Sample records for boundary layer co2

  1. Carbon isotope composition of ambient CO2 and recycling: a matrix simulation model

    USGS Publications Warehouse

    da Silveira Lobo Sternberg, Leonel; DeAngelis, Donald L.

    2002-01-01

    The relationship between isotopic composition and concentration of ambient CO2 in a canopy and its associated convective boundary layer was modeled. The model divides the canopy and convective boundary layer into several layers. Photosynthesis, respiration, and exchange between each layer can be simulated by matrix equations. This simulation can be used to calculate recycling; defined here as the amount of respired CO2 re-fixed by photosynthesis relative to the total amount of respired CO2. At steady state the matrix equations can be solved for the canopy and convective boundary layer CO2 concentration and isotopic profile, which can be used to calculate a theoretical recycling index according to a previously developed equation. There is complete agreement between simulated and theoretical recycling indices for different exchange scenarios. Recycling indices from a simulation of gas exchange between a heterogeneous vegetation canopy and the troposphere also agreed with a more generalized form of the theoretical recycling equation developed here.

  2. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    PubMed

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  3. Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects

    NASA Astrophysics Data System (ADS)

    Jewell, Joseph Stephen

    The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel method to control transition location with boundary layer gas injection is investigated. An appropriate porous-metal injector section for the cone is designed and fabricated, and the efficacy of injected CO2 for delaying transition is gauged at various mass flow rates, and compared with both no injection and chemically inert argon injection cases. While CO2 injection seems to delay transition, and argon injection seems to promote it, the experimental results are inconclusive and matching computations do not predict a reduction in N factor from any CO2 injection condition computed.

  4. Molecular Diagnostics of Diffusive Boundary Layers

    NASA Astrophysics Data System (ADS)

    Rawlings, J. M. C.; Hartquist, T. W.

    1997-10-01

    We have examined the chemistry in thin (<~0.01 pc) boundary layers between dark star-forming cores and warm, shocked T Tauri winds on the assumption that turbulence-driven diffusion occurs within them. The results indicate that emissions from C+, CH, OH, H2O and the J = 6 --> 5 transition of CO, among others, may serve as diagnostics of the boundary layers.

  5. Investigations of greenhouse gas variability across frontal structures in the lower troposphere during winter: Findings from the ACT - America Winter 2017 Campaign

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Pal, S.; Baier, B.; Browell, E. V.; Choi, Y.; DiGangi, J. P.; Dobler, J. T.; Erxleben, W. H.; Feng, S.; Gaudet, B. J.; Kooi, S. A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Hoffman, K.; Obland, M. D.; Pauly, R.; Sweeney, C.

    2017-12-01

    Synoptic scale weather events like cold front passages play an important role in distributing greenhouse gases (GHG, e.g., CO2, CH4) in the atmosphere. However, our knowledge and observational evidence on the GHG structures across frontal boundaries are limited. The second airborne field campaign of the Atmospheric Carbon and Transport - America (ACT-America) project in winter (January 30 - March 10 2017) documented gradients in GHGs across 9 frontal systems in three regions of the US, namely, Mid-Atlantic, Upper Mid-West, and South. High-resolution remote and in-situ airborne observations were collected with two aircraft: NASA C-130 and B-200. Using both active remote sensing and in-situ observations, we will discuss the magnitude of GHG frontal gradients in the atmospheric boundary layer (ABL) and free troposphere (FT) and how they vary among cases during winter. Three mechanisms for creating these gradients will be investigated: 1) local ecosystem or anthropogenic GHG sources; 2) horizontal transport of planetary scale, seasonal gradients; and 3) vertical mixing, especially associated with clouds and boundary layer depth depths. Preliminary analyses indicate higher front-related CO2 gradients in the boundary layer compared to the upper and lower FT as well as larger case-to-case variability in front-related CO2 gradients in the ABL compared to the FT. GHG gradients across fronts were smaller than in the summer, but still present. Tentatively, the signs of the CO2 gradients (vertical and frontal) in winter appear to have switched compared to the summer with higher CO2 concentrations in the cold sector of the frontal region than in the warm sector during the wintertime, but the CH4 gradients were similar in the two seasons. Using observations and simulations for both summer and winter, we will build toward a conceptual framework of the CO2 and CH4 gradients across frontal boundaries and provide insights into how boundary layer-regimes and synoptic-scale transport redistributes CO2 and CH4 across the midlatitudes.

  6. Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials

    NASA Astrophysics Data System (ADS)

    Acosta, Roberto I.

    The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.

  7. Transition Experiments on Blunt Bodies with Isolated Roughness Elements in Hypersonic Free Flight

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Wilder, Michael C.; Prabhu, Dinesh K.

    2010-01-01

    Smooth titanium hemispheres with isolated three-dimensional (3D) surface roughness elements were flown in the NASA Ames hypersonic ballistic range through quiescent CO2 and air environments. Global surface intensity (temperature) distributions were optically measured and thermal wakes behind individual roughness elements were analyzed to define tripping effectiveness. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted predict key dimensionless parameters used to correlate transition on blunt bodies in hypersonic flow. For isolated roughness elements totally immersed within the laminar boundary layer, critical roughness Reynolds numbers for flights in air were found to be higher than those measured for flights in CO2, i.e., it was easier to trip the CO2 boundary layer to turbulence. Tripping effectiveness was found to be dependent on trip location within the subsonic region of the blunt body flowfield, with effective tripping being most difficult to achieve for elements positioned closest to the stagnation point. Direct comparisons of critical roughness Reynolds numbers for 3D isolated versus 3D distributed roughness elements for flights in air showed that distributed roughness patterns were significantly more effective at tripping the blunt body laminar boundary layer to turbulence.

  8. CWEX: Crop/wind-energy experiment: Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    USDA-ARS?s Scientific Manuscript database

    Large wind turbines perturb mean and turbulent wind characteristics, which modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could create significant changes in surface fluxes of heat, momentum, moisture, and CO2 over hundreds ...

  9. Crop/Wind-energy Experiment (CWEX): Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    USDA-ARS?s Scientific Manuscript database

    Perturbations of mean and turbulent wind characteristics by large wind turbines modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could significantly change surface fluxes of heat, momentum, moisture, and CO2 over hundreds of s...

  10. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the afternoon when the boundary layer is fully developed, greatly contrast ozone profiles are typical of urban environment

  11. Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures

    DTIC Science & Technology

    2013-01-01

    Pasadena, CA, 91125 Nomenclature A = amplitude of oscillation f = frequency hres = reservoir enthalpy Me = boundary layer edge Mach number Pres...showed an increase in the reference Reynolds number Re* at the point of transition as reservoir enthalpy hres increased. Germain and Adam also observed...that flows of CO2 transitioned at higher values of Re* than flows of air for the same hres and Pres. Johnson et al. (1998) studied this effect with a

  12. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, Robert G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  13. Venting of Heat and Carbon Dioxide from Urban Canyons at Night.

    NASA Astrophysics Data System (ADS)

    Salmond, J. A.; Oke, T. R.; Grimmond, C. S. B.; Roberts, S.; Offerle, B.

    2005-08-01

    Turbulent fluxes of carbon dioxide and sensible heat were observed in the surface layer of the weakly convective nocturnal boundary layer over the center of the city of Marseille, France, during the Expérience sur Sites pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d'Emission (ESCOMPTE) field experiment in the summer of 2001. The data reveal intermittent events or bursts in the time series of carbon dioxide (CO2) concentration and air temperature that are superimposed upon the background values. These features relate to intermittent structures in the fluxes of CO2 and sensible heat. In Marseille, CO2 is primarily emitted into the atmosphere at street level from vehicle exhausts. In a similar way, nocturnal sensible heat fluxes are most likely to originate in the deep street canyons that are warmer than adjacent roof surfaces. Wavelet analysis is used to examine the hypothesis that CO2 concentrations can be used as a tracer to identify characteristics of the venting of pollutants and heat from street canyons into the above-roof nocturnal urban boundary layer. Wavelet analysis is shown to be effective in the identification and analysis of significant events and coherent structures within the turbulent time series. Late in the evening, there is a strong correlation between the burst structures observed in the air temperature and CO2 time series. Evidence suggests that the localized increases of temperature and CO2 observed above roof level in the urban boundary layer (UBL) are related to intermittent venting of sensible heat from the warmer urban canopy layer (UCL). However, later in the night, local advection of CO2 in the UBL, combined with reduced traffic emissions in the UCL, limit the value of CO2 as a tracer of convective plumes in the UBL.

  14. Boundary Layer Measurements in the Trisonic Gas-dynamics Facility Using Particle Image Velocimetery with CO2 Seeding

    DTIC Science & Technology

    2012-03-22

    understanding of fluid mechanics and aircraft design. The fundamental theories, concepts and equations developed by men like Newton, Bernoulli ...resulting instantaneous flow field data from PIV, boundary layer effects, turbulence characteristics, vortex formation, and momentum thickness, for...divided by the momentum thickness, δ2, and displacement thickness, δ1, as seen in Equations (2.8) and (2.9

  15. A Lidar for Making Range Resolved CO2 Measurements within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Burris, John; Riris, Haris; Andrews, Arlyn; Krainak, Mike; Sun, Xiaoli; Abshire, Jim; Colarco, Amelia; Heaps, William

    2006-01-01

    A ground based differential absorption lidar is under development at NASA's Goddard Space Flight Center to make range resolved measurements of CO2 within the planetary boundary layer. This is a direct detection lidar designed for both photon counting and analog use. Technology being developed for this instrument will be discussed including efforts in fiber lasers, optical parametric amplifiers and both InGaAs and HgCdTe solid-state detectors. The capabilities of this system are investigated and preliminary results presented.

  16. Convective transport over the central United States and its role in regional CO and ozone budgets

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Pickering, Kenneth E.; Dickerson, Russell R.; Ellis, William G., Jr.; Jacob, Daniel J.; Scala, John R.; Tao, Wei-Kuo; Mcnamara, Donna P.; Simpson, Joanne

    1994-01-01

    We have constructed a regional budget for boundary layer carbon monoxide over the central United States (32.5 deg - 50 deg N, 90 deg - 105 deg W), emphasizing a detailed evaluation of deep convective vertical fluxes appropriate for the month of June. Deep convective venting of the boundary layer (upward) dominates other components of the CO budget, e.g., downward convective transport, loss of CO by oxidation, anthropogenic emissions, and CO produced from oxidation of methane, isoprene, and anthropogenic nonmethane hydrocarbons (NMHCs). Calculations of deep convective venting are based on the method pf Pickering et al.(1992a) which uses a satellite-derived deep convective cloud climatology along with transport statistics from convective cloud model simulations of observed prototype squall line events. This study uses analyses of convective episodes in 1985 and 1989 and CO measurements taken during several midwestern field campaigns. Deep convective venting of the boundary layer over this moderately polluted region provides a net (upward minus downward) flux of 18.1 x 10(exp 8) kg CO/month to the free troposphere during early summer. Shallow cumulus and synoptic-scale weather systems together make a comparable contribution (total net flux 16.2 x 10(exp 8) kg CO/month). Boundary layer venting of CO with other O3 precursors leads to efficient free troposheric O3 formation. We estimate that deep convective transport of CO and other precursors over the central United States in early summer leads to a gross production of 0.66 - 1.1 Gmol O3/d in good agreement with estimates of O3 production from boundary layer venting in a continental-scale model (Jacob et al., 1993a, b). On this respect the central U.S. region acts as s `chimney' for the country, and presumably this O3 contributes to high background levels of O3 in the eastern United States and O3 export to the North Atlantic.

  17. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information

    NASA Astrophysics Data System (ADS)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri

    2007-05-01

    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  18. Resistance to CO2 diffusion in cuticular membranes of amphibious plants and the implication for CO2 acquisition.

    PubMed

    Frost-Christensen, Henning; Floto, Franz

    2007-01-01

    Cuticular membranes (CMs) were isolated from leaves of amphibious and submerged plants and their CO2 resistances were determined as a contribution to establish quantitatively the series of resistances met by CO2 diffusing from bulk water to the chloroplasts of submerged leaves. The isolation was performed enzymatically; permeabilities were determined and converted to resistances. The range of permeance values was 3 to 43 x 10(-6) m s(-1) corresponding to resistance values of 23 to 295 x 10(3) s m(-1), i.e. of the same order of magnitude as boundary layer resistances. The sum of boundary layer, CM, leaf cell and carboxylation resistances could be contained within the total diffusion resistance as determined from the photosynthetic CO2 affinity of the leaf. From the same species, the aerial leaf CM resistance was always higher than the aquatic leaf CM resistance. In a terrestrial plant, the CM resistance to CO2 diffusion was found lower in leaves developed submerged.

  19. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  20. Removal of NOx and NOy in biomass burning plumes in the boundary layer over northern Australia

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Koike, M.; Ko, M.; Kita, K.; Blake, D. R.; Nishi, N.; Hu, W.; Liley, J. B.; Kawakami, S.; Shirai, T.; Miyazaki, Y.; Ikeda, H.; Russel-Smith, J.; Ogawa, T.

    2003-05-01

    The Biomass Burning and Lightning Experiment Phase B (BIBLE-B) aircraft measurement campaign was conducted over the western Pacific and Australia in August and September 1999. In situ aircraft measurements of carbon monoxide (CO), nitric oxide (NO), total reactive nitrogen (NOy), ozone (O3), nonmethane hydrocarbons (NMHCs), and other species were made during BIBLE-B. Meteorological analysis shows that the trace gases emitted from biomass burning in northern Australia were mostly confined within the planetary boundary layer (below ˜3 km) by strong subsidence in the free troposphere. Removal processes of NOx (equal to measured NO + calculated NO2) and NOy in biomass burning plumes in the boundary layer are examined on the basis of correlation analysis. The photochemical lifetime of NOx in biomass burning plumes during the daytime is estimated to be 0.1 to 0.3 days using the correlations of NOx with short-lived NMHCs and hydroxyl radical (OH) concentration calculated from a constrained photochemical model. Correlation of NOy with CO shows that ˜60% of the NOy molecules originating from biomass burning were removed in the boundary layer within 2-3 days. This result is consistent with dry deposition of nitric acid (HNO3) in the plumes. It is likely that only a small fraction of NOy emitted from biomass burning was exported from the boundary layer to the free troposphere during the BIBLE-B period.

  1. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  2. Differences in the concentrations of atmospheric trace gases in and above the tropical boundary layer

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1981-01-01

    Weekly air samples were collected at Cape Kumakahi (0 km) and at nearby Mauna Loa Observatory (3.4 km) which is above the boundary layer. EC/GC and GC/FID techniques were used to measure CH3I, CHCl3, CO and CH4 which are largely natural in origin, and C2Cl4, CCl4, CH3CCl3, (F-11), CCl2F2, (F-12), CHClF, (F-22) and C2F3Cl3 (F-113), which are due to anthropogenic (CCl3F) etc. activities. It was found that all these gases are significantly (alpha is equal to or less than 0.05) more abundant in the boundary layer than above it.

  3. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    PubMed

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-06-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  4. BaFe2As2/Fe Bilayers with [001]-tilt Grain Boundary on MgO and SrTiO3 Bicrystal Substrates

    NASA Astrophysics Data System (ADS)

    Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.

    Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.

  5. Comparison Of Landscape-level Carbon Flux Estimates from Budgeting The Planetary Boundary Layer And Footprinting On Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, J. M.; Mo, G.

    2006-12-01

    Carbon balance estimation at the landscape/regional scale is a challenge because of the heterogeneity of the land surface and the nonlinearity inherent in ecophysiological processes. Two methodologies, a simple atmospheric boundary-layer budgeting method and an integrated modeling method, were explored and compared in this study. Studies of the atmospheric boundary-layer (ABL) budget of CO2 have the potential to provide information on carbon balance of the land surface on a regional scale. Indeed, the surface area of integration by the ABL moving through a tower in one day was estimated to be ~104 km2. Two novel methodologies to retrieve the landscape/regional carbon balance information captured by the CO2 concentration measurements are explored and compared in this study: boundary-layer budgeting and remote sensing-based footprint integration. We investigated four boreal continental sites in this study. Boundary-layer budgeting: By assuming the horizontal advection is negligible, the regional surface net flux (representative of an upwind area ~105 km2) can be calculated as, Fc=(Cm-CFT)ù+dC/dt*zi, where ù is the mean vertical velocity, zi is the mean ABL height, and and are the biweekly mean mixing ratio of CO2 in the ABL and the free troposphere, respectively. ù is from the NCEP (National Centers for Environmental Prediction) reanalysis data, while zi was simulated by an one-dimensional ABL model. The CO2 flux in the upwind area of the tower was also estimated based on ecosystem modeling using remote sensing measurements. Remote sensing-based footprint integration: The total regional flux captured by the sensor on a tower (mixing ratio) is the weighted sum of the upwind footprint source areas (Ømega), Fc= Σ FiWi, where Fi and Wi are the CO2 flux and its weighting factor for each pixel, respectively. Fiis calculated using an ecosystem model (BEPS: Boreal Ecosystem Productivity Simulator). Wiis comparative contribution factor of footprint function for each pixel within the whole footprint area as, Wi= fi/Σ fi, while the footprint function fi (the pixel i with x,y coordinates; x and y are along and the cross daily mean wind direction, respectively) is computed using a concentration footprint model as, fi(x,y,zm-z0)=Dy(x,y)Dz(x,zm)/U(x) Where Dy and Dz are the crosswind and vertical concentration distribution function, respectively and U(x) is the effective speed of plume advection. They are dependant on standard surface-layer scaling parameters and based on an analytical solution of Eulerian theory. Methodology comparison: The regional fluxes estimated using these two methods matched well. These regional net CO2 flux estimates were also comparable to local-scale measurements by eddy covariance techniques. The calculated upwind regional CO2 flux shows considerable seasonal and inter-annual variations. Annual regional flux was sensitive to air temperature in boreal regions and the temperature-sensitivities were region dependent. Larger fluxes are found in the warmer growing seasons and warmer years in the boreal forest regions.

  6. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    NASA Astrophysics Data System (ADS)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities < 0.05 ms-1) averaged 1.16 µmol m-2 s-1 CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  7. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    Treesearch

    Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer

    2011-01-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...

  8. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning

    We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less

  9. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

    DOE PAGES

    Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...

    2016-10-27

    We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less

  10. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  11. Constraining biosphere CO2 flux at regional scale with WRF-CO2 4DVar assimilation system

    NASA Astrophysics Data System (ADS)

    Zheng, T.

    2017-12-01

    The WRF-CO2 4DVar assimilation system is updated to include (1) operators for tower based observations (2) chemistry initial and boundary condition in the state vector (3) mechanism for aggregation from simulation model grid to state vector space. The update system is first tested with synthetic data to ensure its accuracy. The system is then used to test regional scale CO2 inversion at MCI (Midcontinental intensive) sites where CO2 mole fraction data were collected at multiple high towers during 2007-2008. The model domain is set to center on Iowa and include 8 towers within its boundary, and it is of 12x12km horizontal grid spacing. First, the relative impacts of the initial and boundary condition are assessed by the system's adjoint model. This is done with 24, 48, 72 hour time span. Second, we assessed the impacts of the transport error, including the misrepresentation of the boundary layer and cumulus activities. Third, we evaluated the different aggregation approach from the native model grid to the control variables (including scaling factors for flux, initial and boundary conditions). Four, we assessed the inversion performance using CO2 observation with different time-interval, and from different tower levels. We also examined the appropriate treatment of the background and observation error covariance in relation with these varying observation data sets.

  12. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    NASA Astrophysics Data System (ADS)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  13. ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Kelly, T. J.; Russell, C. T.

    1985-01-01

    Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.

  14. Imaging Fourier Transform Spectroscopy of the Boundary Layer Plume from Laser Irradiated Polymers and Carbon Materials

    DTIC Science & Technology

    2014-06-16

    with surface desorption of the monomer. For laser-irradiated porous graphite targets, experimental results indicated a dominant CO2 production at...global models [78, 79, 87-89]. For simplicity, established global kinetics are considered and compare with experimental results obtained from IFTS...investigated up to 3 mm away from the surface into the boundary layer. At 0.72 mm from the surface, experimental results indicated a dominant production of

  15. Mars boundary layer simulations - Comparison with Viking lander and entry observations

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Houben, H. C.

    1991-01-01

    Diurnal variations of wind and temperature in the lower Martian atmosphere are simulated with a boundary layer model that includes radiative heating in a dusty CO2 atmosphere, turbulence generated by convection and/or shear stresses, a surface heat budget, and time varying pressure forces due to sloping terrain. Model results for early northern summer are compared with Viking lander observations to determine the model's strengths and weaknesses, and suitability as an engineering model.

  16. The Numerical Simulation of a Tracer-Release Field Project to Study Motion within the Nocturnal Boundary Layer

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; Leclerc, M. Y.; Buckley, R.; Parker, M.; Kurzeja, R.; Duarte, H. F.; Zhang, G.; Durden, D.

    2009-12-01

    The Savannah River National Laboratory (SRNL), Brookhaven National Laboratory (BNL), the University of Georgia (UGA), and the National Oceanic and Atmospheric Administration (NOAA) conducted a regional tracer experiment to study the nocturnal behavior of CO2 in the vicinity of an instrumented tall tower during two nights on May 11th and 12th, 2009. The experiment consisted of a release of five perfluorocarbon tracer (PFTs) compounds in twelve unique locations in Aiken County, South Carolina. Intensive meteorological measurements including in-situ turbulence were made in conjunction with the release and sampling of the PFTs. A 300m tower was also used to collect data from higher levels, allowing us to determine the extent to which the tracer was mixed vertically. Lagrangian plume simulations performed during the experiment demonstrated transport over distances of >8 km, and correlated well with in situ sampling. The area was characterized by heavy vegetation cover, and carbon dioxide concentrations were also monitored in an effort to determine how respiration and advection affect CO2 levels in the stable layer. Tracer release locations were carefully selected via a fine-scale mesoscale modeling study of similar nights. The purpose of these experiments was to provide data that will be used to increase the understanding of the terrestrial carbon budget, especially with respect to nocturnal boundary layer (NBL) phenomena such as low level jets and breaking gravity waves. Using these data, a simulation of the motion of the tracer within the boundary layer was developed using the Regional Atmospheric Modeling System (RAMS) mesoscale model coupled to a tracer model. The RAMS model was also coupled to the Simple Biosphere (SiB) vegetation model, which allowed for the simulation of the release of carbon dioxide into the NBL. The simulation results are used to validate the NBL hypothesis of CO2 monitoring, by which the release of CO2 can be correlated with the accumulation of CO2 in the boundary layer beneath a stable ‘lid’, which impedes vertical mixing. This is done with both the tracer, in which the release rate is known and no advection occurs, and for CO2, in which the release rate is not known and for which advection of CO2 must be accounted. The high resolution of the simulation allows us to resolve the small-scale motions within the NBL, which are important to nocturnal transport. Flux data from the tall tower were studied to learn more about the eddy transport, and also to detect the occurrence of transport ‘events’ in which the CO2 and H2O values experience a sudden increase. A wavelet analysis is also applied, and reveals the existence of eddy activity dominated by eddies of diameter 90-240m.

  17. Crossing turbulent boundaries: interfacial flux in environmental flows.

    PubMed

    Grant, Stanley B; Marusic, Ivan

    2011-09-01

    Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems.

  18. Spin-dependent heat transport and thermal boundary resistance

    NASA Astrophysics Data System (ADS)

    Jeong, Taehee

    In this thesis, thermal conductivity change depending on the magnetic configurations has been studied. In order to make different magnetic configurations, we developed a spin valve structure, which has high MR ratio and low saturation field. The high MR ratio was achieved using Co/Cu multilayer and 21A or 34A thick Cu layer. The low saturation field was obtained by implementing different coercivities of the successive ferromagnetic layers. For this purpose, Co/Cu/Cu tri-layered structure was used with the thicknesses of the Co layers; 15 A and 30 A. For the thermal conductivity measurement, a three-omega method was employed with a thermally isolated microscale rod. We fabricated the microscale rod using optical lithography and MEMS process. Then the rod was wire-bonded to a chip-carver for further electrical measurement. For the thermal conductivity measurement, we built the three-omega measurement system using two lock-in amplifiers and two differential amplifiers. A custom-made electromagnet was added to the system to investigate the impact of magnetic field. We observed titanic thermal conductivity change depending on the magnetic configurations of the Co/Cu/Co multilayer. The thermal conductivity change was closely correlated with that of the electric conductivity in terms of the spin orientation, but the thermal conductivity was much more sensitive than that of the electric conductivity. The relative thermal conductivity change was 50% meanwhile that of electric resistivity change was 8.0%. The difference between the two ratios suggests that the scattering mechanism for charge and heat transport in the Co/Cu/Co multilayer is different. The Lorentz number in Weidemann-Franz law is also spin-dependent. Thermal boundary resistance between metal and dielectrics was also studied in this thesis. The thermal boundary resistance becomes critical for heat transport in a nanoscale because the thermal boundary resistance can potentially determine overall heat transport in thin film structures. A transient theraroreflectance (TTR) technique can be used for measuring the thermal conductivity of thin films in cross-sectional direction. In this study, a pump-probe scheme was employed for the TTR technique. We built an optical pump-probe system by using a nanosecond pulse laser for pumping and a continuous-wave laser for probing. A short-time heating event occured at the surface of a sample by shining a laser pulse on the surface. Then the time-resolved thermoreflectance signals were detected using a photodetector and an oscilloscope. The increased temperature decreases slowly and its thermal decay depends on the thermal properties of a sample. Since the reflectivity is linearly proportional to the temperature, the time-resolved thermoreflectance signals have the information of the thermal properties of a sample. In order to extract the thermal properties of a sample, a thermal analysis was performed by fitting the experimental data with thermal models. We developed 2-layered and 3-layered thermal models using the analogies between thermal conduction and electric conduction and a transmission-line concept. We used two sets of sample structures: Au/SiNx/Si substrate and Au/CoFe/SiNx/Si substrate with various thickness of SiN x layer. Using the pump-probe system, we measured the time-resolved thermoreflectance signals for each sample. Then, the thermal conductivity and thermal boundary resistance were obtained by fitting the experimental data with the thermal models. The thermal conductivity of SiNx films was measured to be 2.0 W/mK for both structures. In the case of the thermal boundary resistance, it was 0.81x10-5 m 2K/W at the Au/SiNx interface and 0.54x10 -5 m2K/W at the CoFe/SiNx interface, respectively. The difference of the thermal boundary resistance between Au/SiNx and CoFe/SiNx might be came from the different phonon dispersion of Au and CoFe. The thermal conductivity did not depend on the thickness of SiNx films in the thickness range of 50-200nm. However, the thermal boundary resistance at metal/SiNx interfaces will impact overall thermal conduction when the thickness of SiNx thin films is in a nanometer order. For example, apparent thermal conductivity of SiN x film becomes half of the intrinsic thermal conductivity when the thickness decreases to 16nm. Therefore, it is advised that the thermal boundary resistance between metal and dielectrics should be counted in nano-scale electronic devices. (Abstract shortened by UMI.)

  19. Numerical Solutions for Laminar Boundary Layer Behind Blast Waves.

    DTIC Science & Technology

    1980-05-01

    DISTRIBUTION STATEMENT (of thle Report) Approved for public release; distribution unlimited. 17 . DISTRIBUTION STATEMENT (of the abstract entered in Block 20...Reference I ............. 41 5. Boundary-Layer Functions for Case A, B, C, and D ......... 98 3 NOMENCLATURE A constant, Eqs. (10) and ( 17 ) B...the constant A was chosen as follows to simplify the coefficients of f and g1 A = 2mF CZ(a+i) OPO/pCO ( The ( 17 ) The explicit dependence of the flow

  20. Winter crop CO2 uptake inferred from CONTRAIL CO2 measurements over Delhi, India

    NASA Astrophysics Data System (ADS)

    Umezawa, T.; Niwa, Y.; Sawa, Y.; Machida, T.; Matsueda, H.

    2016-12-01

    CONTRAIL is an ongoing project that measures atmospheric trace gases onboard aircraft of Japan Airlines. Atmospheric CO2 concentration is analyzed using Continuous CO2 Measuring Equipment (CME) during intercontinental flights. Since 2005, we have obtained >7 millions of data points of CO2 concentration along level-flight and ascent/descent tracks of >12 thousands flights with extensive coverage of the Asia-Pacific region. In this study, we analyze 787 vertical profiles of CO2 over Delhi, India. The surrounding area is mainly covered by irrigated croplands with patchy urban areas. We observed a general increase of CO2 toward the ground in the boundary layer throughout December-April due to urban CO2 emissions from the Delhi metropolitan area. In January-March, however, we frequently observed sharp decreases of CO2 below 2 km, indicating the existence of local CO2 sinks in this season. We calculated enhancement/depletion of CO2 amount in the boundary layer, and found clear depletion in February-March, coincident with the growing season of the winter crops (mainly wheat) in the region. It is also inferred that the crop uptake may exceed in magnitude the urban anthropogenic emissions from the Delhi area, indicating significance of agricultural CO2 fluxes in the regional carbon budget. Due to the winter crop uptake, CO2 concentration over Delhi shows no increasing/decreasing temporal trends during January-March when that at baseline stations at similar latitudes in the northern hemisphere increases steadily. This suggests that the CONTRAIL measurements capture local to regional flux signals that are not well resolved by the existing observation network.

  1. Influence of O-Co-O layer thickness on the thermal conductivity of Na{sub x}Co{sub 2}O{sub 4} studied by positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H. Q.; Zhao, B.; Zhang, T.

    2015-07-21

    Nominal stoichiometric Na{sub x}Co{sub 2}O{sub 4} (x = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0) polycrystals were synthesized by a solid-state reaction method. They were further pressed into pellets by the spark plasma sintering. The crystal structure and morphology of Na{sub x}Co{sub 2}O{sub 4} samples were characterized by X-ray diffraction and scanning electron microscopy measurements. Good crystallinity and layered structures were observed for all the samples. Positron annihilation measurements were performed for Na{sub x}Co{sub 2}O{sub 4} as a function of Na content. Two lifetime components are resolved. τ{sub 1} is attributed mainly to positron annihilation in the O-Co-O layers and shifts tomore » Na layers only in the H3 phase. The second lifetime τ{sub 2} is due to positron annihilation in vacancy clusters which may exist in the Na layers or grain boundary region. The size of vacancy clusters grow larger but their concentration decreases with increasing Na content in the range of 1.0 < x < 1.8. The thickness of O-Co-O layer also shows continuous increase with increasing Na content, which is reflected by the increase of τ{sub 1}. The thermal conductivity κ, on the other hand, shows systematic decrease with increasing Na content. This suggests that the increasing spacing of O-Co-O layer could effectively reduce the thermal conductivity of Na{sub x}Co{sub 2}O{sub 4}.« less

  2. Constraining CO2 tower measurements in an inhomogeneous area with anthropogenic emissions using a combination of car-mounted instrument campaigns, aircraft profiles, transport modeling and neural networks

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Rella, C.; Conley, S. A.; Goeckede, M.; Law, B. E.

    2013-12-01

    The NOAA CO2 observation network in Oregon has been enhanced by 3 new towers in 2012. The tallest tower in the network (270 m), located in Silverton in the Willamette Valley is affected by anthropogenic emissions from Oregon's busiest traffic routes and urban centers. In summer 2012, we conducted a measurement campaign using a car-mounted PICARRO CRDS CO2/CO analyzer. Over 3 days, the instrument was driven over 1000 miles throughout the northwestern portion of Oregon measuring the CO/ CO2 ratios on main highways, back roads in forests, agricultural sites, and Oregon's biggest urban centers. By geospatial analyses we obtained ratios of CO/ CO2 over distinct land cover types divided into 10 classes represented in the study area. Using the coupled WRF-STILT transport model we calculated the footprints of nearby CO/ CO2 observation towers for the corresponding days of mobile road measurements. Spatiotemporally assigned source areas in combination with the land use classification were then used to calculate specific ratios of CO (anthropogenic origins) and CO2 to separate the anthropogenic portion of CO2 from the mixing ratio time series measured at the tower in Silverton. The WRF modeled boundary layer heights used in out study showed some differences compared to the boundary layer heights derived from profile data of wind, temperature, and humidity measured with an airplane in August, September, and November 2012, repeatedly over 5 tower locations. A Bayesian Regularized Artificial Neural Network (BRANN) was used to correct the boundary layer height calculated with WRF with a temporal resolution of 20 minutes and a horizontal resolution of 4 km. For that purpose the BRANN was trained using height profile data from the flight campaigns and spatiotemporally corresponding meteorological data from WRF. Our analyses provide information needed to run inverse modeling of CO2 exchange in an area that is affected by sources that cannot easily be considered by biospheric models. The results help to account for regional anthropogenic influences using long-term tower data and supporting short-term campaigns. Figure 1: The footprint areas of 2 NOAA observation towers (72 m inlet at Walton and 212 m inlet at Silverton) during the 3-day campaign with the car-mounted PICARRO CRDS on July 10 (a), July 11 (b), and July 12 (c) 2012 together with the main roads and urban centers. The orange lines show the routes driven during those days.

  3. Molten salt corrosion of SiC: Pitting mechanism

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1985-01-01

    Thin films of Na2SO4 and Na2CO3 at 1000 C lead to severe pitting of sintered alpha-SiC. These pits are important as they cause a strength reduction in this material. The growth of product layers is related to pit formation for the Na2CO3 case. The early reaction stages involve repeated oxidation and dissolution to form sodium silicate. This results in severe grain boundary attack. After this a porous silica layer forms between the sodium silicate melt and the SiC. The pores in this layer appear to act as paths for the melt to reach the SiC and create larger pits.

  4. Aircraft mass budgeting to measure CO2 emissions of Rome, Italy.

    PubMed

    Gioli, Beniamino; Carfora, Maria F; Magliulo, Vincenzo; Metallo, Maria C; Poli, Attilio A; Toscano, Piero; Miglietta, Franco

    2014-04-01

    Aircraft measurements were used to estimate the CO2 emission rates of the city of Rome, assessed against high-resolution inventorial data. Three experimental flights were made, composed of vertical soundings to measure Planetary Boundary Layer (PBL) properties, and circular horizontal transects at various altitudes around the city area. City level emissions and associated uncertainties were computed by means of mass budgeting techniques, obtaining a positive net CO2 flux of 14.7 ± 4.5, 2.5 ± 1.2, and 10.3 ± 1.2 μmol m(-2) s(-1) for the three flights. Inventorial CO2 fluxes at the time of flights were computed by means of spatial and temporal disaggregation of the gross emission inventory, at 10.9 ± 2.5, 9.6 ± 1.3, and 17.4 ± 9.6 μmol m(-2) s(-1). The largest differences between the two dataset are associated with a greater variability of wind speed and direction in the boundary layer during measurements. Uncertainty partitioned into components related to horizontal boundary flows and top surface flow, revealed that the latter dominates total uncertainty in the presence of a wide variability of CO2 concentration in the free troposphere (up to 7 ppm), while it is a minor term with uniform tropospheric concentrations in the study area (within 2 ppm). Overall, we demonstrate how small aircraft may provide city level emission measurements that may integrate and validate emission inventories. Optimal atmospheric conditions and measurement strategies for the deployment of aircraft experimental flights are finally discussed.

  5. Towards Petascale DNS of High Reynolds-Number Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Webster, Keegan R.

    In flight vehicles, a large portion of fuel consumption is due to skin-friction drag. Reduction of this drag will significantly reduce the fuel consumption of flight vehicles and help our nation to reduce CO 2 emissions. In order to reduce skin-friction drag, an increased understanding of wall-turbulence is needed. Direct numerical simulation (DNS) of spatially developing turbulent boundary layers (SDTBL) can provide the fundamental understanding of wall-turbulence in order to produce models for Reynolds averaged Navier-Stokes (RANS) and large-eddy simulations (LES). DNS of SDTBL over a flat plate at Retheta = 1430 - 2900 were performed. Improvements were made to the DNS code allowing for higher Reynolds number simulations towards petascale DNS of turbulent boundary layers. Mesh refinement and improvements to the inflow and outflow boundary conditions have resulted in turbulence statistics that match more closely to experimental results. The Reynolds stresses and the terms of their evolution equations are reported.

  6. Monitoring trace gases in downtown Toronto using open-path Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Byrne, B.; Strong, K.; Colebatch, O.; Fogal, P.; Mittermeier, R. L.; Wunch, D.; Jones, D. B. A.

    2017-12-01

    Emissions of greenhouse gases (GHGs) in urban environments can be highly heterogeneous. For example, vehicles produce point source emissions which can result in heterogeneous GHG concentrations on scales <10 m. The highly localized scale of these emissions can make it difficult to measure mean GHG concentrations on scales of 100-1000 m. Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) measurements offer spatial averaging and continuous measurements of several trace gases simultaneously in the same airmass. We have set up an open-path system in downtown Toronto to monitor trace gases in the urban boundary layer. Concentrations of CO2, CO, CH4, and N2O are derived from atmospheric absorption spectra recorded over a two-way atmospheric open path of 320 m using non-linear least squares fitting. Using a simple box model and co-located boundary layer height measurements, we estimate surface fluxes of these gases in downtown Toronto from our OP-FTIR observations.

  7. Airborne Observations of Enhanced Marine Boundary Layer Carbon Monoxide over Remote Tropical Oceans

    NASA Astrophysics Data System (ADS)

    Campos, T. L.; Stell, M. H.; Apel, E. C.; Hornbrook, R. S.; Hills, A. J.; Weinheimer, A. J.; Montzka, D.; Kaser, L.; Aquino, J.

    2014-12-01

    Recent airborne observations of tropical marine boundary layer carbon monoxide included several instances of elevated MBL CO with a notable absence of corresponding enhancements in ozone. Instances were observed during the recent CONTRAST exploration of tropical Pacific marine dynamics and composition. The lack of correlation between sampled carbon monoxide and ozone is consistent with an oceanic source of CO. Carbon monoxide vertical flux will be estimated for all CONTRAST boundary layer transects, with particular focus on these events. Complementary correlative observations of trace organics lend insight into processes defining this composition. The frequency of occurrence will be presented along with comparison to similar observations within other data sets, including TORERO (2012), and HIPPO (2009-2012).

  8. Vertical and meridional distributions of the atmospheric CO2 mixing ratio between northern midlatitudes and southern subtropics

    NASA Astrophysics Data System (ADS)

    Machida, T.; Kita, K.; Kondo, Y.; Blake, D.; Kawakami, S.; Inoue, G.; Ogawa, T.

    2003-02-01

    The atmospheric CO2 mixing ratio was measured using a continuous measurement system onboard a Gulfstream-II aircraft between the northern midlatitudes and the southern subtropics during the Biomass Burning and Lightning Experiment Phase A (BIBLE A) campaign in September-October 1998. The vertical distribution of CO2 over tropical regions was almost constant from the surface to an altitude of 13 km. CO2 enhancements from biomass burning and oceanic release were observed in the tropical boundary layer. Measurements in the upper troposphere indicate interhemispheric exchange was effectively suppressed between 2°N-7°N. Interhemispheric transport of air in the upper troposphere was suppressed effectively in this region. The CO2 mixing ratios in the Northern and Southern Hemispheres were almost constant, with an average value of about 365 parts per million (ppm) and 366 ppm, respectively. The correlation between the CO2 and NOy mixing ratios observed north of 7°N was apparently different from that obtained south of 2°N. This fact strongly supports the result that the north-south boundary in the upper troposphere during BIBLE A was located around 2°N-7°N as the boundary is not necessary a permanent feature.

  9. Vertical and meridional distributions of the atmospheric CO2 mixing ratio between northern midlatitudes and southern subtropics

    NASA Astrophysics Data System (ADS)

    Machida, T.; Kita, K.; Kondo, Y.; Blake, D.; Kawakami, S.; Inoue, G.; Ogawa, T.

    2002-02-01

    The atmospheric CO2 mixing ratio was measured using a continuous measurement system onboard a Gulfstream-II aircraft between the northern midlatitudes and the southern subtropics during the Biomass Burning and Lightning Experiment Phase A (BIBLE A) campaign in September-October 1998. The vertical distribution of CO2 over tropical regions was almost constant from the surface to an altitude of 13 km. CO2 enhancements from biomass burning and oceanic release were observed in the tropical boundary layer. Measurements in the upper troposphere indicate interhemispheric exchange was effectively suppressed between 2°N-7°N. Interhemispheric transport of air in the upper troposphere was suppressed effectively in this region. The CO2 mixing ratios in the Northern and Southern Hemispheres were almost constant, with an average value of about 365 parts per million (ppm) and 366 ppm, respectively. The correlation between the CO2 and NOy mixing ratios observed north of 7°N was apparently different from that obtained south of 2°N. This fact strongly supports the result that the north-south boundary in the upper troposphere during BIBLE A was located around 2°N-7°N as the boundary is not necessary a permanent feature.

  10. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 2: Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2013-04-01

    Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑ CO2], etc.) as the critical variable and with a major focus on carbonate shell formation. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyse the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas, since with CO2 the influence of the seawater carbonate acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and fluid flow rate under typical oceanic concentrations. The effect of these reactions can be described by an enhancement factor, similar to that widely used for CO2 invasion at the sea surface. While organisms do need to actively regulate flow over their surface to thin the boundary layer to take up enough O2, this seems to be not necessary to facilitate CO2 efflux. Instead, the main impacts of rising oceanic CO2 will most likely be those associated with classical ocean acidification science. Regionally, as with O2, the combination of T, P and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth.

  11. Boundary layer temperature measurements of a noctual urban boundary layer

    NASA Astrophysics Data System (ADS)

    Holloway, Simon; Ricketts, Hugo; Vaughan, Geraint

    2018-04-01

    A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.

  12. Secondary Vortex Structures in Vortex Generator Induced Flow

    NASA Astrophysics Data System (ADS)

    Velte, Clara; Okulov, Valery; Hansen, Martin

    2010-11-01

    Passive rectangular vane actuators can induce a longitudinal vortex that redistributes the momentum in the boundary layer to control the flow. Recent experiments [1] as well as previous studies [2] have shown that a secondary vortex of opposite sign is generated along with the primary one, supposedly from local separation of the boundary layer due to the primary vortex. 2D flow visualizations of a vortex in the vicinity of a boundary support this hypothesis [3]. These secondary vortices are studied for various configurations -- single generator, counter- and co-rotating cascades. The objective is to study their removal through cancelation in cascades using Stereoscopic Particle Image Velocimetry and flow visualization.[4pt] [1] Velte, Hansen and Okulov, J. Fluid Mech. 619, 2009.[0pt] [2] Zhang, Int. J. Heat Fluid Flow 21 2000.[0pt] [3] Harris, Miller and Williamson, APS abstract 2009.

  13. The impact of a large boreal wildfire on boundary-layer conditions and carbon cycling in adjacent unburned areas: case study of the 2011 Utikuma Complex fire, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Petrone, R. M.; Thompson, D. K.; Chasmer, L.; Kljun, N.; Flannigan, M.; Devito, K. J.; Waddington, J. M.

    2016-12-01

    Boreal wildfire conflagrations have increased in frequency in the western boreal forest of Canada, with notable events in 2011, 2015, and 2016. Significant advances have been made in recent years in understanding fire-atmosphere interactions, with similar gains in the knowledge of carbon emissions and post-fire carbon cycling in forests. However, the focus of such studies is routinely on the burned stands themselves, with little attention to the adjacent forest whose boundary layer meteorology and carbon cycling may be impacted by smoke plume. We capitalize here on opportunistic eddy covariance observations of boundary-layer conditions and carbon cycling taken over a long-term monitoring site adjacent to an active wildfire in Alberta, Canada in 2011. Over a one-week period while the wildfire was burning near the footprint of the tower the turbulent structure of the boundary layer near the tower was altered with significant changes in friction velocity, air temperature, and vapour pressure deficit. Moreover, growing season net ecosystem productivity (NEP) decreased to almost zero largely due to reduced photosynthesis likely due to smoke-related reductions in photosynthetically active radiation (PAR). While the `smoke event' caused a reduction in forest CO2 sequestration by 7 g CO2 m-2 given that the smoked affected area was 120 times greater than the area burned this carbon reduction was equivalent to 30% of gross fire emissions from the fire. Consequently, we argue that smoke related inhibition of photosynthesis via reduced light should be considered when investigating the net radiative forcing of boreal forest wildfires.

  14. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    PubMed

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  15. Reduction of molecular gas diffusion through gaskets in leaf gas exchange cuvettes by leaf-mediated pores.

    PubMed

    Boesgaard, Kristine S; Mikkelsen, Teis N; Ro-Poulsen, Helge; Ibrom, Andreas

    2013-07-01

    There is an ongoing debate on how to correct leaf gas exchange measurements for the unavoidable diffusion leakage that occurs when measurements are done in non-ambient CO2 concentrations. In this study, we present a theory on how the CO2 diffusion gradient over the gasket is affected by leaf-mediated pores (LMP) and how LMP reduce diffusive exchange across the gaskets. Recent discussions have so far neglected the processes in the quasi-laminar boundary layer around the gasket. Counter intuitively, LMP reduce the leakage through gaskets, which can be explained by assuming that the boundary layer at the exterior of the cuvette is enriched with air from the inside of the cuvette. The effect can thus be reduced by reducing the boundary layer thickness. The theory clarifies conflicting results from earlier studies. We developed leaf adaptor frames that eliminate LMP during measurements on delicate plant material such as grass leaves with circular cross section, and the effectiveness is shown with respiration measurements on a harp of Deschampsia flexuosa leaves. We conclude that the best solution for measurements with portable photosynthesis systems is to avoid LMP rather than trying to correct for the effects. © 2013 John Wiley & Sons Ltd.

  16. NASA/MSFC ground-based Doppler lidar nocturnal boundary layer experiment (Noblex)

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    1984-01-01

    During the summer of 1982, NASA/MSFC's ground-based CO2 Doppler Lidar Velocimeter (DLV) was deployed at the Denver Stapleton Airport as part of NASA's participation in the JAWS (Joint Airport Weather Studies) program. Configured to measure the radial wind component within a 10 km radius, the conically scanning lidar was used to examine the evolution of a nocturnal boundary layer under the conditions of cloud free skies and rolling terrain. A valley drainage flow was detected and a two dimension flow visualization constructed. The depth of the gravity current was -700 meters while the depth of the creek valley was -150 meters. This deep drainage flow was detectable for distances of 30 to 40 km from the exit region of the valley. Although the sample period (2000 to 2300 CST) was short and only one nocturnal boundary layer case examined, the usefulness of the DLV was demonstrated as well as the care that must be exercised in interpreting lidar data taken in a stable boundary layer in the vicinity of subtle terrain features.

  17. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  18. The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts

    NASA Astrophysics Data System (ADS)

    Olson, David H.; Freedy, Keren M.; McDonnell, Stephen J.; Hopkins, Patrick E.

    2018-04-01

    We experimentally demonstrate the role of oxygen stoichiometry on the thermal boundary conductance across Au/TiOx/substrate interfaces. By evaporating two different sets of Au/TiOx/substrate samples under both high vacuum and ultrahigh vacuum conditions, we vary the oxygen composition in the TiOx layer from 0 ≤ x ≤ 2.85. We measure the thermal boundary conductance across the Au/TiOx/substrate interfaces with time-domain thermoreflectance and characterize the interfacial chemistry with x-ray photoemission spectroscopy. Under high vacuum conditions, we speculate that the environment provides a sufficient flux of oxidizing species to the sample surface such that one essentially co-deposits Ti and these oxidizing species. We show that slower deposition rates correspond to a higher oxygen content in the TiOx layer, which results in a lower thermal boundary conductance across the Au/TiOx/substrate interfacial region. Under the ultrahigh vacuum evaporation conditions, pure metallic Ti is deposited on the substrate surface. In the case of quartz substrates, the metallic Ti reacts with the substrate and getters oxygen, leading to a TiOx layer. Our results suggest that Ti layers with relatively low oxygen compositions are best suited to maximize the thermal boundary conductance.

  19. Transition Delay in a Hypervelocity Boundary Layer using Nonequilibrium CO2 Injection

    DTIC Science & Technology

    2008-10-28

    flows than for either air or N2 flows. The explanation for this phenomenon lies in the fact that when CO2 is in vibrational and chemical ... chemical non-equilibrium, these relax- ation processes absorb energy from acoustic disturbances whose growth is responsible for transition in high...atmosphere at hypersonic speeds, they must somehow provide for, avoid, or otherwise accommodate the enormous heat-transfer rates to the vehicle engen

  20. The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and CO2 Mixing Ratios at a Low-Altitude Mountaintop

    NASA Astrophysics Data System (ADS)

    Lee, Temple R.; De Wekker, Stephan F. J.; Pal, Sandip

    2018-02-01

    Mountaintop trace-gas mixing ratios are often assumed to represent free atmospheric values, but are affected by valley planetary boundary-layer (PBL) air at certain times. We hypothesize that the afternoon valley-PBL height relative to the ridgetop is important in the diurnal cycle of mountaintop trace-gas mixing ratios. To investigate this, we use, (1) 4-years (1 January 2009-31 December 2012) of CO and CO2 mixing-ratio measurements and supporting meteorological observations from Pinnacles (38.61°N , 78.35°W , 1017 m a.s.l.), which is a monitoring site in the Appalachian Mountains, (2) regional O3 mixing-ratio measurements, and (3) PBL heights determined from a nearby sounding station. Results reveal that the amplitudes of the diurnal cycles of CO and CO2 mixing ratios vary as a function of the daytime maximum valley-PBL height relative to the ridgetop. The mean diurnal cycle for the subset of days when the afternoon valley-PBL height is at least 400 m below the ridgetop shows a daytime CO mixing-ratio increase, implying the transport of PBL air from the valley to the mountaintop. During the daytime, on days when the PBL heights exceed the mountaintop, PBL dilution and entrainment cause CO mixing ratios to decrease. This decrease in CO mixing ratio, especially on days when PBL heights are at least 400 m above the ridgetop, suggests that measurements from these days can be used as with afternoon measurements from flat terrain in applications requiring regionally-representative measurements.

  1. The first CO+ image: I. Probing the HI/H2 layer around the ultracompact HII region Mon R2

    PubMed Central

    Treviño-Morales, S. P.; Fuente, A.; Sánchez-Monge, Á.; Pilleri, P.; Goicoechea, J. R.; Ossenkopf-Okada, V.; Roueff, E.; Rizzo, J. R.; Gerin, M.; Berné, O.; Cernicharo, J.; Gónzalez-García, M.; Kramer, C.; García-Burillo, S.; Pety, J.

    2016-01-01

    The CO+ reactive ion is thought to be a tracer of the boundary between a HII region and the hot molecular gas. In this study, we present the spatial distribution of the CO+ rotational emission toward the Mon R2 star-forming region. The CO+ emission presents a clumpy ring-like morphology, arising from a narrow dense layer around the HII region. We compare the CO+ distribution with other species present in photon-dominated regions (PDR), such as [CII] 158 µm, H2 S(3) rotational line at 9.3 µm, polycyclic aromatic hydrocarbons (PAHs) and HCO+. We find that the CO+ emission is spatially coincident with the PAHs and [CII] emission. This confirms that the CO+ emission arises from a narrow dense layer of the HI/H2 interface. We have determined the CO+ fractional abundance, relative to C+ toward three positions. The abundances range from 0.1 to 1.9 ×10−10 and are in good agreement with previous chemical model, which predicts that the production of CO+ in PDRs only occurs in dense regions with high UV fields. The CO+ linewidth is larger than those found in molecular gas tracers, and their central velocity are blue-shifted with respect to the molecular gas velocity. We interpret this as a hint that the CO+ is probing photo-evaporating clump surfaces. PMID:27721515

  2. Transition Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone in Air/CO2 Mixtures

    DTIC Science & Technology

    2013-01-01

    showed an increase in the reference Reynolds number Re* (see Equation 6 on page 8) at the point of transition as reservoir enthalpy hres in- creased...Germain and Adam also observed that flows of CO2 transitioned at higher values of Re* than flows of air for the same hres and Pres. Johnson et al. 5...symbol indicates that the flow was laminar to the last measurable ther- mocouple location, which is recorded. Experiment wCO2 hres Pres T ∗ xtr Retr

  3. Aeroheating Measurement of Apollo Shaped Capsule with Boundary Layer Trip in the Free-piston Shock Tunnel HIEST

    NASA Technical Reports Server (NTRS)

    Hideyuki, TANNO; Tomoyuki, KOMURO; Kazuo, SATO; Katsuhiro, ITOH; Lillard, Randolph P.; Olejniczak, Joseph

    2013-01-01

    An aeroheating measurement test campaign of an Apollo capsule model with laminar and turbulent boundary layer was performed in the free-piston shock tunnel HIEST at JAXA Kakuda Space Center. A 250mm-diameter 6.4%-scaled Apollo CM capsule model made of SUS-304 stainless steel was applied in this study. To measure heat flux distribution, the model was equipped with 88 miniature co-axial Chromel-Constantan thermocouples on the heat shield surface of the model. In order to promote boundary layer transition, a boundary layer trip insert with 13 "pizza-box" isolated roughness elements, which have 1.27mm square, were placed at 17mm below of the model geometric center. Three boundary layer trip inserts with roughness height of k=0.3mm, 0.6mm and 0.8mm were used to identify the appropriate height to induce transition. Heat flux records with or without roughness elements were obtained for model angles of attack 28º under stagnation enthalpy between H(sub 0)=3.5MJ/kg to 21MJ/kg and stagnation pressure between P(sub 0)=14MPa to 60MPa. Under the condition above, Reynolds number based on the model diameter was varied from 0.2 to 1.3 million. With roughness elements, boundary layer became fully turbulent less than H(sub 0)=9MJ/kg condition. However, boundary layer was still laminar over H(sub 0)=13MJ/kg condition even with the highest roughness elements. An additional experiment was also performed to correct unexpected heat flux augmentation observed over H(sub 0)=9MJ/kg condition.

  4. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Zhuang, Yongyong; Jin, Li; Wang, Linghang; Wei, Xiaoyong; Xu, Zhuo; Zhang, Shujun

    2014-08-01

    The (Nb + In) co-doped TiO2 ceramics recently attracted considerable attention due to their colossal dielectric permittivity (CP) (˜100,000) and low dielectric loss (˜0.05). In this research, the 0.5 mol. % In-only, 0.5 mol. % Nb-only, and 0.5-7 mol. % (Nb + In) co-doped TiO2 ceramics were synthesized by standard conventional solid-state reaction method. Microstructure studies showed that all samples were in pure rutile phase. The Nb and In ions were homogeneously distributed in the grain and grain boundary. Impedance spectroscopy and I-V behavior analysis demonstrated that the ceramics may compose of semiconducting grains and insulating grain boundaries. The high conductivity of grain was associated with the reduction of Ti4+ ions to Ti3+ ions, while the migration of oxygen vacancy may account for the conductivity of grain boundary. The effects of annealing treatment and bias filed on electrical properties were investigated for co-doped TiO2 ceramics, where the electric behaviors of samples were found to be susceptible to the annealing treatment and bias field. The internal-barrier-layer-capacitance mechanism was used to explain the CP phenomenon, the effect of annealing treatment and nonlinear I-V behavior for co-doped rutile TiO2 ceramics. Compared with CaCu3Ti4O12 ceramics, the high activation energy of co-doped rutile TiO2 (3.05 eV for grain boundary) was thought to be responsible for the low dielectric loss.

  5. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  6. Process analysis of characteristics of the boundary layer during a heavy haze pollution episode in an inland megacity, China.

    PubMed

    Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang

    2016-02-01

    Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event. Copyright © 2015. Published by Elsevier B.V.

  7. Simulating dynamics of δ13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Tans, Pieter P.; Huang, Lin

    2006-11-01

    Stable isotopes of CO2 contain unique information on the biological and physical processes that exchange CO2 between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of δ13C and thus the global δ13C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of 13CO2 in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49°52'29.9''N, 81°34'12.3''W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to δ13C on diurnal and seasonal scales. The simulated annual mean vertical gradient of δ13C in the PBL in the vicinity of the FRD tower was about 0.25‰ in 1999. The δ13C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO2. Most of the vertical gradient (96.5% +/-) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%+/-) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on δ13C of CO2 dynamics in PBL, moreover, was confined to the near surface layers (less than 350 m).

  8. Naval Hydrodynamics Symposium (12th) on Boundary Layer Stability and Transition Ship Boundary Layers and Propeller Hull Interaction Cavitation Geophysical Fluid Dynamics.

    DTIC Science & Technology

    1979-01-01

    Reshotko (1974 ,[ rL12 --o-Wazzan, Okamura & D =cq wdx + dLc (6)1 Snith 11970) F a f XJftW 10 u o-0 where g is the dynamic pressure, cfk and cft are co dx...cdx = 1.328 tr (13) xtr f L tr 106 xtr cft dx = 0.074 / )tr: 0 10 20 30 40 e R WALL OVERHEAT,.IT.° Cx FIGURE 2. Variation of transition Reynolds...change in the anqe , is varied. wavenumber vector in addition to the dispersion relation. Even though no aml itude calculations are included in this paper

  9. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.

    PubMed

    Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M

    1998-01-19

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  10. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).

    PubMed

    Olischläger, Mark; Wiencke, Christian

    2013-12-01

    This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.

  11. Three-Dimensional Shallow Water Adaptive Hydraulics (ADH-SW3) Validation: Galveston Bay Hydrodynamics and Salinity Transport

    DTIC Science & Technology

    2015-04-01

    model mesh with elements (vertical co-ordinate in meters). ....................... 5 Figure 3. Ocean tidal boundary (Hour 0 = 1 Jan 1990, 12:00 a.m...7 Figure 4. Ocean salt boundary (Hour 0 = 1 Jan 1990, 12:00 a.m...channel and the connections of Galveston Bay to the open ocean . Figures 1 and 2 illustrate the distribution of vertical layers and resolution in the

  12. Aircraft observations of the urban CO2 dome in London and calculated daytime CO2 fluxes at the urban-regional scale

    NASA Astrophysics Data System (ADS)

    Font, Anna; Morgui, Josep Anton; Grimmond, Sue; Barratt, Benjamin

    2013-04-01

    Traffic, industry and energy production and consumption within urban boundaries emit great amounts of CO2 into the atmosphere, creating an urban increment of CO2 mixing ratios compared to the surrounding rural atmosphere. Monitoring CO2 within these 'urban domes' has been proposed as a means to evaluate the effectiveness of policies aiming to mitigate and reduce CO2 urban emissions (CMEGGE, 2010). London is the biggest urban conurbation in Western Europe with more than 8 million inhabitants, and it emitted roughly 45000 ktn CO2 in 2010 (DECC, 2012). In order to develop and implement observational strategies to measure the contribution of urban areas into the global carbon cycle, two airborne surveys were deployed using the Natural and Environment Research Council - Airborne Research and Survey Facility (NERC-ARSF). High frequency measurements of atmospheric CO2, O3, particles and meteorological variables were taken over London in October 2011 and July 2012. CO2 mixing ratios were measured by a Non-Dispersive IR instrument developed by AOS. In July 2012, a Cavity Ring-Down Spectroscopy (CDRS) instrument developed by PICARRO was deployed measuring CO2, CH4 and water vapour at 1Hz resolution. The objectives of the campaigns were to measure the CO2 dome over London and to calculate CO2 emissions at the urban-regional-scale. London was crossed by two transects (SW-NE and SSE-NNW) at an altitude of 360 m and vertical profiles up to 2000 m were carried out to characterize the structure of the atmosphere. Aircraft measurements allowed observation on how CO2 domes were shaped by meteorological conditions. In October 2011, the mean CO2 mixing ratio measured in London was on average 2 ppmv higher than the suburban measurements within the boundary layer. However, under low wind speeds, the CO2 mixing ratio in the urban mixing ratio peaked in central London (>10 ppmv) and decreased towards the city boundaries. Under windy conditions, the structure of the urban dome was dispersed downwind, with peak concentrations displaced from the urban centre along the main wind direction. The urban-regional surface CO2 flux was calculated for four days in October 2011 by either the Integrative Mass Boundary Layer (IMBL) or the Column Integration method (CIM), dependent on meteorological conditions. The diurnal CO2 flux in London obtained from the aircraft observations ranged from 36 to 71 μmol CO2 m-2 s-1 during the day time. This compared well with continuous measurements of CO2 exchange by an eddy-covariance system located in central London. The day-to-day variability observed in the calculated CO2 fluxes responded to the spatial variability of the influence area and emissions that observations were sensitive to. This study provides an example how aircraft surveys in urban areas can be used to estimate CO2 surface fluxes at the urban-regional scale. It also presents an important cross-validation of two independent measurement-based methods to infer the contribution of urban areas to climate change in terms of CO2 emissions that complement bottom-up emissions inventories. References Committee on Methods for Estimating Greenhouse Gas Emissions (2010), The National Academia Press. DECC (2012), http://www.decc.gov.uk/en/content/cms/statistics/indicators/ni186/ni186.aspx

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yongli; Wang, Xianjie; Sui, Yu

    Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO 2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10 4, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO 2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, andmore » that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less

  14. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations.

    PubMed

    Lee, Mal-Soon; Peter McGrail, B; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2015-10-12

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity.

  15. Observational constraints on the global atmospheric CO2 budget

    NASA Technical Reports Server (NTRS)

    Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro

    1990-01-01

    Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

  16. CO Signatures in Subtropical Convective Clouds and Anvils during CRYSTAL-FACE: An Analysis of Convective Transport and Entrainment using Observations and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Lopez, Jimena P.; Fridlind, Ann M.; Jost, Hans-Juerg; Loewenstein, Max; Ackerman, Andrew S.; Campos, Teresa L.; Weinstock, Elliot M.; Sayres, David S.; Smith, Jessica B.; Pittman, Jasna V.

    2006-01-01

    Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H2Ov), and total water (H2Ot) aboard NASA's WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the free troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.

  17. Nighttime wind and scalar variability within and above an Amazonian canopy

    NASA Astrophysics Data System (ADS)

    Oliveira, Pablo E. S.; Acevedo, Otávio C.; Sörgel, Matthias; Tsokankunku, Anywhere; Wolff, Stefan; Araújo, Alessandro C.; Souza, Rodrigo A. F.; Sá, Marta O.; Manzi, Antônio O.; Andreae, Meinrat O.

    2018-03-01

    Nocturnal turbulent kinetic energy (TKE) and fluxes of energy, CO2 and O3 between the Amazon forest and the atmosphere are evaluated for a 20-day campaign at the Amazon Tall Tower Observatory (ATTO) site. The distinction of these quantities between fully turbulent (weakly stable) and intermittent (very stable) nights is discussed. Spectral analysis indicates that low-frequency, nonturbulent fluctuations are responsible for a large portion of the variability observed on intermittent nights. In these conditions, the low-frequency exchange may dominate over the turbulent transfer. In particular, we show that within the canopy most of the exchange of CO2 and H2O happens on temporal scales longer than 100 s. At 80 m, on the other hand, the turbulent fluxes are almost absent in such very stable conditions, suggesting a boundary layer shallower than 80 m. The relationship between TKE and mean winds shows that the stable boundary layer switches from the very stable to the weakly stable regime during intermittent bursts of turbulence. In general, fluxes estimated with long temporal windows that account for low-frequency effects are more dependent on the stability over a deeper layer above the forest than they are on the stability between the top of the canopy and its interior, suggesting that low-frequency processes are controlled over a deeper layer above the forest.

  18. Projection of the Liquidus Surface of the Co - Sn - Bi System

    NASA Astrophysics Data System (ADS)

    Abilov, Ch. I.; Allazov, M. R.; Sadygova, S. G.

    2016-11-01

    The crystallization behavior of phases in alloys of the Co - Sn - Bi system is studied by the methods of differential thermal (DTA), x-ray phase (XRP) and x-ray diffraction (XRD) analyses and hardness measurement. The projection of the liquidus surface is plotted. The boundaries of layering, the development of the monovariant processes, and the coordinates of the nonvariant equilibrium compositions are determined. Compositions of (Co3Sn2)1 - x Bi x solid solutions suitable for the production of antifriction materials are suggested.

  19. Kinetic bottlenecks to chemical exchange rates for deep-sea animals II: Carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-11-01

    Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc.) as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2-HCO3--CO32- acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that, for the problem of gas exchange with the bulk ocean, the combination of an increasing T combined with declining O2 poses a greater challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.

  20. COED Transactions, Vol. X, No. 9, September 1978. Use of the Analog/Hybrid Computer in Boundary Layer and Convection Studies.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    In certain boundary layer or natural convection work, where a similarity transformation is valid, the equations can be reduced to a set of nonlinear ordinary differential equations. They are therefore well-suited to a fast solution on an analog/hybrid computer. This paper illustrates such usage of the analog/hybrid computer by a set of…

  1. Vortex pinning in artificially layered Ba(Fe,Co)2As2 film

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Lee, Jongmin; Seo, Sehun; Yoon, Sejun; Seo, M. S.; Park, S. Y.; Kim, Ho-Sup; Ha, Dong-Woo; Lee, Sanghan; Jo, Youn Jung

    2018-06-01

    Static high critical current densities (Jc) > 1 MA/cm2 with magnetic field parallel or perpendicular to c-axis were realized in Co-doped/undoped multilayerd BaFe2As2 films. We made a current bridge by FIB to allow precise measurements, and confirmed that the boundary quality using FIB was considerably better than the quality achieved using a laser. The presence of a high in-plane Jc suggested the existence of c-axis correlated vortex pinning centers. To clarify the relationship between the Jc performance and superstructures, we investigated the magnetic flux pinning mechanism using scaling theory of the volume pinning force Fp(H). The Jc(H) curves, Fp/Fp,max vs. h = H/Hirr curves, and parameters p and q depended on the characteristics of the flux pinning mechanism. It was found that the dominant pinning mechanism of Co-doped/undoped multilayerd BaFe2As2 films was Δl-pinning and the inserted undoped BaFe2As2 layers remained non-superconducting. The dominant pin geometry varied when the magnetic field direction changed. It was concluded that the artificially layered BaFe2As2 film is a 3-D superconductor due to its long correlation length compared to the thickness of the non-superconducting layer.

  2. Origin of colossal dielectric permittivity of rutile Ti 0.9In 0.05Nb 0.05O 2: single crystal and polycrystalline

    DOE PAGES

    Song, Yongli; Wang, Xianjie; Sui, Yu; ...

    2016-02-12

    Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO 2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10 4, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO 2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, andmore » that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less

  3. Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline

    PubMed Central

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-01-01

    In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles. PMID:26869187

  4. Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-02-01

    In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.

  5. Solar geoengineering, atmospheric water vapor transport, and land plants

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain runoff are typically locations where there is sufficient water to maintain plant growth. This work aims at: (i) Identifying the geographical distribution of sensitivity of modeled-NPP to changes in CO2, temperature, and various parameters related to the hydrological cycle; (ii) Geographically partitioning changes in modeled-NPP to changes in CO2, temperature, and hydrological variables (and a non-linear interaction term).

  6. Evaluation of the Consistency among In Situ and Remote Sensing Measurements of CO2 over North America using the CarbonTracker-Lagrange Regional Inverse Modeling Framework

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Trudeau, M.; Hu, L.; Thoning, K. W.; Shiga, Y. P.; Michalak, A. M.; Benmergui, J. S.; Mountain, M. E.; Nehrkorn, T.; O'Dell, C.; Jacobson, A. R.; Miller, J.; Sweeney, C.; Chen, H.; Ploeger, F.; Tans, P. P.

    2017-12-01

    CarbonTracker-Lagrange (CT-L) is a regional inverse modeling system for estimating CO2 fluxes with rigorous uncertainty quantification. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We have computed a library of footprints corresponding to in situ and remote sensing measurements of CO2 over North America for 2007-2015. GOSAT and OCO-2 XCO2 retrievals are simulated using a suite of CT-L terrestrial ecosystem flux estimates that have been optimized with respect to in situ atmospheric CO2 measurements along with fossil fuel fluxes from emissions inventories. A vertical profile of STILT-WRF footprints was constructed corresponding to each simulated satellite retrieval, and CO2 profiles are generated by convolving the footprints with fluxes and attaching initial values advected from the domain boundaries. The stratospheric contribution to XCO2 has been estimated using 4-dimensional CO2 fields from the NOAA CarbonTracker model (version CT2016) and from the Chemical Lagrangian Model of the Stratosphere (CLaMS), after scaling the model fields to match data from the NOAA AirCore surface-to-stratosphere air sampling system. Tropospheric lateral boundary conditions are from CT2016 and from an empirical boundary value product derived from aircraft and marine boundary layer data. The averaging kernel and a priori CO2 profile are taken into account for direct comparisons with retrievals. We have focused on North America due to the relatively dense in situ measurements available with the aim of developing strategies for combined assimilation of in situ and remote sensing data. We will consider the extent to which interannual variability in terrestrial fluxes is manifest in the real and simulated satellite retrievals, and we will investigate possible systematic biases in the satellite retrievals and in the model.

  7. Convective Instability and Mass Transport of the Diffusion Layer in CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Backhaus, S.

    2011-12-01

    The long-term fate of supercritical (sc) CO2 in saline aquifers is critical to the security of carbon sequestration, an important option for eliminating or reducing the emissions of this most prevalent greenhouse gas. scCO2 is less dense than brine and floats to the top of the aquifer where it is trapped in a metastable state by a geologic feature such as a low permeability cap rock. Dissolution into the underlying brine creates a CO2-brine mixture that is denser than brine, eliminating buoyancy and removing the threat of CO2 escaping back to the atmosphere. If molecular diffusion were the only dissolution mechanism, the CO2 waste stream from a typical large coal-fired electrical power plant may take upward of 10,000 years to no longer pose a threat, however, a convective instability of the dense diffusion boundary layer between the scCO2 and the brine can dramatically increase the dissolution rates, shortening the lifetime of the scCO2 waste pool. We present results of 2D and 3D similitude-correct, laboratory-scale experiments using an analog fluid system. The experiments and flow visualization reveal the onset of the convective instability, the dynamics of the fluid flows during the convective processes, and the long-term mass transfer rates.

  8. The YAK-AEROSIB transcontinental aircraft campaigns: new insights on the transport of CO2, CO and O3 across Siberia

    NASA Astrophysics Data System (ADS)

    Paris, J.-D.; Ciais, P.; Nédélec, P.; Ramonet, M.; Belan, B. D.; Arshinov, M. Yu.; Golitsyn, G. S.; Granberg, I.; Stohl, A.; Cayez, G.; Athier, G.; Boumard, F.; Cousin, J.-M.

    2008-09-01

    Two airborne campaigns were carried out to measure the tropospheric concentrations and variability of CO2, CO and O3 over Siberia. In order to quantify the influence of remote and regional natural and anthropogenic sources, we analysed a total of 52 vertical profiles of these species collected in April and September 2006, every ~200 km and up to 7 km altitude. CO2 and CO concentrations were high in April 2006 (respectively 385-390 ppm CO2 and 160-200 ppb CO) compared to background values. CO concentrations up to 220 ppb were recorded above 3.5 km over eastern Siberia, with enhancements in 500-1000 m thick layers. The presence of CO enriched air masses resulted from a quick frontal uplift of a polluted air mass exposed to northern China anthropogenic emissions and to fire emissions in northern Mongolia. A dominant Asian origin for CO above 4 km (71.0%) contrasted with a dominant European origin below this altitude (70.9%) was deduced both from a transport model analysis, and from the contrasted ΔCO/ΔCO2 ratio vertical distribution. In September 2006, a significant O3 depletion (~ -30 ppb) was repeatedly observed in the boundary layer, as diagnosed from virtual potential temperature profiles and CO2 gradients, compared to the free troposphere aloft, suggestive of a strong O3 deposition over Siberian forests.

  9. Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Wang, Xianjie; Zhang, Xingquan; Qi, Xudong; Liu, Zhiguo; Zhang, Lingli; Zhang, Yu; Wang, Yang; Sui, Yu; Song, Bo

    2016-10-01

    The exploration of colossal dielectric permittivity (CP) materials with low dielectric loss in a wide range of frequencies/temperatures continues to attract considerable interest. In this paper, we report CP in (Al + Nb) co-doped rutile SnO2 ceramics with a low dielectric loss at room temperature. Al0.02Nb0.05Sn0.93O2 and Al0.03Nb0.05Sn0.92O2 ceramics exhibit high relative dielectric permittivities (above 103) and low dielectric losses (0.015 < tan δ < 0.1) in a wide range of frequencies and at temperatures from 140 to 400 K. Al doping can effectively modulate the dielectric behavior by increasing the grain and grain boundary resistances. The large differences in the resistance and conductive activation energy of the grains and grain boundaries suggest that the CP in co-doped SnO2 ceramics can be attributed to the internal barrier layer capacitor effect.

  10. Turbulent Combustion Study of Scramjet Problem

    DTIC Science & Technology

    2015-08-01

    boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and

  11. Ionic Segregation on Grain Boundaries in Thermally Grown Alumina Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A; Unocic, Kinga A

    2012-01-01

    This study first examined segregation behaviour in the alumina scale formed after 100 h at 1100 C on bare and MCrAlYHfSi-coated single-crystal superalloys with {approx}10 ppma La and Y. For the bare superalloy, Hf and Ti were detected on the grain boundaries of the inner columnar alumina layer. Increasing the oxidation temperature to 1200 C for 2 h did not change the segregation behavior. With the bond coating, both Y and Hf were segregated to the grain boundaries as expected. However, there was evidence of Ti-rich oxide particles near the gas interface suggesting that Ti diffused from the superalloy throughmore » the coating. To further understand these segregation observations with multiple dopants, other alumina-forming systems were examined. Alumina scale grain boundary co-segregation of Ti with Y is common for FeCrAl alloys. Co-segregation of Hf and Ti was observed in the scale formed on co-doped NiAl. No La segregation was detected in the scale formed on NiCrAl with only a 19 ppma La addition, however, the scale was adherent.« less

  12. Experimental plasma studies

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.

    1972-01-01

    The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.

  13. A boundary-layer model for Mars - Comparison with Viking lander and entry data

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Houben, Howard C.; Hertenstein, Rolf; Herdtle, Tomas

    1993-01-01

    A 1D boundary-layer model of Mars based on a momentum equation that describes friction, pressure gradient, and Coriolis forces is presented. Frictional forces and convective heating are computed using the level-2 turbulence closure theory of Mellor and Yamada (1974). The model takes into account the radiative effects of CO2 gas and suspended dust particles. Both radiation and convection depend on surface temperatures which are computed from a surface heat budget. Model predictions are compared with available observations from Viking landers. It is concluded that, in general, the model reproduces the basic features of the temperature data. The agreement is particularly good at entry time for the V L-2 site, where the model and observations are within several degrees at all levels for which data are available.

  14. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO2 in Heterogeneous Shallow Aquifers

    NASA Astrophysics Data System (ADS)

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.

    2017-12-01

    To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO2 migration behavior in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross section of a shallow aquifer with layered geologic heterogeneity. As water with aqueous CO2 was injected into the system to mimic a CO2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO2 evolution processes. Significant CO2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow redissolution of gas phase CO2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO2 migration. This improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.

  15. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO 2 in Heterogeneous Shallow Aquifers

    DOE PAGES

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; ...

    2017-11-15

    In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less

  16. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO 2 in Heterogeneous Shallow Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.

    In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less

  17. The Use of a Mesoscale Climate Model to Validate the Nocturnal Carbon Flux over a Forested Site

    NASA Astrophysics Data System (ADS)

    Werth, D.; Parker, M.; Kurzeja, R.; Leclerc, M.; Watson, T.

    2007-12-01

    The Savannah River National Laboratory is initiating a comprehensive carbon dioxide monitoring and modeling program in collaboration with the University of Georgia and the Brookhaven National Laboratory. One of the primary goals is to study the dynamics of carbon dioxide in the stable nocturnal boundary layer (NBL) over a forested area of the Savannah River Site in southwest South Carolina. In the nocturnal boundary layer (NBL), eddy flux correlation is less effective in determining the release of CO2 due to respiration. Theoretically, however, the flux can be inferred by measuring the build up of CO2 in the stable layer throughout the night. This method of monitoring the flux will be validated and studied in more detail with both observations and the results of a high-resolution regional climate model. The experiment will involve two phases. First, an artificial tracer will be released into the forest boundary layer and observed through an array of sensors and at a flux tower. The event will be simulated with the RAMS climate model run at very high resolution. Ideally, the tracer will remain trapped within the stable layer and accumulate at rates which will allow us to infer the release rate, and this should compare well to the actual release rate. If an unknown mechanism allows the tracer to escape, the model simulation would be used to reveal it. In the second phase, carbon fluxes will be measured overnight through accumulation in the overlying layer. The RAMS model will be coupled with the SiB carbon model to simulate the nocturnal cycle of carbon dynamics, and this will be compared to the data collected during the night. As with the tracer study, the NBL method of flux measurement will be validated against the model. The RAMS-SiB coupled model has been run over the SRS at high-resolution to simulate the NBL, and results from simulations of both phases of the project will be presented.

  18. Ocean acidification: Towards a better understanding of calcite dissolution

    NASA Astrophysics Data System (ADS)

    Wilhelmus, Monica M.; Adkins, Jess; Menemenlis, Dimitris

    2016-11-01

    The drastic increase of anthropogenic CO2 emissions over the past two centuries has altered the chemical structure of the ocean, acidifying upper ocean waters. The net impact of this pH decrease on marine ecosystems is still unclear, given the unprecedented rate at which CO2 is being released into the atmosphere. As part of the carbon cycle, calcium carbonate dissolution in sediments neutralizes CO2: phytoplankton at the surface produce carbonate minerals, which sink and reach the seafloor after the organisms die. On time scales of thousands of years, the calcium carbonate in these shells ultimately reacts with CO2 in seawater. Research in this field has been extensive; nevertheless, the dissolution rate law, the impact of boundary layer transport, and the feedback with the global ocean carbon cycle remain controversial. Here, we (i) develop a comprehensive numerical framework via 1D modeling of carbonate dissolution in sediments, (ii) approximate its impact on water column properties by implementing a polynomial approximation to the system's response into a global ocean biogeochemistry general circulation model (OBGCM), and (iii) examine the OBGCM sensitivity response to different formulations of sediment boundary layer properties. We find that, even though the burial equilibration time scales of calcium carbonate are in the order of thousands of years, the formulation of a bottom sediment model along with an improved description of the dissolution rate law can have consequences on multi-year to decadal time scales.

  19. Origin of colossal dielectric permittivity of rutile Ti₀.₉In₀.₀₅Nb₀.₀₅O₂: single crystal and polycrystalline.

    PubMed

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-02-12

    In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10(4), dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.

  20. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  1. Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Pan, Laura L.; Honomichl, Shawn B.; Kinnison, Douglas E.; Abalos, Marta; Randel, William J.; Bergman, John W.; Bian, Jianchun

    2016-12-01

    Chemical transport associated with the dynamics of the Asian summer monsoon (ASM) system is investigated using model output from the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model run in specified dynamics mode. The 3-D day-to-day behavior of modeled carbon monoxide is analyzed together with dynamical fields and transport boundaries to identify preferred locations of uplifting from the boundary layer, the role of subseasonal-scale dynamics in the upper troposphere and lower stratosphere (UTLS), and the relationship of ASM transport and the stratospheric residual circulation. The model simulation of CO shows the intraseasonal east-west oscillation of the anticyclone may play an essential role in transporting convectively pumped boundary layer pollutants in the UTLS. A statistical analysis of 11 year CO also shows that the southern flank of the Tibetan plateau is a preferred location for boundary layer tracers to be lofted to the tropopause region. The vertical structure of a model tracer (E90) further shows that the rapid ASM vertical transport is only effective up to the tropopause level (around 400 K). The efficiency of continued vertical transport into the deep stratosphere is limited by the slow ascent associated with the zonal-mean residual circulation in the lower stratosphere during northern summer. Quasi-isentropic transport near the 400 K potential temperature level is likely the most effective process for ASM anticyclone air to enter the stratosphere.

  2. Lidar Applications in Atmospheric Dynamics: Measurements of Wind, Moisture and Boundary Layer Evolution

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph

    2005-01-01

    A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.

  3. The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume

    NASA Astrophysics Data System (ADS)

    McMillan, W. W.; Strow, L. L.; Smith, W. L.; Revercomb, H. E.; Huang, H. L.

    Nadir looking infrared spectra of a forest fire smoke plume off the south shore of Long Island, New York, were obtained from a NASA ER-2 aircraft during two spatially coincident over-flights on the morning of August 25, 1995. These spectra exhibit enhanced CO column densities at the same geographic locations over the smoke plume on both over-flights with a peak CO column density ˜2.6 × 1018 cm-2, ˜6σ above the clear air background. Meteorological conditions suggest the smoke plume was confined to the planetary boundary layer (PBL), pressures ≥ 850 mb, and perhaps to a thin region near the top of the PBL. Constraining the excess CO to the PBL yields a CO mixing ratio ˜1,400 ppbv. Further constraining the CO to the model layer nearest the top of the PBL, 852-878 mb, yields-4,300 ppbv. From the spatial overlap of the spectra, the estimated width of the CO rich portion of the plume is ≤ 2.8 km vs. a plume width of ˜5 km in GOES-8 satellite visible images.

  4. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions

    DOE PAGES

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; ...

    2016-07-22

    Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less

  5. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally

    Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less

  6. Plasmonic detection of possible defects in multilayer nanohole array consisting of essential materials in simplified STT-RAM cell

    NASA Astrophysics Data System (ADS)

    Sadri-Moshkenani, Parinaz; Khan, Mohammad Wahiduzzaman; Zhao, Qiancheng; Krivorotov, Ilya; Nilsson, Mikael; Bagherzadeh, Nader; Boyraz, Ozdal

    2017-08-01

    Plasmonic nanostructures are highly used for sensing purposes since they support plasmonic modes which make them highly sensitive to the refractive index change of their surrounding medium. Therefore, they can also be used to detect changes in optical properties of ultrathin layer films in a multilayer plasmonic structure. Here, we investigate the changes in optical properties of ultrathin films of macro structures consisting of STT-RAM layers. Among the highest sensitive plasmonic structures, nanohole array has attracted many research interest because of its ease of fabrication, small footprint, and simplified optical alignment. Hence it is more suitable for defect detection in STT-RAM geometries. Moreover, the periodic nanohole pattern in the nanohole array structure makes it possible to couple the light to the surface plasmon polariton (SPP) mode supported by the structure. To assess the radiation damages and defects in STT-RAM cells we have designed a multilayer nanohole array based on the layers used in STT-RAM structure, consisting 4nm- Ta/1.5nm-CoFeB/2nm-MgO/1.5nm-CoFeB/4nm-Ta layers, all on a 300nm silver layer on top of a PEC boundary. The nanoholes go through all the layers and become closed by the PEC boundary on one side. The dimensions of the designed nanoholes are 313nm depth, 350nm diameter, and 700nm period. Here, we consider the normal incidence of light and investigate zeroth-order reflection coefficient to observe the resonance. Our simulation results show that a 10% change in refractive index of the 2nm-thick MgO layer leads to about 122GHz shift in SPP resonance in reflection pattern.

  7. Radon Measurements of Atmospheric Mixing (RAMIX) 2006–2014 Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, ML; Biraud, SC

    2015-05-01

    Uncertainty in vertical mixing between the surface layer, boundary layer, and free troposphere leads to large uncertainty in “top-down” estimates of regional land-atmosphere carbon exchange (i.e., estimates based on measurements of atmospheric CO2 mixing ratios. Radon-222 (222Rn) is a valuable tracer for measuring atmospheric mixing because it is emitted from the land surface and has a short enough half-life (3.8 days) to allow characterization of mixing processes based on vertical profile measurements.

  8. Radon Measurements of Atmospheric Mixing (RAMIX) 2006–2014 Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, ML; Biraud, SC; Hirsch, A

    2015-05-01

    Uncertainty in vertical mixing between the surface layer, boundary layer, and free troposphere leads to large uncertainty in “top-down” estimates of regional land-atmosphere carbon exchange (i.e., estimates based on measurements of atmospheric CO 2 mixing ratios). The radioisotope radon-222 ( 222Rn) is a valuable tracer for measuring atmospheric mixing because it is emitted from the land surface and has a short enough half-life (3.8 days) to allow characterization of mixing processes based on vertical profile measurements.

  9. On the effects of fuel leakage on CO production from household burners as revealed by LIF and CARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Meij, C.E.; Mokhov, A.V.; Jacobs, R.A.A.M.

    Measurements of the distributions of CO, OH, and temperature in flames from two commonly used, commercially available household burners are presented. The local mole fractions of CO and relative distribution of OH have been obtained using laser-induced fluorescence, while the local temperatures have, been determined by coherent anti-Stokes Raman scattering (CARS). For both burners, burning in the open air, CO formation outside the main flames has been observed and attributed to the leakage of fuel-air mixture at the edges of the flame, where the fuel is subsequently converted to CO in the boundary layer between the flame and the surroundings.more » For a rich-premixed, multiblade burner, which gives Bunsen-like flames, the CO produced by the leaking fuel appears to be oxidized by OH arising from the outer cones of adjacent flames, and burns out to low concentrations. In the case of a lean-premixed burner, the CO produced by fuel leakage remains in the cool boundary layer without adequate burnout. Possible consequences for appliance behavior are discussed.« less

  10. Influence of deformation on dolomite rim growth kinetics

    NASA Astrophysics Data System (ADS)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted samples. The shift from local equilibrium is ˜3 mol% in triaxial compression and ˜7 mol% in torsion. Electron backscatter diffraction analysis reveals a crystallographic preferred orientation (CPO) within the reaction layers with [0001] axes parallel to the compression/rotation axis and poles of {2-1-10} and {10-10} prismatic planes parallel to the reaction interface. Compared to isostatic annealing, the CPO is more pronounced and the amount of low-angle grain boundaries is increased. At the imposed experimental conditions, most of the bulk deformation is accommodated by calcite single, which is stronger than magnesite. Application of flow laws for magnesio-calcite and dolomite suggest that the fine-grained reaction products should deform by grain boundary diffusion creep, resulting in lower flow strength than the single crystal reactants. However, microstructural observations indicate that deformation of granular dolomite and magnesio-calcite is at least partially assisted by dislocation creep, which would result in an almost similar strength to calcite. Therefore, flattening of the reaction layers during triaxial compression may be counterbalanced by enhanced reaction rates, resulting in almost constant layer thickness, independent of the applied stress. For simple shear, the reduced reaction kinetics in the high stress/strain region of twisted samples may be related to increased nucleation rates, resulting in a lower grain size and rim thickness.

  11. Large-eddy substitution via vortex cancellation for wall turbulence control

    NASA Technical Reports Server (NTRS)

    Mcginley, C. B.; Beeler, G. B.

    1985-01-01

    A system of co-rotating longitudinal vortices was used to introduce streamline (as opposed to wall) curvature into a turbulent wall flow. Two methods of vortex cancellation, unwinding and self-annihilation, were tested as a means of removing the vortices once they had processed most of the incoming turbulent boundary layer. Vortex unwinding, which uses vorticity of the opposite sign, was shown to be a viable method for cancelling the co-rotating vortices. Vortex self-annihilation, caused by interference effects resulting from a close initial spanwise vortex spacing, eliminated the vortices within 60 delta downstream. In each case, reductions in boundary layer entrainment were found once the vortices were cancelled.

  12. Air chemistry over the tropical forest of Guyana

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Harriss, R. C.; Talbot, R. W.; Browell, E. V.; Beck, S. M.; Sebacher, D. I.; Rasmussen, R. A.; Garstang, M.; Andreae, M. O.; Hinton, R. R.

    1986-01-01

    A comparison is made of the atmospheric chemistry within and above the atmospheric boundary layer over the tropical forest of Guyana. The data were gathered by NASA during the Global Tropospheric Experiment program in 1984, with an instrumented aircraft being used to collect data at altitudes of 3.5 km and between 150-450 m. The synoptic data covered concentrations of O3, CO, dimethylsulfide (DMS), halocarbons and isoprene and three different aerosol particulate measurements (DIAL system). The forest boundary layer proved to be a significant sink for O3, and a source for substantial emissions of DMS. Isoprene emitted by the forest was photochemically oxidized and became a source of CO.

  13. Zinc enhanced hard disk media

    DOEpatents

    Zou, Jie; Lambeth, David N.; Laughlin, David E.

    2002-01-01

    The present invention provides a magnetic recording media incorporating Zn containing layers in close proximity to a magnetic layer to provide media having increased coercivity and lower noise. The Zn containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, underlayer structures to promote epitaxial crystalline structure in the magnetic layer, and a Zn containing layer to promote isolation between the magnetic grains. The medium can further include seed layers, underlayers, intermediate layers, and overlayers. The process of manufacture includes promoting diffusion of Zn to the magnetic layer grain boundaries.

  14. High-Frequency Response of the Atmospheric Electric Potential Gradient Under Strong and Dry Boundary-Layer Convection

    NASA Astrophysics Data System (ADS)

    Conceição, Ricardo; Silva, Hugo Gonçalves; Bennett, Alec; Salgado, Rui; Bortoli, Daniele; Costa, Maria João; Collares Pereira, Manuel

    2018-01-01

    The spectral response of atmospheric electric potential gradient gives important information about phenomena affecting this gradient at characteristic time scales ranging from years (e.g., solar modulation) to fractions of a second (e.g., turbulence). While long-term time scales have been exhaustively explored, short-term scales have received less attention. At such frequencies, space-charge transport inside the planetary boundary layer becomes a sizeable contribution to the potential gradient variability. For the first time, co-located (Évora, Portugal) measurements of boundary-layer backscatter profiles and the 100-Hz potential gradient are reported. Five campaign days are analyzed, providing evidence for a relation between high-frequency response of the potential gradient and strong dry convection.

  15. The effect of a shear boundary layer on the stability of a capillary jet

    NASA Astrophysics Data System (ADS)

    Ganan-Calvo, Alfonso; Montanero, Jose M.; Herrada, Miguel A.

    2014-11-01

    The generic stabilization effect of a shear boundary layer over the free surface of a capillary jet is here studied from analytical (asymptotic), numerical and experimental approaches. In first place, we show the consistency of the proposed asymptotic analysis by a linear stability (numerical) analysis of the Navier-Stokes equations for a finite boundary layer thickness. We show how the convective-to-absolute instability transition departs drastically from the flat velocity profile case as the axial coordinate becomes closer to the origin of the boundary layer development. For large enough axial distances from that origin, Rayleigh's dispersion relation is recovered. A collection of experimental observations is analyzed from the perspective provided by these results. We propose a systematic framework to the dynamics of capillary jets issued from a nozzle, either by direct injection into a quiescent atmosphere or in a co-flow (e.g. gas flow-focused jets), which exhibit peculiarities now definitely attributable in first order to the formation of shear boundary layers. Partial support from the Ministry of Economy and Competitiveness, Junta de Extremadura, and Junta de Andalucia (Spain) through Grant Nos. DPI2010-21103, GR10047, P08-TEP-04128, and TEP-7465, respectively, is gratefully acknowledged.

  16. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    PubMed

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2 efflux in karst groundwater-fed reservoir was much higher than that of reservoir in non-karst area due to groundwater of DIC-rich input from karst aquifer and thermal stratification.

  17. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  18. Fluorite Ce0.8Sm0.2O2- δ porous layer coating to enhance the oxygen permeation behavior of a BaCo0.7Fe0.2Nb0.1O3- δ mixed conductor

    NASA Astrophysics Data System (ADS)

    Wang, Tai-he; Song, Wei-jia; Li, Rong; Zhen, Qiang

    2016-06-01

    Fluorite Ce0.8Sm0.2O2- δ (SDC) nanopowder with a crystallite size of 15 nm was synthesized by a co-precipitation method. An SDC porous layer was coated onto a BaCo0.7Fe0.2Nb0.1O3- δ (BCFN) mixed conductor to improve its oxygen transport behavior. The results show that the SDC-coated BCFN membrane exhibits a remarkably higher oxygen permeation flux ({J_{{O_2}}}) than the uncoated BCFN in the partial oxidation of coke oven gas (COG). The maximum {J_{{O_2}}} value of the SDC-coated BCFN is 18.28 mL·min-1·cm-2 under a COG/air flux of 177 mL·min-1/353 mL·min-1 at 875°C when the thickness of the BCFN membrane is 1 mm; this {J_{{O_2}}} value is 23% higher than that of the uncoated BCFN membrane. This enhancement is likely because of the higher oxygen ionic conductivity of SDC, which supplies oxygen vacancies and accelerates oxygen exchange on the membrane/coating layer/gas three-phase boundary.

  19. Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Cambaliza, M. O. L.; Shepson, P. B.; Caulton, D. R.; Stirm, B.; Samarov, D.; Gurney, K. R.; Turnbull, J.; Davis, K. J.; Possolo, A.; Karion, A.; Sweeney, C.; Moser, B.; Hendricks, A.; Lauvaux, T.; Mays, K.; Whetstone, J.; Huang, J.; Razlivanov, I.; Miles, N. L.; Richardson, S. J.

    2014-09-01

    Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study the uncertainties in an aircraft-based mass balance approach for quantifying carbon dioxide and methane emissions from an urban environment, focusing on Indianapolis, IN, USA, are described. The relatively level terrain of Indianapolis facilitated the application of mean wind fields in the mass balance approach. We investigate the uncertainties in our aircraft-based mass balance approach by (1) assessing the sensitivity of the measured flux to important measurement and analysis parameters including wind speed, background CO2 and CH4, boundary layer depth, and interpolation technique, and (2) determining the flux at two or more downwind distances from a point or area source (with relatively large source strengths such as solid waste facilities and a power generating station) in rapid succession, assuming that the emission flux is constant. When we quantify the precision in the approach by comparing the estimated emissions derived from measurements at two or more downwind distances from an area or point source, we find that the minimum and maximum repeatability were 12 and 52%, with an average of 31%. We suggest that improvements in the experimental design can be achieved by careful determination of the background concentration, monitoring the evolution of the boundary layer through the measurement period, and increasing the number of downwind horizontal transect measurements at multiple altitudes within the boundary layer.

  20. Improvements to the George/Castillo Boundary Layer Theory

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; George, William K.; Castillo, Luciano

    2000-11-01

    George and Castillo (1997)(George WK and Castillo L (1997) Appl.Mech.Rev.), 50, 12/1, 689-729. presented a new theory for Zero Pressure Gradient Turbulent Boundary Layers based on an application of Near-Asymptotics to scaling laws derived from equilibrium similarity to the Reynolds-averaged equations. The resulting overlap velocity profiles retained a dependence on local Reynolds number, the parameters for which had to satisfy the following constraint equation: ln \\varepsilon fracdγd ln δ^+ = fracdln [C_o/C_i] d ln δ^+ where γ is the power exponent, Co and Ci are the coefficients in inner and outer variables respectively. GC considered only the first term in an asymptotic expansion of the exact solution, but higher order terms can be considered with no increase in the number of unknowns. The improved theory is tested against new experimental Zero Pressure Gradient Turbulent Boundary Layer data of Smith (1994), Oesterlund (1999) and Johansson and Castillo (2000). For the friction law, the first order term is sufficient, but for Co and γ the higher order terms improve the fit to the velocity profiles significantly.

  1. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2012-10-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI) and urban-rural contrasts. Boundary layer heights (BLH) at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL) growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical transport, or in the vicinity of airports due to small errors on the horizontal transport (wind direction). A sensitivity test without urban parameterisation removes UHI and underpredicts nighttime BLH over urban and sub-urban sites, leading to large overestimation of nocturnal CO2 concentration at the sub-urban sites. The agreement of daytime and nighttime BLH and CO2 predictions of the reference simulation over Paris agglomeration demonstrates the potential of using the meso-scale system on urban and sub-urban area in the context of inverse modelling.

  2. Three years of semicontinuous greenhouse gas measurements at the Puy de Dôme station (central France)

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Schmidt, M.; Ramonet, M.; Bonne, J.-L.; Colomb, A.; Kazan, V.; Laj, P.; Pichon, J.-M.

    2015-09-01

    Three years of greenhouse gas measurements, obtained using a gas chromatograph (GC) system located at the Puy de Dôme station at 1465 m a.s.l. in central France, are presented. The GC system was installed in 2010 at Puy de Dôme and was designed for automatic and accurate semicontinuous measurements of atmospheric carbon dioxide, methane, nitrous oxide and sulfur hexafluoride mole fractions. We present in detail the instrumental setup and the calibration strategy, which together allow the GC to reach repeatabilities of 0.1 μmol mol-1, 1.2 nmol mol-1, 0.3 nmol mol-1 and 0.06 pmol mol-1 for CO2, CH4, N2O and SF6, respectively. The analysis of the 3-year atmospheric time series revealed how the planetary boundary layer height drives the mole fractions observed at a mountain site such as Puy de Dôme where air masses alternate between the planetary boundary layer and the free troposphere. Accurate long-lived greenhouse gas measurements collocated with 222Rn measurements as an atmospheric tracer allowed us to determine the CO2, CH4 and N2O emissions in the catchment area of the station. The derived CO2 surface flux revealed a clear seasonal cycle, with net uptake by plant assimilation in the spring and net emission caused by the biosphere and burning of fossil fuel during the remainder of the year. We calculated a mean annual CO2 flux of 1310 ± 680 t CO2 km-2. The derived CH4 and N2O emissions in the station catchment area were 7.0 ± 4.0 t CH4 km-2 yr-1 and 1.8 ± 1.0 t N2O km-2 yr-1, respectively. Our derived annual CH4 flux is in agreement with the national French inventory, whereas our derived N2O flux is 5 times larger than the same inventory.

  3. Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.

    2011-01-01

    The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.

  4. Winter crop CO2 uptake inferred from CONTRAIL measurements over Delhi, India

    NASA Astrophysics Data System (ADS)

    Umezawa, Taku; Niwa, Yosuke; Sawa, Yousuke; Machida, Toshinobu; Matsueda, Hidekazu

    2016-11-01

    Recent studies have shown the impact of expanding agricultural activities on atmospheric CO2 variations and the global carbon cycle. In this study, we show clear evidence of the measureable impact of Indian wintertime crops (mainly wheat) on the regional carbon budget using high-frequency atmospheric CO2 measurements by Comprehensive Observation Network for Trace gases by Airliners (CONTRAIL) over Delhi; this phenomenon is not detected by the existing network of surface CO2 sites. While a general increase in the vertical profiles of CO2 toward the ground in the boundary layer was observed throughout December-April, we frequently observed sharp decreases below 2 km during January-March. Seasonal circulations during these 3 months indicated influences from neighboring croplands (with patchy urban areas) located upwind. We conclude that the observed CO2 decrease is attributable to active uptake by the crops grown in winter and that the uptake exceeds in magnitude the urban CO2 emissions from the Delhi metropolitan area.

  5. Verification of a One-Dimensional Model of CO2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station

    NASA Astrophysics Data System (ADS)

    Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders

    2018-02-01

    A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.

  6. Verification of a One-Dimensional Model of CO2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station

    NASA Astrophysics Data System (ADS)

    Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders

    2018-07-01

    A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.

  7. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2013-05-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI) with stronger urban-rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH) have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m), leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL) growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A sensitivity test without urban parameterisation removes the UHI and underpredicts nighttime BLH over urban and suburban sites, leading to large overestimation of nocturnal CO2 mixing ratio at the suburban sites (bias of +17 ppm). The agreement between observation and prediction for BLH and CO2 concentrations and urban-rural increments, both day and night, demonstrates the potential of using the urban mesoscale system in the context of inverse modelling

  8. Turbulence radiation coupling in boundary layers of heavy-duty diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sircar, Arpan; Paul, Chandan; Ferreyro-Fernandez, Sebastian

    The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on the most recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating pressures and exhaust-gas recirculation levels typical of modern heavy-duty compression-ignition engines, radiative emissionmore » can be as high as 40% of the wall heat losses, that molecular gas radiation (mainly CO2 and H2O) can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation not only contributes to heat losses, but also changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number.« less

  9. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  10. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    NASA Astrophysics Data System (ADS)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  11. Effect of canopy and topography induced wakes on land-atmosphere fluxes of momentum and scalars

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porté-Agel, F.; Stefan, H. G.

    2012-04-01

    Wakes shed from natural and anthropogenic landscape features affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases (e.g. CO2). Canopies and bluff bodies, such as forests, buildings and topography, cause boundary layer flow separation, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances (>100 typical length scales) and affect a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere models, and little is known about how heterogeneity of wake-generating features affect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous flow requirements for the standard eddy correlation (EC) method. This phenomenon, often referred to as wind sheltering, has been shown to affect momentum and kinetic energy fluxes at the lake-atmosphere interface (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using particle image velocimetry (PIV) and custom x-wire/cold-wire anemometry, to understand how the physical structure of upstream bluff bodies and porous canopies as well as how thermal stability affect the flow separation zone, boundary layer recovery and surface fluxes. We have found that there is a nonlinear relationship between canopy length/porosity and flow separation downwind of a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for the EC measurements over open fields, lakes, and wetlands. Key words: Atmospheric boundary layer; Wakes; Stratification; Land-Atmosphere Parameterization; Canopy

  12. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  13. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    NASA Astrophysics Data System (ADS)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  14. Linking Dynamics of the Near-surface Flow to Deeper Boundary Layer Forcing in the Nocturnal Boundary Layer

    DTIC Science & Technology

    2012-06-01

    Kaimal and Finnigan (1994), modified) Figure 2.2 illustrates the evolution from unstable CBL to a nocturnal Stable Bound- ary Layer ( SBL ) in the absence...mixed layer acts as a cap for the SBL . The SBL persists through the night until sunrise when surface heating resumes and a new unstable layer begins...to form at the surface, gradually returning to a CBL. 7 2.2.1 Dynamics of the stable boundary layer Because the SBL is stably stratified, buoyancy

  15. Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.; Haner, D. A.

    1984-01-01

    Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-micron wavelengths, are described. Vertical profiles of the volume backscatter coefficient beta have been measured to a 10-km altitude over the Pasadena, CA, region. These measurements indicate a wide range of variability in beta both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in beta at the 9.25-micron wavelength compared with beta at the 10.6-micron wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.

  16. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  17. Retrieval of Paris CO2 and CO emissions using a boundary layer budget method in the framework of the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Dieudonné, E.; Gibert, F.; Xueref-remy, I. C.; Lopez, M.; Schmidt, M.; Ravetta, F.

    2012-12-01

    The development of anthropogenic activities since the pre-industrial era has greatly increased CO2 concentrations in the atmosphere, very likely causing the observed rise in global temperature. Therefore, accurate estimations of CO2 emission fluxes are very important for climate predictions. At the continental scale, CO2 fluxes can be estimated rather precisely using inverse modeling while tower turbulent flux measurements (eddy-covariance or EC) can provide an estimation of local-scale fluxes. However, this method cannot be applied to monitor urban CO2 emissions due to their large horizontal variability, so that a regional scale approach seems more suited. Unfortunately, at this scale, anthropogenic and biospheric fluxes are mixed, diluted and advected in the atmospheric boundary-layer (ABL) and the balance between these processes is not well known. Yet, independent estimations of CO2 fluxes would be needed to verify existing high resolution emission inventories and assess the efficiency of future mitigation policies. Several experiments dedicated to quantifying CO2 emissions from megacities are ongoing, like the CO2-MEGAPARIS research project [a,b]. In this framework, a network of lidars and in-situ sensors has been set up in Paris region. An original ABL mass budget method is used to infer the properties of advected anthropogenic CO2 and CO emissions from Paris urban area [c]. The method is applied in the center of Paris, at neighboring suburban sites located 20 km away, and at a rural station (100 km downwind). The budget uses ABL depths from elastic lidars, CO2 and CO concentrations from both the ICOS [d] and CO2-MEGAPARIS networks to quantify vertical advection and storage terms in the ABL mass budget. EC measurements are used to monitor biospheric surface fluxes. The budget in Paris provides a direct estimation of the average CO2 and CO fluxes from the city, while the budget at the suburban and rural stations provides an estimation of the advected fluxes. These anthropogenic fluxes are compared to the CITEPA and IER emission inventories using the air mass footprint from a Lagrangian Particle Dispersion Model in backward mode. Results from a case study in March 2012 are presented to assess the propagation of Paris CO2 and CO plume, the precision of the method and its ability to provide an independent verification of urban emission inventories. References: [a] Xueref-Remy et al., Abstract n°A13F-0277, AGU Fall Meeting 2010, San Francisco, USA [b] http://co2-megaparis.lsce.ipsl.fr/ [c] Gibert et al., J. Geophys. Research, 112, D10301 (2007) [d] http://www.icos-infrastructure.eu/

  18. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow.

    PubMed

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-12-08

    An experimental investigation of sonic air, CO 2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO 2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.

  19. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  20. Improved quantification of CO2 emission at Campi Flegrei by combined Lagrangian Stochastic and Eulerian dispersion modelling

    NASA Astrophysics Data System (ADS)

    Pedone, Maria; Granieri, Domenico; Moretti, Roberto; Fedele, Alessandro; Troise, Claudia; Somma, Renato; De Natale, Giuseppe

    2017-12-01

    This study investigates fumarolic CO2 emissions at Campi Flegrei (Southern Italy) and their dispersion in the lowest atmospheric boundary layer. We innovatively utilize a Lagrangian Stochastic dispersion model (WindTrax) combined with an Eulerian model (DISGAS) to diagnose the dispersion of diluted gas plumes over large and complex topographic domains. New measurements of CO2 concentrations acquired in February and October 2014 in the area of Pisciarelli and Solfatara, the two major fumarolic fields of Campi Flegrei caldera, and simultaneous measurements of meteorological parameters are used to: 1) test the ability of WindTrax to calculate the fumarolic CO2 flux from the investigated sources, and 2) perform predictive numerical simulations to resolve the mutual interference between the CO2 emissions of the two adjacent areas. This novel approach allows us to a) better quantify the CO2 emission of the fumarolic source, b) discriminate ;true; CO2 contributions for each source, and c) understand the potential impact of the composite CO2 plume (Pisciarelli ;plus; Solfatara) on the highly populated areas inside the Campi Flegrei caldera.

  1. Analysis of Geologic Parameters on the Performance of CO2-Plume Geothermal (CPG) Systems in a Multi-Layered Reservoirs

    NASA Astrophysics Data System (ADS)

    Garapati, N.; Randolph, J.; Saar, M. O.

    2013-12-01

    CO2-Plume Geothermal (CPG) involves injection of CO2 as a working fluid to extract heat from naturally high permeable sedimentary basins. The injected CO2 forms a large subsurface CO2 plume that absorbs heat from the geothermal reservoir and eventually buoyantly rises to the surface. The heat density of sedimentary basins is typically relatively low.However, this drawback is likely counteracted by the large accessible volume of natural reservoirs compared to artificial, hydrofractured, and thus small-scale, reservoirs. Furthermore, supercritical CO2has a large mobility (inverse kinematic viscosity) and expansibility compared to water resulting in the formation of a strong thermosiphon which eliminates the need for parasitic pumping power requirements and significantly increasing electricity production efficiency. Simultaneously, the life span of the geothermal power plant can be increased by operating the CPG system such that it depletes the geothermal reservoir heat slowly. Because the produced CO2 is reinjected into the ground with the main CO2 sequestration stream coming from a CO2 emitter, all of the CO2 is ultimately geologically sequestered resulting in a CO2 sequestering geothermal power plant with a negative carbon footprint. Conventional geothermal process requires pumping of huge amount of water for the propagation of the fractures in the reservoir, but CPG process eliminates this requirement and conserves water resources. Here, we present results for performance of a CPG system as a function of various geologic properties of multilayered systemsincludingpermeability anisotropy, rock thermal conductivity, geothermal gradient, reservoir depth and initial native brine salinity as well as spacing between the injection and production wells. The model consists of a 50 m thick, radially symmetric grid with a semi-analytic heat exchange and no fluid flow at the top and bottom boundaries and no fluid and heat flow at the lateral boundaries. We design Plackett-Burman experiments resulting in 16 simulations for the seven parameters investigated. The reservoir is divided into 3-, 4-, or 5- layer systems with log-normal permeability distributions. We consider 10 sets of values for each case resulting in a total of 16x3x10 =480 simulations.We analyze the performance of the system to maximize the amount of heat energy extracted, minimize reservoir temperature depletion and maximize the CO2concentration in the produced fluid. Achieving the latter objective reduces power system problems as Welch and Boyle (GRC Trans. 2009) found that CO2 concentration should be >94% in the systems they investigated.

  2. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    NASA Astrophysics Data System (ADS)

    Letellier, F.; Lechevallier, L.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-01

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  3. Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland.

    PubMed

    Raudina, T V; Loiko, S V; Lim, A; Manasypov, R M; Shirokova, L S; Istigechev, G I; Kuzmina, D M; Kulizhsky, S P; Vorobyev, S N; Pokrovsky, O S

    2018-09-01

    Soil pore waters are a vital component of the ecosystem as they are efficient tracers of mineral weathering, plant litter leaching, and nutrient uptake by vegetation. In the permafrost environment, maximal hydraulic connectivity and element transport from soils to rivers and lakes occurs via supra-permafrost flow (i.e. water, gases, suspended matter, and solutes migration over the permafrost table). To assess possible consequences of permafrost thaw and climate warming on carbon and Green House gases (GHG) dynamics we used a "substituting space for time" approach in the largest frozen peatland of the world. We sampled stagnant supra-permafrost (active layer) waters in peat columns of western Siberia Lowland (WSL) across substantial gradients of climate (-4.0 to -9.1°C mean annual temperature, 360 to 600mm annual precipitation), active layer thickness (ALT) (>300 to 40cm), and permafrost coverage (sporadic, discontinuous and continuous). We analyzed CO 2 , CH 4 , dissolved carbon, and major and trace elements (TE) in 93 soil pit samples corresponding to several typical micro landscapes constituting the WSL territory (peat mounds, hollows, and permafrost subsidences and depressions). We expected a decrease in intensity of DOC and TE mobilization from soil and vegetation litter to the supra-permafrost water with increasing permafrost coverage, decreasing annual temperature and ALT along a latitudinal transect from 62.3°N to 67.4°N. However, a number of solutes (DOC, CO 2 , alkaline earth metals, Si, trivalent and tetravalent hydrolysates, and micronutrients (Mn, Co, Ni, Cu, V, Mo) exhibited a northward increasing trend with highest concentrations within the continuous permafrost zone. Within the "substituting space for time" climate change scenario and northward shift of the permafrost boundary, our results suggest that CO 2 , DOC, and many major and trace elements will decrease their concentration in soil supra-permafrost waters at the boundary between thaw and frozen layers. As a result, export of DOC and elements from peat soil to lakes and rivers of the WSL (and further to the Arctic Ocean) may decrease. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Pitot-probe displacement in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  5. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  6. Airborne observation of mixing across the entrainment zone during PARADE 2011

    NASA Astrophysics Data System (ADS)

    Berkes, Florian; Hoor, Peter; Bozem, Heiko; Kunkel, Daniel; Sprenger, Michael; Henne, Stephan

    2016-05-01

    This study presents the analysis of the structure and air mass characteristics of the lower atmosphere during the field campaign PARADE (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) on Mount Kleiner Feldberg in southwestern Germany during late summer 2011. We analysed measurements of meteorological variables (temperature, moisture, pressure, wind speed and direction) from radio soundings and of chemical tracers (carbon dioxide, ozone) from aircraft measurements. We focus on the thermodynamic and dynamic properties that control the chemical distribution of atmospheric constituents in the boundary layer. We show that the evolution of tracer profiles of CO2 and O3 indicate mixing across the inversion layer (or entrainment zone). This finding is supported by the analysis of tracer-tracer correlations which are indicative for mixing and the relation of tracer profiles in relation to the evolution of the boundary layer height deduced from radio soundings. The study shows the relevance of entrainment processes for the lower troposphere in general and specifically that the tracer-tracer correlation method can be used to identify mixing and irreversible exchange processes across the inversion layer.

  7. Photochemistry of biogenic emissions over the Amazon forest

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Wofsy, Steven C.

    1988-01-01

    The boundary layer chemistry over the Amazon forest during the dry season is simulated with a photochemical model. Results are in good agreement with measurements of isoprene, NO, ozone, and organic acids. Photochemical reactions of biogenic isoprene and NOx can supply most of the ozone observed in the boundary layer. Production of ozone is very sensitive to the availability of NOx, but is insensitive to the isoprene source strength. High concentrations of total odd nitrogen (NOy) are predicted for the planetary boundary layer, about 1 ppb in the mixed layer and 0.75 ppb in the convective cloud layer. Most of the odd nitrogen is present as PAN-type species, which are removed by dry deposition to the forest. The observed daytime variations of isoprene are explained by a strong dependence of the isoprene emission flux on sun angle. Nighttime losses of isoprene exceed rates of reaction with NO3 and O3 and appear to reflect dry-deposition processes. The 24-hour averaged isoprene emission flux is calculated to be 38 mg/sq m per day. Photooxidation of isoprene could account for a large fraction of the CO enrichment observed in the boundary layer under unpolluted conditions and could constitute an important atmospheric source of formic acid, methacrylic acid, and pyruvic acid.

  8. Constraining magma ascent and degassing paths with olivine- and clinopyroxene-hosted melt inclusions: Evidence for multiple depths of crystallization and boundary-layer entrapment

    NASA Astrophysics Data System (ADS)

    Lloyd, A. S.; Newcombe, M. E.; Plank, T. A.

    2016-12-01

    Although olivine-hosted melt inclusions (MIs) remain the gold standard for recovering volatile concentrations of primitive magmas, later-fractionating minerals may be more appropriate for assessing magma storage conditions immediately prior to eruption. We present volatile analyses of MIs entrapped in early (Mg# 81-83) olivine and later (Mg# 70-80) clinopyroxene (Cpx) from the 1977 eruption of Seguam volcano, to assess the ascent history prior to this violent strombolian eruption. The olivine-hosted MIs contain average volatile concentrations (n=16) of 3.79 wt% H2O, 167 ppm CO2, 592 ppm Cl, and 133 ppm F, consistent with an entrapment pressure of 200 to 300 MPa ( 10-13 km depth) if the CO2 contained in the bubble is taken into account (Moore et al., 2015). Cpx phenocrysts contain two distinct MI assemblages; the inner assemblage consists of randomly distributed, rounded MIs which never contain a vapor bubble. Average volatile concentrations of the inner assemblage MIs (n=11) are 0.96 wt% H2O, 98 ppm CO2, 798 ppm Cl, and 280 ppm F, consistent with an entrapment at much shallower depth, 2 km. The outer assemblage contains inclusions too small for routine volatile analysis. Inner assemblage Cpx-hosted MIs preserve average enrichments of 1.3x and 2x for Cl and F respectively, and are similarly enriched in incompatible minor and trace elements (up to a factor of 5x). Two potential scenarios can explain these observations. The enrichments may represent the entrapment of an unrelated highly-fractionated, shallow magma (which is unsupported by the whole rock record at Seguam). A second possibility is enrichment through boundary layer entrapment during a period of rapid crystal growth during ascent through the upper crust. Boundary layer entrapment during MI formation is further supported by a negative correlation between the degree of enrichment and the diffusivity of individual elements, which is consistent with growth rates 10-8 m/s. Although the olivine-hosted MIs record a volatile-rich storage region, the later-fractionating Cpx indicate a phase of rapid crystallization, likely driven by water loss from the melt at shallow depths. This work highlights the information added by analyzing multiple phases in order to reconstruct the degassing path of magma prior to eruption.

  9. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; hide

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  10. Benthic metabolic feedbacks to carbonate chemistry on coral reefs:implications for ocean acidification

    NASA Astrophysics Data System (ADS)

    Price, N.; Rohwer, F. L.; Stuart, S. A.; Andersson, A.; Smith, J.

    2012-12-01

    The metabolic activity of resident organisms can cause spatio-temporal variability in carbonate chemistry within the benthic boundary layer, and thus potentially buffer the global impacts of ocean acidification. But, little is known about the capacity for particular species assemblages to contribute to natural daily variability in carbonate chemistry. We encapsulated replicate areas (~3m2) of reef across six Northern Line Islands in the central Pacific for 24 hrs to quantify feedbacks to carbonate chemistry within the benthic boundary layer from community metabolism. Underneath each 'tent', we quantified relative abundance and biomass of each species of corals and algae. We coupled high temporal resolution time series data on the natural diurnal variability in pH, dissolved oxygen, salinity, and temperature (using autonomous sensors) with resident organisms' net community calcification and productivity rates (using change in total dissolved carbon and total alkalinity over time) to examine feedbacks from reef metabolism to boundary layer carbonate chemistry. These reefs experienced large ranges in pH (> 0.2 amplitude) each day, similar to the magnitude of 'acidification' expected over the next century. Daily benthic pH, pCO2, and aragonite saturation state (Ωaragonite) were contrasted with seasonal threshold values estimated from open ocean climatological data extrapolated at each island to determine relative inter-island feedbacks. Diurnal amplitude in pH, pCO2, and Ωaragonite at each island was dependent upon the resident species assemblage of the benthos and was particularly reliant upon the biomass, productivity, and calcification rate of Halimeda. Net primary productivity of fleshy algae (algal turfs and Lobophora spp.) predominated on degraded, inhabited islands where net community calcification was negligible. In contrast, the chemistry over reefs on 'pristine', uninhabited islands was driven largely by net calcification of calcareous algae and stony corals. Knowledge about species specific physiological rates and relative abundances of key taxa whose metabolism significantly alters carbonate chemistry may give insight to the ability for a reef to buffer against or exacerbate ocean acidification.

  11. The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells

    DOE PAGES

    Xu, Feng; Zhu, Kai; Zhao, Yixin

    2016-10-10

    Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less

  12. The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Feng; Zhu, Kai; Zhao, Yixin

    Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less

  13. Enhanced adsorption of Co atoms on grain boundary of boron nitride

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Chen, Guibin; Zhu, Liyan

    2017-11-01

    Structural, energetic, electronic, and magnetic properties of Co monomer, dimer, and trimer adsorbed on a single-layer boron nitride (BN) with a grain boundary (GB) consisting of tetragons and octagons ( 4|8) are theoretically explored via density functional calculations. Due to the presence of 4|8 GB, the adsorption energies (EAs) of small Co clusters are generally enhanced by 10% as compared with those adsorbed on pristine BN, e.g., the EA of Co monomer, and dimer increase by 0.1 eV on a global amount of 0.87 eV, and 0.2 eV for the case of Co trimer. Most interestingly, the increase in adsorption energy exhibits a strong correlation to the number of atoms directly bonded to the substrate. The enhanced binding of Co adatom on the BN with 4|8 GBs ( BN 48 ) is due to the strong hybridization of d orbitals of Co adatom and the localized defect states at the 4|8 GBs. However, the GBs have negligible influence on the electronic and magnetic properties of adsorbates. Hence, the two-dimensional (2D) nanosheets with linear GBs might be a better candidate for anchoring the transition metal atoms than pristine BN. Such a strategy may also be applied to other 2D materials, e.g., MoS2 and phosphorene, to enhance the binding of adatom on them, or to utilize them as 1D templates to assemble transition metal atoms into nanowires.

  14. Multiple Flux Footprints, Flux Divergences and Boundary Layer Mixing Ratios: Studies of Ecosystem-Atmosphere CO2 Exchange Using the WLEF Tall Tower.

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Bakwin, P. S.; Yi, C.; Cook, B. D.; Wang, W.; Denning, A. S.; Teclaw, R.; Isebrands, J. G.

    2001-05-01

    Long-term, tower-based measurements using the eddy-covariance method have revealed a wealth of detail about the temporal dynamics of netecosystem-atmosphere exchange (NEE) of CO2. The data also provide a measure of the annual net CO2 exchange. The area represented by these flux measurements, however, is limited, and doubts remain about possible systematic errors that may bias the annual net exchange measurements. Flux and mixing ratio measurements conducted at the WLEF tall tower as part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS) allow for unique assessment of the uncertainties in NEE of CO2. The synergy between flux and mixing ratio observations shows the potential for comparing inverse and eddy-covariance methods of estimating NEE of CO2. Such comparisons may strengthen confidence in both results and begin to bridge the huge gap in spatial scales (at least 3 orders of magnitude) between continental or hemispheric scale inverse studies and kilometer-scale eddy covariance flux measurements. Data from WLEF and Willow Creek, another ChEAS tower, are used to estimate random and systematic errors in NEE of CO2. Random uncertainty in seasonal exchange rates and the annual integrated NEE, including both turbulent sampling errors and variability in enviromental conditions, is small. Systematic errors are identified by examining changes in flux as a function of atmospheric stability and wind direction, and by comparing the multiple level flux measurements on the WLEF tower. Nighttime drainage is modest but evident. Systematic horizontal advection occurs during the morning turbulence transition. The potential total systematic error appears to be larger than random uncertainty, but still modest. The total systematic error, however, is difficult to assess. It appears that the WLEF region ecosystems were a small net sink of CO2 in 1997. It is clear that the summer uptake rate at WLEF is much smaller than that at most deciduous forest sites, including the nearby Willow Creek site. The WLEF tower also allows us to study the potential for monitoring continental CO2 mixing ratios from tower sites. Despite concerns about the proximity to ecosystem sources and sinks, it is clear that boundary layer CO2 mixing ratios can be monitored using typical surface layer towers. Seasonal and annual land-ocean mixing ratio gradients are readily detectable, providing the motivation for a flux-tower based mixing ratio observation network that could greatly improve the accuracy of inversion-based estimates of NEE of CO2, and enable inversions to be applied on smaller temporal and spatial scales. Results from the WLEF tower illustrate the degree to which local flux measurements represent interannual, seasonal and synoptic CO2 mixing ratio trends. This coherence between fluxes and mixing ratios serves to "regionalize" the eddy-covariance based local NEE observations.

  15. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  16. An analytical model for the distribution of CO2 sources and sinks, fluxes, and mean concentration within the roughness sub-layer

    NASA Astrophysics Data System (ADS)

    Siqueira, M. B.; Katul, G. G.

    2009-12-01

    A one-dimensional analytical model that predicts foliage CO2 uptake rates, turbulent fluxes, and mean concentration throughout the roughness sub-layer (RSL), a layer that extends from the ground surface up to 5 times the canopy height (h), is proposed. The model combines the mean continuity equation for CO2 with first-order closure principles for turbulent fluxes and simplified physiological and radiative transfer schemes for foliage uptake. This combination results in a second-order ordinary differential equation in which it is imposed soil respiration (RE) as lower and CO2 concentration well above the RSL as upper boundary conditions. An inverse version of the model was tested against data sets from two contrasting ecosystems: a tropical forest (TF, h=40 m) and a managed irrigated rice canopy (RC, h=0.7 m) - with good agreement noted between modeled and measured mean CO2 concentration profiles within the entire RSL (see figure). Sensitivity analysis on the model parameters revealed a plausible scaling regime between them and a dimensionless parameter defined by the ratio between external (RE) and internal (stomatal conductance) characteristics controlling the CO2 exchange process. The model can be used to infer the thickness of the RSL for CO2 exchange, the inequality in zero-plane displacement between CO2 and momentum, and its consequences on modeled CO2 fluxes. A simplified version of the solution is well suited for being incorporated into large-scale climate models. Furthermore, the model framework here can be used to a priori estimate relative contributions from the soil surface and the atmosphere to canopy-air CO2 concentration thereby making it synergetic to stable isotopes studies. Panels a) and c): Profiles of normalized measured leaf area density distribution (a) for TF and RC, respectively. Continuous lines are the constant a used in the model and dashed lines represent data-derived profiles. Panels b) and d) are modeled and ensemble-averaged measured CO2 profiles reference to the uppermost measured point for TF and RC, respectively.

  17. Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte

    NASA Astrophysics Data System (ADS)

    Hongahally Basappa, Rajendra; Ito, Tomoko; Morimura, Takao; Bekarevich, Raman; Mitsuishi, Kazutaka; Yamada, Hirotoshi

    2017-09-01

    Garnet-type solid electrolytes are one of key materials to enable practical usage of lithium metal anode for high-energy-density batteries. However, it suffers from lithium growth in pellets on charging, which causes short circuit. In this study, grain boundaries of Li6.5La3Zr1.5Ta0.5O12 (LLZT) pellets are modified with Li2CO3 and LiOH to investigate the influence of the microstructure of grain boundaries on lithium growth and to study the mechanism of the lithium growth. In spite of similar properties (relative density of ca. 96% and total ionic conductivity of 7 × 10-4 S cm-1 at 25 °C), the obtained pellets exhibit different tolerance on the short circuit. The LLZT pellets prepared from LiOH-modified LLZT powders exhibit rather high critical current density of 0.6 mA cm-2, at which short circuit occurs. On the other hand, the LLZT pellets without grain boundary modification short-circuited at 0.15 mA cm-2. Microstructural analyses by means of SEM, STEM and EIS suggest that lithium grows through interconnected open voids, and reveal that surface layers such as Li2CO3 and LiOH are not only plug voids but also facilitate the sintering of LLZT to suppress the lithium growth. The results indicate a strategy towards short-circuit-free lithium metal batteries.

  18. Internal and external 2-d boundary layer flows

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.

    1978-01-01

    Computer program computes general two dimensional turbulent boundary-layer flow using finite-difference techniques. Structure allows for user modification to accommodate unique problems. Program should prove useful in many applications where accurate boundary-layer flow calculations are required.

  19. Overview of Lidar Contributions to the Atmospheric Carbon and Transport - America (ACT-America) Program

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Meadows, B.; Barrick, J. D. W.; Bell, E.; Browell, E. V.; Campbell, J. F.; DiGangi, J. P.; Chen, G.; Dobler, J. T.; Fan, T. F.; Feng, S.; Fried, A.; Kooi, S. A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Pal, S.; Pauly, R.; Sweeney, C.; Yang, M. Y.

    2017-12-01

    The Atmospheric Carbon and Transport - America (ACT-America) is an Earth Venture Suborbital -2 (EVS-2) mission sponsored by the Earth Science Division of NASA's Science Mission Directorate. A major objective is to enhance our knowledge of the sources/sinks and transport of atmospheric CO2 through the application of remote and in situ airborne measurements of CO2 and other atmospheric properties on spatial and temporal scales not previously available to the science community. ACT-America consists of five campaigns to measure regional carbon and evaluate transport under various meteorological conditions in three regional areas of the Continental United States. Three of the five campaigns, summer 2016, winter 2017, and fall 2017, have taken place. Data have been collected during these campaigns using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with in-situ instruments on both aircraft and three lidar systems on the C-130, along with instrumented towers and coordinated under flights with the Orbiting Carbon Observatory (OCO-2) satellite. The lidar systems include the Harris Corp. Multi-Frequency Fiber Laser Lidar (MFLL), the NASA Langley ASCENDS CarbonHawk Experiment Simulator (ACES) and the Goddard Cloud Physics Laboratory (CPL). The airborne lidars provide unique data that complement the more traditional in situ sensors. Lidar CO2 measurements provide integrated views of spatial variations of partial columns of atmospheric CO2 which can be adjusted to the column of scientific interest by changing flight altitudes. Lidar backscatter data provide detailed views of atmospheric layers, including the atmospheric boundary layer, residual layers, and cloud layers. The combination of these two lidars provide a far more comprehensive view of atmospheric structure and CO2 content than can be achieved with in situ measurements alone. This presentation provides an overview of the application of these three lidar systems toward achieving ACT-America's scientific objectives.

  20. The influence of vegetation and relief heterogeneity on turbulent exchange of CO2 between land surface and the atmosphere

    NASA Astrophysics Data System (ADS)

    Mukhartova, Juliya; Levashova, Natalia; Volkova, Elena; Olchev, Alexander

    2016-04-01

    The possible effect of spatial heterogeneity of vegetation cover and relief on horizontal and vertical turbulent exchange of CO2 was described using a process-based two-dimensional (2D) turbulent exchange models (Mukhartova et al. 2015). As a key area for this modeling study the hilly territory situated at the boundary between broadleaf forest and steppe zones in European part of Russia (Tula region) was selected. The vegetation cover in the study region is represented by complex mosaic of crop areas, grasslands, pastures, mires and groves. The very heterogeneous vegetation cover and complex dissected relief make very difficult an adequate determining the local and regional CO2 fluxes using experimental methods only. The two-dimensional model based on solution of the Navier-Stokes and continuity equations using well-known one-and-a-half order (TKE) closure scheme is applied. For description of the plant canopy photosynthesis and respiration rates the model uses an aggregated approach based on the model of Ball et al (1987) in Leuning modification (1990, 1995), the Beer-Lambert equation for the description of solar radiation penetration within a plant canopy (Monsi, Saeki 1953), and also an algorithm describing the response of stomatal conductance of the leaves to incoming photosynthetically active radiation. All necessary input parameters describing the photosynthesis and respiration properties of different plants and soil types in the study region were measured in the field or taken from the literature. The system of differential equations in the model is numerically solved by the finite-difference method. It is assumed that the influence of ground surface heterogeneities at the upper boundary of computing domain is very low and the pressure excess can be therefore considered as zero. The concentration of CO2 at the upper boundary of computing domain is assumed to be equal to some background value. It is also assumed that all boundaries between different vegetation and land-use types are situated far enough from the domain boundaries. It enabled us to assume that near these boundaries the values of vertical and horizontal wind components are independent on x coordinate. To quantify the possible effects of relief and vegetation heterogeneity on CO2 fluxes the three transects crossing the study area were chosen. For each transect the 2D patterns of wind speed components, turbulent exchange coefficients, CO2 concentrations and fluxes were calculated. The modeled vertical CO2 fluxes were compared with the fluxes calculated without allowing for turbulent disturbances due to relief and vegetation heterogeneity. All modeling experiments were provided for different weather conditions. The results of modeling experiments for different transects under various meteorological conditions showed that relief and vegetation heterogeneity have a significant impact on CO2 fluxes within the atmospheric surface layer and their ignoring can results in uncertainties in flux estimations. This study was supported by the Russian Science Foundation (Grant 14-14-00956).

  1. Electron transport and thermoelectric properties of layered perovskite LaBaCo(2)O(5.5).

    PubMed

    Kundu, Asish K; Raveau, B; Caignaert, V; Rautama, E-L; Pralong, V

    2009-02-04

    We have investigated systematically the physical transport properties of layered 112-type cobaltite by means of electrical resistivity, magnetoresistance and thermopower measurements. In order to understand the complex transport mechanism of LaBaCo(2)O(5.5), the data have been analysed using different theoretical models. The compound shows an electronic transition between two semiconducting states around 326 K, which coincides with the ferromagnetic transition. Interestingly, the system also depicts a significant magnetoresistance (MR) effect near the ferro/antiferromagnetic phase boundary and the highest value of MR is close to 5% at 245 K under ± 7 T. The temperature dependence of thermopower, S(T), exhibits p-type conductivity in the 60 K≤T≤320 K range and reaches a maximum value of around 303 µV K(-1) (at 120 K). In the low temperature antiferromagnetic region the unusual S(T) behaviour, generally observed for the cobaltite series LnBaCo(2)O(5.5) (Ln = rare earth), is explained by the electron magnon scattering mechanism.

  2. Geochemistry of K/T boundaries in India and contributions of Deccan volcanism

    NASA Technical Reports Server (NTRS)

    Bhandari, N.; Gupta, M.; Pandey, J.; Shukla, P. N.

    1988-01-01

    Three possible Cretaceous/Tertiary (K/T) boundary sections in the Indian subcontinent were studied for their geochemical and fossil characteristics. These include two marine sections of Meghalaya and Zanskar and one continental section of Nagpur. The Um Sohryngkew river section of Meghalaya shows a high iridium, osmium, iron, cobalt, nickel and chromium concentration in a 1.5 cm thick limonitic layer about 30 cm below the planktonic Cretaceous-Palaeocene boundary identified by the characteristic fossils. The Bottaccione and Contessa sections at Gubbio were also analyzed for these elements. The geochemical pattern at the boundary at the Um Sohryngkew river and Gubbio sections are similar but the peak concentrations and the enrichment factors are different. The biological boundary is not as sharp as the geochemical boundary and the extinction appears to be a prolonged process. The Zanskar section shows, in general, similar concentration of the siderophile, lithophile and rare earth elements but no evidence of enrichment of siderophiles has so far been observed. The Takli section is a shallow inter-trappean deposit within the Deccan province, sandwiched between flow 1 and flow 2. The geochemical stratigraphy of the inter-trappeans is presented. The various horizons of ash, clay and marl show concentration of Fe and Co, generally lower than the adjacent basalts. Two horizons of slight enrichment of iridium are found within the ash layers, one near the contact of flow 1 and other near the contact of flow 2, where iridium occurs at 170 and 260 pg/g. These levels are lower by a factor of 30 compared to Ir concentration in the K/T boundary in Meghalaya section. If the enhanced level of some elements in a few horizons of the ash layer are considered as volcanic contribution by some fractionation processes than the only elements for which it occurs are REE, Ir and possibly Cr.

  3. Structure of the low-latitude boundary layer. [in magnetopause

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. OE.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1981-01-01

    High temporal resolution observations of the frontside magnetopause and plasma boundary layer made with the fast plasma analyzer aboard the ISEE 1 and 2 spacecraft are reported. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Periods are included when the thickness is essentially zero and others when it is of the order of 1 earth radius. The duration of these periods is highly variable but is typically in the range of 2-5 min corresponding to a distance along the magnetopuase of approximately 3-8 earth radii. The observed boundary layer features include a steep density gradient at the magnetopause with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer.

  4. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 6, 1976

    DTIC Science & Technology

    1976-06-01

    6 Laser- Powered Rocket Model 1 High- Power CO2 Laser Radiation Effect in SF6 1 Tests With 9-Beam Laser Fusion Systems 1 Focusing Optics For...Boundary Layer 6 Deformation Theory of Artif.cial Muscles . 6 Dolphin Swimming Stereophotogrammetry 7 Stable Spark Gap for High- Power Pulsers 7...8 Resume of Soviet Tokamak Program .............. 9 First Measurements of Tokamak-10 Plasma , . . 10 Electrochemical Power Generation 11

  5. Environmental effects of large impacts on the earth; relation to extinction mechanisms

    NASA Technical Reports Server (NTRS)

    Okeefe, John D.; Ahrens, Thomas J.; Koschny, Detlef

    1988-01-01

    Since Alvarez et al., discovered a worldwide approx. cm-thick layer of fine sediments laden with platinum group elements in approximately chondritic proportions exactly at the Cretaceous-Tertiary (C-T) boundary, and proposed bolide-impact as triggering mass extinctions, many have studied this hypothesis and the layer itself with its associated spherules and shocked quartz. At issue is whether the mass extinctions, and this horizon has an impact versus volcanic origin. A critical feature of the Alvarez hypothesis is the suggestion that the bolide or possibly a shower of objects delivered to the earth approx. 0.6 x 10 to the 18th power g of material which resulted in aerosol-sized ejecta such that global insolation was drastically reduced for significant periods. Such an event would lower temperatures on continents and halt photosynthesis in the upper 200 m of th eocean. The latter would strangle the marine food chain and thus produce the major marine faunal extinctions which mark the C-T boundary. Crucial issues examined include: What are the dynamics of atmospheric flow occurring upon impact of a large bolide with the earth; What is the size distributions of the very fine impact ejecta and how do these compare to the models of ejecta which are used to model the earth's radiative thermal balance. The flow field due to passage of a 10 km diameter bolide through an exponential atmosphere and the interaction of the gas flow and bolide with the solid ear was calculated. The CO2 released upon impact onto shallow marine carbonate sections was modeled and found that the mass of CO2 released exceeds the present 10 to the 18th power g CO2 budget of the earth's atmosphere by several times. Using the calculations of Kasting and Toon it was found that to compute the temperature rise of the earth's surface as a function of CO2 content, it was found that sudden and prolonged global increases are induced from impact of 20 to 50 km radius projectiles and propose that sudden terrestrial greenhouse-induced heating, not cooling, produced the highly variable extinctions seen at the C-T boundary.

  6. Exergy parametric study of carbon monoxide oxidation in moist air

    NASA Astrophysics Data System (ADS)

    Souidi, Ferhat; Benmalek, Toufik; Yesaad, Billel; Baik, Mouloud

    2015-12-01

    This study aims to analyze the oxidation of carbon monoxide in moist air from the second thermodynamic law aspect. A mathematical model of laminar premixed flame in a stagnation point flow has been achieved by numerical solution of the boundary layer equation using a self-made code. The chemical kinetic mechanism for flameless combustion of fuel, which is a mixture of carbon monoxide, oxygen, and water vapor, is modeled by 34 elementary reactions that incorporate (09) nine chemical species: CO, O, CO2, O2, H2O, H, H2, HO2, and OH. The salient point is that for all the parameters we considered, the exergy of the process is completely destroyed by irreversibilities. From the chemical viewpoint, the OH radical plays an essential role in CO oxidation. This latter point has already been mentioned by previous investigators.

  7. Photochemical production of O3 in biomass burning plumes in the boundary layer over northern Australia

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Ko, M.; Koike, M.; Kita, K.; Blake, D. R.; Hu, W.; Scott, C.; Kawakami, S.; Miyazaki, Y.; Russell-Smith, J.; Ogawa, T.

    2003-05-01

    In situ aircraft measurements of ozone (O3) and its precursors were made over northern Australia in August-September 1999 during the Biomass Burning and Lightning Experiment Phase B (BIBLE-B). A clear positive correlation of O3 with carbon monoxide (CO) was found in biomass burning plumes in the boundary layer (<3 km). The ΔO3/ΔCO ratio (linear regression slope of O3-CO correlation) is found to be 0.12 ppbv/ppbv, which is comparable to the ratio of 0.15 ppbv/ppbv observed at 0-4 km over the Amazon and Africa in previous studies. The net flux of O3 exported from northern Australia during BIBLE-B is estimated to be 0.3 Gmol O3/day. In the biomass burning region, large enhancements of O3 were coincident with the locations of biomass burning hot spots, suggesting that major O3 production occurred near fires (horizontal scale <50 km).

  8. Carbon Dioxide Impacts in the Deep-Sea: Is Maintaining a Metabolically Required CO2 Efflux Rate Challenging?

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Hofmann, A. F.; Brewer, P. G.

    2011-12-01

    Increasing ocean acidification from fossil fuel CO2 invasion, from temperature driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Here we describe the rate problem for animals who must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary of marine animals in a changing ocean in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2 - HCO3- - CO3= acid-base system needs to be considered. These reactions appear as an enhancement factor which significantly facilitates CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations. Possibly as an adaptation to this chemical advantage marine animals typically can respond to external CO2 stress simply by metabolic adjustment. This is energetically more favorable than having to resort to mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that the combination of an increase in T combined with declining O2 poses a greater respiratory challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.

  9. Lidar Measurements of Wind, Moisture, and Boundary Layer Evolution in a Dry Line during 1HOP 2002

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Evans, Keith; DiGirolamo, Paolo; Wang, Zhe-In; Whiteman, David; Schwemmer, Geary; Gentry, Bruce; Miller, David; Palm, Stephen

    2002-01-01

    Variability in the convective boundary layer moisture, wind and temperature fields and their importance in the forecasting and understanding of storms have been discussed in the literature. These . variations have been reported in relation to frontal zones, stationary boundaries and during horizontal convective rolls. While all three vary substantially in the convective boundary layer, moisture poses a particular challenge. Moisture or water vapor concentration (expressed as a mass mixing ratio, g/kg), is conserved in all meteorological processes except condensation and evaporation. The water vapor mixing ratio often remains distinct across an air-mass boundary even when the temperature difference is indistinct. These properties make it an ideal choice in visualizing and understanding many of the atmosphere's dynamic features. However, it also presents a unique measurement challenge because water vapor content can vary by more than three orders of magnitude in the troposphere. Characterization of the 3D-distribution of water vapor is also difficult as water vapor observations can suffer from large sampling errors and substantial variability both in the vertical and horizontal. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars. This presentation will focus on the evolution and variability of moisture and wind in the boundary layer during a dry line event that occurred on 22 May 2002. These data sets and analyses are unique in that they combine simultaneous measurements of wind, moisture and CBL structure to study the detailed thermal variability in and around clear air updrafts during a dryline event. It will quantify the variation caused by, in and around buoyant plumes and across a dryline. The data presented here were collected in the panhandle of Oklahoma as part of the International H2O Project (MOP-2002), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. The chief goal of MOP-2002 is to improve characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection

  10. Productivity of a coral reef using boundary layer and enclosure methods

    USGS Publications Warehouse

    McGillis, W.R.; Langdon, C.; Loose, B.; Yates, K.K.; Corredor, Jorge

    2011-01-01

    The metabolism of Cayo Enrique Reef, Puerto Rico, was studied using in situ methods during March 2009. Benthic O2 fluxes were used to calculate net community production using both the boundary layer gradient and enclosure techniques. The boundary layer O2 gradient and the drag coefficients were used to calculate productivity ranging from -12.3 to 13.7 mmol O2 m-2 h-1. Productivity measurements from the enclosure method ranged from -11.0 to 12.9 mmol O2 m-2 h-1. During the study, the mean hourly difference between the methods was 0.65 mmol O2 m-2 h-1 (r2 = 0.92), resulting in well-reconciled estimates of net community production between the boundary layer (-33.1 mmol m-2 d-1) and enclosure (-46.3 mmol m-2 d-1) techniques. The results of these independent approaches corroborate quantified rates of metabolism at Cayo Enrique Reef. Close agreement between methods demonstrates that boundary layer measurements can provide near real-time assessments of coral reef health.

  11. Productivity of a coral reef using boundary layer and enclosure methods

    USGS Publications Warehouse

    McGillis, W.R.; Langdon, C.; Loose, B.; Yates, K.K.; Corredor, J.

    2011-01-01

    The metabolism of Cayo Enrique Reef, Puerto Rico, was studied using in situ methods during March 2009. Benthic O2 fluxes were used to calculate net community production using both the boundary layer gradient and enclosure techniques. The boundary layer O2 gradient and the drag coefficients were used to calculate productivity ranging from -12.3 to 13.7 mmol O 2 m-2 h-1. Productivity measurements from the enclosure method ranged from -11.0 to 12.9 mmol O2 m-2 h-1. During the study, the mean hourly difference between the methods was 0.65 mmol O2 m-2 h-1 (r2 = 0.92), resulting in well-reconciled estimates of net community production between the boundary layer (-33.1 mmol m-2 d-1) and enclosure (-46.3 mmol m-2 d-1) techniques. The results of these independent approaches corroborate quantified rates of metabolism at Cayo Enrique Reef. Close agreement between methods demonstrates that boundary layer measurements can provide near real-time assessments of coral reef health. Copyright ?? 2011 by the American Geophysical Union.

  12. Inventory of File gfs.t06z.smartguam15.tm00.grib2

    Science.gov Websites

    hour fcst Visibility [m] 014 planetary boundary layer WDIR 15 hour fcst Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND 15 hour fcst Wind Speed [m/s] 016 planetary boundary layer RH 15 hour fcst Relative Humidity [%] 017 planetary boundary layer DIST 15 hour fcst Geometric

  13. A gas chromatograph system for semi-continuous greenhouse gas measurements at Puy de Dôme station, Central France

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Schmidt, M.; Ramonet, M.; Bonne, J.-L.; Colomb, A.; Kazan, V.; Laj, P.; Pichon, J.-M.

    2015-03-01

    Three years of greenhouse gases measurements, obtained using a gas chromatograph (GC) system located at the Puy de Dôme station at 1465 m a.s.l. in Central France are presented. The GC system was installed in 2010 at Puy de Dôme and was designed for automatic and accurate semi-continuous measurements of atmospheric carbon dioxide, methane, nitrous oxide and sulfur hexafluoride mole fractions. We present in detail the instrumental set up and the calibration strategy, which together allow the GC to reach repeatabilities of 0.1 μmol mol-1, 1.2, 0.3 nmol mol-1 and 0.06 pmol mol-1 for CO2, CH4, N2O and SF6, respectively. Comparisons of the atmospheric time series with those obtained using other instruments shown that the GC system meets the World Meteorological Organization recommendations. The analysis of the three-year atmospheric time series revealed how the planetary boundary layer height drives the mole fractions observed at a mountain site such as Puy de Dôme where air masses alternate between the planetary boundary layer and the free troposphere. Accurate long-lived greenhouse gases measurements collocated with 222Rn measurements as an atmospheric tracer, allowed us to determine the CO2, CH4 and N2O emissions in the catchment area of the station. The derived CO2 surface flux revealed a clear seasonal cycle with net uptake by plant assimilation in the spring and net emission caused by the biosphere and burning of fossil fuel during the remainder of the year. We calculated a mean annual CO2 flux of 1150 t(CO2) km-2. The derived CH4 and N2O emissions in the station catchment area were 5.6 t(CH4) km-2 yr-1 and 1.5 t(N2O) km-2 yr-1, respectively. Our derived annual CH4 flux is in agreement with the national French inventory, whereas our derived N2O flux is five times larger than the same inventory.

  14. Analyzing the Boundary Thermal Resistance of Epitaxially Grown Fe2VAl/W Layers by Picosecond Time-Domain Thermoreflectance

    NASA Astrophysics Data System (ADS)

    Hiroi, Satoshi; Choi, Seongho; Nishino, Shunsuke; Seo, Okkyun; Chen, Yanna; Sakata, Osami; Takeuchi, Tsunehiro

    2018-06-01

    To gain deep insight into the mechanism of phonon scattering at grain boundaries, we investigated the boundary thermal resistance by using picosecond pulsed-laser time-domain thermoreflectance for epitaxially grown W/Fe2VAl/W films. By using radio-frequency magnetron sputtering, we prepared a series of the three-layer films whose Fe2VAl thickness ranged from 1 nm to 37 nm. The fine oscillation of reflectivity associated with the top W layer clearly appeared in synchrotron x-ray reflectivity measurements, indicating a less obvious mixture of elements at the boundary. The areal heat diffusion time, obtained from the time-domain thermoreflectance signal in the rear-heating front-detection configuration, reduced rapidly in samples whose Fe2VAl layer was thinner than 15 nm. The ˜ 10% mismatch in lattice constant between Fe2VAl and W naturally produced the randomly distributed lattice stress near the boundary, causing an effective increase of boundary thermal resistance in the thick samples, but the stress became homogeneous in the thinner layers, which reduced the scattering probability of phonons.

  15. Small amounts of CO2-H2O-rich melt in the lithosphere-asthenosphere.

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Sifre, David; Hashim, Leila; Hier-Majumder, Saswata

    2014-05-01

    A low viscosity layer at the Lithosphere-Asthenosphere Boundary (LAB) is certainly a requirement for plate tectonics but the nature of the rocks presents in this boundary remains controversial. The seismic low velocities and the high electrical conductivities of the LAB are attributed either to sub-solidus water-related defects in olivine minerals or to a few volume percents of partial melt but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be high enough due to several mineralogical processes that have been so far ignored, including partial melting; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the LAB and by the high melt mobility that can lead to gravitational segregation. All this has long been discussed (30 years ago) when petrologists have defined the petrological LAB as the region of the upper mantle impregnated by incipient melts; that is small amounts of melt caused by small amount of CO2 and H2O. We show here that this incipient melting is a melting regime that is allowed in the entire P-T-fO2 region of the LVZ. The top of the oceanic LVZ (LAB) is best explained by a melt freezing layer due to a decarbonation reaction, whereas the bottom of the LVZ matches the depth at which redox melting defines the lower boundary of stability of incipient melts. Based on new laboratory measurements, we show here that incipient melts must be the cause of the high electrical conductivities in the oceanic LVZ. Considering relevant mantle abundances of H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the LAB for various ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. Incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere.

  16. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data

    NASA Astrophysics Data System (ADS)

    Feng, L.; Palmer, P. I.; Yang, Y.; Yantosca, R. M.; Kawa, S. R.; Paris, J.-D.; Matsueda, H.; Machida, T.

    2010-07-01

    We evaluate the GEOS-Chem atmospheric transport model (v8-02-01) of CO2 over 2003-2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modelling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman filter to estimate a posteriori biospheric+biomass burning (BS+BB) and oceanic (OC) CO2 fluxes from 22 geographical regions, following the TransCom 3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS+BB+OC CO2 fluxes over 2004-2006 for GEOS-4 (GEOS-5) meteorology are -4.4±0.9 (-4.2±0.9), -3.9±0.9 (-4.5±0.9), and -5.2±0.9 (-4.9±0.9) Pg C yr-1 , respectively. The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992-1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5) a posteriori CO2 concentrations reproduce the observed surface trend of 1.91-2.43 ppm yr-1, depending on latitude, within 0.15 ppm yr-1 (0.2 ppm yr-1) and the seasonal cycle within 0.2 ppm (0.2 ppm) at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper troposphere but can be biased by up to 4-5 ppm in the boundary layer at the start and end of the growing season. The model has a small negative bias in the free troposphere CO2 trend (1.95-2.19 ppm yr-1) compared to AIRS data which has a trend of 2.21-2.63 ppm yr-1 during 2004-2006, consistent with surface data. Model CO2 concentrations in the upper troposphere, evaluated using CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) aircraft measurements, reproduce the magnitude and phase of the seasonal cycle of CO2 in both hemispheres. We generally find that the GEOS meteorology reproduces much of the observed tropospheric CO2 variability, suggesting that these meteorological fields will help make significant progress in understanding carbon fluxes as more data become available.

  17. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  18. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  19. Inventory of File gfs.t06z.smartguam24.tm00.grib2

    Science.gov Websites

    boundary layer WDIR 24 hour fcst Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND 24 hour fcst Wind Speed [m/s] 017 planetary boundary layer RH 24 hour fcst Relative Humidity [%] 018 planetary boundary layer DIST 24 hour fcst Geometric Height [m] 019 surface 4LFTX 24 hour fcst

  20. Flight-measured base pressure coefficients for thick boundary-layer flow over an aft-facing step for Mach numbers from 0.4 to 2.5

    NASA Technical Reports Server (NTRS)

    Goecke, S. A.

    1973-01-01

    A 0.56-inch thick aft-facing step was located 52.1 feet from the leading edge of the left wing of an XB-70 airplane. A boundary-layer rake at a mirror location on the right wing was used to obtain local flow properties. Reynolds numbers were near 10 to the 8th power, resulting in a relatively thick boundary-layer. The momentum thickness ranged from slightly thinner to slightly thicker than the step height. Surface static pressures forward of the step were obtained for Mach numbers near 0.9, 1.5, 2.0, and 2.4. The data were compared with thin boundary-layer results from flight and wind-tunnel experiments and semiempirical relationships. Significant differences were found between the thick and the thin boundary-layer data.

  1. Net community calcification and production rates from Palmyra Atoll using a boundary layer gradient flux approach

    NASA Astrophysics Data System (ADS)

    Takeshita, Y.; McGillis, W. R.; Martz, T. R.; Price, N.; Smith, J.; Donham, E. M.

    2016-02-01

    Coral reefs are a highly dynamic system, where large variability in environmental conditions (e.g. pH) occurs on timescales of minutes to hours. Yet, techniques that are capable of monitoring reef calcification rates without artificial confinement on the same frequency are scarce. Here, we present a 2 week time series of sub-hourly, in situ benthic net community production (Pnet) and net community calcification (Gnet) rates from a reef terrace at Palmyra Atoll using the Benthic Ecosystem and Acidification Monitoring System (BEAMS). The net metabolism rates reported here are measured under natural conditions, without any alterations to the environment (e.g. light, flow, pH). The BEAMS measures the chemical gradient and the current velocity profile in the benthic boundary layer using autonomous sensors to calculate the chemical flux from the benthos. The O2 and total alkalinity (TA) fluxes were used to calculate Pnet and Gnet, respectively; TA gradients were calculated from pH and O2 measurements. Gnet can be constrained to better than 3 mmol CaCO3 m-2 hr-1 using this approach, based on three simultaneous BEAMS deployments. A clear diel cycle of Gnet was observed, where the peak day time Gnet and average nighttime Gnet were 14 and 1 mmol CaCO3 m-2 hr-1, respectively. Integrated daily Gnet ranged from 76 to 219 mmol CaCO3 m-2 d-1, with an average of 107 ± 14 mmol CaCO3 m-2 d-1. Light had the strongest control over Gnet, with current velocity having a smaller yet noticeable effect. During the deployment, pH varied by 0.16 (ranged between 7.92 and 8.08), and a significant positive relationship was observed between pH and Gnet. However, pH was also positively correlated with current velocity and Pnet, making it difficult to determine if natural variability in pH was significantly affecting Gnet on the timescale of days to weeks.

  2. Characteristics of the Martian atmosphere surface layer

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1991-01-01

    Researchers extend elements of various terrestrial boundary layer models to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface layer. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed. Parameterizations for specific heat and and binary diffusivity were also determined. The Prandtl and Schmidt numbers derived from these thermophysical properties were found to range from 0.78 - 1.0 and 0.47 - 0.70, respectively, for Mars. Brutsaert's model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the researchers modified the definition of the Monin-Obukhov length to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. This length scale was then utilized with similarity theory turbulent flux profiles with the same form as those used by Businger et al. and others. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  3. Carbon Dioxide and CO2 Isotopes at Three Spatial Scales Over the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Schaeffer, S. M.; Miller, J. B.; Stephens, B. B.

    2006-12-01

    Recent studies highlight the importance of western mountain regions to the North American carbon sink, suggesting 25 to 50 percent of the U.S. sink can be attributed to montane ecosystems. Isotopes of CO2 provide insight into ecosystem carbon cycling, plant physiological processes, and atmospheric boundary-layer dynamics, and are useful in integration of processes over multiple scales. CO2 isotopes have played a central role in our understanding of the magnitude and inter-annual dynamics of the terrestrial carbon sink at a variety of spatial and temporal scales, and will be crucial to understanding the carbon balance and carbon accounting of the North American continent. In 2005, we began a long-term study examining biosphere- atmosphere exchange of CO2 and its stable isotopes over the Rocky Mountains in Colorado. Measurements are made at 3 sites representing 3 different spatial scales. These include a subalpine forest site (3050 m elevation, the Niwot Ridge AmeriFlux site), a tundra site 3 km away (3520 m, representing the overlying forest air), and an aircraft site 125 km to the northeast over the plains (vertical profiles from ground level at 1740 m to 8000 m, representing the regional convective boundary layer and the free troposphere). The tundra (NWR) and aircraft (CAR) sites have been part of NOAA/CCGG Cooperative Air Sampling Network for many years. Observed CO2 and δ13C showed seasonal variation (> 10 ppm and >0.5 permil) and strong local variation at all sites (>100 ppm and >5 permil at the forest site). The forest exerted a strong respiratory influence on the overlying air during the fall and winter. Measurements 10m above the top of the forest canopy in winter were always higher in CO2 (~ 3 ppm) and more negative in δ13C of CO2 ~ 0.3 permil) than those at the tundra site. Summer data are still being analyzed, but we expect this to shift in the other direction during the growing season. Substantial synoptic variation in CO2 and δ13C was observed at all three sites, sometimes with simultaneous changes at all sites, sometimes not. The diurnal and seasonal patterns of CO2 and δ13C at the three sites will be discussed, and these data will be used to assess the local variability of the long-term CO2 (since 1968) and δ13C (since 1990) record at Niwot Ridge.

  4. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  5. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  6. Quantifying the local influence at a tall tower site in nocturnal conditions

    DOE PAGES

    Werth, David; Buckley, Robert; Zhang, Gengsheng; ...

    2015-10-17

    The influence of the local terrestrial environment on nocturnal atmospheric CO 2 measurements at a 329-m television transmitter tower (and a component of a CO 2 monitoring network) was estimated in this paper with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy’s Savannah River Site (SRS) in South Carolina. Tracer was released onmore » two contrasting nights—slightly stable and moderately stable—from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (~24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO 2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. Finally, the contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources.« less

  7. Quantifying the local influence at a tall tower site in nocturnal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, David; Buckley, Robert; Zhang, Gengsheng

    The influence of the local terrestrial environment on nocturnal atmospheric CO 2 measurements at a 329-m television transmitter tower (and a component of a CO 2 monitoring network) was estimated with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy’s Savannah River Site (SRS) in South Carolina. Tracer was released on two contrasting nights—slightlymore » stable and moderately stable—from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (~24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO 2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. The contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources.« less

  8. Quantifying the local influence at a tall tower site in nocturnal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, David; Buckley, Robert; Zhang, Gengsheng

    The influence of the local terrestrial environment on nocturnal atmospheric CO 2 measurements at a 329-m television transmitter tower (and a component of a CO 2 monitoring network) was estimated in this paper with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy’s Savannah River Site (SRS) in South Carolina. Tracer was released onmore » two contrasting nights—slightly stable and moderately stable—from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (~24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO 2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. Finally, the contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources.« less

  9. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    NASA Astrophysics Data System (ADS)

    Tham, Kim Kong; Kushibiki, Ryosuke; Kamada, Tomonari; Hinata, Shintaro; Saito, Shin

    2018-05-01

    Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms), uniaxial magnetocrystalline anisotropy (Ku), and magnetic grain diameter (GD) of the granular media show linear correlation with volume weighted average for melting point (Tm) of each oxides (Tmave). Ku of magnetic grains (Kugrain) shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α). By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  10. Long Time Evolution of Sequestered CO2 in Porous Media

    NASA Astrophysics Data System (ADS)

    Cohen, Y.; Rothman, D.

    2013-12-01

    CO2 sequestration is important for mitigating climate change and reducing atmospheric CO2 concentration. However, a complete physical picture able to predict both the pattern formation and the structure developing within the porous medium is lacking. We propose a theoretical model that couples transport, reaction, and the intricate geometry of the rock, in order to study the long time evolution of carbon in the brine-rock environment. As CO2 is injected into a brine-rock environment, it becomes initially trapped, and isolated bubbles are formed. Within the high CO2 phase, minerals dissolve and migrate from high concentration to low concentration regions, along with other carbonate species. The change in the concentrations at the interface moves the system out of equilibrium, drives up the saturation level, and leads to mineral precipitation. We argue that mineral precipitation in a small boundary layer may lead to lower diffusivity, slower kinetics, and eventually to a mechanical trapping of the CO2 bubbles. We investigate the reactive transport model and study the conditions that cause the mechanical separation of these two reactive fluids in porous media.

  11. Preparation and Physical Properties of Segmented Thermoelectric YBa2Cu3O7-x -Ca3Co4O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Wannasut, P.; Keawprak, N.; Jaiban, P.; Watcharapasorn, A.

    2018-01-01

    Segmented thermoelectric ceramics are now well known for their high conversion efficiency and are currently being investigated in both basic and applied energy researches. In this work, the successful preparation of the segmented thermoelectric YBa2Cu3O7-x -Ca3Co4O9 (YBCO-CCO) ceramic by hot pressing method and the study on its physical properties were presented. Under the optimum hot pressing condition of 800 °C temperature, 1-hour holding time and 1-ton weight, the segmented YBCO-CCO sample showed two strongly connected layers with the relative density of about 96%. The X-ray diffraction (XRD) patterns indicated that each segment showed pure phase corresponding to each respective composition. Scanning electron microscopy (SEM) results confirmed the sharp interface and good adhesion between YBCO and CCO layers. Although the chemical analysis indicated the limited inter-layer diffusion near the interface, some elemental diffusion at the boundary was expected to be the source of this strong bonding.

  12. Ocean alkalinity and the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Caldeira, K. G.; Rampino, Michael R.

    1988-01-01

    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp.

  13. Numerical Solution of Laminar and Turbulent Boundary Layer Equations Including Transition, and Experimenmtal Study of a Flat Plate with a Blunt Fin at Incidence.

    DTIC Science & Technology

    1986-03-01

    93 3.6.5.4 Data Acquisition- Electrical Analog. . 95 3.6.6 Co-axial Thermocouple Gages ...... 97 3.6.6.1 Theory .................... 101 3.6.6.2...Preparation of Liquid Crystal Model . . . 233 Appendix G: Digital Image Processing . ........ 235 Appendix H: Electrical Analog Circuits ....... . 237...m. 232 H.la Thermal Circuit ..... ................. . 237 H.Ib Electrical Circuit ..... ............... 237 H.2 Electrical Analog Using Equal Sections

  14. Experimental investigation of a two-dimensional shock-turbulent boundary layer interaction with bleed

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Tanji, F. T.

    1983-01-01

    The two-dimensional interaction of an oblique shock wave with a turbulent boundary layer that included the effect of bleed was examined experimentally using a shock generator mounted across a supersonic wind tunnel The studies were performed at Mach numbers 2.5 and 2.0 and unit Reynolds number of approximately 2.0 x 10 to the 7th/meter. The study includes surface oil flow visualization, wall static pressure distributions and boundary layer pitot pressure profiles. In addition, the variation of the local bleed rates were measured. The results show the effect of the bleed on the boundary layer as well as the effect of the flow conditions on the local bleed rate.

  15. Inventory of File nam.t00z.smartpr00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  16. Inventory of File nam.t00z.smartak00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  17. Inventory of File nam.t00z.smarthi00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  18. The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Broccoli, A. J.; Manabe, S.

    1987-02-01

    The contributions of expanded continental ice, reduced atmospheric CO2, and changes in land albedo to the maintenance of the climate of the last glacial maximum (LGM) are examined. A series of experiments is performed using an atmosphere-mixed layer ocean model in which these changes in boundary conditions are incorporated either singly or in combination. The model used has been shown to produce a reasonably realistic simulation of the reduced temperature of the LGM (Manabe and Broccoli 1985b). By comparing the results from pairs of experiments, the effects of each of these environmental changes can be determined. Expanded continental ice and reduced atmospheric CO2 are found to have a substantial impact on global mean temperature. The ice sheet effect is confined almost exclusively to the Northern Hemisphere, while lowered CO2 cools both hemispheres. Changes in land albedo over ice-free areas have only a minor thermal effect on a global basis. The reduction of CO2 content in the atmosphere is the primary contributor to the cooling of the Southern Hemisphere. The model sensitivity to both the ice sheet and CO2 effects is characterized by a high latitude amplification and a late autumn and early winter maximum. Substantial changes in Northern Hemisphere tropospheric circulation are found in response to LGM boundary conditions during winter. An amplified flow pattern and enhanced westerlies occur in the vicinity of the North American and Eurasian ice sheets. These alterations of the tropospheric circulation are primarily the result of the ice sheet effect, with reduced CO2 contributing only a slight amplification of the ice sheet-induced pattern.

  19. Studies on the influence on flexural wall deformations on the development of the flow boundary layer

    NASA Technical Reports Server (NTRS)

    Schilz, W.

    1978-01-01

    Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.

  20. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    NASA Astrophysics Data System (ADS)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R < 20. A realistic IBC is then employed, derived via an inverse Helmholtz solver analysis of an ultrasonically absorbing carbon-fiber-reinforced carbon ceramic sample used in recent hypersonic transition experiments by Dr. Wagner and co-workers at DLR-Göttingen.

  1. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  2. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions

    DTIC Science & Technology

    2008-02-07

    micro-ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier... Supersonic boundary layer flow with micro-ramp and no shock wave 3.2 SBLI with no micro-ramp 3.3 SBLI with micro-ramp 3.4 Micro-ramp size and location IV . C...ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier

  3. The Effects of Rotation on Boundary Layers in Turbomachine Rotors

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.

    1974-01-01

    The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.

  4. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    NASA Astrophysics Data System (ADS)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  5. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  6. Analysis of Atmospheric Composition and Tropospheric Variability With Integrated Open- Path and Ground-Based Solar Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Compton, R. N.; Hager, J. S.

    2006-12-01

    Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.

  7. Microstructural constraints on complex thermal histories of refractory CAI-like objects in an amoeboid olivine aggregate from the ALHA77307 CO3.0 chondrite

    NASA Astrophysics Data System (ADS)

    Han, Jangmi; Brearley, Adrian J.

    2016-06-01

    We have carried out a FIB/TEM study of refractory CAI-like objects in one AOA from the ALHA77307 CO3.0 chondrite. The CAI-like objects in the AOA consist of a zoned sequence with a spinel-rich core through an intergrowth layer of spinel and Al-Ti-rich diopside to a diopside rim. The spinel-rich core consists of polycrystalline aggregates of spinel and ±minor melilite showing equilibrated grain boundary textures. The intergrowth layer contains fine-grained diopside and spinel with minor anorthite with highly curved and embayed grain boundaries. The diopside rim consists of polycrystalline aggregates of diopside. The compositions of pyroxene change significantly outward from Al-Ti-rich diopside in contact with the spinel-rich core to Al-Ti-poor diopside next to the surrounding olivine of the AOA. Overall microstructural and chemical characteristics suggest that the spinel-rich core formed under equilibrium conditions whereas the intergrowth layer is the result of reactions that occurred under conditions that departed significantly from equilibrium. The remarkable changes in formation conditions of the CAI-like objects may have been achieved by transport and injection of refractory objects into a region of a partially-condensed, Ca,Ti-saturated gas which reacted with spinel and melilite to form Al-Ti-rich diopside. Crystallographically-oriented TiO2 nanoparticles decorate the grain boundaries between spinel grains and between spinel and Al-Ti-rich diopside grains. During the disequilibrium back-reaction of spinel with a partially-condensed, Ca,Ti-saturated gas, metastable TiO2 nanoparticles may have condensed by an epitaxial nucleation mechanism and grown on the surface of spinel. These TiO2 nanoparticles are disordered intergrowths of the two TiO2 polymorphs, anatase and rutile. These nanoparticles are inferred to have nucleated as anatase that underwent partial transformation into rutile. The local presence of the TiO2 nanoparticles and intergrowth of anatase and rutile imply that the disequilibrium back-reaction of spinel with the gas occurred on a short timescale, i.e., minutes to hours at maximum.

  8. Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2009-01-01

    The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.

  9. A Preliminary Study of CO2 Flux Measurements by Lidar

    NASA Technical Reports Server (NTRS)

    Gibert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, T.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2008-01-01

    A mechanistic understanding of the global carbon cycle requires quantification of terrestrial ecosystem CO2 fluxes at regional scales. In this paper, we analyze the potential of a Doppler DIAL system to make flux measurements of atmospheric CO2 using the eddy-covariance and boundary layer budget methods and present results from a ground based experiment. The goal of this study is to put CO2 flux point measurements in a mesoscale context. In June 2007, a field experiment combining a 2-m Doppler Heterodyne Differential Absorption Lidar (HDIAL) and in-situ sensors of a 447-m tall tower (WLEF) took place in Wisconsin. The HDIAL measures simultaneously: 1) CO2 mixing ratio, 2) atmosphere structure via aerosol backscatter and 3) radial velocity. We demonstrate how to synthesize these data into regional flux estimates. Lidar-inferred fluxes are compared with eddy-covariance fluxes obtained in-situ at 396m AGL from the tower. In cases where the lidar was not yet able to measure the fluxes with acceptable precision, we discuss possible modifications to improve system performance.

  10. Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method

    NASA Astrophysics Data System (ADS)

    Erkkilä, Kukka-Maaria; Ojala, Anne; Bastviken, David; Biermann, Tobias; Heiskanen, Jouni J.; Lindroth, Anders; Peltola, Olli; Rantakari, Miitta; Vesala, Timo; Mammarella, Ivan

    2018-01-01

    Freshwaters bring a notable contribution to the global carbon budget by emitting both carbon dioxide (CO2) and methane (CH4) to the atmosphere. Global estimates of freshwater emissions traditionally use a wind-speed-based gas transfer velocity, kCC (introduced by Cole and Caraco, 1998), for calculating diffusive flux with the boundary layer method (BLM). We compared CH4 and CO2 fluxes from BLM with kCC and two other gas transfer velocities (kTE and kHE), which include the effects of water-side cooling to the gas transfer besides shear-induced turbulence, with simultaneous eddy covariance (EC) and floating chamber (FC) fluxes during a 16-day measurement campaign in September 2014 at Lake Kuivajärvi in Finland. The measurements included both lake stratification and water column mixing periods. Results show that BLM fluxes were mainly lower than EC, with the more recent model kTE giving the best fit with EC fluxes, whereas FC measurements resulted in higher fluxes than simultaneous EC measurements. We highly recommend using up-to-date gas transfer models, instead of kCC, for better flux estimates. BLM CO2 flux measurements had clear differences between daytime and night-time fluxes with all gas transfer models during both stratified and mixing periods, whereas EC measurements did not show a diurnal behaviour in CO2 flux. CH4 flux had higher values in daytime than night-time during lake mixing period according to EC measurements, with highest fluxes detected just before sunset. In addition, we found clear differences in daytime and night-time concentration difference between the air and surface water for both CH4 and CO2. This might lead to biased flux estimates, if only daytime values are used in BLM upscaling and flux measurements in general. FC measurements did not detect spatial variation in either CH4 or CO2 flux over Lake Kuivajärvi. EC measurements, on the other hand, did not show any spatial variation in CH4 fluxes but did show a clear difference between CO2 fluxes from shallower and deeper areas. We highlight that while all flux measurement methods have their pros and cons, it is important to carefully think about the chosen method and measurement interval, as well as their effects on the resulting flux.

  11. A numerical method for the prediction of high-speed boundary-layer transition using linear theory

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1975-01-01

    A method is described of estimating the location of transition in an arbitrary laminar boundary layer on the basis of linear stability theory. After an examination of experimental evidence for the relation between linear stability theory and transition, a discussion is given of the three essential elements of a transition calculation: (1) the interaction of the external disturbances with the boundary layer; (2) the growth of the disturbances in the boundary layer; and (3) a transition criterion. The computer program which carried out these three calculations is described. The program is first tested by calculating the effect of free-stream turbulence on the transition of the Blasius boundary layer, and is then applied to the problem of transition in a supersonic wind tunnel. The effects of unit Reynolds number and Mach number on the transition of an insulated flat-plate boundary layer are calculated on the basis of experimental data on the intensity and spectrum of free-stream disturbances. Reasonable agreement with experiment is obtained in the Mach number range from 2 to 4.5.

  12. Modeling of the heat transfer in bypass transitional boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  13. Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri)

    PubMed Central

    Wong, Peiyan; Kaas, Jon H.

    2010-01-01

    Tree shrews are small mammals that bear some semblance to squirrels, but are actually close relatives of primates. Thus, they have been extensively studied as a model for the early stages of primate evolution. In the present study, subdivisions of cortex were reconstructed from brain sections cut in the coronal, sagittal or horizontal planes, and processed for parvalbumin (PV), SMI-32 immunopositive neurofilament protein epitopes, vesicle glutamate transporter 2 (VGluT2), free ionic zinc, myelin, cytochrome oxidase (CO) and Nissl substance. These different procedures revealed similar boundaries between areas, suggesting the detection of functionally relevant borders and allowed a more precise demarcation of cortical areal boundaries. Primary cortical areas were most clearly revealed by the zinc stain, due to the poor staining of layer 4, as thalamocortical terminations lack free ionic zinc. Area 17 (V1) was especially prominent, as the broad layer 4 was nearly free of zinc stain. However, this feature was less pronounced in primary auditory and somatosensory, cortex. In primary sensory areas, thalamocortical terminations in layer 4 densely express VGluT2. Auditory cortex consists of two architectonically distinct subdivisions, a primary core region (Ac), surrounded by a belt region (Ab) that had a slightly less developed koniocellular appearance. Primary motor cortex (M1) was identified by the absence of VGluT2 staining in the poorly developed granular layer 4 and the presence of SMI-32 labeled pyramidal cells in layers 3 and 5. The presence of well-differentiated cortical areas in tree shrews indicates their usefulness in studies of cortical organization and function. PMID:19462403

  14. Coordinated Parameterization Development and Large-Eddy Simulation for Marine and Arctic Cloud-Topped Boundary Layers

    NASA Technical Reports Server (NTRS)

    Bretherton, Christopher S.

    2002-01-01

    The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.

  15. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    PubMed

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.

  16. The electrical conductivity during incipient melting in the oceanic low velocity zone

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Sifre, David; Gardes, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier Majumder, Saswata

    2014-05-01

    A low viscosity layer at the Lithosphere-Asthenosphere Boundary (LAB) is certainly a requirement for plate tectonics but the nature of the rocks presents in this boundary remains controversial. The seismic low velocities and the high electrical conductivities of the LAB are attributed either to sub-solidus water-related defects in olivine minerals or to a few volume percents of partial melt but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be high enough due to several mineralogical processes that have been sometimes ignored; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the LAB and by the high melt mobility that can lead to gravitational segregation. All this has in fact been partly settled 30 years ago, when a petrological LAB has been defined as a region of the upper mantle impregnated by incipient melts; that is small amounts of melt caused by small amount of CO2 and H2O. We show here that incipient melting is a melting regime that is allowed in the entire P-T-fO2 region of the LVZ. The top of the oceanic LVZ (LAB) is then best explained by a melt freezing layer due to a decarbonation reaction, whereas the bottom of the LVZ matches the depth at which redox melting defines the lower boundary of stability of incipient melts. Based on new laboratory measurements, we show here that incipient melts must be the cause of the high electrical conductivities in the oceanic LVZ. Considering relevant mantle abundances of H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the LAB for various ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. We conclude that incipient melts prevail in the LAB, what else?

  17. Innovative nano-layered solid sorbents for CO2 capture.

    PubMed

    Li, Bingyun; Jiang, Bingbing; Fauth, Daniel J; Gray, McMahan L; Pennline, Henry W; Richards, George A

    2011-02-14

    Nano-layered sorbents for CO(2) capture, for the first time, were developed using layer-by-layer nanoassembly. A CO(2)-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO(2) adsorption and desorption properties and their CO(2) capture capacity increased with increasing nano-layers of the CO(2)-adsorbing polymer.

  18. Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wei, C. Q.

    1993-01-01

    The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.

  19. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity

    NASA Astrophysics Data System (ADS)

    Pal, S.; Xueref-Remy, I.; Ammoura, L.; Chazette, P.; Gibert, F.; Royer, P.; Dieudonné, E.; Dupont, J.-C.; Haeffelin, M.; Lac, C.; Lopez, M.; Morille, Y.; Ravetta, F.

    2012-12-01

    Within the framework of a French nationally funded project (CO2-MEGAPARIS) for quantifying the CO2 emissions of the Paris area, a lidar-based experimental investigation of the variability of the atmospheric boundary layer (ABL) depths was performed over four days in March 2011 under clear sky conditions. The prevailing synoptic settings were mainly characterized by anti-cyclonic situations with low wind. The key aim of this paper is to assess the impact of the urban heat island intensity (UHII) on the spatio-temporal variability of the ABL depths over the Paris megacity. A network of fixed aerosol lidars was deployed inside the city and in the vicinity of sub-urban and rural areas. Additionally, the spatial heterogeneity of the nocturnal boundary layer (NBL) depths over greater Paris area is addressed, thanks in particular, to the deployment of a 355-nm elastic lidar in a mobile van to measure the aerosol distributions. Radiosonde-derived profiles (twice a day) of thermodynamic variables over the sub-urban site helped investigate the temperature inversion above ground and hence to compare the lidar-derived ABL depths. Comparing these two results, an excellent concordance was found with a correlation coefficient of 0.994. Five important factors closely related to the ABL circulation, namely, spatio-temporal variability of the ABL depths, growth rate of the ABL depths, entrainment zone thickness, and near-surface temperature fields including resultant UHII were considered to infer the urban-rural contrasts. The mean NBL depth over the urban area was on average 63 m (45%) higher than its adjacent sub-urban area which was, on occasion, as much as (74 m) 58% higher mainly due to the effect of UHII. Daytime well-mixed convective boundary layer and associated strong turbulent mixing near its top over the urban area showed higher entrainment zone thickness (326 m) than over sub-urban (234 m) and rural (200 m) areas. Temperature growth rates during sunrise increased up to more than 3 °C h-1 over the sub-urban area while over the urban region it was 2.5 °C h-1 or even less. The ABL depths over the urban site decayed more slowly (500 m h-1) than over the sub-urban area (600 m h-1) during the late afternoon transition period suggesting an impact of the UHII on the ABL dynamics over the urban area.

  20. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  1. Impact of Interfacial Layers in Perovskite Solar Cells.

    PubMed

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Numerical simulations of the flow in the HYPULSE expansion tube

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Sussman, Myles A.; Bakos, Robert J.

    1995-01-01

    Axisymmetric numerical simulations with finite-rate chemistry are presented for two operating conditions in the HYPULSE expansion tube. The operating gas for these two cases is nitrogen and the computations are compared to experimental data. One test condition is at a total enthalpy of 15.2 MJ/Kg and a relatively low static pressure of 2 kPa. This case is characterized by a laminar boundary layer and significant chemical nonequilibrium in the acceleration gas. The second test condition is at a total enthalpy of 10.2 MJ/Kg and a static pressure of 38 kPa and is characterized by a turbulent boundary layer. For both cases, the time-varying test gas pressure predicted by the simulations is in good agreement with experimental data. The computations are also found to be in good agreement with Mirels' correlations for shock tube flow. It is shown that the nonuniformity of the test gas observed in the HYPULSE expansion tube is strongly linked to the boundary layer thickness. The turbulent flow investigated has a larger boundary layer and greater test gas nonuniformity. In order to investigate possibilities of improving expansion tube flow quality by reducing the boundary layer thickness, parametric studies showing the effect of density and turbulent transition point on the test conditions are also presented. Although an increase in the expansion tube operating pressure level would reduce the boundary layer thickness, the simulations indicate that the reduction would be less than what is predicted by flat plate boundary layer correlations.

  3. A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.

    1982-01-01

    The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.

  4. Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets

    NASA Astrophysics Data System (ADS)

    Baydar, Ezgihan

    Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although traditional VGs energize the flow with stronger vortex structures compared to micro-VGs, the AIP is affected with overwhelming amounts of reduced and enhanced flow regions. In summary, vanes are exceptional in reducing radial distortion and improving the health of the boundary layer compared to the ramps. In the study of the STEX inlet, vane-type vortex generators were the preferred devices for boundary layer flow control. In the supersonic diffuser, co-rotating vane arrays and counter-rotating vane arrays did not show improvement. In the subsonic diffuser, co-rotating vane arrays with negative angles-of-incidence and counter-rotating vane arrays were exceptional in reducing radial distortion and improving total pressure recovery. Downstream co-rotating vanes demonstrated up to 41% improvement in radial distortion whereas downstream counter-rotating vanes demonstrated up to 73% improvement. For downstream counter-rotating vanes, a polynomial trend between VG height and radial distortion indicate that increasing VG height improves inlet distortion. In summary, downstream vanes are exceptional in improving total pressure recovery compared to upstream vanes.

  5. HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS- HYPERSONIC INTERNATIONAL FLIGHT RESEARCH EXPERIMENTATION 5 (HIFIRE-5) AND CIRCULAR CONE

    DTIC Science & Technology

    2016-10-01

    each case in the present study , and two examples for a sharp and blunt case are presented in Figure 3-4. While the freestream unit Reynolds number is...conditions for shot 2821 in 50% CO2, 50% air by mass. For further details on this condition see Jewell and Shepherd...Several advances were made under this task during FY16. Quantitative simultaneous infrared thermography and fluctuating pressure measurements on the

  6. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    NASA Astrophysics Data System (ADS)

    Enriquez, Erik; Zhang, Yingying; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Harrell, Zachary; Lü, Xujie; Dowden, Paul; Wang, Haiyan; Chen, Chonglin; Jia, Quanxi

    2016-08-01

    Epitaxial layered ternary metal-nitride FeMoN2, (Fe0.33Mo0.67)MoN2, CoMoN2, and FeWN2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1-1 mΩ.cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has been used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. The growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN2 materials through A and B-site substitution.

  7. The Role of Vegetation Response to Elevated CO2 in Modifying Land-Atmosphere Feedback Across the Central United States Agro-Ecosystem

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.

    2009-05-01

    Recent local-scale observational studies have demonstrated significant modifications to the partitioning of incident energy by two key mid-west agricultural species, soy and corn, as ambient atmospheric CO2 concentrations are experimentally augmented to projected future levels. The uptake of CO2 by soy, which utilizes the C3 photosynthetic pathway, has likewise been observed to significantly increase under elevated growth CO2 concentrations. Changes to the sensible and latent heat exchanges between the land surface and the atmospheric boundary layer (ABL) across large portions of the mid-western US has the potential to affect ABL growth and composition, and consequently feed-back to the near-surface environment (air temperature and vapor content) experienced by the vegetation. Here we present a simulation analysis that examines the changes in land-atmosphere feedbacks associated with projected increases in ambient CO2 concentrations over extended soy/corn agricultural areas characteristic of the US mid-west. The model canopies are partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport and root water uptake. Model skill in capturing the sub-diurnal variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy-top eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) FluxNet site. An evaluation of the ability of the model to simulate observed changes in energy balance components (canopy temperature, net radiation and soil heat flux) under elevated CO2 concentrations projected for 2050 (550 ppm) is made using observations collected at the SoyFACE Free Air Carbon Enrichment (FACE) experimental facilities located in central Illinois, by incorporating observed acclimations in leaf biochemsitry and canopy structure. The simulation control volume is then extended by coupling the canopy models to a simple model of daytime mixed-layer (ML) growth and composition, ie. air temperature and vapor content. Through this coupled canopy-ABL model we quantify the impact of elevated CO2 and vegetation acclimation on ML growth, temperature and vapor content and the consequent feedbacks to the land surface by way of the near-surface environment experienced by the vegetation. Particular focus is placed on the role of short-term drought, and possible changes in land cover composition between soy, a C3 crop, and corn, a more water-use efficient C4 crop, on modulating the strength of these CO2-induced feedbacks.

  8. Two-phase convective CO 2 dissolution in saline aquifers

    DOE PAGES

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO 2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO 2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO 2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have eithermore » ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO 2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO 2 more than 3 times above the rate assuming single-phase conditions.« less

  9. Experimental study of the separating confluent boundary-layer. Volume 2: Experimental data

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Whipkey, R. R.; Jones, G. S.; Lilley, D. E.

    1983-01-01

    An experimental low speed study of the separating confluent boundary layer on a NASA GAW-1 high lift airfoil is described. The airfoil was tested in a variety of high lift configurations comprised of leading edge slat and trailing edge flap combinations. The primary test instrumentation was a two dimensional laser velocimeter (LV) system operating in a backscatter mode. Surface pressures and corresponding LV derived boundary layer profiles are given in terms of velocity components, turbulence intensities and Reynolds shear stresses as characterizing confluent boundary layer behavior up to and beyond stall. LV derived profiles and associated boundary layer parameters and those obtained from more conventional instrumentation such as pitot static transverse, Preston tube measurements and hot-wire surveys are compared.

  10. CO Signatures in Subtropical Convective Clouds and Anvils During CRYSTAL-FACE: An Analysis of Convective Transport and Entertainment Using Observations and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Lopez, Jimena P.; Fridlind, Ann M.; Jost, Hans-Jurg; Loewenstein, Max; Ackerman, Andrew S.; Campos, Teresa L.; Weinstock, Elliot M.; Sayres, David S.; Smith, Jessica B.; Pittman, Jasna V.; hide

    2006-01-01

    Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H20v), and total water (H20t) aboard NASA's . WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the fiee troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.

  11. Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments

    NASA Astrophysics Data System (ADS)

    Koschinsky, Andrea

    Heavy metal distributions in deep-sea surface sediments and pore water profiles from five areas in the Peru Basin were investigated with respect to the redox environment and diagenetic processes in these areas. The 10-20-cm-thick Mn oxide-rich and minor metal-rich top layer is underlain by an increase in dissolved Mn and Ni concentrations resulting from the reduction of the MnO 2 phase below the oxic zone. The mobilised associated metals like Co, Zn and Cu are partly immobilised by sorption on clay, organic or Fe compounds in the post-oxic environment. Enrichment of dissolved Cu, Zn, Ni, Co, Pb, Cd, Fe and V within the upper 1-5 cm of the oxic zone can be attributed to the degradation of organic matter. In a core from one area at around 22-25 cm depth, striking enrichments of these metals in dissolved and solid forms were observed. Offset distributions between oxygen penetration and Mn reduction and the thickness of the Mn oxide-rich layer indicate fluctuations of the Mn redox boundary on a short-term time scale. Within the objectives of the German ATESEPP research programme, the effect of an industrial impact such as manganese nodule mining on the heavy metal cycle in the surface sediment was considered. If the oxic surface were to be removed or disturbed, oxygen would penetrate deep into the formerly suboxic sediment and precipitate Mn 2+ and metals like Ni and Co which are preferably scavenged by MnO 2. The solid enrichments of Cd, V, and other metals formed in post-oxic environments would move downward with the new redox boundary until a new equilibrium between oxygen diffusion and consumption is reached.

  12. Wire-Mesh-Based Sorber for Removing Contaminants from Air

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Roychoudhury, Subir; Walsh, Dennis

    2006-01-01

    A paper discusses an experimental regenerable sorber for removing CO2 and trace components principally, volatile organic compounds, halocarbons, and NH3 from spacecraft cabin air. This regenerable sorber is a prototype of what is intended to be a lightweight alternative to activated-carbon and zeolite-pellet sorbent beds now in use. The regenerable sorber consists mainly of an assembly of commercially available meshes that have been coated with a specially-formulated washcoat containing zeolites. The zeolites act as the sorbents while the meshes support the zeolite-containing washcoat in a configuration that affords highly effective surface area for exposing the sorbents to flowing air. The meshes also define flow paths characterized by short channel lengths to prevent excessive buildup of flow boundary layers. Flow boundary layer resistance is undesired because it can impede mass and heat transfer. The total weight and volume comparison versus the atmosphere revitalization equipment used onboard the International Space Station for CO2 and trace-component removal will depend upon the design details of the final embodiment. However, the integrated mesh-based CO2 and trace-contaminant removal system is expected to provide overall weight and volume savings by eliminating most of the trace-contaminant control equipment presently used in parallel processing schemes traditionally used for spacecraft. The mesh-based sorbent media enables integrating the two processes within a compact package. For the purpose of regeneration, the sorber can be heated by passing electric currents through the metallic meshes combined with exposure to space vacuum. The minimal thermal mass of the meshes offers the potential for reduced regeneration-power requirements and cycle time required for regeneration compared to regenerable sorption processes now in use.

  13. CO2 lidar for measurements of trace gases and wind velocities

    NASA Technical Reports Server (NTRS)

    Hess, R. V.

    1982-01-01

    CO2 lidar systems technology and signal processing requirements relevant to measurement needs and sensitivity are discussed. Doppler processing is similar to microwave radar, with signal reception controlled by a computer capable of both direct and heterodyne operations. Trace gas concentrations have been obtained with the NASA DIAL system, and trace gas transport has been determined with Doppler lidar measurements for wind velocity and turbulence. High vertical resolution measurement of trace gases, wind velocity, and turbulence are most important in the planetary boundary layer and in regions between the PBL and the lower stratosphere. Shear measurements are critical for airport operational safety. A sensitivity analysis for heterodyne detection with the DIAL system and for short pulses using a Doppler lidar system is presented. The development of transient injection locking techniques, as well as frequency stability by reducing chirp and catalytic control of closed cycle CO2 laser chemistry, is described.

  14. Enrichment of Extracellular Carbonic Anhydrase in the Sea Surface Microlayer and Its Effect on Air-Sea CO2 Exchange

    NASA Astrophysics Data System (ADS)

    Mustaffa, N. I. H.; Striebel, M.; Wurl, O.

    2017-12-01

    This paper describes the quantification of extracellular carbonic anhydrase (eCA) concentrations in the sea surface microlayer (SML), the boundary layer between the ocean and the atmosphere of the Indo-West Pacific. We demonstrated that the SML is enriched with eCA by 1.5 ± 0.7 compared to the mixed underlying water. Enrichment remains up to a wind speed of 7 m s-1 (i.e., under typical oceanic conditions). As eCA catalyzes the interconversion of HCO3- and CO2, it has been hypothesized that its enrichment in the SML enhances the air-sea CO2 exchange. We detected concentrations in the range of 0.12 to 0.76 nM, which can enhance the exchange by up to 15% based on the model approach described in the literature.

  15. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  16. New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.

    2017-12-01

    The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.

  17. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.

    PubMed

    Nolasco, Dácil; Lima, R Noemí; Hernández, Pedro A; Pérez, Nemesio M

    2008-01-01

    [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30-40 cm. The CH4 efflux was computed from CO2 efflux and from the ratio CH4/CO2 in the soil gas. Soil gas samples were collected at a depth of 30-40 cm using a metallic probe and 20 cc hypodermic syringes, and later stored in evacuated 10 cc vacutainers for laboratory analysis of bulk composition. The gas sample was introduced in a vacutainer filled with deionized water and displacing the water until the vacutainer was filled with the gas sample in order to avoid air contamination from entering. The surface landfill temperature of the landfill was measured at a depth of 40 cm using a digital thermometer type OMEGA 871A. Landfill gases, CO2 and CH4, were analyzed within 24 hours using a double channel VARIAN micro-GC QUAD CP-2002P, with a 10 meter PORAPLOT-Q column, a TCD detector, and He as a carrier gas. The analysis temperature was 40 degrees C and the injection time was 10 msec. Surface landfill CO2 efflux measurements were performed using a portable NDIR spectrophotometer Licor-800 according to the accumulation chamber method (Chiodini et al. 1996). The data treatment, aimed at drawing the flux map and computing the total gas output, was based on the application of stochastic simulation algorithms provided by the GSLIB program (Deutsch and Journel 1998). Diffuse CH4 and CO2 efflux values range from negligible values up to 7,148 and 30,573 g m(-2) d(-1), respectively. The spatial distribution of the concentration and efflux of CO2, CH4 and soil temperature, show three areas of maximum activity in the landfill, suggesting a non-uniform pattern of diffuse degassing. This correlation between high emissions and concentration of CO2, CH4 and soil temperatures suggests that the areas of higher microbial activity and exothermic reactions are releasing CO2 and CH4 to the atmosphere from the landfill. Taking into consideration the spatial distribution of the CO2 and CH4 efflux values as well as the extension of the landfill, the Non-controlled emission of CO2 and CH4 to the atmosphere by the Lazareto's landfill are of 167 +/- 13.3 and 16 +/- 2.5 t d(-1), respectively. The patterns of gas flow within the landfill seem to be affected by boundary materials at the sides. The basalt layers have a low permeability and the gas flow in these areas is extensive. In this area, where a basalt layer does not exist, the flow gas diffuses toward the sea and the flux emissions at the landfill surface are lower. This behavior reflects the possible dissolution of gases into water and the deflection of gases towards the surface at the basalt boundary. The proximity to the sea, the installation of a palm tree garden and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. The introduction of sea water into the landfill and the type of boundary could be defining the superficial gas discharges. Results from this study indicate that the spatial distribution of Non-controlled emission of CO2 and CH4 at the Lazareto's landfill shows a non-uniform pattern of diffuse degassing. The northeast, central and northwest areas of the Lazareto's landfill are the three areas of high emissions and concentration of CO2 and CH4, and high temperatures. The correlation between high emissions and the concentration of CO2, CH4, and the high temperatures suggest that the areas of higher microbial activity and exothermic reactions are releasing more CO2 and CH4 to the atmosphere from the landfill. A high concentration of CO2 is probably due to the presence of methanotrophic bacteria in the soil atmosphere of the landfill. Patterns of gas flow within the landfill seem to be affected by boundary materials (basalt layers) of low permeability, and side boundaries of the flux emissions at the surface are higher. At the sides of seawater and sediment boundaries, flux emissions at the landfill surface are lower. This behavior reflects a possible dissolution of gases into the water and the deflection of gases towards the surface at the basalt boundary. With this study, we can compare the data obtained in this landfill with other landfills and observe the different levels of emission. The proximity to the sea and the installation of the palm tree garden palms and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. Many landfills worldwide located in similar settings could experience similar gas production processes. The need for investigating and monitoring sea water and sediment quality in these landfills is advisable. Concentrations and fluxes of contaminants and their impact in the area should be assessed. With this study we can compare the data obtained in these landfills with other landfills and observe the different levels of emission.

  18. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas D.

    1993-01-01

    The weakly nonlinear interaction of oblique Tollmien-Schlichting waves and longitudinal vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is considered for all ranges of the Mach number. The interaction equations comprise of equations for the vortex which is indirectly forced by the waves via a boundary condition, whereas a vortex term appears in the amplitude equation for the wave pressure. The downstream solution properties of interaction equations are found to depend on the sign of an interaction coefficient. Compressibility is found to have a significant effect on the interaction properties; principally through its impact on the waves and their governing mechanism, the triple-deck structure. It is found that, in general, the flow quantities will grow slowly with increasing downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance 'break-ups'.

  19. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  20. A spectrally accurate boundary-layer code for infinite swept wings

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1994-01-01

    This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.

  1. A new Cretaceous-Tertiary boundary locality in the western powder River basin, Wyoming: biological and geological implications

    USGS Publications Warehouse

    Nichols, D.J.; Brown, J.L.; Attrep, M.; Orth, C.J.

    1992-01-01

    A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.

  2. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  3. Interferometric data for a shock-wave/boundary-layer interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Brown, James L.; Miles, John B.

    1986-01-01

    An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.

  4. The Western North American Cretaceous-Tertiary (K-T) boundary interval and its content of shock-metamorphosed minerals: Implications concerning the K-T boundary impact-extinction theory

    NASA Technical Reports Server (NTRS)

    Izett, G. A.

    1988-01-01

    At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.

  5. Boundary Layer Remote Sensing with Combined Active and Passive Techniques: GPS Radio Occultation and High-Resolution Stereo Imaging (WindCam) Small Satellite Concept

    NASA Technical Reports Server (NTRS)

    Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe

    2012-01-01

    Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables

  6. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  7. Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona

    1996-01-01

    Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

  8. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    NASA Astrophysics Data System (ADS)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small (<7% of duct height) but finite (> boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  9. The NATA code: Theory and analysis, volume 1. [user manuals (computer programming) - gas dynamics, wind tunnels

    NASA Technical Reports Server (NTRS)

    Bade, W. L.; Yos, J. M.

    1975-01-01

    A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.

  10. Airborne boundary layer flux measurements of trace species over Canadian boreal forest and northern wetland regions

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Watson, Catherine E.; Sachse, Glen W.; Gregory, Gerald L.; Anderson, Bruce E.; Woerner, Mary A.; Collins, James E., Jr.

    1994-01-01

    Airborne heat, moisture, O3, CO, and CH4 flux measurements were obtained over the Hudson Bay lowlands (HBL) and northern boreal forest regions of Canada during July - August 1990. The airborne flux measurements were an integral part of the NASA/Arctic Boundary Layer Expedition (ABLE) 3B field experiment executed in collaboration with the Canadian Northern Wetlands Study (NOWES). Airborne CH4 flux measurements were taken over a large portion of the HBL. The surface level flux of CH4 was obtained from downward extrapolations of multiple-level CH4 flux measurements. Methane source strengths ranged from -1 to 31 mg m(exp -2)/d, with the higher values occurring in relatively small, isolated areas. Similar measurements of the CH4 source strength in the boreal forest region of Schefferville, Quebec, ranged from 6 to 27 mg m(exp -2)/d and exhibited a diurnal dependence. The CH4 source strengths found during the ABLE 3B expedition were much lower than the seasonally averaged source strength of 51 mg m(exp -2)/d found for the Yukon-Kuskokwim delta region of Alaska during the previous ABLE 3A study. Large positive CO fluxes (0.31 to 0.53 parts per billion by volume (ppbv) m/s) were observed over the inland, forested regions of the HBL study area, although the mechanism for the generation of these fluxes was not identified. Repetitive measurements along the same ground track at various times of day near the Schefferville site also suggested a diurnal dependence for CO emissions. Measurements of surface resistance to the uptake of O3 (1.91 to 0.80 s/cm) for the HBL areas investigated were comparable to those observed near the Schefferville site (3.40 to 1.10 s/cm). Surface resistance values for the ABLE 3B study area were somewhat less than those observed over the Yukon-Kuskokwim delta during the previous ABLE 3A study. The budgets for heat, moisture, O3, CO, and CH4 were evaluated. The residuals from these budget studies indicated, for the cases selected, a moderate net photochemical production of O3 present in the boundary layer over the HBL that coincided with an in situ destruction of CO, although the mechanism responsible for the destruction of CO was not identified. Results from the O3 budget analysis indicate the importance of in situ photochemical production and its possible dominance over surface deposition to the local O3 budget at the Schefferville site. Measurements of the in situ production of O3 indicated a direct relationship between the presence of biomass burning or large-scale pollution effects. Residuals from budget calculations for conserved quantities (heat, moisture, and CH4) were compared with their respective surface fluxes to provide a measure of the internal self-consistency of the flux measurements.

  11. Scaling up carbonyl sulfide (COS) fluxes from leaf and soil to the canopy

    NASA Astrophysics Data System (ADS)

    Yang, Fulin; Yakir, Dan

    2016-04-01

    Carbonyl sulfide (COS) with atmospheric concentrations around 500 ppt is an analog of CO2 which can potentially serve as powerful and much needed tracer of photosynthetic CO2 uptake, and global gross primary production (GPP). However, questions remain regarding the application of this approach due to uncertainties in the contributions of different ecosystem components to the canopy scale fluxes of COS. We used laser quantum cascade spectroscopy in combination with soil and branch chambers, and eddy covariance measurements of net ecosystem exchange fluxes of COS and CO2 (NEE) in citrus orchard during the driest summer month to test our ability to integrate the chamber measurements into the ecosystem fluxes. The results indicated that: 1) Soil fluxes showed clear gradient from continuous uptake under the trees in wet soil of up to -4 pmol m-2s-1 (CO2 emission of ~0.5 umol m-2s-1) to emission in dry hot and exposed soil between rows of trees of up to +3 pmol m-2s-1 (CO2 emission of ~11 umol m-2s-1). In all cases a clear correlation between fluxes and soil temperature was observed. 2) At the leaf scale, midday uptake was ~5.5 pmol m-2s-1 (CO2 uptake of ~1.8 umol m-2s-1). Some nighttime COS uptake was observed in the citrus leaves consistent with nocturnal leaf stomatal conductance. Leaf relative uptake (LRU) of COS vs. CO2 was not constant over the diurnal cycle, but showed exponential correlation with photosynthetically active radiation (PAR) during the daytime. 3) At the canopy scale mid-day summer flux reached -12.0 pmol m-2s-1 (NEE ~6 umol m-2s-1) with the diurnal patterns of COS fluxes following those of CO2 fluxes during the daytime, but with small COS uptake fluxes maintained also during the night when significant CO2 emission fluxes were observed. The canopy-scale fluxes always indicated COS uptake, irrespective of the soil emission effects. GPP estimates were consistent with conventional indirect estimates based on NEE and nocturnal measurements. Scaling up from soil and leaf chamber to canopy scale was possible by estimating LAI, and differential consideration of soil surface components (shaded vs. exposed fractions). 4) Diurnal changes in the atmospheric concentrations of COS and CO2 above the canopy showed complex patterns with opposite trends after sunrise that could be explain by the development of the planetary boundary layer 5) COS-based estimate of GPP can be improved by adopting light dependent LRU, around the mean value of ~1.6, and correcting for soil COS fluxes based on soil temperature and canopy cover estimates, and coupled COS/CO2 concentration measurements provide useful information on boundary layer dynamics.

  12. Gasdynamic simulations of the solar wind interaction with Venus - Boundary layer formation

    NASA Astrophysics Data System (ADS)

    McGary, J. E.

    1993-05-01

    A 2D gasdynamic simulation of the mass-loaded solar wind flow around the dayside of Venus is presented. For average ionopause conditions near 300 km, the simulations show that mass loading from the pickup of oxygen ions produces a boundary layer of finite thickness along the ionopause. Within this layer and toward the ionopause, the temperature decreases and the total mass density increases significantly. Furthermore, there is a shear in the bulk flow velocity across the boundary layer, such that the tangential flow decreases in speed as the ionopause is approached and remains low along the ionopause which is consistent with Pioneer Venus observations. Numerical simulations are carried out for various mass addition rates and demonstrate that the boundary layer develops when oxygen ion production exceeds approximately 2 x 10 exp 5/cu m per s.

  13. Net ozone photochemical production over the eastern and central North Pacific as inferred from GTE/CITE 1 observations during fall 1983

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.; Rodgers, M. O.; Bradshaw, J.; Sandholm, S.; Sachse, G.; Hill, G.; Gregory, G.

    1987-01-01

    The role of photochemistry in the budget of tropospheric ozone is studied. Measurements of O3, NO, CO, H2O vapor, and temperature obtained during the fall of 1983 during the GTE/CITE project over the eastern and central North Pacific Ocean are analyzed. The effect of altitude on the measurements is discussed. The analysis reveals a correlation between ozone and NO levels; both increase in concentration and variability with altitude. It is observed that an additional source of secondary importance associated wih CO-rich air parcels exists. A photochemical model is utilized to calculate the net rate of ozone production by photochemical reactions. A net photochemical source of ozone in the free troposphere and a net sink in the boundary layer are detected. The relation between the ozone source in the free troposphere and NO is examined. It is estimated that photochemistry provides a net ozone source to the free troposphere overlying the eastern and central North Pacific Ocean of about 5 x 10 to the 10th molecules/sq cm sec and a net sink of ozone to the boundary layer overlying this region of about 3 x 10 to the 10th molecules/sq cm sec.

  14. Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.

    PubMed

    Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L

    2015-12-01

    The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Pattern formation study of dissolution-driven convection

    NASA Astrophysics Data System (ADS)

    Aljahdaly, Noufe; Hadji, Layachi

    2017-11-01

    A three-dimensional pattern formation analysis is performed to investigate the dissolution-driven convection induced by the sequestration of carbon dioxide. We model this situation by considering a Rayleigh-Taylor like base state consisting of carbon-rich heavy brine overlying a carbon-free layer and seek, through a linear stability analysis, the instability threshold conditions as function of the thickness of the CO2-rich brine layer. Our model accounts for carbon diffusion anisotropy, permeability dependence on depth and the presence of a first order chemical reaction between the carbon-rich brine and host mineralogy. A small amplitude nonlinear stability analysis is performed to isolate the preferred regular pattern and solute flux conditions at the interface. The latter are used to derive equations for the time and space evolution of the interface as it migrates upward. We quantify the terminal time when the interface reaches the top boundary as function of the type of solute boundary conditions at the top boundary thereby also quantifying the beginning of the shutdown regime. The analysis will also shed light on the development of the three-dimensional fingering pattern that is observed when the constant flux regime is attained.

  16. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

    USGS Publications Warehouse

    Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G.

    2004-01-01

    To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 ??m/s and between 9.0 and 10.6 ?? 10-2 ??m/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ?? 0.5 mmol CO2/m2s and 0.37 ?? 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. ?? 2003 Elsevier Ltd.

  17. Nonmethane hydrocarbon chemistry in the remote marine boundary layer

    NASA Technical Reports Server (NTRS)

    Donahue, Neil M.; Prinn, Ronald G.

    1990-01-01

    A photochemical model of the remote marine boundary layer (MBL) is presented, with focus placed on the role of reactive nonmethane hydrocarbons (NMHC). A wide range of NMHC air-sea fluxes with various relative distributions of NMHC regions are considered. In particular, the flux magnitude at which NMHC emissions become significant, and then dominant, players in MBL chemistry is identified. Emphasis is placed on diurnal variability, diurnal ozone variations and sensitivity to NMHC emission fluxes, to CO, O3, H2O, and UV light, and to kinetics and isometric composition. Model runs indicate that, in the range consistent with current observations, the NMHCs may either dominate MBL chemistry, or simply be contributors at the 10-percent level. These model runs also show that existing observations of NMHCs in ocean water find them to scarce for fluxes from bulk-flux air-sea gas exchange models to be consistent with the fluxes needed in the proposed model to maintain the lowest observed MBL NMHC.

  18. Stereo particle image velocimetry of nonequilibrium turbulence relaxation in a supersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Lapsa, Andrew P.; Dahm, Werner J. A.

    2011-01-01

    Measurements using stereo particle image velocimetry are presented for a developing turbulent boundary layer in a wind tunnel with a Mach 2.75 free stream. As the boundary layer exits from the tunnel nozzle and moves through the wave-free test section, small initial departures from equilibrium turbulence relax, and the boundary layer develops toward the equilibrium zero-pressure-gradient form. This relaxation process is quantified by comparison of first and second order mean, fluctuation, and gradient statistics to classical inner and outer layer scalings. Simultaneous measurement of all three instantaneous velocity components enables direct assessment of the complete turbulence anisotropy tensor. Profiles of the turbulence Mach number show that, despite the M = 2.75 free stream, the incompressibility relation among spatial gradients in the velocity fluctuations applies. This result is used in constructing various estimates of the measured-dissipation rate, comparisons among which show only remarkably small differences over most of the boundary layer. The resulting measured-dissipation profiles, together with measured profiles of the turbulence kinetic energy and mean-flow gradients, enable an assessment of how the turbulence anisotropy relaxes toward its equilibrium zero-pressure-gradient state. The results suggest that the relaxation of the initially disturbed turbulence anisotropy profile toward its equilibrium zero-pressure-gradient form begins near the upper edge of the boundary layer and propagates downward through the defect layer.

  19. Combined and isolated effects of pCO2 and soil water content on carbon isotope discrimination during C3 photosynthesis

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2016-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  20. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2009-08-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is based on airborne MOZAIC observations of ozone, carbon monoxide, nitrogen oxides and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June and on a vertical profile over Washington DC on 30 June, and on lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the observed CO plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle at isentropic levels (above 335 K) corresponding to those of the downstream MOZAIC observations. It is shown that the order of magnitude of the time needed by the parameterized convective detrainment flux to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air would be about 7.5 h, i.e. a time period compatible with the convective diurnal cycle. Over the area of interest, the maximum instantaneous detrainment fluxes deposited about 15 to 20% of the initial boundary layer tracer concentration at 335 K. According to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over Eastern Atlantic, such detrainment fluxes would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  1. Energy efficient engine, low-pressure turbine boundary layer program

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1981-01-01

    A study was conducted to investigate development of boundary layers under the influence of velocity distributions simulating the suction side of two state-of-the-art turbine airfoils: a forward loaded airfoil (squared-off design) and an aft loaded airfoil (aft-loaded design). These velocity distributions were simulated in a boundary layer wind tunnel. Detailed measurements of boundary layer mean velocity and turbulence intensity profiles were obtained for an inlet turbulence level of 2.4 percent and an exit Reynolds number of 800,000. Flush-mounted hot film probes identified the boundary layer transition regimes in the adverse pressure gradient regions for both velocity distributions. Wall intermittency data showed good agreement with the correlations of Dhawan and Narasimha for the intermittency factor distribution in transitional flow regimes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hak-Sung, E-mail: hslee@kims.re.kr; Park, Chanbum; Oh, Chang-Seok

    Highlights: • We model the sample grain boundary of LiCoO2, one of important Li cathode materials. • Rigid body translation was found the asymmetric GB is more stable than symmetric GB. • The vacancy formation energy of Li and O was estimated with first principles calculations. • This model boundary can help to find a new dopant to improve Li diffusions. - Abstract: An atomic structure of LiCoO{sub 2} model grain boundary, Σ2 [1120](1102), is introduced and grain boundary energies with rigid body translations are investigated systematically to find the most stable interface structures. It is found that the coordinatedmore » structures of Co and O in the vicinity of grain boundary are strongly related to grain boundary energy. Examining nonstoichiometry at grain boundary, the defect energetics of Li and O site at grain boundary are estimated. In addition, the effect of grain boundary on Li diffusion is investigated to calculate Li diffusion across grain boundary.« less

  3. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-10-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (<60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  4. Transport Pathways for Asian Pollution Outflow Over the Pacific: Interannual and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Yu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-01-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (less than 60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Nina) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  5. Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Schwing, A. M.; Blaisdell, G> A.; Lyrintzis, A. S.

    2007-01-01

    The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions.

  6. Finite-Difference Solutions for Compressible Laminar Boundary-Layer Flows of a Dusty Gas over a Semi-Infinite Flat Plate.

    DTIC Science & Technology

    1986-08-01

    AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I

  7. Turbulent boundary layer heat transfer experiments: Convex curvature effects, including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1980-01-01

    Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.

  8. Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany).

    PubMed

    Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C

    2018-02-03

    During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.

  9. Transient interaction between a reaction control jet and a hypersonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan

    2018-04-01

    This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.

  10. Version 2 of the Protuberance Correlations for the Shuttle-Orbiter Boundary Layer Transition Tool

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Kegerise, Michael A.; Berry, Scott A.

    2009-01-01

    Orbiter-specific transition data, acquired in four ground-based facilities (LaRC 20-Inch Mach 6 Air Tunnel, LaRC 31-Inch Mach 10 Air Tunnel, LaRC 20-Inch Mach 6 CF4 Tunnel, and CUBRC LENS-I Shock Tunnel) with three wind tunnel model scales (0.75, 0.90, and 1.8%) and from Orbiter historical flight data, have been analyzed to improve a pre-existing engineering tool for reentry transition prediction on the windward side of the Orbiter. Boundary layer transition (BLT) engineering correlations for transition induced by isolated protuberances are presented using a laminar Navier-Stokes (N-S) database to provide the relevant boundary-layer properties. It is demonstrated that the earlier version of the BLT correlation that had been developed using parameters derived from an engineering boundary-layer code has improved data collapse when developed with the N-S database. Of the new correlations examined, the proposed correlation 5, based on boundary-layer edge and wall properties, was found to provide the best overall correlation metrics when the entire database is employed. The second independent correlation (proposed correlation 7) selected is based on properties within the boundary layer at the protuberance height. The Aeroheating Panel selected a process to derive the recommended coefficients for Version 2 of the BLT Tool. The assumptions and limitations of the recommended protuberance BLT Tool V.2 are presented.

  11. Influence of Microstructure and Surface Activation of Dual-Phase Membrane Ce 0.8 Gd 0.2 O 2-δ -FeCo 2 O 4 on Oxygen Permeation

    DOE PAGES

    Ramasamy, Madhumidha; Baumann, Stefan; Palisaitis, Justinas; ...

    2015-09-24

    In dual-phase oxygen transport membranes we noticed that there is fast-growing interest in research for oxyfuel combustion process application. One such potential candidate is CGO-FCO (60wt% Ce 0.8Gd 0.2O 2-δ-40wt% FeCo 2O4) identified to provide good oxygen permeation flux with substantial stability in harsh atmosphere. Dense CGO-FCO membranes of 1mm thickness were fabricated by sintering dry pellets pressed from powders synthesized by one-pot method (modified Pechini process) at 1200 degrees C for 10h. Microstructure analysis indicates presence of a third orthorhombic perovskite phase in the sintered composite. We also identified that the spinel phase tends to form an oxygen deficientmore » phase at the grain boundary of spinel and CGO phases. Surface exchange limitation of the membranes was overcome by La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) porous layer coating over the composite. Moreover, the oxygen permeation flux of the CGO-FCO screen printed with a porous layer of 10mthick LSCF is 0.11mL/cm 2 per minute at 850 degrees C with argon as sweep and air as feed gas at the rates of 50 and 250mL/min.« less

  12. The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis.

    PubMed

    Agostini, Sylvain; Fujimura, Hiroyuki; Higuchi, Tomihiko; Yuyama, Ikuko; Casareto, Beatriz E; Suzuki, Yoshimi; Nakano, Yoshikatsu

    2013-08-01

    The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. An Optimization Technique for the Development of Two-Dimensional Steady Turbulent Boundary Layer Models.

    DTIC Science & Technology

    1982-03-01

    observed coherent structure of the wall layer flow and will now be briefly described. Over the past decade, it has been well documented (see, for example...D2, and x are all arbitrary constants. Equilibrium flows have been examined experimentally for a number of years and an equilibrium boundary layer...CP93, Paper No. 27, 6. Clauser, F.H. (1954). "Turbulent Boundary Layers in Adverse Pressure Gradients", J. Aeronaut. Sci., 21, pp. 91-108. 7. Clauser

  14. Evidence for Cu2-xSe platelets at grain boundaries and within grains in Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Simsek Sanli, E.; Ramasse, Q. M.; Mainz, R.; Weber, A.; Abou-Ras, D.; Sigle, W.; van Aken, P. A.

    2017-07-01

    Cu(In,Ga)Se2 (CIGS)-based solar cells reach high power-conversion efficiencies of above 22%. In this work, a three-stage co-evaporation method was used for their fabrication. During the growth stages, the stoichiometry of the absorbers changes from Cu-poor ([Cu]/([In] + [Ga]) < 1) to Cu-rich ([Cu]/([In] + [Ga]) > 1) and finally becomes Cu-poor again when the growth process is completed. It is known that, according to the Cu-In-Ga-Se phase diagram, a Cu-rich growth leads to the presence of Cu2-xSe (x = 0-0.25), which is assumed to assist in recrystallization, grain growth, and defect annihilation in the CIGS layer. So far, Cu2-xSe precipitates with spatial extensions on the order of 10-100 nm have been detected only in Cu-rich CIGS layers. In the present work, we report Cu2-xSe platelets with widths of only a few atomic planes at grain boundaries and as inclusions within grains in a polycrystalline, Cu-poor CIGS layer, as evidenced by high-resolution scanning transmission electron microscopy (STEM). The chemistry of the Cu-Se secondary phase was analyzed by electron energy-loss spectroscopy, and STEM image simulation confirmed the identification of the detected phase. These results represent additional experimental evidence for the proposed topotactical growth model for Cu-Se-assisted CIGS thin-film formation under Cu-rich conditions.

  15. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.

    PubMed

    Beck-Broichsitter, Moritz

    2016-09-10

    The introduction of "Ouzo diagrams" has enhanced the applicability of the basic nanoprecipitation process for drug delivery research. The current study investigated the interaction of two relevant polymer/solvent systems, which is thought to impact the location of the stability-limit "Ouzo boundary". Viscosity measurements (Kurata-Stockmayer-Fixman approach) and static light scattering (Debye method) underlined a distinct interplay of the employed polymer (poly(lactide-co-glycolide)) with the utilized organic solvents (acetone and tetrahydrofuran). Both methods indicated that tetrahydrofuran was the "better" solvent for poly(lactide-co-glycolide). Thus, nanoprecipitation of this polymer/solvent composition resulted in larger nanoparticles. This observation can be attributed to the chain configuration of poly(lactide-co-glycolide) in the organic solvent, which influenced the extent of the break-up of the injected solvent layer. Accordingly, the stability-limit curve of the "Ouzo region" was shifted to lower poly(lactide-co-glycolide) fractions for tetrahydrofuran. Overall, the location of the "Ouzo region", which is an essential tool for drug delivery research, is influenced by the employed organic solvent. The current study described two distinct methods suitable to identify relevant polymer-solvent interactions, which dictate the stability-limit "Ouzo boundary" for relevant poly(lactide-co-glycolide). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Relative changes in CO emissions over megacities based on observations from space

    NASA Astrophysics Data System (ADS)

    Pommier, Matthieu; McLinden, Chris A.; Deeter, Merritt

    2013-07-01

    Urban areas are large sources of several air pollutants, with carbon monoxide (CO) among the largest. Yet measurement from space of their CO emissions remains elusive due to its long lifetime. Here we introduce a new method of estimating relative changes in CO emissions over megacities. A new multichannel Measurements of Pollution in the Troposphere (MOPITT) CO data product, offering improved sensitivity to the boundary layer, is used to estimate this relative change over eight megacities: Moscow, Paris, Mexico, Tehran, Baghdad, Los Angeles, Sao Paulo, and Delhi. By combining MOPITT observations with wind information from a meteorological reanalysis, changes in the CO upwind-downwind difference are used as a proxy for changes in emissions. Most locations show a clear reduction in CO emission between 2000-2003 and 2004-2008, reaching -43% over Tehran and -47% over Baghdad. There is a contrasted agreement between these results and the MACCity and Emission Database for Global Atmospheric Research v4.2 inventories.

  17. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    NASA Astrophysics Data System (ADS)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  18. Current 2-μm dial measurements of atmospheric CO2 and expected results from space using new MCT APDS

    NASA Astrophysics Data System (ADS)

    Dumas, A.; Gibert, F.; Rothman, J.; Édouart, D.; Le Mounier, F.; Cénac, C.

    2017-11-01

    In the framework of CO2 monitoring in the Atmospheric Boundary Layer (ABL), a ground-based 2-μm Differential Absorption Lidar (DIAL) has been developed at the Laboratoire de Météorologie Dynamique (LMD) in Palaiseau. In order to derive flux information, this system has been set up with coherent detection, which allows to combine CO2 density measurements with wind velocity measurements. On the other hand, new advances in the field of Mercury Cadmium Tellure (MCT) Avalanche Photodiodes (APDs) open the way for high-precision measurements in direct detection ultimately from space. In this study, we first report on state of the art measurements obtained with the current coherent DIAL system before presenting expected results for a similar laser transmitter equipped with MCT APDs. For this latter part, we use a numerical model which relies on APDs performance data provided by the Laboratoire d'Électronique et de Technologie de l'Information (LETI).

  19. A Critical Compilation of Compressible Turbulent Boundary Layer Data

    DTIC Science & Technology

    1977-06-01

    CF * 3ia HI2K Po PD X POD* PW/PD* RED20 Co H32 I3 2K Tv TO RX TOD* SW * D2 P12* � D2R UD TR 73030101 1.9830 1.0000 2.6469*+O4 1.7600"-03 2,63a5...ACKNOWLEDGEMENTS iv ill FOREWORD V iv LIST OF ABBREVIATIONS vi v LIST OF SYMBOLS vii vi GUIDANCE FOR USERS OF THE CATALOGUE ix vii PROFILE DATA ON MICROFICHE x 1...measured NPG - normal pressure gradient NX - number of X -stations PC - private communication RUN full 8-digit identification of the profile RW

  20. Integration of Ground-Based Solar FT-IR Absorption Spectroscopy and Open-Path Systems for Atmospheric Analysis

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Hager, J. S.; Compton, R. N.

    2006-05-01

    Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Infrared absorption spectroscopy of the atmosphere provides a unique opportunity to analyze the local chemical composition, since many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provide solar-sourced and boundary- layer atmospheric infrared spectra of these and other relevant atmospheric components. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar-sourced absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. A record of solar-sourced atmospheric spectra of greater than two years duration is under analysis to characterize experimental error and thus the limit of precision in the concentration determinations. Initial efforts using atmospheric O2 as a calibration indicate the solar- sourced spectra may not yet meet the precision required for accurate atmospheric CO2 quantification by such efforts as the OCO and NDSC. However, this variability is also indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the local trace gas concentrations.

  1. Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2012-01-01

    Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.

  2. Effect Of Impurity On Cu Electromigration

    NASA Astrophysics Data System (ADS)

    Hu, C.-K.; Angyal, M.; Baker, B. C.; Bonilla, G.; Cabral, C.; Canaperi, D. F.; Choi, S.; Clevenger, L.; Edelstein, D.; Gignac, L.; Huang, E.; Kelly, J.; Kim, B. Y.; Kyei-Fordjour, V.; Manikonda, S. L.; Maniscalco, J.; Mittal, S.; Nogami, T.; Parks, C.; Rosenberg, R.; Simon, A.; Xu, Y.; Vo, T. A.; Witt, C.

    2010-11-01

    The impact of the existence of Cu grain boundaries on the degradation of Cu interconnect lifetime at the 45 nm technology node and beyond has suggested that improved electromigra-tion in Cu grain boundaries has become increasingly important. In this paper, solute effects of non-metallic (C, Cl, O and S) and metallic (Al, Co, In, Mg, Sn, and Ti) impurities on Cu elec-tromigration were investigated. The Cu alloy interconnects were fabricated by adjusting Cu electroplating solutions or by depositing a Cu alloy seed, a thin film layer of impurity, an alloy liner, or a metal cap. A large variation of Cu grain structure in the samples was achieved by adjusting the wafer fabrication process steps. The non-metallic impurities were found to be less than 0.1% in the electroplated Cu with no effect on Cu electromigration lifetimes. Most of the metallic impurities reduced Cu interface and grain boundary mass flows and enhanced Cu lifetime, but Al, Co, and Mg impurities did not mitigate Cu grain boundary diffusion.

  3. A new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H2O boundary layer structure at single plant leaves

    NASA Astrophysics Data System (ADS)

    Wunderle, K.; Rascher, U.; Pieruschka, R.; Schurr, U.; Ebert, V.

    2015-01-01

    A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1-0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.

  4. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  5. High-Fidelity Numerical Modeling of Compressible Flow

    DTIC Science & Technology

    2015-11-01

    details on these aspects of the implementation were reported in an earlier paper by Poggie.42 C. Flowfield Two flat - plate turbulent boundary layer flows...work investigated flat plate turbulent boundary layer flows. The baseline case was a flow at Mach 2.3, under conditions similar to those employed in...analyzed. The solutions are compared to a spanwise- periodic flat - plate turbulent boundary layer developed at the same conditions and yield similar

  6. Flowfield analysis for successive oblique shock wave-turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Sun, C. C.; Childs, M. E.

    1976-01-01

    A computation procedure is described for predicting the flowfields which develop when successive interactions between oblique shock waves and a turbulent boundary layer occur. Such interactions may occur, for example, in engine inlets for supersonic aircraft. Computations are carried out for axisymmetric internal flows at M 3.82 and 2.82. The effect of boundary layer bleed is considered for the M 2.82 flow. A control volume analysis is used to predict changes in the flow field across the interactions. Two bleed flow models have been considered. A turbulent boundary layer program is used to compute changes in the boundary layer between the interactions. The results given are for flows with two shock wave interactions and for bleed at the second interaction site. In principle the method described may be extended to account for additional interactions. The predicted results are compared with measured results and are shown to be in good agreement when the bleed flow rate is low (on the order of 3% of the boundary layer mass flow), or when there is no bleed. As the bleed flow rate is increased, differences between the predicted and measured results become larger. Shortcomings of the bleed flow models at higher bleed flow rates are discussed.

  7. Structure measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.

    Extensive hot-wire measurements were made to determine the structure of the large eddy in a synthetic turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five delta long in the steamwise direction and about one delta apart in the spanwise direction, where delta is the mean boundary-layer thickness. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal velocity in the outer flow.

  8. Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Harvey, W. D.; Harris, J. E.; Holley, B. B.

    1973-01-01

    One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented.

  9. Numerical Study of Boundary-Layer in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Shih, Tom I-P.

    1997-01-01

    The accomplishments made in the following three tasks are described: (1) The first task was to study shock-wave boundary-layer interactions with bleed - this study is relevant to boundary-layer control in external and mixed-compression inlets of supersonic aircraft; (2) The second task was to test RAAKE, a code developed for computing turbulence quantities; and (3) The third task was to compute flow around the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage. The appendices include two reports submitted to AIAA for publication.

  10. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  11. Boundary layers at the interface of two different shear flows

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick D.; Wang, C. Y.

    2018-05-01

    We present solutions for the boundary layer between two uniform shear flows flowing in the same direction. In the upper layer, the flow has shear strength a, fluid density ρ1, and kinematic viscosity ν1, while the lower layer has shear strength b, fluid density ρ2, and kinematic viscosity ν2. Similarity transformations reduce the boundary-layer equations to a pair of ordinary differential equations governed by three dimensionless parameters: the shear strength ratio γ = b/a, the density ratio ρ = ρ2/ρ1, and the viscosity ratio ν = ν2/ν1. Further analysis shows that an affine transformation reduces this multi-parameter problem to a single ordinary differential equation which may be efficiently integrated as an initial-value problem. Solutions of the original boundary-value problem are shown to agree with the initial-value integrations, but additional dual and quadruple solutions are found using this method. We argue on physical grounds and through bifurcation analysis that these additional solutions are not tenable. The present problem is applicable to the trailing edge flow over a thin airfoil with camber.

  12. Modelling of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data - First results

    NASA Astrophysics Data System (ADS)

    Marschall, R.; Su, C. C.; Liao, Y.; Thomas, N.; Wu, J. S.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Rubin, M.; Skorov, Y.; Jorda, L.; Preusker, F.; Scholten, F.; Gicquel, A.; Gracia-Berná, A.; Naletto, G.

    2015-10-01

    The physics of the outflow above the surface of comets is somewhat complex. Ice sublimating into vacuum forms a non-equilibrium boundary layer, the "Knudsen layer" (Kn-layer), with a scale height of #20 mean free paths. If the production rate is low, the Kn-layer becomes infinitely thick and the velocity distribution function (VDF) remains strongly non-Maxwellian. Thus our preferred method for gas dynamics simulations of the coma is Direct Simulation Monte Carlo DSMC. Here we report on the first results of models of the outflow from the Rosetta target, comet67P/Churyumov-Gerasimenko (C-G). Our aims are to (1) determine the gas flow-field of H2O and CO2 in the innermost coma and compare the results to the in-situ measurements of the ROSINA/COPS instrument (2) produce artificial images of the dust brightnesses that can be compared to the OSIRIS cameras. The comparison with ROSINA/COPS and OSIRIS data help to constrain the initial conditions of the simulations and thus yield information on the surface processes.

  13. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments

    NASA Astrophysics Data System (ADS)

    Wei, Liang; Gao, Kewei; Li, Qian

    2018-05-01

    The corrosion behavior of P110 low-Cr alloy steel in supercritical CO2-saturated brine (aqueous phase) and water-saturated supercritical CO2 (SC CO2 phase) was investigated. The results show that P110 steel primarily suffered general corrosion in the aqueous phase, while severe localized corrosion occurred in the SC CO2 phase. The formation of corrosion product scale on P110 steel in the aqueous phase divided into three stages: formation of the initial corrosion layer containing amorphous Cr(OH)3, FeCO3 and a small amount of Fe3C; transformation of initial corrosion layer to mixed layer, which consisted of FeCO3 and a small amount of Cr(OH)3 and Fe3C; growth and dissolution of the mixed layer. Finally, only a single mixed layer covered on the steel in the aqueous phase. However, the scale formed in SC CO2 phase consisted of two layers: the inner mixed layer and the dense outer FeCO3 crystalline layer.

  14. Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.

    2011-04-01

    Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free-troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. The models consistently underestimated the north-tropics mean gradient of CO2 both in the free-troposphere and marine boundary layer during boreal summer. This result suggests that the north-tropics contrast of annual mean net non-fossil CO2 flux should be greater than 2.7 Pg C yr-1 for 2007.

  15. Central Tropical Pacific Variability And ENSO Response To Changing Climate Boundary Conditions: Evidence From Individual Line Island Foraminifera

    NASA Astrophysics Data System (ADS)

    Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.

  16. Local Sensitivity of Predicted CO 2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    DOE PAGES

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; ...

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficientmore » (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.« less

  17. Numerical Experiments in Error Control for Sound Propagation Using a Damping Layer Boundary Treatment

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2017-01-01

    This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].

  18. Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Jacob, Daniel J.; Yantosca, Robert M.; Chin, Mian; Ginoux, Paul

    2003-01-01

    We evaluate the sensitivity of tropospheric OH, O3, and O3 precursors to photochemical effects of aerosols not usually included in global models: (1) aerosol scattering and absorption of ultraviolet radiation and (2) reactive uptake of HO', NO2, and NO3. Our approach is to couple a global 3-D model of tropospheric chemistry (GEOS- CHEM) with aerosol fields from a global 3-D aerosol model (GOCART). Reactive uptake by aerosols is computed using reaction probabilities from a recent review (gamma(sub HO2) = 0.2, gamma(sub NO2) = 10(exp -4), gamma(sub NO3) = l0(exp -3). Aerosols decrease the O3 - O((sup 1)D) photolysis frequency by 5-20% at the surface throughout the Northern Hemisphere (largely due to mineral dust) and by a factor of 2 in biomass burning regions (largely due to black carbon). Aerosol uptake of HO2 accounts for 10-40% of total HOx radical ((triple bonds)OH + peroxy) loss in the boundary layer over polluted continental regions (largely due to sulfate and organic carbon) and for more than 70% over tropical biomass burning regions (largely due to organic carbon). Uptake of NO2 and NO3 accounts for 10-20% of total HNO3 production over biomass burning regions and less elsewhere. Annual mean OH concentrations decrease by 9% globally and by 5-35% in the boundary layer over the Northern Hemisphere. Simulated CO increases by 5- 15 ppbv in the remote Northern Hemisphere, improving agreement with observations. Simulated boundary layer O3 decreases by 15- 45 ppbv over India during the biomass burning season in March and by 5-9 ppbv over northern Europe in August, again improving comparison with observations. We find that particulate matter controls would increase surface O3 over Europe and other industrial regions.

  19. On the development of a methodology for extensive in-situ and continuous atmospheric CO2 monitoring

    NASA Astrophysics Data System (ADS)

    Wang, K.; Chang, S.; Jhang, T.

    2010-12-01

    Carbon dioxide is recognized as the dominating greenhouse gas contributing to anthropogenic global warming. Stringent controls on carbon dioxide emissions are viewed as necessary steps in controlling atmospheric carbon dioxide concentrations. From the view point of policy making, regulation of carbon dioxide emissions and its monitoring are keys to the success of stringent controls on carbon dioxide emissions. Especially, extensive atmospheric CO2 monitoring is a crucial step to ensure that CO2 emission control strategies are closely followed. In this work we develop a methodology that enables reliable and accurate in-situ and continuous atmospheric CO2 monitoring for policy making. The methodology comprises the use of gas filter correlation (GFC) instrument for in-situ CO2 monitoring, the use of CO2 working standards accompanying the continuous measurements, and the use of NOAA WMO CO2 standard gases for calibrating the working standards. The use of GFC instruments enables 1-second data sampling frequency with the interference of water vapor removed from added dryer. The CO2 measurements are conducted in the following timed and cycled manner: zero CO2 measurement, two standard CO2 gases measurements, and ambient air measurements. The standard CO2 gases are calibrated again NOAA WMO CO2 standards. The methodology is used in indoor CO2 measurements in a commercial office (about 120 people working inside), ambient CO2 measurements, and installed in a fleet of in-service commercial cargo ships for monitoring CO2 over global marine boundary layer. These measurements demonstrate our method is reliable, accurate, and traceable to NOAA WMO CO2 standards. The portability of the instrument and the working standards make the method readily applied for large-scale and extensive CO2 measurements.

  20. Bypass transition in boundary layers including curvature and favorable pressure gradient effects

    NASA Technical Reports Server (NTRS)

    Volino, R. J.; Simon, T. W.

    1991-01-01

    Recent studies of 2-D boundary layers undergoing bypass transition were reviewed. Bypass transition is characterized by the sudden appearance of turbulent spots in boundary layer without first the regular, observable growth of disturbances predicted by linear stability theory. There are no standard criteria or parameters for defining bypass transition, but it is known to be the mode of transition when the flow is disturbed by perturbations of sufficient amplitude.

  1. Space-Time Correlations and Spectra of Wall Pressure in a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Willmarth, W. W.

    1959-01-01

    Measurements of the statistical properties of the fluctuating wall pressure produced by a subsonic turbulent boundary layer are described. The measurements provide additional information about the structure of the turbulent boundary layer; they are applicable to the problems of boundary-layer induced noise inside an airplane fuselage and to the generation of waves-on water. The spectrum of the wall pressure is presented in dimensionless form. The ratio of the root-mean-square wall pressure to the free-stream dynamic pressure is found to be a constant square root of bar P(sup 2)/q(sub infinity) = 0.006 independent of Mach number and Reynolds number. In addition, space- time correlation measurements in the stream direction show that pressure fluctuations whose scale is greater than or equal to 0.3 times the boundary-layer thickness are convected with the convection speed U(sub c) = 0.82U(sub infinity) where U(infinity) is the free-stream velocity and have lost their identity in a distance approximately equal to 10 boundary-layer thicknesses.

  2. Hypersonic Boundary Layer Stability over a Flared Cone in a Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona; Wilkinson, Stephen P.

    1996-01-01

    Hypersonic boundary layer measurements were conducted over a flared cone in a quiet wind tunnel. The flared cone was tested at a freestream unit Reynolds number of 2.82x106/ft in a Mach 6 flow. This Reynolds number provided laminar-to-transitional flow over the model in a low-disturbance environment. Point measurements with a single hot wire using a novel constant voltage anemometry system were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the laminar-to-transitional state of the boundary layer and to identify instability modes. Results suggest that the second mode disturbances were the most unstable and scaled with the boundary layer thickness. The integrated growth rates of the second mode compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode sub-harmonic. The sub-harmonic wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that non-linear disturbances are not associated with high free stream disturbance levels.

  3. The influence of free-stream turbulence on separation of turbulent boundary layers in incompressible, two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith; Barnett, R. Joel; Fisher, Carl E.; Koukousakis, Costas E.

    1986-01-01

    Experiments were conducted to determine if free-stream turbulence scale affects separation of turbulent boundary layers. In consideration of possible interrelation between scale and intensity of turbulence, the latter characteristic also was varied and its role was evaluated. Flow over a 2-dimensional airfoil in a subsonic wind tunnel was studied with the aid of hot-wire anemometry, liquid-film flow visualization, a Preston tube, and static pressure measurements. Profiles of velocity, relative turbulence intensity, and integral scale in the boundary layer were measured. Detachment boundary was determined for various angles of attack and free-stream turbulence. The free-stream turbulence intensity and scale were found to spread into the entire turbulent boundary layer, but the effect decreased as the airfoil surface was approached. When the changes in stream turbulence were such that the boundary layer velocity profiles were unchanged, detachment location was not significantly affected by the variations of intensity and scale. Pressure distribution remained the key factor in determining detachment location.

  4. Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew

    2017-11-01

    Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.

  5. Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.

    PubMed

    Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing

    2017-08-01

    Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Laser Doppler velocimeter measurements of boundary layer velocity and turbulent intensities in Mach 2.5 flow

    NASA Technical Reports Server (NTRS)

    Sewell, Jesse; Chew, Larry

    1994-01-01

    In recent years, the interest in developing a high-speed civil transport has increased. This has led to an increase in research activity on compressible supersonic flows, in particular the boundary layer. The structure of subsonic boundary layers has been extensively documented using conditional sampling techniques which exploit the knowledge of both u and v velocities. Researchers using these techniques have been able to explore some of the complex three-dimensional motions which are responsible for Reynolds stress production and transport in the boundary layer. As interest in turbulent structure has grown to include supersonic flows, a need for simultaneous multicomponent velocity measurements in these flows has developed. The success of conditional analysis in determining the characteristics of coherent motions and structures in the boundary layer relies on accurate, simultaneous measurement of two instantaneous velocity components.

  7. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  8. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.

    2010-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  9. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  10. Control of shock wave-boundary layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Hingst, W. G.; Reshotko, E.

    1975-01-01

    An experimental investigation was conducted to determine the effect of bleed on a shock wave-boundary layer interaction in an axisymmetric mixed-compression supersonic inlet. The inlet was designed for a free-stream Mach number of 2.50 with 60-percent supersonic internal area contraction. The experiment was conducted in the NASA Lewis Research Center 10-Foot Supersonic Wind Tunnel. The effects of bleed amount and bleed geometry on the boundary layer after a shock wave-boundary layer interaction were studied. The effect of bleed on the transformed form factor is such that the full realizable reduction is obtained by bleeding of a mass flow equal to about one-half of the incident boundary layer mass flow. More bleeding does not yield further reduction. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise.

  11. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; de Arellano, J. Vilà-Guerau

    2013-09-01

    In Ouwersloot and Vilà-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10.1007/s10546-013-9816-z , 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab models without taking subsidence into account. Here, we include and quantify the added effect of subsidence if the subsidence velocity scales linearly with height throughout the atmosphere. This enables analytical analyses for a wider range of observational cases. As a demonstration, the sensitivity of the boundary-layer height and the potential temperature jump to subsidence and the free tropospheric stability is graphically presented. The new relations show the importance of the temporal distribution of the surface buoyancy flux in determining the evolution if there is subsidence.

  12. Method for transition prediction in high-speed boundary layers, phase 2

    NASA Astrophysics Data System (ADS)

    Herbert, T.; Stuckert, G. K.; Lin, N.

    1993-09-01

    The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.

  13. Semidiscrete Galerkin modelling of compressible viscous flow past a circular cone at incidence. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Meade, Andrew James, Jr.

    1989-01-01

    A numerical study of the laminar and compressible boundary layer, about a circular cone in a supersonic free stream, is presented. It is thought that if accurate and efficient numerical schemes can be produced to solve the boundary layer equations, they can be joined to numerical codes that solve the inviscid outer flow. The combination of these numerical codes is competitive with the accurate, but computationally expensive, Navier-Stokes schemes. The primary goal is to develop a finite element method for the calculation of 3-D compressible laminar boundary layer about a yawed cone. The proposed method can, in principle, be extended to apply to the 3-D boundary layer of pointed bodies of arbitrary cross section. The 3-D boundary layer equations governing supersonic free stream flow about a cone are examined. The 3-D partial differential equations are reduced to 2-D integral equations by applying the Howarth, Mangler, Crocco transformations, a linear relation between viscosity, and a Blasius-type of similarity variable. This is equivalent to a Dorodnitsyn-type formulation. The reduced equations are independent of density and curvature effects, and resemble the weak form of the 2-D incompressible boundary layer equations in Cartesian coordinates. In addition the coordinate normal to the wall has been stretched, which reduces the gradients across the layer and provides high resolution near the surface. Utilizing the parabolic nature of the boundary layer equations, a finite element method is applied to the Dorodnitsyn formulation. The formulation is presented in a Petrov-Galerkin finite element form and discretized across the layer using linear interpolation functions. The finite element discretization yields a system of ordinary differential equations in the circumferential direction. The circumferential derivatives are solved by an implicit and noniterative finite difference marching scheme. Solutions are presented for a 15 deg half angle cone at angles of attack of 5 and 10 deg. The numerical solutions assume a laminar boundary layer with free stream Mach number of 7. Results include circumferential distribution of skin friction and surface heat transfer, and cross flow velocity distributions across the layer.

  14. Response and Sensitivity of the Nocturnal Boundary Layer Over Land to Added Longwave Radiative Forcing

    NASA Astrophysics Data System (ADS)

    McNider, R. T.; Steeneveld, G.; Holtslag, B.; Pielke, R. A.; Mackaro, S.; Nair, U. S.; Biazar, A. P.; Christy, J. R.; Walters, J.

    2012-12-01

    . One of the most significant signals in the thermometer-observed temperature record since 1900 is the decrease in the diurnal temperature range (DTR) over land. CMIP3 climate models only captured about 20% of this trend difference. An update of observed trends through 2010 indicates that CMIP5 models still only capture about 28%. Because climate models have not captured this asymmetry, many investigators have looked to forcing or processes that models have not included to explain the lack of fidelity of models. Our paper takes an alternative view of the role nonlinear dynamics of the stable nocturnal boundary layer (SNBL) may provide as a general explanation of the asymmetry. This was first postulated in a nonlinear analysis of a simple two layer model that found slight changes in incoming longwave radiation might result in large changes in the near surface temperature as the boundary is destabilized slightly due to the added downward radiation. This produced a mixing of warmer temperatures from aloft to the surface as the turbulent mixing was enhanced. In the present study we examine whether this behavior is retained in a more complete multi-layer column model with a state of the art radiation scheme for the stable boundary layer. The response of a nocturnal boundary layer to an added increment of downward radiation from CO2 and water vapor (4.8 W m -2 ) was compared to the solution without this forcing. These experiments showed that indeed the SNBL grew slightly and was less stable due to the added longwave radiation. The model showed that the shelter temperature warmed substantially due to this destabilization. Moreover, the budget calculations showed that only about 20% of the warming was due to the added longwave energy. Most of the warming at shelter height was due to the redistribution. Budget calculations in the paper also showed that the ultimate fate of the added input of longwave energy was highly sensitive to boundary layer parameters and turbulent parameterizations. The model showed that at light winds (weak turbulence) the atmosphere was not able to lift this energy off the surface and into the atmosphere. Thus, more radiation was emitted from the surface. If soil conductivity or heat capacity were large then more of the energy would heat the ground. Parameterizations of the type used in large scale models added much more sensible heat to the atmosphere. Based on these model analyses, it is likely that part of the observed long-term increase in minimum temperature is reflecting a redistribution of heat by changes in turbulence and not by an accumulation of heat in the SNBL. Because of the sensitivity of the shelter temperature to parameters and to uncertain turbulence parameterization in the SNBL, there should be caution about the use of minimum temperatures as a global warming metric in either observations or models.

  15. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik M.; Zhang, Yingying; Chen, Aiping

    2016-08-26

    Epitaxial layered ternary metal-nitride FeMoN 2, (Fe 0.33 Mo 0.67)MoN 2, CoMoN 2, and FeWN 2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN 2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1–1 mΩ·cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has beenmore » used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. Furthermore, the growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN 2 materials through A and B-site substitution.« less

  16. Transition Delay in Hypervelocity Boundary Layers By Means of CO2/Acoustic Instability Interaction

    DTIC Science & Technology

    2014-12-16

    amplification N -factors to be less than 13. During the testing activities in T5, significant improvements were made in experimental technique and data...7 10 −4 10 −3 10 −2 Reynolds number (Re x ) [−] S ta n to n n u m b er ( S t) [ −] Plot of St vs Re x for T5−2744; P res = 60.7 MPa, h res...work in T5. Transition locations in air flow at these conditions are consistent with computed N -factors between 8 and 10, significantly higher than

  17. Numerical simulations of the superdetonative ram accelerator combusting flow field

    NASA Technical Reports Server (NTRS)

    Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.

    1993-01-01

    The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.

  18. Correlation parameters for the study of leeside heating on a lifting body at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Vidal, R. J.

    1974-01-01

    Leeside heating was studied with the aim of gaining some insight into: (1) the magnitude of the leeside heating rates and (2) the methods to be used to extrapolate wind tunnel leeside heating rates to the full scale flight condition. This study was based on existing experimental data obtained in a hypersonic shock tunnel on lifting body configurations that are typical of shuttle orbiter vehicles. Heat transfer was first measured on the windward side to determine the boundary layer type. Then the leeside heating was investigated with the classified boundary layer. Correlation data are given on the windward turbulent boundary layer, the windward laminar boundary layer, and the leeside surfaces.

  19. Refinement of the nocturnal boundary layer budget method for quantifying agricultural greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Wittebol, Laura A.

    Measuring greenhouse gas (GHG) emissions directly at the farm scale is most relevant to the agricultural sector and has the potential to eliminate some of the uncertainty arising from scaling up from plot or field studies or down from regional or national levels. The stable nighttime atmosphere acts as a chamber within which sequentially-measured GHG concentration profiles determine the flux of GHGs. With the overall goal of refining the nocturnal boundary layer (NBL) budget method to obtain reliable flux estimates at a scale representative of the typical eastern Canadian farm (approximately 1 km2), fluxes of CO2, N2O, and CH4 were measured at two agricultural farms in Eastern Canada. Field sites in 1998 and 2002 were located on an experimental farm adjacent to a suburb southwest of the city of Ottawa, ON, a relatively flat area with corn, hay, and soy as the dominant crops. The field site in 2003 was located in the rural community of Coteau-du-Lac, QC, about 20 km southwest of the island of Montreal, a fairly flat area bordered by the St. Lawrence River to the south, consisting mainly of corn and hay with a mixture of soy and vegetable crops. A good agreement was obtained between the overall mean NBL budget-measured CO2 flux at both sites, near-in-time windy night eddy covariance data and previously published results. The mean NBL-measured N2O flux from all wind directions and farming management was of the same order of magnitude as, but slightly higher than, previously published baseline N2O emissions from agroecosystems. Methane fluxes results were judged to be invalid as they were extremely sensitive to wind direction change. Spatial sampling of CO 2, N2O, and CH4 around the two sites confirmed that [CH4] distribution was particularly sensitive to the nature of the emission source, field conditions, and wind direction. Optimal NBL conditions for measuring GHG fluxes, present approximately 60% of the time in this study, consisted of a very stable boundary layer in which GHG profiles converged at the top of the layer allowing a quick determination of the NBL flux integration height. For suboptimal NBL conditions consisting of intermittent turbulence where GHG profiles did not converge, a flux integration method was developed which yielded estimates similar to those obtained during optimal conditions. Eighty percent of the GHG flux in optimal NBL conditions corresponded to a footprint-modelled source area of approximately 2 km upwind, slightly beyond the typical length of a farm in Coteau-du-Lac. A large portion (50%) of the flux came from within 1 km upwind of the measurement site, showing the influence of local sources. 'Top-down' NBL-measured flux values were compared with aggregated field, literature and IPCC flux values for four footprint model-defined areas across both sites, with results indicating that in baseline climatic and farm management conditions, with no apparent intermittent NBL phenomena, the aggregated flux was a good approximation of the NBL-measured flux.

  20. Anomalies of thermal expansion and electrical resistivity of layered cobaltates YBaCo2O5 + x : The role of oxygen chain ordering

    NASA Astrophysics Data System (ADS)

    Zhdanov, K. R.; Kameneva, M. Yu.; Kozeeva, L. P.; Lavrov, A. N.

    2016-08-01

    Layered cobaltates YBaCo2O5 + x have been investigated in the oxygen concentration range 0.23 ≤ x ≤ 0.52. It has been revealed that the oxygen ordering plays the key role in the appearance of anomalies in temperature dependences of structural parameters and electron transport. It has been shown that the orthorhombic lattice distortion caused by oxygen chain ordering is a necessary "trigger" for the phase transition from the insulating state to the metallic state at T ≈ 290-295 K, after which the orthorhombic distortion is significantly more pronounced. In the boundary region of the cobaltate compositions, where the oxygen ordering has a partial or local character, there are additional low-temperature (100-240 K) structural and resistive features with a large hysteresis. The observed anomalies can be explained by a change in the spin state of the cobalt ions, which is extremely sensitive to parameters of the crystal field acting on the ions, as well as by the spin-transition-induced delocalization of electrons.

  1. Influence of fracture network physical properties on stability criteria of density-driven flow in a dual-porosity system

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, H.; Jafari Raad, S. M.

    2017-12-01

    Linear stability analysis is conducted to study the onset of buoyancy-driven convection involved in solubility trapping of CO2 into deep fractured aquifers. In this study, the effect of fracture network physical properties on the stability criteria in a brine-rich fractured porous layer is investigated using dual porosity concept for both single and variable matrix block size distributions. Linear stability analysis results show that both fracture interporosity flow and fracture storativity factors play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in a fractured rock with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations that relate the onset of convective instability in fractured aquifers. These findings improve our understanding of buoyancy driven flow in fractured aquifers and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening.Keywords: CO2 sequestration; fractured rock; buoyancy-driven convection; stability analysis

  2. Studies of acoustic effects on a flow boundary layer in air

    NASA Technical Reports Server (NTRS)

    Mechel, F.; Schilz, W.

    1986-01-01

    Effects of sound fields on the flow boundary layer on a flat plate subjected to a parallel flow are studied. The boundary layer is influenced by controlling the stagnation point flow at the front edge of the plate. Depending on the Reynolds number and sound frequency, excitation or suppression of turbulent is observed. Measurements were taken at wind velocities between 10 and 30 m/sec and sound frequencies between 0.2 and 3.0 kHz.

  3. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    This user's manual contains a complete description of the computer programs developed to calculate three-dimensional, compressible, laminar boundary layers for perfect gas flow on general fuselage shapes. These programs include the 3-D boundary layer program (3DBLC), the body-oriented coordinate program (BCC), and the streamline coordinate program (SCC). Subroutine description, input, output and sample case are discussed. The complete FORTRAN listings of the computer programs are given.

  4. Aerothermodynamic Testing and Boundary Layer Trip Sizing of the HIFiRE Flight 1 Vehicle

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Greene, Frank A.; Kimmel, Roger; Alba, Christopher; Johnson, Heath

    2008-01-01

    An experimental wind tunnel test was conducted in the NASA Langley Research Center s 20-Inch Mach 6 Air Tunnel in support of the Hypersonic International Flight Research Experimentation Program. The information in this article is focused on the Flight 1 configuration, the first in a series of flight experiments. The article documents experimental measurements made over a Reynolds numbers range of 2.1x10(exp 6)/ft to 5.6x10(exp 6)/ft and angles of attack of -5 to +5 deg on several scaled ceramic heat transfer models of the Flight 1 configuration. Global heat transfer was measured using phosphor thermography and the resulting images and heat transfer distributions were used to infer the state of the boundary layer on the vehicle windside and leeside surfaces. Boundary layer trips were used to force the boundary layer turbulent and the experimental data highlighted in this article were used to size and place the boundary layer trip for the flight vehicle. The required height of the flight boundary layer trip was determined to be 0.079 in and the trip was moved from the design location of 7.87 in to 20.47 in to ensure that augmented heating would not impact the laminar side of the vehicle. Allowable roughness was selected to be 3.2x10(exp -3) in.

  5. In-Flight Capability for Evaluating Skin-Friction Gages and Other Near-Wall Flow Sensors

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Pipitone, Brett J.; Krake, Keith L.; Richwine, Dave (Technical Monitor)

    2003-01-01

    An 8-in.-square boundary-layer sensor panel has been developed for in-flight evaluation of skin-friction gages and other near-wall flow sensors on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture (FTF). Instrumentation on the sensor panel includes a boundary-layer rake, temperature sensors, static pressure taps, and a Preston tube. Space is also available for skin-friction gages or other near-wall flow sensors. Pretest analysis of previous F-15B/FTF flight data has identified flight conditions suitable for evaluating skin-friction gages. At subsonic Mach numbers, the boundary layer over the sensor panel closely approximates the two-dimensional (2D), law-of-the-wall turbulent boundary layer, and skin-friction estimates from the Preston tube and the rake (using the Clauser plot method) can be used to evaluate skin-friction gages. At supersonic Mach numbers, the boundary layer over the sensor panel becomes complex, and other means of measuring skin friction are needed to evaluate the accuracy of new skin-friction gages. Results from the flight test of a new rubber-damped skin-friction gage confirm that at subsonic Mach numbers, nearly 2D, law-of-the-wall turbulent boundary layers exist over the sensor panel. Sensor panel data also show that this new skin-friction gage prototype does not work in flight.

  6. On the Creation of An Urban Boundary Layer Product Using The Radar Wind Profiler of the New York City Meteorological Network

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.

    2016-12-01

    The radar wind profiler (RWP) located on the Liberty Science Center in Jersey City, NJ is a part of the New York City Meteorological Network (NYCMetNet). An automatic algorithm based on those by Angevine [1] and Molod [2] is expanded upon and implemented to take RWP signal to noise ratio data and create an urban boundary layer (UBL) height product. Time series of the RWP UBL heights from clear and cloudy days are examined and compared to UBL height time series calculated from thermal data obtained from a NYCMetNet radiometer located on the roof of the Grove School of Engineering at The City College of New York. UBL data from the RWP are also compared to the MERRA (Modern Era Retrospective Analysis for Research and Applications) planetary boundary layer height time series product. A limited seasonal climatology is created from the available RWP data for clear and cloudy days and then compared to a limited seasonal climatology produced from boundary layer data obtained from MERRA and boundary layer data calculated from the CCNY radiometer. As with wind profilers in the NOAA wind profiler network, the signal return to the lowest range gates is not always the result of turbulent scattering, but from scattering from other targets such as the building itself, birds and insects. The algorithm attempts to address this during the daytime, when strong signal returns at the lowest range gates mask the SNR maxima above which are representative of the actual UBL height. Detecting the collapse and fall of the boundary layer meets with limited success, also, from the hours of 2:30pm to 5:00pm. Upper and lower range gates from the wind profiler limit observation of the nighttime boundary layer for heights falling below the lowest range gate and daytime convective boundary layer maxima rising above the highest. Due to the constraints of the instrument and the algorithm it is recommended that the boundary layer height product be constrained to the hours of 8am to 7pm.

  7. Application of the perfectly matched layer in 2.5D marine controlled-source electromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Li, Gang; Han, Bo

    2017-09-01

    For the traditional framework of EM modeling algorithms, the Dirichlet boundary is usually used which assumes the field values are zero at the boundaries. This crude condition requires that the boundaries should be sufficiently far away from the area of interest. Although cell sizes could become larger toward the boundaries as electromagnetic wave is propagated diffusively, a large modeling area may still be necessary to mitigate the boundary artifacts. In this paper, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 2.5D frequency-domain marine controlled-source electromagnetic (CSEM) field modeling. By using this PML boundary, one can restrict the modeling area of interest to the target region. Only a few absorbing layers surrounding the computational area can effectively depress the artificial boundary effect without losing the numerical accuracy. A 2.5D marine CSEM modeling scheme with the CFS-PML is developed by using the staggered finite-difference discretization. This modeling algorithm using the CFS-PML is of high accuracy, and shows advantages in computational time and memory saving than that using the Dirichlet boundary. For 3D problem, this computation time and memory saving should be more significant.

  8. Study of the Structure of Turbulence in Accelerating Transitional Boundary Layers.

    DTIC Science & Technology

    1987-12-23

    be sufficient to relaminarize even fully turbulent boundary layers. Since local heat transfer rates are very sensitive to the state of the boundary...was calibrated for velocity and angular sensitivity in a low- .’ turbulence 1 1/2-in. dia. jet flow for approximately twenty jet flow speeds "-’ ranging...intersection of the wires of the x. The angular sensitivity of the wires was assumed to conform to Champagne’s k2 law (Ref. 20), UE2 (0) = U2(0 = 0) (cos 2

  9. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  10. Spring and Summer Changes at the South Pole as Seen by the Mars Orbiter Camera

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Murray, B. C.; Byrne, S.; DeJong, E.; Danielson, G. E.; Herkenhoff, K. E.; Kieffer, H. H.; Soderblom, L. A.

    2000-01-01

    The Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft has been able to follow individual features as the CO2 frost disappears and exposes the material underneath. Because the orbit of MGS is inclined at an angle of 93 degrees relative to the equator, the spacecraft gets especially good coverage of the ring at 87 degrees latitude. The following is a list of phenomena that have been seen during the spring and summer at the South Pole: (1) Circular depressions that are approximately ten meters deep and hundreds of meters in diameter. They are found only within the residual polar cap, the part that survives the summer. The high areas between the depressions are flat-topped mesas whose sides are concave circular arcs. In some places the depressions form patterns that exhibit north-south symmetry, suggesting some control by sunlight; (2) Dark layers that are exposed on the walls of the mesas. Each layer is at most a few meters thick. The dark layers might accumulate during climatic episodes of high atmospheric dust content, or they might accumulate during the annual cycling of dusty CO2; (3) Albedo differences that develop during the summer within the residual cap. These include subtle darkening of the floors of the depressions relative to the mesas and occasional major darkening of the floors, especially near the edge of the cap. The floors and mesas form a distinct stratum, suggesting they represent a distinct compositional boundary. For instance the floors may be water and the mesas may be CO2; (4) Small dark features that appear in spring on the seasonal frost outside the residual cap. Some of the features have parallel tails that are clearly shaped by the wind. Others are more symmetric, like dark snowflakes, with multiple branching arms. After the CO2 frost has disappeared the arms are seen as troughs and the centers as topographic lows; (5) Polygons whose sides are dark troughs. Those that are outside the residual cap seem to disappear when the frost disappears. The polygons and the dark snowflakelike structures may be related, and suggest that CO2 frost may form cohesive slabs; (6) Irregular depressions outside the residual cap. They look like degraded versions of the circular depressions inside the residual cap, and may be a remnant of the cap's changing location; and (7) Areas of burial and exhumation of circular depressions. Thomas et al. give an example with a sharp boundary: On one side the depressions are buried and on the other side they are exposed. In other cases there are rounded troughs up to one kilometer wide, which are dark in summer and appear to have eroded down below the floor of the circular depressions.

  11. Flight tests of a range-resolved airborne dial with two min-tea CO2 lasers

    NASA Technical Reports Server (NTRS)

    Itabe, T.; Ishizu, M.; Aruga, T.; Igarashi, T.; Asai, K.

    1986-01-01

    It is important to measure regional distributions of ozone concentrations in a short time for understanding a mechanism of photo-chemical smog development. An airborne Differential Absorption Lidar (DIAL) system with two low-power mini-TEA CO2 lasers was developed for measuring three-dimensional distributions of ozone in the lower troposphere. The CO2 DIAL is a nadir-looking system and is designed to measure ozone profiles between ground and airplane by using atmospheric aerosols as a distributed radar target. First flight test with a single laser were conducted in February 1985 over the Tokyo area. The system was operated at an altitude of 5000 ft. Results of the first flight tests show that the height profiles of the received power in the boundary layer were different between over land and ocean. The received power has to be inverted to an expression of a single optical parameter to see real aerosol distributions. Inversion of the lidar signal to the aerosol extinction was performed by using Klett's solution.

  12. Modeling nonclassical heterogeneous bubble nucleation from cellulose fibers: application to bubbling in carbonated beverages.

    PubMed

    Liger-Belair, Gérard; Voisin, Cédric; Jeandet, Philippe

    2005-08-04

    In this paper, the kinetics of CO(2) bubble nucleation from tiny gas pockets trapped inside cellulose fibers immersed in a glass of champagne were investigated, in situ, from high-speed video recordings. Taking into account the diffusion of CO(2)-dissolved molecules from the liquid bulk to the gas pocket, a model was derived which enabled us to connect the kinetics of bubble nucleation with both fiber and liquid parameters. Convection was found to play a major role in this process. The boundary layer around the gas pocket where a gradient of CO(2)-dissolved molecules exists was also indirectly approached and found to be in the order of 10-20 mum. Because most of the particles adsorbed on the wall of a container or vessel free from any particular treatment are also believed to be cellulose fibers coming from the surrounding air, the results of this paper could be indeed extended to the more general field of nonclassical heterogeneous bubble nucleation from supersaturated liquids.

  13. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  14. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  15. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data

    NASA Astrophysics Data System (ADS)

    Feng, L.; Palmer, P. I.; Yang, Y.; Yantosca, R. M.; Kawa, S. R.; Paris, J.-D.; Matsueda, H.; Machida, T.

    2011-03-01

    We evaluate the GEOS-Chem atmospheric transport model (v8-02-01) of CO2 over 2003-2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modeling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman Filter to estimate a posteriori biospheric+biomass burning (BS + BB) and oceanic (OC) CO2 fluxes from 22 geographical regions, following the TransCom-3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS + BB + OC CO2 fluxes over 2004-2006 for GEOS-4 (GEOS-5) meteorology are -4.4 ± 0.9 (-4.2 ± 0.9), -3.9 ± 0.9 (-4.5 ± 0.9), and -5.2 ± 0.9 (-4.9 ± 0.9) PgC yr-1, respectively. After taking into account anthropogenic fossil fuel and bio-fuel emissions, the global annual net CO2 emissions for 2004-2006 are estimated to be 4.0 ± 0.9 (4.2 ± 0.9), 4.8 ± 0.9 (4.2 ± 0.9), and 3.8 ± 0.9 (4.1 ± 0.9) PgC yr-1, respectively. The estimated 3-yr total net emission for GEOS-4 (GEOS-5) meteorology is equal to 12.5 (12.4) PgC, agreeing with other recent top-down estimates (12-13 PgC). The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992-1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5) a posteriori CO2 concentrations reproduce the observed surface trend of 1.91-2.43 ppm yr-1 (parts per million per year), depending on latitude, within 0.15 ppm yr-1 (0.2 ppm yr-1) and the seasonal cycle within 0.2 ppm (0.2 ppm) at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper troposphere but can be biased by up to 4-5 ppm in the boundary layer at the start and end of the growing season. The model has a small negative bias in the free troposphere CO2 trend (1.95-2.19 ppm yr-1) compared to AIRS data which has a trend of 2.21-2.63 ppm yr-1 during 2004-2006, consistent with surface data. Model CO2 concentrations in the upper troposphere, evaluated using CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) aircraft measurements, reproduce the magnitude and phase of the seasonal cycle of CO2 in both hemispheres. We generally find that the GEOS meteorology reproduces much of the observed tropospheric CO2 variability, suggesting that these meteorological fields will help make significant progress in understanding carbon fluxes as more data become available.

  16. Diurnal cycle of greenhouse gases and biogenic hydrocarbons during summer near Cool, CA

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Floerchinger, C.; Knighton, W. B.; Dubey, M. K.; Herndon, S. C.; Kelley, P.; Luke, W. T.; Shaw, W. J.; Barnard, J.; Laulainen, N.; Zaveri, R. A.

    2010-12-01

    Photosynthesis by forests is a large sink for atmospheric carbon dioxide (CO2) and also a large source of biogenic volatile organics (VOCs) that produce aerosols, nucleate clouds, and interact with nitrogen oxides (NOx) to produce ozone. To elucidate these complex biogeochemical mechanisms, we performed continuous high temporal resolution measurements of CO2, VOC, trace gases, and aerosol in June 2010 at the T1 site, 70 km from Sacramento, CA, during the Carbonaceous Aerosol and Radiative Effects Study (CARES) in June 2010. Throughout the month we find that diurnal profiles exhibit minima in CO2 and maxima in isoprene during daytime. Both their amplitudes are modulated strongly by cloud cover consistent with a common photosynthetic mechanism. In contrast, we find that diurnal monoterpene profiles peak at night while CO2 is at its maxima. Their amplitudes are modulated by temperature and boundary layer height. The monoterpenes and CO2 cycle show larger increases at warmer temperatures, suggesting respiration as a common driver. Additional measurements of CH4, CO, benzene, toluene, NO, NOy and O3 are used to define biogeochemical cycling of greenhouse gases and are demonstrated as a baseline for separating anthropogenic and biogenic emissions and observing transport of greenhouse gases and air pollution.

  17. Blunt-Body Aerothermodynamic Database from High-Enthalpy CO2 Testing in an Expansion Tunnel

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Prabhu, Dinesh K.; Maclean, Matthew; Dufrene, Aaron

    2016-01-01

    An extensive database of heating, pressure, and flow field measurements on a 70-deg sphere-cone blunt body geometry in high-enthalpy, CO2 flow has been generated through testing in an expansion tunnel. This database is intended to support development and validation of computational tools and methods to be employed in the design of future Mars missions. The test was conducted in an expansion tunnel in order to avoid uncertainties in the definition of free stream conditions noted in previous studies performed in reflected shock tunnels. Data were obtained across a wide range of test velocity/density conditions that produced various physical phenomena of interest, including laminar and transitional/turbulent boundary layers, non-reacting to completely dissociated post-shock gas composition and shock-layer radiation. Flow field computations were performed at the test conditions and comparisons were made with the experimental data. Based on these comparisons, it is recommended that computational uncertainties on surface heating and pressure, for laminar, reacting-gas environments can be reduced to +/-10% and +/-5%, respectively. However, for flows with turbulence and shock-layer radiation, there were not sufficient validation-quality data obtained in this study to make any conclusions with respect to uncertainties, which highlights the need for further research in these areas.

  18. The Effects of Free-Stream Turbulence on the Turbulence Structure and Heat Transfer in Zero Pressure Gradient Boundary Layers.

    DTIC Science & Technology

    1982-11-01

    direction of the gradients) of the wires should be minimized. (2) To reduce end effects ( nonuniform temperature along the active length) and to...r 0l C. 1 ~0 m I I. I l l LLJ F|0. L9L "" - "lid lair &= 0 - -fu mEU 4 0 DO -- 1- a j 0 D 0 - ’n) N, > 0 *0󈧭 .0- -0- t I t .-I I co u X c , O6-, x0

  19. Modeling and optimal design of CO2 Direct Air Capture systems in large arrays

    NASA Astrophysics Data System (ADS)

    Sadri Irani, Samaneh; Luzzatto-Fegiz, Paolo

    2017-11-01

    As noted by the 2014 IPCC report, while the rise in atmospheric CO2 would be slowed by emissions reductions, removing atmospheric CO2 is an important part of possible paths to climate stabilization. Direct Air Capture of CO2 with chemicals (DAC) is one of several proposed carbon capture technologies. There is an ongoing debate on whether DAC is an economically viable approach to alleviate climate change. In addition, like all air capture strategies, DAC is strongly constrained by the net-carbon problem, namely the need to control CO2 emissions associated with the capture process (for example, if DAC not powered by renewables). Research to date has focused on the chemistry and economics of individual DAC devices. However, the fluid mechanics of their large-scale deployment has not been examined in the literature, to the best of our knowledge. In this presentation, we develop a model for flow through an array of DAC devices, varying their lateral extent and their separation. We build on a recent theory of canopy flows, introducing terms for CO2 entrainment into the array boundary layer, and transport into the farm. In addition, we examine the possibility of driving flow passively by wind, thereby reducing energy consumption. The optimal operational design is established considering the total cost, drag force, energy consumption and total CO2 capture.

  20. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    NASA Technical Reports Server (NTRS)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  1. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  2. Rotor boundary layer development with inlet guide vane (IGV) wake impingement

    NASA Astrophysics Data System (ADS)

    Jia, Lichao; Zou, Tengda; Zhu, Yiding; Lee, Cunbiao

    2018-04-01

    This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake's high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake's arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

  3. Evaluation of Flush-Mounted, S-Duct Inlets With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Morehouse, Melissa B.

    2003-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) develop a new high Reynolds number, boundary-layer ingesting inlet test capability, 2) evaluate the performance of several boundary layer ingesting S-duct inlets, 3) provide a database for CFD tool validation, and 4) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a fullscale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height and increasing inlet throat width) or ingesting a boundary layer with a distorted profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.

  4. Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate-graphite interface.

    PubMed

    Li, H; Atkin, R; Page, A J

    2015-06-28

    The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.

  5. The turbulent boundary layer on a porous plate: An experimental study of the fluid mechanics for adverse free stream pressure gradients

    NASA Technical Reports Server (NTRS)

    Anderson, P. S.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of transpired turbulent boundary layers in zero and adverse pressure gradients has been carried out. Profiles of: (1) the mean velocity, (2) the three intensities of the turbulent fluctuations, and (3) the Reynolds stress were obtained by hot-wire anemometry. The friction coefficients were measured by using an integrated form of the boundary layer equation to extrapolate the measured shear stress profiles to the wall.

  6. Role of dispersion on the onset of convection during CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Hidalgo, J. J.; Carrera Ramirez, J.

    2009-12-01

    CO2 sequestration in geological formations containing saline water has been proposed as a solution to reduce gas emission to the atmosphere. Dissolution of CO2 takes place at the interphase with the brine as the CO2 migrates. The CO2-rich brine is denser than the resident one and tends to sink. This creates an unstable configuration that leads to a fingering sinking plume and convection to dominate diffusion. Understanding how instability fingers develop has received much attention because they accelerate dissolution trapping, which favors long term sequestration. The time for the onset of convection as the dominant transport mechanism has been traditionally studied by neglecting dispersion and treating the CO2 interface as a prescribed concentration boundary by analogy to a thermal convection problem. This work presents a more realistic representation of CO2 dissolution into brine. The proposed conceptual model acknowledges fluid and porous medium compressibility, hydrodynamic dispersion is included as a transport mechanism and the Boussinesq simplification is not assumed. Finally, boundary conditions include the CO2 mass flux across the top boundary. Results show that accounting for the CO2 mass flux across the prescribed concentration boundary has little effect on the onset of convection. However, accounting for dispersion causes a reduction of up to two orders of magnitude on the onset time. This implies that CO2 dissolution can be accelerated by activating dispersion as a transport mechanism, which can be achieved adopting a fluctuating injection scheme.

  7. PathfinderTURB: an automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Poltera, Yann; Martucci, Giovanni; Collaud Coen, Martine; Hervo, Maxime; Emmenegger, Lukas; Henne, Stephan; Brunner, Dominik; Haefele, Alexander

    2017-08-01

    We present the development of the PathfinderTURB algorithm for the analysis of ceilometer backscatter data and the real-time detection of the vertical structure of the planetary boundary layer. Two aerosol layer heights are retrieved by PathfinderTURB: the convective boundary layer (CBL) and the continuous aerosol layer (CAL). PathfinderTURB combines the strengths of gradient- and variance-based methods and addresses the layer attribution problem by adopting a geodesic approach. The algorithm has been applied to 1 year of data measured by two ceilometers of type CHM15k, one operated at the Aerological Observatory of Payerne (491 m a.s.l.) on the Swiss plateau and one at the Kleine Scheidegg (2061 m a.s.l.) in the Swiss Alps. The retrieval of the CBL has been validated at Payerne using two reference methods: (1) manual detections of the CBL height performed by human experts using the ceilometer backscatter data; (2) values of CBL heights calculated using the Richardson's method from co-located radio sounding data. We found average biases as small as 27 m (53 m) with respect to reference method 1 (method 2). Based on the excellent agreement between the two reference methods, PathfinderTURB has been applied to the ceilometer data at the mountainous site of the Kleine Scheidegg for the period September 2014 to November 2015. At this site, the CHM15k is operated in a tilted configuration at 71° zenith angle to probe the atmosphere next to the Sphinx Observatory (3580 m a.s.l.) on the Jungfraujoch (JFJ). The analysis of the retrieved layers led to the following results: the CAL reaches the JFJ 41 % of the time in summer and 21 % of the time in winter for a total of 97 days during the two seasons. The season-averaged daily cycles show that the CBL height reaches the JFJ only during short periods (4 % of the time), but on 20 individual days in summer and never during winter. During summer in particular, the CBL and the CAL modify the air sampled in situ at JFJ, resulting in an unequivocal dependence of the measured absorption coefficient on the height of both layers. This highlights the relevance of retrieving the height of CAL and CBL automatically at the JFJ.

  8. Antiphase Boundaries in the Turbostratically Disordered Misfit Compound (BiSe)(1+δ)NbSe2.

    PubMed

    Mitchson, Gavin; Falmbigl, Matthias; Ditto, Jeffrey; Johnson, David C

    2015-11-02

    (BiSe)(1+δ)NbSe2 ferecrystals were synthesized in order to determine whether structural modulation in BiSe layers, characterized by periodic antiphase boundaries and Bi-Bi bonding, occurs. Specular X-ray diffraction revealed the formation of the desired compound with a c-axis lattice parameter of 1.21 nm from precursors with a range of initial compositions and initial periodicities. In-plane X-ray diffraction scans could be indexed as hk0 reflections of the constituents, with a rectangular basal BiSe lattice and a trigonal basal NbSe2 lattice. Electron micrographs showed extensive turbostratic disorder in the samples and the presence of periodic antiphase boundaries (approximately 1.5 nm periodicity) in BiSe layers oriented with the [110] direction parallel to the zone axis of the microscope. This indicates that the structural modulation in the BiSe layers is not due to coherency strain resulting from commensurate in-plane lattices. Electrical transport measurements indicate that holes are the dominant charge carrying species, that there is a weak decrease in resistivity as temperature decreases, and that minimal charge transfer occurs from the BiSe to NbSe2 layers. This is consistent with the lack of charge transfer from the BiX to the TX2 layers reported in misfit layer compounds where antiphase boundaries were observed. This suggests that electronic considerations, i.e., localization of electrons in the Bi-Bi pairs at the antiphase boundaries, play a dominant role in stabilizing the structural modulation.

  9. Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Grosser, Wendy I.

    1997-01-01

    When a total pressure probe is used for measuring flows with transverse total pressure gradients, a displacement of the effective center of the probe is observed (designated Delta). While this phenomenon is well documented in incompressible flow and supersonic laminar flow, there is insufficient information concerning supersonic turbulent flow. In this study, three NASA Lewis Research Center Supersonic Wind Tunnels (SWT's) were used to investigate pitot probe centerline displacement in supersonic turbulent boundary layers. The relationship between test conditions and pitot probe centerline displacement error was to be determined. For this investigation, ten circular probes with diameter-to-boundary layer ratios (D/delta) ranging from 0.015 to 0.256 were tested in the 10 ft x 10 ft SWT, the 15 cm x 15 cm SWT, and the 1 ft x 1 ft SWT. Reynolds numbers of 4.27 x 10(exp 6)/m, 6.00 x 10(exp 6)/in, 10.33 x 10(exp 6)/in, and 16.9 x 10(exp 6)/m were tested at nominal Mach numbers of 2.0 and 2.5. Boundary layer thicknesses for the three tunnels were approximately 200 mm, 13 mm, and 30 mm, respectively. Initial results indicate that boundary layer thickness, delta, and probe diameter, D/delta play a minimal role in pitot probe centerline offset error, Delta/D. It appears that the Mach gradient, dM/dy, is an important factor, though the exact relationship has not yet been determined. More data is needed to fill the map before a conclusion can be drawn with any certainty. This research provides valuable supersonic, turbulent boundary layer data from three supersonic wind tunnels with three very different boundary layers. It will prove a valuable stepping stone for future research into the factors influencing pitot probe centerline offset error.

  10. The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.

    1989-12-01

    The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.

  11. Lidar Measurements of Wind, Moisture and Boundary Layer Evolution in a Dryline During IHOP2002

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Evans, Keith; DiGirolamo, Paolo; Wang, Zhien; Whiteman, David; Schwemmer, Geary; Gentry, Bruce; Miller, David

    2003-01-01

    Variability in the convective boundary layer moisture, wind and temperature fields and their importance in the forecasting and understanding of storms have been discussed in the literature. These variations have been reported in relation to frontal zones, stationary boundaries and during horizontal convective rolls. While all three vary substantially in the convective boundary layer, moisture poses a particular challenge. Moisture or water vapor concentration (expressed as a mass mixing ratio, g/kg), is conserved in all meteorological processes except condensation and evaporation. The water vapor mixing ratio often remains distinct across an air -mass boundary even when the temperature difference is indistinct. These properties make it an ideal choice in visualizing and understanding many of the atmosphere's dynamic features. However, it also presents a unique measurement challenge because water vapor content can vary by more than three orders of magnitude in the troposphere. Characterization of the 3D-distribution of water vapor is also difficult as water vapor observations can suffer from large sampling errors and substantial variability both in the vertical and horizontal. This study presents groundbased measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars. This presentation will focus on the evolution and variability of moisture and wind in the boundary layer during a dry line event that occurred on 22 May 2002. These data sets and analyses are unique in that they combine simultaneous measurements of wind, moisture and CBL structure to study the detailed thermal variability in and around clear air updrafts during a dryline event. It will quantify the variation caused by, in and around buoyant plumes and across a dryline. The data presented here were collected in the panhandle of Oklahoma as part of the International BO Project (IHOP-2002), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. The chief goal of IHOP-2002 is to improve characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection

  12. Sediment transport under wave groups: Relative importance between nonlinear waveshape and nonlinear boundary layer streaming

    USGS Publications Warehouse

    Yu, X.; Hsu, T.-J.; Hanes, D.M.

    2010-01-01

    Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.

  13. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    NASA Astrophysics Data System (ADS)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  14. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 1; Instantaneous Fields and Statistics

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    This is the first in a two-part series of manuscripts describing numerical experiments on the influence of 2-30 km striplike heterogeneity on wet and dry boundary layers coupled to the land surface. The strip-like heterogeneity is shown to dramatically alter the structure of the free-convective boundary layer by inducing significant organized circulations that modify turbulent statistics. The coupling with the land-surface modifies the circulations compared to previous studies using fixed surface forcing. Total boundary layer turbulence kinetic energy increases significantly for surface heterogeneity at scales between Lambda/z(sub i) = 4 and 9, however entrainment rates for all cases are largely unaffected by the strip-like heterogeneity.

  15. Hypersonic Boundary Layer Instability Over a Corner

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Zhao, Hong-Wu; McClinton, Charles (Technical Monitor)

    2001-01-01

    A boundary-layer transition study over a compression corner was conducted under a hypersonic flow condition. Due to the discontinuities in boundary layer flow, the full Navier-Stokes equations were solved to simulate the development of disturbance in the boundary layer. A linear stability analysis and PSE method were used to get the initial disturbance for parallel and non-parallel flow respectively. A 2-D code was developed to solve the full Navier-stokes by using WENO(weighted essentially non-oscillating) scheme. The given numerical results show the evolution of the linear disturbance for the most amplified disturbance in supersonic and hypersonic flow over a compression ramp. The nonlinear computations also determined the minimal amplitudes necessary to cause transition at a designed location.

  16. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.

  17. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  18. Time-Varying Upper-Plate Deformation during the Megathrust Subduction Earthquake Cycle

    NASA Astrophysics Data System (ADS)

    Furlong, Kevin P.; Govers, Rob; Herman, Matthew

    2015-04-01

    Over the past several decades of the WEGENER era, our abilities to observe and image the deformational behavior of the upper plate in megathrust subduction zones has dramatically improved. Several intriguing inferences can be made from these observations including apparent lateral variations in locking along subduction zones, which differs from interseismic to coseismic periods; the significant magnitude of post-earthquake deformation (e.g. following the 20U14 Mw Iquique, Chile earthquake, observed on-land GPS post-EQ displacements are comparable to the co-seismic displacements); and incompatibilities between rates of slip deficit accumulation and resulting earthquake co-seismic slip (e.g. pre-Tohoku, inferred rates of slip deficit accumulation on the megathrust significantly exceed slip amounts for the ~ 1000 year recurrence.) Modeling capabilities have grown from fitting simple elastic accumulation/rebound curves to sparse data to having spatially dense continuous time series that allow us to infer details of plate boundary coupling, rheology-driven transient deformation, and partitioning among inter-earthquake and co-seismic displacements. In this research we utilize a 2D numerical modeling to explore the time-varying deformational behavior of subduction zones during the earthquake cycle with an emphasis on upper-plate and plate interface behavior. We have used a simplified model configuration to isolate fundamental processes associated with the earthquake cycle, rather than attempting to fit details of specific megathrust zones. Using a simple subduction geometry, but realistic rheologic layering we are evaluating the time-varying displacement and stress response through a multi-earthquake cycle history. We use a simple model configuration - an elastic subducting slab, an elastic upper plate (shallower than 40 km), and a visco-elastic upper plate (deeper than 40 km). This configuration leads to an upper plate that acts as a deforming elastic beam at inter-earthquake loading times and rates with a viscously relaxed regime at depths greater than 40 km. Analyses of our preliminary model results lead to the following: 1. Co-seismic stress transfer from the unloading elastic layer (shallow) into an elastically loading visco-elastic layer (deeper) - extends ~ 100 km inboard of locked zone. This stress transfer affects both coseismic and post-seismic surface displacements. 2. Post-seismic response of upper plate involves seaward motion for initial 10-20 years (~ 2 Maxwell times) after EQ. This occurs in spite of there being no slip on locked plate boundary - i.e. this is not plate boundary after-slip but rather is a consequence of stress relaxation in co-seismically loaded visco-elastic layer. However standard inversions of the surface displacement field would indicate significant after-slip along the locked plate interface. 3. By approximately 80 years (8 Maxwell times) system has returned to simple linear displacement pattern - the expected behavior for a shortening elastic beam. Prior to that time, the surface (observable) displacement pattern changes substantially over time and would result in an apparent temporal variation in coupling - from near-zero coupling to fully locked over ~ 80 years post-earthquake. These preliminary results indicate that care is needed in interpreting observed surface displacement fields from GPS, InSAR, etc. during the interseismic period. temporal variations in crustal deformation observed in regions such as the recent Tohoku, Maule, and Iquique megathrust events which are ascribed to fault plane after-slip may in fact reflect processes associated with re-equilibration of the visco-elastic subduction system.

  19. Convective mass transfer around a dissolving bubble

    NASA Astrophysics Data System (ADS)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  20. Indirect boundary element method to simulate elastic wave propagation in piecewise irregular and flat regions

    NASA Astrophysics Data System (ADS)

    Perton, Mathieu; Contreras-Zazueta, Marcial A.; Sánchez-Sesma, Francisco J.

    2016-06-01

    A new implementation of indirect boundary element method allows simulating the elastic wave propagation in complex configurations made of embedded regions that are homogeneous with irregular boundaries or flat layers. In an older implementation, each layer of a flat layered region would have been treated as a separated homogeneous region without taking into account the flat boundary information. For both types of regions, the scattered field results from fictitious sources positioned along their boundaries. For the homogeneous regions, the fictitious sources emit as in a full-space and the wave field is given by analytical Green's functions. For flat layered regions, fictitious sources emit as in an unbounded flat layered region and the wave field is given by Green's functions obtained from the discrete wavenumber (DWN) method. The new implementation allows then reducing the length of the discretized boundaries but DWN Green's functions require much more computation time than the full-space Green's functions. Several optimization steps are then implemented and commented. Validations are presented for 2-D and 3-D problems. Higher efficiency is achieved in 3-D.

  1. Measuring the Impact of Rising CO2 and CH4 on the Surface Energy Balance

    NASA Astrophysics Data System (ADS)

    Feldman, D.; Collins, W.; Biraud, S.; Turner, D. D.; Mlawer, E. J.; Gero, P. J.; Xie, S.; Shippert, T.; Torn, M. S.

    2015-12-01

    We use observations at the North Slope of Alaska (NSA) and Southern Great Plains (SGP) ARM sites to improve understanding both of the distribution of CO2 and CH4and their influence on the surface energy balance. We use aircraft and ground-based in situ data to characterize the temporal distribution of these greenhouse gases, and spectroscopic observations to derive their collocated surface radiative forcing. The spectroscopically-measured surface radiative forcing from rising CO2 is 0.2 W/m2/decade at both sites, with a seasonal cycle of 0.2 W/m2. This finding is largely consistent with theoretical predictions, providing robust evidence of radiative perturbations to the Earth's surface energy budget due to anthropogenic influences. The contribution from CH4 to the surface energy balance is more spatially and temporally heterogeneous. The ground-based measurements of CH4 at NSA and SGP indicate rising atmospheric concentrations except for a hiatus from 1995-2005, while more recent aircraft profiles indicate that concentrations in the boundary layer and free troposphere are correlated at NSA and decorrelated at SGP. The probability density functions of boundary layer concentrations of CH4 at NSA show little skew, but at SGP show positive skewness, which increased with the introduction of nearby fossil-fuel extraction. The correlated increases in atmospheric measurements of C2H6 and CH4that only occur at SGP are consistent with an anthropogenic influence there. Time-series of spectroscopically-measured CH4 surface radiative forcing at SGP and NSA also indicate positive trends of 0.1 W/m2/decade associated with the end of the hiatus, marked seasonal cycles, and little skew at NSA and a positive skew at SGP. The combination of in situ and spectroscopic measurements at these sites enables the quantification of surface radiative forcing from anthropogenic CH4. Implications are discussed for how advanced spectroscopic remote sensing measurements of CH4 can be used to quantify the impact of fossil fuel extraction on surface energy budget.

  2. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  3. Vibration control of multiferroic fibrous composite plates using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Kattimani, S. C.; Ray, M. C.

    2018-06-01

    Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.

  4. Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.

  5. A Vertical Diffusion Scheme to estimate the atmospheric rectifier effect

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Liu, Jane; Chan, Douglas; Higuchi, Kaz; Shashkov, Alexander

    2004-02-01

    The magnitude and spatial distribution of the carbon sink in the extratropical Northern Hemisphere remain uncertain in spite of much progress made in recent decades. Vertical CO2 diffusion in the planetary boundary layer (PBL) is an integral part of atmospheric CO2 transport and is important in understanding the global CO2 distribution pattern, in particular, the rectifier effect on the distribution [Keeling et al., 1989; Denning et al., 1995]. Attempts to constrain carbon fluxes using surface measurements and inversion models are limited by large uncertainties in this effect governed by different processes. In this study, we developed a Vertical Diffusion Scheme (VDS) to investigate the vertical CO2 transport in the PBL and to evaluate CO2 vertical rectification. The VDS was driven by the net ecosystem carbon flux and the surface sensible heat flux, simulated using the Boreal Ecosystem Productivity Simulator (BEPS) and a land surface scheme. The VDS model was validated against half-hourly CO2 concentration measurements at 20 m and 40 m heights above a boreal forest, at Fraserdale (49°52'29.9''N, 81°34'12.3''W), Ontario, Canada. The amplitude and phase of the diurnal/seasonal cycles of simulated CO2 concentration during the growing season agreed closely with the measurements (linear correlation coefficient (R) equals 0.81). Simulated vertical and temporal distribution patterns of CO2 concentration were comparable to those measured at the North Carolina tower. The rectifier effect, in terms of an annual-mean vertical gradient of CO2 concentration in the atmosphere that decreases from the surface to the top of PBL, was found at Fraserdale to be about 3.56 ppmv. Positive covariance between the seasonal cycles of plant growth and PBL vertical diffusion was responsible for about 75% of the effect, and the rest was caused by covariance between their diurnal cycles. The rectifier effect exhibited strong seasonal variations, and the contribution from the diurnal cycle was mostly confined to the surface layer (less than 300 m).

  6. Analysis of air quality with numerical simulation (CMAQ), and observations of trace gases

    NASA Astrophysics Data System (ADS)

    Castellanos, Patricia

    Ozone, a secondary pollutant, is a strong oxidant that can pose a risk to human health. It is formed from a complex set of photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Ambient measurements and air quality modeling of ozone and its precursors are important tools for support of regulatory decisions, and analyzing atmospheric chemical and physical processes. I worked on three methods to improve our understanding of photochemical ozone production in the Eastern U.S.: a new detector for NO2, a numerical experiment to test the sensitivity to the timing to emissions, and comparison of modeled and observed vertical profiles of CO and ozone. A small, commercially available cavity ring-down spectroscopy (CRDS) NO2 detector suitable for surface and aircraft monitoring was modified and characterized. The CRDS detector was run in parallel to an ozone chemiluminescence device with photolytic conversion of NO2 to NO. The two instruments measured ambient air in suburban Maryland. A linear least-squares fit to a direct comparison of the data resulted in a slope of 0.960+/-0.002 and R of 0.995, showing agreement between two measurement techniques within experimental uncertainty. The sensitivity of the Community Multiscale Air Quality (CMAQ) model to the temporal variation of four emissions sectors was investigated to understand the effect of emissions' daily variability on modeled ozone. Decreasing the variability of mobile source emissions changed the 8-hour maximum ozone concentration by +/-7 parts per billion by volume (ppbv). Increasing the variability of point source emissions affected ozone concentrations by +/-6 ppbv, but only in areas close to the source. CO is an ideal tracer for analyzing pollutant transport in AQMs because the atmospheric lifetime is longer than the timescale of boundary layer mixing. CO can be used as a tracer if model performance of CO is well understood. An evaluation of CO model performance in CMAQ was carried out using aircraft observations taken for the Regional Atmospheric Measurement, Modeling and Prediction Program (RAMMPP) in the summer of 2002. Comparison of modeled and observed CO total columns were generally in agreement within 5-10%. There is little evidence that the CO emissions inventory is grossly overestimated. CMAQ predicts the same vertical profile shape for all of the observations, i.e. CO is well mixed throughout the boundary layer. However, the majority of observations have poorly mixed air below 500 m, and well mixed air above. CMAQ appears to be transporting CO away from the surface more quickly than what is observed. Turbulent mixing in the model is represented with K-theory. A minimum Kz that scales with fractional urban land use is imposed in order to account for subgrid scale obstacles in urban areas and the urban heat island effect. Micrometeorological observations suggest that the minimum Kz is somewhat high. A sensitivity case where the minimum K z was reduced from 0.5 m2/s to 0.1 m2/s was carried out. Model performance of surface ozone observations at night increased significantly. The model better captures the observed ozone minimum with slower mixing, and increases ozone concentrations in the residual layer. Model performance of CO and ozone morning vertical profiles improves, but the effect is not large enough to bring the model and measurements into agreement. Comparison of modeled CO and O3 vertical profiles shows that turbulent mixing (as represented by eddy diffusivity) appears to be too fast, while convective mixing may be too slow.

  7. Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes

    NASA Astrophysics Data System (ADS)

    Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.

    2016-12-01

    Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.

  8. In-flight boundary-layer measurements on a hollow cylinder at a Mach number of 3.0

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1980-01-01

    Skin temperatures, shear forces, surface static pressures, boundary layer pitot pressures, and boundary layer total temperatures were measured on the external surface of a hollow cylinder that was 3.04 meters long and 0.437 meter in diameter and was mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 (a local Mach number of 2.9) and at wall to recovery temperature ratios of 0.66 to 0.91. The local Reynolds number had a nominal value of 4,300,000 per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. In addition, boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor was obtained from the heat transfer and skin friction measurements. The measured data are compared with several boundary layer prediction methods.

  9. Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2017-12-01

    The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.

  10. Predicting the flow & noise of a rotor in a turbulent boundary layer using an actuator disk -- RANS approach

    NASA Astrophysics Data System (ADS)

    Buono, Armand C.

    The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech's Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations.

  11. Fast retinal layer segmentation of spectral domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-09-01

    An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.

  12. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  13. Microstructure evolution of a ZrC coating layer in TRISO particles during high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Chun, Young Bum; Ko, Myeong Jin; Lee, Hyeon-Geun; Cho, Moon-Sung; Park, Ji Yeon; Kim, Weon-Ju

    2016-10-01

    The influence of high-temperature annealing on the microstructure of zirconium carbide (ZrC) was investigated in relation to its application as a coating layer of a nuclear fuel in a very high temperature gas cooled reactor. ZrC was deposited as a constituent coating layer of TRISO coated particles by a fluidized bed chemical vapor deposition method using a ZrCl4-CH4-Ar-H2 system. The grain growth of ZrC during high-temperature annealing was strongly influenced by the co-deposition of free carbon. Sub-stoichiometric ZrC coatings have experienced a significant grain growth during high-temperature annealing at 1800 °C and 1900 °C for 1 h. On the other hand, a dual phase of stoichiometric ZrC and free carbon experienced little grain growth. It was revealed that the free carbon of the as-deposited ZrC was primarily distributed within the ZrC grains but was redistributed to the grain boundaries after annealing. Consequently, carbon at the grain boundary retarded the grain growth of ZrC. Electron backscatter diffraction (EBSD) results showed that as-deposited ZrC had (001) a preferred orientation that kept its favored direction after significant grain growth during annealing. The hardness slightly decreased as the grain growth progressed.

  14. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2011-07-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  15. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variationsmore » provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.« less

  16. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2012-03-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  17. Greenhouse gas measurements from a UK network of tall towers: technical description and first results

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran M.; Grant, Aoife; O'Doherty, Simon; Young, Dickon; Manning, Alistair J.; Stavert, Ann R.; Spain, T. Gerard; Salameh, Peter K.; Harth, Christina M.; Simmonds, Peter G.; Sturges, William T.; Oram, David E.; Derwent, Richard G.

    2018-03-01

    A network of three tall tower measurement stations was set up in 2012 across the United Kingdom to expand measurements made at the long-term background northern hemispheric site, Mace Head, Ireland. Reliable and precise in situ greenhouse gas (GHG) analysis systems were developed and deployed at three sites in the UK with automated instrumentation measuring a suite of GHGs. The UK Deriving Emissions linked to Climate Change (UK DECC) network uses tall (165-230 m) open-lattice telecommunications towers, which provide a convenient platform for boundary layer trace gas sampling. In this paper we describe the automated measurement system and first results from the UK DECC network for CO2, CH4, N2O, SF6, CO and H2. CO2 and CH4 are measured at all of the UK DECC sites by cavity ring-down spectroscopy (CRDS) with multiple inlet heights at two of the three tall tower sites to assess for boundary layer stratification. The short-term precisions (1σ on 1 min means) of CRDS measurements at background mole fractions for January 2012 to September 2015 is < 0.05 µmol mol-1 for CO2 and < 0.3 nmol mol-1 for CH4. Repeatability of standard injections (1σ) is < 0.03 µmol mol-1 for CO2 and < 0.3 nmol mol-1 for CH4 for the same time period. N2O and SF6 are measured at three of the sites, and CO and H2 measurements are made at two of the sites, from a single inlet height using gas chromatography (GC) with an electron capture detector (ECD), flame ionisation detector (FID) or reduction gas analyser (RGA). Repeatability of individual injections (1σ) on GC and RGA instruments between January 2012 and September 2015 for CH4, N2O, SF6, CO and H2 measurements were < 2.8 nmol mol-1, < 0.4 nmol mol-1, < 0.07 pmol mol-1, < 2 nmol mol-1 and < 3 nmol mol-1, respectively. Instrumentation in the network is fully automated and includes sensors for measuring a variety of instrumental parameters such as flow, pressures, and sampling temperatures. Automated alerts are generated and emailed to site operators when instrumental parameters are not within defined set ranges. Automated instrument shutdowns occur for critical errors such as carrier gas flow rate deviations. Results from the network give good spatial and temporal coverage of atmospheric mixing ratios within the UK since early 2012. Results also show that all measured GHGs are increasing in mole fraction over the selected reporting period and, except for SF6, exhibit a seasonal trend. CO2 and CH4 also show strong diurnal cycles, with night-time maxima and daytime minima in mole fractions.

  18. Temporal dynamics of CO2 fluxes and profiles over a Central European city

    NASA Astrophysics Data System (ADS)

    Vogt, R.; Christen, A.; Rotach, M. W.; Roth, M.; Satyanarayana, A. N. V.

    2006-02-01

    In Summer 2002 eddy covariance flux measurements of CO2 were performed over a dense urban surface. The month-long measurements were carried out in the framework of the Basel Urban Boundary Layer Experiment (BUBBLE). Two Li7500 open path analysers were installed at z/z H = 1.0 and 2.2 above a street canyon with z H the average building height of 14.6 m and z the height above street level. Additionally, profiles of CO2 concentration were sampled at 10 heights from street level up to 2 z H . The minimum and maximum of the average diurnal course of CO2 concentration at 2 z H were 362 and 423 ppmv in late afternoon and early morning, respectively. Daytime CO2 concentrations were not correlated to local sources, e.g. the minimum occurred together with the maximum in traffic load. During night-time CO2 is in general accumulated, except when inversion development is suppressed by frontal passages. CO2 concentrations were always decreasing with height and correspondingly, the fluxes on average always directed upward. At z/z H = 2.2 low values of about 3 µmol m-2 s-1 were measured during the second half of the night. During daytime average values reached up to 14 µmol m-2 s-1. The CO2 fluxes are well correlated with the traffic load, with their maxima occurring together in late afternoon. Daytime minimum CO2 concentrations fell below regional background values. Besides vertical mixing and entrainment, it is suggested that this is also due to advection of rural air with reduced CO2 concentration. Comparison with other urban observations shows a large range of differences among urban sites in terms of both CO2 fluxes and concentrations.

  19. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  20. Transmission electron microscopy study of the formation of epitaxial CoSi2/Si (111) by a room-temperature codeposition technique

    NASA Technical Reports Server (NTRS)

    D'Anterroches, Cecile; Yakupoglu, H. Nejat; Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1988-01-01

    Co and Si have been codeposited on Si (111) substrates near room temperature in a stoichiometric 1:2 ratio in a molecular beam epitaxy system. Annealing of these deposits yields high-quality single-crystal CoSi2 layers. Transmission electron microscopy has been used to examine as-deposited layers and layers annealed at 300, 500, and 600 C. Single-crystal epitaxial grains of CoSi2 embedded in a matrix of amorphous Co/Si are observed in as-deposited samples, while the layer is predominantly single-crystal, inhomogeneously strained CoSi2 at 300 C. At 600 C, a homogeneously strained single-crystal layer with a high density of pinholes is observed. In contrast to other solid phase epitaxy techniques used to grow CoSi2 on Si (111), no intermediate silicide phases are observed prior to the formation of CoSi2.

  1. Magnetic properties of Co/Ni grain boundaries after annealing

    NASA Astrophysics Data System (ADS)

    Coutts, Chris; Arora, Monika; Hübner, René; Heinrich, Bret; Girt, Erol

    2018-05-01

    Magnetic and microstructural properties of <111> textured Cu/N×[Co/Ni] films are studied as a function of the number of bilayer repeats N and annealing temperature. M(H) loop measurements show that coercivity, Hc, increases with annealing temperature and that the slope of the saturation curve at Hc has a larger reduction for smaller N. An increase of the magnetic anisotropy (Ku) to saturation magnetization (Ms) ratio after annealing N×[Co/Ni] with N < 15 only partially describes the increase to Hc. Energy-dispersive X-ray spectroscopy analyses performed in scanning transmission electron microscopy mode across cross-sections of as-deposited and annealed Cu/16×[Co/Ni] films show that Cu diffuses from the seed layer into grain boundaries of Co/Ni. Diffusion of Cu reduces exchange coupling (Hex) between the magnetic grains and explains the increase in Hc. Additionally, the difference in the slope of the M(H) curves at Hc between the thick (N = 16) and thin (N = 4) magnetic multilayers is due to Cu diffusion more effectively decoupling magnetic grains in the thinner multilayer.

  2. Supersonic CO electric-discharge lasers

    NASA Technical Reports Server (NTRS)

    Hason, R. K.; Mitchner, M.; Stanton, A.

    1975-01-01

    Laser modeling activity is described which involved addition of an option allowing N2 as a second diatomic gas. This option is now operational and a few test cases involving N2/CO mixtures were run. Results from these initial test cases are summarized. In the laboratory, a CW double-discharge test facility was constructed and tested. Features include: water-cooled removable electrodes, O-ring construction to facilitate cleaning and design modifications, increased discharge length, and addition of a post-discharge observation section. Preliminary tests with this facility using N2 yielded higher power loadings than obtained in the first-generation facility. Another test-section modification, recently made and as yet untested, will permit injection of secondary gases into the cathode boundary layer. The objective will be to vary and enhance the UV emission spectrum from the auxiliary discharge, thereby influencing the level of photoionization in the main discharge region.

  3. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  4. Chemical Composition of Asian Continental Outflow over the Western Pacific: Results from Transport and Chemical Evolution over the Pacific (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Russo, R. S.; Talbot, R. W.; Dibb, J. E.; Scheuer, E.; Seid, G.; Jordan, C. E.; Fuelberg, H. E.; Sachse, G. W.; Avery, M. A.; Vay, S. A.

    2003-01-01

    We characterize the chemical composition of Asian continental outflow observed during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) mission during February-April 2001 in the western Pacific using data collected on the NASA DC-8 aircraft. A significant anthropogenic impact was present in the free troposphere and as far east as 150degE longitude reflecting rapid uplift and transport of continental emissions. Five-day backward trajectories were utilized to identify five principal Asian source regions of outflow: central, coastal, north-northwest(NNW), southeast (SE), and west-southwest (WSW). The maximum mixing ratios for several species, such as CO, C2Cl4, CH3Cl, and hydrocarbons, were more than a factor of 2 larger in the boundary layer of the central and coastal regions due to industrial activity in East Asia. CO was well correlated with C2H2, C2H6, C2Cl4, and CH3Cl at low altitudes in these two regions (r(sup 2) approx. 0.77-0.97). The NNW, WSW, and SE regions were impacted by anthropogenic sources above the boundary layer presumably due to the longer transport distances of air masses to the western Pacific. Frontal and convective lifting of continental emissions was most likely responsible for the high altitude outflow in these three regions. Photochemical processing was influential in each source region resulting in enhanced mixing ratios of O3, PAN, HNO3, H2O2, and CH3OOH. The air masses encountered in all five regions were composed of a complex mixture of photcrchemically aged air with more recent emissions mixed into the outflow as indicated by enhanced hydrocarbon ratios (C2H2/CO greater than or equal to 3 and C3H8/C2H6 greater than or equal to 0.2). Combustion, industrial activities, and the burning of biofuels and biomass all contributed to the chemical composition of air masses from each source region as demonstrated by the H6, SO2, and C2Cl4 were compared for the TRACE-P and PEM-West B missions. In the more northern regions, O3, CO, and SO2 were higher at low altitudes during TRACE-P. In general, mixing ratios were fairly similar between the two missions in the southern regions. A comparison between CO/CO2, CO/CH4, C2H6/C3H8, NO(x)/SO2, and NO(y)/(SO2 + nss-SO4) ratios for the five source regions and for the 2000 Asian emissions summary showed vay close agreement indicating that Asian emissions were well represented by the TRACE-P data and tbe emissions inventory.

  5. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  6. Dynamics, thermodynamics, radiation, and cloudiness associated with cumulus-topped marine boundary layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghate, Virendra P.; Miller, Mark

    The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur atmore » temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.« less

  7. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  8. Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.; Meneveau, Charles

    2016-01-01

    The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.

  9. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.

  10. EPA Facilities and Regional Boundaries Service, US, 2012, US EPA, SEGS

    EPA Pesticide Factsheets

    This SEGS web service contains EPA facilities, EPA facilities labels, small- and large-scale versions of EPA region boundaries, and EPA region boundaries extended to the 200nm Exclusive Economic Zone (EEZ). Small scale EPA boundaries and boundaries extended to the EEZ render at scales of less than 5 million, large scale EPA boundaries draw at scales greater than or equal to 5 million. EPA facilities labels draw at scales greater than 2 million. Data used to create this web service are available as a separate download at the Secondary Linkage listed above. Full FGDC metadata records for each layer may be found by clicking the layer name in the web service table of contents (available through the online link provided above) and viewing the layer description. This SEGS dataset was produced by EPA through the Office of Environmental Information.

  11. A measurement system for the atmospheric trace gases CH4 and CO

    NASA Technical Reports Server (NTRS)

    Condon, E. P.

    1977-01-01

    A system for measuring ambient clean air levels of the atmospheric trace gases methane and carbon monoxide is described. The analytical method consists of a gas chromatographic technique that incorporates sample preconcentration with catalytic conversion of CO to CH4 and subsequent flame ionization detection of these gases. The system has sufficient sensitivity and repeatability to make the precise measurements required to establish concentration profiles for CO and CH4 in the planetary boundary layer. A discussion of the bottle sampling program being conducted to obtain the samples for the concentration profiles is also presented.

  12. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In the observations, several strong temperature inversion layers are also found in the surface layer and the middle part of the boundary layer, which lead to the suppression of the vertical mixing of the air pollutants. The jet stream occurring in the boundary layer also contributes to the prevention of the vertical dissipation of the air pollutants. It is also observed that the temporal and spatial evolution of the air pollutants and the hygroscopic growth of the aerosols in the boundary layer are heavily dependent on the humidity of the air.

  13. Airborne Observations of Urban-Derived Water Vapor and Potential Impacts on Chemistry and Clouds

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Shepson, P. B.; Grundman, R. M., II; Stirm, B. H.; Ren, X.; Dickerson, R. R.; Fuentes, J. D.

    2015-12-01

    Atmospheric conditions typical of wintertime, such as lower boundary layer heights and reduced turbulent mixing, provide a unique environment for anthropogenic pollutants to accumulate and react. Wintertime enhancements in water vapor (H2O) have been observed in urban areas, and are thought to result from fossil fuel combustion and urban heat island-induced evaporation. The contribution of urban-derived water vapor to the atmosphere has the potential to locally influence atmospheric chemistry and weather for the urban area and surrounding region due to interactions between H2O and other chemical species, aerosols, and clouds. Airborne observations of urban-derived H2O, carbon dioxide (CO2), methane, nitrogen dioxide (NO2), ozone, and aerosols were conducted from Purdue University's Airborne Laboratory for Atmospheric Research (ALAR) and the University of Maryland's (UMD) Twin Cessna research aircraft during the winter of 2015. Measurements were conducted as part of the collaborative airborne campaign, Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER), which investigated seasonal trends in anthropogenic emissions and reactivity in the Northeastern United States. ALAR and the UMD aircraft participated in mass balance experiments around Washington D.C.-Baltimore to determine total city emission rates of H2O and other greenhouse gases. Average enhancements in H2O mixing ratio of 0.048%, and up to 0.13%, were observed downwind of the urban centers on ten research flights. In some cases, downwind H2O concentrations clearly track CO2 and NO2 enhancements, suggesting a strong combustion signal. Analysis of Purdue and UMD data collected during the WINTER campaign shows an average urban-derived H2O contribution of 5.3%, and as much as 13%, to the local boundary layer from ten research flights flown in February and March of 2015. In this paper, we discuss the potential chemical and physical implications of these results.

  14. Evaluation of Flush-Mounted, S-Duct Inlets with Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Morehouse, Melissa B.

    2003-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) provide a database for CFD tool validation on boundary layer ingesting inlets operating at realistic conditions and 2) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a full-scale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height) or ingesting a boundary layer with a distorted (adverse) profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.

  15. Time-Accurate Computations of Isolated Circular Synthetic Jets in Crossflow

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Schaeffler, N. W.; Milanovic, I. M.; Zaman, K. B. M. Q.

    2007-01-01

    Results from unsteady Reynolds-averaged Navier-Stokes computations are described for two different synthetic jet flows issuing into a turbulent boundary layer crossflow through a circular orifice. In one case the jet effect is mostly contained within the boundary layer, while in the other case the jet effect extends beyond the boundary layer edge. Both cases have momentum flux ratios less than 2. Several numerical parameters are investigated, and some lessons learned regarding the CFD methods for computing these types of flow fields are summarized. Results in both cases are compared to experiment.

  16. Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.

    1978-01-01

    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.

  17. Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect

    NASA Astrophysics Data System (ADS)

    Chen, Jiangyi; Guo, Junhong; Pan, Ernian

    2017-07-01

    In this paper, analytical solutions for propagation of time-harmonic waves in three-dimensional, transversely isotropic, magnetoelectroelastic and multilayered plates with nonlocal effect are derived. We first convert the time-harmonic wave problem into a linear eigenvalue system, from which we obtain the general solutions of the extended displacements and stresses. The solutions are then employed to derive the propagator matrix which connects the field variables at the upper and lower interfaces of each layer. Making use of the continuity conditions of the physical quantities across the interface, the global propagator relation is assembled by propagating the solutions in each layer from the bottom to the top of the layered plate. From the global propagator matrix, the dispersion equation is obtained by imposing the traction-free boundary conditions on both the top and bottom surfaces of the layered plate. Dispersion curves and mode shapes in layered plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials are presented to show the influence of the nonlocal parameter, stacking sequence, as well as the orientation of incident wave on the time-harmonic field response.

  18. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  19. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  20. Co-extrusion of electrolyte/anode functional layer/anode triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells-electrochemical performance study

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wu, Zhentao; Li, K.

    2015-01-01

    In this study, the effects of an anode functional layer (AFL) with controlled thickness on physical and electrochemical properties of a micro-tubular SOFC have been systematically studied. A series of electrolyte/AFL/anode triple-layer hollow fibres with controllable AFL thicknesses (16.9-52.7 μm) have been fabricated via a single-step phase-inversion assisted co-extrusion technique. Both robustness of the cell and gas-tightness of the electrolyte layer are considerably improved by introducing the AFL of this type. The fracture force of the sample with the thickest AFL (9.67 N) almost doubles when compared to the electrolyte/anode dual-layer counterpart (5.24 N). Gas-tightness of the electrolyte layer is also considerably increased as AFL contributes to better-matched sintering behaviours between different components. Moreover, the formation of an AFL simultaneously with electrolyte and anode significantly improves the cell performances. The sample with the thinnest AFL (approximately 16.9 μm, 6% of the total anode thickness) leads to a 30% (from 0.89 to 1.21 W cm-2) increase in maximum power density, due to increased triple-phase boundaries (TPB). However, further increase in TPB from a thicker AFL is less effective for improving the cell performance, due to the substantially increased fuel diffusion resistance and subsequently higher concentration polarization. This indicates that the control over the AFL thickness is critically important in avoiding offsetting the benefits of extended TPB and consequently decreased cell performances.

  1. Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.

    The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved modeling framework for wind farm - atmosphere interaction, 2) to determine how heterogeneous patches of forest affect the structure of the ABL and its interactions with clearings and water bodies, 3) to investigate how landscape heterogeneity, including wakes, may be parameterized in regional-scale weather and climate models to improve the representation of surface fluxes, e.g. from lakes/wetlands and forest clearings. To achieve these objectives, this research employs an interdisciplinary strategy, utilizing concepts and methods from fluid mechanics, micrometeorology, ecosystem ecology and environmental sciences, and combines laboratory and field experiments. In particular, a) wind tunnel experiments of flow through and over model wind farms and model forest canopies were used to improve our fundamental understanding of how wakes affect land-atmosphere coupling, including surface fluxes, after wind farm installation and for heterogeneous landscapes of canopies and clearings or lakes, and b) extensive field studies over lakes and wetlands were undertaken to study the effects of wakes downwind of forest canopies and the effect of wind sheltering on lake stratification dynamics and gas fluxes. These experiments were also used to improve and validate numerical simulation techniques for the atmospheric boundary layer, specifically the large eddy simulation technique, which is used to simulate flow in wind farms and flow over heterogeneous terrain.

  2. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  3. Research done at DERAT (October 1982 through September 1983); summary of principal results obtained

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The progress in the following areas is described: measurement equipment; F2 FAUGA wind tunnel tests; unsteady boundary layers; body and axisymmetrical boundary layers; wing fuselage interactions; turbulence; subsonic-transonic flow; cryogenic wind tunnel tests; and profile testing.

  4. Boundary Layer Transition Correlations and Aeroheating Predictions for Mars Smart Lander

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Liechty, Derek S.

    2002-01-01

    Laminar and turbulent perfect-gas air, Navier-Stokes computations have been performed for a proposed Mars Smart Lander entry vehicle at Mach 6 over a free stream Reynolds number range of 6.9 x 10(exp 6)/m to 2.4 x 10(exp 7)/m (2.1 x 10(exp 6)/ft to 7.3 x 10(exp 6)/ft) for angles-of-attack of 0-deg, 11-deg, 16-deg, and 20-deg, and comparisons were made to wind tunnel heating data obtained a t the same conditions. Boundary layer edge properties were extracted from the solutions and used to correlate experimental data on the effects of heat-shield penetrations (bolt-holes where the entry vehicle would be attached to the propulsion module during transit to Mars) on boundary-layer transition. A non-equilibrium Martian-atmosphere computation was performed for the peak heating point on the entry trajectory in order to determine if the penetrations would produce boundary-layer transition by using this correlation.

  5. Boundary Layer Transition Correlations and Aeroheating Predictions for Mars Smart Lander

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Liechty, Derek S.

    2002-01-01

    Laminar and turbulent perfect-gas air, Navier-Stokes computations have been performed for a proposed Mars Smart Lander entry vehicle at Mach 6 over a free stream Reynolds number range of 6.9 x 10(exp 6/m to 2.4 x 10(exp 7)m(2.1 x 10(exp 6)/ft to 7.3 x 10(exp 6)ft) for angles-of-attack of 0-deg, 11-deg, 16-deg, and 20-deg, and comparisons were made to wind tunnel heating data obtained at the same conditions. Boundary layer edge properties were extracted from the solutions and used to correlate experimental data on the effects of heat-shield penetrations (bolt-holes where the entry vehicle would be attached to the propulsion module during transit to Mars) on boundary-layer transition. A non-equilibrium Martian-atmosphere computation was performed for the peak heating point on the entry trajectory in order to determine if the penetrations would produce boundary-layer transition by using this correlation.

  6. Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes

    NASA Technical Reports Server (NTRS)

    Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.

    1983-01-01

    Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.

  7. Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes

    NASA Astrophysics Data System (ADS)

    Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.

    1983-05-01

    Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.

  8. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  9. Dinosaurs, spherules, and the “magic” layer: A new K-T boundary clay site in Wyoming

    NASA Astrophysics Data System (ADS)

    Bohor, Bruce F.; Triplehorn, Don M.; Nichols, Douglas J.; Millard, Hugh T., Jr.

    1987-10-01

    A new Cretaceous-Tertiary (K-T) boundary clay site has been found along Dogie Creek in Wyoming in the drainage of Lance Creek—the type area of the Lance Formation of latest Cretaceous age. The boundary clay was discovered in the uppermost part of the Lance Formation, 4 7 cm beneath the lowest lignite in the Paleocene Fort Union Formation and approximately 1 m above a fragmented dinosaur bone. The boundary clay consists of a basal kaolinitic claystone layer as much as 3 cm thick containing hollow goyazite spherules, overlain by a 2 3 mm smectitic layer (the “magic” layer) containing both shock-metamorphosed minerals and an iridium anomaly of 21 ppb. A palynological break coincides with the base of the claystone layer; numerous Late Cretaceous palynomorph species terminate at this boundary. The paleontological significance of this new boundary site lies in its close association with the well-studied assemblage of dinosaurs and other vertebrates and flora within the type area of the Lance Formation. The spherules at the Dogie Creek site are extremely well preserved by virtue of their replacement by the mineral goyazite. This preservation should facilitate the resolution of the origin of the spherules and of their host layer.

  10. Thermal boundary layer profiles in turbulent Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Tong, Penger; Wang, Yin; He, Xiaozhou

    2015-11-01

    We have studied the mean temperature boundary layer profile T(z) and root-mean-square (rms) temperature profile S(z) in turbulent Rayleigh-Benard convection along the central axis z of a convection cell, which has a thin vertical disk shape with an inner diameter D = 18 cm. The temperature measurements were made at fixed Prandtl numbers Pr = 4.3 and Pr = 7.6 and with the Rayleigh number Ra varied in the range between 1 ×109 and 1 ×1010 . The measured T(z) for different values of Pr and Ra can all be well described by the newly proposed boundary layer model with a parameter c varying from 1 to 2.1. The measured rms temperature profile S(z) is found to be a single-peaked function with the peak position located at z ~= 0 . 8 δ , where δ is the boundary layer thickness. The measured S(z) has two separate scaling lengths. Within the boundary layer, it scales with δ and can be fitted to a power law, S (z) ~(z / δ) α with α ~= 0 . 6 . Outside the boundary layer, it scales with the cell size D and follows a different power law, S (z) ~(z / D) β , with β = - 0 . 42 . This work was supported by the Research Grants Council of Hong Kong SAR.

  11. Experimental and numerical investigation of the effect of distributed suction on oblique shock wave/turbulent boundary layer interaction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Benhachmi, Driss; Greber, Isaac; Hingst, Warren R.

    1988-01-01

    A combined experimental and numerical study of the interaction of an incident oblique shock wave with a turbulent boundary layer on a rough plate and on a porous plate with suction is presented. The experimental phase involved the acquisition of mean data upstream of, within, and downstream of the interaction region at Mach numbers 2.5 and 3.0. Data were taken at unit Reynolds numbers of 1.66 E7 and 1.85 E7 m respectively, and for flow deflection angles of 0, 4, 6 and 8 degs. Measured data include wall static pressure, pitot pressure profiles, and local bleed distributions on the porous plate. On the rough plate, with no suction, the boundary layer profiles were modified near the wall, but not separated for the 4 deg flow deflection angle. For the higher deflection angles of 6 and 8 degs, the boundary layer was separated. Suction increases the strength of the incident shock required to separate the turbulent boundary layer; for all shock strengths tested, separation is completely eliminated. The pitot pressure profiles are affected throughout the whole boundary layer; they are fuller than the ones obtained on the rough plate. It is also found that the combination of suction and roughness introduces spatial perturbations.

  12. Evaluation of UAS for Atmospheric Boundary Layer Monitoring as Part of the 2017 CLOUD-MAP Flight Campaign

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Chilson, P. B.; Houston, A. L.; Smith, S.

    2017-12-01

    CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics) is a 4 year, 4 university collaboration sponsored by the National Science Foundation to develop capabilities that will allow meteorologists and atmospheric scientists to use unmanned aircraft as a common, useful everyday measurement tool. Currently, we know that systems can be used for meteorological measurements, but they are far from being practical or robust for everyday field diagnostics by the average meteorologist or scientist. In particular, UAS are well suited for the lower atmosphere, namely the lower boundary layer that has a large impact on the atmosphere and where much of the weather phenomena begin. The 2016 and 2017 campaigns resulted in over 500 unmanned aircraft flights of over a dozen separate platforms collecting meteorological data at 3 different sites including Oklahoma Mesonet stations and the DOE Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The SGP atmospheric observatory was the first field measurement site established by the ARM Climate Research Facility and is the world's largest and most extensive climate research facility. Data from the SGP was used to validate observations from the various UAS. UAS operations consisted of both fixed and rotary platforms up to 3,000 AGL with thermodynamic, wind, and chemistry (viz., CO2 and CH4) sensors. ABL conditions were observed over a variety of conditions, particularly during the morning transition to evaluate the boundary layer dilution due to vertical mixing and changes in the wind patterns from diurnal variability.

  13. Comments on Reynolds number effects in wall-bounded shear layers

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Promode R.

    1991-01-01

    The effect of Reynolds number on the structure of turbulent boundary layers and channel flows is discussed. Published data are reexamined in light of the following questions: (1) does the boundary layer turbulence structure change after the well known Reynolds number limit viz, when Re(theta) is greater than 6000?; (2) is it possible to disturb a high Reynolds number flat plate turbulent boundary layer near the wall such that the recovery length is O(100 delta)?; and (3) how close is the numerically simulated low Reynolds number flat plate turbulence structure to that observed experimentally? The turbulence structure appears to change continuously with Reynolds number virtually throughout the bounday layer and sometimes in unexpected manners at high Reynolds numbers.

  14. Downscaling the NOAA CarbonTracker Inversion for North America

    NASA Astrophysics Data System (ADS)

    Petron, G.; Andrews, A. E.; Chen, H.; Trudeau, M. E.; Eluszkiewicz, J.; Nehrkorn, T.; Henderson, J.; Sweeney, C.; Karion, A.; Masarie, K.; Bruhwiler, L.; Miller, J. B.; Miller, B. R.; Peters, W.; Gourdji, S. M.; Mueller, K. L.; Michalak, A. M.; Tans, P. P.

    2011-12-01

    We are developing a regional extension of the NOAA CarbonTracker CO2 data-assimilation system for a limited domain covering North America. The regional assimilation will use pre-computed and species-independent atmospheric sampling footprints from a Lagrangian Particle Dispersion Model. Each footprint relates an observed trace gas concentration to upwind fluxes. Once a footprint library has been computed, it can be used repeatedly to quickly test different inversion strategies and, importantly, for inversions using multiple species data (e.g., anthropogenic tracers such as radiocarbon and carbon monoxide and biological tracers such as carbonyl sulfide and stable isotopes of CO2). The current global CarbonTracker (CT) assimilation framework has some important limitations. For example, the assimilation adjusts scaling factors for different vegetation classes within large regions. This means, for example, that all crops within temperate North America are scaled together. There is currently no distinction between crops such as corn and sorghum, which utilize the C4 photosynthesis pathway and C3 crops like soybeans, wheat, cotton, etc. The optimization scales only the net CO2 flux, rather than adjusting photosynthesis and respiration fluxes separately, which limits the flexibility of the inversion and sometimes results in unrealistic diurnal cycles of CO2 flux. The time-series of residuals (CT - observed) for continental sites in North America reveals a persistent excess of CO2 during summer. This summertime positive bias is also apparent in the comparison of CT posterior CO2 with aircraft data and with data from Pacific marine boundary layer sites, suggesting that some of the problem may originate outside of North America. For the regional inversion, we will use footprints from the Stochastic Time-Inverted Lagrangian Transport Model driven by meteorological fields from a customized high-resolution simulation with the Weather Research Forecast (WRF) model. We will use empirically corrected boundary conditions in order to minimize sensitivity to inaccurate fluxes or transport outside of our domain. We plan to test a variety of inversion strategies that effectively exploit CO2 and isotopic data from the relatively dense North American sampling network for 2007-2010.

  15. Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra

    2008-01-01

    A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.

  16. Effects of Land Surface Heterogeneity on Simulated Boundary-Layer Structures from the LES to the Mesoscale

    NASA Astrophysics Data System (ADS)

    Poll, Stefan; Shrestha, Prabhakar; Simmer, Clemens

    2017-04-01

    Land heterogeneity influences the atmospheric boundary layer (ABL) structure including organized (secondary) circulations which feed back on land-atmosphere exchange fluxes. Especially the latter effects cannot be incorporated explicitly in regional and climate models due to their coarse computational spatial grids, but must be parameterized. Current parameterizations lead, however, to uncertainties in modeled surface fluxes and boundary layer evolution, which feed back to cloud initiation and precipitation. This study analyzes the impact of different horizontal grid resolutions on the simulated boundary layer structures in terms of stability, height and induced secondary circulations. The ICON-LES (Icosahedral Nonhydrostatic in LES mode) developed by the MPI-M and the German weather service (DWD) and conducted within the framework of HD(CP)2 is used. ICON is dynamically downscaled through multiple scales of 20 km, 7 km, 2.8 km, 625 m, 312 m, and 156 m grid spacing for several days over Germany and partial neighboring countries for different synoptic conditions. We examined the entropy spectrum of the land surface heterogeneity at these grid resolutions for several locations close to measurement sites, such as Lindenberg, Jülich, Cabauw and Melpitz, and studied its influence on the surface fluxes and the evolution of the boundary layer profiles.

  17. Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation

    DOE PAGES

    Yang, Da

    2018-01-24

    Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and themore » square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. Furthermore, this theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a sui te of cloud-resolving simulations spanning a wide range of climates.« less

  18. Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Da

    Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and themore » square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. Furthermore, this theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a sui te of cloud-resolving simulations spanning a wide range of climates.« less

  19. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  20. Multiwell CO2 injectivity: impact of boundary conditions and brine extraction on geologic CO2 storage efficiency and pressure buildup.

    PubMed

    Heath, Jason E; McKenna, Sean A; Dewers, Thomas A; Roach, Jesse D; Kobos, Peter H

    2014-01-21

    CO2 storage efficiency is a metric that expresses the portion of the pore space of a subsurface geologic formation that is available to store CO2. Estimates of storage efficiency for large-scale geologic CO2 storage depend on a variety of factors including geologic properties and operational design. These factors govern estimates on CO2 storage resources, the longevity of storage sites, and potential pressure buildup in storage reservoirs. This study employs numerical modeling to quantify CO2 injection well numbers, well spacing, and storage efficiency as a function of geologic formation properties, open-versus-closed boundary conditions, and injection with or without brine extraction. The set of modeling runs is important as it allows the comparison of controlling factors on CO2 storage efficiency. Brine extraction in closed domains can result in storage efficiencies that are similar to those of injection in open-boundary domains. Geomechanical constraints on downhole pressure at both injection and extraction wells lower CO2 storage efficiency as compared to the idealized scenario in which the same volumes of CO2 and brine are injected and extracted, respectively. Geomechanical constraints should be taken into account to avoid potential damage to the storage site.

  1. Time domain reflectometry measurements of solute transport across a soil layer boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, H.H.; Moldrup, P.; Kachanoski, R.G.

    2000-02-01

    The mechanisms governing solute transport through layered soil are not fully understood. Solute transport at, above, and beyond the interface between two soil layers during quasi-steady-state soil water movement was investigated using time domain reflectometry (TDR). A 0.26-m sandy loam layer was packed on top of a 1.35-m fine sand layer in a soil column. Soil water content ({theta}) and bulk soil electrical conductivity (EC{sub b}) were measured by 50 horizontal and 2 vertical TDR probes. A new TDR calibration method that gives a detailed relationship between apparent relative dielectric permittivity (K{sub s}) and {theta} was applied. Two replicate solutemore » transport experiments were conducted adding a conservative tracer (CCl) to the surface as a short pulse. The convective lognormal transfer function model (CLT) was fitted to the TDR-measured time integral-normalized resident concentration breakthrough curves (BTCs). The BTCs and the average solute-transport velocities showed preferential flow occurred across the layer boundary. A nonlinear decrease in TDR-measured {theta} in the upper soil toward the soil layer boundary suggests the existence of a 0.10-m zone where water is confined towards fingered flow, creating lateral variations in the area-averaged water flux above the layer boundary. A comparison of the time integral-normalized flux concentration measured by vertical and horizontal TDR probes at the layer boundary also indicates a nonuniform solute transport. The solute dispersivity remained constant in the upper soil layer, but increased nonlinearly (and further down, linearly) with depth in the lower layer, implying convective-dispersive solute transport in the upper soil, a transition zone just below the boundary, and stochastic-convective solute transport in the remaining part of the lower soil.« less

  2. Partial differential equations of 3D boundary layer and their numerical solutions in turbomachinery

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Hua, Yaonan; Wu, Chung-Hua

    1991-08-01

    This paper studies the 3D boundary layer equations (3DBLE) and their numerical solutions in turbomachinery: (1) the general form of 3DBLE in turbomachines with rotational and curvature effects are derived under the semiorthogonal coordinate system, in which the normal pressure gradient is not equal to zero; (2) the method of solution of the 3DBLE is discussed; (3) the 3D boundary layers on the rotating blade surface, IGV endwall, rotor endwall (with a relatively moving boundary) are numerically solved, and the predicted data correlates well with the measured data; and (4) the comparison is made between the numerical results of 3DBLE with and without normal pressure gradient.

  3. On the Lagrangian description of unsteady boundary-layer separation. I - General theory

    NASA Technical Reports Server (NTRS)

    Van Dommelen, Leon L.; Cowley, Stephen J.

    1990-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  4. On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory

    NASA Technical Reports Server (NTRS)

    Vandommelen, Leon L.; Cowley, Stephen J.

    1989-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  5. Epitaxial CoSi2 on MOS devices

    DOEpatents

    Lim, Chong Wee; Shin, Chan Soo; Petrov, Ivan Georgiev; Greene, Joseph E.

    2005-01-25

    An Si.sub.x N.sub.y or SiO.sub.x N.sub.y liner is formed on a MOS device. Cobalt is then deposited and reacts to form an epitaxial CoSi.sub.2 layer underneath the liner. The CoSi.sub.2 layer may be formed through a solid phase epitaxy or reactive deposition epitaxy salicide process. In addition to high quality epitaxial CoSi.sub.2 layers, the liner formed during the invention can protect device portions during etching processes used to form device contacts. The liner can act as an etch stop layer to prevent excessive removal of the shallow trench isolation, and protect against excessive loss of the CoSi.sub.2 layer.

  6. Characteristics of Boundary Layer Structure during a Persistent Haze Event in the Central Liaoning City Cluster, Northeast China

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Wang, Yangfeng; Shen, Lidu; Zhang, Hongsheng; Zhao, Hujia; Zhang, Yunhai; Ma, Yanjun

    2018-04-01

    The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter (PM) concentration and the meteorological data within the atmospheric boundary layer (ABL). During the observational period, the maximum hourly mean PM2.5 and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m-3 and from 378 to 442 μg m-3, respectively, and the lowest hourly mean atmospheric visibility (VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed (WS) within the ABL (< 2 km) decreased significantly and WS at 10-m height mostly remained below 2 m s-1 during the hazy episodes, which was favorable for the accumulation of air pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time (LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height (ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM2.5 in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event. The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.

  7. Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.

  8. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  9. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 2; Phase-Averages

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.

  10. On the instability of hypersonic flow past a flat plate

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Cowley, Stephen; Hall, Philip

    1990-01-01

    The instability of hypersonic boundary-layer flows over flat plates is considered. The viscosity of the fluid is taken to be governed by Sutherland's law, which gives a much more accurate representation of the temperature dependence of fluid viscosity at hypersonic speeds than Chapman's approximate linear law; although at lower speeds the temperature variation of the mean state is less pronounced so that the Chapman law can be used with some confidence. Attention is focussed on the so-called (vorticity) mode of instability of the viscous hypersonic boundary layer. This is thought to be the fastest growing inviscid disturbance at hypersonic speeds; it is also believed to have an asymptotically larger growth rate than any viscous or centrifugal instability. As a starting point the instability of the hypersonic boundary layer which exists far downstream from the leading edge of the plate is investigated. In this regime the shock that is attached to the leading edge of the plate plays no role, so that the basic boundary layer is non-interactive. It is shown that the vorticity mode of instability of this flow operates on a significantly different lengthscale than that obtained if a Chapman viscosity law is assumed. In particular, it is found that the growth rate predicted by a linear viscosity law overestimates the size of the growth rate by O(M(exp 2). Next, the development of the vorticity mode as the wavenumber decreases is described, and it is shown that acoustic modes emerge when the wavenumber has decreased from it's O(1) initial value to O(M (exp -3/2). Finally, the inviscid instability of the boundary layer near the leading edge in the interaction zone is discussed and particular attention is focussed on the strong interaction region which occurs sufficiently close to the leading edge. It is found that the vorticity mode in this regime is again unstable, and that it is concentrated in the transition layer at the edge of the boundary layer where the temperature adjusts from its large, O(M(exp 2), value in the viscous boundary layer, to its O(1) free stream value. The existence of the shock indirectly, but significantly, influences the instability problem by modifying the basic flow structure in this layer.

  11. Self-organized classification of boundary layer meteorology and associated characteristics of air quality in Beijing

    NASA Astrophysics Data System (ADS)

    Liao, Zhiheng; Sun, Jiaren; Yao, Jialin; Liu, Li; Li, Haowen; Liu, Jian; Xie, Jielan; Wu, Dui; Fan, Shaojia

    2018-05-01

    Self-organizing maps (SOMs; a feature-extracting technique based on an unsupervised machine learning algorithm) are used to classify atmospheric boundary layer (ABL) meteorology over Beijing through detecting topological relationships among the 5-year (2013-2017) radiosonde-based virtual potential temperature profiles. The classified ABL types are then examined in relation to near-surface pollutant concentrations to understand the modulation effects of the changing ABL meteorology on Beijing's air quality. Nine ABL types (i.e., SOM nodes) are obtained through the SOM classification technique, and each is characterized by distinct dynamic and thermodynamic conditions. In general, the self-organized ABL types are able to distinguish between high and low loadings of near-surface pollutants. The average concentrations of PM2.5, NO2 and CO dramatically increased from the near neutral (i.e., Node 1) to strong stable conditions (i.e., Node 9) during all seasons except for summer. Since extremely strong stability can isolate the near-surface observations from the influence of elevated SO2 pollution layers, the highest average SO2 concentrations are typically observed in Node 3 (a layer with strong stability in the upper ABL) rather than Node 9. In contrast, near-surface O3 shows an opposite dependence on atmospheric stability, with the lowest average concentration in Node 9. Analysis of three typical pollution months (i.e., January 2013, December 2015 and December 2016) suggests that the ABL types are the primary drivers of day-to-day variations in Beijing's air quality. Assuming a fixed relationship between ABL type and PM2.5 loading for different years, the relative (absolute) contributions of the ABL anomaly to elevated PM2.5 levels are estimated to be 58.3 % (44.4 µg m-3) in January 2013, 46.4 % (22.2 µg m-3) in December 2015 and 73.3 % (34.6 µg m-3) in December 2016.

  12. Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.

    2005-02-01

    Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.

  13. Flow unsteadiness effects on boundary layers

    NASA Technical Reports Server (NTRS)

    Murthy, Sreedhara V.

    1989-01-01

    The development of boundary layers at high subsonic speeds in the presence of either mass flux fluctuations or acoustic disturbances (the two most important parameters in the unsteadiness environment affecting the aerodynamics of a flight vehicle) was investigated. A high quality database for generating detailed information concerning free-stream flow unsteadiness effects on boundary layer growth and transition in high subsonic and transonic speeds is described. The database will be generated with a two-pronged approach: (1) from a detailed review of existing literature on research and wind tunnel calibration database, and (2) from detailed tests in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). Special instrumentation, including hot wire anemometry, the buried wire gage technique, and laser velocimetry were used to obtain skin friction and turbulent shear stress data along the entire boundary layer for various free stream noise levels, turbulence content, and pressure gradients. This database will be useful for improving the correction methodology of applying wind tunnel test data to flight predictions and will be helpful for making improvements in turbulence modeling laws.

  14. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    NASA Astrophysics Data System (ADS)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  15. Explicit finite-volume time-marching calculations of total temperature distributions in turbulent flow

    NASA Technical Reports Server (NTRS)

    Nicholson, Stephen; Moore, Joan G.; Moore, John

    1987-01-01

    A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.

  16. Explicit finite-volume time-marching calculations of total temperature distributions in turbulent flow

    NASA Technical Reports Server (NTRS)

    Nicholson, Stephen; Moore, Joan G.; Moore, John

    1986-01-01

    A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.

  17. Interannual Variability In the Atmospheric CO2 Rectification Over Boreal Forests Based On A Coupled Ecosystem-Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, J. M.; Worthy, D.

    2004-05-01

    Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.

  18. High speed transition prediction

    NASA Technical Reports Server (NTRS)

    Gasperas, Gediminis

    1993-01-01

    The main objective of this work period was to develop, maintain and exercise state-of-the-art methods for transition prediction in supersonic flow fields. Basic state and stability codes, acquired during the last work period, were exercised and applied to calculate the properties of various flowfields. The development of a code for the prediction of transition location using a currently novel method (the PSE or Parabolized Stability Equation method), initiated during the last work period and continued during the present work period, was cancelled at mid-year for budgetary reasons. Other activities during this period included the presentation of a paper at the APS meeting in Tallahassee, Florida entitled 'Stability of Two-Dimensional Compressible Boundary Layers', as well as the initiation of a paper co-authored with H. Reed of the Arizona State University entitled 'Stability of Boundary Layers'.

  19. Fires at the K/T boundary - Carbon at the Sumbar, Turkmenia, site

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Anders, Edward; Nazarov, Michael A.

    1990-01-01

    Results are reported on carbon analysis and on C and Ir correlations in samples from the marine K-T boundary site SM-4 at the Sumbar River in Turkmenia (USSR), which has the largest known Ir anomaly (580 ng/cq cm). In addition, the boundary clay is thick, and is undisturbed by bioturbation. Kerogen and delta-C-13 elemental carbon in the boundary clay were resolved using a Cr2O7(2-) oxidation method of Wolbach and Anders (1989). It was found that Ir and shocked quartz, both representing impact ejecta, rise sharply at the boundary, peak in the basal layer, and then decline. On the other hand, soot and total elemental C show a similar spike in the basal layer but then rise rather than fall, peking at 7 cm. Results indicate that fires at the SM-4 K-T boundary site started before the basal layer had settled, implying that ignition and spreading of major fires became possible at the time of or very soon after the meteorite impact.

  20. Co-production in community mental health services: blurred boundaries or a game of pretend?

    PubMed

    Kirkegaard, Sine; Andersen, Ditte

    2018-06-01

    The concept of co-production suggests a collaborative production of public welfare services, across boundaries of participant categories, for example professionals, service users, peer-workers and volunteers. While co-production has been embraced in most European countries, the way in which it is translated into everyday practice remains understudied. Drawing on ethnographic data from Danish community mental health services, we attempt to fill this gap by critically investigating how participants interact in an organisational set-up with blurred boundaries between participant categories. In particular, we clarify under what circumstances the blurred boundaries emerge as believable. Theoretically, we combine Lamont and Molnár's (2002) distinction between symbolic boundaries and social boundaries with Goffman's (1974) microanalysis of "principles of convincingness". The article presents three findings: (1) co-production is employed as a symbolic resource for blurring social boundaries; (2) the believability of blurred boundaries is worked up through participants' access to resources of validation, knowledge and authority; and (3) incongruence between symbolic and social boundaries institutionalises practices where participants merely act 'as if' boundaries are blurred. Clarification of the principles of convincingness contributes to a general discussion of how co-production frames the everyday negotiation of symbolic and social boundaries in public welfare services. © 2018 Foundation for the Sociology of Health & Illness.

  1. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  2. Thermal Convection in a Creeping Solid With Melting/Freezing Interfaces at Either or Both Boundaries

    NASA Astrophysics Data System (ADS)

    Labrosse, S.; Morison, A.; Deguen, R.; Alboussiere, T.; Tackley, P. J.; Agrusta, R.

    2017-12-01

    Thermal convection in the solid mantles of the Earth, other terrestrial planets and icy satellites sets in while it is still crystallising from a liquid layer (see abstract by Morison et al, this conference). The existence of an ocean (water or magma) either or both below and above the solid mantle modifies the conditions applying at the boundary since matter can flow through it by changing phase. Adapting the boundary conditions developed for the dynamics of the inner core by Deguen et al (GJI 2013) to the plane layer and the spherical shell, we solve the linear stability problem and obtain weakly non-linear solutions as well as direct numerical solutions in both geometries, with a liquid-solid phase change at either or both boundaries. The phase change boundary condition is controlled by a dimensionless number, Φ , which when small, allows easy flow through the boundary while the classical non-penetrating boundary condition is recovered for large values. If both boundaries have a phase change, the preferred wavelength of the flow is large, i.e. λ ∝Φ -1/2 in a plane layer and degree 1 in a spherical shell, and the critical Rayleigh number is of order Φ . The heat transfer efficiency, as measured by the dependence of the Nusselt number on the Rayleigh number also increases indefinitely for decreasing values of Φ . If only one boundary has a phase change condition, the critical wavelength is increased by about a factor 2 and the critical Rayleigh number is decreased by about a factor 4. The dynamics is controlled entirely by the boundary layer opposite to the phase change interface and the geometry of the flow. This model provides a natural explanation for the emergence of degree 1 convection in thin ice layers and implies a style of early mantle dynamics on Earth very different from what is classically envisioned.

  3. Inventory of File gfs.t06z.pgrb2.2p50.f000

    Science.gov Websites

    analysis U-Component of Wind [m/s] 002 planetary boundary layer VGRD analysis V-Component of Wind [m/s] 003 planetary boundary layer VRATE analysis Ventilation Rate [m^2/s] 004 surface GUST analysis Wind Speed (Gust mb RH analysis Relative Humidity [%] 008 10 mb UGRD analysis U-Component of Wind [m/s] 009 10 mb VGRD

  4. Low Ozone in the Marine Boundary Layer of the Tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Gregory, G. L.; Andesrson, B.; Browell, E.; Sachse, G. W.; Davis, D. D.; Crawford, J.; Bradshaw, J. D.; Talbot, R.; Blake, D. R.; hide

    1994-01-01

    Aircraft measurements of ozone, its key precursors, and a variety of chemical tracers were made in the troposphere of the western and central Pacific in October 1991. These data are presented and analyzed to examine the occurrence of low ozone concentrations in the remote marine boundary layer of the tropical and equatorial Pacific Ocean. The data from these flights out of Guam, covering an area extending from the equator to 20 N and from south of the Philippines to Hawaii, show average O3 concentrations as low as 8-9 ppb (ppb=10(exp-9)v/v) at altitudes of 0.3-0.5 km in the boundary layer. Individual measurements as low as 2-5 ppb were recorded. Low O3 concentrations do not always persist in space and time. High O3, generally associated with the transport of upper tropospheric air, was also encountered in the boundary layer. In practically all cases, O3 increased to values as large as 25-30 ppb within 2 km above the boundary layer top. Steady state model computations are used to suggest that these low O3 concentrations are a result of net photochemical O3 destruction in a low NO environment, sea-surface deposition, and extremely low net entrainment rates (1-2 mm per second) from the free troposphere. Day/night measurements of ethane, propane, gaseous and aerosol Cl suggest that daytime (morning) Cl atom concentrations in the vicinity of 10(exp 5) molecules per cubic centimeter may be present in the marine boundary layer. This Cl atom abundance can be rationalized only if sea salt aerosols can release free chlorine (Cl2) to the gas phase in the presence of sun light (and possibly O3). These Cl atom concentrations, however, are still insufficient and Cl (or Br) chemistry is not likely to be an important cause of the observed low O3.

  5. Geochemical evidences for two chondritic-like cometary or asteroidal impacts before and at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Liu, Y.-G.; Schmitt, R. A.

    1993-01-01

    A number of geological and palaeontological evidences support multiple impacts of cometary showers within a short time (approximately 1-3 Ma) and their connection with mass extinctions. Observations include clustered crater ages, stratigraphic horizons of impact ejecta closely spaced in time, and evidence for stepwise mass extinctions spanning intervals of 1-3 Ma. For the K/T boundary, three candidates, Popigai, Manson, and Yucatan, have been proposed as impact craters. Two distinct strata at the K/T boundary in western North America have been interpreted as evidence for two sequential impacts. If multiple impacts occurred within a time span of about 1 Ma then multiple Ir enrichments should be observed. DSDP Hole 577B on the Shatsky Plateau in the northern Pacific at K/T time is the first site. Samples contain approximately greater than 97 percent CaCO3, which exhibit clear chemical signals associated with asteroidal/cometary impact. Ir, Fe, and Cr data are presented. From the Th-normalized data, two satellite peaks below the major peak at 78 cm and 81 cm of 577B-1-4 are clearly shown. The major Ir peak (K/T boundary) is at 72 cm. Fe and Cr, from C1-like impactor ejecta fallout, also show two peaks at the same positions. For hole 738C on the southern Kerguelen Plateau, Ir values reach a peak concentration of 18 ppb in the clay layer at 96.0-96.2 cm in section 20R-5, and gradually tail off. In the sample 115 cm above the boundary, Ir concentrations have still not reached background levels. From the Ir peak downward to the lowermost sample analyzed at 102 cm, the Ir concentration is still as high as 1.7 ppb. From the Th-normalized data, we observe a small Ir/Th peak at 100-101 cm. Though this peak is within the error margin, the trend is clear. Fe and Cr exhibit the same pattern. The third case is Hole 690C on the Queen Maud Ridge. Again, the Ir/Th plot indicates the strong possibility of satellite peaks at approximately 52 cm. The main peak is at 39-40 cm. For the Stevns Klint K/T boundary layers, the stratification of trace elements appears threefold with peak concentrations in sublayers A1, A3, and B2 for different element groups, including Ir. C1 ratios for many siderophile elements found in combined layers III and IV, corresponding to layers A, B, C, and D, strongly support the impact hypothesis. Also, multiple Ir anomalies in the K/T section at Lattengebirge, Bavarian Alps are reported. Recent works on Ni-rich spinels and Ir at the K/T boundaries clearly establish cometary/asteroidal impacts at the K/T boundary. Lastly, cometary showers can explain the enhanced Ir contents over approximately a 1 Ma interval in Gubbio shales.

  6. Theory and operation of the Gould 32/27 programs ABLE-2A and EBLE for the tropospheric air motion measurement system

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    Software development for the Trospheric Air Motion Measurement Systems (TAMMS) is documented. In July/August the TAMMS was flown on the NASA/Goddard Flight Center Electra aircraft for 19 mission for the ABLE-2A (Amazon Boundary Layer Experiment) in Brazil. In December 1985, several flights were performed to assess the contamination and boundary layer of the Electra. Position data, flow angles, pressure transducer measurements were recorded. The programs written for the ABLE-2A were modified due to timing considerations for this particular program. The 3-step programs written for EBLE (Electra Boundary Layer Experiment) are described. Power up and log-on procedures are discussed. A few editing techniques are described for modification of the programs.

  7. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  8. Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Vay, S. A.; Woo, J.-H.; Anderson, B. E.; Thornhill, K. L.; Blake, D. R.; Westberg, D. J.; Kiley, C. M.; Avery, M. A.; Sachse, G. W.; Streets, D. G.; Tsutsumi, Y.; Nolf, S. R.

    2003-10-01

    We report here airborne measurements of atmospheric CO2 over the western North Pacific during the March-April 2001 Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The CO2 spatial distributions were notably influenced by cyclogenesis-triggered transport of regionally polluted continental air masses. Examination of the CO2 to C2H2/CO ratio indicated rapid outflow of combustion-related emissions in the free troposphere below 8 km. Although the highest CO2 mixing ratios were measured within the Pacific Rim region, enhancements were also observed further east over the open ocean at locations far removed from surface sources. Near the Asian continent, discrete plumes encountered within the planetary boundary layer contained up to 393 ppmv of CO2. Coincident enhancements in the mixing ratios of C2Cl4, C2H2, and C2H4 measured concurrently revealed combustion and industrial sources. To elucidate the source distributions of CO2, an emissions database for Asia was examined in conjunction with the chemistry and 5-day backward trajectories that revealed the WNW/W sector of northeast Asia was a major contributor to these pollution events. Comparisons of NOAA/CMDL and JMA surface data with measurements obtained aloft showed a strong latitudinal gradient that peaked between 35° and 40°N. We estimated a net CO2 flux from the Asian continent of approximately 13.93 Tg C day-1 for late winter/early spring with the majority of the export (79%) occurring in the lower free troposphere (2-8 km). The apportionment of the flux between anthropogenic and biospheric sources was estimated at 6.37 Tg C day-1 and 7.56 Tg C day-1, respectively.

  9. Fear not the tectosphere (and other -spheres)

    NASA Astrophysics Data System (ADS)

    Lee, C. A.

    2004-12-01

    Based on a highly unrepresentative sampling of the community, not unlike Fox news polls, it has been recognized that the use of words having the suffix "-sphere" is confused and often abused. Such words include lithosphere, asthenosphere, perisphere, tectosphere, and mesosphere. In addition, there appears to be equal confusion in the use of the related terms: mechanical boundary layer, thermal boundary layer, chemical boundary layer, low velocity zone, low viscosity zone, effective elastic thickness, etc. This confusion is not confined to beginning students of the Earth sciences but is also manifest in seasoned Earth scientists (including myself), that is, it is not uncommon to find a geochemist and a geophysicist with completely different definitions of "lithosphere" and "tectosphere", for example. In this poster, an attempt will be made to illustrate the concepts behind some of these terms using visual and verbal aids. One of the focuses, could be the concept of a tectosphere, which may go something like this: A Wise maN once said to me; That cOntinents float because they are light; Then said my dog - DiorITE; Oceans sInk because they are heavy; And so I ask, why miGht this be?; With a Laugh and a Bark, she says the oceans are cOld; And to test if she's rigHT; I stick a tHermometer in the continent's core; To my surprise coNtinents are cold, if not more; So something does not Jive; A parAdox has come alive; Perhaps you surMise that the story is not coMplete; Indeed, you may be right; BecausE under the contiNents lie Green rocks - PerIdotite!; InFertile as Hell and fortuitouslY light; Together they fOrm the TecToSphere; And this is why we are here; Fear not the TecToSphere.

  10. Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-layer Trips

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Garcia, A. P.; Borg, Stephen E.; Dyakonov, Artem A.; Berry, Scott A.; Inman, Jennifer A.; Alderfer, David W.

    2007-01-01

    Planar laser-induced fluorescence (PLIF) flow visualization has been used to investigate the hypersonic flow of air over surface protrusions that are sized to force laminar-to-turbulent boundary layer transition. These trips were selected to simulate protruding Space Shuttle Orbiter heat shield gap-filler material. Experiments were performed in the NASA Langley Research Center 31-Inch Mach 10 Air Wind Tunnel, which is an electrically-heated, blowdown facility. Two-mm high by 8-mm wide triangular and rectangular trips were attached to a flat plate and were oriented at an angle of 45 degrees with respect to the oncoming flow. Upstream of these trips, nitric oxide (NO) was seeded into the boundary layer. PLIF visualization of this NO allowed observation of both laminar and turbulent boundary layer flow downstream of the trips for varying flow conditions as the flat plate angle of attack was varied. By varying the angle of attack, the Mach number above the boundary layer was varied between 4.2 and 9.8, according to analytical oblique-shock calculations. Computational Fluid Dynamics (CFD) simulations of the flowfield with a laminar boundary layer were also performed to better understand the flow environment. The PLIF images of the tripped boundary layer flow were compared to a case with no trip for which the flow remained laminar over the entire angle-of-attack range studied. Qualitative agreement is found between the present observed transition measurements and a previous experimental roughness-induced transition database determined by other means, which is used by the shuttle return-to-flight program.

  11. Dependence of the source performance on plasma parameters at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Fantz, U.

    2015-04-01

    The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).

  12. Monte Carlo Simulation Study of Atomic Structure of alnico Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming

    Lattice Monte Carlo simulation based on quinternary cluster expansion energy model is used to investigate nano-scale structure of alnico alloy, which is considered as a candidate material for rare-earth free high performance permanent magnets, especially for high or elevated temperature applications such as electric motor for vehicles. We observe phase decomposition of the master alnico alloy into FeCo-rich magnetic (α1) and NiAl-rich matrix (α2) phases. Concentrations of Fe and Co in α1 phase and Ni and Al in α2 phase are higher for lower annealing temperature. Ti is residing mostly in the α2 phase. The phase boundary between α1 and α2 phases are quite sharp with only few atomic layers. The α1 phase is in B2 ordering with Fe and Al occupying the α-site and Ni and Co occupying the β-site. The α2 phase is in L21 ordering with Al occupying the 4a-site. The phase composition profile again annealing temperature suggests that lower annealing temperature would improve the magnetism of α2 and diminish the magnetism of α2 phase, hence improve shape anisotropy of α1 phase rods and that of alnico.

  13. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  14. A Numerical Study of 2-D Surface Roughness Effects on the Growth of Wave Modes in Hypersonic Boundary Layers

    NASA Astrophysics Data System (ADS)

    Fong, Kahei Danny

    The current understanding and research efforts on surface roughness effects in hypersonic boundary-layer flows focus, almost exclusively, on how roughness elements trip a hypersonic boundary layer to turbulence. However, there were a few reports in the literature suggesting that roughness elements in hypersonic boundary-layer flows could sometimes suppress the transition process and delay the formation of turbulent flow. These reports were not common and had not attracted much attention from the research community. Furthermore, the mechanisms of how the delay and stabilization happened were unknown. A recent study by Duan et al. showed that when 2-D roughness elements were placed downstream of the so-called synchronization point, the unstable second-mode wave in a hypersonic boundary layer was damped. Since the second-mode wave is typically the most dangerous and dominant unstable mode in a hypersonic boundary layer for sharp geometries at a zero angle of attack, this result has pointed to an explanation on how roughness elements delay transition in a hypersonic boundary layer. Such an understanding can potentially have significant practical applications for the development of passive flow control techniques to suppress hypersonic boundary-layer transition, for the purpose of aero-heating reduction. Nevertheless, the previous study was preliminary because only one particular flow condition with one fixed roughness parameter was considered. The study also lacked an examination on the mechanism of the damping effect of the second mode by roughness. Hence, the objective of the current research is to conduct an extensive investigation of the effects of 2-D roughness elements on the growth of instability waves in a hypersonic boundary layer. The goal is to provide a full physical picture of how and when 2-D roughness elements stabilize a hypersonic boundary layer. Rigorous parametric studies using numerical simulation, linear stability theory (LST), and parabolized stability equation (PSE) are performed to ensure the fidelity of the data and to study the relevant flow physics. All results unanimously confirm the conclusion that the relative location of the synchronization point with respect to the roughness element determines the roughness effect on the second mode. Namely, a roughness placed upstream of the synchronization point amplifies the unstable waves while placing a roughness downstream of the synchronization point damps the second-mode waves. The parametric study also shows that a tall roughness element within the local boundary-layer thickness results in a stronger damping effect, while the effect of the roughness width is relatively insignificant compared with the other roughness parameters. On the other hand, the fact that both LST and PSE successfully predict the damping effect only by analyzing the meanflow suggests the mechanism of the damping is by the meanflow alteration due to the existence of roughness elements, rather than new mode generation. In addition to studying the unstable waves, the drag force and heating with and without roughness have been investigated by comparing the numerical simulation data with experimental correlations. It is shown that the increase in drag force generated by the Mach wave around a roughness element in a hypersonic boundary layer is insignificant compared to the reduction of drag force by suppressing turbulent flow. The study also shows that, for a cold wall flow which is the case for practical flight applications, the Stanton number decreases as roughness elements smooth out the temperature gradient in the wall-normal direction. Based on the knowledge of roughness elements damping the second mode gained from the current study, a novel passive transition control method using judiciously placed roughness elements has been developed, and patented, during the course of this research. The main idea of the control method is that, with a given geometry and flow condition, it is possible to find the most unstable second-mode frequency that can lead to transition. And by doing a theoretical analysis such as LST, the synchronization location for the most unstable frequency can be found. Roughness elements are then strategically placed downstream of the synchronization point to damp out this dangerous second-mode wave, thus stabilizing the boundary layer and suppressing the transition process. This method is later experimentally validated in Purdue's Mach 6 quiet wind tunnel. Overall, this research has not only provided details of when and how 2-D roughness stabilizes a hypersonic boundary layer, it also has led to a successful application of numerical simulation data to the development of a new roughness-based transition delay method, which could potentially have significant contributions to the design of future generation hypersonic vehicles.

  15. Titan's lower troposphere: thermal structure and dynamics

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Lebonnois, S.

    2011-12-01

    A new climate model for Titan's atmosphere has been developed, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model's dynamical core. The GCM covers altitudes from the surface to 500 km with the diurnal cycle and the gravitational tides included. 1. Boundary layer and thermal structure The HASI profile of potential temperature shows a layer at 300 m, an other at 800 m and a slope change at 2 km ([5],[2]). Dune spacing on Titan is consistent with a 2-3 km boundary layer ([3]). We have reproduced this profile (see figure) and interpreted the layer at 300 m as a convective boundary layer, the layer at 800 m is a residual layer corresponding to the maximum diurnal vertical extension of the PBL. We interpret the slope change at 2 km as produced by the seasonal displacement of the ITCZ. This layer traps the circulation in the first two km and is responsible of the dune spacing. Finally we interpret the fog discovered in summer polar region ([1]) has clouds produced by the diurnal cycle of the PBL (as fair weather cumulus on Earth). 2. Surface winds 2.1 Effect of gravitational and thermal tides We analysed tropospheric winds and the influence of both the thermal and the gravitational tides. The impact of gravitational tides on the circulation is extremely small. Thermal tides have a visible effect, though quite tenuous. 2.2 Effect of topography We produced topography maps derived from spherical harmonic interpolation ([6]) on the reference ellipsoid ([4]). Surface temperatures at high altitude appear higher that the ambient air. Vertical air movements produce anabatic winds developing on smooth and long slopes. This could be one of the main causes controlling the direction of surface winds and the direction of dunes. References [1] Brown et al.: Discovery of fog at the south pole of Titan, Astrophys. J. 706 (2009), pp. L110-L113 [2] Griffith et al.: Titan's Tropical Storms in an Evolving Atmosphere, Astrophys. J. 687 (2008) L41-L44. [3] Lorenz et al.: A 3 km atmospheric boundary layer on Titan indiacted by dune spacing and Huygens data, Icarus 205, 719-721 (2010) [4] Luciano Iess et al.: Gravity Field, Shape, and Moment of Inertia of Titan, Science 327, 1367(2010) [5] Tokano et al.: Titan's planetary boundary layer structure at the Huygens landing site, J. Geophys. Res vol. 111 (2006) [6] HA. Zebker et al.: Size and Shape of Saturn's Moon TitanScience 324, 921(2009)

  16. Insights into low-latitude cloud feedbacks from high-resolution models.

    PubMed

    Bretherton, Christopher S

    2015-11-13

    Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).

  17. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation.

    PubMed

    Li, Panyuan; Wang, Zhi; Li, Wen; Liu, Yanni; Wang, Jixiao; Wang, Shichang

    2015-07-22

    It is desirable to develop high-performance composite membranes for efficient CO2 separation in CO2 capture process. Introduction of a highly permeable polydimethylsiloxane (PDMS) intermediate layer between a selective layer and a porous support has been considered as a simple but efficient way to enhance gas permeance while maintaining high gas selectivity, because the introduced intermediate layer could benefit the formation of an ultrathin defect-free selective layer owing to the circumvention of pore penetration phenomenon. However, the selection of selective layer materials is unfavorably restricted because of the low surface energy of PDMS. Various highly hydrophilic membrane materials such as amino group-rich polyvinylamine (PVAm), a representative facilitated transport membrane material for CO2 separation, could not be facilely coated over the surface of the hydrophobic PDMS intermediate layer uniformly. Inspired by the hydrophilic nature and strong adhesive ability of polydopamine (PDA), PDA was therefore selected as a versatile molecular bridge between hydrophobic PDMS and hydrophilic PVAm. The PDA coating endows a highly compatible interface between both components with a large surface energy difference via multiple-site cooperative interactions. The resulting multilayer composite membrane with a thin facilitated transport PVAm selective layer exhibits a notably enhanced CO2 permeance (1887 GPU) combined with a slightly improved CO2/N2 selectivity (83), as well as superior structural stability. Similarly, the multilayer composite membrane with a hydrophilic CO2-philic Pebax 1657 selective layer was also developed for enhanced CO2 separation performance.

  18. Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Millero, F. J.; Feistel, R.

    2009-07-01

    At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g., Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases [e.g., CaCO3(s) or CaSO42H2O(s)] will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric partial pressures of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on pseudo-homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-) and 40°C (at SA=66 g kg-). At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (390 MPa) (in Year 2008) to 550 μatm (557 MPa) (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculation) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.

  19. Salinity/temperature ranges for application of seawater SA-T-P models

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Millero, F. J.; Feistel, R.

    2009-01-01

    At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g. Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases (e.g. CaCO3(s) or CaSO42H2O(s)) will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric concentrations of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-1 and 40°C (at SA=66 g kg-1. At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (in Year 2008) to 550 μatm (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculations) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.

  20. An experimental study of a three-dimensional shock wave/turbulent boundary-layer interaction at a hypersonic Mach number

    NASA Technical Reports Server (NTRS)

    Kussoy, M. I.; Horstman, K. C.; Kim, K.-S.

    1991-01-01

    Experimental data for a series of three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat-plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure, heat-transfer, and skin-friction distributions, as well as limited mean flowfield surveys both in the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.

  1. Control of shock-wave boundary-layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Reshotko, E.; Hingst, W. R.

    1975-01-01

    An experimental investigation has been conducted to determine the effect of bleed region geometry and bleed rate on shock wave-boundary layer interactions in an axisymmetric, mixed-compression inlet at a Mach number of 2.5. The full realizable reduction in transformed form factor is obtained by bleeding off about half the incident boundary layer mass flow. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise. Slanted holes are more effective than normal holes. Two different bleed hole sizes were tested without detectable difference in performance.

  2. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  3. Emission of atmospheric pollutants out of Africa - Analysis of CARIBIC aircraft air samples

    NASA Astrophysics Data System (ADS)

    Thorenz, Ute R.; Baker, Angela K.; Schuck, Tanja; van Velthoven, Peter F. J.; Ziereis, Helmut; Brenninkmeijer, Carl A. M.

    2014-05-01

    Africa is the single largest continental source of biomass burning (BB) emissions. The burning African savannas and tropical forests are a source for a wide range of chemical species, which are important for global atmospheric chemistry, especially for the pristine Southern Hemisphere. Emitted compounds include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, oxygenated hydrocarbons and particles. Deep convection over Central Africa transports boundary layer emissions to the free troposphere making aircraft-based observations useful for investigation of surface emissions and examination of transport and chemistry processes over Africa The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmosphere.com part of IAGOS www.iagos.org) is a long term atmospheric measurement program using an instrument container deployed aboard a Lufthansa Airbus A340-600 for a monthly sequence of long-distance passenger flights. Besides the online measurements mixing ratios of greenhouse gases and a suite of C2-C8 non methane hydrocarbons (NMHCs) are measured from flask samples collected at cruise altitude. During northern hemispheric winter 2010/2011 CARIBIC flights took place from Frankfurt to Cape Town and Johannesburg in South Africa. Several BB tracers like methane, CO and various NMHCs were found to be elevated over tropical Africa. Using tracer-CO- and tracer-NOy-correlations emissions were characterized. The NMHC-CO correlations show monthly changing slopes, indicating a change in burned biomass, major fire stage, source region and/or other factors influencing NMHC emissions. To expand our analysis of emission sources a source region data filter was used, based on backward trajectories calculated along the flight tracks. Taking all CARIBIC samples into account having backward trajectories to the African boundary layer the dataset was enlarged from 77 to 168 samples. For both datasets tracer-tracer correlations are used to investigate sources and the correlations between NMHCs are used to analyze photochemical processing and transport.

  4. Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.

    2011-01-01

    The inherent coupled nature of earth s energy and water cycles places significant importance on the proper representation and diagnosis of land atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation schemes.

  5. Development of WRF-CO2 4DVAR Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zheng, T.; French, N. H. F.

    2016-12-01

    Four dimensional variational (4DVar) assimilation systems have been widely used for CO2 inverse modeling at global scale. At regional scale, however, 4DVar assimilation systems have been lacking. At present, most regional CO2 inverse models use Lagrangian particle backward trajectory tools to compute influence function in an analytical/synthesis framework. To provide a 4DVar based alternative, we developed WRF-CO2 4DVAR based on Weather Research and Forecasting (WRF), its chemistry extension (WRF-Chem), and its data assimilation system (WRFDA/WRFPLUS). Different from WRFDA, WRF-CO2 4DVAR does not optimize meteorology initial condition, instead it solves for the optimized CO2 surface fluxes (sources/sink) constrained by atmospheric CO2 observations. Based on WRFPLUS, we developed tangent linear and adjoint code for CO2 emission, advection, vertical mixing in boundary layer, and convective transport. Furthermore, we implemented an incremental algorithm to solve for optimized CO2 emission scaling factors by iteratively minimizing the cost function in a Bayes framework. The model sensitivity (of atmospheric CO2 with respect to emission scaling factor) calculated by tangent linear and adjoint model agrees well with that calculated by finite difference, indicating the validity of the newly developed code. The effectiveness of WRF-CO2 4DVar for inverse modeling is tested using forward-model generated pseudo-observation data in two experiments: first-guess CO2 fluxes has a 50% overestimation in the first case and 50% underestimation in the second. In both cases, WRF-CO2 4DVar reduces cost function to less than 10-4 of its initial values in less than 20 iterations and successfully recovers the true values of emission scaling factors. We expect future applications of WRF-CO2 4DVar with satellite observations will provide insights for CO2 regional inverse modeling, including the impacts of model transport error in vertical mixing.

  6. Large Magnetovolume Effect Induced by Embedding Ferromagnetic Clusters into Antiferromagnetic Matrix of Cobaltite Perovskite.

    PubMed

    Miao, Ping; Lin, Xiaohuan; Koda, Akihiro; Lee, Sanghyun; Ishikawa, Yoshihisa; Torii, Shuki; Yonemura, Masao; Mochiku, Takashi; Sagayama, Hajime; Itoh, Shinichi; Ikeda, Kazutaka; Otomo, Toshiya; Wang, Yinxia; Kadono, Ryosuke; Kamiyama, Takashi

    2017-07-01

    Materials that show negative thermal expansion (NTE) have significant industrial merit because they can be used to fabricate composites whose dimensions remain invariant upon heating. In some materials, NTE is concomitant with the spontaneous magnetization due to the magnetovolume effect (MVE). Here the authors report a new class of MVE material; namely, a layered perovskite PrBaCo 2 O 5.5+ x (0 ≤ x ≤ 0.41), in which strong NTE [β ≈ -3.6 × 10 -5 K -1 (90-110 K) at x = 0.24] is triggered by embedding ferromagnetic (F) clusters into the antiferromagnetic (AF) matrix. The strongest MVE is found near the boundary between F and AF phases in the phase diagram, indicating the essential role of competition between the F-clusters and the AF-matrix. Furthermore, the MVE is not limited to the PrBaCo 2 O 5.5+ x but is also observed in the NdBaCo 2 O 5.5+ x . The present study provides a new approach to obtaining MVE and offers a path to the design of NTE materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Numerical simulation of supersonic flow using a new analytical bleed boundary condition

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Smith, G. E.

    1995-01-01

    A new analytical bleed boundary condition is used to compute flowfields for a strong oblique shock wave/boundary layer interaction with a baseline and three bleed rates at a freestream Mach number of 2.47 with an 8 deg shock generator. The computational results are compared to experimental Pitot pressure profiles and wall static pressures through the interaction region. An algebraic turbulence model is employed for the bleed and baseline cases, and a one equation model is also used for the baseline case where the boundary layer is separated.

  8. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  9. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  10. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  11. A missing element of the deep carbon cycle: CO2 degassing estimates from rift length analysis during Pangea fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Williams, S.; Müller, D.

    2016-12-01

    The deep carbon cycle connects CO2 within the atmosphere and oceans to the vast CO2 reservoir in Earth's mantle: subducted lithosphere carries CO2 into the mantle, while extensional plate boundaries and arc volcanoes release it back to Earth's surface. The length of plate boundaries thereby exerts first-order control on global CO2 fluxes on geological time scales. Here we provide a worldwide census of extensional plate boundary length from the Triassic to present day, in one million year time intervals, using a novel analysis technique (Brune et al. 2016, Nature, doi:10.1038/nature18319). The most extensive rift phase during the fragmentation of Pangea occurred in the Cretaceous with extension along the South Atlantic (9700 km) and North Atlantic rifts (9100 km), within East Gondwana (8500 km), and the failed African rift systems (4900 km). The combined extent of these and several smaller rifts amounts to more than 30.000 km of simultaneously active continental rifting. It is well-accepted that volcanoes at plate boundaries release large amounts of CO2 from the Earth's interior. Recent work, however, revealed the importance of deep-cutting faults and diffuse degassing on CO2 emissions in the East African rift (Lee et al. 2016, Nature Geoscience, doi: 10.1038/ngeo2622). Upscaling these measured CO2 fluxes to all concurrently active global rift zones, we compute first-order estimates of total rift-related CO2 degassing rates for the last 240 Myr. Our results show that rift-related CO2 release rates may have reached 600 Mt/yr in the Early Cretaceous, while Cenozoic rates rarely exceeded 200 Mt/yr. By comparison, present-day estimates of CO2 release at mid-ocean ridges range between 53 and 97 Mt/yr. We suggest that rift-related degassing during supercontinental breakup played a major role in maintaining high atmospheric CO2 concentrations through Mesozoic times, which exceeded Quaternary values by 400%.

  12. Dielectric properties and nonlinear I-V electrical behavior of (Li1+, Al3+) co-doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Li; Ni, Qing; Guo, Jianqin; Cao, Ensi; Hao, Wentao; Zhang, Yongjia; Ju, Lin

    2018-06-01

    (Li1+, Al3+) co-doped CaCu3Ti4O12 ceramics (CaCu3-2 x Li x Al x Ti4O12, x = 0.05, 0.1, 0.15) were prepared by a sol-gel method and were sintered at 1020-1080 °C for 8 h to improve the geometric microstructure, dielectric and nonlinear I-V electrical properties. Notably, very high dielectric constant of 1 × 105 with good dielectric-frequency as well as dielectric-temperature stability can be achieved in CaCu2.8Li0.1Al0.1Ti4O12 ceramic sintered at 1060 °C. The average grain sizes, resistivity and the non-Ohmic properties are also improved compared to pure CaCu3Ti4O12. These results indicate that (Li1+, Al3+) co-doping at the Cu2+ site can improve the dielectric properties of CaCu3Ti4O12, supporting the internal barrier layer capacitance effect of Schottky barriers at grain boundaries.

  13. Sensitivity of nocturnal boundary layer temperature to tropospheric aerosol surface radiative forcing under clear-sky conditions

    NASA Astrophysics Data System (ADS)

    Nair, Udaysankar S.; McNider, Richard; Patadia, Falguni; Christopher, Sundar A.; Fuller, Kirk

    2011-01-01

    Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A 1-D version of the Regional Atmospheric Modeling System is used to examine the sensitivity of the nocturnal boundary layer temperature to the surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations. The analysis is conducted for typical midlatitude nocturnal boundary layer case days from the CASES-99 field experiment and is further extended to urban sites in Pune and New Delhi, India. For the cases studied, locally, the nocturnal SLWRF from urban atmospheric aerosols (2.7-47 W m-2) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m-2), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately 4 times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth. Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 to 1 W m-2 when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.

  14. Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Gao, Zhiqiu; Miao, Shiguang; Chen, Fei; LeMone, Margaret A.; Li, Ju; Hu, Fei; Wang, Linlin

    2017-03-01

    Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance (σ _w^2 >0.1 m2s^{-2}) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which σ _w^2 decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from ≈ 270 to ≈ 1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.

  15. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Cliff, Susan E.

    1991-01-01

    Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.

  16. Sub-optimal control of unsteady boundary layer separation and optimal control of Saltzman-Lorenz model

    NASA Astrophysics Data System (ADS)

    Sardesai, Chetan R.

    The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the Saltzman-Lorenz model, it is possible to control the system about either of the two unstable equilibrium points representing clockwise and counterclockwise rotation of the convection roles in a parameter regime for which the uncontrolled solution would exhibit deterministic chaos.

  17. Measurements of thermal updraft intensity over complex terrain using American white pelicans and a simple boundary-layer forecast model

    USGS Publications Warehouse

    Shannon, H.D.; Young, G.S.; Yates, M.; Fuller, Mark R.; Seegar, W.

    2003-01-01

    An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.

  18. Conical similarity of shock/boundary layer interactions generated by swept fins

    NASA Technical Reports Server (NTRS)

    Lu, F. K.; Settles, G. S.

    1983-01-01

    A parametric experimental study has been made of the class of 3D shock wave/turbulent boundary layer interactions generated by swept-leading-edge fins. The fin sweepback angles ranged from 0 to 65 deg at angles of attack of 5, 9, and 15 deg. Two equilibrium 2D turbulent boundary layers with a free-stream Mach number of 2.95 and a Reynolds number of 6.3 x 10 to the 7th/m were used as incoming flow conditions. All the resulting interactions were found to possess conical symmetry of surface pressures and skin friction lines beyond an initial inception zone. Further, these interactions revealed a simple similarity based on inviscid shock strength irrespective of fin sweepback or angle of attack.

  19. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  20. Distribution of trace gases and aerosols in the Siberian air shed during wildfires of summer 2012

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Paris, Jean-Daiel; Nedelec, Philippe; Antokhin, Pavel N.; Arshinova, Victoriya; Arshinov, Mikhail Yu.; Belan, Sergey B.; Davydov, Denis K.; Ivlev, Georgii A.; Fofonov, Alexandre V.; Kozlov, Artem V.; Rasskazchikova, Tatyana M.; Savkin, Denis E.; Simonenkov, Denis V.; Sklyadneva, Tatyana K.; Tolmachev, Gennadii N.

    2017-04-01

    During the last two decades, three strong biomass burning events have been observed in Russia: two of them in 2002 and 2010 in the European part of Russia, and another one in 2012 in West and East Siberia. In this paper we present results of the extensive airborne study of the vertical distribution of trace gases and aerosols carried out during strong wildfire event happened in summer 2012 in Siberia. For this purpose, the Optik TU-134 aircraft laboratory was used as a research platform. A large-scale airborne campaign has been undertaken along the route Novosibirsk-Mirny-Yakutsk-Bratsk-Novosibirsk on 31st of July and 1st of August, 2012. Flight pattern consisted of a number of ascents and descents between close to the ground and 8 km altitude that enabled 20 vertical profiles to be obtained. Campaign was conducted under the weather conditions of low-gradient baric field that determined the low speed transport of air masses, as well as the accumulation of biomass burning emissions in the region under study. Highest concentrations of CO2, CH4 and CO over wildfire spots reached 432 ppm, 2367 ppb, and 4036 ppb, correspondingly. If we exclude from the analysis the data obtained when crossing smoke plumes, we can find a difference between background concentrations measured in the atmosphere over regions affected by biomass burning and clean areas. Enhancement of CO2 over the wildfire areas changed with altitude. On average, it was 10.5 ppm in the atmospheric boundary layer (ABL) and 5-6 ppm in the free troposphere. Maximum CO2 enhancements reached 27 ppm and 24 ppm, correspondingly. The averaged CH4 enhancement varied from 75 ppb in the boundary layer to 30 ppb in the upper troposphere, and a little bit lower than 30 ppb in the middle troposphere. Maximum CH4 enhancements reached 202 ppb, 108 ppb, and 50-60 ppb, correspondingly. The averaged and maximum enhancements of CO differed by an order of magnitude. Thus, in the ABL the maximum difference in concentration between clean and wildfire areas reached 2300 ppb, while averaged one was 170 ppb. In the middle troposphere maximum enhancements varied from 1000 to 1700 ppb. The vertical distribution of ozone has its own peculiarities. Ozone concentration decreased in the layers with enhanced aerosol concentration and it increased in the areas with lower aerosol content. At the same time, photochemical production ozone was observed at the plume edges in the zone of fresh air entrainment. This work was supported by the Russian Foundation for Basic Research (grant No 17-05-00374).

  1. The Kinematics of Turbulent Boundary Layer Structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  2. Boundary layer separation method for recycling of sodium ions from industrial wastewater.

    PubMed

    Petho, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-12-01

    The most effective technological solution for waste treatment is recycling. We have developed a new method for the treatment of industrial wastewaters and have called it the boundary layer separation method (BLSM). We have used the phenomenon that, on the surface of an electrically charged electrode, ions can be enriched in the boundary layer, as compared with the inside of the phase. The essence of the method is that, with an appropriately chosen velocity, the boundary layer can be removed from the wastewater, and the boundary layer, which is rich in ions, can be recycled. The BLSM can be executed as a cyclic procedure. The capacitance of the boundary layer was examined. The best mass transport can be achieved with the use of 1000 and 1200 mV polarization potentials in the examined system, with its value being 1200 mg/m2 per cycle. The necessary operation times were determined by the examination of the velocity of the electrochemical processes. When using 1000 mV polarization potential, the necessary adsorption time is at least 25 seconds, and the desorption time at least 300 seconds. The advantage of the procedure is that it does not use dangerous chemicals, only inert electrodes. The drawback is that it is not selective to ions, the achievable separation in one step is low, and the hydrogen that emerges during the electrolysis might be dangerous.

  3. Numerical Study of Pressure Fluctuations due to High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Wu, Minwei

    2012-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data and previously published simulations of turbulent boundary layers under similar flow conditions. Spectral analysis shows that the acoustic fluctuations outside the boundary layer region have much lower energy content within the high-frequency region. The space-time correlations reflect the convective nature of the pressure field both at the wall and in the freestream, which is characterized by the downstream propagation of pressure-carrying eddies. Relative to those at the wall, the pressure-carrying eddies associated with the freestream signal are larger and convect at a significantly lower speed. The preliminary DNS results of a Mach 6 boundary layer show that the pressure rms in the freestream region is significantly higher than that of the lower Mach number case.

  4. Turbulence Modeling Validation, Testing, and Development

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Huang, P. G.; Coakley, T. J.

    1997-01-01

    The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

  5. Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign

    NASA Astrophysics Data System (ADS)

    Heinze, Rieke; Moseley, Christopher; Böske, Lennart Nils; Muppa, Shravan Kumar; Maurer, Vera; Raasch, Siegfried; Stevens, Bjorn

    2017-06-01

    Large-eddy simulations (LESs) of a multi-week period during the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE) conducted in Germany are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two LES models are used in a semi-idealized setup through forcing with mesoscale model output to account for the synoptic-scale conditions. Evaluation is performed based on the HOPE observations. The mean boundary layer characteristics like the boundary layer depth are in a principal agreement with observations. Simulating shallow-cumulus layers in agreement with the measurements poses a challenge for both LES models. Variance profiles agree satisfactorily with lidar measurements. The results depend on how the forcing data stemming from mesoscale model output are constructed. The mean boundary layer characteristics become less sensitive if the averaging domain for the forcing is large enough to filter out mesoscale fluctuations.

  6. The Morning NO x maximum in the forest atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Alaghmand, M.; Shepson, P. B.; Starn, T. K.; Jobson, B. T.; Wallace, H. W.; Carroll, M. A.; Bertman, S. B.; Lamb, B.; Edburg, S. L.; Zhou, X.; Apel, E.; Riemer, D.; Stevens, P.; Keutsch, F.

    2011-10-01

    During the 1998, 2000, 2001, 2008, and 2009 summer intensives of the Program for Research on Oxidants: PHotochemistry, Emissions and Transport (PROPHET), ambient measurement of nitrogen oxides (NO + NO2 = NOx) were conducted. NO and NOx mole fractions displayed a diurnal pattern with NOx frequently highest in early morning. This pattern has often been observed in other rural areas. In this paper, we discuss the potential sources and contributing factors of the frequently observed morning pulse of NOx. Of the possible potential contributing factors to the observed morning pulse of NO and NOx, we find that surface-layer transport and slow upward mixing from soil emissions, related to the thermodynamic stability in the nocturnal boundary layer (NBL) before its morning breakup are the largest contributors. The morning NOx peak can significantly impact boundary layer chemistry, e.g. through production of HONO on surfaces, and by increasing the importance of NO3 chemistry in the morning boundary layer.

  7. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  8. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  9. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    NASA Astrophysics Data System (ADS)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage of wall-attached structures is observed in the present case when compared with a similar investigation of a rapidly decelerating APG-TBL, suggesting that these wall-attached features could be the remanent from the lower pressure gradient domain upstream.

  10. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid.

    PubMed

    Muhammad, Noor; Nadeem, Sohail; Mustafa, M T

    2018-01-01

    Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4-C2H6O2 (manganese zinc ferrite-ethylene glycol), NiZnFe2O4-C2H6O2 (Nickel zinc ferrite-ethylene glycol), Fe2O4-C2H6O2 (magnetite ferrite-ethylene glycol), NiZnFe2O4-H2O (Nickel zinc ferrite-water), MnZnFe2O4-H2O (manganese zinc ferrite-water), and Fe2O4-H2O (magnetite ferrite-water) nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier's law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto-thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement.

  11. Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy; Chilson, Phillip; Zielke, Brett; Fedorovich, Evgeni

    2013-01-01

    The evolution of the lower portion of the planetary boundary layer is investigated using the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial vehicle developed at the University of Oklahoma. The study focuses on the lowest 200 m of the atmosphere, where the most noticeable thermodynamic changes occur during the day. Between October 2010 and February 2011, a series of flights was conducted during the evening hours on several days to examine the vertical structure of the lower boundary layer. Data from a nearby Oklahoma Mesonet tower was used to supplement the vertical profiles of temperature, humidity, and pressure, which were collected approximately every 30 min, starting 2 h before sunset and continuing until dusk. From the profiles, sensible and latent heat fluxes were estimated. These fluxes were used to diagnose the portion of the boundary layer that was most affected by the early evening transition. During the transition period, a shallow cool and moist layer near the ground was formed, and as the evening progressed the cooling affected an increasingly shallower layer just above the surface.

  12. Regulatory capacities of a broiler and layer strain exposed to high CO2 levels during the second half of incubation.

    PubMed

    Everaert, Nadia; Willemsen, Hilke; Kamers, Bram; Decuypere, Eddy; Bruggeman, Veerle

    2011-02-01

    It has been shown that during embryonic chicken (Gallus gallus) development, the metabolism of broiler embryos differs from that of layers in terms of embryonic growth, pCO2/pO2 blood levels, heat production, and heart rate. Therefore, these strains might adapt differently on extreme environmental factors such as exposure to high CO2. The aim of this study was to compare broiler and layer embryos in their adaptation to 4% CO2 from embryonic days (ED) 12 to 18. Due to hypercapnia, blood pCO2 increased in both strains. Blood bicarbonate concentration was ~10 mmol/L higher in embryos exposed to high CO2 of both strains, while the bicarbonates of broilers had ~5 mmol/L higher values than layer embryos. In addition, the pH increased when embryos of both strains were exposed to CO2. Moreover, under CO2 conditions, the blood potassium concentration increased in both strains significantly, reaching a plateau at ED14. At ED12, the layer strain had a higher increase in CAII protein in red blood cells due to incubation under high CO2 compared to the broiler strain, whereas at ED14, the broiler strain had the highest increase. In conclusion, the most striking observation was the similar mechanism of broiler and layer embryos to cope with high CO2 levels. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Pore-scale Modeling of CO2 Local Trapping in Heterogeneous Porous Media with Inter-granular Cements

    NASA Astrophysics Data System (ADS)

    Wang, D.; Li, Y.

    2017-12-01

    Based on pore-scale modeling of CO2/brine multiphase flow in heterogeneous porous media with inter-granular cements, we numerically analyze the effects of cement-modified pore structure on CO2 local trapping. Results indicate: 1) small pore throat is the main reason for causing CO2 local trapping in front of low-porosity layers (namely dense layers) formed by inter-granular cements; 2) in the case of the same pore throat size, the smaller particle size can increase the number of flow paths for CO2 plume and equivalently enhances local permeability, which may counteract the impediment of high capillary pressure on CO2 migration to some extent and consequently disables CO2 local capillary trapping; 3) the isolated pores by inter-granular cements can lead to dramatic reduction of CO2 saturation inside the dense layers, whereas the change of connectivity of some pores due to the cements can increase CO2 accumulation in front of the dense layers by lowering the displacement area of CO2 plume.

  14. A documentation of two- and three-dimensional shock-separated turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Brown, J. D.; Brown, J. L.; Kussoy, M. I.

    1988-01-01

    A shock-related separation of a turbulent boundary layer has been studied and documented. The flow was that of an axisymmetric turbulent boundary layer over a 5.02-cm-diam cylinder that was aligned with the wind tunnel axis. The boundary layer was compressed by a 30 deg half-angle conical flare, with the cone axis inclined at an angle alpha to the cylinder axis. Nominal test conditions were P sub tau equals 1.7 atm and M sub infinity equals 2.85. Measurements were confined to the upper-symmetry, phi equals 0 deg, plane. Data are presented for the cases of alpha equal to 0. 5. and 10 deg and include mean surface pressures, streamwise and normal mean velocities, kinematic turbulent stresses and kinetic energies, as well as reverse-flow intermittencies. All data are given in tabular form; pressures, streamwise velocities, turbulent shear stresses, and kinetic energies are also presented graphically.

  15. A theoretical and flight test study of pressure fluctuations under a turbulent boundary layer. Part 2: Flight test study

    NASA Technical Reports Server (NTRS)

    Panton, R. L.; Lowery, R. L.; Reischman, M. M.

    1967-01-01

    The study of pressure fluctuations under a turbulent boundary layer was undertaken with the objective of extending previous work to lower frequencies. Wind tunnel and flight test measurements are invalid at low frequencies because of extraneous acoustic noises and free stream turbulence. A glider was instrumented and used as a test bed to carry microphones into a smooth flow free of acoustic noise. Hodgson had previously measured the spectrum of boundary layer noise on a glider wing. These tests showed a drop off at low frequencies that could not be reproduced in any other facility. The measurements were made on the forward fuselage of a glider where the boundary layer could develop naturally and have some length in a zero pressure gradient before the measurements were made. Two different sets of measurements were made.

  16. Towards industrial-strength Navier-Stokes codes

    NASA Technical Reports Server (NTRS)

    Jou, Wen-Huei; Wigton, Laurence B.; Allmaras, Steven R.

    1992-01-01

    In this paper we discuss our experiences with Navier-Stokes (NS) codes using central differencing (CD) and scalar artificial dissipation (SAD). The NS-CDSAD codes have been developed by several researchers. Our results confirm that for typical commercial transport wing and wing/body configurations flying at transonic conditions with all turbulent boundary layers, NS-CDSAD codes, when used with the Johnson-King turbulence model, are capable of computing pressure distributions in excellent agreement with experimental data. However, results are not as good when laminar boundary layers are present. Exhaustive 2-D grid refinement studies supported by detailed analysis suggest that the numerical errors associated with SAD severely contaminate the solution in the laminar portion of the boundary layer. It is left as a challenge to the CFD community to find and fix the problems with Navier-Stokes codes and to produce a NS code which converges reliably and properly captures the laminar portion of the boundary layer on a reasonable grid.

  17. Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Tao, Wei-Kuo

    1999-01-01

    The MM5 mesoscale model is used to simulate Hurricane Bob (1991) using grids nested to high resolution (4 km). Tests are conducted to determine the sensitivity of the simulation to the available planetary boundary layer parameterizations, including the bulk-aerodynamic, Blackadar, Medium-RanGe Forecast (MRF) model, and Burk-Thompson boundary-layer schemes. Significant sensitivity is seen, with minimum central pressures varying by up to 17 mb. The Burk-Thompson and bulk-aerodynamic boundary-layer schemes produced the strongest storms while the MRF scheme produced the weakest storm. Precipitation structure of the simulated hurricanes also varied substantially with the boundary layer parameterizations. Diagnostics of boundary-layer variables indicated that the intensity of the simulated hurricanes generally increased as the ratio of the surface exchange coefficients for heat and momentum, C(sub h)/C(sub M), although the manner in which the vertical mixing takes place was also important. Findings specific to the boundary-layer schemes include: 1) the MRF scheme produces mixing that is too deep and causes drying of the lower boundary layer in the inner-core region of the hurricane; 2) the bulk-aerodynamic scheme produces mixing that is probably too shallow, but results in a strong hurricane because of a large value of C(sub h)/C(sub M) (approximately 1.3); 3) the MRF and Blackadar schemes are weak partly because of smaller surface moisture fluxes that result in a reduced value of C(sub h)/C(sub M) (approximately 0.7); 4) the Burk-Thompson scheme produces a strong storm with C(sub h)/C(sub M) approximately 1; and 5) the formulation of the wind-speed dependence of the surface roughness parameter, z(sub 0), is important for getting appropriate values of the surface exchange coefficients in hurricanes based upon current estimates of these parameters.

  18. Clear-air radar observations of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation presents two case studies with the measurements of remote (the FM-CW radar and Doppler lidar) and in-situ (research aircraft, kite, and radiosonde) sensors from the stable nighttime boundary layer. It also presents a unique observation of evolution of the convective and nocturnal boundary layers by the S-band radar, and provides description of the observed boundary layer characteristics with the aid of in-situ measurements by the 55m instrumented tower and radiosonde.

  19. a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate

    NASA Astrophysics Data System (ADS)

    Cappietti, L.; Chopard, B.

    We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.

  20. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

Top