbulent flow over dimples and grooves has been investigated through a series of direct numerical simulations. Emphasis has been given to the mechanism of transition and the momentum transport in the post-dimple boundary layer. It has been found that the dimple geometry plays an important role in the evolution of the turbulent boundary layer downstream. The mechanism of transition in all cases is that of the reorientation of the spanwise vorticity into streamwise oriented structures resembling hairpin vortices commonly encountered in wall bounded turbulent flows. Although qualitatively the transition mechanism amongst the three different cases is similar, important quantitative differences exist. It was shown that two-dimensional geometries like a groove are more stable than three-dimensional geometries like a dimple. In addition, it was found that the cavity geometry controls the initial thickness of the boundary layer and practically results in a shift of the virtual origin of the turbulent boundary layer. Important differences in the momentum transport downstream of the dimples exist but in all cases the boundary layer grows in a self-similar manner.

  11. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  12. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  13. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  14. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  15. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  16. Measurements of the turbulent transport of heat and momentum in convexly curved boundary layers - Effects of curvature, recovery and free-stream turbulence

    NASA Technical Reports Server (NTRS)

    Kim, J.; Simon, T. W.

    1987-01-01

    The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.

  17. CFL3D Contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2010-01-01

    This paper documents the CFL3D contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop, held in Orlando, Florida in January 2010. CFL3D is a Reynolds-averaged Navier-Stokes code. Four shock boundary layer interaction cases are computed using a one-equation turbulence model widely used for other aerodynamic problems of interest. Two of the cases have experimental data available at the workshop, and two of the cases do not. The effect of grid, flux scheme, and thin-layer approximation are investigated. Comparisons are made to the available experimental data. All four cases exhibit strong three-dimensional behavior in and near the interaction regions, resulting from influences of the tunnel side-walls.

  18. Highly buoyant bent-over plumes in a boundary layer

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel B.

    2016-04-01

    Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.

  19. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  20. Numerical simulations of the flow in the HYPULSE expansion tube

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Sussman, Myles A.; Bakos, Robert J.

    1995-01-01

    Axisymmetric numerical simulations with finite-rate chemistry are presented for two operating conditions in the HYPULSE expansion tube. The operating gas for these two cases is nitrogen and the computations are compared to experimental data. One test condition is at a total enthalpy of 15.2 MJ/Kg and a relatively low static pressure of 2 kPa. This case is characterized by a laminar boundary layer and significant chemical nonequilibrium in the acceleration gas. The second test condition is at a total enthalpy of 10.2 MJ/Kg and a static pressure of 38 kPa and is characterized by a turbulent boundary layer. For both cases, the time-varying test gas pressure predicted by the simulations is in good agreement with experimental data. The computations are also found to be in good agreement with Mirels' correlations for shock tube flow. It is shown that the nonuniformity of the test gas observed in the HYPULSE expansion tube is strongly linked to the boundary layer thickness. The turbulent flow investigated has a larger boundary layer and greater test gas nonuniformity. In order to investigate possibilities of improving expansion tube flow quality by reducing the boundary layer thickness, parametric studies showing the effect of density and turbulent transition point on the test conditions are also presented. Although an increase in the expansion tube operating pressure level would reduce the boundary layer thickness, the simulations indicate that the reduction would be less than what is predicted by flat plate boundary layer correlations.

  1. Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2017-01-01

    Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.

  2. Laser transit anemometer and Pitot probe comparative measurements in a sharp cone boundary layer at Mach 4

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.; Ocheltree, S. L.; Russ, C. E., Jr.

    1991-01-01

    Laser transit anemometer (LTA) measurements of a 7 degree sharp cone boundary layer were conducted in the Air Force/AEDC Supersonic Tunnel A Mach 4 flow field. These measurements are compared with Pitot probe measurements and tricone theory provided by AEDC staff. Measurements were made both in laminar and turbulent boundary layers of the model. Comparison of LTA measurements with theory showed agreement to better than 1 percent for the laminar boundary layer cases. This level of agreement was obtained after small position corrections, 0.01 to 0.6 mm, were applied to the experimental data sets. Pitot probe data when compared with theory also showed small positioning errors. The Pitot data value was also limited due to probe interference with the flow near the model. The LTA turbulent boundary layer data indicated a power law dependence of 6.3 to 6.9. The LTA data was analyzed in the time (Tau) domain in which it was obtained and in the velocity domain. No significant differences were noted between Tau and velocity domain results except in one turbulent boundary layer case.

  3. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  4. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  5. Two-layer convective heating prediction procedures and sensitivities for blunt body reentry vehicles

    NASA Technical Reports Server (NTRS)

    Bouslog, Stanley A.; An, Michael Y.; Wang, K. C.; Tam, Luen T.; Caram, Jose M.

    1993-01-01

    This paper provides a description of procedures typically used to predict convective heating rates to hypersonic reentry vehicles using the two-layer method. These procedures were used to compute the pitch-plane heating distributions to the Apollo geometry for a wind tunnel test case and for three flight cases. Both simple engineering methods and coupled inviscid/boundary layer solutions were used to predict the heating rates. The sensitivity of the heating results in the choice of metrics, pressure distributions, boundary layer edge conditions, and wall catalycity used in the heating analysis were evaluated. Streamline metrics, pressure distributions, and boundary layer edge properties were defined from perfect gas (wind tunnel case) and chemical equilibrium and nonequilibrium (flight cases) inviscid flow-field solutions. The results of this study indicated that the use of CFD-derived metrics and pressures provided better predictions of heating when compared to wind tunnel test data. The study also showed that modeling entropy layer swallowing and ionization had little effect on the heating predictions.

  6. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  7. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  8. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  9. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  10. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  11. Direct simulation of high-speed mixing layers

    NASA Technical Reports Server (NTRS)

    Mukunda, H. S.; Sekar, B.; Carpenter, M. H.; Drummond, J. Philip; Kumar, Ajay

    1992-01-01

    A computational study of a nonreacting high-speed mixing layer is performed. A higher order algorithm with sufficient grid points is used to resolve all relevant scales. In all cases, a temporal free-stream disturbance is introduced. The resulting flow is time-sampled to generate a statistical cross section of the flow properties. The studies are conducted at two convective Mach numbers, three free-stream turbulence intensities, three Reynolds numbers, and two types of initial profiles-hyperbolic tangent (tanh) and boundary layer. The boundary-layer profile leads to more realistic predictions of the transition processes. The predicted transition Reynolds number of 0.18 x 10(exp 6) compares well with experimental data. Normalized vortex spacings for the boundary-layer case are about 3.5 and compare favorably with the 1.5 to 2.5 found in experimental measurements. The tanh profile produces spacings of about 10. The growth rate of the layer is shown to be moderately affected by the initial disturbance field, but comparison with experimental data shows moderate agreement. For the boundary-layer case, it is shown that noise at the Strouhal number of 0.007 is selectively amplified and shows little Reynolds number dependence.

  12. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.

    PubMed

    Shishkina, Olga; Wagner, Sebastian; Horn, Susanne

    2014-03-01

    We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.

  13. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  14. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  15. A numerical investigation of the impact of surface topology on laminar boundary layers

    NASA Astrophysics Data System (ADS)

    Beratlis, Nikolaos; Squires, Kyle; Balaras, Elias

    2015-11-01

    Surface topology, such as dimples or trip wires, has been utilized in the past for passive separation control over bluff bodies. The majority of the work, however, has focused on the indirect effects on the drag and lift forces, while the details of the impact on the boundary layer evolution are not well understood. Here we report a series of DNS of flow over a single row of spherical and hexagonal dimples, as well as, circular grooves. The Reynolds number and the thickness of the incoming laminar boundary layer is carefully controlled. In all cases transition to turbulence downstream of the elements comes with reorientation of the spanwise vorticity into hairpin like vortices. Although qualitatively the transition mechanism amongst different dimples and grooves is similar, important quantitative differences exist: two-dimensional geometries such as the groove, are more stable than three-dimensional geometries. In addition, it was found that the cavity geometry controls the initial thickness of the boundary layer and practically results in a shift of the virtual origin of the turbulent boundary layer. Important differences in the momentum transport downstream of the dimples exist, but in all cases the boundary layer evolves in a self-similar manner.

  16. Comparison of Theoretical and Experimental Heat-Transfer Characteristics of Bodies of Revolution at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Scherrer, Richard

    1951-01-01

    An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.

  17. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  18. Pitot-probe displacement in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  19. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  20. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three-dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  1. Numerical simulation of supersonic flow using a new analytical bleed boundary condition

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Smith, G. E.

    1995-01-01

    A new analytical bleed boundary condition is used to compute flowfields for a strong oblique shock wave/boundary layer interaction with a baseline and three bleed rates at a freestream Mach number of 2.47 with an 8 deg shock generator. The computational results are compared to experimental Pitot pressure profiles and wall static pressures through the interaction region. An algebraic turbulence model is employed for the bleed and baseline cases, and a one equation model is also used for the baseline case where the boundary layer is separated.

  2. Sub-optimal control of unsteady boundary layer separation and optimal control of Saltzman-Lorenz model

    NASA Astrophysics Data System (ADS)

    Sardesai, Chetan R.

    The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the Saltzman-Lorenz model, it is possible to control the system about either of the two unstable equilibrium points representing clockwise and counterclockwise rotation of the convection roles in a parameter regime for which the uncontrolled solution would exhibit deterministic chaos.

  3. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  4. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution

    NASA Technical Reports Server (NTRS)

    Messiter, A. F.

    1980-01-01

    Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.

  5. Shed vortex structure and phase-averaged velocity statistics in symmetric/asymmetric turbulent flat plate wakes

    NASA Astrophysics Data System (ADS)

    Rai, Man Mohan

    2018-05-01

    The near wake of a flat plate is investigated via direct numerical simulations. Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large θ/DTE values (θ is the boundary layer momentum thickness toward the end of the plate and DTE is the trailing edge thickness). In the present study, the emphasis is on relatively thick plates with circular trailing edges (CTEs) resulting in θ/D values less than one (D is the plate thickness and the diameter of the CTE) and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 × 106 and 10 000, respectively. Two cases are computed: one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and the other with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained are of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor of 1.27 weaker in terms of peak phase-averaged spanwise vorticity at the first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x/D) that occurs near the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to Case TT where the peak value essentially decreases with increasing x/D. Both these effects are examined in detail, and the important contributors are identified.

  6. A spectrally accurate boundary-layer code for infinite swept wings

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1994-01-01

    This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.

  7. High-Fidelity Numerical Modeling of Compressible Flow

    DTIC Science & Technology

    2015-11-01

    details on these aspects of the implementation were reported in an earlier paper by Poggie.42 C. Flowfield Two flat - plate turbulent boundary layer flows...work investigated flat plate turbulent boundary layer flows. The baseline case was a flow at Mach 2.3, under conditions similar to those employed in...analyzed. The solutions are compared to a spanwise- periodic flat - plate turbulent boundary layer developed at the same conditions and yield similar

  8. End-wall boundary layer measurements in a two-stage fan

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Reid, L.; Schmidt, J. F.

    1983-01-01

    Detailed flow measurements made in the casing boundary layer of a two-stage transonic fan are summarized. These measurements were taken at a station upstream of the fan, between all blade rows, and downstream of the last row. Conventional boundary layer parameters were calculated from the measured data. A classical two dimensional casing boundary layer was measured at the fan inlet and extended inward to approximately 15 percent of span. A highly three dimensional boundary layer was measured at the exit of each blade row and extended inward to approximately 10 percent of span. The steep radial gradient of axial velocity noted at the exit of the rotors was reduced substantially as the flow passed through the stators. This reduced gradient is attributed to flow mixing. The amount of flow mixing was reflected in the radial redistribution of total temperature as the flow passed through the stators. The blockage factors calculated from the measured data show an increase in blockage across the rotors and a decrease across the stators. For this fan the calculated blockages for the second stage were essentially the same as those for the first stage.

  9. Heat Transfer in the Turbulent Boundary Layer of a Compressible Gas at High Speeds

    NASA Technical Reports Server (NTRS)

    Frankl, F.

    1942-01-01

    The Reynolds law of heat transfer from a wall to a turbulent stream is extended to the case of flow of a compressible gas at high speeds. The analysis is based on the modern theory of the turbulent boundary layer with laminar sublayer. The investigation is carried out for the case of a plate situated in a parallel stream. The results are obtained independently of the velocity distribution in the turbulent boundar layer.

  10. Deplacement effect of the laminar boundary layer and the pressure drag

    NASA Technical Reports Server (NTRS)

    Gortler, H

    1951-01-01

    The displacement effect of the boundary layer on the outer frictionless flow is discussed for both steady and unsteady flows. The analysis is restricted to cases in which the potential flow pressure distribution remains valid for the boundary-layer calculation. Formulas are given for the dependence of the pressure drag, friction drag, and total drag of circular cylinders on the time from the start of motion for cases in which the velocity varies as a power of the time. Formulas for the locations and for the time for the appearance of the separation point are given for two dimensional bodies of arbitrary shape.

  11. A steadying effect of acoustic excitation on transitory stall

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1991-01-01

    The effect of acoustic excitation on a class of separated flows with a transitional boundary layer at the point of separation is considered. Experimental results on the flow over airfoils, a two-dimensional backward-facing step, and through large angle conical diffusers are presented. In all cases, the separated flow undergoes large amplitude fluctuations, much of the energy being concentrated at unusually low frequencies. In each case, an appropriate high frequency acoustic excitation is found to be effective in reducing the fluctuations substantially. The effective excitation frequency scales on the initial boundary layer thickness and the effect is apparently achieved through acoustic tripping of the separating boundary layer.

  12. Experimental measurements of unsteady turbulent boundary layers near separation

    NASA Technical Reports Server (NTRS)

    Simpson, R. L.

    1982-01-01

    Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.

  13. Large Eddy Simulations of Continental Boundary Layer Clouds Observed during the RACORO Field Campaign

    NASA Astrophysics Data System (ADS)

    Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.

    2013-12-01

    Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.

  14. A Short Essay on the Uses of Free Energy

    ERIC Educational Resources Information Center

    Koutandos, Spyridon

    2013-01-01

    In this article we examine cases of more classical and less classical nature compared to results found by quantum mechanics and attribute a form of Free Energy discontinuity for each case within a boundary layer. The concept of a boundary layer is broadened as to include areas of first or second variations of the Gibbs free energy. It is…

  15. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  16. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  17. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    This user's manual contains a complete description of the computer programs developed to calculate three-dimensional, compressible, laminar boundary layers for perfect gas flow on general fuselage shapes. These programs include the 3-D boundary layer program (3DBLC), the body-oriented coordinate program (BCC), and the streamline coordinate program (SCC). Subroutine description, input, output and sample case are discussed. The complete FORTRAN listings of the computer programs are given.

  18. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-02-28

    The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).

  19. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  20. A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Noone, Kevin J.; Johnson, Doug W.; Taylor, Jonathan P.; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Durkee, Philip A.; Nielsen, Kurt; Öström, Elisabeth; O'Dowd, Colin; Smith, Michael H.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; de Bock, Lieve; van Grieken, René E.; Hudson, James G.; Brooks, Ian;  Gasparovic, Richard F.;  Pockalny, Robert A.

    2000-08-01

    A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.

  1. Re-Innovating Recycling for Turbulent Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Joseph; Blanquart, Guillaume

    2017-11-01

    Historically, turbulent boundary layers along a flat plate have been expensive to simulate numerically, in part due to the difficulty of initializing the inflow with ``realistic'' turbulence, but also due to boundary layer growth. The former has been resolved in several ways, primarily dedicating a region of at least 10 boundary layer thicknesses in width to rescale and recycle flow or by extending the region far enough downstream to allow a laminar flow to develop into turbulence. Both of these methods are relatively costly. We propose a new method to remove the need for an inflow region, thus reducing computational costs significantly. Leveraging the scale similarity of the mean flow profiles, we introduce a coordinate transformation so that the boundary layer problem can be solved as a parallel flow problem with additional source terms. The solutions in the new coordinate system are statistically homogeneous in the downstream direction and so the problem can be solved with periodic boundary conditions. The present study shows the stability of this method, its implementation and its validation for a few laminar and turbulent boundary layer cases.

  2. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  3. Shed Vortex Structure and Phase-Averaged Velocity Statistics in Symmetric/Asymmetric Turbulent Flat Plate Wakes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2017-01-01

    The near wake of a flat plate is investigated via direct numerical simulations (DNS). Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large theta divided by D (sub TE) values (theta is the boundary layer momentum thickness towards the end of the plate and D (sub TE) is the trailing edge thickness). In the present study the emphasis is on relatively thick plates with circular trailing edges (CTE) resulting in theta divided by D values less than one (D is the plate thickness and the diameter of the CTE), and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 x 10 (sup 6) and 10,000, respectively. Two cases are computed; one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and, a second with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained is of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor 1.27 weaker in terms of peak phase-averaged spanwise vorticity at first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x divided by D) that occurs nears the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to Case TT where the peak value essentially decreases with increasing x divided by D. Both these effects are examined in detail and the important contributors are identified.

  4. Monsoon dependent ecosystems: Implications of the vertical distribution of soil moisture on land surface-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia M.

    Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.

  5. Convection Cells in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Fodor, Katherine; Mellado, Juan-Pedro

    2017-04-01

    In dry, shear-free convective boundary layers (CBLs), the turbulent flow of air is known to organise itself on large scales into coherent, cellular patterns, or superstructures, consisting of fast, narrow updraughts and slow, wide downdraughts which together form circulations. Superstructures act as transport mechanisms from the surface to the top of the boundary layer and vice-versa, as opposed to small-scale turbulence, which only modifies conditions locally. This suggests that a thorough investigation into superstructure properties may help us better understand transport across the atmospheric boundary layer as a whole. Whilst their existence has been noted, detailed studies into superstructures in the CBL have been scarce. By applying methods which are known to successfully isolate similar large-scale patterns in turbulent Rayleigh-Bénard convection, we can assess the efficacy of those detection techniques in the CBL. In addition, through non-dimensional analysis, we can systematically compare superstructures in various convective regimes. We use direct numerical simulation of four different cases for intercomparison: Rayleigh-Bénard convection (steady), Rayleigh-Bénard convection with an adiabatic top lid (quasi-steady), a stably-stratified CBL (quasi-steady) and a neutrally-stratified CBL (unsteady). The first two are non-penetrative and the latter two penetrative. We find that although superstructures clearly emerge from the time-mean flow in the non-penetrative cases, they become obscured by temporal averaging in the CBL. This is because a rigid lid acts to direct the flow into counter-rotating circulation cells whose axis of rotation remains stationary, whereas a boundary layer that grows in time and is able to entrain fluid from above causes the circulations to not only grow in vertical extent, but also to move horizontally and merge with neighbouring circulations. Spatial filtering is a useful comparative technique as it can be performed on boundary layers of the same depth, defined from the surface to the height at which the turbulent kinetic energy (TKE) is zero (in non-penetrative cases) or less than 10% of its maximum value (in penetrative cases). We find that with increasing filter width, the contribution of the filtered flow to the total TKE in the middle of the boundary layer decreases much more rapidly in the penetrative cases than in the non-penetrative cases. In particular, around 20-25% of the TKE at this height comes from small-scale turbulence with a length scale less than or equal to 15% of the boundary layer depth in the CBL, whereas in Rayleigh-Bénard convection, it is just 6-7%. This is consistent with visualisations, which show that entrainment creates additional small-scale mixing within the large-scale circulations in the CBL. Without entrainment, large-scale organisation predominates. Neither spatial nor temporal filtering are as successful at extracting superstructures in the penetrative cases as in the non-penetrative cases. Hence, these techniques depend not on the steadiness of the system, but rather on the presence of entrainment. We therefore intend to try other detection techniques, such as proper orthogonal decomposition, in order to make a rigorous assessment of which is most effective for isolating superstructures in all four cases.

  6. Three-Dimensional Boundary-Layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1993-01-01

    The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.

  7. Theoretical investigation of maintaining the boundary layer of revolution laminar using suction slits in incompressible flow

    NASA Technical Reports Server (NTRS)

    Thiede, P.

    1978-01-01

    The transition of the laminar boundary layer into the turbulent state, which results in an increased drag, can be avoided by sucking of the boundary layer particles near the wall. The technically-interesting case of sucking the particles using individual slits is investigated for bodies of revolution in incompressible flow. The results of the variational calculations show that there is an optimum suction height, where the slot separations are maximum. Combined with favorable shaping of the body, it is possible to keep the boundary layer over bodies of revolution laminar at high Reynolds numbers using relatively few suction slits and small amounts of suction flow.

  8. Predicted and measured boundary layer refraction for advanced turboprop propeller noise

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Krejsa, Eugene A.

    1990-01-01

    Currently, boundary layer refraction presents a limitation to the measurement of forward arc propeller noise measured on an acoustic plate in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The use of a validated boundary layer refraction model to adjust the data could remove this limitation. An existing boundary layer refraction model is used to predict the refraction for cases where boundary layer refraction was measured. In general, the model exhibits the same qualitative behavior as the measured refraction. However, the prediction method does not show quantitative agreement with the data. In general, it overpredicts the amount of refraction for the far forward angles at axial Mach number of 0.85 and 0.80 and underpredicts the refraction at axial Mach numbers of 0.75 and 0.70. A more complete propeller source description is suggested as a way to improve the prediction method.

  9. Computation of airfoil buffet boundaries

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.; Bailey, H. E.

    1981-01-01

    The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.

  10. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    PubMed

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  11. Boundary-Layer Characteristics Over a Coastal Megacity

    NASA Astrophysics Data System (ADS)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  12. Effect of inlet conditions for numerical modelling of the urban boundary layer

    NASA Astrophysics Data System (ADS)

    Gnatowska, Renata

    2018-01-01

    The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.

  13. Solution of the Orr-Sommerfeld equation for the Blausius boundary-layer documentation of program ORRBL and a test case

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Danabasoglu, G.

    1988-01-01

    A Chebyshev matrix collocation method is outlined for the solution of the Orr-Sommerfeld equation for the Blausius boundary layer. User information is provided for FORTRAN program ORRBL which solves the equation by the QR method.

  14. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  15. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-06-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  16. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  17. A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona

    1992-01-01

    A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.

  18. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; de Arellano, J. Vilà-Guerau

    2013-09-01

    In Ouwersloot and Vilà-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10.1007/s10546-013-9816-z , 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab models without taking subsidence into account. Here, we include and quantify the added effect of subsidence if the subsidence velocity scales linearly with height throughout the atmosphere. This enables analytical analyses for a wider range of observational cases. As a demonstration, the sensitivity of the boundary-layer height and the potential temperature jump to subsidence and the free tropospheric stability is graphically presented. The new relations show the importance of the temporal distribution of the surface buoyancy flux in determining the evolution if there is subsidence.

  19. Boundary layer thermal stresses in angle-ply composite laminates, part 1. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1981-01-01

    Thermal boundary-layer stresses (near free edges) and displacements were determined by a an eigenfunction expansion technique and the establishment of an appropriate particular solution. Current solutions in the region away from the singular domain (free edge) are found to be excellent agreement with existing approximate numerical results. As the edge is approached, the singular term controls the near field behavior of the boundary layer. Results are presented for cases of various angle-ply graphite/epoxy laminates with (theta/-theta/theta/theta) configurations. These results show high interlaminar (through-the-thickness) stresses. Thermal boundary-layer thicknesses of different composite systems are determined by examining the strain energy density distribution in composites. It is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers. The interlaminar thermal stresses are compressive with increasing temperature. The corresponding residual stresses are tensile and may enhance interply delaminations.

  20. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  1. High enthalpy hypersonic boundary layer flow

    NASA Technical Reports Server (NTRS)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  2. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1990-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  3. Computation of three-dimensional compressible boundary layers to fourth-order accuracy on wings and fuselages

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1990-01-01

    A solution method, fourth-order accurate in the body-normal direction and second-order accurate in the stream surface directions, to solve the compressible 3-D boundary layer equations is presented. The transformation used, the discretization details, and the solution procedure are described. Ten validation cases of varying complexity are presented and results of calculation given. The results range from subsonic flow to supersonic flow and involve 2-D or 3-D geometries. Applications to laminar flow past wing and fuselage-type bodies are discussed. An interface procedure is used to solve the surface Euler equations with the inviscid flow pressure field as the input to assure accurate boundary conditions at the boundary layer edge. Complete details of the computer program used and information necessary to run each of the test cases are given in the Appendix.

  4. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE PAGES

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; ...

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  5. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    NASA Technical Reports Server (NTRS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  6. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    NASA Astrophysics Data System (ADS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  7. Heat transfer to the transpired turbulent boundary layer.

    NASA Technical Reports Server (NTRS)

    Kays, W. M.

    1972-01-01

    This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.

  8. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 1; Instantaneous Fields and Statistics

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    This is the first in a two-part series of manuscripts describing numerical experiments on the influence of 2-30 km striplike heterogeneity on wet and dry boundary layers coupled to the land surface. The strip-like heterogeneity is shown to dramatically alter the structure of the free-convective boundary layer by inducing significant organized circulations that modify turbulent statistics. The coupling with the land-surface modifies the circulations compared to previous studies using fixed surface forcing. Total boundary layer turbulence kinetic energy increases significantly for surface heterogeneity at scales between Lambda/z(sub i) = 4 and 9, however entrainment rates for all cases are largely unaffected by the strip-like heterogeneity.

  9. Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography.

    PubMed

    Zang, Pengxiao; Gao, Simon S; Hwang, Thomas S; Flaxel, Christina J; Wilson, David J; Morrison, John C; Huang, David; Li, Dengwang; Jia, Yali

    2017-03-01

    To improve optic disc boundary detection and peripapillary retinal layer segmentation, we propose an automated approach for structural and angiographic optical coherence tomography. The algorithm was performed on radial cross-sectional B-scans. The disc boundary was detected by searching for the position of Bruch's membrane opening, and retinal layer boundaries were detected using a dynamic programming-based graph search algorithm on each B-scan without the disc region. A comparison of the disc boundary using our method with that determined by manual delineation showed good accuracy, with an average Dice similarity coefficient ≥0.90 in healthy eyes and eyes with diabetic retinopathy and glaucoma. The layer segmentation accuracy in the same cases was on average less than one pixel (3.13 μm).

  10. Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography

    PubMed Central

    Zang, Pengxiao; Gao, Simon S.; Hwang, Thomas S.; Flaxel, Christina J.; Wilson, David J.; Morrison, John C.; Huang, David; Li, Dengwang; Jia, Yali

    2017-01-01

    To improve optic disc boundary detection and peripapillary retinal layer segmentation, we propose an automated approach for structural and angiographic optical coherence tomography. The algorithm was performed on radial cross-sectional B-scans. The disc boundary was detected by searching for the position of Bruch’s membrane opening, and retinal layer boundaries were detected using a dynamic programming-based graph search algorithm on each B-scan without the disc region. A comparison of the disc boundary using our method with that determined by manual delineation showed good accuracy, with an average Dice similarity coefficient ≥0.90 in healthy eyes and eyes with diabetic retinopathy and glaucoma. The layer segmentation accuracy in the same cases was on average less than one pixel (3.13 μm). PMID:28663830

  11. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  12. Fast retinal layer segmentation of spectral domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-09-01

    An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.

  13. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  14. Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew

    2017-11-01

    Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.

  15. Behavior of turbulent boundary layers on curved convex walls

    NASA Technical Reports Server (NTRS)

    Schmidbauer, Hans

    1936-01-01

    The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.

  16. Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack

    2013-01-01

    Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.

  17. The control effect in a detached laminar boundary layer of an array of normal synthetic jets

    NASA Astrophysics Data System (ADS)

    Valenzuela Calva, Fernando; Avila Rodriguez, Ruben

    2016-11-01

    In this work, 3D numerical simulations of an array of three normal circular synthetic jets embedded in an attached laminar boundary layer that separates under the influence of an inclined flap are performed for flow separation control. At the beginning of the present study, three cases are used to validate the numerical simulation with data obtained from experiments. The experimental data is chosen based on the cases which presented higher repeatability and reliability. Simulations showed reasonable agreement when compared with experiments. The simulations are undertaken at three synthetic jet operating conditions, i.e. Case A: L = 2, VR = 0.32; Case B: L = 4, VR = 0.64 and Case C: L = 6, VR = 0.96. The vortical structures produced for each synthetic jet operating condition are hairpin vortices for Case A and tilted vortices for Case B and C, respectively. By examining the spatial wall shear stress variations, the effect on the boundary layer prior to separation of the middle synthetic jet is evaluated. For effective flow control, produced at a relatively low the finding from this study suggests that hairpin vortical structures are more desirable structures. Universidad Nacional Autonoma de Mexico.

  18. On the impact of adverse pressure gradient on the supersonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin

    2016-11-01

    By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.

  19. Membrane-Mediated Extraction and Biodegradation of Volatile Organic Compounds From Air

    DTIC Science & Technology

    2005-01-01

    side boundary-layer mass transfer resistance is a significant fraction of the total mass transfer resistance ( Raghunath , 1992). In some cases where...Sci. 59: 53–72. Raghunath , B., and S.–T. Hwang (1992). “Effect of boundary layer mass transfer resistance in the pervaporation of dilute organics

  20. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  1. Numerical simulation of adverse-pressure-gradient boundary layer with or without roughness

    NASA Astrophysics Data System (ADS)

    Mottaghian, Pouya; Yuan, Junlin; Piomelli, Ugo

    2014-11-01

    Large-eddy and direct numerical simulations are carried out on flat-plate boundary layer over smooth and rough surfaces, with adverse pressure gradient.The deceleration is achieved by imposing a wall-normal freestream velocity profile, and is strong enough to cause separation at the wall. The Reynolds number based on momentum thickness and freestream velocity at inlet is 600. Numerical sandgrain roughness is applied based on an immersed boundary method, yielding a flow that is transitionally rough. The turbulence intensity increases before separation, and reaches a higher value for the rough case, indicating stronger mixing. Roughness also causes higher momentum deficit near the wall, leading to earlier separation. This is consistent with previous observation made on rough-wall flow separation over a ramp. In both cases, the turbulent kinetic energy peaks inside the shear layer above the detachment region, with higher values in the rough case; it then decreases approaching the reattachment region. Near the wall inside the separation bubble, the near-zero turbulent intensity indicates that the turbulent structures are lifted up in the separation region. Compared with the smooth case, the shear layer is farther from the wall and the reattachment length is longer on the rough wall.

  2. Bypass transition and spot nucleation in boundary layers

    NASA Astrophysics Data System (ADS)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  3. Sensitivity of nocturnal boundary layer temperature to tropospheric aerosol surface radiative forcing under clear-sky conditions

    NASA Astrophysics Data System (ADS)

    Nair, Udaysankar S.; McNider, Richard; Patadia, Falguni; Christopher, Sundar A.; Fuller, Kirk

    2011-01-01

    Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A 1-D version of the Regional Atmospheric Modeling System is used to examine the sensitivity of the nocturnal boundary layer temperature to the surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations. The analysis is conducted for typical midlatitude nocturnal boundary layer case days from the CASES-99 field experiment and is further extended to urban sites in Pune and New Delhi, India. For the cases studied, locally, the nocturnal SLWRF from urban atmospheric aerosols (2.7-47 W m-2) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m-2), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately 4 times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth. Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 to 1 W m-2 when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.

  4. Intermittent Behavior of the Separated Boundary Layer along the Suction Surface of a Low Pressure Turbine Blade under Periodic Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Oeztuerk, B; Schobeiri, M. T.; Ashpis, David E.

    2005-01-01

    The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behaviors were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number. The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function.

  5. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Simon, Terrence W.

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.

  6. Study of the near field wake of trips generating an artificially thick turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Rodriguez Lopez, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2015-11-01

    The properties of an artificially thick turbulent boundary layer are influenced by its formation mechanism. Previous work has shown that wake or wall-driven mechanisms dominate boundary layer development depending on the trips' aspect ratio. The current study characterizes these two formation mechanisms through the use of high-speed PIV in the near wake of obstacles arrays on a flat plate in a wind tunnel. The time resolved velocity field is studied using Optimal Mode Decomposition (OMD) generating a low order model which captures the representative motions. Results corroborate the original hypothesis and show that these mechanisms are divided in two families: (i) High aspect ratio trips (cylinders) generate vortices with a wall-normal axis which do not transfer information between the wall and the wake of the obstacle. In this case, the boundary layer growth is wall-driven entraining the low-momentum highly turbulent flow above it. (ii) Low aspect ratio trips generate spanwise vorticity increasing the influence of the obstacle's wake in the wall region (wake-driven mechanism). A high level of correlation with the velocity fluctuations at the wall is maintained in case (ii) for the whole wake while in case (i) the correlation vanishes for heights smaller than half obstacle.

  7. Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.

    2003-01-01

    The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.

  8. A model for the estimation of the surface fluxes of momentum, heat and moisture of the cloud topped marine atmospheric boundary layer from satellite measurable parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Allison, D. E.

    1984-01-01

    A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.

  9. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  10. Thermoplasticity of coupled bodies in the case of stress-dependent heat transfer

    NASA Technical Reports Server (NTRS)

    Kilikovskaya, O. A.

    1987-01-01

    The problem of the thermal stresses in coupled deformable bodies is formulated for the case where the heat-transfer coefficient at the common boundary depends on the stress-strain state of the bodies (e.g., is a function of the normal pressure at the common boundary). Several one-dimensional problems are solved in this formulation. Among these problems is the determination of the thermal stresses in an n-layer plate and in a two-layer cylinder.

  11. a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate

    NASA Astrophysics Data System (ADS)

    Cappietti, L.; Chopard, B.

    We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.

  12. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  13. Thin-layer approximation and algebraic model for separated turbulent flows

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Lomax, H.

    1978-01-01

    An algebraic turbulence model for two- and three-dimensional separated flows is specified that avoids the necessity for finding the edge of the boundary layer. Properties of the model are determined and comparisons made with experiment for an incident shock on a flat plate, separated flow over a compression corner, and transonic flow over an airfoil. Separation and reattachment points from numerical Navier-Stokes solutions agree with experiment within one boundary-layer thickness. Use of law-of-the-wall boundary conditions does not alter the predictions significantly. Applications of the model to other cases are contained in companion papers.

  14. The Role of Wave Cyclones in Transporting Boundary Layer Air to the Free Troposphere During the Spring 2001 NASA / TRACE-P Experiment

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Hannan, J. R.; Crawford, J. H.; Sachse, G. W.; Blake, D. R.

    2003-01-01

    Transport of boundary layer air to the free troposphere by cyclones during NASA's Transport and Chemical Evolution over the Pacific (TRACE-P) experiment is investigated. Airstreams responsible for boundary layer venting are diagnosed using results from a high-resolution meteorological model (MM5) together with in situ and remotely sensed chemical data. Hourly wind data from the MM5 are used to calculate three-dimensional grids of backward air trajectories. A reverse domain filling (RDF) technique then is employed to examine the characteristics of airstreams over the computational domain, and to isolate airstreams ascending from the boundary layer to the free troposphere during the previous 36 hours. Two cases are examined in detail. Results show that airstreams responsible for venting the boundary layer differ considerably from those described by classic conceptual models and in the recent literature. In addition, airstreams sampled by the TRACE-P aircraft are found to exhibit large variability in chemical concentrations. This variability is due to differences in the boundary layer histories of individual airstreams with respect to anthropogenic sources over continental Asia and Japan. Complex interactions between successive wave cyclones also are found to be important in determining the chemical composition of the airstreams. Particularly important is the process of post-cold frontal boundary layer air being rapidly transported offshore and recirculated into ascending airstreams of upstream cyclones.

  15. Some Simple Solutions to the Problem of Predicting Boundary-Layer Self-Induced Pressures

    NASA Technical Reports Server (NTRS)

    Bertram, Mitchel H.; Blackstock, Thomas A.

    1961-01-01

    Simplified theoretical approaches are shown, based on hypersonic similarity boundary-layer theory, which allow reasonably accurate estimates to be made of the surface pressures on plates on which viscous effects are important. The consideration of viscous effects includes the cases where curved surfaces, stream pressure gradients, and leadingedge bluntness are important factors.

  16. Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Simon, Terrence W.; Qiu, Songgang; Yuan, Kebiao; Ashpis, David (Technical Monitor); Simon, Fred (Technical Monitor)

    2000-01-01

    This report presents the results of an experimental study of transition from laminar to turbulent flow in boundary layers or in shear layers over separation zones on a convex-curved surface which simulates the suction surface of a low-pressure turbine airfoil. Flows with various free-stream turbulence intensity (FSTI) values (0.5%, 2.5% and 10%), and various Reynolds numbers (50,000, 100,000 200,000 and 300,000) are investigated. Reynold numbers in the present study are based on suction surface length and passage exit mean velocity. Flow separation followed by transition within the separated flow region is observed for the lower-Re cases at each of the FSTI levels. At the highest Reynolds numbers and at elevated FSn, transition of the attached boundary layer begins before separation, and the separation zone is small. Transition proceeds in the shear layer over the separation bubble. For both the transitional boundary layer and the transitional shear layer, mean velocity, turbulence intensity and intermittency (the fraction of the time the flow is turbulent) distributions are presented. The present data are compared to published distribution models for bypass transition, intermittency distribution through transition, transition start position, and transition length. A model developed for transition of separated flows is shown to adequately predict the location of the beginning of transition, for these cases, and a model developed for transitional boundary layer flows seems to adequately predict the path of intermittency through transition when the transition start and end are known. These results are useful for the design of low-pressure turbine stages which are known to operate under conditions replicated by these tests.

  17. Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, Antoon; van Heerwaarden, Chiel; Popinet, Stephane; van der linden, Steven; de Roode, Stephan; van de Wiel, Bas

    2017-04-01

    We validate and benchmark an adaptive mesh refinement (AMR) algorithm for numerical simulations of the atmospheric boundary layer (ABL). The AMR technique aims to distribute the computational resources efficiently over a domain by refining and coarsening the numerical grid locally and in time. This can be beneficial for studying cases in which length scales vary significantly in time and space. We present the results for a case describing the growth and decay of a convective boundary layer. The AMR results are benchmarked against two runs using a fixed, fine meshed grid. First, with the same numerical formulation as the AMR-code and second, with a code dedicated to ABL studies. Compared to the fixed and isotropic grid runs, the AMR algorithm can coarsen and refine the grid such that accurate results are obtained whilst using only a fraction of the grid cells. Performance wise, the AMR run was cheaper than the fixed and isotropic grid run with similar numerical formulations. However, for this specific case, the dedicated code outperformed both aforementioned runs.

  18. Evaluation of analytical procedures for prediction of turbulent boundary layers on a porous wall

    NASA Technical Reports Server (NTRS)

    Towne, C. E.

    1974-01-01

    An analytical study has been made to determine how well current boundary layer prediction techniques work when there is mass transfer normal to the wall. The data that were considered in this investigation were for two-dimensional, incompressible, turbulent boundary layers with suction and blowing. Some of the bleed data were taken in an adverse pressure gradient. An integral prediction method was used three different porous wall skin friction relations, in addition to a solid-surface relation for the suction cases. A numerical prediction method was also used. Comparisons were made between theoretical and experimental skin friction coefficients, displacement and momentum thicknesses, and velocity profiles. The integral method with one of the porous wall skin friction laws gave very good agreement with data for most of the cases considered. The use of the solid-surface skin friction law caused the integral to overpredict the effectiveness of the bleed. The numerical techniques also worked well for most of the cases.

  19. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be; Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse; Magin, Thierry E.

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as wellmore » as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.« less

  20. Simulation and optimal control of wind-farm boundary layers

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a nonlinear conjugate gradient method, and the gradients are calculated by solving the adjoint LES equations. We find that the extracted farm power increases by approximately 20% when using optimal model-predictive control. However, the increased power output is also responsible for an increase in turbulent dissipation, and a deceleration of the boundary layer. Further investigating the energy balances in the boundary layer, it is observed that this deceleration is mainly occurring in the outer layer as a result of higher turbulent energy fluxes towards the turbines. In a second optimization case, we penalize boundary-layer deceleration, and find an increase of energy extraction of approximately 10%. In this case, increased energy extraction is balanced by a reduction in of turbulent dissipation in the boundary layer. J.M. acknowledges support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  1. Computation of three-dimensional shock wave and boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hung, C. M.

    1985-01-01

    Computations of the impingement of an oblique shock wave on a cylinder and a supersonic flow past a blunt fin mounted on a plate are used to study three dimensional shock wave and boundary layer interaction. In the impingement case, the problem of imposing a planar impinging shock as an outer boundary condition is discussed and the details of particle traces in windward and leeward symmetry planes and near the body surface are presented. In the blunt fin case, differences between two dimensional and three dimensional separation are discussed, and the existence of an unique high speed, low pressure region under the separated spiral vortex core is demonstrated. The accessibility of three dimensional separation is discussed.

  2. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

    NASA Astrophysics Data System (ADS)

    Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa

    2018-03-01

    The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

  3. A Research Code to Study Solutions of the Boundary Layer Equations in Body Conformal Coordinates

    DTIC Science & Technology

    1991-05-01

    1991. Denis Bergeron 91-07405 May 1991 Approved ko pubhic reeae; l’ LsesFu Un.hii- ted DEFENCE RESEARCH ESTABLISHMENT SUFFIELD, RALSTON, ALBERTA PEP...his results in boundary layer coordinates u and n’ which are defined as + [ , ur = (6-4) U U’t UNCLASSIFIED UNCLASSIFIED 46 -5.0 . . . All cases wun

  4. Separation control in a hypersonic shock wave / turbulent boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier

    2016-11-01

    Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.

  5. Particle Image Velocimetry Measurements of a Two/Three-dimensional Separating/Reattaching Boundary Layer Downstream of an Axisymmetric Backward-facing Step

    NASA Technical Reports Server (NTRS)

    Hudy, Laura M.; Naguib, Ahmed M.; Humphreys, William M.; Bartram, Scott M.

    2005-01-01

    Planar Particle Image Velocimetry measurements were obtained in the separating/reattaching flow region downstream of an axisymmetric backward-facing step. Data were acquired for a two-dimensional (2D) separating boundary layer at five different Reynolds numbers based on step height (Re(sub h)), spanning 5900-33000, and for a three-dimensional (3D) separating boundary layer at Re(sub h) = 5980 and 8081. Reynolds number effects were investigated in the 2D cases using mean-velocity field, streamwise and wall-normal turbulent velocity, and Reynolds stress statistics. Results show that both the reattachment length (x(sub r)) and the secondary separation point are Reynolds number dependent. The reattachment length increased with rising Re(sub h) while the secondary recirculation region decreased in size. These and other Re(sub h) effects were interpreted in terms of changes in the separating boundary layer thickness and wall-shear stress. On the other hand, in the 3D case, it was found that the imposed cross-flow component was relatively weak in comparison to the streamwise component. As a result, the primary influences of three dimensionality only affected the near-separation region rather than the entire separation bubble.

  6. Nocturnal Boundary Layer Measurements during the Amazonian Aerosol Characterization Experiment (amaze)

    NASA Astrophysics Data System (ADS)

    Tota, J.; Santos, R.; Fisch, G.; Querino, C.; Silva Dias, M.; Artaxo, P.; Guenther, A.; Martin, S.; Manzi, A.

    2008-12-01

    To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23°C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.

  7. Nocturnal Boundary Layer Measurements during the Amazonian Aerosol Characterization Experiment (AMAZE)

    NASA Astrophysics Data System (ADS)

    Tota, J.; Fisch, G.; Santos, R.; Silva Dias, M.

    2009-05-01

    To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.

  8. Diagnosis of boundary-layer circulations.

    PubMed

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  9. Interaction of a Boundary Layer with a Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low Reynolds number, as a consequence of the high level of the free-stream perturbation. An instantaneous flow visualization for that case is shown. A detailed examination of flow statistics in the transitional and turbulent regions, including the evolution of the turbulent kinetic energy (TKE) budget and frequency spectra showed the formation and evolution of turbulent spots characteristic of the bypass transition mechanism. It was also observed that the turbulent eddies achieved an equilibrium, fully developed turbulent states first, as evidenced by the early agreement achieved by the terms in the TKE budget with those observed in turbulent flows. Once a turbulent Reynolds stress profile had been established, the velocity profile began to resemble a turbulent one, first in the inner region and later in the outer region of the wall layer. An extensive comparison of the three cases, including budgets, mean velocity and Reynolds stress profiles and flow visualization, is included. The results obtained are also presented.

  10. Analysis of the leading edge effects on the boundary layer transition

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1990-01-01

    A general theory of boundary layer control by surface heating is presented. Some analytical results for a simplified model, i.e., the optimal control of temperature fluctuations in a shear flow are described. The results may provide a clue to the effectiveness of the active feedback control of a boundary layer flow by wall heating. In a practical situation, the feedback control may not be feasible from the instrumentational point of view. In this case the vibrational control introduced in systems science can provide a useful alternative. This principle is briefly explained and applied to the control of an unstable wavepacket in a parallel shear flow.

  11. Local Characteristics of the Nocturnal Boundary Layer in Response to External Pressure Forcing

    NASA Astrophysics Data System (ADS)

    van der Linden, Steven; Baas, Peter; van Hooft, Antoon; van Hooijdonk, Ivo; Bosveld, Fred; van de Wiel, Bas

    2017-04-01

    Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, The Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin-Obukhov stability parameter (z/L) or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speed are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics, and composite profiles of wind and temperature is systematically investigated. We find that the classification results in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a a solid description of other thermodynamic processes such as soil heat conduction and radiative transfer. This prerequisite poses a challenge for Large-Eddy Simulations of weak wind nocturnal boundary layers.

  12. RACORO Continental Boundary Layer Cloud Investigations: 3. Separation of Parameterization Biases in Single-Column Model CAM5 Simulations of Shallow Cumulus

    NASA Technical Reports Server (NTRS)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-01-01

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.

  13. RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus

    DOE PAGES

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; ...

    2015-06-19

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only amore » relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.« less

  14. Non-unique turbulent boundary layer flows having a moderately large velocity defect: a rational extension of the classical asymptotic theory

    NASA Astrophysics Data System (ADS)

    Scheichl, B.; Kluwick, A.

    2013-11-01

    The classical analysis of turbulent boundary layers in the limit of large Reynolds number Re is characterised by an asymptotically small velocity defect with respect to the external irrotational flow. As an extension of the classical theory, it is shown in the present work that the defect may become moderately large and, in the most general case, independent of Re but still remain small compared to the external streamwise velocity for non-zero pressure gradient boundary layers. That wake-type flow turns out to be characterised by large values of the Rotta-Clauser parameter, serving as an appropriate measure for the defect and hence as a second perturbation parameter besides Re. Most important, it is demonstrated that also this case can be addressed by rigorous asymptotic analysis, which is essentially independent of the choice of a specific Reynolds stress closure. As a salient result of this procedure, transition from the classical small defect to a pronounced wake flow is found to be accompanied by quasi-equilibrium flow, described by a distinguished limit that involves the wall shear stress. This situation is associated with double-valued solutions of the boundary layer equations and an unconventional weak Re-dependence of the external bulk flow—a phenomenon seen to agree well with previous semi-empirical studies and early experimental observations. Numerical computations of the boundary layer flow for various values of Re reproduce these analytical findings with satisfactory agreement.

  15. A documentation of two- and three-dimensional shock-separated turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Brown, J. D.; Brown, J. L.; Kussoy, M. I.

    1988-01-01

    A shock-related separation of a turbulent boundary layer has been studied and documented. The flow was that of an axisymmetric turbulent boundary layer over a 5.02-cm-diam cylinder that was aligned with the wind tunnel axis. The boundary layer was compressed by a 30 deg half-angle conical flare, with the cone axis inclined at an angle alpha to the cylinder axis. Nominal test conditions were P sub tau equals 1.7 atm and M sub infinity equals 2.85. Measurements were confined to the upper-symmetry, phi equals 0 deg, plane. Data are presented for the cases of alpha equal to 0. 5. and 10 deg and include mean surface pressures, streamwise and normal mean velocities, kinematic turbulent stresses and kinetic energies, as well as reverse-flow intermittencies. All data are given in tabular form; pressures, streamwise velocities, turbulent shear stresses, and kinetic energies are also presented graphically.

  16. A general method for calculating three-dimensional compressible laminar and turbulent boundary layers on arbitrary wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Ramsey, J. A.

    1977-01-01

    The method described utilizes a nonorthogonal coordinate system for boundary-layer calculations. It includes a geometry program that represents the wing analytically, and a velocity program that computes the external velocity components from a given experimental pressure distribution when the external velocity distribution is not computed theoretically. The boundary layer method is general, however, and can also be used for an external velocity distribution computed theoretically. Several test cases were computed by this method and the results were checked with other numerical calculations and with experiments when available. A typical computation time (CPU) on an IBM 370/165 computer for one surface of a wing which roughly consist of 30 spanwise stations and 25 streamwise stations, with 30 points across the boundary layer is less than 30 seconds for an incompressible flow and a little more for a compressible flow.

  17. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68% and 2.0% free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  18. Effects of nonequilibrium ablation chemistry on Viking radio blackout.

    NASA Technical Reports Server (NTRS)

    Evans, J. S.; Schexnayder, C. J., Jr.; Grose, W. L.

    1973-01-01

    The length of the entry blackout period during descent of the Viking Lander into the Mars atmosphere is predicted from calculated profiles of electron density in the shock layer over the aeroshell. Nonequilibrium chemistry plays a key role in the calculation, both in the inviscid flow and in the boundary layer. This is especially true in the boundary layer contaminated with ablation material, for which nonequilibrium chemistry predicts electron densities two decades lower than the same case calculated with equilibrium chemistry.

  19. Clear-air radar observations of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation presents two case studies with the measurements of remote (the FM-CW radar and Doppler lidar) and in-situ (research aircraft, kite, and radiosonde) sensors from the stable nighttime boundary layer. It also presents a unique observation of evolution of the convective and nocturnal boundary layers by the S-band radar, and provides description of the observed boundary layer characteristics with the aid of in-situ measurements by the 55m instrumented tower and radiosonde.

  20. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    NASA Astrophysics Data System (ADS)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  1. Shock-like structures in the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  2. Observations of the Early Morning Boundary-Layer Transition with Small Remotely-Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Rau, Gerrit Anke; Bange, Jens

    2015-12-01

    A remotely-piloted aircraft (RPA), equipped with a high resolution thermodynamic sensor package, was used to investigate physical processes during the morning transition of the atmospheric boundary layer over land. Experiments were conducted at a test site in heterogeneous terrain in south-west Germany on 5 days from June to September 2013 in an evolving shallow convective boundary layer, which then developed into a well-mixed layer later in the day. A combination of vertical profiling and constant-altitude profiling (CAP) at 100 m height above ground level was chosen as the measuring strategy throughout the experiment. The combination of flight strategies allows the application of mixed-layer scaling using the boundary-layer height z_i, convective velocity scale w_* and convective temperature scale θ _*. The hypothesis that mixed-layer theory is valid during the whole transition was not confirmed for all parameters. A good agreement is found for temperature variances, especially in the upper half of the boundary layer, and the normalized heat-flux profile. The results were compared to a previous study with the helicopter-borne turbulence probe Helipod, and it was found that similar data quality can be achieved with the RPA. On all days, the CAP flight level was within the entrainment zone for a short time, and the horizontal variability of temperature and water vapour along the flight path is presented as an example of the inhomogeneity of layer interfaces in the boundary layer. The study serves as a case study of the possibilities and limitations with state-of-the-art RPA technology in micrometeorology.

  3. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and the analysis of simulation data that a flow control device's influence on boundary layer quality is a function of three factors: (1) the strength of the longitudinal vortex emanating from the flow control device or devices, (2) the height of the vortex core above the surface and, when a synthetic jet is present, (3) the momentum added to the boundary layer flow.

  4. The interactive role of subsynoptic scale jet sreak and planetary boundary layer adjustments in organizing an apparently isolated convective complex

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.; Coats, G. D.

    1982-01-01

    A mesoscale atmospheric simulation system is described that is being developed in order to improve the simulation of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development, and significant atmospheric transport processes. Present emphasis in model development is in the parameterization of physical processes, time-dependent boundary conditions, sophisticated initialization and analysis procedures, nested grid solutions, and applications software development. Basic characteristics of the system as of March 1982 are listed. In a case study, the Grand Island tornado outbreak of 3 June 1980 is considered in substantial detail. Results of simulations with a mesoscale atmospheric simulation system indicate that over the high plains subtle interactions between existing jet streaks and deep well mixed boundary layers can lead to well organized patterns of mesoscale divergence and pressure falls. The amplitude and positioning of these mesoscale features is a function of the subtle nonlinear interaction between the pre-existing jet-streak and deep well mixed boundary layers. Model results for the case study indicate that the model has the potential for forecasting the precursor mesoscale convective environment.

  5. A linear model for rotors produced by trapped lee waves with a simple representation of boundary layer friction

    NASA Astrophysics Data System (ADS)

    Teixeira, Miguel A. C.

    2017-04-01

    A linear model is used to diagnose the onset of rotors in flow over 2D ridges, for atmospheres that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature inversion in between, where trapped lee waves may propagate. This is achieved by coupling an inviscid two-layer mountain-wave model with a bulk boundary-layer model. The full model shows some ability to detect flow stagnation as a function of key input parameters, such as the Froude number and the height of the inversion, by comparison with results from numerical simulations and laboratory experiments carried out by previous authors. The effect of a boundary layer is essential to correctly predict flow stagnation, as the inviscid version of the model severely overestimates the dimensionless critical mountain height necessary for stagnation to occur. An improved model that includes only the effects of mean flow deceleration and amplification of the velocity perturbation within the boundary layer predicts flow stagnation much better in the most non-hydrostatic cases treated here, where waves appear to be directly forced by the orography. However, in the most hydrostatic case, only the full model, taking into account the feedback of the boundary layer on the inviscid flow, satisfactorily predicts flow stagnation, although the corresponding stagnation condition is unable to discriminate between rotors and hydraulic jumps. This is due to the fact that the trapped lee waves associated with the rotors are not forced directly by the orography in this case, but rather seem to be generated indirectly by nonlinear processes. This mechanism is, to a certain extent, mimicked by the modified surface boundary condition adopted in the full model, where an "effective orography" that differs from the real one forces the trapped lee waves. Versions of the model not including this feedback severely underestimate the amplitude of the trapped lee waves in the most hydrostatic case, partly because the Fourier transform of the orography has zeros, which unrealistically weaken the wave response. Concerning the inability of even the full model to discriminate between rotors and hydraulic jumps, this may be attributed to the fact that the flow perturbations associated with stagnation in the model differ from those seen in the numerical simulations, especially for the most hydrostatic rotors, where the waves are generated indirectly. This suggests that flow stagnation may not be occurring for the right reasons in those cases.

  6. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.

    PubMed

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  7. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction

    PubMed Central

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-01-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors’ knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced. PMID:29104418

  8. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    NASA Astrophysics Data System (ADS)

    Tomas, J. M.; Pourquie, M. J. B. M.; Jonker, H. J. J.

    2016-05-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to investigate the effect on pollutant dispersion. Firstly, the LES method is validated with data from wind-tunnel experiments on fully-developed flow over cubical roughness. Good agreement is found for the vertical profiles of the mean streamwise velocity component and mean Reynolds stress. Subsequently, roughness transition simulations are done for both neutral and stable conditions. Results are compared with fully-developed simulations with conventional double-periodic boundary conditions. In stable conditions, at the end of the domain the streamwise velocity component has not yet reached the fully-developed state even though the surface forces are nearly constant. Moreover, the internal boundary layer is shallower than in the neutral case. Furthermore, an investigation of the turbulence kinetic energy budget shows that the buoyancy destruction term is reduced in the internal boundary layer, above which it is equal to the undisturbed (smooth wall) value. In addition, in stable conditions pollutants emitted above the urban canopy enter the canopy farther downstream due to decreased vertical mixing. Pollutants emitted below the top of the urban canopy are 85 % higher in concentration in stable conditions mostly due to decreased advection. If this is taken into account concentrations remain 17 % greater in stable conditions due to less rapid internal boundary-layer growth. Finally, it is concluded that in the first seven streets the vertical advective pollutant flux is significant, in contrast to the fully-developed case.

  9. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction

    NASA Astrophysics Data System (ADS)

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  10. Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brown, Douglas L.

    1994-01-01

    In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.

  11. Polymer concentration and properties of elastic turbulence in a von Karman swirling flow

    NASA Astrophysics Data System (ADS)

    Jun, Yonggun; Steinberg, Victor

    2017-10-01

    We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively. Specifically, the dependence of Vθv/Vθv rms in the vertical boundary layer on Wi and ϕ agrees with a recent theoretical prediction [S. Belan, A. Chernych, and V. Lebedev, Boundary layer of elastic turbulence (unpublished)].

  12. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    NASA Astrophysics Data System (ADS)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach), and iii) process-level evaluation at climate time-scales. The advantages and disadvantages of each approach will be identified and discussed, and some thoughts about possible future developments will be given.

  13. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    NASA Astrophysics Data System (ADS)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-07-01

    A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The system is described in a reduced two-dimensional phase plane with inversion height and boundary-layer average aerosol concentrations as the state variables. Simulations with a full diurnal cycle show similar evolutions, except that open-cell formation is phase-locked into the early morning hours. The same steadily-forced modeling framework is applied to the development and evolution of a POC and the surrounding overcast boundary layer. An initial aerosol perturbation applied to a portion of the model domain leads that portion to transition into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary-layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.

  14. An experimental investigation of the flow physics of high-lift systems

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.

    1995-01-01

    This progress report, a series of viewgraphs, outlines experiments on the flow physics of confluent boundary layers for high lift systems. The design objective is to design high lift systems with improved C(sub Lmax) for landing approach and improved take-off L/D and simultaneously reduce acquisition and maintenance costs. In effect, achieve improved performance with simpler designs. The research objectives include: establish the role of confluent boundary layer flow physics in high-lift production; contrast confluent boundary layer structure for optimum and non-optimum C(sub L) cases; formation of a high quality, detailed archival data base for CFD/modeling; and examination of the role of relaminarization and streamline curvature.

  15. Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-layer Trips

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Garcia, A. P.; Borg, Stephen E.; Dyakonov, Artem A.; Berry, Scott A.; Inman, Jennifer A.; Alderfer, David W.

    2007-01-01

    Planar laser-induced fluorescence (PLIF) flow visualization has been used to investigate the hypersonic flow of air over surface protrusions that are sized to force laminar-to-turbulent boundary layer transition. These trips were selected to simulate protruding Space Shuttle Orbiter heat shield gap-filler material. Experiments were performed in the NASA Langley Research Center 31-Inch Mach 10 Air Wind Tunnel, which is an electrically-heated, blowdown facility. Two-mm high by 8-mm wide triangular and rectangular trips were attached to a flat plate and were oriented at an angle of 45 degrees with respect to the oncoming flow. Upstream of these trips, nitric oxide (NO) was seeded into the boundary layer. PLIF visualization of this NO allowed observation of both laminar and turbulent boundary layer flow downstream of the trips for varying flow conditions as the flat plate angle of attack was varied. By varying the angle of attack, the Mach number above the boundary layer was varied between 4.2 and 9.8, according to analytical oblique-shock calculations. Computational Fluid Dynamics (CFD) simulations of the flowfield with a laminar boundary layer were also performed to better understand the flow environment. The PLIF images of the tripped boundary layer flow were compared to a case with no trip for which the flow remained laminar over the entire angle-of-attack range studied. Qualitative agreement is found between the present observed transition measurements and a previous experimental roughness-induced transition database determined by other means, which is used by the shuttle return-to-flight program.

  16. Experiments on a smooth wall hypersonic boundary layer at Mach 6

    NASA Astrophysics Data System (ADS)

    Neeb, Dominik; Saile, Dominik; Gülhan, Ali

    2018-04-01

    The turbulent boundary layer along the surface of high-speed vehicles drives shear stress and heat flux. Although essential to the vehicle design, the understanding of compressible turbulent boundary layers at high Mach numbers is limited due to the lack of available data. This is particularly true if the surface is rough, which is typically the case for all technical surfaces. To validate a methodological approach, as initial step, smooth wall experiments were performed. A hypersonic turbulent boundary layer at Ma = 6 (Ma_e=5.4) along a 7{}° sharp cone model at low Reynolds numbers Re_{θ } ≈ 3000 was characterized. The mean velocities in the boundary layer were acquired by means of Pitot pressure and particle image velocimetry (PIV) measurements. Furthermore, the PIV data were used to extract turbulent intensities along the profile. The mean velocities in the boundary layer agree with numerical data, independent of the measurement technique. Based on the profile data, three different approaches to extract the skin friction velocity were applied and show favorable comparison to literature and numerical data. The extracted values were used for inner and outer scaling of the van Driest transformed velocity profiles which are in good agreement to incompressible theoretical data. Morkovin scaled turbulent intensities show ambiguous results compared to literature data which may be influenced by inflow turbulence level, particle lag and other measurement uncertainties.

  17. Numerical Study of Pressure Fluctuations due to High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Wu, Minwei

    2012-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data and previously published simulations of turbulent boundary layers under similar flow conditions. Spectral analysis shows that the acoustic fluctuations outside the boundary layer region have much lower energy content within the high-frequency region. The space-time correlations reflect the convective nature of the pressure field both at the wall and in the freestream, which is characterized by the downstream propagation of pressure-carrying eddies. Relative to those at the wall, the pressure-carrying eddies associated with the freestream signal are larger and convect at a significantly lower speed. The preliminary DNS results of a Mach 6 boundary layer show that the pressure rms in the freestream region is significantly higher than that of the lower Mach number case.

  18. Natural laminar flow flight experiments on a swept wing business jet-boundary layer stability analyses

    NASA Technical Reports Server (NTRS)

    Rozendaal, R. A.

    1986-01-01

    The linear boundary layer stability analyses and their correlation with data of 18 cases from a natural laminar flow (NLF) flight test program using a Cessna Citation 3 business jet are described. The transition point varied from 5% to 35% chord for these conditions, and both upper and lower wing surfaces were included. Altitude varied from 10,000 to 43,000 ft and Mach number from 0.3 to 0.8. Four cases were at nonzero sideslip. Although there was much scatter in the results, the analyses of boundary layer stability at the 18 conditions led to the conclusion that crossflow instability was the primary cause of transition. However, the sideslip cases did show some interaction of crossflow and Tollmien-Schlichting disturbances. The lower surface showed much lower Tollmien-Schlichting amplification at transition than the upper surface, but similar crossflow amplifications. No relationship between Mach number and disturbance amplification at transition could be found. The quality of these results is open to question from questionable wing surface quality, inadequate density of transition sensors on the wing upper surface, and an unresolved pressure shift in the wing pressure data. The results of this study show the need for careful preparation for transition experiments. Preparation should include flow analyses of the test surface, boundary layer disturbance amplification analyses, and assurance of adequate surface quality in the test area. The placement of necessary instruments and usefulness of the resulting data could largely be determined during the pretest phase.

  19. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  20. Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Schwing, A. M.; Blaisdell, G> A.; Lyrintzis, A. S.

    2007-01-01

    The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions.

  1. Active flow control insight gained from a modified integral boundary layer equation

    NASA Astrophysics Data System (ADS)

    Seifert, Avraham

    2016-11-01

    Active Flow Control (AFC) can alter the development of boundary layers with applications (e.g., reducing drag by separation delay or separating the boundary layers and enhancing vortex shedding to increase drag). Historically, significant effects of steady AFC methods were observed. Unsteady actuation is significantly more efficient than steady. Full-scale AFC tests were conducted with varying levels of success. While clearly relevant to industry, AFC implementation relies on expert knowledge with proven intuition and or costly and lengthy computational efforts. This situation hinders the use of AFC while simple, quick and reliable design method is absent. An updated form of the unsteady integral boundary layer (UIBL) equations, that include AFC terms (unsteady wall transpiration and body forces) can be used to assist in AFC analysis and design. With these equations and given a family of suitable velocity profiles, the momentum thickness can be calculated and matched with an outer, potential flow solution in 2D and 3D manner to create an AFC design tool, parallel to proven tools for airfoil design. Limiting cases of the UIBL equation can be used to analyze candidate AFC concepts in terms of their capability to modify the boundary layers development and system performance.

  2. The effect of a shear boundary layer on the stability of a capillary jet

    NASA Astrophysics Data System (ADS)

    Ganan-Calvo, Alfonso; Montanero, Jose M.; Herrada, Miguel A.

    2014-11-01

    The generic stabilization effect of a shear boundary layer over the free surface of a capillary jet is here studied from analytical (asymptotic), numerical and experimental approaches. In first place, we show the consistency of the proposed asymptotic analysis by a linear stability (numerical) analysis of the Navier-Stokes equations for a finite boundary layer thickness. We show how the convective-to-absolute instability transition departs drastically from the flat velocity profile case as the axial coordinate becomes closer to the origin of the boundary layer development. For large enough axial distances from that origin, Rayleigh's dispersion relation is recovered. A collection of experimental observations is analyzed from the perspective provided by these results. We propose a systematic framework to the dynamics of capillary jets issued from a nozzle, either by direct injection into a quiescent atmosphere or in a co-flow (e.g. gas flow-focused jets), which exhibit peculiarities now definitely attributable in first order to the formation of shear boundary layers. Partial support from the Ministry of Economy and Competitiveness, Junta de Extremadura, and Junta de Andalucia (Spain) through Grant Nos. DPI2010-21103, GR10047, P08-TEP-04128, and TEP-7465, respectively, is gratefully acknowledged.

  3. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Barlas, E.; Buckingham, S.; van Beeck, J.

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-layer wind-tunnel. Time-resolved measurements are carried out with a three-component hot-wire anemometer in the mid-vertical plane of the wake up to a downstream distance of eleven turbine diameters. The major issue addressed is the wake dynamics i.e. the flow and turbulence characteristics as well as spectral content under two different neutral boundary-layer inflow conditions. The wind tunnel is arranged with and without roughened surfaces in order to mimic moderately rough and smooth conditions. The inflow characterization is carried out by using all three velocity components, while the rest of the study is focused on the streamwise component's evolution. The results show an earlier wake recovery, i.e. the velocity deficit due to the turbine is less persistent for the rough case due to higher incoming turbulence levels. This paves the way for enhanced mixing from higher momentum regions of the boundary layer towards the centre of the wake. The investigation on the turbulent shear stresses is in line with this observation as well. Moreover, common as well as distinguishing features of the turbulent-scales evolution are detected for rough and smooth inflow boundary-layer conditions. Wake meandering disappears for rough inflow conditions but persists for smooth case with a Strouhal number similar to that of a solid disk wake.

  4. Boundary layers at a dynamic interface: Air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew J.

    2017-04-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.

  5. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  6. The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    van Stratum, Bart J. H.; Stevens, Bjorn

    2015-06-01

    The influence of poorly resolving mixing processes in the nocturnal boundary layer (NBL) on the development of the convective boundary layer the following day is studied using large-eddy simulation (LES). Guided by measurement data from meteorological sites in Cabauw (Netherlands) and Hamburg (Germany), the typical summertime NBL conditions for Western Europe are characterized, and used to design idealized (absence of moisture and large-scale forcings) numerical experiments of the diel cycle. Using the UCLA-LES code with a traditional Smagorinsky-Lilly subgrid model and a simplified land-surface scheme, a sensitivity study to grid spacing is performed. At horizontal grid spacings ranging from 3.125 m in which we are capable of resolving most turbulence in the cases of interest to grid a spacing of 100 m which is clearly insufficient to resolve the NBL, the ability of LES to represent the NBL and the influence of NBL biases on the subsequent daytime development of the convective boundary layer are examined. Although the low-resolution experiments produce substantial biases in the NBL, the influence on daytime convection is shown to be small, with biases in the afternoon boundary layer depth and temperature of approximately 100 m and 0.5 K, which partially cancel each other in terms of the mixed-layer top relative humidity.

  7. Aspects of Turbulent / Non-Turbulent Interfaces

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Hunt, J. C. R.; Rogers, M. M.; Koen, Dennis (Technical Monitor)

    1999-01-01

    A distinct boundary between turbulent and non-turbulent regions in a fluid of otherwise constant properties is found in many laboratory and engineering turbulent flows, including jets, mixing layers, boundary layers and wakes. Generally, the flow has mean shear in at least one direction within t he turbulent zone, but the non-turbulent zones have no shear (adjacent laminar shear is a different case, e.g. transition in a boundary layer). There may be purely passive differences between the turbulent and non-turbulent zones, e.g. small variations in temperature or scalar concentration, for which turbulent mixing is an important issue. The boundary has several major characteristics of interest for the present study. Firstly, the boundary advances into the non-turbulent fluid, or in other words, nonturbulent fluid is entrained. Secondly, the change in turbulence properties across the boundary is remarkably abrupt; strong turbulent motions come close to the nonturbulent fluid, promoting entrainment. Thirdly, the boundary is irregular with a continually changing convoluted shape, which produces statistical intermittency. Its shape is contorted at all scales of the turbulent motion.

  8. Electroneutral models for dynamic Poisson-Nernst-Planck systems

    NASA Astrophysics Data System (ADS)

    Song, Zilong; Cao, Xiulei; Huang, Huaxiong

    2018-01-01

    The Poisson-Nernst-Planck (PNP) system is a standard model for describing ion transport. In many applications, e.g., ions in biological tissues, the presence of thin boundary layers poses both modeling and computational challenges. In this paper, we derive simplified electroneutral (EN) models where the thin boundary layers are replaced by effective boundary conditions. There are two major advantages of EN models. First, it is much cheaper to solve them numerically. Second, EN models are easier to deal with compared to the original PNP system; therefore, it would also be easier to derive macroscopic models for cellular structures using EN models. Even though the approach used here is applicable to higher-dimensional cases, this paper mainly focuses on the one-dimensional system, including the general multi-ion case. Using systematic asymptotic analysis, we derive a variety of effective boundary conditions directly applicable to the EN system for the bulk region. This EN system can be solved directly and efficiently without computing the solution in the boundary layer. The derivation is based on matched asymptotics, and the key idea is to bring back higher-order contributions into the effective boundary conditions. For Dirichlet boundary conditions, the higher-order terms can be neglected and the classical results (continuity of electrochemical potential) are recovered. For flux boundary conditions, higher-order terms account for the accumulation of ions in boundary layer and neglecting them leads to physically incorrect solutions. To validate the EN model, numerical computations are carried out for several examples. Our results show that solving the EN model is much more efficient than the original PNP system. Implemented with the Hodgkin-Huxley model, the computational time for solving the EN model is significantly reduced without sacrificing the accuracy of the solution due to the fact that it allows for relatively large mesh and time-step sizes.

  9. On buffer layers as non-reflecting computational boundaries

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  10. Compressibility Considerations for kappa-omega Turbulence Models in Hypersonic Boundary Layer Applications

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.

    2009-01-01

    The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.

  11. Growth mechanisms of perturbations in boundary layers over a compliant wall

    NASA Astrophysics Data System (ADS)

    Malik, M.; Skote, Martin; Bouffanais, Roland

    2018-01-01

    The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity and wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. As a consequence, the continuous spectrum is accurately obtained. This enables us to effectively filter the pseudospectra, which is a prerequisite to the transient growth analysis. An energy-budget analysis for the least-decaying hydroelastic (static divergence, traveling wave flutter, and near-stationary transitional) and Tollmien-Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the maximum transient growth rate increases more slowly with the Reynolds number than for the solid wall case. The slowdown is due to a complex dependence of the wall-boundary condition with the Reynolds number, which translates into a transition of the fluid-solid interaction from a two-way to a one-way coupling. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. The initial and optimal perturbations are compared with the boundary layer flow over a solid wall; differences and similarities are discussed.

  12. Numerical simulation of strong wake/boundary layer interaction

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Victor; Piomelli, Ugo; Choudhari, Meelan M.

    2003-11-01

    DNS and LES of the strong interaction between an unsteady cylinder wake and a flat-plate boundary layer are carried out. Of the two Reynolds numbers examined, in the lower Reynolds number case (Re=385 based on cylinder diameter) the boundary layer is buffeted by the vortices shed off the cylinder, but the Reynolds number is too low to trigger transition to turbulence. In contrast, in the higher Reyolds number case (Re=1155) we observe the inception of a self-sustained turbulence-generation mechanism triggered by the Karman vortex street behind the cylinder. In previously performed simulations the computational box was not long enough to extend into the turbulent region; therefore, we have lengthened the streamwise domain using a second computational box in order to capture the transition point. In addition to examining turbulence statistics, we look at the Reynolds stress budgets up to and through the transitional regime to obtain further insights into the physics of bypass transition via wake contamination.

  13. A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited

    DOE PAGES

    Rodrigo, J. Sanz; Churchfield, M.; Kosović, B.

    2016-10-03

    The third GEWEX Atmospheric Boundary Layer Studies (GABLS3) model intercomparison study, around the Cabauw met tower in the Netherlands, is revisited as a benchmark for wind energy atmospheric boundary layer (ABL) models. The case was originally developed by the boundary layer meteorology community, interested in analysing the performance of single-column and large-eddy simulation atmospheric models dealing with a diurnal cycle leading to the development of a nocturnal low-level jet. The case addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The characterizationmore » of mesoscale forcing for asynchronous microscale modelling of the ABL is discussed based on momentum budget analysis of WRF simulations. Then a single-column model is used to demonstrate the added value of incorporating different forcing mechanisms in microscale models. The simulations are evaluated in terms of wind energy quantities of interest.« less

  14. Turbulence structure of the marine stable boundary layer over the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedman, A.S.; Hoegstroem, U.

    For more than half of the year the land surfaces surrounding the Baltic Sea is warmer than the sea surface, and the marine boundary layer over the Baltic is stable. Observations, at various sites in the Baltic Sea area during the last decade. also indicate frequent occurrence of low-level jets at the top of the stable boundary layer. In many cases the marine jet can be considered as an analogy in space to the evolution of the nocturnal jet with time. The frictional decoupling occurs when warm air over the land is flowing out over the sea. Data from twomore » areas together with model simulations are used in this study to characterize turbulence structure in the marine boundary layer. The measurements include profiles of wind and temperature on towers situated at two isolated islands, together with turbulence recordings and aircraft measurements. Also wave height and water surface temperature have been measured. The model simulations are performed with a second-order closure model.« less

  15. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  16. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. (See CASI ID 20120009374 for Supplemental CD-ROM.)

  17. Transpiration and film cooling boundary layer computer program. Volume 2: Computer program and user's manual

    NASA Technical Reports Server (NTRS)

    Gloss, R. J.

    1971-01-01

    A finite difference turbulent boundary layer computer program which allows for mass transfer wall cooling and equilibrium chemistry effects is presented. The program is capable of calculating laminar or turbulent boundary layer solutions for an arbitrary ideal gas or an equilibrium hydrogen oxygen system. Either two dimensional or axisymmetric geometric configurations may be considered. The equations are solved, in nondimension-alized physical coordinates, using the implicit Crank-Nicolson technique. The finite difference forms of the conservation of mass, momentum, total enthalpy and elements equations are linearized and uncoupled, thereby generating easily solvable tridiagonal sets of algebraic equations. A detailed description of the computer program, as well as a program user's manual is provided. Detailed descriptions of all boundary layer subroutines are included, as well as a section defining all program symbols of principal importance. Instructions are then given for preparing card input to the program and for interpreting the printed output. Finally, two sample cases are included to illustrate the use of the program.

  18. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.

  19. A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization

    NASA Technical Reports Server (NTRS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    2001-01-01

    A working wind tunnel test facility has been constructed at the University of Notre Dame's Hessert Center. The relaminarization test facility has been constructed in the 1.5m x 1.5m (5ft x 5 ft) atmospheric wind tunnel and generates a Re(theta)=4694 turbulent boundary layer in nominally zero-pressure gradient before it is exposed to the Case #1 pressure gradient (K approximately equal to 4.2 x 10(exp -6), which is believed to be sufficient to achieve relaminarization. Future work to be conducted will include measuring the response of the turbulent boundary layer to the favorable pressure gradients created in the test facility and documenting this response in order to understand the underlying flow physics responsible for relaminarization. It is the goal of this research to have a better understanding of accelerated turbulent boundary layers which will aid in the development of future flow diagnostic utilities to be implemented in applied aerodynamic research.

  20. Evaluating Models Of The Neutral, Barotropic Planetary Boundary Layer Using Integral Measures: Part Ii. Modelling Observed Conditions

    NASA Astrophysics Data System (ADS)

    Hess, G. D.; Garratt, J. R.

    The steady-state, horizontally homogeneous, neutral, barotropiccase forms the foundation of our theoretical understanding of the planetary boundary layer (PBL).While simple analytical models and first-order closure models simulate atmospheric observationsof this case well, more sophisticated models, in general, do not. In this paperwe examine how well three higher-order closure models, E - - l, E - l, and LRR - l,which have been especially modified for PBL applications, perform in predicting the behaviour of thecross-isobaric angle 0, the geostrophic drag coefficient Cg, and the integral of the dissipationrate over the boundary layer, as a function of the surface Rossby number Ro. For comparison we alsoexamine the performance of three first-order closure mixing-length models, two proposed byA. K. Blackadar and one by H. H. Lettau, and the performance of the standard model forsecond-order closure and a modification of it designed to reduce the overprediction of turbulence inthe upper part of the boundary layer.

  1. Study of flow control by localized volume heating in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.

    2014-12-01

    Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.

  2. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  3. The role of boundary variability in polycrystalline grain-boundary diffusion

    NASA Astrophysics Data System (ADS)

    Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2015-01-01

    We investigate the impact of grain-boundary variability on mass transport in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion in prototypical microstructures in which there is either a discrete spectrum of grain-boundary activation energies or else a complex distribution of grain-boundary character, and hence a continuous spectrum of boundary activation energies. An effective diffusivity is calculated for these structures using simplified multi-state models and, for the case of a continuous spectrum, employing experimentally obtained grain-boundary energy data. We identify different diffusive regimes for these cases and quantify deviations from Arrhenius behavior using effective medium theory. Finally, we examine the diffusion kinetics of a simplified model of an interfacial layering (i.e., complexion) transition.

  4. A new momentum integral method for approximating bed shear stress

    NASA Astrophysics Data System (ADS)

    Wengrove, M. E.; Foster, D. L.

    2016-02-01

    In nearshore environments, accurate estimation of bed stress is critical to estimate morphologic evolution, and benthic mass transfer fluxes. However, bed shear stress over mobile boundaries in wave environments is notoriously difficult to estimate due to the non-equilibrium boundary layer. Approximating the friction velocity with a traditional logarithmic velocity profile model is common, but an unsteady non-uniform flow field violates critical assumptions in equilibrium boundary layer theory. There have been several recent developments involving stress partitioning through an examination of the momentum transfer contributions that lead to improved estimates of the bed stress. For the case of single vertical profile observations, Mehdi et al. (2014) developed a full momentum integral-based method for steady-unidirectional flow that integrates the streamwise Navier-Stokes equation three times to an arbitrary position within the boundary layer. For the case of two-dimensional velocity observations, Rodriguez-Abudo and Foster (2014) were able to examine the momentum contributions from waves, turbulence and the bedform in a spatial and temporal averaging approach to the Navier-Stokes equations. In this effort, the above methods are combined to resolve the bed shear stress in both short and long wave dominated environments with a highly mobile bed. The confluence is an integral based approach for determining bed shear stress that makes no a-priori assumptions of boundary layer shape and uses just a single velocity profile time series for both the phase dependent case (under waves) and the unsteady case (under solitary waves). The developed method is applied to experimental observations obtained in a full scale laboratory investigation (Oregon State's Large Wave Flume) of the nearbed velocity field over a rippled sediment bed in oscillatory flow using both particle image velocimetry and a profiling acoustic Doppler velocimeter. This method is particularly relevant for small scale field observations and laboratory observations.

  5. Numerical Study of Pressure Fluctuations due to a Mach 6 Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2013-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub t) approx. =. 464. The emphasis is on comparing the primarily vortical pressure signal at the wall with the acoustic freestream signal under higher Mach number conditions. Moreover, the Mach-number dependence of pressure signals is demonstrated by comparing the current results with those of a supersonic boundary layer at Mach 2.5 and Re(sub t) approx. = 510. It is found that the freestream pressure intensity exhibits a strong Mach number dependence, irrespective of whether it is normalized by the mean wall shear stress or by the mean pressure, with the normalized fluctuation amplitude being significantly larger for the Mach 6 case. Spectral analysis shows that both the wall and freestream pressure fluctuations of the Mach 6 boundary layer have enhanced energy content at high frequencies, with the peak of the premultiplied frequency spectrum of freestream pressure fluctuations being at a frequency of omega(delta)/U(sub infinity) approx. = 3.1, which is more than twice the corresponding frequency in the Mach 2.5 case. The space-time correlations indicate that the pressure-carrying eddies for the higher Mach number case are of smaller size, less elongated in the spanwise direction, and convect with higher convection speeds relative to the Mach 2.5 case. The demonstrated Mach-number dependence of the pressure field, including radiation intensity, directionality, and convection speed, is consistent with the trend exhibited in experimental data and can be qualitatively explained by the notion of "eddy Mach wave" radiation.

  6. Stability and Drag Reduction in a Boundary Layer with Microbubbles.

    DTIC Science & Technology

    1988-02-01

    order accurate. .’ Since the numerical methods are not the object of this % dissertation, we decline from including the finite difference equations...previous appendix must be the special case of zero pressure gradient. Some entries of the matrices of the block tridiagonal system will be different ...of the wall mean velocity gradient was observed to be associated with the migration of the bubbles away from the boundary layer. The time scale of the

  7. Three-Dimensional Structure of Boundary Layers in Transition to Turbulence

    DTIC Science & Technology

    1989-03-01

    step-by-step Orr- Sommerfeld solution and integration. What is needed is an initial condition and initial wavenumber. These data can be obtained from a ...general than unsteady boundary-layer equations and Orr- Sommerfeld equation which are special cases. There- fore, the PSE will be a valuable tool for...spectra (discrete, continuous) result in a given problem is discussed in monographs and journal articles. Here, we try to find solutions to the

  8. Plasma diffusion at the magnetopause - The case of lower hybrid drift waves

    NASA Technical Reports Server (NTRS)

    Treumann, R. A.; Labelle, J.; Pottelette, R.

    1991-01-01

    The diffusion expected from the quasi-linear theory of the lower hybrid drift instability at the earth's magnetopause is recalculated. The resulting diffusion coefficient is marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various loss processes.

  9. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction, volume 2. [computer programs

    NASA Technical Reports Server (NTRS)

    Omori, S.

    1973-01-01

    As described in Vol. 1, the eddy viscosity is calculated through the turbulent kinetic energy, in order to include the history of the flow and the effect of chemical reaction on boundary layer characteristics. Calculations can be performed for two different cooling concepts; that is, transpiration and regeneratively cooled wall cases. For the regenerative cooling option, coolant and gas side wall temperature and coolant bulk temperature in a rocket engine can be computed along the nozzle axis. Thus, this computer program is useful in designing coolant flow rate and cooling tube geometry, including the tube wall thickness as well as in predicting the effects of boundary layers along the gas side wall on thrust performances.

  10. Comparison of artificial absorbing boundaries for acoustic wave equation modelling

    NASA Astrophysics Data System (ADS)

    Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing

    2017-12-01

    Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.

  11. Unsteady turbulent boundary layers in swimming rainbow trout.

    PubMed

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  12. Experimental investigation on the influence of boundary layer thickness on the base pressure and near-wake flow features of an axisymmetric blunt-based body

    NASA Astrophysics Data System (ADS)

    Mariotti, Alessandro; Buresti, Guido

    2013-11-01

    The influence of the thickness of the boundary layer developing over the surface of an axisymmetric bluff body upon its base pressure and near-wake flow is analyzed experimentally. The model, whose diameter-to-length ratio is d/ l = 0.175, has a forebody with an elliptical contour and a sharp-edged flat base; it is supported above a plate by means of a faired strut. The pressure distributions over the body lateral and base surfaces were obtained using numerous pressure taps, while the boundary layer profiles and the wake velocity field were measured through hot-wire anemometry. The tests were carried out at , at which the boundary layer over the lateral surface of the body becomes turbulent before reaching the base contour. Strips of emery cloth were wrapped in various positions around the body circumference in order to modify the thickness and the characteristics of the boundary layer. The results show that increasing the boundary layer thickness causes a decrease in the base suctions and a corresponding increase in the length of the mean recirculation region present behind the body. In the spectra of the velocity fluctuations measured within and aside the wake, a dominating peak becomes evident in the region downstream of the final part of the recirculation region. The relevant non-dimensional frequency decreases with increasing boundary layer thickness; however, a Strouhal number based on the wake width and the velocity defect at a suitable reference cross section downstream of the recirculation region is found to remain almost constant for the different cases.

  13. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 5: Propagation of propeller tone noise through a fuselage boundary layer

    NASA Technical Reports Server (NTRS)

    Magliozzi, B.; Hanson, D. B.

    1991-01-01

    An analysis of tone noise propagation through a boundary layer and fuselage scattering effects was derived. This analysis is a three dimensional and the complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The outer wave field is constructed analytically from an incident wave appropriate to the source and a scattered wave in the standard Hankel function form. For the incident wave, an existing function - domain propeller noise radiation theory is used. In the boundary layer region, the wave equation is solved by numerical methods. The theoretical analysis is embodied in a computer program which allows the calculation of correction factors for the fuselage scattering and boundary layer refraction effects. The effects are dependent on boundary layer profile, flight speed, and frequency. Corrections can be derived for any point on the fuselage, including those on the opposite side from the source. The theory was verified using limited cases and by comparing calculations with available measurements from JetStar tests of model prop-fans. For the JetStar model scale, the boundary layer refraction effects produce moderate fuselage pressure reinforcements aft of and near the plane of rotation and significant attenuation forward of the plane of rotation at high flight speeds. At lower flight speeds, the calculated boundary layer effects result in moderate amplification over the fuselage area of interest. Apparent amplification forward of the plane of rotation is a result of effective changes in the source directivity due to boundary layer refraction effects. Full scale effects are calculated to be moderate, providing fuselage pressure amplification of about 5 dB at the peak noise location. Evaluation using available noise measurements was made under high-speed, high-altitude flight conditions. Comparisons of calculations made of free field noise, using a current frequency-domain propeller noise prediction method, and fuselage effects using this new procedure show good agreement with fuselage measurements over a wide range of flight speeds and frequencies. Correction factors for the JetStar measurements made on the fuselage are provided in an Appendix.

  14. Optimal control of energy extraction in LES of large wind farms

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay; Munters, Wim

    2014-11-01

    We investigate the use of optimal control combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large ``infinite'' wind farms and in finite farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with an actuator-disk representation of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in the actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. In a first infinite wind-farm case, we find that farm power is increases by approximately 16% over one hour of operation. This comes at the cost of a deceleration of the outer layer of the boundary layer. A detailed analysis of energy balances is presented, and a comparison is made between infinite and finite farm cases, for which boundary layer entrainment plays an import role. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Govern.

  15. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-12-01

    The planetary boundary layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. The first method is based on the determination of the first-order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained through this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first-order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  16. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-06-01

    The Planetary Boundary Layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. A first method is based on the determination of the first order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained from this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  17. Bottom boundary layer spectral dissipation estimates in the presence of wave motions

    NASA Astrophysics Data System (ADS)

    Gross, T. F.; Williams, A. J.; Terray, E. A.

    1994-08-01

    Turbulence measurements are an essential element of the Sediment TRansport Events on Shelves and Slopes experiment (STRESS). Sediment transport under waves is initiated within the wave boundary layer at the seabed, at most a few tens of centimeters deep. The suspended load is carried by turbulent diffusion above the wave boundary layer. Quantification of the turbulent diffusion active above the wave boundary layer requires estimates of shear stress or energy dissipation in the presence of oscillating flows. Measurements by Benthic Acoustic Stress Sensors of velocity fluctuations were used to derive the dissipation rate from the energy level of the spectral inertial range (the -5/3 spectrum). When the wave orbital velocity is of similar magnitude to the mean flow, kinematic effects on the estimation techniques of stress and dissipation must be included. Throughout the STRESS experiment there was always significant wave energy affecting the turbulent bottom boundary layer. LUMLEY and TERRAY [(1983) Journal of Physical Oceanography, 13, 2000-2007] presented a theory describing the effect of orbital motions on kinetic energy spectra. Their model is used here with observations of spectra taken within a turbulent boundary layer which is affected by wave motion. While their method was an explicit solution for circular wave orbits aligned with mean current we extrapolated it to the case of near bed horizontal motions, not aligned with the current. The necessity of accounting for wave orbital motion is demonstrated, but variability within the field setting limited our certainty of the improvement in accuracy the corrections afforded.

  18. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis ofmore » vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.« less

  19. Detritus in K/T boundary clays of western North America - Evidence against a single oceanic impact

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Schuraytz, B. C.; Burke, K.; Murali, A. V.; Ryder, G.

    1990-01-01

    Understanding the crustal signature of impact ejecta contained in the Cretaceous/Tertiary (K/T) boundary layer is crucial to constraining the possible site(s) of the postulated K/T impact event. The relatively unaltered clastic constituents of the boundary layer at widely separated outcrops within the western interior of North America are not compatible with a single oceanic impact but require instead an impact site on a continent or continental margin. On the other hand, chemical compositions of highly altered K/T boundary layer components in some marine sections have suggested to others an impact into oceanic crust. We suspect that post-depositional alteration within the marine setting accounts for this apparent oceanic affinity. If, however, this is not the case, multiple simultaneous impacts, striking continent as well as ocean floor, would seem to be required.

  20. Effects of local and global mechanical distortions to hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, William P.

    The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.

  1. Collaborative Research: Lagrangian Modeling of Dispersion in the Stable Boundary Layer and Canopy Environments

    DTIC Science & Technology

    2009-04-16

    ms−1), a grid resolution of ∼ 1 m, a zi = 62 m, and a zi/L = 2.2. For reference, we included a neutral boundary layer ( NBL , case N1) in which Ug = 5...heights and appears to start around X ∼ 0.3. The results for case S2 (not shown) look similar. In the NBL (Fig. 3b), the spread is similar although the...t3/2 regime appears to begin near X ∼ 0.5, and its delay relative to S1 is probably due to the smaller directional shear in the NBL . For the surface

  2. The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow

    NASA Astrophysics Data System (ADS)

    Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.

    2018-02-01

    In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.

  3. Electrodynamic properties and height of atmospheric convective boundary layer

    NASA Astrophysics Data System (ADS)

    Anisimov, S. V.; Galichenko, S. V.; Mareev, E. A.

    2017-09-01

    We consider the relations between the mixed layer height and atmospheric electric parameters affected by convective mixing. Vertical turbulent transport of radon, its progeny and electrically charged particles is described under Lagrangian stochastic framework, which is the next step to develop a consistent model for the formation of electrical conditions in the atmospheric boundary layer. Using the data from detailed and complex measurements of vertical profiles of the temperature and turbulence statistics as input, we calculated non-stationary vertical profiles of radon and its daughter products concentrations, atmospheric electric conductivity and intensity of electric field in the convective boundary layer from the morning transition through early afternoon quasi-stationary conditions. These profiles demonstrate substantial variability due to the changing turbulent regime in the evolving boundary layer. We obtained quantitative estimates of the atmospheric electric field variability range essentially related to the sunrise and convection development. It is shown that the local change in the electrical conductivity is the only factor that can change the intensity of electric field at the earth's surface more than twice during the transition from night to day. The established relations between electric and turbulent parameters of the boundary layer indicate that the effect of sunrise is more pronounced in the case when development of convection is accompanied by an increase in aerosol concentration and, hence, a decrease in local conductivity.

  4. The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts

    NASA Astrophysics Data System (ADS)

    Olson, David H.; Freedy, Keren M.; McDonnell, Stephen J.; Hopkins, Patrick E.

    2018-04-01

    We experimentally demonstrate the role of oxygen stoichiometry on the thermal boundary conductance across Au/TiOx/substrate interfaces. By evaporating two different sets of Au/TiOx/substrate samples under both high vacuum and ultrahigh vacuum conditions, we vary the oxygen composition in the TiOx layer from 0 ≤ x ≤ 2.85. We measure the thermal boundary conductance across the Au/TiOx/substrate interfaces with time-domain thermoreflectance and characterize the interfacial chemistry with x-ray photoemission spectroscopy. Under high vacuum conditions, we speculate that the environment provides a sufficient flux of oxidizing species to the sample surface such that one essentially co-deposits Ti and these oxidizing species. We show that slower deposition rates correspond to a higher oxygen content in the TiOx layer, which results in a lower thermal boundary conductance across the Au/TiOx/substrate interfacial region. Under the ultrahigh vacuum evaporation conditions, pure metallic Ti is deposited on the substrate surface. In the case of quartz substrates, the metallic Ti reacts with the substrate and getters oxygen, leading to a TiOx layer. Our results suggest that Ti layers with relatively low oxygen compositions are best suited to maximize the thermal boundary conductance.

  5. Transport velocity transformation - A convenient method for performance analysis of multilayer solar cell structure

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1981-01-01

    It is noted that in the case of low-level injection, space-charge quasi-neutrality, and spatially constant material parameters (including an electrostatic field), the individual layer can be treated analytically and the basic solar cell performance parameters can be evaluated from three equations. The first equation represents the transformation of the transport velocity across the layer from the other layer boundary. The second establishes the light-generated current output from the layer interface, under the influence of the transport velocities and minority-carrier density at both layer boundaries and of bulk recombination. The third equation describes the flow of these carriers across other layers. The power of the approach is considered to lie in its facility for analysis of the solar cell's performance layer by layer, giving a clear picture of the individual layer's influence on cell efficiency.

  6. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    DTIC Science & Technology

    2014-06-01

    Vitaly G. Soudakov; Ivett A Leyva 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...cases of low injection rates in which the N -factors in the near field region are below the critical level, shaping can produce a significant...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov* and Vitaly G. Soudakov

  7. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection (Briefing Charts)

    DTIC Science & Technology

    2014-06-01

    Vitaly G. Soudakov; Ivett A Leyva 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...cases of low injection rates in which the N -factors in the near field region are below the critical level, shaping can produce a significant...Release; Distribution Unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander Fedorov and Vitaly Soudakov Moscow

  8. Shock Tunnel Operation and Correlation of Boundary Layer Transition on a Cone in Hypervelocity Flow

    DTIC Science & Technology

    2013-07-01

    conditions from the ideal reflected-shock pressure to measured reservoir pressure using an isentropic expan- sion. Furthermore, the 1-D nozzle computation...does not account for boundary layer growth within the nozzle , off-design operation conditions that lead to flow nonuni- formity, or vibration...translation nonequilibrium and freezing within the nozzle , which is significant for the N2 cases. For the uncertainties that can be quantified, we have combined

  9. The turblent mixing layer - Geometry of large vortices

    NASA Astrophysics Data System (ADS)

    Browand, F. K.; Troutt, T. R.

    1985-09-01

    Large spanwide vortices in a mixing layer have been studied in numerous investigations. The present study represents an attempt to define the geometry of the large vortices. In the conducted experiments, the flow develops from a laminar boundary layer, or from an intentionally tripped turbulent boundary layer. However, no other forcing is provided. It is pointed out that in both cases the downstream structure becomes indistinguishable. The experimental apparatus and the employed techniques are discussed, taking into account details regarding the wind tunnel, the detection of the structure, and aspects of digitization. Attention is given to the mean growth of the mixing layer, the mean vortex spacing, the spanwise correlation of vortex structure, velocity-field visualizations, the transition criterion, and the permanence of structure.

  10. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Ganapathisubramani, B.

    2018-04-01

    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity.

  11. Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.; Meneveau, Charles

    2016-01-01

    The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.

  12. Inner Plasma Structure of the Low-Latitude Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.; hide

    2012-01-01

    We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

  13. Calculation of oblique-shock-wave laminar-boundary-layer interaction on a flat plate

    NASA Technical Reports Server (NTRS)

    Goldberg, U.; Reshotko, E.

    1980-01-01

    A finite difference solution to the problem of the interaction between an impinging oblique shock wave and the laminar boundary layer on a flat plate is presented. The boundary layer equations coupled with the Prandtl-Meyer relation for the external flow are used to calculate the flow field. A method for the calculation of the separated flow region is presented and discussed. Comparisons between this theory and the experimental results of other investigators show fairly good agreement. Results are presented for the case of a cooled wall with an oncoming flow at Mach number 2.0 without and with suction. The results show that a small amount of suction greatly reduces the extent of the separated region in the vicinity of the shock impingement location.

  14. Developing a framework for integrating turbulence measurements and modeling of ecosystem-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.

    2017-12-01

    Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.

  15. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

    PubMed

    Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin

    2016-01-01

    This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.

  16. 3D LDV Measurements in Oscillatory Boundary Layers

    NASA Astrophysics Data System (ADS)

    Mier, J. M.; Garcia, M. H.

    2012-12-01

    The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, the oscillatory flow regime and bed roughness character change in time along the period for every cycle, a characteristic that introduces a high degree of complexity in the analysis of these flows. Governing equations can be derived from the general Navier-Stokes equations for the motion of fluids, from which the exact solution for the laminar oscillatory boundary layer is obtained (also known as the 2nd Stokes problem). No exact solution exists for the turbulent case, thus, understanding of the main flow characteristics comes from experimental work. Several researchers have reported experimental work in oscillatory boundary layers since the 1960's; however, larger scale facilities and the development of newer measurement techniques with improved temporal and spatial resolution in recent years provides a unique opportunity to achieve a better understanding about this type of flows. Several experiments were performed in the Large Oscillatory Water and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory, for a range of Reynolds wave numbers between 6x10^4 < Rew < 6x10^6 over a flat and smooth bottom. A 3D Laser Doppler Velocimetry (LDV) system was used to measure instantaneous flow velocities with a temporal resolution up to ~ 1,000 Hz. It was mounted on a 3-axis traverse with a spatial resolution of 0.01 mm in all three directions. The closest point to the bottom was measured at z = 0.2 mm (z+ ≈ 4), which allowed to capture boundary layer features with great detail. In order to achieve true 3D measurements, 2 probes were used on a perpendicular configuration, such that u and w components were measured from a probe on the side of the flume and v component was measured from a probe pointing down through and access window on top of the flume. The top probe was submerged in a water container, such that the focal length remained constant and coincidence in the measurement volume for all 3 components was maintained when traversing the probes along the measurement profiles. Results show the existence of high turbulence levels inside the boundary layer up to about 30 mm away from the bottom. The streamwise component u shows greater intensities closer to the bottom and ahead of the freestream velocity maximum. On the contrary, the vertical component w shows smaller values of turbulent intensity, located higher up in the profile and lagging with respect to the freestream velocity maximum. Meanwhile, the spanwise component v shows similar intensities than w, happening in phase with it, but distributed all along the boundary layer, overlapping the areas of greater intensity of u and w. In addition, wall shear stress and other turbulent magnitudes related to the boundary layer were analyzed from the experimental results obtained through this research.

  17. A Numerical Analysis of the Transient Response of an Ablation System Including Effects of Thermal Nonequilibrium, Mass Transfer and Chemical Kinetics. Ph.D Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Clark, R. K.

    1972-01-01

    The differential equations governing the transient response of a one-dimensional ablative thermal protection system undergoing stagnation ablation are derived. These equations are for thermal nonequilibrium effects between the pyrolysis gases and the char layer and kinetically controlled chemical reactions and mass transfer between the pyrolysis gases and the char layer. The boundary conditions are written for the particular case of stagnation heating with surface removal by oxidation or sublimation and pyrolysis of the uncharred layer occurring in a plane. The governing equations and boundary conditions are solved numerically using the modified implicit method (Crank-Nicolson method). Numerical results are compared with exact solutions for a number of simplified cases. The comparison is favorable in each instance.

  18. A fourth-order box method for solving the boundary layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1977-01-01

    A fourth order box method for calculating high accuracy numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations is presented. The method is the natural extension of the second order Keller Box scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary layer equations. Numerical results for high accuracy test cases show the method to be significantly faster than other higher order and second order methods.

  19. Swept shock/boundary layer interaction experiments in support of CFD code validation

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Lee, Y.

    1990-01-01

    Research on the topic of shock wave/turbulent boundary layer interaction was carried out. Skin friction and surface pressure measurements in fin-induced, swept interactions were conducted, and heat transfer measurements in the same flows are planned. The skin friction data for a strong interaction case (Mach 4, fin-angles equal 16 and 20 degrees) were obtained, and their comparison with computational results was published. Surface pressure data for weak-to-strong fin interactions were also obtained.

  20. Comparisons of rational engineering correlations of thermophoretically-augmented particle mass transfer with STAN5-predictions for developing boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Modification of the code STAN5 to properly include thermophoretic mass transport, and examination of selected test cases developing boundary layers which include variable properties, viscous dissipation, transition to turbulence and transpiration cooling. Under conditions representative of current and projected GT operation, local application of St(M)/St(M),o correlations evidently provides accurate and economical engineering design predictions, especially for suspended particles characterized by Schmidt numbers outside of the heavy vapor range.

  1. Numerical Solutions for Laminar Boundary Layer Behind Blast Waves.

    DTIC Science & Technology

    1980-05-01

    DISTRIBUTION STATEMENT (of thle Report) Approved for public release; distribution unlimited. 17 . DISTRIBUTION STATEMENT (of the abstract entered in Block 20...Reference I ............. 41 5. Boundary-Layer Functions for Case A, B, C, and D ......... 98 3 NOMENCLATURE A constant, Eqs. (10) and ( 17 ) B...the constant A was chosen as follows to simplify the coefficients of f and g1 A = 2mF CZ(a+i) OPO/pCO ( The ( 17 ) The explicit dependence of the flow

  2. Turbulent Humidity Fluctuations in the Convective Boundary Layer: Case Studies Using Water Vapour Differential Absorption Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Muppa, Shravan Kumar; Behrendt, Andreas; Späth, Florian; Wulfmeyer, Volker; Metzendorf, Simon; Riede, Andrea

    2016-01-01

    Turbulent humidity fluctuations in the convective boundary layer (CBL) under clear-sky conditions were investigated by deriving moments up to fourth-order. High-resolution humidity measurements were collected with a water vapour differential absorption lidar system during the HD(CP)}2 Observational Prototype Experiment (HOPE). Two cases, both representing a well-developed CBL around local noon, are discussed. While the first case (from the intensive observation period (IOP) 5 on 20 April 2013) compares well with what is considered typical CBL behaviour, the second case (from IOP 6 on 24 April 2013) shows a number of non-typical characteristics. Both cases show similar capping inversions and wind shear across the CBL top. However, a major difference between both cases is the advection of a humid layer above the CBL top during IOP 6. While the variance profile of IOP 5 shows a maximum at the interfacial layer, two variance peaks are observed near the CBL top for IOP 6. A marked difference can also be seen in the third-order moment and skewness profiles: while both are negative (positive) below (above) the CBL top for IOP 5, the structure is more complex for IOP 6. Kurtosis is about three for IOP 5, whereas for IOP 6, the distribution is slightly platykurtic. We believe that the entrainment of an elevated moist layer into the CBL is responsible for the unusual findings for IOP 6, which suggests that it is important to consider the structure of residual humidity layers entrained into the CBL.

  3. NASA/MSFC ground-based Doppler lidar nocturnal boundary layer experiment (Noblex)

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    1984-01-01

    During the summer of 1982, NASA/MSFC's ground-based CO2 Doppler Lidar Velocimeter (DLV) was deployed at the Denver Stapleton Airport as part of NASA's participation in the JAWS (Joint Airport Weather Studies) program. Configured to measure the radial wind component within a 10 km radius, the conically scanning lidar was used to examine the evolution of a nocturnal boundary layer under the conditions of cloud free skies and rolling terrain. A valley drainage flow was detected and a two dimension flow visualization constructed. The depth of the gravity current was -700 meters while the depth of the creek valley was -150 meters. This deep drainage flow was detectable for distances of 30 to 40 km from the exit region of the valley. Although the sample period (2000 to 2300 CST) was short and only one nocturnal boundary layer case examined, the usefulness of the DLV was demonstrated as well as the care that must be exercised in interpreting lidar data taken in a stable boundary layer in the vicinity of subtle terrain features.

  4. Transpiration and film cooling boundary layer computer program. Volume 1: Numerical solutions of the turbulent boundary layer equations with equilibrium chemistry

    NASA Technical Reports Server (NTRS)

    Levine, J. N.

    1971-01-01

    A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.

  5. The effect of non-Newtonian viscosity on the stability of the Blasius boundary layer

    NASA Astrophysics Data System (ADS)

    Griffiths, P. T.; Gallagher, M. T.; Stephen, S. O.

    2016-07-01

    We consider, for the first time, the stability of the non-Newtonian boundary layer flow over a flat plate. Shear-thinning and shear-thickening flows are modelled using a Carreau constitutive viscosity relationship. The boundary layer equations are solved in a self-similar fashion. A linear asymptotic stability analysis, that concerns the lower-branch structure of the neutral curve, is presented in the limit of large Reynolds number. It is shown that the lower-branch mode is destabilised and stabilised for shear-thinning and shear-thickening fluids, respectively. Favourable agreement is obtained between these asymptotic predictions and numerical results obtained from an equivalent Orr-Sommerfeld type analysis. Our results indicate that an increase in shear-thinning has the effect of significantly reducing the value of the critical Reynolds number, this suggests that the onset of instability will be significantly advanced in this case. This postulation, that shear-thinning destabilises the boundary layer flow, is further supported by our calculations regarding the development of the streamwise eigenfunctions and the relative magnitude of the temporal growth rates.

  6. Shock Generation and Control Using DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance.

  7. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS.

    PubMed

    Li, Chun; Huang, Liang; Snigdha, Gayatri Pongur; Yu, Yifei; Cao, Linyou

    2012-10-23

    We report a synthesis of single-crystalline two-dimensional GeS nanosheets using vapor deposition processes and show that the growth behavior of the nanosheet is substantially different from those of other nanomaterials and thin films grown by vapor depositions. The nanosheet growth is subject to strong influences of the diffusion of source materials through the boundary layer of gas flows. This boundary layer diffusion is found to be the rate-determining step of the growth under typical experimental conditions, evidenced by a substantial dependence of the nanosheet's size on diffusion fluxes. We also find that high-quality GeS nanosheets can grow only in the diffusion-limited regime, as the crystalline quality substantially deteriorates when the rate-determining step is changed away from the boundary layer diffusion. We establish a simple model to analyze the diffusion dynamics in experiments. Our analysis uncovers an intuitive correlation of diffusion flux with the partial pressure of source materials, the flow rate of carrier gas, and the total pressure in the synthetic setup. The observed significant role of boundary layer diffusions in the growth is unique for nanosheets. It may be correlated with the high growth rate of GeS nanosheets, ~3-5 μm/min, which is 1 order of magnitude higher than other nanomaterials (such as nanowires) and thin films. This fundamental understanding of the effect of boundary layer diffusions may generally apply to other chalcogenide nanosheets that can grow rapidly. It can provide useful guidance for the development of general paradigms to control the synthesis of nanosheets.

  8. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 2; Phase-Averages

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.

  9. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  10. Effects of Environment Forcing on Marine Boundary Layer Cloud-Drizzle Processes

    NASA Astrophysics Data System (ADS)

    Dong, X.

    2017-12-01

    Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzle occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number (Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. By analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.

  11. Effects of environment forcing on marine boundary layer cloud-drizzle processes: MBL Cloud-Drizzle Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Peng; Dong, Xiquan; Xi, Baike

    Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzlemore » occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number ( Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. As a result, by analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.« less

  12. Effects of environment forcing on marine boundary layer cloud-drizzle processes: MBL Cloud-Drizzle Processes

    DOE PAGES

    Wu, Peng; Dong, Xiquan; Xi, Baike; ...

    2017-04-20

    Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzlemore » occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number ( Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. As a result, by analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.« less

  13. Plasma diffusion at the magnetopause? The case of lower hybrid drift waves

    NASA Technical Reports Server (NTRS)

    Treumann, R. A.; Labelle, J.; Pottelette, R.; Gary, S. P.

    1990-01-01

    The diffusion expected from the quasilinear theory of the lower hybrid drift instability at the Earth's magnetopause is recalculated. The resulting diffusion coefficient is in principle just marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various low processes. However, some recent data and simulations seems to indicate that the magnetopause is not consistent with such a soft diffusive equilibrium model. Furthermore, investigation of the nonlinear equations for the lower hybrid waves for magnetopause parameters indicates that the quasilinear state may never arise because coalescence to large wavelengths, followed by collapse once a critical wavelengths is reached, occur on a time scale faster than the quasilinear diffusion. In this case, an inhomogeneous boundary layer is to be expected. More simulations are required over longer time periods to explore whether this nonlinear evolution really takes place at the magnetopause.

  14. Forced vibrations of a two-layered shell in the case of viscous resistance

    NASA Astrophysics Data System (ADS)

    Aghalovyan, L. A.; Ghulghazaryan, L. G.

    2018-04-01

    Forced vibrations of a two-layered orthotropic shell are studied in the case of viscous resistance in the lower layer of the shell. Two versions of spatial boundary conditions on the upper surface of the shell are posed, and the displacement vector is given on the lower surface. An asymptotic method is used to solve the corresponding dynamic equations and relations of the three-dimensional problem of elasticity. The amplitudes of the forced vibrations are determined, and the resonance conditions are established.

  15. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  16. A study of the vortex structures around circular cylinder mounted on vertical heated plate

    NASA Astrophysics Data System (ADS)

    Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.

    2018-05-01

    In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.

  17. Depletion of solar wind plasma near a planetary boundary

    NASA Technical Reports Server (NTRS)

    Zwan, B. J.; Wolf, R. A.

    1976-01-01

    A mathematical model is presented that describes the squeezing of solar wind plasma out along interplanetary magnetic field lines in the region between the bow shock and the effective planetary boundary (in the case of the earth, the magnetopause). In the absence of local magnetic merging the squeezing process should create a 'depletion layer', a region of very low plasma density just outside the magnetopause. Numerical solutions are obtained for the dimensionless magnetohydrodynamic equations describing this depletion process for the case where the solar wind magnetic field is perpendicular to the solar wind flow direction. For the case of the earth, the theory predicts that the density should be reduced by a factor exceeding 2 in a layer about 700-1300 km thick if the Alfven Mach number in the solar wind, is equal to 8. Scaling of the model calculations to Venus and Mars suggests layer thicknesses about 1/10 and 1/15 those of the earth, respectively, neglecting diffusion and ionospheric effects.

  18. Experimental Evaluation of an Isolated Synthetic Jet IN Crossflow

    NASA Technical Reports Server (NTRS)

    Schaeffler, Norman W.; Jenkins, Luther N.; Hepner, Timothy E.

    2007-01-01

    The second case for this workshop builds upon the isolated synthetic jet of Case 1 by adding a crossflow, with no streamwise pressure gradient, for the developing jet to interact with. Formally, Case 2 examines the interaction of a single, isolated, synthetic jet and a fully turbulent zero-pressure gradient boundary layer. The resulting flow has many of the characteristics that need to be modeled with fidelity if the results of the calculations are to serve as the basis for research and design with active flow control devices. These include the turbulence in the boundary layer, the time-evolution of the large vortical structure emanating from the jet orifice and its subsequent interaction with and distortion by the boundary layer turbulence, and the effect of the suction cycle on the boundary layer flow. In a synthetic jet, the flow through the orifice and out into the outer flowfield alternates between an exhaust and a suction cycle, driven by the contraction and expansion of a cavity internal to the actuator. In the present experiment, the volume changes in the internal cavity are accomplished by replacing one of the rigid walls of the cavity, the wall opposite the orifice exit, with a deformable wall. This flexible wall is driven by a bottom-mounted moveable piston. The piston is driven electro-mechanically. The synthetic jet issues into the external flow through a circular orifice. In the present experiment, this orifice has a diameter of 0.250 inches (6.35 mm). The flow is conceptually similar to that documented in Schaeffler [1]. To document the flow, several measurement techniques were utilized. The upstream boundary conditions (in-flow conditions), and several key phase-averaged velocity profiles were measured with a 3-component laser-Doppler velocimetry system. Phase-averaged velocity field measurements were made with both stereo digital particle image velocimetry and 2-D digital particle image velocimetry as the primary measurement system. Surface pressure measurements were made utilizing an electronically scanned pressure system.

  19. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NASA Astrophysics Data System (ADS)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.

  20. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  1. On the relationship between image intensity and velocity in a turbulent boundary layer seeded with smoke particles

    NASA Astrophysics Data System (ADS)

    Melnick, M. Blake; Thurow, Brian S.

    2014-02-01

    Simultaneous particle image velocimetry (PIV) and flow visualization measurements were performed in a turbulent boundary layer in an effort to better quantify the relationship between the velocity field and the image intensity typically observed in a classical flow visualization experiment. The freestream flow was lightly seeded with smoke particles to facilitate PIV measurements, whereas the boundary layer was densely seeded with smoke through an upstream slit in the wall to facilitate both PIV and classical flow visualization measurements at Reynolds numbers, Re θ , ranging from 2,100 to 8,600. Measurements were taken with and without the slit covered as well as with and without smoke injection. The addition of a narrow slit in the wall produces a minor modification of the nominal turbulent boundary layer profile whose effect is reduced with downstream distance. The presence of dense smoke in the boundary layer had a minimal effect on the observed velocity field and the associated proper orthogonal decomposition (POD) modes. Analysis of instantaneous images shows that the edge of the turbulent boundary layer identified from flow visualization images generally matches the edge of the boundary layer determined from velocity and vorticity. The correlation between velocity deficit and smoke intensity was determined to be positive and relatively large (>0.7) indicating a moderate-to-strong relationship between the two. This notion was extended further through the use of a direct correlation approach and a complementary POD/linear stochastic estimation (LSE) approach to estimate the velocity field directly from flow visualization images. This exercise showed that, in many cases, velocity fields estimated from smoke intensity were similar to the actual velocity fields. The complementary POD/LSE approach proved better for these estimations, but not enough to suggest using this technique to approximate velocity measurements from a smoke intensity image. Instead, the correlations further validate the use of flow visualization techniques for determining the edge and large-scale shape of a turbulent boundary layer, specifically when quantitative velocity measurements, such as PIV, are not possible in a given experiment.

  2. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free-stream turbulence level do not have a significant effect on the location of boundary-layer separation unless they are high enough to induce transition upstream of separation. The location and extent of the transition zone, in contrast, depend strongly on Re and TI. The beginning of reattachment closely follows the onset of transition. Under low free-stream turbulence conditions the boundary layer is laminar at separation and then begins to exhibit fluctuations in a finite frequency band in the shear layer over the separation bubble. These fluctuations are due to instability waves. The fluctuations grow in magnitude, higher harmonics are generated, and finally lead to a breakdown to turbulence. Transition begins in the shear layer, but quickly spreads to the near wall region and causes the boundary layer to reattach. The transition is rapid and the resulting turbulence contains a full range of high and low frequencies. Under high free-stream turbulence conditions, slowly growing low-frequency fluctuations are induced in the pretransitional boundary layer by the free-stream. The separation bubbles are considerably thinner than in the low TI cases, resulting in thinner boundary layers at the end of the test wall. At Re=50,000 and 100,000, the pre-transitional boundary layer separates at about the same location as in the low TI cases. Transition occurs through a bypass mode, begins upstream of the corresponding low-TI location, and proceeds in a manner similar to that of an attached boundary layer. Under high TI at Re=200,000 and 300,000, transition begins before separation. The boundary layer may separate, but if it does the separation bubble is very short and does not significantly affect the downstream development of the boundary layer. A comparison is made to previous work in a simulated cascade.

  3. Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    The perfectly matched layer (PML) technique is developed in the context of a high- order spectral-element Discontinuous-Galerkin (DG) method. The technique is applied to a range of test cases and is shown to be superior compared to other approaches, such as those based on using characteristic boundary conditions and sponge layers, for treating the inflow and outflow boundaries of computational domains. In general, the PML technique improves the quality of the numerical results for simulations of practical flow configurations, but it also exhibits some instabilities for large perturbations. A preliminary analysis that attempts to understand the source of these instabilities is discussed.

  4. Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains

    NASA Astrophysics Data System (ADS)

    Han, Yi; Stoellinger, Michael; Naughton, Jonathan

    2016-09-01

    In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.

  5. Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew; Hall, Philip

    1990-01-01

    The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition.

  6. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows

    PubMed Central

    Saarenrinne, Pentti

    2016-01-01

    ABSTRACT The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s−1 (N=6) in an experimental flow channel (Reynolds number, Re=4×105) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, lx=71±8 mm, N=3, and lx=110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner−Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (lx=163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. PMID:27815242

  7. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    PubMed

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  8. Evolution of wave patterns and temperature field in shock-tube flow

    NASA Astrophysics Data System (ADS)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  9. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  10. Key vortical structure causing laminar-turbulent transition in a boundary layer disturbed by a short-duration jet

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Joe; Nishio, Yu; Izawa, Seiichiro; Fukunishi, Yu

    2018-01-01

    Numerical simulations are carried out to discover the flow structure that plays an important role in the laminar-turbulent transition process of a boundary layer on a flat plate. The boundary layer is destabilized by ejecting a short-duration jet from a hole in the surface. When the jet velocity is set to 20% of the uniform-flow velocity, a laminar-turbulent transition takes place, whereas in the 18% case, the disturbances created by the jet decay downstream. It is found that in both cases, hairpin vortices are generated; however, these first-generation hairpins do not directly cause the transition. Only in the 20% case does a new hairpin vortex of a different shape with wider distance between the legs appear. The new hairpin grows with time and evokes the generation of vortical structures one after another around it, turning the flow turbulent. It is found that the difference between the two cases is whether or not one of the first-generation hairpin vortices gets connected with the nearby longitudinal vortices. Only when the connection is successful is the new hairpin vortex with wider distance between the legs created. For each of several cases tested with changing jet-ejecting conditions, no difference is found in the importance of the role of the hairpin structure. Therefore, we conclude that the hairpin vortex with widespread legs is a key structure in the transition to turbulence.

  11. The Turbulent Flow in Diffusers of Small Divergence Angle

    NASA Technical Reports Server (NTRS)

    Gourzhienko, G. A.

    1947-01-01

    The turbulent flow in a conical diffuser represents the type of turbulent boundary layer with positive longitudinal pressure gradient. In contrast to the boundary layer problem, however, it is not necessary that the pressure distribution along the limits of the boundary layer(along the axis of the diffuser) be given, since this distribution can be obtained from the computation. This circumstance, together with the greater simplicity of the problem as a whole, provides a useful basis for the study of the extension of the results of semiempirical theories to the case of motion with a positive pressure gradient. In the first part of the paper,formulas are derived for the computation of the velocity and.pressure distributions in the turbulent flow along, and at right angles to, the axis of a diffuser of small cone angle. The problem is solved.

  12. Unsteady laminar boundary-layer calculations on oscillating configurations including backflow. Part 1: Flat plate, oscillating in its own plane

    NASA Technical Reports Server (NTRS)

    Geissler, W.

    1983-01-01

    A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.

  13. Numerical investigation of supersonic turbulent boundary layers with high wall temperature

    NASA Technical Reports Server (NTRS)

    Guo, Y.; Adams, N. A.

    1994-01-01

    A direct numerical approach has been developed to simulate supersonic turbulent boundary layers. The mean flow quantities are obtained by solving the parabolized Reynolds-averaged Navier-Stokes equations (globally). Fluctuating quantities are computed locally with a temporal direct numerical simulation approach, in which nonparallel effects of boundary layers are partially modeled. Preliminary numerical results obtained at the free-stream Mach numbers 3, 4.5, and 6 with hot-wall conditions are presented. Approximately 5 million grid points are used in all three cases. The numerical results indicate that compressibility effects on turbulent kinetic energy, in terms of dilatational dissipation and pressure-dilatation correlation, are small. Due to the hot-wall conditions the results show significant low Reynolds number effects and large streamwise streaks. Further simulations with a bigger computational box or a cold-wall condition are desirable.

  14. Experimental study of the laminar-turbulent transition of a concave wall in a parallel flow

    NASA Technical Reports Server (NTRS)

    Bippes, H.

    1978-01-01

    The instability of the laminar boundary layer flow along a concave wall was studied. Observations of these three-dimensional boundary layer phenomena were made using the hydrogen-bubble visualization technique. With the application of stereo-photogrammetric methods in the air-water system it was possible to investigate the flow processes qualitatively and quantitatively. In the case of a concave wall of sufficient curvature, a primary instability occurs first in the form of Goertler vortices with wave lengths depending upon the boundary layer thickness and the wall curvature. At the onset the amplification rate is in agreement with the linear theory. Later, during the non-linear amplification stage, periodic spanwise vorticity concentrations develop in the low velocity region between the longitudinal vortices. Then a meandering motion of the longitudinal vortex streets subsequently ensues, leading to turbulence.

  15. F-111 natural laminar flow glove flight test data analysis and boundary layer stability analysis

    NASA Technical Reports Server (NTRS)

    Runyan, L. J.; Navran, B. H.; Rozendaal, R. A.

    1984-01-01

    An analysis of 34 selected flight test data cases from a NASA flight program incorporating a natural laminar flow airfoil into partial wing gloves on the F-111 TACT airplane is given. This analysis determined the measured location of transition from laminar to turbulent flow. The report also contains the results of a boundary layer stability analysis of 25 of the selected cases in which the crossflow (C-F) and Tollmien-Schlichting (T-S) disturbance amplification factors are correlated with the measured transition location. The chord Reynolds numbers for these cases ranges from about 23 million to 29 million, the Mach numbers ranged from 0.80 to 0.85, and the glove leading-edge sweep angles ranged from 9 deg to 25 deg. Results indicate that the maximum extent of laminar flow varies from 56% chord to 9-deg sweep on the upper surface, and from 51% chord at 16-deg sweep to 6% chord at 25-deg sweep on the lower. The results of the boundary layer stability analysis indicate that when both C-F and T-S disturbances are amplified, an interaction takes place which reduces the maximum amplification factor of either type of disturbance that can be tolerated without causing transition.

  16. Airborne measurements of turbulent trace gas fluxes and analysis of eddy structure in the convective boundary layer over complex terrain

    NASA Astrophysics Data System (ADS)

    Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.

    2005-03-01

    Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.

  17. Acoustic energy exchange through flow turning

    NASA Astrophysics Data System (ADS)

    Baum, Joseph D.

    1987-01-01

    A numerical investigation of the mechanisms of acoustic energy exchange between the mean and acoustic flow fields in resonance chambers, such as rocket engines, is reported. A noniterative linearized block implicit scheme was used to solve the time-dependent compressible Navier-Stokes equations. Two test cases were investigated: acoustic wave propagation in a tube with a coexisting sheared mean flow (the refraction test) and acoustic wave propagation in a tube where the mean sheared flow was injected into the tube through its lateral boundary (the flow turning study). For flow turning, significant excitation of mean flow energy was observed at two locations: at the edge of the acoustic boundary layer and within a zone adjacent to the acoustic boundary layer extending up to 0.1 radii away from the wall. A weaker streaming effect was observed for the refraction study, and only at the edge of the acoustic boundary layer. The total dissipation for the flow turning test was twice the dissipation for refraction.

  18. Analysis of urban boundary layer flow and turbulence parameters on the basis of an experimental campaign in Turin city

    NASA Astrophysics Data System (ADS)

    Trini Castelli, S.; Falabino, S.; Mortarini, L.; Ferrero, E.; Richiardone, R.; Anfossi, D.

    2010-09-01

    The flow and turbulence structure of the atmospheric boundary layer above urban areas is significantly perturbed by the density and distribution of buildings and other obstacles, by the thermal effect of the so-called ‘urban heat island' and by the possible presence of topographical inhomogeneities. A thorough investigation of the characteristics of the flow and turbulence in urban canopy was pursued both with an experimental approach, carrying out an intensive observational field campaign and analysing the observed data, and evaluating the boundary layer and turbulence parameterisations, which are used in the numerical meteorological and air pollution models. The experimental activity was carried out along a continuous 15-months observational period at four measurement sites, located in the city of Turin. Here we analyse the data gathered at a 25 m mast, displaced at one of the measuring stations and equipped with sonic anemometers at 5 m, 9 m, 25 m height. Close to the mast, a station measuring solar radiation, humidity and temperature at ground level was also active. Since Turin is characterised both by a complex urban fabric and by a very frequent low wind regime, the dataset allows also investigating and estimating the boundary layer parameters in the peculiar conditions of low wind speed. With regard to the dataset, a stationary test singled out that each anemometer recorded about 25-30% of stationary data, but only the 9% of data were simultaneously stationary at the three anemometers. Concerning the stability for the whole dataset, a neutral stratification developed in only the 3% of the cases, while the percentages raise to the 47% and 50% respectively for the stable and the unstable cases. In some cases different stability conditions occurred at different levels, this peculiarity was investigated. At the three levels the distributions of the observed horizontal turbulent velocity fluctuations do not present remarkable differences, whereas the vertical component assumes rather different values. Considering the whole observed data set, low wind speeds, here defined as speed values less than 1.5 m/s, occurred in more than 90% of the cases. A comprehensive analysis of the observed wind velocity and turbulent velocity fluctuations, of the calculated stability parameters, surface layer parameters and boundary layer height is illustrated and discussed. A comparison of the measured wind standard deviation profiles as a function of stability with the values predicted by literature parameterisations for flat undisturbed terrain is also presented.

  19. Investigations of greenhouse gas variability across frontal structures in the lower troposphere during winter: Findings from the ACT - America Winter 2017 Campaign

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Pal, S.; Baier, B.; Browell, E. V.; Choi, Y.; DiGangi, J. P.; Dobler, J. T.; Erxleben, W. H.; Feng, S.; Gaudet, B. J.; Kooi, S. A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Hoffman, K.; Obland, M. D.; Pauly, R.; Sweeney, C.

    2017-12-01

    Synoptic scale weather events like cold front passages play an important role in distributing greenhouse gases (GHG, e.g., CO2, CH4) in the atmosphere. However, our knowledge and observational evidence on the GHG structures across frontal boundaries are limited. The second airborne field campaign of the Atmospheric Carbon and Transport - America (ACT-America) project in winter (January 30 - March 10 2017) documented gradients in GHGs across 9 frontal systems in three regions of the US, namely, Mid-Atlantic, Upper Mid-West, and South. High-resolution remote and in-situ airborne observations were collected with two aircraft: NASA C-130 and B-200. Using both active remote sensing and in-situ observations, we will discuss the magnitude of GHG frontal gradients in the atmospheric boundary layer (ABL) and free troposphere (FT) and how they vary among cases during winter. Three mechanisms for creating these gradients will be investigated: 1) local ecosystem or anthropogenic GHG sources; 2) horizontal transport of planetary scale, seasonal gradients; and 3) vertical mixing, especially associated with clouds and boundary layer depth depths. Preliminary analyses indicate higher front-related CO2 gradients in the boundary layer compared to the upper and lower FT as well as larger case-to-case variability in front-related CO2 gradients in the ABL compared to the FT. GHG gradients across fronts were smaller than in the summer, but still present. Tentatively, the signs of the CO2 gradients (vertical and frontal) in winter appear to have switched compared to the summer with higher CO2 concentrations in the cold sector of the frontal region than in the warm sector during the wintertime, but the CH4 gradients were similar in the two seasons. Using observations and simulations for both summer and winter, we will build toward a conceptual framework of the CO2 and CH4 gradients across frontal boundaries and provide insights into how boundary layer-regimes and synoptic-scale transport redistributes CO2 and CH4 across the midlatitudes.

  20. Intermittent Turbulence in the Stable Boundary Layer over Land. Part III: A Classification for Observations during CASES-99.

    NASA Astrophysics Data System (ADS)

    van de Wiel, B. J. H.; Moene, A. F.; Hartogensis, O. K.; de Bruin, H. A. R.; Holtslag, A. A. M.

    2003-10-01

    In this paper a classification of stable boundary layer regimes is presented based on observations of near-surface turbulence during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99). It is found that the different nights can be divided into three subclasses: a turbulent regime, an intermittent regime, and a radiative regime, which confirms the findings of two companion papers that use a simplified theoretical model (it is noted that its simpliflied structure limits the model generality to near-surface flows). The papers predict the occurrence of stable boundary layer regimes in terms of external forcing parameters such as the (effective) pressure gradient and radiative forcing. The classification in the present work supports these predictions and shows that the predictions are robust in a qualitative sense. As such, it is, for example, shown that intermittent turbulence is most likely to occur in clear-sky conditions with a moderately weak effective pressure gradient. The quantitative features of the theoretical classification are, however, rather sensitive to (often uncertain) local parameter estimations, such as the bulk heat conductance of the vegetation layer. This sensitivity limits the current applicability of the theoretical classification in a strict quantitative sense, apart from its conceptual value.

  1. Internal hypersonic flow. [in thin shock layer

    NASA Technical Reports Server (NTRS)

    Lin, T. C.; Rubin, S. G.

    1974-01-01

    An approach for studying hypersonic internal flow with the aid of a thin-shock-layer approximation is discussed, giving attention to a comparison of thin-shock-layer results with the data obtained on the basis of the imposition theory or a finite-difference integration of the Euler equations. Relations in the case of strong interaction are considered together with questions of pressure distribution and aspects of the boundary-layer solution.

  2. The Sensitivity of Large-Eddy Simulation to Local and Nonlocal Drag Coefficients at the Lower Boundary

    NASA Technical Reports Server (NTRS)

    Schowalter, D. G.; DeCroix, D. S.; Lin, Y. L.; Arya, S. P.; Kaplan, M. L.

    1996-01-01

    It was found that the homogeneity of the surface drag coefficient plays an important role in the large scale structure of turbulence in large-eddy simulation of the convective atmospheric boundary layer. Particularly when a ground surface temperature was specified, large horizontal anisotropies occurred when the drag coefficient depended upon local velocities and heat fluxes. This was due to the formation of streamwise roll structures in the boundary layer. In reality, these structures have been found to form when shear is approximately balanced by buoyancy. The present cases, however, were highly convective. The formation was caused by particularly low values of the drag coefficient at the entrance to thermal plume structures.

  3. Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan

    The synthesis of new measurement technologies with advances in high performance computing provides an unprecedented opportunity to advance our understanding of the atmosphere, particularly with regard to the complex flows in the atmospheric boundary layer. To assess current measurement capabilities for quantifying features of atmospheric flow within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment design, highlight novel approaches to boundary-layer measurements, and quantify measurement uncertainties associated with these experimental methods. Line-of-sight velocities measured bymore » scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or dual radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes,conducted with rapid lidar scans, agree with those from scanning radars, enabling assessment of spatial variability. Microwave radiometers provide temperature profiles within and above the boundary layer with approximately the same uncertainty as operational remote sensing measurements. Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. Finally, we highlight cases that could be useful for validation of large-eddy simulations or mesoscale numerical weather prediction, providing information on accessing the archived dataset. We conclude that modern remote Lundquist et al. XPIA BAMS Page 4 of 81 sensing systems provide a generational improvement in observational capabilities, enabling resolution of refined processes critical to understanding 61 inhomogeneous boundary-layer flows such as those found in wind farms.« less

  4. Boundary Layer Characterization during Perdigão Field Campaign 2017

    NASA Astrophysics Data System (ADS)

    Leo, L. S.; Salvadore, J. J.; Belo-Pereira, M.; Menke, R.; Gomes, S.; Krishnamurthy, R.; Brown, W. O. J.; Creegan, E.; Klein, P. M.; Wildmann, N.; Oncley, S.; Fernando, J.; Mann, J.

    2017-12-01

    The depth and structure of the atmospheric boundary layer (ABL) significantly impact the performances of wind farms located in complex terrain environments, since low-level jets and other flow structures in the proximity of hills and mountains determine the weather extremes, such as shear layer instabilities, lee/internal wave breaking, etc. which in turn profoundly modify the turbulence profile at wind turbine relevant heights.A suite of instruments was deployed covering a double-ridge in central Portugal near the town of Perdigão in 2016-2017, and they are used here to characterize the ABL structure over complex terrain during the Intensive Observational Period (IOP, May 1- June 15, 2017) of the research field program dubbed "Perdigão". Firstly, the methodology adopted in this work to estimate the BL height will be discussed; secondly, an overview of the BL depth and characteristics during Perdigão-IOP campaign will be provided, with emphasis on case studies of interest for both the wind-power and boundary-layer communities.

  5. A case study of sea breeze blocking regulated by sea surface temperature along the English south coast

    NASA Astrophysics Data System (ADS)

    Sweeney, J. K.; Chagnon, J. M.; Gray, S. L.

    2013-09-01

    The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze. On the day of the case study the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

  6. Experimental analysis of the boundary layer transition with zero and positive pressure gradient

    NASA Technical Reports Server (NTRS)

    Arnal, D.; Jullen, J. C.; Michel, R.

    1980-01-01

    The influence of a positive pressure gradient on the boundary layer transition is studied. The mean velocity and turbulence profiles of four cases are examined. As the intensity of the pressure gradient is increased, the Reynolds number of the transition onset and the length of the transition region are reduced. The Tollmein-Schlichting waves disturb the laminar regime; the amplification of these waves is in good agreement with the stability theory. The three dimensional deformation of the waves leads finally to the appearance of turbulence. In the case of zero pressure gradient, the properties of the turbulent spots are studied by conditional sampling of the hot-wire signal; in the case of positive pressure gradient, the turbulence appears in a progressive manner and the turbulent spots are much more difficult to characterize.

  7. Inlets, ducts, and nozzles

    NASA Technical Reports Server (NTRS)

    Abbott, John M.; Anderson, Bernhard H.; Rice, Edward J.

    1990-01-01

    The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described.

  8. Flow and Turbulence Modeling and Computation of Shock Buffet Onset for Conventional and Supercritical Airfoils

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    1998-01-01

    Flow and turbulence models applied to the problem of shock buffet onset are studied. The accuracy of the interactive boundary layer and the thin-layer Navier-Stokes equations solved with recent upwind techniques using similar transport field equation turbulence models is assessed for standard steady test cases, including conditions having significant shock separation. The two methods are found to compare well in the shock buffet onset region of a supercritical airfoil that involves strong trailing-edge separation. A computational analysis using the interactive-boundary layer has revealed a Reynolds scaling effect in the shock buffet onset of the supercritical airfoil, which compares well with experiment. The methods are next applied to a conventional airfoil. Steady shock-separated computations of the conventional airfoil with the two methods compare well with experiment. Although the interactive boundary layer computations in the shock buffet region compare well with experiment for the conventional airfoil, the thin-layer Navier-Stokes computations do not. These findings are discussed in connection with possible mechanisms important in the onset of shock buffet and the constraints imposed by current numerical modeling techniques.

  9. Influence of prestress and periodic corrugated boundary surfaces on Rayleigh waves in an orthotropic medium over a transversely isotropic dissipative semi-infinite substrate

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Ahmed, Mostaid

    2017-01-01

    The paper environs the study of Rayleigh-type surface waves in an orthotropic crustal layer over a transversely isotropic dissipative semi-infinite medium under the effect of prestress and corrugated boundary surfaces. Separate displacement components for both media have been derived in order to characterize the dynamics of individual materials. Suitable boundary conditions have been employed upon the surface wave solutions of the elasto-dynamical equations that are taken into consideration in the light of corrugated boundary surfaces. From the real part of the sixth-order complex determinantal expression, we obtain the frequency equation for Rayleigh waves concerning the proposed earth model. Possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. Numerical computations have been performed in order to graphically demonstrate the role of the thickness of layer, prestress, corrugation parameters and dissipation on Rayleigh wave velocity. The study may be regarded as important due to its possible applications in delay line services and investigating deformation characteristics of solids as well as typical rock formations.

  10. Reducing secondary losses by blowing cold air in a turbine

    NASA Technical Reports Server (NTRS)

    Koschel, W.

    1977-01-01

    Local blowing on the profile suction side of the turbine guide wheel blades can be effective in preventing the propagation of secondary flows that is, the transport of casing and hub boundary layers by pressure gradients. Some preliminary results on how the blowing should be accomplished in order to influence the secondary flows in the desired manner are given. The effectiveness of blowing is demonstrated. Blowing is also seen to be more effective than using boundary layer slots as far as diminishing losses in the rim zones is concerned.

  11. Viscous flow calculations for the AGARD standard configuration airfoils with experimental comparisons

    NASA Technical Reports Server (NTRS)

    Howlett, James T.

    1989-01-01

    Recent experience in calculating unsteady transonic flow by means of viscous-inviscid interactions with the XTRAN2L computer code is examined. The boundary layer method for attached flows is based upon the work of Rizzetta. The nonisentropic corrections of Fuglsang and Williams are also incorporated along with the viscous interaction for some cases and initial results are presented. For unsteady flows, the inverse boundary layer equations developed by Vatsa and Carter are used in a quasi-steady manner and preliminary results are presented.

  12. Fluid-membrane tethers: minimal surfaces and elastic boundary layers.

    PubMed

    Powers, Thomas R; Huber, Greg; Goldstein, Raymond E

    2002-04-01

    Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the membrane shape are given.

  13. The internal boundary layer — A review

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1990-03-01

    A review is given of relevant work on the internal boundary layer (IBL) associated with: (i) Small-scale flow in neutral conditions across an abrupt change in surface roughness, (ii) Small-scale flow in non-neutral conditions across an abrupt change in surface roughness, temperature or heat/moisture flux, (iii) Mesoscale flow, with emphasis on flow across the coastline for both convective and stably stratified conditions. The major theme in all cases is on the downstream, modified profile form (wind and temperature), and on the growth relations for IBL depth.

  14. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2008-12-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is done using MOZAIC observations of ozone, carbon monoxide, nitrogen oxides (NOx+PAN) and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June 03:00 UTC and 10:00 UTC and in a vertical profile over Washington DC on 30 June 17:00 UTC, and by lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle. The isentropic levels (above 335 K) correspond to those of the downstream MOZAIC observations. The parameterized convective detrainment flux is intense enough to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air in a time period compatible with the convective diurnal cycle, i.e. about 5 h. The maximum instantaneous detrainment fluxes deposited about 15-20% of the initial boundary layer tracer concentration at 335 K, which according to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over eastern Atlantic, would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  15. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    NASA Astrophysics Data System (ADS)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave nonlinearity.

  16. Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows

    NASA Technical Reports Server (NTRS)

    Mikulla, V.; Horstman, C. C.

    1976-01-01

    Turbulent intensity and Reynolds shear stress measurements are presented for two nonadiabatic hypersonic shock-wave boundary-layer interaction flows, one with and one without separation. These measurements were obtained using a new hot-wire probe specially designed for heated flows. Comparison of the separated and attached flows shows a significant increase above equilibrium values in the turbulent intensity and shear stress downstream of the interaction region for the attached case, while for the separated case, the turbulent fluxes remain close to equilibrium values. This effect results in substantial differences in turbulence lifetime for the two flows. We propose that these differences are due to a coupling between the turbulent energy and separation bubble unsteadiness, a hypothesis supported by the statistical properties of the turbulent fluctuations.

  17. An LDA (Laser-Doppler Anemometry) investigation of three-dimensional normal shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.

    1989-01-01

    Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.

  18. Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing

    NASA Astrophysics Data System (ADS)

    Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa

    2018-02-01

    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

  19. A boundary condition for layer to level ocean model interaction

    NASA Astrophysics Data System (ADS)

    Mask, A.; O'Brien, J.; Preller, R.

    2003-04-01

    A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.

  20. Dust transportation in bounday layers on complex areas

    NASA Astrophysics Data System (ADS)

    Karelsky, Kirill; Petrosyan, Arakel

    2017-04-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high field gradients with the aid of scheme viscosity of numerical algorithm used to model near-surface phenomena. This idea is implemented in the model of ideal gas equations with variable equation of state describing particulates transportation within boundary layer with obstacles.

  1. Double layers without current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, F.W.; Sun, Y.C.

    1980-11-01

    The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.

  2. Numerical simulation of the supersonic boundary layer interaction with arbitrary oriented acoustic waves

    NASA Astrophysics Data System (ADS)

    Semenov, A. N.; Gaponov, S. A.

    2017-10-01

    Based the direct numerical simulation in the paper the supersonic flow around of the infinitely thin plate, which was perturbed by the acoustic wave, was investigated. Calculations carried out in the case of small perturbations at the Mach number M=2 and Reynold's numbers Re<600. It is established that the velocity perturbation amplitude within the boundary layer is greater than the amplitude of the external acoustic wave in several times, the maximum amplitude growth is reached 10. At the small sliding and incidence angles the velocity perturbations amplitude increased monotonously with Reynold's numbers. At rather great values of these angles there are maxima in dependences of the velocity perturbations amplitude on the Reynold's number. The oscillations exaltation in the boundary layer by the sound wave more efficiently if the plate is irradiated from above. At the fixed Reynolds's number and frequency there are critical values of the sliding and incidence angles (χ, φ) at which the disturbances excited by a sound wave are maxima. At M=2 it takes place at χ≈ φ ≈30°. The excitation efficiency of perturbations in the boundary layer increases with the Mach number, and it decreases with a frequency.

  3. Initiation of Turbulent Spots in a Laminar Boundary Layer by Rigid Falling Particulates

    NASA Technical Reports Server (NTRS)

    Blackwelder, R. F.; Browand, F. K.; Fisher, C.; Tanaguichi, P.

    2007-01-01

    A transitional laminar boundary layer is developed on a 1m wide km long flat plate in a 0.6m deep water channel with a freestream velocity of 15-50 cm/s. A particulate dispenser under computer control ejects individual particles having diameters of 1/3 delta into the free stream. The particulates are introduced with an initial velocity of U(sub infinity) in the direction of the free stream. They have differing specific gravities of 1.03-2.7 which introduces an additional non-dimensional parameter relating the time taken to traverse the boundary layer to the convective time scale. The particulates produce a wake in the upper region of the boundary layer as they sink towards the wall. Visualization data taken over the range 5 x 10(exp 4) less than Re(sub x) less than 5 x 10(exp 5) indicate that turbulent spots are produced by the disturbances due to the wake rather than by the particulates themselves. This suggests that the spot formation process in this case may be inviscid in nature and may not be strongly influenced by the presence of the wall.

  4. Effects of Reynolds number on orifice induced pressure error

    NASA Technical Reports Server (NTRS)

    Plentovich, E. B.; Gloss, B. B.

    1982-01-01

    Data previously reported for orifice induced pressure errors are extended to the case of higher Reynolds number flows, and a remedy is presented in the form of a porous metal plug for the orifice. Test orifices with apertures 0.330, 0.660, and 1.321 cm in diam. were fabricated on a flat plate for trials in the NASA Langley wind tunnel at Mach numbers 0.40-0.72. A boundary layer survey rake was also mounted on the flat plate to allow measurement of the total boundary layer pressures at the orifices. At the high Reynolds number flows studied, the orifice induced pressure error was found to be a function of the ratio of the orifice diameter to the boundary layer thickness. The error was effectively eliminated by the insertion of a porous metal disc set flush with the orifice outside surface.

  5. Flight survey of the 757 wing noise field and its effects on laminar boundary layer transition. Volume 3: Extended data analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A flight program was completed in June of 1985 using the Boeing 757 flight research aircraft with an NLF glove installed on the right wing just outboard of the engine. The objectives of this program were to measure noise levels on the wing and to investigate the effect of engine noise on the extent of laminar flow on the glove. Details of the flight test program and results are contained in Volume 1 of this document. Tabulations and plots of the measured data are contained in Volume 2. The present volume contains the results of additional engineering analysis of the data. The latter includes analysis of the measured noise data, a comparison of predicted and measured noise data, a boundary layer stability analysis of 21 flight data cases, and an analysis of the effect of noise on boundary layer transition.

  6. Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles

    NASA Astrophysics Data System (ADS)

    Touber, Emile; Sandham, Neil D.

    2009-12-01

    Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.

  7. The Boundary Layer Flows of a Rivlin-Ericksen Fluid

    NASA Astrophysics Data System (ADS)

    Sadeghy, K.; Khabazi, N.; Taghavi, S. M.

    The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. We study the Falkner-Skan flow of a viscoelastic fluid governed by second order model, as the Reynolds number Re→ ∞. We obtain an ordinary forth order differential equation to obtain the stream function, velocity profile and the stress. The stream function is then governed by a generalized Falkner-Skan equation. In comparison with Newtonian Falkner-Skan equation that has two coefficients this new one has four coefficients that two of them represent elastic properties of the fluid. The effects of the elastic parameter on the velocity filed have been discussed. As it is shown in the figure there is a good agreement between numerical results and previous special cases confirm the validity of the presented algorithm.

  8. A computer program for the calculation of the flow field including boundary layer effects for mixed-compression inlets at angle of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    A computer program was developed which is capable of calculating the flow field in the supersonic portion of a mixed compression aircraft inlet operating at angle of attack. The supersonic core flow is computed using a second-order three dimensional method-of-characteristics algorithm. The bow shock and the internal shock train are treated discretely using a three dimensional shock fitting procedure. The boundary layer flows are computed using a second-order implicit finite difference method. The shock wave-boundary layer interaction is computed using an integral formulation. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data listings, are provided.

  9. The eigenvalue spectrum of the Orr-Sommerfeld problem

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1976-01-01

    A numerical investigation of the temporal eigenvalue spectrum of the ORR-Sommerfeld equation is presented. Two flow profiles are studied, the plane Poiseuille flow profile and the Blasius boundary layer (parallel): flow profile. In both cases a portion of the complex c-plane bounded by 0 less than or equal to CR sub r 1 and -1 less than or equal to ci sub i 0 is searched and the eigenvalues within it are identified. The spectra for the plane Poiseuille flow at alpha = 1.0 and R = 100, 1000, 6000, and 10000 are determined and compared with existing results where possible. The spectrum for the Blasius boundary layer flow at alpha = 0.308 and R = 998 was found to be infinite and discrete. Other spectra for the Blasius boundary layer at various Reynolds numbers seem to confirm this result. The eigenmodes belonging to these spectra were located and discussed.

  10. The Goertler vortex instability mechanism in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, P.

    1984-01-01

    The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.

  11. Atmospheric boundary layer modification in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Bennett, Theodore J., Jr.; Hunkins, Kenneth

    1986-01-01

    A case study of the Andreas et al. (1984) data on atmospheric boundary layer modification in the marginal ice zone is made. The model is a two-dimensional, multilevel, linear model with turbulence, lateral and vertical advection, and radiation. Good agreement between observed and modeled temperature cross sections is obtained. In contrast to the hypothesis of Andreas et al., the air flow is found to be stable to secondary circulations. Adiabatic lifting and, at long fetches, cloud top longwave cooling, not an air-to-surface heat flux, dominate the cooling of the boundary layer. The accumulation with fetch over the ice of changes in the surface wind field is shown to have a large effect on estimates of the surface wind stress. It is speculated that the Andreas et al. estimates of the drag coefficient over the compact sea ice are too high.

  12. The relationship between surface topography, gravity anomalies, and temperature structure of convection

    NASA Technical Reports Server (NTRS)

    Parsons, B.; Daly, S.

    1983-01-01

    Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.

  13. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transitionmore » process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.« less

  14. Turbulence in a convective marine atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Atlas, D.; Yeh, E.-N.

    1986-01-01

    The structure and kinetic energy budget of turbulence in the convective marine atmospheric boundary layer as observed by aircraft during a cold air outbreak have been studied using mixed layer scaling. The results are significantly different from those of previous studies under conditions closer to free convection. The normalized turbulent kinetic energy and turbulent transport are about twice those found during the Air Mass Transformation Experiment (AMTEX). This implies that for a given surface heating the present case is dynamically more active. The difference is mainly due to the greater importance of wind shear in the present case. This case is closer to the roll vortex regime, whereas AMTEX observed mesoscale cellular convection which is closer to free convection. Shear generation is found to provide a significant energy source, in addition to buoyancy production, to maintain a larger normalized turbulent kinetic energy and to balance a larger normalized dissipation. The interaction between turbulent pressure and divergence (i.e., pressure scrambling) is also found to transfer energy from the vertical to the horizontal components, and is expected to be stronger in roll vortices than in m esoscale cells. The sensible heat flux is found to fit well with a linear vertical profile in a clear or subcloud planetary boundary layer (PBL), in good agreement with the results of Lenschow et al., (1980). The heat flux ratio between the PBL top and the surface, derived from the linear fitted curve, is approximately -0.14, in good agreement with that derived from the lidar data for the same case. Near the PBL top, the heat flux profiles are consistent with those of Deardoff (1979) and Deardorff et al. (1980).

  15. Incompressible boundary-layer stability analysis of LFC experimental data for sub-critical Mach numbers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Berry, S. A.

    1986-01-01

    An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.

  16. Linear stability theory and three-dimensional boundary layer transition

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Malik, Mujeeb R.

    1992-01-01

    The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.

  17. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  18. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    NASA Technical Reports Server (NTRS)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On the nozzle passage endwall surfaces the presence of strong pressure gradients and secondary flow limit the validity of the boundary layer code.

  19. Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data

    NASA Astrophysics Data System (ADS)

    Li, Hong; Yang, Yi; Hu, Xiao-Ming; Huang, Zhongwei; Wang, Guoyin; Zhang, Beidou; Zhang, Tiejun

    2017-04-01

    The atmospheric boundary layer height is a basic parameter in describing the structure of the lower atmosphere. Because of their high temporal resolution, ground-based lidar data are widely used to determine the daytime convective boundary layer height (CBLH), but the currently available retrieval methods have their advantages and drawbacks. In this paper, four methods of retrieving the CBLH (i.e., the gradient method, the idealized backscatter method, and two forms of the wavelet covariance transform method) from lidar normalized relative backscatter are evaluated, using two artificial cases (an idealized profile and a case similar to real profile), to test their stability and accuracy. The results show that the gradient method is suitable for high signal-to-noise ratio conditions. The idealized backscatter method is less sensitive to the first estimate of the CBLH; however, it is computationally expensive. The results obtained from the two forms of the wavelet covariance transform method are influenced by the selection of the initial input value of the wavelet amplitude. Further sensitivity analysis using real profiles under different orders of magnitude of background counts show that when different initial input values are set, the idealized backscatter method always obtains consistent CBLH. For two wavelet methods, the different CBLH are always obtained with the increase in the wavelet amplitude when noise is significant. Finally, the CBLHs as measured by three lidar-based methods are evaluated by as measured from L-band soundings. The boundary layer heights from two instruments coincide with ±200 m in most situations.

  20. Effect of nonzero surface admittance on receptivity and stability of compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    The effect of small-amplitude short-scale variations in surface admittance on the acoustic receptivity and stability of two-dimensional compressible boundary layers is examined. In the linearized limit, the two problems are shown to be related both physically and mathematically. This connection between the two problems is used, in conjunction with some previously reported receptivity results, to infer the modification of stability properties due to surface permeability. Numerical calculations are carried out for a self-similar flat-plate boundary layer at subsonic and low supersonic speeds. Variations in mean suction velocity at the perforated admittance surface can also induce receptivity to an acoustic wave. For a subsonic boundary layer, the dependence of admittance-induced receptivity on the acoustic-wave orientation is significantly different from that of the receptivity produced via mean suction variation. The admittance-induced receptivity is generally independent of the angle of acoustic incidence, except in a relatively narrow range of upstream-traveling waves for which the receptivity becomes weaker. However, this range of angles is precisely that for which the suction-induced receptivity tends to be large. At supersonic Mach numbers, the admittance-induced receptivity to slow acoustic models is relatively weaker than that in the case of the fast acoustic modes. We also find that purely real values for the surface admittance tend to have a destabilizing effect on the evolution of an instability wave over a slightly permeable surface. The limits on the validity of the linearized approximation are also assessed in one specific case.

  1. Computational Study of Hypersonic Boundary Layer Stability on Cones

    NASA Astrophysics Data System (ADS)

    Gronvall, Joel Edwin

    Due to the complex nature of boundary layer laminar-turbulent transition in hypersonic flows and the resultant effect on the design of re-entry vehicles, there remains considerable interest in developing a deeper understanding of the underlying physics. To that end, the use of experimental observations and computational analysis in a complementary manner will provide the greatest insights. It is the intent of this work to provide such an analysis for two ongoing experimental investigations. The first focuses on the hypersonic boundary layer transition experiments for a slender cone that are being conducted at JAXA's free-piston shock tunnel HIEST facility. Of particular interest are the measurements of disturbance frequencies associated with transition at high enthalpies. The computational analysis provided for these cases included two-dimensional CFD mean flow solutions for use in boundary layer stability analyses. The disturbances in the boundary layer were calculated using the linear parabolized stability equations. Estimates for transition locations, comparisons of measured disturbance frequencies and computed frequencies, and a determination of the type of disturbances present were made. It was found that for the cases where the disturbances were measured at locations where the flow was still laminar but nearly transitional, that the highly amplified disturbances showed reasonable agreement with the computations. Additionally, an investigation of the effects of finite-rate chemistry and vibrational excitation on flows over cones was conducted for a set of theoretical operational conditions at the HIEST facility. The second study focuses on transition in three-dimensional hypersonic boundary layers, and for this the cone at angle of attack experiments being conducted at the Boeing/AFOSR Mach-6 quiet tunnel at Purdue University were examined. Specifically, the effect of surface roughness on the development of the stationary crossflow instability are investigated in this work. One standard mean flow solution and two direct numerical simulations of a slender cone at an angle of attack were computed. The direct numerical simulations included a digitally-filtered, randomly distributed surface roughness and were performed using a high-order, low-dissipation numerical scheme on appropriately resolved grids. Comparisons with experimental observations showed excellent qualitative agreement. Comparisons with similar previous computational work were also made and showed agreement in the wavenumber range of the most unstable crossflow modes.

  2. Changes in Flat Plate Wake Characteristics Obtained With Decreasing Plate Thickness

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for four different Reynolds numbers based on plate thickness (D) and at constant plate length. The value of ?/D varies by a factor of approximately 20 in the computations (? being the boundary layer momentum thickness at the trailing edge). The separating boundary layers are turbulent in all the cases. One objective of the study is to understand the changes in wake characteristics as the plate thickness is reduced (increasing ?/D). Vortex shedding is vigorous in the low ?/D cases with a substantial decrease in shedding intensity in the largest ?/D case (for all practical purposes shedding becomes almost intermittent). Other characteristics that are significantly altered with increasing ?/D are the roll-up of the detached shear layers and the magnitude of fluctuations in shedding period. These effects are explored in depth. The effects of changing ?/D on the distributions of the time-averaged, near-wake velocity statistics are discussed.

  3. The behavior of the skin-friction coefficient of a turbulent boundary layer flow over a flat plate with differently configured transverse square grooves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahidi, R.; Chakroun, W.; Al-Fahed, S.

    2005-11-01

    Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-frictionmore » coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.« less

  4. The onset of convection in a binary fluid mixture with temperature dependent viscosity and Coriolis force with Soret presence

    NASA Astrophysics Data System (ADS)

    Abidin, Nurul Hafizah Zainal; Mokhtar, Nor Fadzillah Mohd; Majid, Zanariah Abdul; Ghani, Siti Salwa Abd

    2017-11-01

    Temperature dependent viscosity and Coriolis force were applied to the steady Benard-Marangoni convection where the lower boundary of a horizontal layer of the binary mixture is heated from below and cooled from above. The purpose of this paper is to study in detail the onset of convection with these effects. Few cases of boundary conditions are studied which are rigid-rigid, rigid-free and free-free representing the lower-upper boundaries. A detailed numerical calculation of the marginal stability curves was performed by using the Galerkin method and it is showed that temperature dependent viscosity and Soret number destabilize the binary fluid layer system and Taylor number act oppositely.

  5. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  6. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Davis, David O.

    2015-01-01

    Experimental investigations of specific flow phenomena, e.g., Shock Wave Boundary-Layer Interactions (SWBLI), provide great insight to the flow behavior but often lack the necessary details to be useful as CFD validation experiments. Reasons include: 1.Undefined boundary conditions Inconsistent results 2.Undocumented 3D effects (CL only measurements) 3.Lack of uncertainty analysis While there are a number of good subsonic experimental investigations that are sufficiently documented to be considered test cases for CFD and turbulence model validation, the number of supersonic and hypersonic cases is much less. This was highlighted by Settles and Dodsons [1] comprehensive review of available supersonic and hypersonic experimental studies. In all, several hundred studies were considered for their database.Of these, over a hundred were subjected to rigorous acceptance criteria. Based on their criteria, only 19 (12 supersonic, 7 hypersonic) were considered of sufficient quality to be used for validation purposes. Aeschliman and Oberkampf [2] recognized the need to develop a specific methodology for experimental studies intended specifically for validation purposes.

  7. Trans-Pacific Transport of Saharan Dust to Western North America: A Case Study

    NASA Technical Reports Server (NTRS)

    Kendry, Ian G. M.; Strawbridge, Kevin B.; O'Neill, Norman; Macdonald, Anne Marie; Liu, Peter S. K.; Leaitch, W. Richard; Anlauf, Kurt G.; Jaegle, Lyatt; Fairlie, T. Duncan; Westphal, Douglas L.

    2007-01-01

    The first documented case of long range transport of Saharan dust over a pathway spanning Asia and the Pacific to Western North America is described. Crustal material generated by North African dust storms during the period 28 February - 3 March 2005 reached western Canada on 13-14 March 2005 and was observed by lidar and sunphotometer in the Vancouver region and by high altitude aerosol instrumentation at Whistler Peak. Global chemical models (GEOS-CHEM and NRL NAAPS) confirm the transport pathway and suggest source attribution was simplified in this case by the distinct, and somewhat unusual, lack of dust activity over Eurasia (Gobi and Takla Makan deserts) at this time. Over western North America, the dust layer, although subsiding close to the boundary layer, did not appear to contribute to boundary layer particulate matter concentrations. Furthermore, sunphotometer observations (and associated inversion products) suggest that the dust layer had only subtle optical impact (Aerosol Optical Thickness (Tau(sub a500)) and Angstrom exponent (Alpha(sub 440-870) were 0.1 and 1.2 respectively) and was dominated by fine particulate matter (modes in aerodynamic diameter at 0.3 and 2.5microns). High Altitude observations at Whistler BC, confirm the crustal origin of the layer (rich in Ca(++) ions) and the bi-modal size distribution. Although a weak event compared to the Asian Trans-Pacific dust events of 1998 and 2001, this novel case highlights the possibility that Saharan sources may contribute episodically to the aerosol burden in western North America.

  8. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  9. Stagnation-point heat-transfer rate predictions at aeroassist flight conditions

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Jones, Jim J.; Rochelle, William C.

    1992-01-01

    The results are presented for the stagnation-point heat-transfer rates used in the design process of the Aeroassist Flight Experiment (AFE) vehicle over its entire aeropass trajectory. The prediction methods used in this investigation demonstrate the application of computational fluid dynamics (CFD) techniques to a wide range of flight conditions and their usefulness in a design process. The heating rates were computed by a viscous-shock-layer (VSL) code at the lower altitudes and by a Navier-Stokes (N-S) code for the higher altitude cases. For both methods, finite-rate chemically reacting gas was considered, and a temperature-dependent wall-catalysis model was used. The wall temperature for each case was assumed to be radiative equilibrium temperature, based on total heating. The radiative heating was estimated by using a correlation equation. Wall slip was included in the N-S calculation method, and this method implicitly accounts for shock slip. The N-S/VSL combination of projection methods was established by comparison with the published benchmark flow-field code LAURA results at lower altitudes, and the direct simulation Monte Carlo results at higher altitude cases. To obtain the design heating rate over the entire forward face of the vehicle, a boundary-layer method (BLIMP code) that employs reacting chemistry and surface catalysis was used. The ratio of the VSL or N-S method prediction to that obtained from the boundary-layer method code at the stagnation point is used to define an adjustment factor, which accounts for the errors involved in using the boundary-layer method.

  10. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  11. Investigation of marine stratocumulus under coupled and decoupled conditions over the arm Azores site

    NASA Astrophysics Data System (ADS)

    Schwantes, Adam Christopher

    Stratocumuli are a type of low clouds composed of individual convective elements that together form a continuous layer of clouds. Stratocumuli cover large regions of the Earth's surface, which make them important components in the Earth's radiation budget. Stratocumuli strongly reflect solar shortwave radiation, while weakly affecting outgoing longwave radiation. This leads to a strong radiative cooling effect that affects the Earth's radiation budget. Therefore it is important to investigate the mechanisms that affect the longevity of stratocumuli, so that their impact on the Earth's radiation budget can be fully understood. One mechanism that is currently being studied as influencing the lifetime of such cloud layers is boundary layer/surface coupling. It has been shown than in some regions (i.e. the west coast of South America) stratocumuli tend to break up when the boundary layer is decoupled with the surface, because they are cut off from their moisture source. This study will investigate the macro- and micro-physical properties of stratocumuli when boundary layers are either coupled to or decoupled from the surface. This will help advance understanding of the effects these macro- and micro-physical properties have on the lifetime of stratocumuli under different boundary layer conditions. This study used the Department of Energy Atmospheric Radiation Measurement (DOE ARM) mobile measurements facility (AMF) at the Azores site from June 2009 to December 2010. The measurements that were used include temperature profiles from radiosondes, cloud liquid water path (LWP) retrieved from the Microwave radiometer, and cloud base and top heights derived from W-band ARM Cloud Radar and lidar. Satellite images provided by the NASA Langley Research Center were also used to visually decipher cloud types over the region so that only single-layered stratocumuli cases are used in the study. To differentiate between coupled and decoupled cloud layers, two methods are used. The first method compares cloud base height and lifting condensation level (LCL) for surface air parcels. The second method uses potential temperature profiles to indicate whether a boundary layer is coupled or decoupled from the surface. The results from these two methods were then compared using select cases/samples when both methods classified a sample as coupled or decoupled. In this study, a total of seven coupled or decoupled cases (2-3 days long each) have been selected from the 19 month AMF dataset. Characteristics of the coupled and decoupled cases have been studied to identify similarities and differences. Furthermore, comparison results from this study have shown that there are similarities and differences between drizzling/non-drizzling stratocumulus clouds and decoupled/coupled stratocumulus clouds. Drizzling/decoupled stratocumuli tend to have higher LWP, cloud-droplet effective radius (re), cloud-top height, and cloud thickness values while non-drizzling/coupled stratocumuli have higher cloud-droplet number concentration (Nd) and cloud condensation nuclei concentration (NCCN) values. It was also determined that during daytime hours when stratocumuli are decoupled, they tend to be open cells, while coupled stratocumuli tend to be closed cells. Finally, decoupled nighttime stratocumuli were found to have higher LWPs compared to decoupled daytime stratocumuli, which resulted in the significant amount of heavy drizzle events occurring at night.

  12. Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature

    NASA Technical Reports Server (NTRS)

    Orlando, A. F.; Moffat, R. J.; Kays, W. M.

    1974-01-01

    The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.

  13. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  14. Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows

    NASA Technical Reports Server (NTRS)

    Mikulla, V.; Horstman, C. C.

    1976-01-01

    Turbulent intensity and Reynolds shear stress measurements are presented for two nonadiabatic hypersonic shock-wave boundary-layer interaction flows, one with and one without separation. These measurements were obtained using a new hot-wire probe specially designed for heated flows. Comparison of the separated and attached flows shows a significant increase above equilibrium values in the turbulent intensity and shear stress downstream of the interaction region for the attached case, while for the separated case, the turbulent fluxes remain close to equilibrium values. This effect results in substantial differences in turbulence lifetimes for the two flows. It is proposed that these differences are due to a coupling between the turbulent energy and separation bubble unsteadiness, a hypothesis supported by the statistical properties of the turbulent fluctuations.

  15. Results and current status of the NPARC alliance validation effort

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Jones, Ralph R.

    1996-01-01

    The NPARC Alliance is a partnership between the NASA Lewis Research Center (LeRC) and the USAF Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national CFD capability, centered on the NPARC Navier-Stokes computer program. The three main tasks of the Alliance are user support, code development, and validation. The present paper is a status report on the validation effort. It describes the validation approach being taken by the Alliance. Representative results are presented for laminar and turbulent flat plate boundary layers, a supersonic axisymmetric jet, and a glancing shock/turbulent boundary layer interaction. Cases scheduled to be run in the future are also listed. The archive of validation cases is described, including information on how to access it via the Internet.

  16. Airborne lidar observations of Saharan dust during FENNEC

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Garcia-Carreras, Luis; Rosenberg, Phil; McQuaid, Jim

    2013-04-01

    In June 2011 and June 2012, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft took part in the Fennec campaign. The main purpose was to quantify and model boundary layer and aerosol processes over the Saharan "heat low" region, the greatest dust region during summer. Although the central Sahara is extremely remote, the meteorology of this region is vital in driving the West African monsoon, and the dry and dusty air layers are closely related to the formation of Atlantic tropical cyclones. In this presentation, we shall characterise these air layers using data collected with the on-board lidar together with dropsondes. The interpretation of lidar signals in this particular geometry represents a challenge (nadir observations of thick layers), but we shall show that a suitable data inversion framework is possible under certain assumptions. The quality of the lidar data will be assessed using in-situ data from the nephelometer and optical particle counters. Deep air layers containing dust have been observed up to altitude of 5-6 km above mean sea level. The analysis of temperature and dew point profiles are used to identify the boundary layer and residual layer tops, and in conjunction with lidar observations this serves to quantify the dust content of both layers. An aerosol-laden residual layer is usually found during the campaign at an altitude of 2-6 km in the morning hours, with little aerosol below. The aerosol in the boundary layer is seen to develop later when solar heating of the surface induces turbulence until in the late afternoon the top of the boundary layer reaches up to ~ 6 km. Clouds embedded in aerosol layers and aerosol-cloud interactions have also been revealed. Dust aerosol has been observed in most cases, but a thin polluted non-dusty layer has been observed during one flight.

  17. Wave-induced boundary-layer separation: A case study comparing airborne observations and results from a mesoscale model

    NASA Astrophysics Data System (ADS)

    Strauss, L.; Serafin, S.; Grubišić, V.

    2012-04-01

    Wave-induced boundary-layer separation (BLS) results from the adverse-pressure gradient forces that are exerted on the atmospheric boundary-layer by internal gravity waves in flow over orography. BLS has received significant attention in recent years, particularly so, because it is a key ingredient in the formation of atmospheric rotors. Traditionally depicted as horizontal eddies in the lee of mountain ranges, rotors originate from the interaction between internal gravity waves and the atmospheric boundary-layer. Our study focuses on the first observationally documented case of wave-induced BLS, which occurred on 26 Jan 2006 in the lee of the Medicine Bow Mountains in SE Wyoming (USA). Observations from the University of Wyoming King Air (UWKA) aircraft, in particular, the remote sensing measurements with the Wyoming Cloud Radar (WCR), reveal strong wave activity, downslope winds in excess of 30 m/s, and near-surface flow reversal in the lee of the mountain range. The fine resolution of WCR data (on the order of 40x40 m2 for two-dimensional velocity fields) exhibits fine-scale vortical structures ("subrotors") which are embedded within the main rotor zone. Our case study intends to complete the characterisation of the observed boundary-layer separation event. Modelling of the event with the mesoscale Weather Research and Forecast Model (WRF) provides insight into the mesoscale triggers of wave-induced BLS and turbulence generation. Indeed, the mesoscale model underpins the expected concurrence of the essential processes (gravity waves, wave breaking, downslope windstorms, etc.) leading to BLS. To exploit the recorded in situ and radar data to their full extent, a quantitative evaluation of the structure and intensity of turbulence is conducted by means of a power spectral analysis of the vertical wind component, measured along the flight track. An intercomparison of observational and modelling results serves the purpose of model verification and can shed some more light onto the limits of validity of airborne observations and mesoscale modelling. For example, the exact timing, magnitude, and evolution of the internal gravity waves present in the mesoscale model are carefully analysed. As for the observations, measures of turbulence gained from in situ and radar data, collected over complex topography within a limited period of time, must be interpreted with caution. Approaches to tackling these challenges are a matter of ongoing research and will be discussed in concluding.

  18. Longitudinal curvature and displacement speed effects on incompressible laminar boundary layers.

    NASA Technical Reports Server (NTRS)

    Werle, M. J.; Wornom, S. F.

    1972-01-01

    The title problem is considered for the case of flow past a circular cylinder placed normal to a uniform mainstream with Reynolds numbers from 40 to 200. Implicit finite difference numerical solutions are obtained for a set of boundary-layer equations that account for the second order effects associated with surface curvature and displacement speed. It was found that both of these contributors have a significant influence on the internal structure of the viscous region and that an accurate estimate of the surface pressure distribution is essential for estimating the surface shear stress.

  19. Wall boundary layer development near the tip region of an IGV of an axial flow compressor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Sitaram, N.

    1983-01-01

    The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.

  20. A Sensitivity Analysis of the Nocturnal Boundary-Layer Properties to Atmospheric Emissivity Formulations

    NASA Astrophysics Data System (ADS)

    Siqueira, Mario B.; Katul, Gabriel G.

    2010-02-01

    A one-dimensional model for the mean potential temperature within the nocturnal boundary layer (NBL) was used to assess the sensitivity of three NBL properties (height, thermal stratification strength, and near-surface cooling) to three widely used atmospheric emissivity formulations. The calculations revealed that the NBL height is robust to the choice of the emissivity function, though this is not the case for NBL Richardson number and near-surface cooling rate. Rather than endorse one formulation, our analysis highlights the importance of atmospheric emissivity in modelling the radiative properties of the NBL especially for clear-sky conditions.

  1. Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    The numerical simulation of many aerodynamic non-periodic flows of practical interest involves discretized computational domains that often must be artificially truncated. Appropriate boundary conditions are required at these truncated domain boundaries, and ideally, these boundary conditions should be perfectly "absorbing" or "nonreflecting" so that they do not contaminate the flow field in the interior of the domain. The proper specification of these boundaries is critical to the stability, accuracy, convergence, and quality of the numerical solution, and has been the topic of considerable research. The need for accurate boundary specification has been underscored in recent years with efforts to apply higher-fidelity methods (DNS, LES) in conjunction with high-order low-dissipation numerical schemes to realistic flow configurations. One of the most popular choices for specifying these boundaries is the characteristics-based boundary condition where the linearized flow field at the boundaries are decomposed into characteristic waves using either one-dimensional Riemann or other multi-dimensional Riemann approximations. The values of incoming characteristics are then suitably modified. The incoming characteristics are specified at the in flow boundaries, and at the out flow boundaries the variation of the incoming characteristic is zeroed out to ensure no reflection. This, however, makes the problem ill-posed requiring the use of an ad-hoc parameter to allow small reflections that make the solution stable. Generally speaking, such boundary conditions work reasonably well when the characteristic flow direction is normal to the boundary, but reflects spurious energy otherwise. An alternative to the characteristic-based boundary condition is to add additional "buffer" regions to the main computational domain near the artificial boundaries, and solve a different set of equations in the buffer region in order to minimize acoustic reflections. One approach that has been used involves modeling the pressure fluctuations as acoustic waves propagating in the far-field relative to a single noise-source inside the buffer region. This approach treats vorticity-induced pressure fluctuations the same as acoustic waves. Another popular approach, often referred to as the "sponge layer," attempts to dampen the flow perturbations by introducing artificial dissipation in the buffer region. Although the artificial dissipation removes all perturbations inside the sponge layer, incoming waves are still reflected from the interface boundary between the computational domain and the sponge layer. The effect of these refkections can be somewhat mitigated by appropriately selecting the artificial dissipation strength and the extent of the sponge layer. One of the most promising variants on the buffer region approach is the Perfectly Matched Layer (PML) technique. The PML technique mitigates spurious reflections from boundaries and interfaces by dampening the perturbation modes inside the buffer region such that their eigenfunctions remain unchanged. The technique was first developed by Berenger for application to problems involving electromagnetic wave propagation. It was later extended to the linearized Euler, Euler and Navier-Stokes equations by Hu and his coauthors. The PML technique ensures the no-reflection property for all waves, irrespective of incidence angle, wavelength, and propagation direction. Although the technique requires the solution of a set of auxiliary equations, the computational overhead is easily justified since it allows smaller domain sizes and can provide better accuracy, stability, and convergence of the numerical solution. In this paper, the PML technique is developed in the context of a high-order spectral-element Discontinuous Galerkin (DG) method. The technique is compared to other approaches to treating the in flow and out flow boundary, such as those based on using characteristic boundary conditions and sponge layers. The superiority of the current PML technique over other approaches is demonstrated for a range of test cases, viz., acoustic pulse propagation, convective vortex, shear layer flow, and low-pressure turbine cascade flow. The paper is structured as follows. We first derive the PML equations from the non{linear Euler equations. A short description of the higher-order DG method used is then described. Preliminary results for the four test cases considered are then presented and discussed. Details regarding current work that will be included in the final paper are also provided.

  2. Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height

    NASA Astrophysics Data System (ADS)

    Liu, Boming; Ma, Yingying; Gong, Wei; Jian, Yang; Ming, Zhang

    2018-02-01

    This study proposes a two-wavelength Lidar inversion algorithm to determine the boundary layer height (BLH) based on the particles clustering. Color ratio and depolarization ratio are used to analyze the particle distribution, based on which the proposed algorithm can overcome the effects of complex aerosol layers to calculate the BLH. The algorithm is used to determine the top of the boundary layer under different mixing state. Experimental results demonstrate that the proposed algorithm can determine the top of the boundary layer even in a complex case. Moreover, it can better deal with the weak convection conditions. Finally, experimental data from June 2015 to December 2015 were used to verify the reliability of the proposed algorithm. The correlation between the results of the proposed algorithm and the manual method is R2 = 0.89 with a RMSE of 131 m and mean bias of 49 m; the correlation between the results of the ideal profile fitting method and the manual method is R2 = 0.64 with a RMSE of 270 m and a mean bias of 165 m; and the correlation between the results of the wavelet covariance transform method and manual method is R2 = 0.76, with a RMSE of 196 m and mean bias of 23 m. These findings indicate that the proposed algorithm has better reliability and stability than traditional algorithms.

  3. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  4. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  5. Effects of Wall Cooling on Hypersonic Boundary Layer Receptivity Over a Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2008-01-01

    Effects of wall cooling on the receptivity process induced by the interaction of slow acoustic disturbances in the free-stream are numerically investigated for a boundary layer flow over a 5-degrees straight cone. The free-stream Mach number is 6.0 and the Reynolds number is 7.8x10(exp 6)/ft. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using 3rd-order total variation diminishing (T VD) Runge-K utta scheme for time integration. Computations are performed for a cone with nose radius of 0.001 inch for adiabatic wall temperature (T(sub aw)), 0.75*T(sub aw), 0.5*T(sub aw), 0.40*T(sub aw), 0.30*T(sub aw), and 0.20*T(sub aw). Once the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations showed that wall cooling has strong stabilization effect on the first mode disturbances as was observed in the experiments. T ransition location moved to upstream when wall cooling was applied It is also found that the boundary layer is much more receptive to fast acoustic wave (by almost a factor of 50). When simulations performed using the same forcing frequency growth of the second mode disturbances are delayed with wall cooling and they attained values two times higher than that of adiabatic case. In 0.20*T(sub aw) case the transition Reynolds number is doubled compared to adiabatic conditions. The receptivity coefficient for adiabatic wall case (804 R) is 1.5225 and for highly cooled cones (241, and 161 R); they are in the order of 10(exp -3).

  6. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  7. Effect of thermal stability/complex terrain on wind turbine model(s): a wind tunnel study to address complex atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Guala, M.; Hu, S. J.; Chamorro, L. P.

    2011-12-01

    Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.

  8. Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.

    2014-01-01

    We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBLh was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.

  9. Turbulent Combustion Study of Scramjet Problem

    DTIC Science & Technology

    2015-08-01

    boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and

  10. Natural convection heat transfer in water near its density maximum

    NASA Astrophysics Data System (ADS)

    Yen, Yin-Chao

    1990-12-01

    This monograph reviews and summarizes to date the experimental and analytical results on the effect of water density near its maximum convection, transient flow and temperature structure characteristics: (1) in a vertical enclosure; (2) in a vertical annulus; (3) between horizontal concentric cylinders; (4) in a square enclosure; (5) in a rectangular enclosure; (6) in a horizontal layer; (7) in a circular confined melt layer; and (8) in bulk water during melting. In a layer of water containing a maximum density temperature of 4 C, the onset of convection (the critical number) is found not to be a constant value as in the classical normal fluid but one that varies with the imposed thermal and hydrodynamic boundaries. In horizontal layers, a nearly constant temperature zone forms and continuously expands between the warm and cold boundaries. A minimum heat transfer exists in most of the geometries studied and, in most cases, can be expressed in terms of a density distribution parameter. The effect of this parameter on a cells formation, disappearance and transient structure is discussed, and the effect of split boundary flow on heat transfer is presented.

  11. Vertical ozone characteristics in urban boundary layer in Beijing.

    PubMed

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  12. Interim user's manual for boundary layer integral matrix procedure, version J

    NASA Technical Reports Server (NTRS)

    Evans, R. M.; Morse, H. L.

    1974-01-01

    A computer program for analyzing two dimensional and axisymmetric nozzle performance with a variety of wall boundary conditions is described. The program has been developed for application to rocket nozzle problems. Several aids to usage of the program and two auxiliary subroutines are provided. Some features of the output are described and three sample cases are included.

  13. Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pittock, A. B.; Walsh, K.

    1990-01-01

    The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

  14. An Algorithm for the Vertical Structure of Aerosol Extinction in the Lowest Kilometer of the Atmosphere: Rev. 1

    DTIC Science & Technology

    2017-11-01

    inversion layer, or the well-mixed boundary layer. In such cases a low cloud ceiling is not present. In all instances the atmospheric extinction profiles...height, radiation fog depth, or the inversion layer height. The visibility regions and several representative vertical profiles of extinction are...the coefficient B can be found by B = ln(D/A) . (2) The coefficient B is sometimes a function of the cloud ceiling height, the inversion layer height

  15. Using UAV's to Measure the Urban Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jacob, R. L.; Sankaran, R.; Beckman, P. H.

    2015-12-01

    The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.

  16. Measured Boundary Layer Transition and Rotor Hover Performance at Model Scale

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.; Martin, Preston B.

    2017-01-01

    An experiment involving a Mach-scaled, 11:08 f t: diameter rotor was performed in hover during the summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance as a function of the laminar to turbulent transition state of the boundary layer, including both natural and fixed transition cases. The boundary layer transition locations were measured on both the upper and lower aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition locations showed extensive amounts, x=c>0:90, of laminar flow on the lower surface at moderate to high thrust (CT=s > 0:068) for the full blade radius. The upper surface showed large amounts, x=c > 0:50, of laminar flow at the blade tip for low thrust (CT=s < 0:045). The objective of this paper is to provide an experimental data set for comparisons to newly developed and implemented rotor boundary layer transition models in CFD and rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft SimulationWorking Group

  17. Evaluation of helicity generation in the tropical storm Gonu

    NASA Astrophysics Data System (ADS)

    Farahani, Majid M.; Khansalari, Sakineh; Azadi, Majid

    2017-06-01

    Helicity is a valuable dynamical concept for the study of rotating flows. Consequently helicity flux, indicative of the source or sink of helicity, owns comparable importance. In this study, while reviewing the existing methods, a mathematical relation between helicity and helicity-flux is introduced, discussed and examined. The computed values of helicity and helicity fluxes in an actual case, using the classical and this proposed method are compared. The down-stream helicity flux including sources and sinks of helicity is considered for the tropical storm Gonu that occurred over the coasts of Oman and Iran on June 2-7, 2007. Results show that the buoyancy, through the upper troposphere down to a height within boundary layer, is the main source in producing helicity, and surface friction from earth surface up to a height within boundary layer, is the main dissipating element of helicity. The dominance of buoyancy forcing over the dissipative friction forcing results in generation of vortex or enhancement of it after bouncing the land. Furthermore, the increase (decrease) of helicity results in an increase (decrease) in the height of the level in which maximum helicity flux occurs. It is suggested that the maximum helicity flux occurs at the top of the turbulent boundary layer, so that the height of boundary layer could be obtained.

  18. Dry intrusions: Lagrangian climatology and impact on the boundary layer

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Wernli, Heini

    2017-04-01

    Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.

  19. The "Grey Zone" cold air outbreak global model intercomparison: A cross evaluation using large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel

    2017-03-01

    A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.

  20. Obtaining Potential Virtual Temperature Profiles, Entrainment Fluxes, and Spectra from Mini Unmanned Aerial Vehicle Data

    NASA Astrophysics Data System (ADS)

    Dias, N. L.; Gonçalves, J. E.; Freire, L. S.; Hasegawa, T.; Malheiros, A. L.

    2012-10-01

    We present a simple but effective small unmanned aerial vehicle design that is able to make high-resolution temperature and humidity measurements of the atmospheric boundary layer. The air model used is an adapted commercial design, and is able to carry all the instrumentation (barometer, temperature and humidity sensor, and datalogger) required for such measurements. It is fitted with an autopilot that controls the plane's ascent and descent in a spiral to 1800 m above ground. We describe the results obtained on three different days when the plane, called Aerolemma-3, flew continuously throughout the day. Surface measurements of the sensible virtual heat flux made simultaneously allowed the calculation of all standard convective turbulence scales for the boundary layer, as well as a rigorous test of existing models for the entrainment flux at the top of the boundary layer, and for its growth. A novel approach to calculate the entrainment flux from the top-down, bottom-up model of Wynagaard and Brost is used. We also calculated temperature fluctuations by means of a spectral high-pass filter, and calculated their spectra. Although the time series are small, tapering proved ineffective in this case. The spectra from the untapered series displayed a consistent -5/3 behaviour, and from them it was possible to calculate a dimensionless dissipation function, which exhibited the expected similarity behaviour against boundary-layer bulk stability. The simplicity, ease of use and economy of such small aircraft make us optimistic about their usefulness in boundary-layer research.

  1. Dry Rainbelts: Understanding Boundary Layer Controls on the ITCZ Using a Dry Dynamical Core

    NASA Astrophysics Data System (ADS)

    Hill, S. A.; Bordoni, S.; Mitchell, J.

    2017-12-01

    Though migrations of Earth's Intertropical Convergence Zone (ITCZ) are often interpreted in terms of meridional energy transports, a recent study using an idealized, aquaplanet GCM indicates that the ITCZ's position is also linked to the character of the boundary layer momentum budget. Namely, moist convection within the ITCZ roughly coincides with a transition in the role of relative vorticity advection in the boundary layer, from being of leading-order to lower-order importance. This is insensitive to the presence of mid-latitude eddies or thermal inertia and holds over a range of planetary rotation rates, with this transitional regime and the ITCZ extending farther poleward the slower the planet is rotating. We use an even simpler model, a dry dynamical core, to further refine the theoretical understanding of these results, via simulations analogous to and extending the aforementioned moist cases. The importance of planetary rotation and lack thereof for both baroclinic eddies and thermal inertia emerge in the dry simulations also, implying base causes rooted in simpler, steady-state, solsticial, axisymmetric, dry dynamics. We further elucidate the role of the boundary layer dynamical processes through comparison with arguments dating to at least 1972 (although largely overlooked in recent literature) that convection is forced by convergence driven by a shallowing of the boundary layer depth, with this shallowing resulting from the transition from an advective to an Ekman balance on frictional drag. We discuss the potential links between this dynamical perspective and the popular energetic framework for ITCZ migrations and the resulting implications for moist convection on Earth and other planetary bodies.

  2. Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, W.; Austin, J. M.

    2013-10-01

    We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.

  3. Observations of high droplet number concentrations in Southern Ocean boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Chubb, T.; Huang, Y.; Jensen, J.; Campos, T.; Siems, S.; Manton, M.

    2015-09-01

    Data from the standard cloud physics payload during the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) campaigns provide a snapshot of unusual wintertime microphysical conditions in the boundary layer over the Southern Ocean. On 29 June 2011, the HIAPER sampled the boundary layer in a region of pre-frontal warm air advection between 58 and 48° S to the south of Tasmania. Cloud droplet number concentrations were consistent with climatological values in the northernmost profiles but were exceptionally high for wintertime in the Southern Ocean at 100-200 cm-3 in the southernmost profiles. Sub-micron (0.0625 m s-1) were most likely responsible for production of sea spray aerosol which influenced the microphysical properties of the boundary layer clouds. The smaller size and higher number concentration of cloud droplets is inferred to increase the albedo of these clouds, and these conditions occur regularly, and are expected to increase in frequency, over windy parts of the Southern Ocean.

  4. Low Ozone in the Marine Boundary Layer of the Tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Gregory, G. L.; Andesrson, B.; Browell, E.; Sachse, G. W.; Davis, D. D.; Crawford, J.; Bradshaw, J. D.; Talbot, R.; Blake, D. R.; hide

    1994-01-01

    Aircraft measurements of ozone, its key precursors, and a variety of chemical tracers were made in the troposphere of the western and central Pacific in October 1991. These data are presented and analyzed to examine the occurrence of low ozone concentrations in the remote marine boundary layer of the tropical and equatorial Pacific Ocean. The data from these flights out of Guam, covering an area extending from the equator to 20 N and from south of the Philippines to Hawaii, show average O3 concentrations as low as 8-9 ppb (ppb=10(exp-9)v/v) at altitudes of 0.3-0.5 km in the boundary layer. Individual measurements as low as 2-5 ppb were recorded. Low O3 concentrations do not always persist in space and time. High O3, generally associated with the transport of upper tropospheric air, was also encountered in the boundary layer. In practically all cases, O3 increased to values as large as 25-30 ppb within 2 km above the boundary layer top. Steady state model computations are used to suggest that these low O3 concentrations are a result of net photochemical O3 destruction in a low NO environment, sea-surface deposition, and extremely low net entrainment rates (1-2 mm per second) from the free troposphere. Day/night measurements of ethane, propane, gaseous and aerosol Cl suggest that daytime (morning) Cl atom concentrations in the vicinity of 10(exp 5) molecules per cubic centimeter may be present in the marine boundary layer. This Cl atom abundance can be rationalized only if sea salt aerosols can release free chlorine (Cl2) to the gas phase in the presence of sun light (and possibly O3). These Cl atom concentrations, however, are still insufficient and Cl (or Br) chemistry is not likely to be an important cause of the observed low O3.

  5. Direct Numerical Simulations of Transitional/Turbulent Wakes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2011-01-01

    The interest in transitional/turbulent wakes spans the spectrum from an intellectual pursuit to understand the complex underlying physics to a critical need in aeronautical engineering and other disciplines to predict component/system performance and reliability. Cylinder wakes have been studied extensively over several decades to gain a better understanding of the basic flow phenomena that are encountered in such flows. Experimental, computational and theoretical means have been employed in this effort. While much has been accomplished there are many important issues that need to be resolved. The physics of the very near wake of the cylinder (less than three diameters downstream) is perhaps the most challenging of them all. This region comprises the two detached shear layers, the recirculation region and wake flow. The interaction amongst these three components is to some extent still a matter of conjecture. Experimental techniques have generated a large percentage of the data that have provided us with the current state of understanding of the subject. More recently computational techniques have been used to simulate cylinder wakes, and the data from such simulations are being used to both refine our understanding of such flows as well as provide new insights. A few large eddy and direct numerical simulations (LES and DNS) of cylinder wakes have appeared in the literature in the recent past. These investigations focus on the low Reynolds number range where the cylinder boundary layer is laminar (sub-critical range). However, from an engineering point of view, there is considerable interest in the situation where the upper and/or lower boundary layer of an airfoil is turbulent, and these turbulent boundary layers separate from the airfoil to contribute to the formation of the wake downstream. In the case of cylinders, this only occurs at relatively large unit Reynolds numbers. However, in the case of airfoils, the boundary layer has the opportunity to transition to turbulence on the airfoil surface at a relatively lower unit Reynolds number because the characteristic length of the airfoil is typically one to two orders of magnitude larger than the trailing edge diameter. This transition to turbulence would occur unless there is a strong favorable pressure gradient that results in the boundary layer remaining laminar or transitional over the surface of the airfoil. This presentation will focus on two direct numerical simulations that have been performed at NASA ARC. The first is of a cylinder wake with laminar separating boundary layers. The second is the wake of a flat plate with a circular trailing edge. The upper and lower plate surface boundary layers are both turbulent and statistically identical. Thus the computed wake is symmetric in a statistical sense. This flow is more representative of airfoil wakes than cylinder wakes. Results from the two simulations including flow visualization and turbulence statistics in the near wake will be presented at the seminar.

  6. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  7. Raman lidar characterization of PBL structure during COPS

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Di Iorio, T.

    2012-04-01

    The planetary boundary layer includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study boundary-layer vertical structure and time variability. Aerosols can be dispersed out of the PBL during strong convection or temporary breaks of the capping temperature inversion. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. Our analysis considers a method based on the first order derivative of the range-corrected elastic signal (RCS), which is a modified version of the method defined by Seibert et al. (2000) and Sicard et al. (2006). The analysis is focused on selected case studies collected by the Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France in the period 01 June - 31 August 2007. Measurements were performed by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs), covering both night-time and daytime and the transitions between the two. Therefore BASIL data during COPS represent a unique source of information for the study of the boundary layer structure and evolution. Potential temperature profiles obtained from the radiosonde data were used to get an additional estimate of the boundary layer height. Estimates of the PBL height and structure for specific case studies obtained from the lidar data and their comparison with estimates obtained from the radiosonde data will be illustrated and discussed at the Conference.

  8. Waves plus currents at a right angle: The rippled bed case

    NASA Astrophysics Data System (ADS)

    Faraci, C.; Foti, E.; Musumeci, R. E.

    2008-07-01

    The present paper deals with wave plus current flow over a fixed rippled bed. More precisely, modifications of the current profiles due to the superimposition of orthogonal cylindrical waves have been investigated experimentally. Since the experimental setup permitted only the wave dominated regime to be investigated (i.e., the regime where orbital velocity is larger than current velocity), also a numerical k-ɛ turbulence closure model has been developed in order to study a wider range of parameters, thus including the current dominated regime (i.e., where current velocity is larger than wave orbital one). In both cases a different response with respect to the flat bed case has been found. Indeed, in the flat bed case laminar wave boundary layers in a wave dominated regime induce a decrease in bottom shear stresses, while the presence of a rippled bed behaves as a macroroughness, which causes the wave boundary layer to become turbulent and therefore the current velocity near the bottom to be smaller than the one in the case of current only, with a consequent increase in the current bottom roughness.

  9. General Solutions for Hydromagnetic Free Convection Flow over an Infinite Plate with Newtonian Heating, Mass Diffusion and Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Fetecau, Constatin; Shah, Nehad Ali; Vieru, Dumitru

    2017-12-01

    The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter. Exact general solutions for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient are determined under integral form in terms of error function or complementary error function of Gauss. They satisfy all imposed initial and boundary conditions and can generate exact solutions for any problem with technical relevance of this type. As an interesting completion, uncommon in the literature, the differential equations which describe the thermal, concentration and momentum boundary layer, as well as the exact expressions for the thicknesses of thermal, concentration or velocity boundary layers were determined. Numerical results have shown that the thermal boundary layer thickness decreases for increasing values of Prandtl number and the concentration boundary layer thickness is decreasing with Schmidt number. Finally, for illustration, three special cases are considered and the influence of physical parameters on some fundamental motions is graphically underlined and discussed. The required time to reach the flow according with post-transient solution (the steady-state), for cosine/sine oscillating concentrations on the boundary is graphically determined. It is found that, the presence of destructive chemical reaction improves this time for increasing values of chemical reaction parameter.

  10. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  11. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Shen, Shaohua

    1998-01-01

    In support of the wake vortex effect of the Terminal Area Productivity program, we have put forward four tasks to be accomplished in our proposal. The first task is validation of two-dimensional wake vortex-turbulence interaction. The second task is investigation of three-dimensional interaction between wake vortices and atmospheric boundary layer (ABL) turbulence. The third task is ABL studies. The, fourth task is addition of a Klemp-Durran condition at the top boundary for TASS model. The accomplishment of these tasks will increase our understanding of the dynamics of wake vortex and improve forecasting systems responsible for air safety and efficiency. The first two tasks include following three parts: (a) Determine significant length scale for vortex decay and transport, especially the length scales associated with the onset of Crow instability (Crow, 1970); (b) Study the effects of atmospheric turbulence on the decay of the wake vortices; and (c) Determine the relationships between decay rate, transport properties and atmospheric parameters based on large eddy simulation (LES) results and the observational data. These parameters may include turbulence kinetic energy, dissipation rate, wind shear and atmospheric stratification. The ABL studies cover LES modeling of turbulence structure within planetary boundary layer under transition and stable stratification conditions. Evidences have shown that the turbulence in the stable boundary layer can be highly intermittent and the length scales of eddies are very small compared to those in convective case. We proposed to develop a nesting grid mesh scheme and a modified Klemp-Durran conditions (Klemp and Wilhelmson, 1978) at the top boundary for TASS model to simulate planetary boundary layer under stable stratification conditions. During the past year, our group has made great efforts to carry out the above mentioned four tasks simultaneously. The work accomplished in the last year will be described in the next section.

  12. Numerical and experimental investigation of VG flow control for a low-boom inlet

    NASA Astrophysics Data System (ADS)

    Rybalko, Michael

    The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil flow visualization revealed a significant post-shock separation bubble with flow recirculation for the baseline (no VG) case that was substantially broken up in the micro-ramp VG case, consistent with simulations. Furthermore, the predicted subsonic VG performance with respect to a reduction in radial distortion (quantified in terms of axisymmetric incompressible shape factor) was found to be consistent with boundary layer rake measurements. To investigate the unsteady turbulent flow features associated with the shock-induced flow separation and the hub-side boundary layer, a detached eddy simulation (DES) approach using the WIND-US code was employed to model the baseline inlet flow field. This approach yielded improved agreement with experimental data for time-averaged diffuser stagnation pressure profiles and allowed insight into the pressure fluctuations and turbulent kinetic energy distributions which may be present at the AIP. In addition, streamwise shock position statistics were obtained and compared with experimental Schlieren results. The predicted shock oscillations were much weaker than those seen experimentally (by a factor of four), which indicates that the mechanism for the experimental shock oscillations was not captured. In addition, the novel supersonic vortex generator geometries were investigated experimentally (prior to the large-scale inlet 8'x6' wind tunnel tests) in an inlet-relevant flow field containing a Mach 1.4 normal shock wave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken for split-ramp and ramped-vane geometries. Flow field diagnostics included high-speed Schlieren, oil flow visualization, and Pitot-static pressure measurements. Parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline uncontrolled case. While all vortex generators tested eliminated centerline flow separation, the presence of VGs also increased the significant three-dimensionality of the flow via increased side-wall interaction. The stronger streamwise vorticity generated by ramped-vanes also yielded improved pressure recovery and fuller boundary layer velocity profiles within the subsonic diffuser. (Abstract shortened by UMI.)

  13. On the Goertler instability in hypersonic flows: Sutherland law fluids and real gas effects

    NASA Technical Reports Server (NTRS)

    Fu, Yibin B.; Hall, Philip; Blackaby, Nicholas D.

    1990-01-01

    The Goertler vortex instability mechanism in a hypersonic boundary layer on a curved wall is investigated. The precise roles of the effects of boundary layer growth, wall cooling, and gas dissociation is clarified in the determination of stability properties. It is first assumed that the fluid is an ideal gas with viscosity given by Sutherland's law. It is shown that when the free stream Mach number M is large, the boundary layer divides into two sublayers: a wall layer of O(M sup 3/2) thickness over which the basic state temperature is O(M squared) and a temperature adjustment layer of O(1) thickness over which the basic state temperature decreases monotonically to its free stream value. Goertler vortices which have wavelengths comparable with the boundary layer thickness are referred to as wall modes. It is shown that their downstream evolution is governed by a set of parabolic partial differential equations and that they have the usual features of Goertler vortices in incompressible boundary layers. As the local wavenumber increases, the neutral Goertler number decreases and the center of vortex activity moves towards the temperature adjustment layer. Goertler vortices with wavenumbers of order one or larger must necessarily be trapped in the temperature adjustment layer and it is this mode which is most dangerous. For this mode, it was found that the leading order term in the Goertler number expansion is independent of the wavenumber and is due to the curvature of the basic state. This term is also the asymptotic limit of the neutral Goertler numbers of the wall mode. To determine the higher order corrections terms in the Goertler number expansion, two wall curvature cases are distinguished. Real gas effects were investigated by assuming that the fluid is an ideal dissociating gas. It was found that both gas dissociation and wall cooling are destabilizing for the mode trapped in the temperature adjustment layer, but for the wall mode trapped near the wall the effect of gas dissociation can be either destabilizing or stabilizing.

  14. Study of mean- and turbulent-velocity fields in a large-scale turbine-vane passage

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.

    1979-01-01

    Laser-Doppler velocimetry, and to a lesser extent hot-wire anemometry, were employed to measure three components of the mean velocity and the six turbulent stresses at four planes within the turbine inlet-guide-vane passage. One variation in the turbulent inlet boundary layer thickness and one variation in the blade aspect ratio (span/axial chord) were studied. A longitudinal vortex (passage vortex) was clearly identified in the exit plane of the passage for the three test cases. The maximum turbulence intensities within the longitudinal vortex were found to be on the order of 2 to 4 percent, with large regions appearing nonturbulent. Because a turbulent wall boundary layer was the source of vorticity that produced the passage vortex, these low turbulence levels were not anticipated. For the three test cases studied, the lateral velocity field extended significantly beyond the region of the longitudinal velocity defect. Changing the inlet boundary layer thickness produced a difference in the location, the strength, and the extent of the passage vortex. Changing the aspect ratio of the blade passage had a measurable but less significant effect. The experiment was performed in a 210 mm pitch, 272 mm axial chord model in low speed wind tunnel at an inlet Mach number of 0.07.

  15. A Top-Down Pathway to Secondary Eyewall Formation in Simulated Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Tyner, Bryce; Zhu, Ping; Zhang, Jun A.; Gopalakrishnan, Sundararaman; Marks, Frank; Tallapragada, Vijay

    2018-01-01

    Idealized and real-case simulations conducted using the Hurricane Weather Research and Forecasting (HWRF) model demonstrate a "top-down" pathway to secondary eyewall formation (SEF) for tropical cyclones (TCs). For the real-case simulations of Hurricane Rita (2005) and Hurricane Edouard (2014), a comparison to observations reveals the timing and overall characteristics of the simulated SEF appear realistic. An important control of the top-down pathway to SEF is the amount and radial-height distribution of hydrometeors at outer radii. Examination into the simulated hydrometeor particle fall speed distribution reveals that the HWRF operational microphysics scheme is not producing the lightest hydrometeors, which are likely present in observed TCs and are most conducive to being advected from the primary eyewall to the outer rainband region of the TC. Triggering of SEF begins with the fallout of hydrometeors at the outer radii from the TC primary eyewall, where penetrative downdrafts resulting from evaporative cooling of precipitation promote the development of local convection. As the convection-induced radial convergence that is initially located in the midtroposphere extends downward into the boundary layer, it results in the eruption of high entropy air out of the boundary layer. This leads to the rapid development of rainband convection and subsequent SEF via a positive feedback among precipitation, convection, and boundary layer processes.

  16. The application of a shift theorem analysis technique to multipoint measurements

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Chapman, S. C.

    1999-03-01

    A Fourier domain technique has been proposed previously which, in principle, quantifies the extent to which multipoint in-situ measurements can identify whether or not an observed structure is time stationary in its rest frame. Once a structure, sampled for example by four spacecraft, is shown to be quasi-stationary in its rest frame, the structure's velocity vector can be determined with respect to the sampling spacecraft. We investigate the properties of this technique, which we will refer to as a stationarity test, by applying it to two point measurements of a simulated boundary layer. The boundary layer was evolved using a PIC (particle in cell) electromagnetic code. Initial and boundary conditions were chosen such, that two cases could be considered, i.e. a spacecraft pair moving through (1) a time stationary boundary structure and (2) a boundary structure which is evolving (expanding) in time. The code also introduces noise in the simulated data time series which is uncorrelated between the two spacecraft. We demonstrate that, provided that the time series is Hanning windowed, the test is effective in determining the relative velocity between the boundary layer and spacecraft and in determining the range of frequencies over which the data can be treated as time stationary or time evolving. This work presents a first step towards understanding the effectiveness of this technique, as required in order for it to be applied to multispacecraft data.

  17. The case against climate regulation via oceanic phytoplankton sulphur emissions.

    PubMed

    Quinn, P K; Bates, T S

    2011-11-30

    More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis--referred to as CLAW--the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis.

  18. A transonic interactive boundary-layer theory for laminar and turbulent flow over swept wings

    NASA Technical Reports Server (NTRS)

    Woodson, Shawn H.; Dejarnette, Fred R.

    1988-01-01

    A 3-D laminar and turbulent boundary-layer method is developed for compressible flow over swept wings. The governing equations and curvature terms are derived in detail for a nonorthogonal, curvilinear coordinate system. Reynolds shear-stress terms are modeled by the Cebeci-Smith eddy-viscosity formulation. The governing equations are descretized using the second-order accurate, predictor-corrector finite-difference technique of Matsuno, which has the advantage that the crossflow difference formulas are formed independent of the sign of the crossflow velocity component. The method is coupled with a full potential wing/body inviscid code (FLO-30) and the inviscid-viscous interaction is performed by updating the original wing surface with the viscous displacement surface calculated by the boundary-layer code. The number of these global iterations ranged from five to twelve depending on Mach number, sweep angle, and angle of attack. Several test cases are computed by this method and the results are compared with another inviscid-viscous interaction method (TAWFIVE) and with experimental data.

  19. Modelling the transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Narasimha, R.

    1990-01-01

    Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.

  20. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  1. A Parameterization for Land-Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land.

    NASA Astrophysics Data System (ADS)

    Wetzel, Peter J.; Boone, Aaron

    1995-07-01

    This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were this result to be bourne out by further analysis, it would suggest that today's average land surface parameterization has little credibility when applied to discriminating the local impacts of any plausible future climate change.

  2. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  3. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  4. A Discrete Analysis of Non-reflecting Boundary Conditions for Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Atkins, Harold L.

    2003-01-01

    We present a discrete analysis of non-reflecting boundary conditions for the discontinuous Galerkin method. The boundary conditions considered in this paper include the recently proposed Perfectly Matched Layer absorbing boundary condition for the linearized Euler equation and two non-reflecting boundary conditions based on the characteristic decomposition of the flux on the boundary. The analyses for the three boundary conditions are carried out in a unifled way. In each case, eigensolutions of the discrete system are obtained and applied to compute the numerical reflection coefficients of a specified out-going wave. The dependencies of the reflections at the boundary on the out-going wave angle and frequency as well as the mesh sizes arc? studied. Comparisons with direct numerical simulation results are also presented.

  5. Robust boundary treatment for open-channel flows in divergence-free incompressible SPH

    NASA Astrophysics Data System (ADS)

    Pahar, Gourabananda; Dhar, Anirban

    2017-03-01

    A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.

  6. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  7. Investigation of Low-Reynolds-Number Rocket Nozzle Design Using PNS-Based Optimization Procedure

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Moin; Korte, John J.

    1996-01-01

    An optimization approach to rocket nozzle design, based on computational fluid dynamics (CFD) methodology, is investigated for low-Reynolds-number cases. This study is undertaken to determine the benefits of this approach over those of classical design processes such as Rao's method. A CFD-based optimization procedure, using the parabolized Navier-Stokes (PNS) equations, is used to design conical and contoured axisymmetric nozzles. The advantage of this procedure is that it accounts for viscosity during the design process; other processes make an approximated boundary-layer correction after an inviscid design is created. Results showed significant improvement in the nozzle thrust coefficient over that of the baseline case; however, the unusual nozzle design necessitates further investigation of the accuracy of the PNS equations for modeling expanding flows with thick laminar boundary layers.

  8. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    DOE PAGES

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; ...

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less

  9. Subsidence in the Nocturnal Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Carlson, Merrilee A.; Stull, Roland B.

    1986-08-01

    Nights with clear skies and strong radiative cooling that favor the formation of statically stable nocturnal boundary layers (NBL) are also those nights most likely to have subsidence, because of the presence of synoptic high-pressure regions. The divergence associated with subsidence laterally removes some of the chilled nocturnal boundary layer air causing the NBL to not grow as rapidly as would otherwise be expected. An equivalent interpretation is that subsidence-induced heating partially counteracts the radiative and turbulent cooling.A new form of nocturnal integral depth scale, HT, is introduced that incorporates the heating and cooling contributions at night. This scale can be used with a variety of idealized temperature profile shapes, including slab, linear, and exponential. It is shown that observed values of subsidence for two case studies can reduce the NBL growth rate, as measured by HT/t, by 5 to 50% and can cause corresponding errors in the estimation of accumulated cooling unless there is a proper accounting of subsidence.Subsidence plays a very minor role close to the ground, but for the case studies presented here its heating rate increases with height and becomes of comparable magnitude to the cooling rates of turbulence and radiation within the top third of the NBL. Although no adequate measurements of horizontal advective effects were available for the case studies used here, it appears from an energy balance that advection must not be neglected because its magnitude can be as large as turbulence and radiation.

  10. The stably stratified internal boundary layer for steady and diurnally varying offshore flow

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1987-03-01

    A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and subsequent decay, of daytime convective turbulence over the sea.

  11. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  12. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  13. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  14. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  15. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  16. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2009-08-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is based on airborne MOZAIC observations of ozone, carbon monoxide, nitrogen oxides and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June and on a vertical profile over Washington DC on 30 June, and on lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the observed CO plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle at isentropic levels (above 335 K) corresponding to those of the downstream MOZAIC observations. It is shown that the order of magnitude of the time needed by the parameterized convective detrainment flux to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air would be about 7.5 h, i.e. a time period compatible with the convective diurnal cycle. Over the area of interest, the maximum instantaneous detrainment fluxes deposited about 15 to 20% of the initial boundary layer tracer concentration at 335 K. According to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over Eastern Atlantic, such detrainment fluxes would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  17. Determining and representing width of soil boundaries using electrical conductivity and MultiGrid

    NASA Astrophysics Data System (ADS)

    Greve, Mogens Humlekrog; Greve, Mette Balslev

    2004-07-01

    In classical soil mapping, map unit boundaries are considered crisp even though all experienced survey personnel are aware of the fact, that soil boundaries really are transition zones of varying width. However, classification of transition zone width on site is difficult in a practical survey. The objective of this study is to present a method for determining soil boundary width and a way of representing continuous soil boundaries in GIS. A survey was performed using the non-contact conductivity meter EM38 from Geonics Inc., which measures the bulk Soil Electromagnetic Conductivity (SEC). The EM38 provides an opportunity to classify the width of transition zones in an unbiased manner. By calculating the spatial rate of change in the interpolated EM38 map across the crisp map unit delineations from a classical soil mapping, a measure of transition zone width can be extracted. The map unit delineations are represented as transition zones in a GIS through a concept of multiple grid layers, a MultiGrid. Each layer corresponds to a soil type and the values in a layer represent the percentage of that soil type in each cell. As a test, the subsoil texture was mapped at the Vindum field in Denmark using both the classical mapping method with crisp representation of the boundaries and the new map with MultiGrid and continuous boundaries. These maps were then compared to an independent reference map of subsoil texture. The improvement of the prediction of subsoil texture, using continuous boundaries instead of crisp, was in the case of the Vindum field, 15%.

  18. Bursting process of large- and small-scale structures in turbulent boundary layer perturbed by a cylinder roughness element

    NASA Astrophysics Data System (ADS)

    Tang, Zhanqi; Jiang, Nan; Zheng, Xiaobo; Wu, Yanhua

    2016-05-01

    Hot-wire measurements on a turbulent boundary layer flow perturbed by a wall-mounted cylinder roughness element (CRE) are carried out in this study. The cylindrical element protrudes into the logarithmic layer, which is similar to those employed in turbulent boundary layers by Ryan et al. (AIAA J 49:2210-2220, 2011. doi: 10.2514/1.j051012) and Zheng and Longmire (J Fluid Mech 748:368-398, 2014. doi: 10.1017/jfm.2014.185) and in turbulent channel flow by Pathikonda and Christensen (AIAA J 53:1-10, 2014. doi: 10.2514/1.j053407). The similar effects on both the mean velocity and Reynolds stress are observed downstream of the CRE perturbation. The series of hot-wire data are decomposed into large- and small-scale fluctuations, and the characteristics of large- and small-scale bursting process are observed, by comparing the bursting duration, period and frequency between CRE-perturbed case and unperturbed case. It is indicated that the CRE perturbation performs the significant impact on the large- and small-scale structures, but within the different impact scenario. Moreover, the large-scale bursting process imposes a modulation on the bursting events of small-scale fluctuations and the overall trend of modulation is not essentially sensitive to the present CRE perturbation, even the modulation extent is modified. The conditionally averaging fluctuations are also plotted, which further confirms the robustness of the bursting modulation in the present experiments.

  19. Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Djenidi, Lyazid; Antonia, Robert A.; Talluru, Murali K.; Abe, Hiroyuki

    2017-06-01

    Hot-wire measurements are carried out in turbulent boundary layers over smooth and rough walls in order the assess the behavior of the skewness (S ) and flatness (F ) factors of the longitudinal velocity derivative as y , the distance from the wall, increases. The measurements are complemented by direct numerical simulations of a smooth wall turbulent channel flow. It is observed that, as the distance to the wall increases, S and F vary significantly before approaching a constant in the outer layer of the boundary layer. Further, S and F exhibit a nontrivial dependence on the Taylor microscale Reynolds number (Reλ). For example, in the region below about 0.2 δ (δ is the boundary layer thickness) where Reλ varies significantly, S and F strongly vary with Reλ and can be multivalued at a given Reλ. In the outer region, between 0.3 δ and 0.6 δ , S , F , and Reλ remain approximately constant. The channel flow direct numerical simulation data for S and F exhibit a similar behavior. These results point to the ambiguity that can arise when assessing the Reλ dependence of S and F in wall shear flows. In particular, the multivaluedness of S and F can lead to erroneous conclusions if y /δ is known only poorly, as is the case for the atmospheric shear layer (ASL). If the laboratory turbulent boundary layer is considered an adequate surrogate to the neutral ASL, then the behavior of S and F in the ASL is expected to be similar to that reported here.

  20. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  1. STAYLAM: A FORTRAN program for the suction transition analysis of a yawed wing laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Carter, J. E.

    1977-01-01

    A computer program called STAYLAM is presented for the computation of the compressible laminar boundary-layer flow over a yawed infinite wing including distributed suction. This program is restricted to the transonic speed range or less due to the approximate treatment of the compressibility effects. The prescribed suction distribution is permitted to change discontinuously along the chord measured perpendicular to the wing leading edge. Estimates of transition are made by considering leading edge contamination, cross flow instability, and instability of the Tollmien-Schlichting type. A program listing is given in addition to user instructions and a sample case.

  2. Diffuse reflection from a stochastically bounded, semi-infinite medium

    NASA Technical Reports Server (NTRS)

    Lumme, K.; Peltoniemi, J. I.; Irvine, W. M.

    1990-01-01

    In order to determine the diffuse reflection from a medium bounded by a rough surface, the problem of radiative transfer in a boundary layer characterized by a statistical distribution of heights is considered. For the case that the surface is defined by a multivariate normal probability density, the propagation probability for rays traversing the boundary layer is derived and, from that probability, a corresponding radiative transfer equation. A solution of the Eddington (two stream) type is found explicitly, and examples are given. The results should be applicable to reflection from the regoliths of solar system bodies, as well as from a rough ocean surface.

  3. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  4. An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers

    NASA Astrophysics Data System (ADS)

    Hervo, Maxime; Poltera, Yann; Haefele, Alexander

    2016-07-01

    Imperfections in a lidar's overlap function lead to artefacts in the background, range and overlap-corrected lidar signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. A correct specification of the overlap function is hence crucial in the use of automatic elastic lidars (ceilometers) for the detection of the planetary boundary layer or of low cloud. In this study, an algorithm is presented to correct such artefacts. It is based on the assumption of a homogeneous boundary layer and a correct specification of the overlap function down to a minimum range, which must be situated within the boundary layer. The strength of the algorithm lies in a sophisticated quality-check scheme which allows the reliable identification of favourable atmospheric conditions. The algorithm was applied to 2 years of data from a CHM15k ceilometer from the company Lufft. Backscatter signals corrected for background, range and overlap were compared using the overlap function provided by the manufacturer and the one corrected with the presented algorithm. Differences between corrected and uncorrected signals reached up to 45 % in the first 300 m above ground. The amplitude of the correction turned out to be temperature dependent and was larger for higher temperatures. A linear model of the correction as a function of the instrument's internal temperature was derived from the experimental data. Case studies and a statistical analysis of the strongest gradient derived from corrected signals reveal that the temperature model is capable of a high-quality correction of overlap artefacts, in particular those due to diurnal variations. The presented correction method has the potential to significantly improve the detection of the boundary layer with gradient-based methods because it removes false candidates and hence simplifies the attribution of the detected gradients to the planetary boundary layer. A particularly significant benefit can be expected for the detection of shallow stable layers typical of night-time situations. The algorithm is completely automatic and does not require any on-site intervention but requires the definition of an adequate instrument-specific configuration. It is therefore suited for use in large ceilometer networks.

  5. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  6. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  7. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

    DTIC Science & Technology

    2014-09-30

    warmer profile through greater latent heat release. Resulting temperature profiles all follow essentially moist adiabats in the upper troposphere ...default RRTM ozone concentration profile). Greater convective mixing deepens the tropopause for cases with stronger moisture flux convergence. Case...with tropospheric temperatures about 4 degrees cooler than the original temperature profile. This case represents conditions during the suppressed

  8. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  9. Global stability behaviour for the BEK family of rotating boundary layers

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Thomas, Christian

    2017-12-01

    Numerical simulations were conducted to investigate the linear global stability behaviour of the Bödewadt, Ekman, von Kármán (BEK) family of flows, for cases where a disc rotates beneath an incompressible fluid that is also rotating. This extends the work reported in recent studies that only considered the rotating-disc boundary layer with a von Kármán configuration, where the fluid that lies above the boundary layer remains stationary. When a homogeneous flow approximation is made, neglecting the radial variation of the basic state, it can be shown that linearised disturbances are susceptible to absolute instability. We shall demonstrate that, despite this prediction of absolute instability, the disturbance development exhibits globally stable behaviour in the BEK boundary layers with a genuine radial inhomogeneity. For configurations where the disc rotation rate is greater than that of the overlying fluid, disturbances propagate radially outwards and there is only a convective form of instability. This replicates the behaviour that had previously been documented when the fluid did not rotate beyond the boundary layer. However, if the fluid rotation rate is taken to exceed that of the disc, then the propagation direction reverses and disturbances grow while convecting radially inwards. Eventually, as they approach regions of smaller radii, where stability is predicted according to the homogeneous flow approximation, the growth rates reduce until decay takes over. Given sufficient time, such disturbances can begin to diminish at every radial location, even those which are positioned outwards from the radius associated with the onset of absolute instability. This leads to the confinement of the disturbance development within a finitely bounded region of the spatial-temporal plane.

  10. Characteristics of nocturnal coastal boundary layer in Ahtopol based on averaged SODAR profiles

    NASA Astrophysics Data System (ADS)

    Barantiev, Damyan; Batchvarova, Ekaterina; Novitzky, Mikhail

    2014-05-01

    The ground-based remote sensing instruments allow studying the wind regime and the turbulent characteristics of the atmosphere with height, achieving new knowledge and solving practical problems, such as air quality assessments, mesoscale models evaluation with high resolution data, characterization of the exchange processes between the surface and the atmosphere, the climate comfort conditions and the risk for extreme events, etc. Very important parameter in such studies is the height of the atmospheric boundary layer. Acoustic remote sensing data of the coastal atmospheric boundary layer were explored based on over 4-years continuous measurements at the meteorological observatory of Ahtopol (Bulgarian Southern Black Sea Coast) under Bulgarian - Russian scientific agreement. Profiles of 12 parameters from a mid-range acoustic sounding instrument type SCINTEC MFAS are derived and averaged up to about 600 m according filtering based on wind direction (land or sea type of night fowls). From the whole investigated period of 1454 days with 10-minute resolution SODAR data 2296 profiles represented night marine air masses and 1975 profiles represented the night flow from land during the months May to September. Graphics of averaged profiles of 12 SODAR output parameters with different availability of data in height are analyzed for both cases. A marine boundary-layer height of about 300 m is identified in the profiles of standard deviation of vertical wind speed (σw), Turbulent Kinetic Energy (TKE) and eddy dissipation rate (EDR). A nocturnal boundary-layer height of about 420 m was identified from the profiles of the same parameters under flows from land condition. In addition, the Buoyancy Production (BP= σw3/z) profiles were calculated from the standard deviation of the vertical wind speed and the height z above ground.

  11. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    NASA Astrophysics Data System (ADS)

    Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek

    2018-02-01

    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  12. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  13. Developing Present-day Proxy Cases Based on NARVAL Data for Investigating Low Level Cloud Responses to Future Climate Change.

    NASA Astrophysics Data System (ADS)

    Reilly, Stephanie

    2017-04-01

    The energy budget of the entire global climate is significantly influenced by the presence of boundary layer clouds. The main aim of the High Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) project is to improve climate model predictions by means of process studies of clouds and precipitation. This study makes use of observed elevated moisture layers as a proxy of future changes in tropospheric humidity. The associated impact on radiative transfer triggers fast responses in boundary layer clouds, providing a framework for investigating this phenomenon. The investigation will be carried out using data gathered during the Next-generation Aircraft Remote-sensing for VALidation (NARVAL) South campaigns. Observational data will be combined with ECMWF reanalysis data to derive the large scale forcings for the Large Eddy Simulations (LES). Simulations will be generated for a range of elevated moisture layers, spanning a multi-dimensional phase space in depth, amplitude, elevation, and cloudiness. The NARVAL locations will function as anchor-points. The results of the large eddy simulations and the observations will be studied and compared in an attempt to determine how simulated boundary layer clouds react to changes in radiative transfer from the free troposphere. Preliminary LES results will be presented and discussed.

  14. Prediction of turbulent shear layers in turbomachines

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1974-01-01

    The characteristics of turbulent shear layers in turbomachines are compared with the turbulent boundary layers on airfoils. Seven different aspects are examined. The limits of boundary layer theory are investigated. Boundary layer prediction methods are applied to analysis of the flow in turbomachines.

  15. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    NASA Astrophysics Data System (ADS)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage of wall-attached structures is observed in the present case when compared with a similar investigation of a rapidly decelerating APG-TBL, suggesting that these wall-attached features could be the remanent from the lower pressure gradient domain upstream.

  16. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  17. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  18. In Situ Aerosol Size Distributions and Clear Column Radiative Closure During ACE-2

    NASA Technical Reports Server (NTRS)

    Collins, D. R.; Johnson, H. H.; Seinfeld, J. H.; Flagan, R. C.; Gasso, S.; Hegg, D. A.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Oestroem, E.; hide

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol size distributions were measured on board the CIRPAS Pelican aircraft through the use of a DMA and two OPCS. During the campaign, the boundary layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on four missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol size distributions and those measured directly by an airborne 14-wavelength sunphotometer and three nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size distribution based calculations. Simultaneous comparison with such a wide range of directly measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly measured optical properties varied for different measurements and for different cases. Averaged over the four case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotomoter by 2.5% in the clean boundary later, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and nondusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured scattering coefficient were -9.6%, +4.7%, +17%, and -41% for measurements within the clean boundary layer, polluted boundary layer, free troposphere with a dust layer, and free troposphere without a dust layer, respectively. Each of these quantities, as well as the majority of the > 100 individual comparisons from which they were averaged, were within estimated uncertainties.

  19. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  20. Exploring uncertainty in the radiative budget of the Antarctic atmospheric boundary layer at Dome C

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Schroth, A.; Genthon, C.; Vignon, E.

    2017-12-01

    In the past two decades, significant advances have been made in observing and modeling the atmospheric boundary layer processes over the Eastern Antarctic plateau. However, there are gaps in understanding related to the radiative and moisture budgets in the very bottom of the ABL. Since 2009, continuous meteorological observations have been made at 6 heights in the bottom 40-m of the atmosphere as part of the CALibration and VAlidation of meteorological and climate models and satellite retrievals (C ALVA) campaign to improve understanding of the atmospheric state over Dome C. A recent case study that is part of the GEWEX Atmospheric Boundary Layer Study, GABLS4, has also focused on the ability of models to simulate stable summertime boundary layers at the same location. As part of the intercomparison, a model derived summertime climatology based on 10-years of PolarWRF simulations over the Eastern Antarctic plateau was developed. Comparisons between these simulations and data from the CALVA campaign suggest that PolarWRF is not capturing the small-scale variations in the longwave heating rate profile near the surface, and so predicts biased surface temperatures relative to observations. Additional work suggests that modifications of the surface snow representations may also be needed. Studies of the sensitivity of these results to changes in the moisture budget are ongoing.

  1. Spectral structure and linear mechanisms in a 'rapidly' distorted boundary layer

    NASA Astrophysics Data System (ADS)

    Diwan, Sourabh; Morrison, Jonathan

    2016-11-01

    A characteristic feature of a turbulent boundary layer (TBL) at high Reynolds numbers is the presence of coherent motions such as the 'large scale motions' and 'superstructures'. In this work we attempt to mimic such coherent motions and their spectral structure using a simplified experimental arrangement of a boundary layer flow over a flat plate subjected to grid-generated turbulence and/or localized patch of surface roughness. The velocity measurements done downstream of a grit roughness patch (in absence of grid turbulence) show that over a certain distance the energy spectrum of streamwise velocity fluctuations shows a bi-modal shape which resembles that found in a high-Re TBL. We also carry out experiments with both grid turbulence and grit roughness present and show that it is possible to 'synthesize' the structure of a TBL in the wall-normal direction, in the limited context of streamwise coherent motions, using the present experimental design. These results indicate that the predictions of the Rapid Distortion Theory (RDT) can be applied to the present case in a region close to the plate leading edge, and we examine the linearized effects of 'blocking' and 'shear' on turbulent fluctuations near the edge of the boundary layer and close to the wall in the framework of the RDT. We acknowledge financial support from EPSRC (Grant No. EP/1037938).

  2. Flow analysis for the nacelle of an advanced ducted propeller at high angle-of-attack and at cruise with boundary layer control

    NASA Technical Reports Server (NTRS)

    Hwang, D. P.; Boldman, D. R.; Hughes, C. E.

    1994-01-01

    An axisymmetric panel code and a three dimensional Navier-Stokes code (used as an inviscid Euler code) were verified for low speed, high angle of attack flow conditions. A three dimensional Navier-Stokes code (used as an inviscid code), and an axisymmetric Navier-Stokes code (used as both viscous and inviscid code) were also assessed for high Mach number cruise conditions. The boundary layer calculations were made by using the results from the panel code or Euler calculation. The panel method can predict the internal surface pressure distributions very well if no shock exists. However, only Euler and Navier-Stokes calculations can provide a good prediction of the surface static pressure distribution including the pressure rise across the shock. Because of the high CPU time required for a three dimensional Navier-Stokes calculation, only the axisymmetric Navier-Stokes calculation was considered at cruise conditions. The use of suction and tangential blowing boundary layer control to eliminate the flow separation on the internal surface was demonstrated for low free stream Mach number and high angle of attack cases. The calculation also shows that transition from laminar flow to turbulent flow on the external cowl surface can be delayed by using suction boundary layer control at cruise flow conditions. The results were compared with experimental data where possible.

  3. Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars

    NASA Astrophysics Data System (ADS)

    Williams, B.; Nair, U. S.

    2014-12-01

    Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.

  4. Hydrodynamics of Bacterial Cooperation

    NASA Astrophysics Data System (ADS)

    Petroff, A.; Libchaber, A.

    2012-12-01

    Over the course of the last several decades, the study of microbial communities has identified countless examples of cooperation between microorganisms. Generally—as in the case of quorum sensing—cooperation is coordinated by a chemical signal that diffuses through the community. Less well understood is a second class of cooperation that is mediated through physical interactions between individuals. To better understand how the bacteria use hydrodynamics to manipulate their environment and coordinate their actions, we study the sulfur-oxidizing bacterium Thiovulum majus. These bacteria live in the diffusive boundary layer just above the muddy bottoms of ponds. As buried organic material decays, sulfide diffuses out of the mud. Oxygen from the pond diffuses into the boundary layer from above. These bacteria form communities—called veils— which are able to transport nutrients through the boundary layer faster than diffusion, thereby increasing their metabolic rate. In these communities, bacteria attach to surfaces and swim in place. As millions of bacteria beat their flagella, the community induces a macroscopic fluid flow, which mix the boundary layer. Here we present experimental observations and mathematical models that elucidate the hydrodynamics linking the behavior of an individual bacterium to the collective dynamics of the community. We begin by characterizing the flow of water around an individual bacterium swimming in place. We then discuss the flow of water and nutrients around a small number of individuals. Finally, we present observations and models detailing the macroscopic dynamics of a Thiovulum veil.

  5. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  6. A case study of atmospheric boundary layer features during winter over a tropical inland station — Kharagpur (22.32°N, 87.32°E)

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Kunhikrishnan, P. K.; Aloysius, Marina; Mohan, M.

    2009-08-01

    The local weather and air quality over a region are greatly influenced by the atmospheric boundary layer (ABL) structure and dynamics. ABL characteristics were measured using a tethered balloon-sonde system over Kharagpur (22.32°N, 87.32°E, 40m above MSL), India, for the period 7 December 2004 to 30 December 2004, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP) Aerosol Land Campaign II. High-resolution data of pressure, temperature, humidity, wind speed and wind direction were archived along with surface layer measurements using an automatic weather station. This paper presents the features of ABL, like ABL depth and nocturnal boundary layer (NBL) depth. The sea surface winds from Quikscat over the oceanic regions near the experiment site were analyzed along with the NCEP/NCAR reanalysis winds over Kharagpur to estimate the convergence of wind, moisture and vorticity to understand the observed variations in wind speed and relative humidity, and also the increased aerosol concentrations. The variation of ventilation coefficient ( V C), a factor determining the air pollution potential over a region, is also discussed in detail.

  7. Direct numerical simulation of particulate flows with an overset grid method

    NASA Astrophysics Data System (ADS)

    Koblitz, A. R.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D.

    2017-08-01

    We evaluate an efficient overset grid method for two-dimensional and three-dimensional particulate flows for small numbers of particles at finite Reynolds number. The rigid particles are discretised using moving overset grids overlaid on a Cartesian background grid. This allows for strongly-enforced boundary conditions and local grid refinement at particle surfaces, thereby accurately capturing the viscous boundary layer at modest computational cost. The incompressible Navier-Stokes equations are solved with a fractional-step scheme which is second-order-accurate in space and time, while the fluid-solid coupling is achieved with a partitioned approach including multiple sub-iterations to increase stability for light, rigid bodies. Through a series of benchmark studies we demonstrate the accuracy and efficiency of this approach compared to other boundary conformal and static grid methods in the literature. In particular, we find that fully resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many common test cases. With our approach we are able to compute accurate solutions using as little as one third the number of grid points as uniform grid computations in the literature. A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid test case whilst maintaining comparable solution accuracy.

  8. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin/separation line). Streamwise PIV measurements did not show that the boundary layer or separation region were energized by the actuation. The primary effect of the LAFPAs was the displacement of the reflected shock upstream. Jaunet et al. (2012) observed a similar shift in the reflected shock when they heated the wall beneath the boundary layer. A significantly greater power deposition was used in that work, and significantly larger shock displacements were observed. Although the LAFPAs output significantly less power (albeit in an unsteady, highly localized fashion), a parametric sweep strongly pointed to heating as the primary control mechanism. Further investigation and analysis showed that the near-wall heating of the flow by the plasma was the primary control mechanism of the LAFPAs, despite the small power input. The reflected shock was displaced by an increase in the separation region size, which was caused by the degradation of the upstream boundary layer. The LAFPAs degrade the upstream boundary layer through a variety of heating associated mechanisms: 1) Decreasing the density increases the mass flow deficit, 2) The altered skin-friction coefficient acts to retard the flow and make the velocity profile less full, and 3) The heating moves the sonic line further from the wall. Other mechanisms may also play a role.

  9. Using In Situ Observations and Satellite Retrievals to Constrain Large-Eddy Simulations and Single-Column Simulations: Implications for Boundary-Layer Cloud Parameterization in the NASA GISS GCM

    NASA Astrophysics Data System (ADS)

    Remillard, J.

    2015-12-01

    Two low-cloud periods from the CAP-MBL deployment of the ARM Mobile Facility at the Azores are selected through a cluster analysis of ISCCP cloud property matrices, so as to represent two low-cloud weather states that the GISS GCM severely underpredicts not only in that region but also globally. The two cases represent (1) shallow cumulus clouds occurring in a cold-air outbreak behind a cold front, and (2) stratocumulus clouds occurring when the region was dominated by a high-pressure system. Observations and MERRA reanalysis are used to derive specifications used for large-eddy simulations (LES) and single-column model (SCM) simulations. The LES captures the major differences in horizontal structure between the two low-cloud fields, but there are unconstrained uncertainties in cloud microphysics and challenges in reproducing W-band Doppler radar moments. The SCM run on the vertical grid used for CMIP-5 runs of the GCM does a poor job of representing the shallow cumulus case and is unable to maintain an overcast deck in the stratocumulus case, providing some clues regarding problems with low-cloud representation in the GCM. SCM sensitivity tests with a finer vertical grid in the boundary layer show substantial improvement in the representation of cloud amount for both cases. GCM simulations with CMIP-5 versus finer vertical gridding in the boundary layer are compared with observations. The adoption of a two-moment cloud microphysics scheme in the GCM is also tested in this framework. The methodology followed in this study, with the process-based examination of different time and space scales in both models and observations, represents a prototype for GCM cloud parameterization improvements.

  10. The impact of water vapor assimilation on quantitative precipitation forecast over the Washington, DC metropolitan area

    NASA Astrophysics Data System (ADS)

    Walford, Segayle Cereta

    Forecasting subtle, small-scale convective cases in both winter and summer time is an ongoing challenge in weather forecasting. Recent studies have shown that better structure of moisture within the boundary layer is crucial for improving forecasting skills, particularly quantitative precipitation forecasting (QPF). Lidars, which take high temporal observations of moisture, are able to capture very detailed structures, especially within the boundary layer where convection often begins. This study first investigates the extent to which an aerosol and a water vapor lidar are able to capture key boundary layer processes necessary for the development of convection. The results of this preliminary study show that the water vapor lidar is best able to capture the small scale water vapor variability that is necessary for the development of convection. These results are then used to investigate impacts of assimilating moisture from the Howard University Raman Lidar (HURL) for one mesoscale convective case, July 27-28, 2006. The data for this case is from the Water Vapor Validation Experiment-Satellite and Sondes (WAVES) field campaign located at the Howard University Beltsville Site (HUBS) in Beltsville, MD. Specifically, lidar-based water vapor mixing ratio profiles are assimilated into the Weather Research and Forecasting (WRF) regional model over a 4 km grid resolution over Washington, DC. Model verification is conducted using the Meteorological Evaluation Tool (MET) and the results from the lidar run are then compared to a control (no assimilation) run. The findings indicate that quantitatively conclusions cannot be draw from this one case study. However, qualitatively, the assimilation of the lidar observations improved the equivalent potential temperature, and water vapor distribution of the region. This difference changed location, strength and spatial coverage of the convective system over the HUBS region.

  11. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, Richard C.; Foss, John F.

    1990-01-01

    Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

  12. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    PubMed

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  13. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  14. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  15. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  16. Boundary layers and resistance on liquid motion with only slight friction

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The laws of fluid motion are examined systematically for the case where friction is assumed to be very slight. Calculations are carried out with the appropriate differential equation and practical investigations are illustrated.

  17. Application of the implicit MacCormack scheme to the PNS equations

    NASA Technical Reports Server (NTRS)

    Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.

    1983-01-01

    The two-dimensional parabolized Navier-Stokes equations are solved using MacCormack's (1981) implicit finite-difference scheme. It is shown that this method for solving the parabolized Navier-Stokes equations does not require the inversion of block tridiagonal systems of algebraic equations and allows the original explicit scheme to be employed in those regions where implicit treatment is not needed. The finite-difference algorithm is discussed and the computational results for two laminar test cases are presented. Results obtained using this method for the case of a flat plate boundary layer are compared with those obtained using the conventional Beam-Warming scheme, as well as those obtained from a boundary layer code. The computed results for a more severe test of the method, the hypersonic flow past a 15 deg compression corner, are found to compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.

  18. Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows

    NASA Technical Reports Server (NTRS)

    Johanson, Craig T.; Danehy, Paul M.

    2012-01-01

    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.

  19. An experimental investigation of compressible three-dimensional boundary layer flow in annular diffusers

    NASA Technical Reports Server (NTRS)

    Om, Deepak; Childs, Morris E.

    1987-01-01

    An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.

  20. Navier-Stokes calculations on multi-element airfoils using a chimera-based solver

    NASA Technical Reports Server (NTRS)

    Jasper, Donald W.; Agrawal, Shreekant; Robinson, Brian A.

    1993-01-01

    A study of Navier-Stokes calculations of flows about multielement airfoils using a chimera grid approach is presented. The chimera approach utilizes structured, overlapped grids which allow great flexibility of grid arrangement and simplifies grid generation. Calculations are made for two-, three-, and four-element airfoils, and modeling of the effect of gap distance between elements is demonstrated for a two element case. Solutions are obtained using the thin-layer form of the Reynolds averaged Navier-Stokes equations with turbulence closure provided by the Baldwin-Lomax algebraic model or the Baldwin-Barth one equation model. The Baldwin-Barth turbulence model is shown to provide better agreement with experimental data and to dramatically improve convergence rates for some cases. Recently developed, improved farfield boundary conditions are incorporated into the solver for greater efficiency. Computed results show good comparison with experimental data which include aerodynamic forces, surface pressures, and boundary layer velocity profiles.

  1. Investigation to optimize the passive shock wave-boundary layer control for supercritical airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Ficarra, R.; Orozco, R.

    1983-01-01

    The optimization of passive shock wave/boundary layer control for supercritical airfoil drag reduction was investigated in a 3 in. x 15.4 in. Transonic Blowdown Wind Tunnel. A 14% thick supercritical airfoil was tested with 0%, 1.42% and 2.8% porosities at Mach numbers of .70 to .83. The 1.42% case incorporated a linear increase in porosity with the flow direction while the 2.8% case was uniform porosity. The static pressure distributions over the airfoil, the wake impact pressure data for determining the profile drag, and the Schlieren photographs for porous surface airfoils are presented and compared with the results for solid-surface airfoils. While the results show that linear 1.42% porosity actually led to a slight increase in drag it was found that the uniform 2.8% porosity can lead to a drag reduction of 46% at M = .81.

  2. Frequency-domain prediction of broadband trailing edge noise from a blunt flat plate

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Se; Cheong, Cheolung

    2013-10-01

    The aim of this study is to develop an efficient methodology for frequency-domain prediction of broadband trailing edge noise from a blunt flat plate where non-zero pressure gradient may exist in its boundary layer. This is achieved in two ways: (i) by developing new models for point pressure spectra within the boundary layer over a flat plate, and (ii) by deriving a simple formula to approximate the effect of convective velocity on the radiated noise spectrum. Firstly, two types of point pressure spectra-required as input data to predict the trailing edge noise in the frequency domain-are used. One is determined using the semi-analytic (S-A) models based on the boundary-layer theory combined with existing empirical models. It is shown that the prediction using these models show good agreements with the measurements where zero-pressure gradient assumption is valid. However, the prediction show poor agreement with that obtained from large eddy simulation results where negative (favorable) pressure gradient is observed with the boundary layer. Based on boundary layer characteristics predicted using the large eddy simulations, new model for point wall pressure spectra is proposed to account for the effect of favorable pressure gradient over the blunt flat plate on the wall pressure spectra. Sound spectra that were predicted using these models are compared with measurements to validate the proposed prediction scheme. The advantage of the semi-analytic model is that it can be applied to problems at Reynolds numbers for which the empirical model is not available. In addition, it is expected that the current models can be applied to the cases where favorable pressure gradient exists in the boundary layer over a blunt flat plate. Secondly, in order to quantitatively analyze contributions of the pressure field within the turbulent boundary layer on the flat plate to trailing edge noise, total pressure over the surface of airfoil is decomposed into its two constituents: incident pressure generated in the boundary layer without a trailing edge and the pressure formed by the scattering of the incident pressure at the trailing edge. The predictions made using each of the incident and scattered pressures reveal that the convective velocity of turbulence in the boundary layer dominantly affects the radiated sound pressure spectrum, both in terms of the gross behavior of the overall acoustic pressure spectrum through the scattered pressure and in terms of the narrow band small fluctuations of the spectrum through the incident pressure. The interaction term between the incident and the scattered is defined and the incident is shown to contribute to the radiated acoustic pressure through the interaction term. Based on this finding, a simple model to effectively compute the effects of convection velocities of the turbulence on the radiated sound pressure spectrum is proposed. It is shown that the proposed method can effectively and accurately predict the broadband trailing edge noise from the plate with considering both the incident and the scattered contributions.

  3. The Effect of Backward-Facing Step Height on Instability Growth and Breakdown in Swept Wing Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2015-01-01

    A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.

  4. Skin-Friction Measurements at Subsonic and Transonic Mach Numbers with Embedded-Wire Gages

    DTIC Science & Technology

    1981-01-01

    Model ................................... 17 9. Boundary-Layer Rake Installation on EBOR Model...boundary-layer total pressure rake eliminates this bulky mechanism and the long data acquisition time, but it introduces interferences which affect the...its construction. Further, boundary-layer rakes are restricted to measurements in thick boundary layers. Surface pressure probes such as Stanton tubes

  5. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  6. Three dimensional flow field inside compressor rotor, including blade boundary layers

    NASA Technical Reports Server (NTRS)

    Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.

    1982-01-01

    The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.

  7. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  8. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  9. Self-force as a probe of global structure

    NASA Astrophysics Data System (ADS)

    Davidson, Karl; Poisson, Eric

    2018-05-01

    We calculate the self-force on an electric charge and electric dipole held at rest in a closed universe that results from joining two copies of Minkowski spacetime at a common boundary. Spacetime is strictly flat on each side of the boundary, but there is curvature at the surface layer required to join the two Minkowski spacetimes. We find that the self-force on the charge is always directed away from the surface layer. This is analogous to the case of an electric charge held at rest inside a spherical shell of matter, for which the self-force is also directed away from the shell. For the dipole, the direction of the self-force is a function of the dipole's position and orientation. Both self-forces become infinite when the charge or dipole is made to approach the surface layer. This study reveals that a self-force can arise even when the Riemann tensor vanishes at the position of the charge or dipole; in such cases the self-force is a manifestation of the global curvature of spacetime.

  10. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  11. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  12. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  13. The effect of hydrocarbons on the microstructural evolution in rock salt: a case study on hydrocarbon bearing Ara salt from the South Oman Salt Basin

    NASA Astrophysics Data System (ADS)

    Schmatz, Joyce; Urai, Janos L.; Wübbeler, Franziska M. M.; Sadler, Marc

    2014-05-01

    It has been shown that dilatant deformation promotes the incorporation of hydrocarbons into typically low permeable rock salt (Schoenherr et al., 2007). However, there is not much knowledge on subsequent mechanisms related to recrystallization processes, which cause morphological and chemical changes of the carbonic inclusions. This work aims to contribute to an increased understanding of fluid inclusion dynamics related to grain boundary migration recrystallization and hence to facilitate the interpretation of complex microstructures in recrystallized, multiphase salt rocks. In this case study we investigate hydrocarbon-impregnated salt from the Cambrian Ara Group in the South Oman Salt Basin. The samples were cored from cm-m thick anhydrite-salt sequences overlying hydrocarbon bearing carbonate stringers in 3300 m depth. The anhydrite layers consist mainly of fine-grained anhydrite, which contains calcite, dolomite, and olivine inclusions. Solid bitumen and lighter hydrocarbon phases are observed in between the anhydrite grains and along cracks. Anhydrite layers host salt veins, which contain fragments of anhydrite. These fragments do not differ in composition or structure from the host material and the related vein microstructures indicate crack-seal mechanisms. Halite in the salt layers is almost entirely recrystallized with solid inclusions consisting of anhydrite, calcite, dolomite and olivine with hydrocarbon-coatings present inside grains and along grain boundaries. Solid inclusions cause pinning indicated by a decreased recrystallized grain size and by the presence of grains with preserved substructures representing earlier deformation phases. We observe two types of carbonic inclusions: I) solid bitumen coatings along grain boundaries and microcracks, interpreted to be incorporated into the salt in an overpressure state that allowed dilatancy of the salt, and II) less degraded, liquid hydrocarbons along grain boundaries in the vicinity of the anhydrite, interpreted to be incorporated into the salt in a subsequent deformation phase. Type II inclusions usually form arrays of isolated inclusions (liquid hydrocarbons, vapor, and aqueous phases in minor proportions) along grain boundaries of the recrystallized grains, presumably formed in a surface-energy controlled shrinking process from thin fluid films. Here, the contact with mobile grain boundaries promoted necking down and decomposition of multiphase inclusions. We present a model, which describes the dynamic behavior of liquid hydrocarbons in mobile grain boundaries after their enclosure into the salt layers. The model is based on numerous microanalytical methods, such as optical microscopy, fluorescence microscopy, cryo-SEM, and EDX. Schoenherr, J., et al. (2007), Limits to the sealing capacity of rock salt: A case study of the infra-Cambrian Ara Salt from the South Oman salt basin, AAPG Bulletin, 91(11), 1541-1557

  14. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less

  15. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  16. Complementary velocity and heat transfer measurements in a rotating turbine cooling passage

    NASA Astrophysics Data System (ADS)

    Bons, Jeffrey Peter

    An experimental investigation was conducted on the internal flowfield of a simulated turbine blade cooling passage. The passage is of a square cross-section and was manufactured from quartz for optical accessibility. Velocity measurements were taken using Particle Image Velocimetry for both heated and non-heated cases. Thin film resistive heaters on the four passage walls allow heat to be added to the coolant flow without obstructing laser access. Under the same conditions, an infrared detector with associated optics collected wall temperature data for use in calculating local Nusselt number. The test section was operated with radial outward flow and at values of Reynolds number, Rotation number, and density ratio typical of applications. Velocity data for the non-heated case document the evolution of the Coriolis-induced double vortex. The vortex has the effect of increasing the leading side boundary layer thickness while decreasing the trailing side boundary layer thickness. Also, the streamwise component of the Coriolis acceleration creates a thinned side wall boundary layer. These data reveal an unsteady, turbulent flowfield in the cooling passage. Velocity data for the heated case show a strongly distorted streamwise profile indicative of a buoyancy effect on the leading side. The Coriolis vortex is the mechanism for the accumulation of stagnant flow on the leading side of the passage. Heat transfer data show a maximum factor of two difference in the Nusselt number from trailing side to leading side. An estimate of this heat transfer disparity based on the measured boundary layer edge velocity yields approximately the same factor of two. A momentum integral model was developed for data interpretation which accounts for Coriolis and buoyancy effects. Calculated streamwise profiles and secondary flows match the experimental data well. The model, the velocity data, and the heat transfer data combine to suggest the presence of separated flow on the leading wall starting at about five passage widths for the conditions studied. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  17. Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Todd, C. A.

    1974-01-01

    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region.

  18. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  19. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  20. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  1. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  2. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  3. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  4. A nonperturbing boundary-layer transition detector

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-11-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels. The boundary-layer transition detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Data which depict boundary-layer transition from laminar to turbulent flow are presented to provide comparisons of the BLTD with other measurement methods. Spectra from the BLTD reveals the presence of a high-frequency peak during transition which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  5. To the theory of particle lifting by terrestrial and Martian dust devils

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2018-01-01

    The combined Rankine vortex model is applied to describe the radial profile of azimuthal velocity in atmospheric dust devils, and a simplified model version is proposed of the turbulent surface boundary layer beneath the Rankine vortex periphery that corresponds to the potential vortex. Based on the results by Burggraf et al. (1971), it is accepted that the radial velocity near the ground in the potential vortex greatly exceeds the azimuthal velocity, which makes tractable the problem of the surface shear stress determination, including the case of the turbulent surface boundary layer. The constructed model explains exceeding the threshold shear velocity for aeolian transport in typical dust-devil vortices both on Earth and on Mars.

  6. Shock wave/turbulent boundary layer interaction in the flow field of a tri-dimension wind tunnel

    NASA Technical Reports Server (NTRS)

    Benay, R.; Pot, T.

    1986-01-01

    The first results of a thorough experimental analysis of a strong three-dimensional shock-wave/turbulent boundary-layer interaction occurring in a three dimensional transonic channel are presented. The aim of this experiment is to help in the physical understanding of a complex field, including several separations, and to provide a well documented case to test computational methods. The flowfield has been probed in many points by means of a three-component laser Doppler velocimeter. The results presented relate only to the mean velocity field. They clearly show the formation in the flow of a strong vortical motion resulting from the shock wave interaction.

  7. Large-eddy substitution via vortex cancellation for wall turbulence control

    NASA Technical Reports Server (NTRS)

    Mcginley, C. B.; Beeler, G. B.

    1985-01-01

    A system of co-rotating longitudinal vortices was used to introduce streamline (as opposed to wall) curvature into a turbulent wall flow. Two methods of vortex cancellation, unwinding and self-annihilation, were tested as a means of removing the vortices once they had processed most of the incoming turbulent boundary layer. Vortex unwinding, which uses vorticity of the opposite sign, was shown to be a viable method for cancelling the co-rotating vortices. Vortex self-annihilation, caused by interference effects resulting from a close initial spanwise vortex spacing, eliminated the vortices within 60 delta downstream. In each case, reductions in boundary layer entrainment were found once the vortices were cancelled.

  8. Net motion of acoustically levitating nano-particles: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Lippera, Kevin; Dauchot, Olivier; Benzaquen, Michael; Gulliver-LadHyX Collaboration

    2017-11-01

    A particle 2D-trapped in the nodal planed of a standing acoustic wave is prone to acoustic-phoretic motion as soon as its shape breaks polar or chiral symmetry. such a setup constitues an ideal system to study boundaryless 2D collective behavior with purely hydrodynamic long range interactions. Recent studies have indeed shown that quasi-spherical particles may undergo net propulsion, a feature partially understood theoretically in the particular case of infinite viscous boundary layers. We here extend the theoretical results of to any boundary layer thickness, by that meeting typical experimental conditions. In addition, we propose an explanation for the net spinning of the trapped particles, as observed in experiments.

  9. A law of the wall for turbulent boundary layers with suction: Stevenson's formula revisited

    NASA Astrophysics Data System (ADS)

    Vigdorovich, Igor

    2016-08-01

    The turbulent velocity field in the viscous sublayer of the boundary layer with suction to a first approximation is homogeneous in any direction parallel to the wall and is determined by only three constant quantities — the wall shear stress, the suction velocity, and the fluid viscosity. This means that there exists a finite algebraic relation between the turbulent shear stress and the longitudinal mean-velocity gradient, using which as a closure condition for the equations of motion, we establish an exact asymptotic behavior of the velocity profile at the outer edge of the viscous sublayer. The obtained relationship provides a generalization of the logarithmic law to the case of wall suction.

  10. A three-dimensional turbulent separated flow and related mesurements

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.

    1985-01-01

    The applicability of and the limits on the applicability of 11 near wall similarity laws characterizing three-dimensional turbulent boundary layer flows were determined. A direct force sensing local wall shear stress meter was used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions. Documentation of a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows is presented.

  11. Dynamical Generation of the Transition Zone in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Stemmer, K.

    2005-12-01

    The internal structure of the Earth is made up by a series of layers, though it is unclear how many layers exist and if there are layers invisible to remote sensing techniques. The transition zone is likely to be a boundary layer separating the convective systems in the lower and upper mantle. It seems likely that currently there is some mass exchange across this boundary, rather than the two systems beeing strictly separated.a Double-diffusive convection(d.d.c) is a vital mechanism which can generate layered structure and may thus be an important mmical machinery behind the formation of the transition zone. Double-diffusive convection determines the dynamics of systems whose density is influenced by at least two components with different molecular diffusivities.In the mantle, composition and temperature play the role of those two components. By means of numerical experiments we demonstrate that under mantle relevant conditions d.d.c typically leads to the formation of a transition zone. The calculations encompass two- and three dimensional Cartesian geometries as well as fully 3D spherical domains. We have further included strongly temperature dependent viscosity and find that this leads to even more pronounced layering. In most cases a layered flow pattern emerges, where two layers with a transition zone in between resembles a quasistationary state. Thus, the transition zone can be the result of a self organization process of the convective flow in the mantle. The presence of a phase transition further helps to stabilize the boundary against overturning, even on a time scale on the order of the age of the Earth.

  12. A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Pergaud, Julien; Masson, Valéry; Malardel, Sylvie; Couvreux, Fleur

    2009-07-01

    For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy DiffusivityMass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCSARM) and conserve a realistic evolution of stratocumulus (EUROCSFIRE).

  13. The Role of Boundary-Layer and Cumulus Convection on Dust Emission, Mixing, and Transport Over Desert Regions

    NASA Astrophysics Data System (ADS)

    Takemi, T.; Yasui, M.

    2005-12-01

    Recent studies on dust emission and transport have been concerning the small-scale atmospheric processes in order to incorporate them as a subgrid-scale effect in large-scale numerical prediction models. In the present study, we investigated the dynamical processes and mechanisms of dust emission, mixing, and transport induced by boundary-layer and cumulus convection under a fair-weather condition over a Chinese desert. We performed a set of sensitivity experiments as well as a control simulation in order to examine the effects of vertical wind shear, upper-level wind speed, and moist convection by using a simplified and idealized modeling framework. The results of the control experiment showed that surface dust emission was at first caused before the noon time by intense convective motion which not only developed in the boundary layer but also penetrated into the free troposphere. In the afternoon hours, boundary-layer dry convection actively mixed and transported dust within the boundary layer. Some of the convective cells penetrated above the boundary layer, which led to the generation of cumulus clouds and hence gradually increased the dust content in the free troposphere. Coupled effects of the dry and moist convection played an important role in inducing surface dust emission and transporting dust vertically. This was clearly demonstrated through the comparison of the results between the control and the sensitivity experiments. The results of the control simulation were compared with lidar measurements. The simulation well captured the observed diurnal features of the upward transport of dust. We also examined the dependence of the simulated results on grid resolution: the grid size was changed from 250 m up to 4 km. It was found that there was a significant difference between the 2-km and 4-km grids. If a cumulus parameterization was added to the 4-km grid run, the column content was comparable to the other cases. This result suggests that subgrid parameterizations are required if the grid size is larger than the order of 1 km in a fair-weather condition.

  14. New Boundary Layer Facility at Andøya, 69N 16E

    NASA Astrophysics Data System (ADS)

    Gausa, M. A.; Reuder, J.; Blindheim, S.

    2016-12-01

    The present presentation introduces an inative for a new boundary layer research facility on the island of Andøya (69N,16E) in Norway. The facility will appreciate international cooperation and contributions.Most boundary layer observatories (as e.g. the Lindenberg Observatory in Germany, the Cabauw facility in the Netherlands, or the Boulder Atmospheric Observatory in the US) are located in mid latitudes. Arctic or sub-arctic stations are rare or not representative due to their location in valleys (e.g. Ny Ålesund). In addition, most of the existing sites are representative for a continental boundary layer and do not allow to observe coupling processes to the free troposphere and the upper atmosphere. The island of Andøya has a unique location at 69N. To the West, Andøya is open to the Norwegian Sea. Its orology maintains an almost undisturbed marine boundary on the foreseen location under SW and W wind weather conditions. Due to rugged mountains, other wind directions provide a more transformed PBL. The understanding of the Planetary Boundary Layer (PBL), in particular with respect to turbulence and turbulent exchange processes, is crucial for a wide range of science fields and environmental monitoring tasks: To name a few: basic atmospheric science, monitoring of pollutants, weather forecast, and climate projection. The PBL is consequently research focus for several research groups, which investigate the empirical and theoretical description of this complex height region. In particular, in high latitudes this lowermost layer of the atmosphere the understanding is poor. The following research topics of the new facility are foreseen: present climate projections show their largest bias in polar regions; this is mostly attributed to inappropriate parameterization of PBL processes in the numerical models forecasts of extreme weather events at high latitudes, e.g. of Polar lows with their potential of hazards for infrastructure and traffic, are still poor for the same reason natural aerosols and anthropogenic pollutants form and change in the PBL due to chemical and coagulation processes upward transport of energy are gravity (buoyancy) waves, which in many cases originate from the PBL precise measurements of precipitation under difficult meteorological conditions

  15. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated holes in the impervious test plate that used to establish the Blasius base flow. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance, for conditions corresponding to strong suction and without suction. The technique was enhanced by using up to nine multiple probes to reduce the experimental run-time. In both cases, 3D contour surfaces in the vicinity of the hole show highly 3D TS waves which fan out in the spanwise direction forming bow-shaped waves downstream. The case without suction has proved useful for evaluating calculation methods. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the TS waves in the far field are similar to the case without suction. Downstream, the contour surfaces of the TS waves develop spanwise irregularities which eventually form into clumps. The spanwise clumping is evidence of a secondary instability that could be associated with suction vortices. Designers of porous surfaces use Goldsmith's Criterion to minimize cross-stream interactions. It is shown that partial TS wave cancellation is possible, depending on the hole spacing, disturbance frequency and free-stream velocity. New high-performance Constant Temperature Hot-Wire Anemometers were designed and built, based on a linear system theory analysis that can be extended to arbitrary order. The motivation was to achieve the highest possible frequency reponse while ensuring overall system stability. The performance is equal to or superior to commercially available instruments at about 10% of the cost. Details, such as fabrication drawings and a parts list, have been published to enable the instrument to be construced by others.

  16. The effect of large aspect ratio wing yaw on active separation control

    NASA Astrophysics Data System (ADS)

    Tewes, Philipp; Taubert, Lutz; Wygnanski, Israel

    2014-11-01

    The applicability of the boundary layer independence principle to turbulent boundary layers developing on infinitely yawed wings, suggested that active separation control might be carried out differently to the two presumably independent developing boundary layers. At low incidence or flap deflection the control of the spanwise component of the flow is effective provided the aggregate number of actuators is small. In this case the actuator jets provide jet-curtains that virtually eliminate the spanwise flow component of the flow in their vicinity. At higher incidence or flap deflection, the focus of the active separation control has to shift to the chordwise component that has to overcome a high adverse pressure gradient. The idea was proven experimentally on a flapped wing based on a NACA 0012 airfoil that could be swept back and forward while being suspended from a ceiling of a wind tunnel connected to a six-component balance. The experiments were carried out at Reynolds numbers varying between 300,000 and 500,000. The project was supported in part by a grant from AFOSR.

  17. Optimal Growth in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  18. Attachment-Line Heating in a Compressible Flow

    NASA Astrophysics Data System (ADS)

    Reed, Helen; Saric, William

    2011-11-01

    The attachment-line boundary layer on a swept wing can be subject to either an instability or contamination by wing-root turbulence. A model of the attachment-line boundary layer is first developed including compressibility and wall heating in a Falkner-Skan-Cooke class of 3-D boundary layers with Hartree parameter of 1.0. For cases otherwise subcritical to either contamination or instability, the destabilizing effect of leading-edge heating under a variety of sweep angles and flight conditions is demonstrated. The results correlate with the attachment-line Reynolds number. Because the required heating levels are reasonable and achievable to trip the flow over the wing to turbulent, one possible application of this work is in the establishing of a baseline turbulent flow (on demand) for the calibration of a laminar-flow-control health monitoring system. *Portion based on work under Framework Agreement between Airbus Americas and NIA, and opinions, findings, conclusions do not necessarily reflect views of Airbus or NIA. Support from AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition through Grant FA9550-09-1-0341 gratefully acknowledged.

  19. Skin friction enhancement in a model problem of undulatory swimming

    NASA Astrophysics Data System (ADS)

    Ehrenstein, Uwe; Eloy, Christophe

    2013-10-01

    To calculate the energy costs of swimming, it is crucial to evaluate the drag force originating from skin friction. In this paper we examine the assumption, known as the 'Bone-Lighthill boundary-layer thinning hypothesis', that undulatory swimming motions induce a drag increase because of the compression of the boundary layer. Studying analytically an incoming flow along a flat plate moving at a normal velocity as a limit case of a yawed cylinder in uniform flow under the laminar boundary layer assumption, we demonstrate that the longitudinal drag scales as the square root of the normal velocity component. This analytical prediction is interpreted in the light of a three-dimensional numerical simulation result for a plate of finite length and width. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is proposed and solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 %.

  20. Further studies of turbulence structure resulting from interactions between embedded vortices and wall jets at high blowing ratios

    NASA Astrophysics Data System (ADS)

    Doner, William D.

    1989-12-01

    Interactions of wall jets and vortices embedded in turbulent layers commonly occur near gas turbine blades and endwalls where film cooling is employed. These interactions frequently result in undesirable heat transfer effects at blade and endwall surfaces. In this thesis, a crossed hot-wire probe is used to measure the turbulence structure resulting from this type of interaction. The vortex is generated using a half delta-wing vortex generator mounted 12 deg with respect to a 10 m/s mean velocity flow over a flat plate. A single injection hole, 0.95 cm in diameter, inclined 30 deg to the horizontal, is positioned 59.3 cm downstream of the vortex generator. The vortex generator is positioned so that vortex upwash and downwash could be located over the injection hole. Streamwise development of the turbulent boundary layer was investigated for the following cases: (1) boundary layer with jet only (m = 1.5), and (2) boundary layer with vortex only. Measurement of interaction between the boundary layer, vortex upwash, and the wall jet was made at one station with various blowing ratios. At low blowing ratios (m = 0.5 and 1.5) the vortex dominates the flow. Significant alterations to the turbulent structure are seen in the Reynolds stress components, vorticity distributions and mean velocities. At higher blowing ratios (m = 2.5 and 3.5) the jet dominates the flow, the vortex is blown away from the wall, and its turbulence effects are dispersed over a larger area.

  1. The evolution of nocturnal boundary-layer clouds in southern West Africa - a case study from DACCIWA

    NASA Astrophysics Data System (ADS)

    Adler, Bianca; Kalthoff, Norbert; Babić, Karmen; Lohou, Fabienne; Dione, Cheikh; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier

    2017-04-01

    During the monsoon season, the atmospheric boundary layer in southern West Africa is characterised by various kinds of low-level clouds which experience a distinct diurnal cycle. During the night, extensive low-level stratiform clouds frequently form with a cloud base often less than few hundred metres above ground. After sunrise the cloud base slowly starts rising and eventually a transition to convective clouds occurs. While the existence of the clouds is documented in satellite images and synoptic observations, little is known about the mechanisms controlling their evolution. To provide observational evidence, a field campaign was conducted in southern West Africa in June and July 2016 within the framework of the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project. Comprehensive ground-based in situ and remote sensing measurements were performed at three different supersites in Ghana, Benin and Nigeria. In this contribution, we present the diurnal cycle of boundary-layer clouds for a typical day using data from a supersite at Savè in Benin. Due to the synergy of various instruments, we are able to obtain detailed information on the evolution of the clouds as well as on the boundary-layer structure with high temporal and vertical resolution. By combining ceilometer, cloud radar and microwave radiometer data we determined the cloud base, -depth and -density. The clouds form in the same layer as a nocturnal low-level jet (NLLJ), which we probe by sodar and UHF profiler. There is evidence for a strong link between the height and strength of the NLLJ and the density of the nocturnal clouds.

  2. Using Profiles of Water Vapor Flux to Characterize Turbulence in the Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Weber, Kristy Jane

    The 2015 Plains Elevated Convection at Night (PECAN) field campaign sought to increase understanding of mechanisms for nocturnal severe weather in the Great Plains of the United States. A collection of instruments from this field campaign, including a water vapor Differential LiDAR (Light Detection Imaging And Ranging) (DIAL) and 449 MHz radar wind profiler were used to measure water vapor flux in regions between 300 m and the convective boundary layer. Methods to properly sample eddies using eddy-covariance were established, where analysis showed that a 90-minute Reynold's averaging period was optimal to sample most eddies. Additionally, a case study was used to demonstrate the additional atmospheric parameters which can be calculated from profiles of water vapor flux, such as the water vapor flux convergence/divergence. Flux footprints calculated at multiple heights within the convective boundary layer also show how a surface based instrument is sampling a completely different source than one taking measurements above 300 m. This result is important, as it shows how measurements above the surface layer will not be expected to match with those taken within a few meters of the surface, especially if average surface features such as land use type and roughness length are significantly different. These calculated water vapor flux profile measurements provide a new tool to analyze boundary layer dynamics during the PECAN field campaign, and their relationships to PECAN's study areas such as mesoscale convective systems (MCSs), nocturnal low-level jets (NLLJs), elevated convective initiation, and the propagation of bores or wavelike features from nocturnal convective systems.

  3. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    PubMed

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.

    2005-02-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.

  5. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  6. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  7. Case studies using GOES infrared data and a planetary boundary layer model to infer regional scale variations in soil moisture. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rose, F. G.

    1983-01-01

    Modeled temperature data from a one-dimensional, time-dependent, initial value, planetary boundary layer model for 16 separate model runs with varying initial values of moisture availability are applied, by the use of a regression equation, to longwave infrared GOES satellite data to infer moisture availability over a regional area in the central U.S. This was done for several days during the summers of 1978 and 1980 where a large gradient in the antecedent precipitation index (API) represented the boundary between a drought area and a region of near normal precipitation. Correlations between satellite derived moisture availability and API were found to exist. Errors from the presence of clouds, water vapor and other spatial inhomogeneities made the use of the measurement for anything except the relative degree of moisture availability dubious.

  8. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    AFRL-AFOSR-CL-TR-2016-0011 Towards natural transition in compressible boundary layers Marcello Faraco de Medeiros FUNDACAO PARA O INCREMENTO DA...to 29-03-2016 Towards natural transition in compressible boundary layers FA9550-11-1-0354 Marcello A. Faraco de Medeiros Germán Andrés Gaviria...unlimited. 109 Final report Towards natural transition in compressible boundary layers Principal Investigator: Marcello Augusto Faraco de Medeiros

  9. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  10. A Physical Mechanism for the Asymmetry in Top-Down and Bottom-Up Diffusion.

    NASA Astrophysics Data System (ADS)

    Wyngaard, J. C.

    1987-04-01

    Recent large-eddy simulations of the vertical diffusion of a passive, conservative scalar through the convective boundary layer (CBL) show strikingly different eddy diffusivity profiles in the `top-down' and `bottom-up' cases. These results indicate that for a given turbulent velocity field and associated scalar flux, the mean change in scalar mixing ratio across the CBL is several times larger if the flux originates at the top of the boundary layer (i.e., in top-down diffusion) rather than at the bottom. The large-eddy simulation (LES) data show that this asymmetry is due to a breakdown of the eddy-diffusion concept.A simple updraft-downdraft model of the CBL reveals a physical mechanism that could cause this unexpected behavior. The large, positive skewness of the convectively driven vertical velocity gives an appreciably higher probability of downdrafts than updrafts; this excess probability of downdrafts, interacting with the time changes of the mean mixing ratio caused by the nonstationarity of the bottom-up and top-down diffusion processes, decreases the equilibrium value of mean mixing-ratio jump across the mixed layer in the bottom-up case and increases it in the top-down case. The resulting diffusion asymmetry agrees qualitatively with that found through LES.

  11. Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.

    2015-06-15

    Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less

  12. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  13. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  14. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  15. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  16. Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.

    2018-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.

  17. Sound-turbulence interaction in transonic boundary layers

    NASA Astrophysics Data System (ADS)

    Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva

    2014-11-01

    Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.

  18. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  19. Three-dimensional MHD (magnetohydrodynamic) flows in rectangular ducts of liquid-metal-cooled blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, T.Q.; Walker, J.S.; Picologlou, B.F.

    1988-07-01

    Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting walls in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. A significant fraction of the fluid flow is concentrated in the boundary layers adjacent to the side walls which are parallel to the magnetic field. This paper describes the analysis and numerical methods for obtaining 3-D solutions formore » flow parameters outside these layers, without solving explicitly for the layers themselves. Numerical solutions are presented for cases which are relevant to the flows of liquid metals in fusion reactor blankets. Experimental results obtained from the ALEX experiments at Argonne National Laboratory are used to validate the numerical code. In general, the agreement is excellent. 5 refs., 14 figs.« less

  20. Mechanisms Responsible for the Observed Thermodynamic Structure in a Convective Boundary Layer Over the Hudson Valley of New York State

    NASA Astrophysics Data System (ADS)

    Freedman, Jeffrey M.; Fitzjarrald, David R.

    2017-02-01

    We examine cases of a regional elevated mixed layer (EML) observed during the Hudson Valley Ambient Meteorology Study (HVAMS) conducted in New York State, USA in 2003. Previously observed EMLs referred to topographic domains on scales of 105 -106 km2 . Here, we present observational evidence of the mechanisms responsible for the development and maintenance of regional EMLs overlying a valley-based convective boundary layer (CBL) on much smaller spatial scales (<5000 km2) . Using observations from aircraft-based, balloon-based, and surface-based platforms deployed during the HVAMS, we show that cross-valley horizontal advection, along-valley channelling, and fog-induced cold-air pooling are responsible for the formation and maintenance of the EML and valley-CBL coupling over New York State's Hudson Valley. The upper layer stability of the overlying EML constrains growth of the valley CBL, and this has important implications for air dispersion, aviation interests, and fog forecasting.

  1. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    NASA Astrophysics Data System (ADS)

    Steitz, Roland; Schemmel, Sebastian; Shi, Hongwei; Findenegg, Gerhard H.

    2005-03-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle \\theta_{\\mathrm {w}} \\approx 90^\\circ ), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (\\theta_{\\mathrm {w}} \\approx 63^\\circ ). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic CmEn surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO2/C8E4/D2O reveal that there is no preferred lateral organization of the C8E4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without subsequent rinsing, surface patterns of the presumably crystalline polymer on top of the primary adsorption layer develop upon drying under controlled conditions. The morphology depends mainly on the nominal surface coverage with the triblock copolymer. Similar morphologies are found on bare and polystyrene-coated silicon substrates, indicating that the surface patterning is mainly driven by segregation forces within the polymer layers and not by interactions with the substrate.

  2. Lumley decomposition of turbulent boundary layer at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tutkun, Murat; George, William K.

    2017-02-01

    The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.

  3. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  4. A Classification of Subaqueous Density Flows Based on Transformations From Proximal to Distal Regions

    NASA Astrophysics Data System (ADS)

    Hermidas, Navid; Eggenhuisen, Joris; Luthi, Stefan; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian

    2017-04-01

    Transformations of a subaqueous density flow from proximal to distal regions are investigated. A classification of these transformations based on the state of the free shear and boundary layers and existence of a plug layer during transition from a debris flow to a turbidity current is presented. A connection between the emplaced deposit by the flow and the relevant flow type is drawn through the results obtained from a series of laboratory flume experiments. These were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with discharge rates of 10[m3/h] and 15[m3/h]. Stress-controlled rheometry experiments were performed on the mixtures to obtain apparent viscosity data. A classification was developed based on the imposed flow conditions, where a cohesive flow may fall within one of five distinct flow types: 1) a cohesive plug flow (PF) with a laminar free shear and boundary layers, 2) a top transitional plug flow (TTPF) containing a turbulent free shear layer, a plug layer, and a laminar boundary layer, 3) a complete transitional plug flow (CTPF) consisting of a turbulent free shear and boundary layers and a plug, 4) a transitional turbidity current (TTC) with a turbulent free shear layer and a laminar boundary layer, and, 5) a completely turbulent turbidity current (TC). During the experiments, flow type PF resulted in en masse deposition of a thick uniform ungraded muddy sand mixture, which was emplaced once the yield stress overcame the gravitational forces within the tail region of the flow. Flow type TTPF resulted in deposition of a thin ungraded basal clean sand layer during the run. This layer was covered by a muddy sand deposit from the tail. Flow type TTC did not deposit any sediment during the run. A uniform muddy sand mixture was emplaced by the tail of the flow. Flow type TC resulted in deposition of poorly sorted massive bottom sand layer. This layer was overlain by either a muddy sand mixture or a sand and silt planar lamination. Flow type CTPF was not observed during the experiments. Furthermore, it was observed that flows which are in transition from a TTC to a TTPF result in a thin bottom clean sand layer covered by a banded transitional interval. This was overlain by a muddy sand layer and a very thin clean sand layer, resulting from traction by dilute turbulent wake. In all cases a mud cap was emplaced on top of the deposit after the runs were terminated.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and themore » sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.« less

  6. Inventory of File gfs.t06z.smartguam15.tm00.grib2

    Science.gov Websites

    hour fcst Visibility [m] 014 planetary boundary layer WDIR 15 hour fcst Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND 15 hour fcst Wind Speed [m/s] 016 planetary boundary layer RH 15 hour fcst Relative Humidity [%] 017 planetary boundary layer DIST 15 hour fcst Geometric

  7. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  8. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  9. Meteorological Simulations of Ozone Episode Case Days during the 1996 Paso del Norte Ozone Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.J.; Costigan, K.; Muller, C.

    1999-02-01

    Meteorological simulations centered around the border cities of El Paso and Ciudad Juarez have been performed during an ozone episode that occurred on Aug. 13,1996 during the 1996 Paso del Norte Ozone Study field campaign. Simulations were petiormed using the HOTMAC mesoscale meteorological model using a 1,2,4, and 8 km horizontal grid size nested mesh system. Investigation of the vertical structure and evolution of the atmospheric boundary layer for the Aug. 11-13 time period is emphasized in this paper. Comparison of model-produced wind speed profiles to rawirisonde and radar profiler measurements shows reasonable agreement. A persistent upper-level jet was capturedmore » in the model simulations through data assimilation. In the evening hours, the model was not able to produce the strong wind direction shear seen in the radar wind profiles. Based on virtual potential temperature profile comparisons, the model appears to correctly simulate the daytime growth of the convective mixed layer. However, the model underestimates the cooling of the surface layer at night. We found that the upper-level jet significantly impacted the turbulence structure of the boundary layer, leading to relatively high turbulent kinetic energy (tke) values aloft at night. The model indicates that these high tke values aloft enhance the mid-morning growth of the boundary layer. No upper-level turbulence measurements were available to verify this finding, however. Radar profiler-derived mixing heights do indicate relatively rapid morning growth of the mixed layer.« less

  10. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  11. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  12. Studies on the influence on flexural wall deformations on the development of the flow boundary layer

    NASA Technical Reports Server (NTRS)

    Schilz, W.

    1978-01-01

    Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.

  13. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  14. Effect of aspect ratio on sidewall boundary-layer influence in two-dimensional airfoil testing

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1986-01-01

    The effect of sidewall boundary layers in airfoil testing in two-dimensional wind tunnels is investigated. The non-linear crossflow velocity variation induced because of the changes in the sidewall boundary-layer thickness is represented by the flow between a wavy wall and a straight wall. Using this flow model, a correction for the sidewall boundary-layer effects is derived in terms of the undisturbed sidewall boundary-layer properties, the test Mach number and the airfoil aspect ratio. Application of the proposed correction to available experimental data showed good correlation for the shock location and pressure distribution on airfoils.

  15. Boundary-layer receptivity due to distributed surface imperfections of a deterministic or random nature

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1992-01-01

    Acoustic receptivity of a Blasius boundary layer in the presence of distributed surface irregularities is investigated analytically. It is shown that, out of the entire spatial spectrum of the surface irregularities, only a small band of Fourier components can lead to an efficient conversion of the acoustic input at any given frequency to an unstable eigenmode of the boundary layer flow. The location, and width, of this most receptive band of wavenumbers corresponds to a relative detuning of O(R sub l.b.(exp -3/8)) with respect to the lower-neutral instability wavenumber at the frequency under consideration, R sub l.b. being the Reynolds number based on a typical boundary-layer thickness at the lower branch of the neutral stability curve. Surface imperfections in the form of discrete mode waviness in this range of wavenumbers lead to initial instability amplitudes which are O(R sub l.b.(exp 3/8)) larger than those caused by a single, isolated roughness element. In contrast, irregularities with a continuous spatial spectrum produce much smaller instability amplitudes, even compared to the isolated case, since the increase due to the resonant nature of the response is more than that compensated for by the asymptotically small band-width of the receptivity process. Analytical expressions for the maximum possible instability amplitudes, as well as their expectation for an ensemble of statistically irregular surfaces with random phase distributions, are also presented.

  16. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid.

    PubMed

    Muhammad, Noor; Nadeem, Sohail; Mustafa, M T

    2018-01-01

    Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4-C2H6O2 (manganese zinc ferrite-ethylene glycol), NiZnFe2O4-C2H6O2 (Nickel zinc ferrite-ethylene glycol), Fe2O4-C2H6O2 (magnetite ferrite-ethylene glycol), NiZnFe2O4-H2O (Nickel zinc ferrite-water), MnZnFe2O4-H2O (manganese zinc ferrite-water), and Fe2O4-H2O (magnetite ferrite-water) nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier's law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto-thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement.

  17. Fully nonlinear development of the most unstable goertler vortex in a three dimensional boundary layer

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Bassom, Andrew P.

    1992-01-01

    The nonlinear development is studied of the most unstable Gortler mode within a general 3-D boundary layer upon a suitably concave surface. The structure of this mode was first identified by Denier, Hall and Seddougui (1991) who demonstrated that the growth rate of this instability is O(G sup 3/5) where G is the Gortler number (taken to be large here), which is effectively a measure of the curvature of the surface. Previous researchers have described the fate of the most unstable mode within a 2-D boundary layer. Denier and Hall (1992) discussed the fully nonlinear development of the vortex in this case and showed that the nonlinearity causes a breakdown of the flow structure. The effect of crossflow and unsteadiness upon an infinitesimal unstable mode was elucidated by Bassom and Hall (1991). They demonstrated that crossflow tends to stabilize the most unstable Gortler mode, and for certain crossflow/frequency combinations the Gortler mode may be made neutrally stable. These vortex configurations naturally lend themselves to a weakly nonlinear stability analysis; work which is described in a previous article by the present author. Here we extend the ideas of Denier and Hall (1992) to the three-dimensional boundary layer problem. It is found that the numerical solution of the fully nonlinear equations is best conducted using a method which is essentially an adaption of that utilized by Denier and Hall (1992). The influence of crossflow and unsteadiness upon the breakdown of the flow is described.

  18. The effect of wall temperature distribution on streaks in compressible turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Tao, Yang; Xiong, Neng; Qian, Fengxue

    2018-05-01

    The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.

  19. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  20. Numerical investigation of an internal layer in turbulent flow over a curved hill

    NASA Technical Reports Server (NTRS)

    Kim, S-W.

    1989-01-01

    The development of an internal layer in a turbulent boundary layer flow over a curved hill is investigated numerically. The turbulence field of the boundary layer flow over the curved hill is compared with that of a turbulent flow over a symmetric airfoil (which has the same geometry as the curved hill except that the leading and trailing edge plates were removed) to study the influence of the strongly curved surface on the turbulence field. The turbulent flow equations are solved by a control-volume based finite difference method. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. Computational results for the mean flow field (pressure distributions on the walls, wall shearing stresses and mean velocity profiles), the turbulence structure (Reynolds stress and turbulent kinetic energy profiles), and the integral parameters (displacement and momentum thicknesses) compared favorably with the measured data. Computational results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall-bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner of the hill, merges with the external boundary layer, and develops into a new fully turbulent boundary layer as the fluid flows in the downstream direction. For the flow over the symmetric airfoil, the boundary layer began to form from almost the same location as that of the curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow.

Top