Sample records for boundary layer convergence

  1. The inducement of planetary boundary layer mass convergence associated with varying vorticity beneath tropospheric wind maximum

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.

    1984-01-01

    The effects of the vorticity distribution are applied to study planetary boundary layer mass convergence beneath free tropospheric wind maximum. For given forcing by viscous and pressure gradient forces beneath a wind maximum, boundary layer cross stream mass transport is increased by anticyclonic vorticity on the right flank and decreased by cyclonic vorticity on the left flank. Such frictionally forced mass transport induces boundary layer mass convergence beneath the relative wind maximum. This result is related to the empirical rule that the most intense convection and severe weather frequently develop beneath the 500 mb zero relative vorticity isopleth.

  2. Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Fei, Mingwen; Han, Daozhi; Wang, Xiaoming

    2017-01-01

    In this paper, we study the vanishing Darcy number limit of the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system (DBOB). This singular perturbation problem involves singular structures both in time and in space giving rise to initial layers, boundary layers and initial-boundary layers. We construct an approximate solution to the DBOB system by the method of multiple scale expansions. The convergence with optimal convergence rates in certain Sobolev norms is established rigorously via the energy method.

  3. Vortical structures and development of laminar flow over convergent-divergent riblets

    NASA Astrophysics Data System (ADS)

    Xu, Fang; Zhong, Shan; Zhang, Shanying

    2018-05-01

    In this work, the development of a laminar boundary layer over a rectangular convergent-divergent riblet section with a finite streamwise length is studied experimentally using dye visualization and particle image velocimetry in a water flume. The flow topology over this highly directional spanwise roughness is established from this study. It is shown that convergent-divergent riblets generate a spanwise flow above the riblets from the diverging line toward the adjacent converging line. This consequently leads to the formation of a weak recirculating secondary flow in cross-stream planes across the boundary layer that creates a downwash motion over the diverging line and an upwash motion over the converging line. It is found that the fluid inside the riblet valley follows a helicoidal path and it also interacts with the crossflow boundary layer hence playing a key role in determining the structure of the secondary flow across the boundary layer. The impact of riblet wavelength on vortical structures is also revealed for the first time. A larger riblet wavelength is seen to produce a stronger upwash/downwash and hence a more intense secondary flow as well as a stronger deceleration effect on the crossflow. Furthermore, the streamwise development of the flow over the riblet section can be divided into a developing stage followed by a developed stage. In the developing stage, the magnitude of induced streamwise velocity and vorticity over the converging line continues to increase, whereas in the developed stage the values of these parameters remain essentially unchanged.

  4. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flows.

  5. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flow.

  6. Computation of the shock-wave boundary layer interaction with flow separation

    NASA Technical Reports Server (NTRS)

    Ardonceau, P.; Alziary, T.; Aymer, D.

    1980-01-01

    The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.

  7. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  8. A globally convergent and closed analytical solution of the Blasius equation with beneficial applications

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Han, Xinyue; Wang, ZhenTao; Li, Changfeng; Zhang, Jiazhong

    2017-06-01

    For about a century, people have been trying to seek for a globally convergent and closed analytical solution (CAS) of the Blasius Equation (BE). In this paper, we proposed a formally satisfied solution which could be parametrically expressed by two power series. Some analytical results of the laminar boundary layer of a flat plate, that were not analytically given in former studies, e.g. the thickness of the boundary layer and higher order derivatives, could be obtained based on the solution. Besides, the heat transfer in the laminar boundary layer of a flat plate with constant temperature could also be analytically formulated. Especially, the solution of the singular situation with Prandtl number Pr=0, which seems impossible to be analyzed in prior studies, could be given analytically. The method for finding the CAS of Blasius equation was also utilized in the problem of the boundary layer regulation through wall injection and slip velocity on the wall surface.

  9. Simulating Roll Clouds associated with Low-Level Convergence.

    NASA Astrophysics Data System (ADS)

    Prasad, A. A.; Sherwood, S. C.

    2015-12-01

    Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.

  10. Investigation of Perforated Convergent-divergent Diffusers with Initial Boundary Layer

    NASA Technical Reports Server (NTRS)

    Weinstein, Maynard I

    1950-01-01

    An experimental investigation was made at Mach number 1.90 of the performance of a series of perforated convergent-divergent supersonic diffusers operating with initial boundary layer, which was induced and controlled by lengths of cylindrical inlets affixed to the diffusers. Supercritical mass-flow and peak total-pressure recoveries were decreased slightly by use of the longest inlets (4 inlet diameters in length). Combinations of cylindrical inlets, perforated diffusers, and subsonic diffuser were evaluated as simulated wind tunnels having second throats. Comparisons with noncontracted configurations of similar scale indicated conservatively computed power reductions of 25 percent.

  11. The role of boundary layer momentum advection in the mean location of the ITCZ

    NASA Astrophysics Data System (ADS)

    Dixit, Vishal; Srinivasan, J.

    2017-08-01

    The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.

  12. The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Cohen, Clarence B; Reshotko, Eli

    1956-01-01

    An approximate method for the calculation of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient, based on Thwaites' correlation concept, is presented. With the definition of dimensionless shear and heat-transfer parameters and an assumed correlation of these parameters in terms of a momentum parameter, a complete system of relations for calculating skin friction and heat transfer results. Knowledge of velocity or temperature profiles is not necessary in using this calculation method. When the method is applied to a convergent-divergent, axially symmetric rocket nozzle, it shows that high rates of heat transfer are obtained at the initial stagnation point and at the throat of the nozzle. Also indicated are negative displacement thicknesses in the convergent portion of the nozzle; these occur because of the high density within the lower portions of the cooled boundary layer. (author)

  13. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    PubMed

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  14. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary

    PubMed Central

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232

  15. A Study of Baroclinic Instability Induced Convergence Near the Bottom Using Water Age Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Hetland, Robert D.

    2018-03-01

    Baroclinic instability of lateral density gradients gives way to lateral buoyancy transport, which often results in convergence of buoyancy transport. Along a sloping bottom, the induced convergence can force upward extension of bottom water. Eddy transport induced convergence at the bottom and the consequent suspended layers of bottom properties are investigated using a three-dimensional idealized model. Motivated by the distinct characteristics of intrusions over the Texas-Louisiana shelf, a series of configurations are performed with the purpose of identifying parameter impacts on the intensity of eddy transport. This study uses the "horizontal slope Burger number" as the predominant parameter; the parameter is functioned with SH=SRi-1/2=δ/Ri to identify formation of baroclinic instability, where S is the slope Burger number, δ is the slope parameter, and Ri is the Richardson number, previously shown to be the parameter that predicts the intensity of baroclinic instability on the shelf. Intrusion spreads into the interior abutting a layer that is characterized by degraded vertical stratification; a thickening in the bottom boundary layer colocates with the intrusion, which usually thins at either edge of the intrusion because of a density barrier in association with concentrated isopycnals. The intensity of convergence degrades and bottom tracer fluxes reduce linearly with increased SH on logarithmic scales, and the characteristics of bottom boundary layer behavior and the reversal in alongshore current tend to vanish.

  16. Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Shao, Q.; Branson, M.

    1997-01-01

    The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.

  17. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  18. Moisture convergence from a combined mesoscale moisture analysis and wind field for 24 April 1975

    NASA Technical Reports Server (NTRS)

    Negri, A. J.; Hillger, D. W.; Vonder Haar, T. H.

    1977-01-01

    Precipitable water values inferred from the Vertical Temperature Profile Radiometer data of the polar orbiting NOAA-4 satellite are used in conjunction with wind-field analyses obtained from Synchronous Meteorological Satellite visible-channel data to study the moisture convergence in the boundary layer immediately preceding a storm. This combination of data simulates the information that will be available from the Visible and Infrared Spin-Scan Radiometer on board the GOES-D satellite, which is scheduled to begin operation in the 1980s. Serviceable representations of boundary layer flow are developed through analysis of the satellite infrared cumulus velocities, although the flow representations are not exactly located in the vertical.

  19. Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe

    NASA Astrophysics Data System (ADS)

    Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff

    2017-06-01

    We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.

  20. Mesh Dependence on Shear Driven Boundary Layers in Stable Stratification Generated by Large Eddy-Simulation

    NASA Astrophysics Data System (ADS)

    Berg, Jacob; Patton, Edward G.; Sullivan, Peter S.

    2017-11-01

    The effect of mesh resolution and size on shear driven atmospheric boundary layers in a stable stratified environment is investigated with the NCAR pseudo-spectral LES model (J. Atmos. Sci. v68, p2395, 2011 and J. Atmos. Sci. v73, p1815, 2016). The model applies FFT in the two horizontal directions and finite differencing in the vertical direction. With vanishing heat flux at the surface and a capping inversion entraining potential temperature into the boundary layer the situation is often called the conditional neutral atmospheric boundary layer (ABL). Due to its relevance in high wind applications such as wind power meteorology, we emphasize on second order statistics important for wind turbines including spectral information. The simulations range from mesh sizes of 643 to 10243 grid points. Due to the non-stationarity of the problem, different simulations are compared at equal eddy-turnover times. Whereas grid convergence is mostly achieved in the middle portion of the ABL, statistics close to the surface of the ABL, where the presence of the ground limits the growth of the energy containing eddies, second order statistics are not converged on the studies meshes. Higher order structure functions also reveal non-Gaussian statistics highly dependent on the resolution.

  1. Method for transition prediction in high-speed boundary layers, phase 2

    NASA Astrophysics Data System (ADS)

    Herbert, T.; Stuckert, G. K.; Lin, N.

    1993-09-01

    The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.

  2. Explorations in Aeolian Ecology: Radar and Visual Studies of the Aerofauna during the Convection and Precipitation/electrification (cape) Experiment.

    NASA Astrophysics Data System (ADS)

    Russell, Robert William

    I studied the ecology of aerial insects and birds (the "aerofauna") during the Convection and Precipitation/Electrification (CaPE) Experiment in Florida during the summer of 1991. Visual observations were coordinated with simultaneous measurements of atmospheric motions, permitting novel explorations of: (1) patterns and processes in the distribution of "aerial plankton" (i.e., small, weakly flying insects that drift with boundary-layer winds); (2) the feeding ecology of "aerial planktivores" (i.e., predators that feed on aerial plankton); and (3) the flight tactics of soaring birds. Sensitive Doppler radars regularly detected fine lines of enhanced reflectivity in boundary-layer convergence zones. These "fine lines" were attributable to dense concentrations of aerial plankton entrained by the convergent airflow. Insect densities were inferred to be about an order of magnitude higher inside convergence zones then elsewhere. Anecdotal observations suggested that large quantities of aerial plankton entrained in convergence zones were sometimes "scrubbed" from the boundary layer by precipitation. Radar images clearly depicted the rapid aeolian transport of aerial plankton across the landscape, but also showed that densities of aerial plankton became concentrated along coastlines when winds blew toward the sea. In contrast, airspace over the adjacent ocean remained largely free of radar echoes under all wind conditions. The coastal concentrations, together with the absence of overwater echoes, indicate that the organisms comprising the aerial plankton respond behaviorally to coastlines to avoid being blown out to sea. Several species of aerial insectivorous predators commonly exploited boundary-layer fine lines as food resources. Chimney swifts (Chaetura pelagica), barn swallows (Hirundo rustica), and wandering gliders (Pantala flavescens) showed significant responses to fine lines. Details of these responses differed, but this variation clearly reflected species-specific behavioral constraints and life-history characteristics. Vertical airflows were predictably enhanced in convergence lines, and soaring birds, which require ascending air to employ their preferred mode of flight, appeared to use these lines as aerial corridors for cross-country travel. Theoretical analyses showed that convergence lines can be profitably exploited under a wide variety of circumstances. The results presented here indicate that sensitive Doppler radars capable of detecting clear-air motions offer tremendous potential as research platforms for future studies of the "aerofauna.".

  3. The proximity of hotspots to convergent and divergent plate boundaries

    NASA Technical Reports Server (NTRS)

    Weinstein, Stuart A.; Olson, Peter L.

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots are preferentially excluded from regions near convergent plate boundaries. The probability of this exclusion occurring by chance alone is 0.1 or less for three out of the four distributions examined. We interpret this behavior as being a consequence of the effects of large scale convective circulation on ascending mantle plumes. Mantle thermal plumes, the most probable source of hotspots, arise from instabilities in a basal thermal boundary layer. Plumes are suppressed from regions beneath convergent boundaries by descending flow and are entrained into the upwelling flow beneath spreading centers. Plate-scale convective circulation driven by subduction may also advect mantle thermal plumes toward spreading centers.

  4. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  5. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1990-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  6. 3D fold growth rates in transpressional tectonic settings

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel

    2015-04-01

    Geological folds are inherently three-dimensional (3D) structures; hence, they also grow in 3D. In this study, fold growth in all three dimensions is quantified numerically using a finite-element algorithm for simulating deformation of Newtonian media in 3D. The presented study is an extension and generalization of the work presented in Frehner (2014), which only considered unidirectional layer-parallel compression. In contrast, the full range from strike slip settings (i.e., simple shear) to unidirectional layer-parallel compression is considered here by varying the convergence angle of the boundary conditions; hence the results are applicable to general transpressional tectonic settings. Only upright symmetrical single-layer fold structures are considered. The horizontal higher-viscous layer exhibits an initial point-like perturbation. Due to the mixed pure- and simple shear boundary conditions a mechanical buckling instability grows from this perturbation in all three dimensions, described by: Fold amplification (vertical growth): Fold amplification describes the growth from a fold shape with low limb-dip angle to a shape with higher limb-dip angle. Fold elongation (growth parallel to fold axis): Fold elongation describes the growth from a dome-shaped (3D) structure to a more cylindrical fold (2D). Sequential fold growth (growth perpendicular to fold axial plane): Sequential fold growth describes the growth of secondary (and further) folds adjacent to the initial isolated fold. The term 'lateral fold growth' is used as an umbrella term for both fold elongation and sequential fold growth. In addition, the orientation of the fold axis is tracked as a function of the convergence angle. Even though the absolute values of all three growth rates are markedly reduced with increasing simple-shear component at the boundaries, the general pattern of the quantified fold growth under the studied general-shear boundary conditions is surprisingly similar to the end-member case of unidirectional layer-parallel compression (Frehner, 2014). Fold growth rates in the two lateral directions are almost identical resulting in bulk fold structures with aspect ratios in map view close to 1. Fold elongation is continuous with increasing bulk deformation, while sequential fold growth exhibits jumps whenever a new sequential fold appears. Compared with the two lateral growth directions, fold amplification exhibits a slightly higher growth rate. The orientation of the fold axis has an angle equal to 1 2 of 90° minus the convergence angle; and this orientation is stable with increasing bulk deformation, i.e. the fold axis does not rotate with increasing general-shear deformation. For example, for simple-shear boundary conditions (convergence angle 0°) the fold axis is stable at an angle of 45° to the boundaries; for a convergence angle of 45° the fold axis is stable at an angle of 22.5° to the boundaries. REFERENCE: Frehner M., 2014: 3D fold growth rates, Terra Nova 26, 417-424, doi:10.1111/ter.12116.

  7. Interactive calculation procedures for mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  8. Dry Rainbelts: Understanding Boundary Layer Controls on the ITCZ Using a Dry Dynamical Core

    NASA Astrophysics Data System (ADS)

    Hill, S. A.; Bordoni, S.; Mitchell, J.

    2017-12-01

    Though migrations of Earth's Intertropical Convergence Zone (ITCZ) are often interpreted in terms of meridional energy transports, a recent study using an idealized, aquaplanet GCM indicates that the ITCZ's position is also linked to the character of the boundary layer momentum budget. Namely, moist convection within the ITCZ roughly coincides with a transition in the role of relative vorticity advection in the boundary layer, from being of leading-order to lower-order importance. This is insensitive to the presence of mid-latitude eddies or thermal inertia and holds over a range of planetary rotation rates, with this transitional regime and the ITCZ extending farther poleward the slower the planet is rotating. We use an even simpler model, a dry dynamical core, to further refine the theoretical understanding of these results, via simulations analogous to and extending the aforementioned moist cases. The importance of planetary rotation and lack thereof for both baroclinic eddies and thermal inertia emerge in the dry simulations also, implying base causes rooted in simpler, steady-state, solsticial, axisymmetric, dry dynamics. We further elucidate the role of the boundary layer dynamical processes through comparison with arguments dating to at least 1972 (although largely overlooked in recent literature) that convection is forced by convergence driven by a shallowing of the boundary layer depth, with this shallowing resulting from the transition from an advective to an Ekman balance on frictional drag. We discuss the potential links between this dynamical perspective and the popular energetic framework for ITCZ migrations and the resulting implications for moist convection on Earth and other planetary bodies.

  9. Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.

    Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.

  10. A theoretical method for the analysis and design of axisymmetric bodies. [flow distribution and incompressible fluids

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.

    1975-01-01

    A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.

  11. Towards industrial-strength Navier-Stokes codes

    NASA Technical Reports Server (NTRS)

    Jou, Wen-Huei; Wigton, Laurence B.; Allmaras, Steven R.

    1992-01-01

    In this paper we discuss our experiences with Navier-Stokes (NS) codes using central differencing (CD) and scalar artificial dissipation (SAD). The NS-CDSAD codes have been developed by several researchers. Our results confirm that for typical commercial transport wing and wing/body configurations flying at transonic conditions with all turbulent boundary layers, NS-CDSAD codes, when used with the Johnson-King turbulence model, are capable of computing pressure distributions in excellent agreement with experimental data. However, results are not as good when laminar boundary layers are present. Exhaustive 2-D grid refinement studies supported by detailed analysis suggest that the numerical errors associated with SAD severely contaminate the solution in the laminar portion of the boundary layer. It is left as a challenge to the CFD community to find and fix the problems with Navier-Stokes codes and to produce a NS code which converges reliably and properly captures the laminar portion of the boundary layer on a reasonable grid.

  12. Ordered roughness effects on NACA 0026 airfoil

    NASA Astrophysics Data System (ADS)

    Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.

    2016-10-01

    The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.

  13. Losses in Channels with Increased External Turbulence

    NASA Technical Reports Server (NTRS)

    Zaryankin, A. Y.; Soloveva, G. S.

    1986-01-01

    An approximate method for determining the effect of the level of turbulence on the aerodynamic characteristics of convergent and diffuser channels is examined. A momentum equation for the boundary layer is in the method, introducing external flow turbulence on the basis of experimental values of the coefficient of friction and the form factor. It is found that at significant levels of external turbulence, losses must be considered not only in the boundary layer but also in the central region of the channel.

  14. Calculation of laminar heating rates on three-dimensional configurations using the axisymmetric analogue

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II

    1980-01-01

    A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.

  15. Explicit finite-volume time-marching calculations of total temperature distributions in turbulent flow

    NASA Technical Reports Server (NTRS)

    Nicholson, Stephen; Moore, Joan G.; Moore, John

    1987-01-01

    A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.

  16. Explicit finite-volume time-marching calculations of total temperature distributions in turbulent flow

    NASA Technical Reports Server (NTRS)

    Nicholson, Stephen; Moore, Joan G.; Moore, John

    1986-01-01

    A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.

  17. Finite element analysis of low speed viscous and inviscid aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1977-01-01

    A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.

  18. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell

    PubMed Central

    Livermore, Philip W.; Bailey, Lewis M.; Hollerbach, Rainer

    2016-01-01

    We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E1/2, where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1 m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E−1/2 or E−1). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth’s core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤ 10−5. PMID:26980289

  19. Dependence of tropical cyclone development on coriolis parameter: A theoretical model

    NASA Astrophysics Data System (ADS)

    Deng, Liyuan; Li, Tim; Bi, Mingyu; Liu, Jia; Peng, Melinda

    2018-03-01

    A simple theoretical model was formulated to investigate how tropical cyclone (TC) intensification depends on the Coriolis parameter. The theoretical framework includes a two-layer free atmosphere and an Ekman boundary layer at the bottom. The linkage between the free atmosphere and the boundary layer is through the Ekman pumping vertical velocity in proportion to the vorticity at the top of the boundary layer. The closure of this linear system assumes a simple relationship between the free atmosphere diabatic heating and the boundary layer moisture convergence. Under a set of realistic atmospheric parameter values, the model suggests that the most preferred latitude for TC development is around 5° without considering other factors. The theoretical result is confirmed by high-resolution WRF model simulations in a zero-mean flow and a constant SST environment on an f -plane with different Coriolis parameters. Given an initially balanced weak vortex, the TC-like vortex intensifies most rapidly at the reference latitude of 5°. Thus, the WRF model simulations confirm the f-dependent characteristics of TC intensification rate as suggested by the theoretical model.

  20. The thermodynamic evolution of the hurricane boundary layer during eyewall replacement cycles

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.

    2017-12-01

    Eyewall replacement cycles (ERCs) are frequently observed during the lifecycle of mature tropical cyclones. Although the kinematic structure and intensity changes during an ERC have been well-documented, comparatively little research has been done to examine the evolution of the tropical cyclone boundary layer (TCBL) during an ERC. This study will examine how the inner core thermal structure of the TCBL is affected by the presence of multiple concentric eyewalls using a high-resolution moist, hydrostatic, multilayer diagnostic boundary layer model. Within the concentric eyewalls above the cloud base, latent heat release and vertical advection (due to the eyewall updrafts) dominate the heat and moisture budgets, whereas vertical advection (due to subsidence) and vertical diffusion dominate the heat and moisture budgets for the moat region. Furthermore, it is shown that the development of a moat region within the TCBL depends sensitively on the moat width in the overlying atmosphere and the relative strength of the gradient wind field in the overlying atmosphere. These results further indicate that the TCBL contributes to outer eyewall formation through a positive feedback process between the vorticity in the nascent outer eyewall, boundary layer convergence, and boundary layer moist convection.

  1. Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Motallebi, Fariborz

    1995-02-01

    This report presents a method for the prediction of mean flow data (i.e. , skin friction, velocity profile, and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the wake, the van Driest model for the complete inner region, and a correlation between the Reynolds number based on the boundary layer integral length scale (Re(sub Delta*)) and the Reynolds number based on the boundary layer momentum thickness (Re(sub theta)) were used to predict the mean flow quantities. The results for skin friction coefficient show good agreement with a number of existing theories including those of van Driest and Huang et al. Comparison with a large number of experimental data suggests that at least for transonic and supersonic flows, the velocity profile as described by van Driest and Coles is Reynolds number dependent and should not be presumed universal. Extra information or perhaps a better physical approach to the formulation of the mean structure of compressible turbulent boundary layers, even in zero pressure gradient and adiabatic condition, is required in order to achieve complete (physical and mathematical) convergence when it is applied in any prediction methods.

  2. Breakdown of Burton Prim Slichter approach and lateral solute segregation in radially converging flows

    NASA Astrophysics Data System (ADS)

    Priede, J.; Gerbeth, G.

    2005-11-01

    A theoretical study is presented of the effect of a radially converging melt flow, which is directed away from the solidification front, on the radial solute segregation in simple solidification models. We show that the classical Burton-Prim-Slichter (BPS) solution describing the effect of a diverging flow on the solute incorporation into the solidifying material breaks down for the flows converging along the solidification front. The breakdown is caused by a divergence of the integral defining the effective boundary layer thickness which is the basic concept of the BPS theory. Although such a divergence can formally be avoided by restricting the axial extension of the melt to a layer of finite height, radially uniform solute distributions are possible only for weak melt flows with an axial velocity away from the solidification front comparable to the growth rate. There is a critical melt velocity for each growth rate at which the solution passes through a singularity and becomes physically inconsistent for stronger melt flows. To resolve these inconsistencies we consider a solidification front presented by a disk of finite radius R0 subject to a strong converging melt flow and obtain an analytic solution showing that the radial solute concentration depends on the radius r as ˜ln(R0/r) and ˜ln(R0/r) close to the rim and at large distances from it. The logarithmic increase of concentration is limited in the vicinity of the symmetry axis by the diffusion becoming effective at a distance comparable to the characteristic thickness of the solute boundary layer. The converging flow causes a solute pile-up forming a logarithmic concentration peak at the symmetry axis which might be an undesirable feature for crystal growth processes.

  3. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    DTIC Science & Technology

    2014-03-01

    accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re

  4. Shock-like structures in the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  5. A modified two-layer iteration via a boundary point approach to generalized multivalued pseudomonotone mixed variational inequalities.

    PubMed

    Saddeek, Ali Mohamed

    2017-01-01

    Most mathematical models arising in stationary filtration processes as well as in the theory of soft shells can be described by single-valued or generalized multivalued pseudomonotone mixed variational inequalities with proper convex nondifferentiable functionals. Therefore, for finding the minimum norm solution of such inequalities, the current paper attempts to introduce a modified two-layer iteration via a boundary point approach and to prove its strong convergence. The results here improve and extend the corresponding recent results announced by Badriev, Zadvornov and Saddeek (Differ. Equ. 37:934-942, 2001).

  6. Dynamics, thermodynamics, radiation, and cloudiness associated with cumulus-topped marine boundary layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghate, Virendra P.; Miller, Mark

    The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur atmore » temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.« less

  7. Lubricated immersed boundary method in two dimensions

    NASA Astrophysics Data System (ADS)

    Fai, Thomas G.; Rycroft, Chris H.

    2018-03-01

    Many biological examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen and the intracellular trafficking of vesicles into dendritic spines, involve the near-contact of elastic structures separated by thin layers of fluid. Motivated by such problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We demonstrate 2nd-order accurate convergence for simple two-dimensional flows with known exact solutions to showcase the increased accuracy of this method compared to the standard immersed boundary method. Motivated by the phenomenon of wall-induced migration, we apply the lubricated immersed boundary method to simulate an elastic vesicle near a wall in shear flow. We also simulate the dynamics of a vesicle traveling through a narrow channel and observe the ability of the lubricated method to capture the vesicle motion on relatively coarse fluid grids.

  8. Measurements of scalar released from point sources in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Talluru, K. M.; Hernandez-Silva, C.; Philip, J.; Chauhan, K. A.

    2017-04-01

    Measurements of velocity and concentration fluctuations for a horizontal plume released at several wall-normal locations in a turbulent boundary layer (TBL) are discussed in this paper. The primary objective of this study is to establish a systematic procedure to acquire accurate single-point concentration measurements for a substantially long time so as to obtain converged statistics of long tails of probability density functions of concentration. Details of the calibration procedure implemented for long measurements are presented, which include sensor drift compensation to eliminate the increase in average background concentration with time. While most previous studies reported measurements where the source height is limited to, {{s}z}/δ ≤slant 0.2 , where s z is the wall-normal source height and δ is the boundary layer thickness, here results of concentration fluctuations when the plume is released in the outer layer are emphasised. Results of mean and root-mean-square (r.m.s.) profiles of concentration for elevated sources agree with the well-accepted reflected Gaussian model (Fackrell and Robins 1982 J. Fluid. Mech. 117). However, there is clear deviation from the reflected Gaussian model for source in the intermittent region of TBL particularly at locations higher than the source itself. Further, we find that the plume half-widths are different for the mean and r.m.s. concentration profiles. Long sampling times enabled us to calculate converged probability density functions at high concentrations and these are found to exhibit exponential distribution.

  9. A Sliding Mode Controller Using Nonlinear Sliding Surface Improved With Fuzzy Logic: Application to the Coupled Tanks System

    NASA Astrophysics Data System (ADS)

    Boubakir, A.; Boudjema, F.; Boubakir, C.

    2008-06-01

    This paper proposes an approach of hybrid control that is based on the concept of combining fuzzy logic and the methodology of sliding mode control (SMC). In the present works, a first-order nonlinear sliding surface is presented, on which the developed control law is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in sliding mode control, a fixed boundary layer around the switch surface is used. Within the boundary layer, since the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to driving the system states into the boundary layer. Experimental studies carried out on a coupled Tanks system indicate that the proposed fuzzy sliding mode control (FSMC) is a good candidate for control applications.

  10. Driving forces: Slab subduction and mantle convection

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  11. Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model

    NASA Astrophysics Data System (ADS)

    Solman, Silvina A.; Pessacg, Natalia L.

    2012-01-01

    In this study the capability of the MM5 model in simulating the main mode of intraseasonal variability during the warm season over South America is evaluated through a series of sensitivity experiments. Several 3-month simulations nested into ERA40 reanalysis were carried out using different cumulus schemes and planetary boundary layer schemes in an attempt to define the optimal combination of physical parameterizations for simulating alternating wet and dry conditions over La Plata Basin (LPB) and the South Atlantic Convergence Zone regions, respectively. The results were compared with different observational datasets and model evaluation was performed taking into account the spatial distribution of monthly precipitation and daily statistics of precipitation over the target regions. Though every experiment was able to capture the contrasting behavior of the precipitation during the simulated period, precipitation was largely underestimated particularly over the LPB region, mainly due to a misrepresentation in the moisture flux convergence. Experiments using grid nudging of the winds above the planetary boundary layer showed a better performance compared with those in which no constrains were imposed to the regional circulation within the model domain. Overall, no single experiment was found to perform the best over the entire domain and during the two contrasting months. The experiment that outperforms depends on the area of interest, being the simulation using the Grell (Kain-Fritsch) cumulus scheme in combination with the MRF planetary boundary layer scheme more adequate for subtropical (tropical) latitudes. The ensemble of the sensitivity experiments showed a better performance compared with any individual experiment.

  12. Predictions and Verification of an Isotope Marine Boundary Layer Model

    NASA Astrophysics Data System (ADS)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the <5% of observations that fall slightly outside of the predicted region in both δD-δ18O and d-excess - δ18O space: 1) variations in seawater isotopic ratios, 2) variations in isotopic composition of subsiding air, and 3) influence of sea spray. The model can be used for understanding the effects of boundary layer processes and meteorological conditions on isotopic composition of vapor within, and vapor fluxes through the MBL, and how changes in moisture source regions affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.

  13. A study of tornadic thunderstorm interactions with thermal boundaries

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.

    1980-01-01

    A study of tornadic thunderstorm interactions with thermal boundaries using a model of subcloud wind profiles is presented. Within a hot, moist, and conditionally unstable air mass, warm thermal advection and surface friction cause the winds to veer and increase with height, while within a cool, moist air mass cool thermal advection and friction combine to produce a wind profile that has maximum speeds near the surface and veers little with height. The spatial distribution of different wind profiles and moisture contents within the boundary layer may act together to maximize mesoscale moisture contents, convergence, and cyclonic vorticity within a narrow mixing zone along the thermal boundary.

  14. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  15. Influences of Local Sea-Surface Temperatures and Large-scale Dynamics on Monthly Precipitation Inferred from Two 10-year GCM-Simulations

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Zhou, Y.; Lau, W. K.-M.

    2007-01-01

    Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to examine the dependence of local rainfall on local SSTs; it was discernible only in the tropics. Our methodology can be used for computing relationship between any forcing function and its effect(s) on a chosen field.

  16. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla

    2016-08-01

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  17. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet.

    PubMed

    Bons, Paul D; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C; Binder, Tobias; Eisen, Olaf; Jessell, Mark W; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-04-29

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

  18. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-04-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

  19. Thermodynamic evaluation of transonic compressor rotors using the finite volume approach

    NASA Technical Reports Server (NTRS)

    Nicholson, S.; Moore, J.

    1986-01-01

    A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier Stokes equations. The entire calculation is performed in the physical domain. The method is currently limited to the calculation of attached flows. The features of the current method can be summarized as follows. Control volumes are chosen so that smoothing of flow properties, typically required for stability, is now needed. Different time steps are used in the different governing equations to improve the convergence speed of the viscous calculations. A new pressure interpolation scheme is introduced which improves the shock capturing ability of the method. A multi-volume method for pressure changes in the boundary layer allows calculations which use very long and thin control volumes. A special discretization technique is also used to stabilize these calculations. A special formulation of the energy equation is used to provide improved transient behavior of solutions which use the full energy equation. The method is then compared with a wide variety of test cases. The freestream Mach numbers range from 0.075 to 2.8 in the calculations. Transonic viscous flow in a converging diverging nozzle is calculated with the method; the Mach number upstream of the shock is approximately 1.25. The agreement between the calculated and measured shock strength and total pressure losses is good. Essentially incompressible turbulent boundary layer flow in a adverse pressure gradient is calculated and the computed distribution of mean velocity and shear stress are in good agreement with the measurements. At the other end of the Mach number range, a flat plate turbulent boundary layer with a freestream Mach number of 2.8 is calculated using the full energy equation; the computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.

  20. Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.

    2011-01-01

    This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.

  1. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps.

    PubMed

    Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David

    2017-04-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.

  2. Forward and inverse models of electromagnetic scattering from layered media with rough interfaces

    NASA Astrophysics Data System (ADS)

    Tabatabaeenejad, Seyed Alireza

    This work addresses the problem of electromagnetic scattering from layered dielectric structures with rough boundaries and the associated inverse problem of retrieving the subsurface parameters of the structure using the scattered field. To this end, a forward scattering model based on the Small Perturbation Method (SPM) is developed to calculate the first-order spectral-domain bistatic scattering coefficients of a two-layer rough surface structure. SPM requires the boundaries to be slightly rough compared to the wavelength, but to understand the range of applicability of this method in scattering from two-layer rough surfaces, its region of validity is investigated by comparing its output with that of a first principle solver that does not impose roughness restrictions. The Method of Moments (MoM) is used for this purpose. Finally, for retrieval of the model parameters of the layered structure using scattered field, an inversion scheme based on the Simulated Annealing method is investigated and a strategy is proposed to address convergence to local minimum.

  3. Multi-scale characteristics of moisture transport during a rainstorm process in North China

    NASA Astrophysics Data System (ADS)

    Wang, Chengxin; Gao, Shouting; Liang, Li; Deng, Difei; Gong, Hainan

    2014-08-01

    A rainstorm process that occurred in North China from July 24-25, 2011 was accurately simulated using the Weather Research and Forecasting model, and the multi-scale characteristics of moisture transport were studied based on the simulated results. The results indicated that water vapor was carried to North China mainly by the southwest low-level jet and easterly flow, with the former playing a principal role. The enhancement and northward extension of the southwesterly wind were consistent with the increase of magnitude and northward propulsion of the moisture flux. The variation of the winds mirrored fluctuations in the amount of precipitation. In addition, the water vapor from low latitudes to North China was transported first near the boundary layer over 15°N-21°N and then primarily at 850 hPa over 21°N-30°N, 900 hPa over 30°N-39°N, and 800 hPa over the region north of 39°N. The net budget of water vapor in North China was always positive during the rainstorm process because the zonal deficit was much smaller than the meridional surplus. The contribution of the water vapor advection was larger than that of the water vapor convergence in the prior period of rainfall, and the subsequent moisture aggregation relied on the water vapor convergence. The rainband in North China presented frontal mesoscale characteristics, and the short-term aggregation of moisture was closely related to the genesis and development of the mesoscale convective system that was triggered mainly by the cold air intrusion near the boundary layer. The underlying cold air not only lifted the warm air to trigger the convection, but it also influenced the development of the low pressure system in the lower levels, which further intensified the convergence and benefited the rapid accumulation of moisture to the convective zone near the boundary layer. The moisture transport reached its maximum an hour before the rainstorm occurred.

  4. Universal single level implicit algorithm for gasdynamics

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.; Venkatapthy, E.

    1984-01-01

    A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.

  5. Coupled wake boundary layer model of windfarms

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  6. On a theory of the evolution of surface cold fronts

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Bretherton, Christopher S.

    1987-01-01

    The governing vorticity and divergence equations in the surface layer are derived and the roles of the different terms and feedback mechanisms are investigated in semigeostrophic and nongeostrophic cold-frontal systems. A planetary boundary layer model is used to perform sensitivity tests to determine that in a cold front the ageostrophic feedback mechanism as defined by Orlanski and Ross tends to act as a positive feedback mechanism, enhancing vorticity and convergence growth. Therefore, it cannot explain the phase shift between convergence and vorticity as simulated by Orlanski and Ross. An alternative plausible, though tentative, explanation in terms of a gravity wave is offered. It is shown that when the geostrophic deformation increases, nonlinear terms in the divergence equation may become important and further destabilize the system.

  7. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  8. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE PAGES

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  9. A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions

    NASA Astrophysics Data System (ADS)

    Parand, Kourosh; Mahdi Moayeri, Mohammad; Latifi, Sobhan; Delkhosh, Mehdi

    2017-07-01

    In this paper, a spectral method based on the four kinds of rational Chebyshev functions is proposed to approximate the solution of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet. First, by using the quasilinearization method (QLM), the model which is a nonlinear ordinary differential equation is converted to a sequence of linear ordinary differential equations (ODEs). By applying the proposed method on the ODEs in each iteration, the equations are converted to a system of linear algebraic equations. The results indicate the high accuracy and convergence of our method. Moreover, the effects of the Eyring-Powell fluid material parameters are discussed.

  10. Multiscale real-space quantum-mechanical tight-binding calculations of electronic structure in crystals with defects using perfectly matched layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourmatin, Hossein, E-mail: mpourmat@andrew.cmu.edu; Dayal, Kaushik, E-mail: kaushik@cmu.edu

    2016-10-15

    Graphical abstract: - Abstract: We consider the scattering of incident plane-wave electrons from a defect in a crystal modeled by the time-harmonic Schrödinger equation. While the defect potential is localized, the far-field potential is periodic, unlike standard free-space scattering problems. Previous work on the Schrödinger equation has been almost entirely in free-space conditions; a few works on crystals have been in one-dimension. We construct absorbing boundary conditions for this problem using perfectly matched layers in a tight-binding formulation. Using the example of a point defect in graphene, we examine the efficiency and convergence of the proposed absorbing boundary condition.

  11. Reduction of Free Edge Peeling Stress of Laminated Composites Using Active Piezoelectric Layers

    PubMed Central

    Huang, Bin; Kim, Heung Soo

    2014-01-01

    An analytical approach is proposed in the reduction of free edge peeling stresses of laminated composites using active piezoelectric layers. The approach is the extended Kantorovich method which is an iterative method. Multiterms of trial function are employed and governing equations are derived by taking the principle of complementary virtual work. The solutions are obtained by solving a generalized eigenvalue problem. By this approach, the stresses automatically satisfy not only the traction-free boundary conditions, but also the free edge boundary conditions. Through the iteration processes, the free edge stresses converge very quickly. It is found that the peeling stresses generated by mechanical loadings are significantly reduced by applying a proper electric field to the piezoelectric actuators. PMID:25025088

  12. Supersonic compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are providedmore » having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less

  13. Patterns of folding and fold interference in oblique contraction of layered rocks of the inverted Cobar Basin, Australia

    NASA Astrophysics Data System (ADS)

    Smith, J. V.; Marshall, B.

    1992-12-01

    The inverted Cobar Basin, within the Lachlan Fold Belt of New South Wales, Australia, comprises a mid-Palaeozoic cover sequence, originally deposited in a NNW-trending basin. The pattern of F 1 folding in the layered cover rocks changes from east to west; from tight well-cleaved folds parallel to the NNW-trending basin margin on the east, to open poorly cleaved en echelon folds at about 35° to the margin, further to the west. The change in fold trend and strain intensity has been repeatedly ascribed to the differing behaviour of discrete zones, decoupled across a north-trending strike-slip fault boundary. New field data show that the changes in orientation and strain intensity of F 1 structures are progressively developed, that an abrupt boundary between discrete zones cannot be substantiated, and that interpretations involving decoupled blocks are not supported by the evidence. Conversely, the data require coherent behaviour across the basin, such that the overall pattern of F 1 folding must be explained by strain compatible processes. This new interpretation of the F 1 deformation pattern has been modelled and quantitatively analysed. Theoretical predictions of the orientation of structures in unlayered isotropic material undergoing oblique contraction are inapplicable to layered anisotropic material. The style of deformation in layered material will reflect the interaction of the bulk strain pattern due to convergence together with the influence of the layering anisotropy. The orientations of the finite strain axes inferred from the folding need not match those of the bulk deformation; the amount of strain recorded by folding may be unrepresentative of that developed in the deformed tract. Oblique contraction at a range of convergence angles was simulated by models employing layers of wet tissue paper. Quantitative analysis of the strain patterns in this layered anisotropic material showed consistent departures from the theoretical predictions for isotropic material. The orientations of the principal finite horizontal extension proximal to the margin yielded higher convergence angles than those which were imposed; the orientations distal from the margin yielded substantially lower apparent convergence angles. This is because the layering anisotropy results in tight folds dissipating the normal component of the oblique convergence vector close to the margin. Whereas more open structures further from the margin show orientations controlled by the progressively more dominant shear component of the vergence vector. Modelling of D 1 the Cobar Basin shows that the F 1 pattern is consistent with dextral oblique convergence at 60° to the eastern margin of the basin. The deformation patterns, in both the model and the Cobar Basin, yield higher proximal and substantially lower distal apparent convergence angles. This is as expected from theoretical considerations and quantitative analysis of oblique contraction over a range of convergence angles. The rheological anisotropy of the cover sequence of the basin is replicated by that of the layered wet tissue paper. Wet-tissue modelling of the superposition of the second period of deformation (D 2) on F 1 demonstrates the way in which the tightness and orientation of early folds influence the type of fold interference pattern. At the eastern margin of the Cobar Basin, where D 1 was most intense, this resulted in major swings of the strike of bedding and cleavage, and of the trend of F 1 folds. Further west, open basin and dome patterns developed where D 1 was least intense. Principles developed in relation to the inversion of the Cobar Basin, are equally applicable to other basins in which layered cover rocks have undergone inversion by oblique contraction. Many basins in the Lachlan Fold Belt and in general would fall within this category.

  14. Lidar Applications in Atmospheric Dynamics: Measurements of Wind, Moisture and Boundary Layer Evolution

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph

    2005-01-01

    A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.

  15. Experimental Investigation of 'Transonic Resonance' with Convergent-Divergent Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Dahl, M. D.; Bencic, T. J.; Zaman, Khairul (Technical Monitor)

    2001-01-01

    Convergent-divergent nozzles, when run at pressure ratios lower than the design value, often undergo a flow resonance accompanied by the emission of acoustic tones. The phenomenon, different in characteristics from conventional 'screech' tones, has been studied experimentally. Unlike screech, the frequency increases with increasing supply pressure. There is a 'staging' behavior; 'odd harmonic' stages resonate at lower pressures while the fundamental occurs in a range of higher pressures corresponding to a fully expanded Mach number (M(sub j)) around unity. The frequency (f(sub N)) variation with M(sub j) depends on the half angle-of-divergence (theta) of the nozzle. At smaller theta, the slope of f(sub N) versus M(sub j) curve becomes steeper. The resonance involves standing waves and is driven by unsteady shock/boundary layer interaction. The distance between the foot of the shock and the nozzle exit imposes the lengthscale (L'). The fundamental corresponds to a quarterwave resonance, the next stage at a lower supply pressure corresponds to a three-quarter-wave resonance, and so on. The principal trends in the frequency variation are explained simply from the characteristic variation of the length-scale L'. Based on the data, correlation equations are provided for the prediction of f(sub N). A striking feature is that tripping of the boundary layer near the nozzle's throat tends to suppress the resonance. In a practical nozzle a tendency for the occurrence of the phenomenon is thought to be a source of 'internal noise'; thus, there is a potential for noise benefit simply by appropriate boundary layer tripping near the nozzle's throat.

  16. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Kim, Huyn Dae; Brown, Gerald V.; Chu, Julio

    2011-01-01

    A Turboelectric Distributed Propulsion (TeDP) system differs from other propulsion systems by the use of electrical power to transmit power from the turbine to the fan. Electrical power can be efficiently transmitted over longer distances and with complex topologies. Also the use of power inverters allows the generator and motors speeds to be independent of one another. This decoupling allows the aircraft designer to place the core engines and the fans in locations most advantageous for each. The result can be very different installation environments for the different devices. Thus the installation effects on this system can be quite different than conventional turbofans where the fan and core both see the same installed environments. This paper examines a propulsion system consisting of two superconducting generators, each driven by a turboshaft engine located so that their inlets ingest freestream air, superconducting electrical transmission lines, and an array of superconducting motor driven fan positioned across the upper/rear fuselage area of a hybrid wing body aircraft in a continuous nacelle that ingests all of the upper fuselage boundary layer. The effect of ingesting the boundary layer on the design of the system with a range of design pressure ratios is examined. Also the impact of ingesting the boundary layer on off-design performance is examined. The results show that when examining different design fan pressure ratios it is important to recalculate of the boundary layer mass-average Pt and MN up the height for each inlet height during convergence of the design point for each fan design pressure ratio examined. Correct estimation of off-design performance is dependent on the height of the column of air measured from the aircraft surface immediately prior to any external diffusion that will flow through the fan propulsors. The mass-averaged Pt and MN calculated for this column of air determine the Pt and MN seen by the propulsor inlet. Since the height of this column will change as the amount of air passing through the fans change as the propulsion system is throttled, and since the mass-average Pt and MN varies by height, this capture height must be recalculated as the airflow through the propulsor is varied as the off-design performance point is converged.

  17. On the Vanishing Dissipation Limit for the Full Navier-Stokes-Fourier System with Non-slip Condition

    NASA Astrophysics Data System (ADS)

    Wang, Y.-G.; Zhu, S.-Y.

    2018-06-01

    In this paper, we study the vanishing dissipation limit problem for the full Navier-Stokes-Fourier equations with non-slip boundary condition in a smooth bounded domain Ω \\subseteq R3. By using Kato's idea (Math Sci Res Inst Publ 2:85-98, 1984) of constructing an artificial boundary layer, we obtain a sufficient condition for the convergence of the solution of the full Navier-Stokes-Fourier equations to the solution of the compressible Euler equations in the energy space L2(Ω ) uniformly in time.

  18. A high-order perturbation of surfaces method for scattering of linear waves by periodic multiply layered gratings in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Hong, Youngjoon; Nicholls, David P.

    2017-09-01

    The capability to rapidly and robustly simulate the scattering of linear waves by periodic, multiply layered media in two and three dimensions is crucial in many engineering applications. In this regard, we present a High-Order Perturbation of Surfaces method for linear wave scattering in a multiply layered periodic medium to find an accurate numerical solution of the governing Helmholtz equations. For this we truncate the bi-infinite computational domain to a finite one with artificial boundaries, above and below the structure, and enforce transparent boundary conditions there via Dirichlet-Neumann Operators. This is followed by a Transformed Field Expansion resulting in a Fourier collocation, Legendre-Galerkin, Taylor series method for solving the problem in a transformed set of coordinates. Assorted numerical simulations display the spectral convergence of the proposed algorithm.

  19. A case study of atmospheric boundary layer features during winter over a tropical inland station — Kharagpur (22.32°N, 87.32°E)

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Kunhikrishnan, P. K.; Aloysius, Marina; Mohan, M.

    2009-08-01

    The local weather and air quality over a region are greatly influenced by the atmospheric boundary layer (ABL) structure and dynamics. ABL characteristics were measured using a tethered balloon-sonde system over Kharagpur (22.32°N, 87.32°E, 40m above MSL), India, for the period 7 December 2004 to 30 December 2004, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP) Aerosol Land Campaign II. High-resolution data of pressure, temperature, humidity, wind speed and wind direction were archived along with surface layer measurements using an automatic weather station. This paper presents the features of ABL, like ABL depth and nocturnal boundary layer (NBL) depth. The sea surface winds from Quikscat over the oceanic regions near the experiment site were analyzed along with the NCEP/NCAR reanalysis winds over Kharagpur to estimate the convergence of wind, moisture and vorticity to understand the observed variations in wind speed and relative humidity, and also the increased aerosol concentrations. The variation of ventilation coefficient ( V C), a factor determining the air pollution potential over a region, is also discussed in detail.

  20. Intra-retinal segmentation of optical coherence tomography images using active contours with a dynamic programming initialization and an adaptive weighting strategy

    NASA Astrophysics Data System (ADS)

    Gholami, Peyman; Roy, Priyanka; Kuppuswamy Parthasarathy, Mohana; Ommani, Abbas; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Retinal layer shape and thickness are one of the main indicators in the diagnosis of ocular diseases. We present an active contour approach to localize intra-retinal boundaries of eight retinal layers from OCT images. The initial locations of the active contour curves are determined using a Viterbi dynamic programming method. The main energy function is a Chan-Vese active contour model without edges. A boundary term is added to the energy function using an adaptive weighting method to help curves converge to the retinal layer edges more precisely, after evolving of curves towards boundaries, in final iterations. A wavelet-based denoising method is used to remove speckle from OCT images while preserving important details and edges. The performance of the proposed method was tested on a set of healthy and diseased eye SD-OCT images. The experimental results, compared between the proposed method and the manual segmentation, which was determined by an optometrist, indicate that our method has obtained an average of 95.29%, 92.78%, 95.86%, 87.93%, 82.67%, and 90.25% respectively, for accuracy, sensitivity, specificity, precision, Jaccard Index, and Dice Similarity Coefficient over all segmented layers. These results justify the robustness of the proposed method in determining the location of different retinal layers.

  1. The "Grey Zone" cold air outbreak global model intercomparison: A cross evaluation using large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel

    2017-03-01

    A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.

  2. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

    DTIC Science & Technology

    2014-09-30

    warmer profile through greater latent heat release. Resulting temperature profiles all follow essentially moist adiabats in the upper troposphere ...default RRTM ozone concentration profile). Greater convective mixing deepens the tropopause for cases with stronger moisture flux convergence. Case...with tropospheric temperatures about 4 degrees cooler than the original temperature profile. This case represents conditions during the suppressed

  3. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    PubMed Central

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-01-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274

  4. Rod-shaped cavitation bubble structure in ultrasonic field.

    PubMed

    Bai, Lixin; Wu, Pengfei; Liu, Huiyu; Yan, Jiuchun; Su, Chang; Li, Chao

    2018-06-01

    Rod-shaped cavitation bubble structure in thin liquid layers in ultrasonic field is investigated experimentally. It is found that cavitation structure successively experiences several stages with the change of the thickness of the thin liquid layer. Rod-shaped structure is a stable structure of the boundary between the cavitation cloud region and the non-cavitation liquid region, which can be formed in two different ways. Cavitation bubbles in a thin liquid layer have a distribution in the thickness direction. The rod-shaped structures tend to crosslink with each other to form stable Y-branch structures. The angle of the Y-branch structure is Gauss distribution with mathematical expectation μ = 119.93. A special rod-shaped cavitation structure with source is also investigated in detail. Due to the pressure gradient in the normal direction, the primary Bjerknes force causes the bubbles in the rod-shaped structure on both sides to converge to the axis. The secondary Bjerknes forces between the bubbles also make the cluster converge, so the large bubbles which are attached to the radiating surface tend to align themselves along the central line. According to the formula deduced in this paper, the variation of curvature of curved rod-shaped structure is qualitatively analyzed. The Y-branch structure of cavitation cloud and Plateau boundary of soap bubbles are compared. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    The numerical simulation of many aerodynamic non-periodic flows of practical interest involves discretized computational domains that often must be artificially truncated. Appropriate boundary conditions are required at these truncated domain boundaries, and ideally, these boundary conditions should be perfectly "absorbing" or "nonreflecting" so that they do not contaminate the flow field in the interior of the domain. The proper specification of these boundaries is critical to the stability, accuracy, convergence, and quality of the numerical solution, and has been the topic of considerable research. The need for accurate boundary specification has been underscored in recent years with efforts to apply higher-fidelity methods (DNS, LES) in conjunction with high-order low-dissipation numerical schemes to realistic flow configurations. One of the most popular choices for specifying these boundaries is the characteristics-based boundary condition where the linearized flow field at the boundaries are decomposed into characteristic waves using either one-dimensional Riemann or other multi-dimensional Riemann approximations. The values of incoming characteristics are then suitably modified. The incoming characteristics are specified at the in flow boundaries, and at the out flow boundaries the variation of the incoming characteristic is zeroed out to ensure no reflection. This, however, makes the problem ill-posed requiring the use of an ad-hoc parameter to allow small reflections that make the solution stable. Generally speaking, such boundary conditions work reasonably well when the characteristic flow direction is normal to the boundary, but reflects spurious energy otherwise. An alternative to the characteristic-based boundary condition is to add additional "buffer" regions to the main computational domain near the artificial boundaries, and solve a different set of equations in the buffer region in order to minimize acoustic reflections. One approach that has been used involves modeling the pressure fluctuations as acoustic waves propagating in the far-field relative to a single noise-source inside the buffer region. This approach treats vorticity-induced pressure fluctuations the same as acoustic waves. Another popular approach, often referred to as the "sponge layer," attempts to dampen the flow perturbations by introducing artificial dissipation in the buffer region. Although the artificial dissipation removes all perturbations inside the sponge layer, incoming waves are still reflected from the interface boundary between the computational domain and the sponge layer. The effect of these refkections can be somewhat mitigated by appropriately selecting the artificial dissipation strength and the extent of the sponge layer. One of the most promising variants on the buffer region approach is the Perfectly Matched Layer (PML) technique. The PML technique mitigates spurious reflections from boundaries and interfaces by dampening the perturbation modes inside the buffer region such that their eigenfunctions remain unchanged. The technique was first developed by Berenger for application to problems involving electromagnetic wave propagation. It was later extended to the linearized Euler, Euler and Navier-Stokes equations by Hu and his coauthors. The PML technique ensures the no-reflection property for all waves, irrespective of incidence angle, wavelength, and propagation direction. Although the technique requires the solution of a set of auxiliary equations, the computational overhead is easily justified since it allows smaller domain sizes and can provide better accuracy, stability, and convergence of the numerical solution. In this paper, the PML technique is developed in the context of a high-order spectral-element Discontinuous Galerkin (DG) method. The technique is compared to other approaches to treating the in flow and out flow boundary, such as those based on using characteristic boundary conditions and sponge layers. The superiority of the current PML technique over other approaches is demonstrated for a range of test cases, viz., acoustic pulse propagation, convective vortex, shear layer flow, and low-pressure turbine cascade flow. The paper is structured as follows. We first derive the PML equations from the non{linear Euler equations. A short description of the higher-order DG method used is then described. Preliminary results for the four test cases considered are then presented and discussed. Details regarding current work that will be included in the final paper are also provided.

  6. A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption

    PubMed Central

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2017-01-01

    Here magnetohydrodynamic (MHD) boundary layer flow of Jeffrey nanofluid by a nonlinear stretching surface is addressed. Heat generation/absorption and convective surface condition effects are considered. Novel features of Brownian motion and thermophoresis are present. A non-uniform applied magnetic field is employed. Boundary layer and small magnetic Reynolds number assumptions are employed in the formulation. A newly developed condition with zero nanoparticles mass flux is imposed. The resulting nonlinear systems are solved. Convergence domains are explicitly identified. Graphs are analyzed for the outcome of sundry variables. Further local Nusselt number is computed and discussed. It is observed that the effects of Hartman number on the temperature and concentration distributions are qualitatively similar. Both temperature and concentration distributions are enhanced for larger Hartman number. PMID:28231298

  7. Tidal variations of flow convergence, shear, and stratification at the Rio de la Plata estuary turbidity front

    NASA Astrophysics Data System (ADS)

    FramiñAn, Mariana B.; Valle-Levinson, Arnoldo; Sepúlveda, HéCtor H.; Brown, Otis B.

    2008-08-01

    Intratidal variability of density and velocity fields is investigated at the turbidity front of the Río de la Plata Estuary, South America. Current velocity and temperature-salinity profiles collected in August 1999 along a repeated transect crossing the front are analyzed. Horizontal and vertical gradients, stability of the front, convergence zones, and transverse flow associated to the frontal boundary are described. Strong horizontal convergence of the across-front velocity and build up of along-front velocity shear were observed at the front. In the proximity of the front, enhanced transverse (or along-front) flow created jet-like structures at the surface and near the bottom flowing in opposite directions. These structures persisted throughout the tidal cycle and were advected upstream (downstream) by the flood (ebb) current through a distance of ˜10 km. During peak flood, the upper layer flow reversed from its predominant downstream direction and upstreamflow occupied the entire water column; outside the peak flood, two-layer estuarine circulation dominated. Changes in density field were observed in response to tidal straining, tidal advection, and wind-induced mixing, but stratification remained throughout the tidal cycle. This work demonstrates the large spatial variability of the velocity field at the turbidity front; it provides evidence of enhanced transverse circulation along the frontal boundary; and reveals the importance of advective and frictional intratidal processes in the dynamics of the central part of the estuary.

  8. A method for modifying two-dimensional adaptive wind-tunnel walls including analytical and experimental verification

    NASA Technical Reports Server (NTRS)

    Everhart, J. L.

    1983-01-01

    The theoretical development of a simple and consistent method for removing the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation of the velocities in an imaginary infinite extension of the real wind-tunnel flow is obtained and evaluated on a closed contour dividing the real and imaginary flow. The contour consists of the upper and lower effective wind-tunnel walls (wall plus boundary-layer displacement thickness) and upstream and downstream boundaries perpendicular to the axial tunnel flow. The resulting integral expressions for the streamwise and normal perturbation velocities on the contour are integrated by assuming a linear variation of the velocities between data-measurement stations along the contour. In an iterative process, the velocity components calculated on the upper and lower boundaries are then used to correct the shape of the wall to remove the interference. Convergence of the technique is shown numerically for the cases of a circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible flow. Experimental convergence at a transonic Mach number is demonstrated by using an NACA 0012 airfoil at zero lift.

  9. Finite element modeling of mass transport in high-Péclet cardiovascular flows

    NASA Astrophysics Data System (ADS)

    Hansen, Kirk; Arzani, Amirhossein; Shadden, Shawn

    2016-11-01

    Mass transport plays an important role in many important cardiovascular processes, including thrombus formation and atherosclerosis. These mass transport problems are characterized by Péclet numbers of up to 108, leading to several numerical difficulties. The presence of thin near-wall concentration boundary layers requires very fine mesh resolution in these regions, while large concentration gradients within the flow cause numerical stabilization issues. In this work, we will discuss some guidelines for solving mass transport problems in cardiovascular flows using a stabilized Galerkin finite element method. First, we perform mesh convergence studies in a series of idealized and patient-specific geometries to determine the required near-wall mesh resolution for these types of problems, using both first- and second-order tetrahedral finite elements. Second, we investigate the use of several boundary condition types at outflow boundaries where backflow during some parts of the cardiac cycle can lead to convergence issues. Finally, we evaluate the effect of reducing Péclet number by increasing mass diffusivity as has been proposed by some researchers. This work was supported by the NSF GRFP and NSF Career Award #1354541.

  10. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems

    NASA Astrophysics Data System (ADS)

    Dölz, Jürgen; Harbrecht, Helmut; Kurz, Stefan; Schöps, Sebastian; Wolf, Felix

    2018-03-01

    We present an indirect higher order boundary element method utilising NURBS mappings for exact geometry representation and an interpolation-based fast multipole method for compression and reduction of computational complexity, to counteract the problems arising due to the dense matrices produced by boundary element methods. By solving Laplace and Helmholtz problems via a single layer approach we show, through a series of numerical examples suitable for easy comparison with other numerical schemes, that one can indeed achieve extremely high rates of convergence of the pointwise potential through the utilisation of higher order B-spline-based ansatz functions.

  11. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Muhammad, Taseer; Alsaedi, A.; Alhuthali, M. S.

    2015-07-01

    Magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid in the presence of thermophoresis and Brownian motion effects is analyzed. Energy equation subject to nonlinear thermal radiation is taken into account. The flow is generated by a bidirectional stretching surface. Fluid is electrically conducting in the presence of a constant applied magnetic field. The induced magnetic field is neglected for a small magnetic Reynolds number. Mathematical formulation is performed using boundary layer analysis. Newly proposed boundary condition requiring zero nanoparticle mass flux is employed. The governing nonlinear mathematical problems are first converted into dimensionless expressions and then solved for the series solutions of velocities, temperature and nanoparticles concentration. Convergence of the constructed solutions is verified. Effects of emerging parameters on the temperature and nanoparticles concentration are plotted and discussed. Skin friction coefficients and Nusselt number are also computed and analyzed. It is found that the thermal boundary layer thickness is an increasing function of radiative effect.

  12. Numerical Investigation of Flow in an Over-Expanded Nozzle with Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Abdol-Hamid, K. S.; Hunter, Craig A.

    2005-01-01

    A new porous condition has been implemented in the PAB3D solver for simulating the flow over porous surfaces. The newly-added boundary condition is utilized to compute the flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the over-expanded nozzle flow was dominated by shock-induced boundary-layer separation. Porous configurations were capable of controlling off-design separation in the nozzle by encouraging stable separation of the exhaust flow. Computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed. Computed results are in excellent agreement with experimental data.

  13. Numerical Investigation of Flow in an Over-expanded Nozzle with Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmilingui, Alaa A.; Hunter, Craig A.

    2006-01-01

    A new porous condition has been implemented in the PAB3D solver for simulating the flow over porous surfaces. The newly-added boundary condition is utilized to compute the flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the over-expanded nozzle flow is dominated by shock-induced boundary-layer separation. Porous configurations are capable of controlling off-design separation in the nozzle by encouraging stable separation of the exhaust flow. Computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed. Computed results are in excellent agreement with experimental data.

  14. Photonic band structures solved by a plane-wave-based transfer-matrix method.

    PubMed

    Li, Zhi-Yuan; Lin, Lan-Lan

    2003-04-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.

  15. A Comparative Study for Flow of Viscoelastic Fluids with Cattaneo-Christov Heat Flux.

    PubMed

    Hayat, Tasawar; Muhammad, Taseer; Alsaedi, Ahmed; Mustafa, Meraj

    2016-01-01

    This article examines the impact of Cattaneo-Christov heat flux in flows of viscoelastic fluids. Flow is generated by a linear stretching sheet. Influence of thermal relaxation time in the considered heat flux is seen. Mathematical formulation is presented for the boundary layer approach. Suitable transformations lead to a nonlinear differential system. Convergent series solutions of velocity and temperature are achieved. Impacts of various influential parameters on the velocity and temperature are sketched and discussed. Numerical computations are also performed for the skin friction coefficient and heat transfer rate. Our findings reveal that the temperature profile has an inverse relationship with the thermal relaxation parameter and the Prandtl number. Further the temperature profile and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to the classical Fourier's law of heat conduction.

  16. Svecofennian orogeny in an evolving convergent margin setting

    NASA Astrophysics Data System (ADS)

    Korja, Annakaisa

    2015-04-01

    The dominant tectonic mode changes from extension to convergence at around 1.9 Ga in Fennoscandian. The lithological record suggests short lived subduction-related magmatic events followed by deformation and low-pressure high temperature metamorphism. At around 1.8 Ga the subduction systems seem to have stabilized implying continuous supply of oceanic lithosphere. The evolution of the convergent margin is recorded in the rock record and crustal architecture of the long lived Svecofennian orogeny (1.9-1.7 Ga). A closer look at the internal structure of the Svecofennian orogen reveals distinct regional differences. The northern and central parts of the Svecofennian orogen that have been formed during the initial accretionary phase - or compilation of the nucleus - have a thick three-layer crust and with thick mafic lower crust (10-30 km) and block-like internal architecture. Reflection profiles (FIRE1-3) image listric structures flattening on crustal scale décollement zones at the upper-middle crust and middle-upper crust boundaries. The crustal architecture together with large volumes of exposed granitoid rocks suggests spreading of the orogen and the development of an orogenic plateau west of the continental convergence boundary. The architecture is reminiscent of a large hot orogen. Within the western and southwestern part of the Svecofennian orogen (BABEL B, 1, 2, 3&4), which have been envisioned to have formed during continuous subduction phase, the crust is thinner (45-50 km) and it is hosting crustal blocks having one to two crustal layers. Layering is poorly developed in crustal blocks that are found S-SW of NE-dipping mantle reflections previously interpreted as paleo-subduction zones. Within these blocks, the crustal scale reflective structures dip NE (prowedge) or form pop-up wedges (uplifted plug) above the paleo-subduction zones. Crustal blocks with well-developed two-layer crust are located NE of the paleo-subduction zone. The architecture can be interpreted to image a series of abandoned accretion zones where the orogenic structure has developed from a young and cold orogen (BABEL 2,3&4) to a transitional (BABEL 1,6,B) one as the plate boundary is retreating during SW wards. The fast retreating rate of the subduction zone may not only have formed continental back-arc environment but may have restricted the thickening of the upper plate and the growth rate of the orogen. Altogether the architecture suggests a long-lived southwesterly retreating subduction system, with continental back-arc formation in its rear parts and well developed system of prowedge-retrowedge-uplifted plug close to a subduction conduit. Changes in the relative velocities of the upper and lower plate may have resulted in repetitive extensional and compressional phases of the orogeny as has been previously suggested for the southern part of the Svecofennian orogen.

  17. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  18. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    PubMed

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  19. On the role of surface friction in tropical cyclone intensification

    NASA Astrophysics Data System (ADS)

    Wang, Yuqing

    2017-04-01

    Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.

  20. Surface wind convergence as a short-term predictor of cloud-to-ground lightning at Kennedy Space Center: A four-year summary and evaluation

    NASA Technical Reports Server (NTRS)

    Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.

    1991-01-01

    Since 1986, USAF forecasters at NASA-Kennedy have had available a surface wind convergence technique for use during periods of convective development. In Florida during the summer, most of the thunderstorm development is forced by boundary layer processes. The basic premise is that the life cycle of convection is reflected in the surface wind field beneath these storms. Therefore the monitoring of the local surface divergence and/or convergence fields can be used to determine timing, location, longevity, and the lightning hazards which accompany these thunderstorms. This study evaluates four years of monitoring thunderstorm development using surface wind convergence, particularly the average over the area. Cloud-to-ground (CG) lightning is related in time and space with surface convergence for 346 days during the summers of 1987 through 1990 over the expanded wind network at KSC. The relationships are subdivided according to low level wind flow and midlevel moisture patterns. Results show a one in three chance of CG lightning when a convergence event is identified. However, when there is no convergence, the chance of CG lightning is negligible.

  1. Using Profiles of Water Vapor Flux to Characterize Turbulence in the Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Weber, Kristy Jane

    The 2015 Plains Elevated Convection at Night (PECAN) field campaign sought to increase understanding of mechanisms for nocturnal severe weather in the Great Plains of the United States. A collection of instruments from this field campaign, including a water vapor Differential LiDAR (Light Detection Imaging And Ranging) (DIAL) and 449 MHz radar wind profiler were used to measure water vapor flux in regions between 300 m and the convective boundary layer. Methods to properly sample eddies using eddy-covariance were established, where analysis showed that a 90-minute Reynold's averaging period was optimal to sample most eddies. Additionally, a case study was used to demonstrate the additional atmospheric parameters which can be calculated from profiles of water vapor flux, such as the water vapor flux convergence/divergence. Flux footprints calculated at multiple heights within the convective boundary layer also show how a surface based instrument is sampling a completely different source than one taking measurements above 300 m. This result is important, as it shows how measurements above the surface layer will not be expected to match with those taken within a few meters of the surface, especially if average surface features such as land use type and roughness length are significantly different. These calculated water vapor flux profile measurements provide a new tool to analyze boundary layer dynamics during the PECAN field campaign, and their relationships to PECAN's study areas such as mesoscale convective systems (MCSs), nocturnal low-level jets (NLLJs), elevated convective initiation, and the propagation of bores or wavelike features from nocturnal convective systems.

  2. A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equations

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.

  3. On the role of infiltration and exfiltration in swash zone boundary layer dynamics

    NASA Astrophysics Data System (ADS)

    Pintado-Patiño, José Carlos; Torres-Freyermuth, Alec; Puleo, Jack A.; Pokrajac, Dubravka

    2015-09-01

    Boundary layer dynamics are investigated using a 2-D numerical model that solves the Volume-Averaged Reynolds-Averaged Navier-Stokes equations, with a VOF-tracking scheme and a k - ɛ turbulence closure. The model is validated with highly resolved data of dam break driven swash flows over gravel impermeable and permeable beds. The spatial gradients of the velocity, bed shear stress, and turbulence intensity terms are investigated with reference to bottom boundary layer (BL) dynamics. Numerical results show that the mean vorticity responds to flow divergence/convergence at the surface that result from accelerating/decelerating portions of the flow, bed shear stress, and sinking/injection of turbulence due to infiltration/exfiltration. Hence, the zero up-crossing of the vorticity is employed as a proxy of the BL thickness inside the shallow swash zone flows. During the uprush phase, the BL develops almost instantaneously with bore arrival and fluctuates below the surface due to flow instabilities and related horizontal straining. In contrast, during the backwash phase, the BL grows quasi-linearly with less influence of surface-induced forces. However, the infiltration produces a reduction of the maximum excursion and duration of the swash event. These effects have important implications for the BL development. The numerical results suggest that the BL growth rate deviates rapidly from a quasi-linear trend if the infiltration is dominant during the initial backwash phase and the flat plate boundary layer theory may no longer be applicable under these conditions.

  4. Study of Unsteady Flows with Concave Wall Effect

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    2003-01-01

    This paper presents computational fluid dynamic studies of the inlet turbulence and wall curvature effects on the flow steadiness at near wall surface locations in boundary layer flows. The time-stepping RANS numerical solver of the NASA Glenn-HT RANS code and a one-equation turbulence model, with a uniform inlet turbulence modeling level of the order of 10 percent of molecular viscosity, were used to perform the numerical computations. The approach was first calibrated for its predictabilities of friction factor, velocity, and temperature at near surface locations within a transitional boundary layer over concave wall. The approach was then used to predict the velocity and friction factor variations in a boundary layer recovering from concave curvature. As time iteration proceeded in the computations, the computed friction factors converged to their values from existing experiments. The computed friction factors, velocity, and static temperatures at near wall surface locations oscillated periodically in terms of time iteration steps and physical locations along the span-wise direction. At the upstream stations, the relationship among the normal and tangential velocities showed vortices effects on the velocity variations. Coherent vortices effect on the velocity components broke down at downstream stations. The computations also predicted the vortices effects on the velocity variations within a boundary layer flow developed along a concave wall surface with a downstream recovery flat wall surface. It was concluded that the computational approach might have the potential to analyze the flow steadiness in a turbine blade flow.

  5. Evaluation of the operational Aerosol Layer Height retrieval algorithm for Sentinel-5 Precursor: application to O2 A band observations from GOME-2A

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.; Sneep, M.; Apituley, A.; Stammes, P.; Vieitez, M. O.; Tilstra, L. G.; Tuinder, O. N. E.; Koning, C. E.; Veefkind, J. P.

    2015-06-01

    An algorithm setup for the operational Aerosol Layer Height product for TROPOMI on the Sentinel-5 Precursor mission is described and discussed, applied to GOME-2A data, and evaluated with lidar measurements. The algorithm makes a spectral fit of reflectance at the O2 A band in the near-infrared and the fit window runs from 758 to 770 nm. The aerosol profile is parameterized by a scattering layer with constant aerosol volume extinction coefficient and aerosol single scattering albedo and with a fixed pressure thickness. The algorithm's target parameter is the height of this layer. In this paper, we apply the algorithm to observations from GOME-2A in a number of systematic and extensive case studies and we compare retrieved aerosol layer heights with lidar measurements. Aerosol scenes cover various aerosol types, both elevated and boundary layer aerosols, and land and sea surfaces. The aerosol optical thicknesses for these scenes are relatively moderate. Retrieval experiments with GOME-2A spectra are used to investigate various sensitivities, in which particular attention is given to the role of the surface albedo. From retrieval simulations with the single-layer model, we learn that the surface albedo should be a fit parameter when retrieving aerosol layer height from the O2 A band. Current uncertainties in surface albedo climatologies cause biases and non-convergences when the surface albedo is fixed in the retrieval. Biases disappear and convergence improves when the surface albedo is fitted, while precision of retrieved aerosol layer pressure is still largely within requirement levels. Moreover, we show that fitting the surface albedo helps to ameliorate biases in retrieved aerosol layer height when the assumed aerosol model is inaccurate. Subsequent retrievals with GOME-2A spectra confirm that convergence is better when the surface albedo is retrieved simultaneously with aerosol parameters. However, retrieved aerosol layer pressures are systematically low (i.e., layer high in the atmosphere) to the extent that retrieved values are not realistically representing actual extinction profiles anymore. When the surface albedo is fixed in retrievals with GOME-2A spectra, convergence deteriorates as expected, but retrieved aerosol layer pressures become much higher (i.e., layer lower in atmosphere). The comparison with lidar measurements indicates that retrieved aerosol layer heights are indeed representative of the underlying profile in that case. Finally, subsequent retrieval simulations with two-layer aerosol profiles show that a model error in the assumed profile (two layers in the simulation but only one in the retrieval) is partly absorbed by the surface albedo when this parameter is fitted. This is expected in view of the correlations between errors in fit parameters and the effect is relatively small for elevated layers (less than 100 hPa). In case one of the scattering layers is near the surface (boundary layer aerosols), the effect becomes surprisingly large such that the retrieved height of the single layer is above the two-layer profile. Furthermore, we find that the retrieval solution, once retrieval converges, hardly depends on the starting values for the fit. Sensitivity experiments with GOME-2A spectra also show that aerosol layer height is indeed relatively robust against inaccuracies in the assumed aerosol model, even when the surface albedo is not fitted. We show spectral fit residuals, which can be used for further investigations. Fit residuals may be partly explained by spectroscopic uncertainties, which is suggested by an experiment showing the improvement of convergence when the absorption cross section is scaled in agreement with Butz et al. (2012) and Crisp et al. (2012) and a temperature offset to the a priori ECMWF temperature profile is fitted. Retrieved temperature offsets are always negative and quite large (ranging between -4 and -8 K), which is not expected if temperature offsets absorb remaining inaccuracies in meteorological data. Other sensitivity experiments investigate fitting of stray light and fluorescence emissions. We find negative radiance offsets and negative fluorescence emissions, also for non-vegetated areas, but from the results it is not clear whether fitting these parameters improves the retrieval. Based on the present results, the operational baseline for the Aerosol Layer Height product currently will not fit the surface albedo. The product will be particularly suited for elevated, optically thick aerosol layers. In addition to its scientific value in climate research, anticipated applications of the product for TROPOMI are providing aerosol height information for aviation safety and improving interpretation of the Absorbing Aerosol Index.

  6. Evaluation of the operational Aerosol Layer Height retrieval algorithm for Sentinel-5 Precursor: application to O2 A band observations from GOME-2A

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.; Sneep, M.; Apituley, A.; Stammes, P.; Vieitez, M. O.; Tilstra, L. G.; Tuinder, O. N. E.; Koning, C. E.; Veefkind, J. P.

    2015-11-01

    An algorithm setup for the operational Aerosol Layer Height product for TROPOMI on the Sentinel-5 Precursor mission is described and discussed, applied to GOME-2A data, and evaluated with lidar measurements. The algorithm makes a spectral fit of reflectance at the O2 A band in the near-infrared and the fit window runs from 758 to 770 nm. The aerosol profile is parameterised by a scattering layer with constant aerosol volume extinction coefficient and aerosol single scattering albedo and with a fixed pressure thickness. The algorithm's target parameter is the height of this layer. In this paper, we apply the algorithm to observations from GOME-2A in a number of systematic and extensive case studies, and we compare retrieved aerosol layer heights with lidar measurements. Aerosol scenes cover various aerosol types, both elevated and boundary layer aerosols, and land and sea surfaces. The aerosol optical thicknesses for these scenes are relatively moderate. Retrieval experiments with GOME-2A spectra are used to investigate various sensitivities, in which particular attention is given to the role of the surface albedo. From retrieval simulations with the single-layer model, we learn that the surface albedo should be a fit parameter when retrieving aerosol layer height from the O2 A band. Current uncertainties in surface albedo climatologies cause biases and non-convergences when the surface albedo is fixed in the retrieval. Biases disappear and convergence improves when the surface albedo is fitted, while precision of retrieved aerosol layer pressure is still largely within requirement levels. Moreover, we show that fitting the surface albedo helps to ameliorate biases in retrieved aerosol layer height when the assumed aerosol model is inaccurate. Subsequent retrievals with GOME-2A spectra confirm that convergence is better when the surface albedo is retrieved simultaneously with aerosol parameters. However, retrieved aerosol layer pressures are systematically low (i.e., layer high in the atmosphere) to the extent that retrieved values no longer realistically represent actual extinction profiles. When the surface albedo is fixed in retrievals with GOME-2A spectra, convergence deteriorates as expected, but retrieved aerosol layer pressures become much higher (i.e., layer lower in atmosphere). The comparison with lidar measurements indicates that retrieved aerosol layer heights are indeed representative of the underlying profile in that case. Finally, subsequent retrieval simulations with two-layer aerosol profiles show that a model error in the assumed profile (two layers in the simulation but only one in the retrieval) is partly absorbed by the surface albedo when this parameter is fitted. This is expected in view of the correlations between errors in fit parameters and the effect is relatively small for elevated layers (less than 100 hPa). If one of the scattering layers is near the surface (boundary layer aerosols), the effect becomes surprisingly large, in such a way that the retrieved height of the single layer is above the two-layer profile. Furthermore, we find that the retrieval solution, once retrieval converges, hardly depends on the starting values for the fit. Sensitivity experiments with GOME-2A spectra also show that aerosol layer height is indeed relatively robust against inaccuracies in the assumed aerosol model, even when the surface albedo is not fitted. We show spectral fit residuals, which can be used for further investigations. Fit residuals may be partly explained by spectroscopic uncertainties, which is suggested by an experiment showing the improvement of convergence when the absorption cross section is scaled in agreement with Butz et al. (2013) and Crisp et al. (2012), and a temperature offset to the a priori ECMWF temperature profile is fitted. Retrieved temperature offsets are always negative and quite large (ranging between -4 and -8 K), which is not expected if temperature offsets absorb remaining inaccuracies in meteorological data. Other sensitivity experiments investigate fitting of stray light and fluorescence emissions. We find negative radiance offsets and negative fluorescence emissions, also for non-vegetated areas, but from the results it is not clear whether fitting these parameters improves the retrieval. Based on the present results, the operational baseline for the Aerosol Layer Height product currently will not fit the surface albedo. The product will be particularly suited for elevated, optically thick aerosol layers. In addition to its scientific value in climate research, anticipated applications of the product for TROPOMI are providing aerosol height information for aviation safety and improving interpretation of the Absorbing Aerosol Index.

  7. Coarsening strategies for unstructured multigrid techniques with application to anisotropic problems

    NASA Technical Reports Server (NTRS)

    Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e., the aspect-ratio AR = delta y/delta x is much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotopic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.

  8. Coarsening Strategies for Unstructured Multigrid Techniques with Application to Anisotropic Problems

    NASA Technical Reports Server (NTRS)

    Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.

    1996-01-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e. the aspect-ratio AR = (delta)y/(delta)x much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotropic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.

  9. Proterozoic crustal boundary in the southern part of the Illinois Basin

    USGS Publications Warehouse

    Heigold, P.C.; Kolata, Dennis R.

    1993-01-01

    Recently acquired COCORP and proprietary seismic reflection data in the southern part of the Illinois Basin, combined with other geological and geophysical data, indicate that a WNW-trending Proterozoic terrane boundary (40 km wide) lies within basement. The boundary is characterized by the termination of subhorizontal Proterozoic reflectors and associated diffraction patterns along a line coinciding with the major magnetic lineament in this region (South Central Magnetic Lineament). North of the boundary, where reflectors thought to represent a sequence of layered Proterozoic rocks in the upper crust are widespread and as much as 11 km thick, total magnetic intensity values are relatively high, suggesting layers of rock with high magnetic susceptibility. To the south, the Proterozoic rocks are acoustically transparent on seismic reflection sections and total magnetic intensity values are relatively low. Moreover, relatively high Bouguer gravity anomaly values to the south may be caused by a dense, altered, lower crustal layer similar to that interpreted from deep seismic refraction studies to underlie the northern Mississippi Embayment. The boundary lies along the projected trend of the northern margin of the Early Proterozoic Central Plains orogen and we suggest that it marks the convergent margin of this orogen. Reactivation of the boundary and the associated zone of weakness during late Paleozoic times apparently resulted in structural deformation in the southern part of the Illinois Basin, including movement along the Cottage Grove Fault System and Ste. Genevieve Fault Zone and igneous activity at Hicks Dome. In addition to the role played by this crustal boundary in the evolution of the Illinois Basin, its location between the Wabash Valley Seismic Zone to the northeast and the New Madrid Seismic Zone to the southwest may be a significant factor in present-day seismicity. ?? 1993.

  10. Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Coupling of smoke direct radiative feedbacks below and above the low-level clouds

    NASA Astrophysics Data System (ADS)

    Ge, C.; Wang, J.; Reid, J. S.

    2013-12-01

    The online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to simulate the direct and semi-direct radiative impacts of smoke particles over the southeast Asian Marine Continents (MC, 10°S - 10°N, 90°E-150°E) during October 2006 when a significant El Nino event caused the highest biomass burning activity since 1997. With the use of OC (Organic Carbon) /BC (Black Carbon) ratio of 10 in the smoke emission inventory, the baseline simulation shows that the low-level clouds amplifying effect on smoke absorption led to a warming effect at the top-of-atmosphere (TOA) with a domain/monthly average forcing value of ~20 Wm-2 over the islands of Borneo and Sumatra. The smoke-induced monthly average daytime heating (0.3K) that is largely confined above the low-level clouds results in the local convergence over the smoke source region. This heating-induced convergence coupled with daytime planetary boundary layer turbulent mixing, transports more smoke particles above the planetary boundary layer height (PBLH), hence rendering a positive feedback. This positive feedback contrasts with the decrease of cloud fraction resulted from the combined effects of smoke heating within the cloud layer and the more stability in the boundary layer; the latter can be considered as a negative feedback in which decrease of cloud fraction weakens the heating by smoke particles above the clouds. During nighttime, the elevated smoke layer (above clouds in daytime) is decoupled from boundary layer, and the reduction of PBLH due to the residual surface cooling from the daytime lead to the accumulation of smoke particles near the surface. Because of smoke radiative extinction, on monthly basis, the amount of the solar input at the surface is reduced as large as 60 Wm-2, which lead to the decrease of sensible heat, latent heat, 2-m air temperature, and PBLH by a maximum of 20 Wm-2, 20 Wm-2, 1K, 120 m, respectively. The cloud changes over continents are mostly occurred over the islands of Sumatra and Borneo during the daytime, where the low-level cloud fraction decreases more than 10%. However, the change of local wind (include sea breeze) induced by the smoke radiative feedback leads to more convergence over Karimata Strait and south coastal area of Kalimantan during both daytime and night time; consequently, cloud fraction is increased there up to 20%. The sensitivities with different OC/BC ratio show the importance of the smoke single scattering albedo for the smoke semi-direct effects. A case study on 31 October 2006 further demonstrated a much larger (more than twice of the monthly average) feedback induced by smoke aerosols. The decreased sea breeze during big events can lead to prominent increase (40%) of low-level cloud over coastal water. Lastly, the direct and semi-direct radiative impact of smoke particles over the Southeast Asian Marine Continents is summarized as a conceptual model.

  11. Navier-Stokes calculations on multi-element airfoils using a chimera-based solver

    NASA Technical Reports Server (NTRS)

    Jasper, Donald W.; Agrawal, Shreekant; Robinson, Brian A.

    1993-01-01

    A study of Navier-Stokes calculations of flows about multielement airfoils using a chimera grid approach is presented. The chimera approach utilizes structured, overlapped grids which allow great flexibility of grid arrangement and simplifies grid generation. Calculations are made for two-, three-, and four-element airfoils, and modeling of the effect of gap distance between elements is demonstrated for a two element case. Solutions are obtained using the thin-layer form of the Reynolds averaged Navier-Stokes equations with turbulence closure provided by the Baldwin-Lomax algebraic model or the Baldwin-Barth one equation model. The Baldwin-Barth turbulence model is shown to provide better agreement with experimental data and to dramatically improve convergence rates for some cases. Recently developed, improved farfield boundary conditions are incorporated into the solver for greater efficiency. Computed results show good comparison with experimental data which include aerodynamic forces, surface pressures, and boundary layer velocity profiles.

  12. Finite strain calculations of continental deformation. I - Method and general results for convergent zones. II - Comparison with the India-Asia collision zone

    NASA Technical Reports Server (NTRS)

    Houseman, G.; England, P.

    1986-01-01

    The present investigation has the objective to perform numerical experiments on a rheologically simple continuum model for the continental lithosphere. It is attempted to obtain a better understanding of the dynamics of continental deformation. Calculations are presented of crustal thickness distributions, stress, strain, strain rate fields, latitudinal displacements, and finite rotations, taking into account as basis a model for continental collision which treats the litoshphere as a thin viscous layer subject to indenting boundary conditions. The results of this paper support the conclusions of England and McKenzie (1982) regarding the role of gravity in governing the deformation of a thin viscous layer subject to indenting boundary conditions. The results of the experiments are compared with observations of topography, stress and strain rate fields, and palaeomagnetic latitudinal displacements in Asia.

  13. Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model.

    PubMed

    Boulanger, Eliot; Thiel, Walter

    2012-11-13

    Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a finite difference approximation to the Poisson-Boltzmann equation for computing electrostatic interactions and take into account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD) simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the PDC does not lead to a polarization catastrophe of the DO models. Optimum values for some key parameters are discussed. We also address the efficiency of these approaches compared to standard QM/MM-DO calculations without BP. In the SMBP case, computation times can be reduced by around 40% for each step of a geometry optimization, with some variation depending on the chosen QM method. In the GSBP case, the computational advantages of using the boundary potential increase with system size and with the number of MD steps.

  14. Marine Layer Stratus Study

    NASA Astrophysics Data System (ADS)

    Wells, Leonard A.

    2007-06-01

    The intent of this study is to develop a better understanding of the behavior of late spring through early fall marine layer stratus and fog at Vandenberg Air Force Base, which accounts for a majority of aviation forecasting difficulties. The main objective was to use Leipper (1995) study as a starting point to evaluate synoptic and mesoscale processes involved, and identify specific meteorological parameters that affected the behavior of marine layer stratus and fog. After identifying those parameters, the study evaluates how well the various weather models forecast them. The main conclusion of this study is that weak upper-air dynamic features work with boundary layer motions to influence marine layer behavior. It highlights the importance of correctly forecasting the surface temperature by showing how it ties directly to the wind field. That wind field, modified by the local terrain, establishes the low-level convergence and divergence pattern and the resulting marine layer cloud thicknesses and visibilities.

  15. Inflow/Outflow Boundary Conditions with Application to FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2011-01-01

    Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.

  16. Hillslope-scale experiment demonstrates role of convergence during two-step saturation

    USGS Publications Warehouse

    Gevaert, A. I.; Teuling, A. J.; Uijlenhoet, R.; DeLong, Stephen B.; Huxman, T. E.; Pangle, L. A.; Breshears, David D.; Chorover, J.; Pelletier, John D.; Saleska, S. R.; Zeng, X.; Troch, Peter A.

    2014-01-01

    Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO.

  17. An efficient solution technique for shockwave-boundary layer interactions with flow separation and slot suction effects

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Mcrae, D. Scott

    1991-01-01

    An efficient method for computing two-dimensional compressible Navier-Stokes flow fields is presented. The solution algorithm is a fully-implicit approximate factorization technique based on an unsymmetric line Gauss-Seidel splitting of the equation system Jacobian matrix. Convergence characteristics are improved by the addition of acceleration techniques based on Shamanskii's method for nonlinear equations and Broyden's quasi-Newton update. Characteristic-based differencing of the equations is provided by means of Van Leer's flux vector splitting. In this investigation, emphasis is placed on the fast and accurate computation of shock-wave-boundary layer interactions with and without slot suction effects. In the latter context, a set of numerical boundary conditions for simulating the transpiration flow in an open slot is devised. Both laminar and turbulent cases are considered, with turbulent closure provided by a modified Cebeci-Smith algebraic model. Comparisons with computational and experimental data sets are presented for a variety of interactions, and a fully-coupled simulation of a plenum chamber/inlet flowfield with shock interaction and suction is also shown and discussed.

  18. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  19. Low Cloud Type over the Ocean from Surface Observations. Part III: Relationship to Vertical Motion and the Regional Surface Synoptic Environment.

    NASA Astrophysics Data System (ADS)

    Norris, Joel R.; Klein, Stephen A.

    2000-01-01

    Composite large-scale dynamical fields contemporaneous with low cloud types observed at midlatitude Ocean Weather Station (OWS) C and eastern subtropical OWS N are used to establish representative relationships between low cloud type and the synoptic environment. The composites are constructed by averaging meteorological observations of surface wind and sea level pressure from volunteering observing ships (VOS) and analyses of sea level pressure, 1000-mb wind, and 700-mb pressure vertical velocity from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project on those dates and times of day when a particular low cloud type was reported at the OWS.VOS and NCEP results for OWS C during summer show that bad-weather stratus occurs with strong convergence and ascent slightly ahead of a surface low center and trough. Cumulus-under-stratocumulus and moderate and large cumulus occur with divergence and subsidence in the cold sector of an extratropical cyclone. Both sky-obscuring fog and no-low-cloud typically occur with southwesterly flow from regions of warmer sea surface temperature and differ primarily according to slight surface convergence and stronger warm advection in the case of sky-obscuring fog or surface divergence and weaker warm advection in the case of no-low-cloud. Fair-weather stratus and ordinary stratocumulus are associated with a mixture of meteorological conditions, but differ with respect to vertical motion in the environment. Fair-weather stratus occurs most commonly in the presence of slight convergence and ascent, while stratocumulus often occurs in the presence of divergence and subsidence.Surface divergence and estimated subsidence at the top of the boundary layer are calculated from VOS observations. At both OWS C and OWS N during summer and winter these values are large for ordinary stratocumulus, less for cumulus-under-stratocumulus, and least (and sometimes slightly negative) for moderate and large cumulus. Subsidence interpolated from NCEP analyses to the top of the boundary layer does not exhibit such variation, but the discrepancy may be due to deficiencies in the analysis procedure or the boundary layer parameterization of the NCEP model. The VOS results suggest that decreasing divergence and subsidence in addition to increasing sea surface temperature may promote the transition from stratocumulus to trade cumulus observed over low-latitude oceans.

  20. A Top-Down Pathway to Secondary Eyewall Formation in Simulated Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Tyner, Bryce; Zhu, Ping; Zhang, Jun A.; Gopalakrishnan, Sundararaman; Marks, Frank; Tallapragada, Vijay

    2018-01-01

    Idealized and real-case simulations conducted using the Hurricane Weather Research and Forecasting (HWRF) model demonstrate a "top-down" pathway to secondary eyewall formation (SEF) for tropical cyclones (TCs). For the real-case simulations of Hurricane Rita (2005) and Hurricane Edouard (2014), a comparison to observations reveals the timing and overall characteristics of the simulated SEF appear realistic. An important control of the top-down pathway to SEF is the amount and radial-height distribution of hydrometeors at outer radii. Examination into the simulated hydrometeor particle fall speed distribution reveals that the HWRF operational microphysics scheme is not producing the lightest hydrometeors, which are likely present in observed TCs and are most conducive to being advected from the primary eyewall to the outer rainband region of the TC. Triggering of SEF begins with the fallout of hydrometeors at the outer radii from the TC primary eyewall, where penetrative downdrafts resulting from evaporative cooling of precipitation promote the development of local convection. As the convection-induced radial convergence that is initially located in the midtroposphere extends downward into the boundary layer, it results in the eruption of high entropy air out of the boundary layer. This leads to the rapid development of rainband convection and subsequent SEF via a positive feedback among precipitation, convection, and boundary layer processes.

  1. Forcing, properties, structure, and antecedent synoptic climatology of the Snake River Plain Convergence Zone of eastern Idaho: Analyses of observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Andretta, Thomas A.

    The Snake River Plain Convergence Zone (SPCZ) is a convergent shear zone generated by synoptic-scale post cold-frontal winds in the planetary boundary layer (PBL) interacting with the complex topography of eastern Idaho. The SPCZ produces clouds and occasional precipitation over time scales of 6--12 hours in a significant area of mesoscale dimensions (10--50 x 10 3 km2). This meso-beta-scale feature also contributes to the precipitation climatology in a semi-arid plain. The SPCZ is climatologically linked to the passage of synoptic-scale cold fronts and typically occurs in the fall and winter months with the highest frequencies in October, November, and January. The Snake River Plain of eastern Idaho is covered by a dense surface mesonetwork of towers with sensible weather measurements, single Doppler weather radar, regional soundings, and operational model sources. The ability of numerical weather prediction models to simulate the SPCZ depends on several factors: the accuracy of the large scale flow upstream of the zone, terrain resolution, grid scale, boundary layer parameterizations of stability, cumulus parameterizations, and microphysics schemes. This dissertation explores several of these issues with the aforementioned observations and with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model simulations of selected SPCZ events. This dissertation first explains the conceptual models of the flow patterns related to the genesis of the SPCZ in light of other well-documented topographically-generated zones. The study then explores the links between the theoretical models and observations of the SPCZ in several episodes. With this foundation, the dissertation then tests several hypotheses relating to the horizontal and vertical zone structure, topographic sensitivity on the zone structure, and boundary layer evolution of the zone through the use of high resolution nested grid numerical simulations. The SPCZ consists of windward and leeward flow regimes in Idaho which form under low Froude number (stable blocked flow) in a post cold-frontal environment. The SPCZ is a weak baroclinic feature. The formation of the zone is independent of the vertical wind shear in the middle to upper troposphere. With a grid scale of 4 km, the WRF-ARW model adequately reproduces the post cold-frontal environment, windward and leeward convergence zones, relative vertical vorticity belts, and precipitation bands in several SPCZ cases. The vertical structure of the SPCZ reveals upright reflectivity towers with circulations that tilt slightly with height into the colder air aloft. Topographic sensitivity analyses of the SPCZ indicate that the terrain-driven circulations and resulting snow bands are more defined at the finer terrain scales. The ambient horizontal wind shear in the tributary valleys of the Central Mountains creates potential vorticity (PV) banners. The PV banner maintenance and strength are directly tied to the terrain resolution. An environment of convective instability sometimes occurs as a layer of air is lifted along the gentle elevation rise of the eastern Magic Valley and lower plain. An environment of inertial instability forms within the anticyclonic (negative) vorticity belts in the upper plain. Potential symmetric instability (PSI) may be released in a moist environment near the vorticity banners. The planetary boundary layer perturbed by the SPCZ inside the Snake River Plain is characterized by a deeper mixed layer with stronger vertical motions relative to a PBL in a sheltered valley outside the plain. Finally, a 10-year antecedent synoptic climatology of 78 SPCZ events reveals two pattern types: Type N (wet and warm) and Type S (dry and cold). The 40° N parallel divides these two synoptic patterns.

  2. Rainfall Morphology in Semi-Tropical Convergence Zones

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.

    2000-01-01

    Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.

  3. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  4. Grid adaptation using chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  5. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  6. Assimilation of satellite altimeter data into an open ocean model

    NASA Astrophysics Data System (ADS)

    Vogeler, Armin; SchröTer, Jens

    1995-08-01

    Geosat sea surface height data are assimilated into an eddy-resolving quasi-geostrophic open ocean model using the adjoint technique. The method adjusts the initial conditions for all layers and is successful on the timescale of a few weeks. Time-varying values for the open boundaries are prescribed by a much larger quasi-geostrophic model of the Antarctic Circumpolar Current (ACC). Both models have the same resolution of approximately 20×20 km (1/3°×1/6°), have three layers, and include realistic bottom topography and coastlines. The open model box is embedded in the African sector of the ACC. For continuous assimilation of satellite data into the larger model the nudging technique is applied. These results are used for the adjoint optimization procedure as boundary conditions and as a first guess for the initial condition. For the open model box the difference between model and satellite sea surface height that remains after the nudging experiment amounts to a 19-cm root-mean-square error (rmse). By assimilation into the regional model this value can be reduced to a 6-cm rmse for an assimilation period of 20 days. Several experiments which attempt to improve the convergence of the iterative optimization method are reported. Scaling and regularization by smoothing have to be applied carefully. Especially during the first 10 iterations, the convergence can be improved considerably by low-pass filtering of the cost function gradient. The result of a perturbation experiment shows that for longer assimilation periods the influence of the boundary values becomes dominant and they should be determined inversely by data assimilation into the open ocean model.

  7. Direct numerical simulation of particulate flows with an overset grid method

    NASA Astrophysics Data System (ADS)

    Koblitz, A. R.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D.

    2017-08-01

    We evaluate an efficient overset grid method for two-dimensional and three-dimensional particulate flows for small numbers of particles at finite Reynolds number. The rigid particles are discretised using moving overset grids overlaid on a Cartesian background grid. This allows for strongly-enforced boundary conditions and local grid refinement at particle surfaces, thereby accurately capturing the viscous boundary layer at modest computational cost. The incompressible Navier-Stokes equations are solved with a fractional-step scheme which is second-order-accurate in space and time, while the fluid-solid coupling is achieved with a partitioned approach including multiple sub-iterations to increase stability for light, rigid bodies. Through a series of benchmark studies we demonstrate the accuracy and efficiency of this approach compared to other boundary conformal and static grid methods in the literature. In particular, we find that fully resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many common test cases. With our approach we are able to compute accurate solutions using as little as one third the number of grid points as uniform grid computations in the literature. A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid test case whilst maintaining comparable solution accuracy.

  8. Investigation of the Conjugate Heat and Mass Transfer at Ignition and Subsequent Nonstationary Erosion Combustion of Powders Under Conditions Close to Those of Firing a Shot

    NASA Astrophysics Data System (ADS)

    Rusyak, I. G.; Lipanov, A. M.

    2016-11-01

    The laws of combustion of powders under conditions close to those of firing an artillery shot have been investigated. A solid-state local heat ignition model was used, and the process of powder combustion was simulated on the basis of the notions of the Belyaev-Zel'dovich thermal combustion theory. The complete formulation of the combustion problem includes the nonstationary processes of heat propagation and chemical transformation in the k-phase, as well as the quasi-stationary processes in the chemically reacting two-stage turbulent boundary layer near the combustion surface related to the characteristics of the averaged nonstationary flow by the boundary conditions at the outer boundary of the boundary layer. The features of the joint solution of the equations of the thermal combustion theory and the equations of internal ballistics have been analyzed. The questions on the convergence of the conjugate problem have been considered. The influence of various factors on the rate of combustion of powder has been investigated. The investigations conducted enabled us to formulate an approximate method for calculating the nonstationary and erosion rates of combustion of artillery powders at a shot on the basis of the Lenouard-Robillard-Karakozov approach.

  9. Algorithm for computing descriptive statistics for very large data sets and the exa-scale era

    NASA Astrophysics Data System (ADS)

    Beekman, Izaak

    2017-11-01

    An algorithm for Single-point, Parallel, Online, Converging Statistics (SPOCS) is presented. It is suited for in situ analysis that traditionally would be relegated to post-processing, and can be used to monitor the statistical convergence and estimate the error/residual in the quantity-useful for uncertainty quantification too. Today, data may be generated at an overwhelming rate by numerical simulations and proliferating sensing apparatuses in experiments and engineering applications. Monitoring descriptive statistics in real time lets costly computations and experiments be gracefully aborted if an error has occurred, and monitoring the level of statistical convergence allows them to be run for the shortest amount of time required to obtain good results. This algorithm extends work by Pébay (Sandia Report SAND2008-6212). Pébay's algorithms are recast into a converging delta formulation, with provably favorable properties. The mean, variance, covariances and arbitrary higher order statistical moments are computed in one pass. The algorithm is tested using Sillero, Jiménez, & Moser's (2013, 2014) publicly available UPM high Reynolds number turbulent boundary layer data set, demonstrating numerical robustness, efficiency and other favorable properties.

  10. The Battlefield Environment Division Modeling Framework (BMF). Part 1: Optimizing the Atmospheric Boundary Layer Environment Model for Cluster Computing

    DTIC Science & Technology

    2014-02-01

    idle waiting for the wavefront to reach it. To overcome this, Reeve et al. (2001) 3 developed a scheme in analogy to the red-black Gauss - Seidel iterative ...understandable procedure calls. Parallelization of the SIMPLE iterative scheme with SIP used a red-black scheme similar to the red-black Gauss - Seidel ...scheme, the SIMPLE method, for pressure-velocity coupling. The result is a slowing convergence of the outer iterations . The red-black scheme excites a 2

  11. Air-sea interaction at the subtropical convergence south of Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van

    1994-12-31

    The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBTmore » and CTD) were jointly made with radiosonde observations and air-sea interaction measurements. The air-sea interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent fluxes of momentum, sensible heat and latent heat were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net heat loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere exchanges.« less

  12. Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    This communication explores magnetohydrodynamic (MHD) boundary-layer flow of Jeffrey nanofluid over a nonlinear stretching surface with active and passive controls of nanoparticles. A nonlinear stretching surface generates the flow. Effects of thermophoresis and Brownian diffusion are considered. Jeffrey fluid is electrically conducted subject to non-uniform magnetic field. Low magnetic Reynolds number and boundary-layer approximations have been considered in mathematical modelling. The phenomena of impulsing the particles away from the surface in combination with non-zero mass flux condition is known as the condition of zero mass flux. Convergent series solutions for the nonlinear governing system are established through optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the temperature and concentration distributions are affected by distinct physical flow parameters. Skin friction coefficient and local Nusselt and Sherwood numbers are also computed and analyzed. Our findings show that the temperature and concentration distributions are increasing functions of Hartman number and thermophoresis parameter.

  13. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Model Problem

    NASA Technical Reports Server (NTRS)

    West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

    2006-01-01

    All solutions with Loci-CHEM achieved demonstrated steady state and mesh convergence. Preconditioning had no effect on solution accuracy and typically yields a 3-5times solution speed-up. The SST turbulence model has superior performance, relative to the data in the head end region, for the rise rate and peak heat flux. It was slightly worse than the others in the downstream region where all over-predicted the data by 30-100%.There was systematic mesh refinement in the unstructured volume and structured boundary layer areas produced only minor solution differences. Mesh convergence was achieved. Overall, Loci-CHEM satisfactorily predicts heat flux rise rate and peak heat flux and significantly over predicts the downstream heat flux.

  14. Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

    NASA Astrophysics Data System (ADS)

    Fellner, Klemens; Tang, Bao Quoc

    2018-06-01

    The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

  15. Structure and formation of convection of secondary rainbands in a simulated typhoon Jangmi (2008)

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Tan, Zhe-Min; Chow, Kim-Chiu

    2018-04-01

    Secondary rainbands in tropical cyclone are relatively transient compared with the quasi-stationary principle rainbands. To have a better understanding on their convective structure, a cloud-resolving scale numerical simulation of the super typhoon Jangmi (2008) was performed. The results suggest that the convections in secondary rainbands have some distinctive features that may not be seen in other types of rainbands in tropical cyclone. First, they have a front-like structure and are triggered to form above the boundary layer by the convergence of the above-boundary outflow from the inner side (warmer) and the descending inflow (colder) from the outer side. These elevated convections can be further confirmed by the three-dimensional backward trajectory calculations. Second, due to the release in baroclinic energy, the lower portion of the mid-level inflow from outside may penetrate into the bottom of the convection tower and may help accelerate the boundary layer inflow in the inner side. Third, the local maximum tangential wind is concentrated in the updraft region, with a lower portion which is dipping inward. Tangential wind budget analysis also suggests that the maxima are mainly contributed by the updraft advection, and can be advected cyclonically downstream by the tangential advection.

  16. Characteristics of buoyancy force on stagnation point flow with magneto-nanoparticles and zero mass flux condition

    NASA Astrophysics Data System (ADS)

    Uddin, Iftikhar; Khan, Muhammad Altaf; Ullah, Saif; Islam, Saeed; Israr, Muhammad; Hussain, Fawad

    2018-03-01

    This attempt dedicated to the solution of buoyancy effect over a stretching sheet in existence of MHD stagnation point flow with convective boundary conditions. Thermophoresis and Brownian motion aspects are included. Incompressible fluid is electrically conducted in the presence of varying magnetic field. Boundary layer analysis is used to develop the mathematical formulation. Zero mass flux condition is considered at the boundary. Non-linear ordinary differential system of equations is constructed by means of proper transformations. Interval of convergence via numerical data and plots are developed. Characteristics of involved variables on the velocity, temperature and concentration distributions are sketched and discussed. Features of correlated parameters on Cf and Nu are examined by means of tables. It is found that buoyancy ratio and magnetic parameters increase and reduce the velocity field. Further opposite feature is noticed for higher values of thermophoresis and Brownian motion parameters on concentration distribution.

  17. A computational fluid dynamics simulation of the hypersonic flight of the Pegasus(TM) vehicle using an artificial viscosity model and a nonlinear filtering method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mendoza, John Cadiz

    1995-01-01

    The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.

  18. Turbulence Statistics in the Coastal Ocean Bottom Boundary Layer

    NASA Astrophysics Data System (ADS)

    Nayak, A. R.; Hackett, E. E.; Luznik, L.; Katz, J.; Osborn, T. R.

    2010-12-01

    A submersible particle image velocimetry (PIV) system was deployed off the coast of New Jersey, near the LEO-15 site, to characterize the flow and turbulence in the inner part of the continental shelf bottom boundary layer. The measurement domain extended from 5 mm at the bottom up to an elevation of 51 cm in different datasets. The flow comprised of a mean current and wave-induced flow with a period of 10 s. The ratio of wave velocity amplitude to mean current magnitude varied over the tidal cycle and with elevation, with a maximum of 2.35. Their relative orientation also varied. Large databases of time-resolved, high resolution, 2D velocity distributions enabled us to calculate the instantaneous spatial velocity gradients, and from them, the statistically converged vertical dissipation rate profiles. Reynolds Stresses were estimated using the Shaw & Trowbridge technique outside of the wave boundary layer (WBL), and directly, using the instantaneous spatial variations in velocity, near the wall. Results were utilized for calculating the shear production profiles. Hilbert Transforms were utilized for calculating the wave phase of each velocity distribution, and performing conditional sampling of data to determine variations in flow and turbulence parameters during a wave cycle. The mean velocity profiles indicated the presence of a wave boundary layer, followed by a transition region, and a log layer above it. The datasets extending to the wall show that there is no clear log layer within the WBL, but, as expected, profiles vary substantially with location relative to the ripples. Phase dependent variations in mean flow and dissipation rate occurred only in the WBL and transition region, but vanished at higher elevations. The dissipation rate typically peaked during acceleration phases of wave-induced motion, especially near the wall, but it sometimes peaked during wave-crest phases. Below the transition region, the dissipation rate increased rapidly as the wall was approached all the way to the ripple crest, presumably due to the increasing presence of eddies with characteristic size of 1-3 times the ripple height that fell in the dissipation range of the energy spectra. Shear production also peaked at the ripple crest, consistent with laboratory data for rough wall boundary layers. Acknowledgements : NSF

  19. Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow

    NASA Astrophysics Data System (ADS)

    Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.

    2018-03-01

    We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0

  20. On the tectonics of Venus

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Jafar

    1993-02-01

    The thermal evolution and mechanical properties of a mechanical boundary layer of mantle convection are calculated for three Venus models—cold, Earth-like, and hot—with temperatures of 1300°C, 1400°C, and 1500°C, respectively at the base of their thermal boundary layers. The mechanical boundary layers consist of a basaltic crust with thicknesses of 3 km, 9 km, and 18 km, and depleted periodotitic mantle with thicknesses of 37 km, 65 km, and 90 km, respectively. The thin crust of the cold Venus model couples tightly to the underlying mantle and produces a single competent layer, whereas the thicker crust of the other models has a weak lower part that decouples the crust from the mantle. The characteristic wavelengths (10-20 km) of the banded terrains of tesserae surrounding Ishtar Terra can be explained by the buckling of the crusts of all three Venus models as long as their mechanical boundary layers are older than approximately 150 m.a., implying that the observed wavelengths provide no constraint on the thickness and age of the Venusian crust that is older than approximately 150 m.a. Shortening of the basaltic crust, however, cannot produce surface elevations higher than about 2 km on Venus, because basalt in the lower crust transforms to high-density eclogite, which sinks into the mantle. Therefore, Lakshmi Planum and the surrounding mountains probably contain lower-density material and are analogous to continental masses on the Earth. The ridge spacings of the northern ridge belt can be interpreted as being caused by faulting of the depleted mantle of the cold and Earth-like Venus models if the mechanical boundary layer is older than about 100 m.a. and 200 m.a., respectively. The hot model, however, cannot account for the formation of the ridge belt. Besides the characteristic wavelengths of the banded terrains and spacings of the ridge belts, the cold Venus model seems to account for many other features on Venus. The dynamic support of the surface topography of tesserae requires a convergence velocity of less than 0.1 cm year -1 for the mechanical boundary layer of the cold Venus model. This very low velocity is supported by the spatially random distribution of craters on Venus. Furthermore, the lack of pervasive volcanism on Venus in approximately the last 500 m.y., the lack of an internal magnetic field of Venus, and the lack of an oceanic type ridge system on Venus support the cold Venus model.

  1. Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow

    NASA Technical Reports Server (NTRS)

    Harris, J. E.; Blanchard, D. K.

    1982-01-01

    A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.

  2. Solution of linear systems by a singular perturbation technique

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1976-01-01

    An approximate solution is obtained for a singularly perturbed system of initial valued, time invariant, linear differential equations with multiple boundary layers. Conditions are stated under which the approximate solution converges uniformly to the exact solution as the perturbation parameter tends to zero. The solution is obtained by the method of matched asymptotic expansions. Use of the results for obtaining approximate solutions of general linear systems is discussed. An example is considered to illustrate the method and it is shown that the formulas derived give a readily computed uniform approximation.

  3. Satellite observations of the onset and growth of severe local storms

    NASA Technical Reports Server (NTRS)

    Negri, A. J.; Vonderhaar, T. H.

    1977-01-01

    The mesoscale nature of the forcing and evolution of these storms was investigated, with emphasis on techniques to aid in the early detection of such severe events. In the pre-storm environment (t-4 to t-2 hours), the satellite wind fields were combined with moisture parameters to derive horizontal moisture flux information. Low level moisture convergence was indicative of regions of subsequent severe storm genesis. Dynamic parameters such as boundary layer vorticity production and relative vorticity were also useful prognosticators of subsequent severe activity.

  4. Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids

    NASA Astrophysics Data System (ADS)

    Otero, Evelyn; Eliasson, Peter

    2015-03-01

    An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.

  5. Composite transform-convergent plate boundaries: description and discussion

    USGS Publications Warehouse

    Ryan, H.F.; Coleman, P.J.

    1992-01-01

    The leading edge of the overriding plate at an obliquely convergent boundary is commonly sliced by a system of strike-slip faults. This fault system is often structurally complex, and may show correspondingly uneven strain effects, with great vertical and translational shifts of the component blocks of the fault system. The stress pattern and strain effects vary along the length of the system and change through time. These margins are considered to be composite transform-convergent (CTC) plate boundaries. Examples are given of structures formed along three CTC boundaries: the Aleutian Ridge, the Solomon Islands, and the Philippines. The dynamism of the fault system along a CTC boundary can enhance vertical tectonism and basin formation. This concept provides a framework for the evaluation of petroleum resources related to basin formation, and mineral exploration related to igneous activity associated with transtensional processes. ?? 1992.

  6. Parabolized Navier-Stokes solutions of separation and trailing-edge flows

    NASA Technical Reports Server (NTRS)

    Brown, J. L.

    1983-01-01

    A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.

  7. A numerical scheme to solve unstable boundary value problems

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.

    1977-01-01

    The considered scheme makes it possible to determine an unstable steady state solution in cases in which, because of lack of symmetry, such a solution cannot be obtained analytically, and other time integration or relaxation schemes, because of instability, fail to converge. The iterative solution of a single complex equation is discussed and a nonlinear system of equations is considered. Described applications of the scheme are related to a steady state solution with shear instability, an unstable nonlinear Ekman boundary layer, and the steady state solution of a baroclinic atmosphere with asymmetric forcing. The scheme makes use of forward and backward time integrations of the original spatial differential operators and of an approximation of the adjoint operators. Only two computations of the time derivative per iteration are required.

  8. Darcy-Forchheimer Three-Dimensional Flow of Williamson Nanofluid over a Convectively Heated Nonlinear Stretching Surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2017-09-01

    The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy-Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.

  9. Crustal gravitational potential energy change at the convergent plate boundary near Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, C.; Hsu, S.

    2003-12-01

    The Taiwan orogen has formed due to the convergence between the Philippine Sea plate and Eurasian plate. Numerous earthquakes are occurring along the active convergent plate boundary in eastern Taiwan. To the northeast, the Philippine Sea plates is subducting northwards beneath the Ryukyu Arc. To the south, the Eurasian plate is subducting eastwards beneath the Luzon Arc. The plate interaction has caused crustal deformation and produced earthquakes. The earthquakes have caused radial permanent displacement of the crust and have altered the crustal gravitational potential energy. Here we use the earthquake source mechanisms, determined by the Broadband Array in Taiwan for Seismology (BATs) from 1995 to 2003, to calculate the crustal gravitational potential energy (GPE) change and discuss their tectonic implication along the convergent plate boundary. In Ilan Plain, the westernmost Okinawa Trough, it shows a crustal GPE loss. It is related to the crustal subsidence because of the backarc extension of the Okinawa Trough. In contrast, due to the Philippine Sea plate subucting northwards beneath Eurasian Plate, the Ryukyu convergent boundary shows systematic crustal GPE gain. Near Taiwan, the crustal GPE change is gained, indicating the collisional convergence of the Luzon Arc. To the south of Taiwan, along the Luzon Arc the crustal GPE is also gain, representing the initial uplifting of the Taiwan mountain belt.

  10. Dynamic boundary layer based neural network quasi-sliding mode control for soft touching down on asteroid

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosong; Shan, Zebiao; Li, Yuanchun

    2017-04-01

    Pinpoint landing is a critical step in some asteroid exploring missions. This paper is concerned with the descent trajectory control for soft touching down on a small irregularly-shaped asteroid. A dynamic boundary layer based neural network quasi-sliding mode control law is proposed to track a desired descending path. The asteroid's gravitational acceleration acting on the spacecraft is described by the polyhedron method. Considering the presence of input constraint and unmodeled acceleration, the dynamic equation of relative motion is presented first. The desired descending path is planned using cubic polynomial method, and a collision detection algorithm is designed. To perform trajectory tracking, a neural network sliding mode control law is given first, where the sliding mode control is used to ensure the convergence of system states. Two radial basis function neural networks (RBFNNs) are respectively used as an approximator for the unmodeled term and a compensator for the difference between the actual control input with magnitude constraint and nominal control. To improve the chattering induced by the traditional sliding mode control and guarantee the reachability of the system, a specific saturation function with dynamic boundary layer is proposed to replace the sign function in the preceding control law. Through the Lyapunov approach, the reachability condition of the control system is given. The improved control law can guarantee the system state move within a gradually shrinking quasi-sliding mode band. Numerical simulation results demonstrate the effectiveness of the proposed control strategy.

  11. Dynamical role of Ekman pumping in rapidly rotating convection

    NASA Astrophysics Data System (ADS)

    Stellmach, Stephan; Julien, Keith; Cheng, Jonathan; Aurnou, Jonathan

    2015-04-01

    The exact nature of the mechanical boundary conditions (i.e. no-slip versus stress-free) is usually considered to be of secondary importance in the rapidly rotating parameter regime characterizing planetary cores. While they have considerable influence for the Ekman numbers achievable in today's global simulations, for planetary values both the viscous Ekman layers and the associated secondary flows are generally expected to become negligibly small. In fact, usually the main purpose of using stress-free boundary conditions in numerical dynamo simulations is to suppress unrealistically large friction and pumping effects. In this study, we investigate the influence of the mechanical boundary conditions on core convection systematically. By restricting ourselves to the idealized case of rapidly rotating Rayleigh-Bénard convection, we are able to combine results from direct numerical simulations (DNS), laboratory experiments and asymptotic theory into a coherent picture. Contrary to the general expectation, we show that the dynamical effects of Ekman pumping increase with decreasing Ekman number over the investigated parameter range. While stress-free DNS results converge to the asymptotic predictions, both no-slip simulations and laboratory experiments consistently reveal increasingly large deviations from the existing asymptotic theory based on dynamically passive Ekman layers. The implications of these results for core dynamics are discussed briefly.

  12. THE AXISYMMETRIC FREE-CONVECTION HEAT TRANSFER ALONG A VERTICAL THIN CYLINDER WITH CONSTANT SURFACE TEMPERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viskanta, R.

    1963-01-01

    Laminar free-convection flow produced by a heated, vertical, circular cylinder for which the temperature at the outer surface of the cylinder is assumed to be uniform is analyzed. The solution of the boundary-layer equations was obtained by the perturbation method of Sparrow and Gregg, which is valid only for small values of the axial distance parameter xi ; and the integral method of Hama et al., for large values of the parameter xi . Heat-transfer results were calculated for Prandtl numbers (Pr) of 100, the Nusselt numbers (Nu) for the cylinder were higher than those for the flat plate, andmore » this difference increased as Pr decreased. It was also found that the perturbation method of solution of the free-convection boundary-layer equations becomes useless for small values of Pr because of the slow convergence of the series. The results obtained by the integral method were in good agreement with those calculated by the perturbation method for Pr approximately 1 and 0.1 < xi < 1 only; they deviated considerably for smaller values of xi . (auth)« less

  13. Medical sociology and epidemiology: convergences, divergences and legitimate boundaries.

    PubMed

    Spruit, I P; Kromhout, D

    1987-01-01

    For the purpose of exploring the existence of problem areas that may give rise to the question whether there is a tendency to (illegitimately) trespass across boundaries between medical sociology and epidemiology, important convergences and divergences between both disciplines are described. To assemble arguments for the legitimacy of fields of study we trace comparatively the history of both disciplines, definitions of their fields under study and aims of study, as well as characteristic concepts and constructs. Current research themes are taken from international journals; divergent interests are briefly described and potential 'trespassing' of boundaries is discussed, referring to themes showing convergences of interest.

  14. Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method

    NASA Astrophysics Data System (ADS)

    Guenanou, A.; Houmat, A.

    2018-05-01

    The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.

  15. Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Shumin; Li, Weibiao; Wen, Zhiping; Zhou, Mingsen; Lu, Youyu; Qian, Yu-Kun; Liu, Haoya; Fang, Rong

    2018-04-01

    Variations in the high-frequency oscillations of tropical cyclones (TCs) over the western North Pacific (WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m (MWS10) from an ensemble of 15 simulated TCs shows that oscillations are significant for all TCs. The magnitudes of oscillations in MWS10 are similar in the WNP and South China Sea (SCS); however, the mean of the averaged significant periods in the SCS (1.93 h) is shorter than that in the open water of the WNP (2.83 h). The shorter period in the SCS is examined through an ensemble of simulations, and a case simulation as well as a sensitivity experiment in which the continent is replaced by ocean for Typhoon Hagupit (2008). The analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect, which intensifies convergence through greater friction. The enhanced convergence strengthens the disturbance of the gradient and thermal wind balances, and then contributes to the shorter oscillation periods in the SCS.

  16. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Carl A., E-mail: carl.bauer@colorado.edu; Werner, Gregory R.; Cary, John R.

    For embedded boundary electromagnetics using the Dey–Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad–div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell’s curl–curl matrix. Efficient curl–curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at ([ofortt]https://github.com/bauerca/maxwell[cfortt])) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey–Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is requiredmore » in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.« less

  17. HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk, E-mail: paul@lcse.umn.edu, E-mail: fherwig@uvic.ca

    2015-01-01

    We present the first three-dimensional, fully compressible gas-dynamics simulations in 4π geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of nearmore » global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 ± 1.48 × 10{sup –13} M {sub ☉} s{sup –1}.« less

  18. Geographic Information System Incorporated into Earth Science Classrooms to Enhance Individual Learning Development with Interconnected Concepts

    NASA Astrophysics Data System (ADS)

    Garifo, Mary Anna

    2017-04-01

    Geographic Information System, GIS, is a powerful tool and when incorporated into Earth Science classrooms, can enhance and empower students' engagement in their learning. Through utilization of GIS, students can process what they are learning in a spatially orientated method, which allows them to make connections among different related concepts. For example, if students are given a map in a GIS software with multiple layers of data on earthquakes, plate technics, and volcanoes then they can manipulate this information to come up with their own patterns. Through allowing students to develop their spatial recognition of where the Earth's plate boundaries are and where earthquakes have occurred, students can see how these two concepts are connected. In a guided but exploratory activity, students would be given multiple different websites that they could explore to research what different type of plates there are while they are working simultaneously with the GIS software. Using a plate technics layer, including data on type of boundary, students can explore and estimate which direction the plates are moving. When they look up convergent boundaries and see that the oceanic plates submerge under continental plates they can see where volcanic chains might be. Once they understand this in a spatial way, students can predict where they think volcanoes could be, based on where convergent boundaries are. When they manipulate the volcanic layer and see abnormalities to what they just learned, it will cause them to have cognitive dissonance, which will force them into seeking further understanding. The concept of a hot spot can then be introduced to resolve the cognitive dissonance and emphasis the idea that plates we live on are moving. Concepts can further be developed through GIS by showing how the strength and frequency of earthquakes are related to the level of activity at the plate boundary. This can be done by manipulating the map layer that represents earthquakes so that students can visualize each earthquake based on depth, size, or just location. If it is more active, then students should predict which direction it is moving based on the different boundary types. Rather than a traditional lecture approach, GIS software enables students to explore and manipulate relevant variables in an interactive and stimulating environment. It can harness their sense of wonder and exploration by giving them the opportunity to be hands on with the technology. In addition, using GIS in an Earth Science classroom can foster empathy in students. When the students look at the dots on the map, the hope is that they can visualize what type of destruction that could happen, especially when they change the variable function based on location to magnitude. As a teacher in Virginia, U.S.A., most students here have not experienced an earthquake. Although their perspective is limited, by allowing them to explore different locations with GIS, they create connections with places where earthquakes occur. The data and information they use allows them to learn about how the earth's systems are not isolated events but are the reality people live in.

  19. Analysis of forced convective modified Burgers liquid flow considering Cattaneo-Christov double diffusion

    NASA Astrophysics Data System (ADS)

    Waqas, M.; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2018-03-01

    A mathematical model is formulated to characterize the non-Fourier and Fick's double diffusive models of heat and mass in moving flow of modified Burger's liquid. Temperature-dependent conductivity of liquid is taken into account. The concept of stratification is utilized to govern the equations of energy and mass species. The idea of boundary layer theory is employed to obtain the mathematical model of considered physical problem. The obtained partial differential system is converted into ordinary ones with the help of relevant variables. The homotopic concept lead to the convergent solutions of governing expressions. Convergence is attained and acceptable values are certified by expressing the so called ℏ -curves and numerical benchmark. Several graphs are made for different values of physical constraints to explore the mechanism of heat and mass transportation. We explored that the liquid temperature and concentration are retard for the larger thermal/concentration relaxation time constraint.

  20. Some effects of oscillation waveform and amplitude on unsteady turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Simpson, Roger L.; Shivaprasad, B. G.

    1992-01-01

    Some physical features of several unsteady separating turbulent boundary layers are presented for practical Reynolds numbers and reduced frequencies such as for helicopter and turbomachinery flows. The effects of unsteadiness amplitude and waveform are examined for flows along the floor of a converging and diverging wind tunnel test section. At the end of the converging portion, the mean skin friction coefficient normalized on the mean dynamic pressure is independent of the waveform and amplitude within low experimental uncertainties. In the detaching and detached portions of the flow, wall values of the fraction of time that the flow moves downstream of gamma sub pu, which is a separated flow state variable, shows that oscillation waveform and amplitude strongly influence the detached flow behavior. Distributions of gamma sub pu during a cycle indicate hysteresis within the detached flow and the effects of the higher harmonics of pressure gradient and velocity.

  1. An approximate theoretical method for modeling the static thrust performance of non-axisymmetric two-dimensional convergent-divergent nozzles. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    1995-01-01

    An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.

  2. Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.; vanLeer, Bram

    1999-01-01

    A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.

  3. Influences of Atmospheric Stability State on Wind Turbine Aerodynamic Loadings

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh; Lavely, Adam; Brasseur, James; Paterson, Eric; Kinzel, Michael

    2011-11-01

    Wind turbine power and loadings are influenced by the structure of atmospheric turbulence and thus on the stability state of the atmosphere. Statistical differences in loadings with atmospheric stability could impact controls, blade design, etc. Large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layer (NBL, MCBL) are used as inflow to the NREL FAST advanced blade-element momentum theory code to predict wind turbine rotor power, sectional lift and drag, blade bending moments and shaft torque. Using horizontal homogeneity, we combine time and ensemble averages to obtain converged statistics equivalent to ``infinite'' time averages over a single turbine. The MCBL required longer effective time periods to obtain converged statistics than the NBL. Variances and correlation coefficients among wind velocities, turbine power and blade loadings were higher in the MCBL than the NBL. We conclude that the stability state of the ABL strongly influences wind turbine performance. Supported by NSF and DOE.

  4. An efficient nonlinear relaxation technique for the three-dimensional, Reynolds-averaged Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Mcrae, D. S.

    1993-01-01

    An efficient implicit method for the computation of steady, three-dimensional, compressible Navier-Stokes flowfields is presented. A nonlinear iteration strategy based on planar Gauss-Seidel sweeps is used to drive the solution toward a steady state, with approximate factorization errors within a crossflow plane reduced by the application of a quasi-Newton technique. A hybrid discretization approach is employed, with flux-vector splitting utilized in the streamwise direction and central differences with artificial dissipation used for the transverse fluxes. Convergence histories and comparisons with experimental data are presented for several 3-D shock-boundary layer interactions. Both laminar and turbulent cases are considered, with turbulent closure provided by a modification of the Baldwin-Barth one-equation model. For the problems considered (175,000-325,000 mesh points), the algorithm provides steady-state convergence in 900-2000 CPU seconds on a single processor of a Cray Y-MP.

  5. Viscous-inviscid interaction method including wake effects for three-dimensional wing-body configurations

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    1981-01-01

    A viscous-inviscid interaction method has been developed by using a three-dimensional integral boundary-layer method which produces results in good agreement with a finite-difference method in a fraction of the computer time. The integral method is stable and robust and incorporates a model for computation in a small region of streamwise separation. A locally two-dimensional wake model, accounting for thickness and curvature effects, is also included in the interaction procedure. Computation time spent in converging an interacted result is, many times, only slightly greater than that required to converge an inviscid calculation. Results are shown from the interaction method, run at experimental angle of attack, Reynolds number, and Mach number, on a wing-body test case for which viscous effects are large. Agreement with experiment is good; in particular, the present wake model improves prediction of the spanwise lift distribution and lower surface cove pressure.

  6. Inference of the boundary layer structure over the oceans from satellite infrared measurements

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.; Lo, R.; Nath, N. R.

    1980-01-01

    Remote infrared spectral measurements in the 8-13 micron m window region, at a resolution about 3 cm/1, contain useful information about the water vapor and temperature stratification of the atmosphere within the first few kilometers above the water surface. Two pieces of information are retrieved from the spectral measurements: precipitable water vapor in the atmosphere, from the depth of the line structure between 8 and 9 micron m due to water vapor lines; and sea surface temperature, from the variation of brightness temperature between 11 and 13 micron m. Together, these two pieces of information can signify either the presence of a deep moist convective layer or the prevalence of stable conditions, such as caused by temperature inversions, which inhibit moist convection. A simple infrared radiative transfer model of the 9 micron m water vapor lines was developed to validate the method. With the help of this model and the Nimbus 4 infrared interferometer spectrometer data, a gross picture of the planetary boundary layer for different seasons over the global oceans is deduced. The important regions of the trade wind inversion and the intertropical convergence zones over all the oceans are clearly identified with this method. The derived information is in reasonable agreement with some observed climatological patterns over the oceans.

  7. Spherical-shell boundaries for two-dimensional compressible convection in a star

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so-called 321D link. We find that the inclusion in the spherical shell of the boundary between the radiative and convection zones decreases the amplitude of convective velocities in the convection zone. The inclusion of near-surface layers in the spherical shell can increase the amplitude of convective velocities, although the radial structure of the velocity profile established by deep convection is unchanged. The impact of including the near-surface layers depends on the speed and structure of small-scale convection in the near-surface layers. Larger convective velocities in the convection zone result in a commensurate increase in the overshooting layer width and a decrease in the convective turnover time. These results provide support for non-local aspects of convection.

  8. Boundary Asymptotic Analysis for an Incompressible Viscous Flow: Navier Wall Laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Jarroudi, M.; Brillard, A.

    2008-06-15

    We consider a new way of establishing Navier wall laws. Considering a bounded domain {omega} of R{sup N}, N=2,3, surrounded by a thin layer {sigma}{sub {epsilon}}, along a part {gamma}{sub 2} of its boundary {partial_derivative}{omega}, we consider a Navier-Stokes flow in {omega} union {partial_derivative}{omega} union {sigma}{sub {epsilon}} with Reynolds' number of order 1/{epsilon} in {sigma}{sub {epsilon}}. Using {gamma}-convergence arguments, we describe the asymptotic behaviour of the solution of this problem and get a general Navier law involving a matrix of Borel measures having the same support contained in the interface {gamma}{sub 2}. We then consider two special cases where wemore » characterize this matrix of measures. As a further application, we consider an optimal control problem within this context.« less

  9. Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.

    2017-10-01

    A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.

  10. Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Sallarès, Valentí; Martínez-Loriente, Sara; Prada, Manel; Gràcia, Eulàlia; Ranero, César; Gutscher, Marc-André; Bartolome, Rafael; Gailler, Audrey; Dañobeitia, Juan José; Zitellini, Nevio

    2013-03-01

    The Gorringe Bank is a gigantic seamount that separates the Horseshoe and Tagus abyssal plains offshore SW Iberia, in a zone that hosts the convergent boundary between the Africa and Eurasia plates. Although the region has been the focus of numerous investigations since the early 1970s, the lack of appropriate geophysical data makes the nature of the basement, and thus the origin of the structures, still debated. In this work, we present combined P-wave seismic velocity and gravity models along a transect that crosses the Gorringe Bank from the Tagus to the Horseshoe abyssal plains. The P-wave velocity structure of the basement is similar in the Tagus and Horseshoe plains. It shows a 2.5-3.0 km-thick top layer with a velocity gradient twice stronger than oceanic Layer 2 and an abrupt change to an underlying layer with a five-fold weaker gradient. Velocity and density is lower beneath the Gorringe Bank probably due to enhanced fracturing, that have led to rock disaggregation in the sediment-starved northern flank. In contrast to previous velocity models of this region, there is no evidence of a sharp crust-mantle boundary in any of the record sections. The modelling results indicate that the sediment overlays directly serpentinite rock, exhumed from the mantle with a degree of serpentinization decreasing from a maximum of 70-80% under the top of Gorringe Bank to less than 5% at a depth of ˜20 km. We propose that the three domains were originally part of a single serpentine rock band, of nature and possibly origin similar to the Iberia Abyssal Plain ocean-continent transition, which was probably generated during the earliest phase of the North Atlantic opening that followed continental crust breakup (Early Cretaceous). During the Miocene, the NW-SE trending Eurasia-Africa convergence resulted in thrusting of the southeastern segment of the exhumed serpentinite band over the northwestern one, forming the Gorringe Bank. The local deformation associated to plate convergence and uplift could have promoted pervasive rock fracturing of the overriding plate, leading eventually to rock disaggregation in the northern flank of the GB, which could be now a potential source of rock avalanches and tsunamis.

  11. Interaction of the sea breeze with a river breeze in an area of complex coastal heating

    NASA Technical Reports Server (NTRS)

    Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.

    1991-01-01

    The interaction of the sea-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.

  12. Evolving a Puncture Black Hole with Fixed Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Imbiriba, Breno; Baker, John; Choi, Dae-II; Centrella, Joan; Fiske. David R.; Brown, J. David; vanMeter, James R.; Olson, Kevin

    2004-01-01

    We present a detailed study of the effects of mesh refinement boundaries on the convergence and stability of simulations of black hole spacetimes. We find no technical problems. In our applications of this technique to the evolution of puncture initial data, we demonstrate that it is possible to simulaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult.

  13. Semantic Convergence in the Bilingual Lexicon

    ERIC Educational Resources Information Center

    Ameel, Eef; Malt, Barbara C.; Storms, Gert; Van Assche, Fons

    2009-01-01

    Bilinguals' lexical mappings for their two languages have been found to converge toward a common naming pattern. The present paper investigates in more detail how semantic convergence is manifested in bilingual lexical knowledge. We examined how semantic convergence affects the centers and boundaries of lexical categories for common household…

  14. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  15. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.

    PubMed

    Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin

    2017-09-19

    In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.

  16. When Boundary Layers Collide: Plumes v. Subduction Zones

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.

    2014-12-01

    Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in accretionary orogenic systems.

  17. A far-field non-reflecting boundary condition for two-dimensional wake flows

    NASA Technical Reports Server (NTRS)

    Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli

    1995-01-01

    Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.

  18. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    DOE PAGES

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; ...

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore » morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less

  19. A dynamic subgrid-scale parameterization of the effective wall stress in atmospheric boundary layer flows over multiscale, fractal-like surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, William; Meneveau, Charles

    2010-05-01

    A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).

  20. The effect of compliant walls on three-dimensional primary and secondary instabilities in boundary layer transition

    NASA Astrophysics Data System (ADS)

    Joslin, R. D.

    1991-04-01

    The use of passive devices to obtain drag and noise reduction or transition delays in boundary layers is highly desirable. One such device that shows promise for hydrodynamic applications is the compliant coating. The present study extends the mechanical model to allow for three-dimensional waves. This study also looks at the effect of compliant walls on three-dimensional secondary instabilities. For the primary and secondary instability analysis, spectral and shooting approximations are used to obtain solutions of the governing equations and boundary conditions. The spectral approximation consists of local and global methods of solution while the shooting approach is local. The global method is used to determine the discrete spectrum of eigenvalue without any initial guess. The local method requires a sufficiently accurate initial guess to converge to the eigenvalue. Eigenvectors may be obtained with either local approach. For the initial stage of this analysis, two and three dimensional primary instabilities propagate over compliant coatings. Results over the compliant walls are compared with the rigid wall case. Three-dimensional instabilities are found to dominate transition over the compliant walls considered. However, transition delays are still obtained and compared with transition delay predictions for rigid walls. The angles of wave propagation are plotted with Reynolds number and frequency. Low frequency waves are found to be highly three-dimensional.

  1. The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer

    NASA Technical Reports Server (NTRS)

    LaCasse, Katherine M.; Splitt, Michael E.; Lazarus, Steven M.; Lapenta, William M.

    2008-01-01

    High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.

  2. A superlinear convergence estimate for an iterative method for the biharmonic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, M.A.

    In [CDH] a method for the solution of boundary value problems for the biharmonic equation using conformal mapping was investigated. The method is an implementation of the classical method of Muskhelishvili. In [CDH] it was shown, using the Hankel structure, that the linear system in [Musk] is the discretization of the identify plus a compact operator, and therefore the conjugate gradient method will converge superlinearly. The purpose of this paper is to give an estimate of the superlinear convergence in the case when the boundary curve is in a Hoelder class.

  3. Joint inversion of seismic refraction and resistivity data using layered models - applications to hydrogeology

    NASA Astrophysics Data System (ADS)

    Juhojuntti, N. G.; Kamm, J.

    2010-12-01

    We present a layered-model approach to joint inversion of shallow seismic refraction and resistivity (DC) data, which we believe is a seldom tested method of addressing the problem. This method has been developed as we believe that for shallow sedimentary environments (roughly <100 m depth) a model with a few layers and sharp layer boundaries better represents the subsurface than a smooth minimum-structure (grid) model. Due to the strong assumption our model parameterization implies on the subsurface, only a low number of well resolved model parameters has to be estimated, and provided that this assumptions holds our method can also be applied to other environments. We are using a least-squares inversion, with lateral smoothness constraints, allowing lateral variations in the seismic velocity and the resistivity but no vertical variations. One exception is a positive gradient in the seismic velocity in the uppermost layer in order to get diving rays (the refractions in the deeper layers are modeled as head waves). We assume no connection between seismic velocity and resistivity, and these parameters are allowed to vary individually within the layers. The layer boundaries are, however, common for both parameters. During the inversion lateral smoothing can be applied to the layer boundaries as well as to the seismic velocity and the resistivity. The number of layers is specified before the inversion, and typically we use models with three layers. Depending on the type of environment it is possible to apply smoothing either to the depth of the layer boundaries or to the thickness of the layers, although normally the former is used for shallow sedimentary environments. The smoothing parameters can be chosen independently for each layer. For the DC data we use a finite-difference algorithm to perform the forward modeling and to calculate the Jacobian matrix, while for the seismic data the corresponding entities are retrieved via ray-tracing, using components from the RAYINVR package. The modular layout of the code makes it straightforward to include other types of geophysical data, i.e. gravity. The code has been tested using synthetic examples with fairly simple 2D geometries, mainly for checking the validity of the calculations. The inversion generally converges towards the correct solution, although there could be stability problems if the starting model is too erroneous. We have also applied the code to field data from seismic refraction and multi-electrode resistivity measurements at typical sand-gravel groundwater reservoirs. The tests are promising, as the calculated depths agree fairly well with information from drilling and the velocity and resistivity values appear reasonable. Current work includes better regularization of the inversion as well as defining individual weight factors for the different datasets, as the present algorithm tends to constrain the depths mainly by using the seismic data. More complex synthetic examples will also be tested, including models addressing the seismic hidden-layer problem.

  4. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  5. Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.

    2004-01-01

    Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.

  6. Implementation of a roughness element to trip transition in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Boudet, J.; Monier, J.-F.; Gao, F.

    2015-02-01

    In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element ( e.g. a step) on the wall. The present paper is concerned with the numerical implementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer configuration, with Reynolds number Rex=1.3×106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nicoud and Ducros ( Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Lévêque et al. ( J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.

  7. Prediction of rarefied micro-nozzle flows using the SPARTA library

    NASA Astrophysics Data System (ADS)

    Deschenes, Timothy R.; Grot, Jonathan

    2016-11-01

    The accurate numerical prediction of gas flows within micro-nozzles can help evaluate the performance and enable the design of optimal configurations for micro-propulsion systems. Viscous effects within the large boundary layers can have a strong impact on the nozzle performance. Furthermore, the variation in collision length scales from continuum to rarefied preclude the use of continuum-based computational fluid dynamics. In this paper, we describe the application of a massively parallel direct simulation Monte Carlo (DSMC) library to predict the steady-state and transient flow through a micro-nozzle. The nozzle's geometric configuration is described in a highly flexible manner to allow for the modification of the geometry in a systematic fashion. The transient simulation highlights a strong shock structure that forms within the converging portion of the nozzle when the expanded gas interacts with the nozzle walls. This structure has a strong impact on the buildup of the gas in the nozzle and affects the boundary layer thickness beyond the throat in the diverging section of the nozzle. Future work will look to examine the transient thrust and integrate this simulation capability into a web-based rarefied gas dynamics prediction software, which is currently under development.

  8. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    DOE PAGES

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; ...

    2015-04-27

    The critical bulk Richardson number (Ri cr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ri cr. The results show that the simulated global average of PBL height increases nearly linearly with Ri cr, with a change of about 114 m for a change of 0.5 in Ri cr. The surface sensible (latent) heat flux decreases (increases) as Ri cr increases. The influence of Ri cr on surface air temperature and specificmore » humidity is not significant. The increasing Ri cr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ri cr affect stratiform and convective precipitations differently. Increasing Ri cr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.« less

  9. The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.

    2004-01-01

    An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.

  10. Improved Boundary Conditions for Cell-centered Difference Schemes

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.

  11. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  12. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  13. Thermoelastic damping in bilayered microbar resonators with circular cross-section

    NASA Astrophysics Data System (ADS)

    Liang, Xiaoyao; Li, Pu

    2017-11-01

    It is always a challenge to determine the Thermoelastic damping (TED) in bilayered microbars precisely. In this paper, a model for TED in the bilayered and cantilevered microbar was proposed, in which the total damping was derived by calculating the energy evanished in each layer. The distribution of temperature in the bilayered microbar with a thermodynamically ideal boundary receiving a time-harmonic force is obtained. An infinite summation for the computing of TED in the bilayered slender microbars under axial loading is presented, and the convergence rate of it is discussed. There are little differences between the results computed by our model and that by finite element method (FEM).

  14. Flow of nanofluid by nonlinear stretching velocity

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Main objective in this article is to model and analyze the nanofluid flow induced by curved surface with nonlinear stretching velocity. Nanofluid comprises water and silver. Governing problem is solved by using homotopy analysis method (HAM). Induced magnetic field for low magnetic Reynolds number is not entertained. Development of convergent series solutions for velocity and skin friction coefficient is successfully made. Pressure in the boundary layer flow by curved stretching surface cannot be ignored. It is found that magnitude of power-law index parameter increases for pressure distibutions. Magnitude of radius of curvature reduces for pressure field while opposite trend can be observed for velocity.

  15. Slip parameters on major thrusts at a convergent plate boundary: regional heterogeneity of potential slip distance at the shallow portion of the subducting plate

    NASA Astrophysics Data System (ADS)

    Mukoyoshi, Hideki; Kaneki, Shunya; Hirono, Tetsuro

    2018-03-01

    Understanding variations of slip distance along major thrust systems at convergent margins is an important issue for evaluation of near-trench slip and the potential generation of large tsunamis. We derived quantitative estimates of slip along ancient subduction fault systems by using the maturity of carbonaceous material (CM) of discrete slip zones as a proxy for temperature. We first obtained the Raman spectra of CM in ultracataclasite and pseudotachylyte layers in discrete slip zones at depths below the seafloor of 1-4 km and 2.5-5.5 km, respectively. By comparing the area-under-the-peak ratios of graphitic and disordered bands in those Raman spectra with spectra of experimentally heated CM from surrounding rocks, we determined that the ultracataclasite and pseudotachylyte layers had been heated to temperatures of up to 700 and 1300 °C, respectively. Numerical simulation of the thermal history of CM extracted from rocks near the two slip zones, taking into consideration these temperature constraints, indicated that slip distances in the ultracataclasite and pseudotachylyte layers were more than 3 and 7 m, respectively. Thus, potential distance of coseismic slip along the subduction-zone fault system could have regional variations even at shallow depth (≤ 5.5 km). The slip distances we determined probably represent minimum slips for subduction-zone thrusts and thus provide an important contribution to earthquake preparedness plans in coastal areas facing the Nankai and Sagami Troughs.

  16. Thermal Aging of Oceanic Asthenosphere

    NASA Astrophysics Data System (ADS)

    Paulson, E.; Jordan, T. H.

    2013-12-01

    To investigate the depth extent of mantle thermal aging beneath ocean basins, we project 3D Voigt-averaged S-velocity variations from an ensemble of global tomographic models onto a 1x1 degree age-based regionalization and average over bins delineated by equal increments in the square-root of crustal age. From comparisons among the bin-averaged S-wave profiles, we estimate age-dependent convergence depths (minimum depths where the age variations become statistically insignificant) as well as S travel times from these depths to a shallow reference surface. Using recently published techniques (Jordan & Paulson, JGR, doi:10.1002/jgrb.50263, 2013), we account for the aleatory variability in the bin-averaged S-wave profiles using the angular correlation functions of the individual tomographic models, we correct the convergence depths for vertical-smearing bias using their radial correlation functions, and we account for epistemic uncertainties through Bayesian averaging over the tomographic model ensemble. From this probabilistic analysis, we can assert with 90% confidence that the age-correlated variations in Voigt-averaged S velocities persist to depths greater than 170 km; i.e., more than 100 km below the mean depth of the G discontinuity (~70 km). Moreover, the S travel time above the convergence depth decays almost linearly with the square-root of crustal age out to 200 Ma, consistent with a half-space cooling model. Given the strong evidence that the G discontinuity approximates the lithosphere-asthenosphere boundary (LAB) beneath ocean basins, we conclude that the upper (and probably weakest) part of the oceanic asthenosphere, like the oceanic lithosphere, participates in the cooling that forms the kinematic plates, or tectosphere. In other words, the thermal boundary layer of a mature oceanic plate appears to be more than twice the thickness of its mechanical boundary layer. We do not discount the possibility that small-scale convection creates heterogeneities in the oceanic upper mantle; however, the large-scale flow evidently advects these small-scale heterogeneities along with the plates, allowing the upper part of the asthenosphere to continue cooling with lithospheric age. The dominance of this large-scale horizontal flow may be related to the high stresses associated with its channelization in a thin (~100 km) asthenosphere, as well as the possible focusing of the subtectospheric strain in a low-viscosity channel immediately above the 410-km discontinuity. These speculations aside, the observed thermal aging of oceanic asthenosphere is inconsistent with a tenet of plate tectonics, the LAB hypothesis, which states that lithospheric plates are decoupled from deeper mantle flow by a shear zone in the upper part of the asthenosphere.

  17. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Zeeshan, A.; Shehzad, N.; Ellahi, R.

    2018-03-01

    The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.

  18. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  19. Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, David G.

    The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of environmental conditions do not generalize to the coastal and extreme wind environments. This body of work represents a multi-faceted approach to understanding physical air-sea interactions in varied regimes and using a wide array of investigatory methods.

  20. Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    2004-01-01

    A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.

  1. Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Turkel, Eli; Schaffer, Steve

    1987-01-01

    Three explicit multigrid methods, Ni's method, Jameson's finite-volume method, and a finite-difference method based on Brandt's work, are described and compared for two model problems. All three methods use an explicit multistage Runge-Kutta scheme on the fine grid, and this scheme is also described. Convergence histories for inviscid flow over a bump in a channel for the fine-grid scheme alone show that convergence rate is proportional to Courant number and that implicit residual smoothing can significantly accelerate the scheme. Ni's method was slightly slower than the implicitly-smoothed scheme alone. Brandt's and Jameson's methods are shown to be equivalent in form but differ in their node versus cell-centered implementations. They are about 8.5 times faster than Ni's method in terms of CPU time. Results for an oblique shock/boundary layer interaction problem verify the accuracy of the finite-difference code. All methods slowed considerably on the stretched viscous grid but Brandt's method was still 2.1 times faster than Ni's method.

  2. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  3. Large-scale effects on the regulation of tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.; Michelsen, Marc L.

    1993-01-01

    The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.

  4. Continental Shallow Convection Cloud-Base Mass Flux from Doppler Lidar and LASSO Ensemble Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Vogelmann, A. M.; Zhang, D.; Kollias, P.; Endo, S.; Lamer, K.; Gustafson, W. I., Jr.; Romps, D. M.

    2017-12-01

    Continental boundary layer clouds are important to simulations of weather and climate because of their impact on surface budgets and vertical transports of energy and moisture; however, model-parameterized boundary layer clouds do not agree well with observations in part because small-scale turbulence and convection are not properly represented. To advance parameterization development and evaluation, observational constraints are needed on critical parameters such as cloud-base mass flux and its relationship to cloud cover and the sub-cloud boundary layer structure including vertical velocity variance and skewness. In this study, these constraints are derived from Doppler lidar observations and ensemble large-eddy simulations (LES) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Facility Southern Great Plains (SGP) site in Oklahoma. The Doppler lidar analysis will extend the single-site, long-term analysis of Lamer and Kollias [2015] and augment this information with the short-term but unique 1-2 year period since five Doppler lidars began operation at the SGP, providing critical information on regional variability. These observations will be compared to the statistics obtained from ensemble, routine LES conducted by the LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso). An Observation System Simulation Experiment (OSSE) will be presented that uses the LASSO LES fields to determine criteria for which relationships from Doppler lidar observations are adequately sampled to yield convergence. Any systematic differences between the observed and simulated relationships will be examined to understand factors contributing to the differences. Lamer, K., and P. Kollias (2015), Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover, Geophys. Res. Lett., 42, 8693-8701, doi:10.1002/2015GL064534

  5. Use of Picard and Newton iteration for solving nonlinear ground water flow equations

    USGS Publications Warehouse

    Mehl, S.

    2006-01-01

    This study examines the use of Picard and Newton iteration to solve the nonlinear, saturated ground water flow equation. Here, a simple three-node problem is used to demonstrate the convergence difficulties that can arise when solving the nonlinear, saturated ground water flow equation in both homogeneous and heterogeneous systems with and without nonlinear boundary conditions. For these cases, the characteristic types of convergence patterns are examined. Viewing these convergence patterns as orbits of an attractor in a dynamical system provides further insight. It is shown that the nonlinearity that arises from nonlinear head-dependent boundary conditions can cause more convergence difficulties than the nonlinearity that arises from flow in an unconfined aquifer. Furthermore, the effects of damping on both convergence and convergence rate are investigated. It is shown that no single strategy is effective for all problems and how understanding pitfalls and merits of several methods can be helpful in overcoming convergence difficulties. Results show that Picard iterations can be a simple and effective method for the solution of nonlinear, saturated ground water flow problems.

  6. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  7. Convergence issues in domain decomposition parallel computation of hovering rotor

    NASA Astrophysics Data System (ADS)

    Xiao, Zhongyun; Liu, Gang; Mou, Bin; Jiang, Xiong

    2018-05-01

    Implicit LU-SGS time integration algorithm has been widely used in parallel computation in spite of its lack of information from adjacent domains. When applied to parallel computation of hovering rotor flows in a rotating frame, it brings about convergence issues. To remedy the problem, three LU factorization-based implicit schemes (consisting of LU-SGS, DP-LUR and HLU-SGS) are investigated comparatively. A test case of pure grid rotation is designed to verify these algorithms, which show that LU-SGS algorithm introduces errors on boundary cells. When partition boundaries are circumferential, errors arise in proportion to grid speed, accumulating along with the rotation, and leading to computational failure in the end. Meanwhile, DP-LUR and HLU-SGS methods show good convergence owing to boundary treatment which are desirable in domain decomposition parallel computations.

  8. The Effects of Land Surface Heating And Roughness Elements on the Structure and Scaling Laws of Atmospheric Boundary Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Ghannam, Khaled

    The atmospheric boundary-layer is the lowest 500-2000 m of the Earth's atmosphere where much of human life and ecosystem services reside. This layer responds to land surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric (e.g. temperature and humidity lapse rates) conditions that arguably mediate and modulate biosphere-atmosphere interactions. Such response often results in spatially- and temporally-rich turbulence scales that continue to be the subject of inquiry given their significance to a plethora of applications in environmental sciences and engineering. The work here addresses key aspects of boundary layer turbulence with a focus on the role of roughness elements (vegetation canopies) and buoyancy (surface heating) in modifying the well-studied picture of shear-dominated wall-bounded turbulence. A combination of laboratory channel experiments, field experiments, and numerical simulations are used to explore three distinct aspects of boundary layer turbulence. These are: • The concept of ergodicity in turbulence statistics within canopies: It has been long-recognized that homogeneous and stationary turbulence is ergodic, but less is known about the effects of inhomogeneity introduced by the presence of canopies on the turbulence statistics. A high resolution (temporal and spatial) flume experiment is used here to test the convergence of the time statistics of turbulent scalar concentrations to their ensemble (spatio-temporal) counterpart. The findings indicate that within-canopy scalar statistics have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where the sweeping flow events appear to randomize the statistics. Deeper layers within the canopy are dominated by low-dimensional (quasi-deterministic) von Karman vortices that tend to break ergodicity. • Scaling laws of turbulent velocity spectra and structure functions in near-surface atmospheric turbulence: the existence of a logarithmic scaling in the structure function of the longitudinal and vertical velocity components is examined using five experimental data sets that span the roughness sub-layer above vegetation canopies, the atmospheric surface-layer above a lake and a grass field, and an open channel experiment. The results indicate that close to the wall/surface, this scaling exists in the longitudinal velocity structure function only, with the vertical velocity counterpart exhibiting a much narrower extent of this range due to smaller separation of scales. Phenomenological aspects of the large-scale eddies show that the length scale formed by the friction velocity and energy dissipation acts as a dominant similarity length scale in collapsing experimental data at different heights, mainly due to the imbalance between local production and dissipation of turbulence kinetic energy. • Nonlocal heat transport in the convective atmospheric boundary-layer: Failure of the mean gradient-diffusion (K-theory) in the convective boundary-layer is explored. Using large eddy simulation runs for the atmospheric boundary layer spanning weakly to strongly convective conditions, a generic diagnostic framework that encodes the role of third-order moments in nonlocal heat transport is developed and tested. The premise is that these nonlocal effects are responsible for the inherent asymmetry in vertical transport, and hence the necessary non-Gaussian nature of the joint probability density function (JPDF) of vertical velocity and potential temperature must account for these effects. Conditional sampling (quadrant analysis) of this function and the imbalance between the flow mechanisms of ejections and sweeps are used to characterize this asymmetry, which is then linked to the third-order moments using a cumulant-discard method for the Gram-Charlier expansion of the JPDF. The connection between the ejection-sweep events and the third-order moments shows that the concepts of bottom-up/top-down diffusion, or updraft/downdraft models, are accounted for by various quadrants of this joint probability density function. To this end, future research directions that build upon this work are also discussed.

  9. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  10. Imbibition with swelling: Capillary rise in thin deformable porous media

    NASA Astrophysics Data System (ADS)

    Kvick, Mathias; Martinez, D. Mark; Hewitt, Duncan R.; Balmforth, Neil J.

    2017-07-01

    The imbibition of a liquid into a thin deformable porous substrate driven by capillary suction is considered. The substrate is initially dry and has uniform porosity and thickness. Two-phase flow theory is used to describe how the liquid flows through the pore space behind the wetting front when out-of-plane deformation of the solid matrix is considered. Neglecting gravity and evaporation, standard shallow-layer scalings are used to construct a reduced model of the dynamics. The model predicts convergence to a self-similar behavior in all regions except near the wetting front, where a boundary layer arises whose structure narrows with the advance of the front. Over time, the rise height approaches the similarity scaling of t1 /2, as in the classical Washburn or BCLW law. The results are compared with a series of laboratory experiments using cellulose paper sheets, which provide qualitative agreement.

  11. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  12. Global Troposphere Experiment Project

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.

    1997-01-01

    For the Global Troposphere Experiment project Pacific Exploratory Measurements West B (PEM West B), we made determinations of sulfur dioxide (SO2) and dimethyl sulfide (DMS) using gas chromatography-mass spectrometry with isotopically labelled internal standards. This technique provides measurements with precision of 1 part-per-trillion by volume below 20 pptv and 1% above 20 pptv. Measurement of DMS and SO2 were performed with a time cycle of 5-6 minutes with intermittent zero checks. The detection limits were about 1 pptv for SO2 and 2 pptv for DMS. Over 700 measurements of each compound were made in flight. Volcanic impacts on the upper troposphere were again found as a result of deep convection in the tropics. Extensive emission of SO2 from the Pacific Rim land masses were primarily observed in the lower well-mixed part of the boundary layer but also in the upper part of the boundary layer. Analyses of the SO2 data with aerosol sulfate, beryllium-7, and lead-210 indicated that SO2, contributed to half or more of the observed total oxidized sulfur (SO2 plus aerosol sulfate) in free tropospheric air. Cloud processing and rain appeared to be responsible for lower SO2 levels between 3 and 8.5 km than above or below this region. During both phases of PEM-West, dimethyl sulfide did not appear to be a major source of sulfur dioxide in the upper free troposphere over the western Pacific Ocean. In 1991 the sources Of SO2 at high altitude appeared to be both anthropogenic and volcanic with an estimated 1% being solely from DMS. The primary difference for the increase in the DMS source was the very low concentration of SO2 at high altitude. In the midlatitude region near the Asian land masses, DMS in the mixed layer was lower than in the tropical region of the western Pacific. Convective cloud systems near volcanoes in the tropical convergence in the western Pacific troposphere were a major source of SO2 at high altitudes during PEM-West B. High levels of SO2 were observed in several instances with large number concentrations of ultrafine CN above 9 km in the tropical convergence zone. Conversion of SO2, by OH to SO3 and subsequently to sulfuric acid may have been enhanced by lightning-produced NO levels exceeding 1 part per billion. Coupling of strong convection and volcanic sources of SO2 apparently is an important source of new particle formation at high altitude in the tropical convergence zone.

  13. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  14. Program for the solution of multipoint boundary value problems of quasilinear differential equations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

  15. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  16. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  17. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  18. Optimal discrete-time LQR problems for parabolic systems with unbounded input: Approximation and convergence

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An abstract approximation and convergence theory for the closed-loop solution of discrete-time linear-quadratic regulator problems for parabolic systems with unbounded input is developed. Under relatively mild stabilizability and detectability assumptions, functional analytic, operator techniques are used to demonstrate the norm convergence of Galerkin-based approximations to the optimal feedback control gains. The application of the general theory to a class of abstract boundary control systems is considered. Two examples, one involving the Neumann boundary control of a one-dimensional heat equation, and the other, the vibration control of a cantilevered viscoelastic beam via shear input at the free end, are discussed.

  19. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  20. Turbulent Combustion Study of Scramjet Problem

    DTIC Science & Technology

    2015-08-01

    boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and

  1. Integral methods of solving boundary-value problems of nonstationary heat conduction and their comparative analysis

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2017-11-01

    The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.

  2. Simulated atmospheric response to Gulf Stream variability

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Latif, Mojib; Minobe, Shoshiro

    2010-05-01

    Though the ocean variability has a distinct low-frequent component on interannual to interdecadal timescales, a better understanding of the main features of air-sea interaction in the extratropical ocean might increase the predictive skill of climate models significantly. An insufficiently understood region in this context are the sharp SST-fronts connected to western boundary currents, which interact with the overlaying atmosphere by forcing low-level winds and evaporation. Recent studies show, that this response extends beyond the marine boundary layer and so might influence also the large-scale atmospheric circulation. In this work a 5 member ensemble of model runs from the AGCM ECHAM5 was analyzed focussing on the atmospheric response to the Gulf Stream. The analyzed experiment covered a time period of 138 years from 1870 to 2007 and was forced by observed SSTs and sea-ice concentration from the HadISST dataset. The experiment was performed at T106 horizontal resolution (~100km) and with 31 vertical levels up to 1 hPa. Simulated seasonal mean circulation indicate a convective response of the atmosphere in the Gulf Stream region similar to observations, with distinct low-level wind convergence, strong upward motion, and low-pressure over the warm SST flank of the Gulf Stream. An analysis of variance (ANOVA) suggests, that up to 25-30% of the variability of the summer precipitation in the Gulf Stream region are connected to the boundary conditions. The link between oceanic and atmospheric variability on seasonal to interannual timescales is investigated with composite and linear regression analysis. Results indicate that increased (decreased) precipitation is associated with stronger (weaker) low-level wind convergence, enhanced (reduced) upward motion, low (high) pressure, and warm (cold) SST anomalies in the region of the Gulf Stream. Currently sensitivity experiments with the same AGCM configuration are in progress.

  3. Three-dimensional computational aerodynamics in the 1980's

    NASA Technical Reports Server (NTRS)

    Lomax, H.

    1978-01-01

    The future requirements for constructing codes that can be used to compute three-dimensional flows about aerodynamic shapes should be assessed in light of the constraints imposed by future computer architectures and the reality of usable algorithms that can provide practical three-dimensional simulations. On the hardware side, vector processing is inevitable in order to meet the CPU speeds required. To cope with three-dimensional geometries, massive data bases with fetch/store conflicts and transposition problems are inevitable. On the software side, codes must be prepared that: (1) can be adapted to complex geometries, (2) can (at the very least) predict the location of laminar and turbulent boundary layer separation, and (3) will converge rapidly to sufficiently accurate solutions.

  4. Second-Moment RANS Model Verification and Validation Using the Turbulence Modeling Resource Website (Invited)

    NASA Technical Reports Server (NTRS)

    Eisfeld, Bernhard; Rumsey, Chris; Togiti, Vamshi

    2015-01-01

    The implementation of the SSG/LRR-omega differential Reynolds stress model into the NASA flow solvers CFL3D and FUN3D and the DLR flow solver TAU is verified by studying the grid convergence of the solution of three different test cases from the Turbulence Modeling Resource Website. The model's predictive capabilities are assessed based on four basic and four extended validation cases also provided on this website, involving attached and separated boundary layer flows, effects of streamline curvature and secondary flow. Simulation results are compared against experimental data and predictions by the eddy-viscosity models of Spalart-Allmaras (SA) and Menter's Shear Stress Transport (SST).

  5. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  6. Impact of topography on the diurnal cycle of summertime moist convection in idealized simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanzadeh, Hanieh; Schmidli, Jürg; Langhans, Wolfgang

    The impact of an isolated mesoscale mountain on the diurnal cycle of moist convection and its spatial variation is investigated. Convection-resolving simulations of flow over 3D Gaussian-shaped mountains are performed for a conditionally unstable atmosphere under diurnal radiative forcing. The results show considerable spatial variability in terms of timing and amount of convective precipitation. This variability relates to different physical mechanisms responsible for convection initiation in different parts of the domain. During the late morning, the mass convergence from the radiatively driven diurnal upslope flow confronting the large-scale incident background flow triggers strong convective precipitation over the mountain lee slope.more » As a consequence, instabilities in the boundary layer are swept out by the emerging cold pool in the vicinity of the mountain, and some parts over the mountain near-field receive less rainfall than the far-field. Over the latter, an unperturbed boundary-layer growth allows for sporadic convective initiation. Still, secondary convection triggered over the leading edge of the cold pool spreads some precipitation over the downstream near-field. Detailed analysis of our control simulation provides further explanation of this frequently observed precipitation pattern over mountains and adjacent plains. Sensitivity experiments indicate a significant influence of the mountain height on the precipitation pattern over the domain.« less

  7. Using Satellite Observations to Infer the Relationship Between Cold Pools and Subsequent Convection Development

    NASA Technical Reports Server (NTRS)

    Elsaesser, Gregory

    2015-01-01

    Cold pools are increasingly being recognized as important players in the evolution of both shallow and deep convection; hence, the incorporation of cold pool processes into a number of recently developed convective parameterizations. Unfortunately, observations serving to inform cold pool parameterization development are limited to select field programs and limited radar domains. However, a number of recent studies have noted that cold pools are often associated with arcs-lines of shallow clouds traversing 10 100 km in visible satellite imagery. Boundary layer thermodynamic perturbations are plausible at such scales, coincident with such mesoscale features. Atmospheric signatures of features at these spatial scales are potentially observable from satellites. In this presentation, we discuss recent work that uses multi-sensor, high-resolution satellite products for observing mesoscale wind vector fluctuations and boundary layer temperature depressions attributed to cold pools produced by antecedent convection. The relationship to subsequent convection as well as convective system longevity is discussed. As improvements in satellite technology occur and efforts to reduce noise in high-resolution orbital products progress, satellite pixel level (10 km) thermodynamic and dynamic (e.g. mesoscale convergence) parameters can increasingly serve as useful benchmarks for constraining convective parameterization development, including for regimes where organized convection contributes substantially to the cloud and rainfall climatology.

  8. Impact of topography on the diurnal cycle of summertime moist convection in idealized simulations

    DOE PAGES

    Hassanzadeh, Hanieh; Schmidli, Jürg; Langhans, Wolfgang; ...

    2015-08-31

    The impact of an isolated mesoscale mountain on the diurnal cycle of moist convection and its spatial variation is investigated. Convection-resolving simulations of flow over 3D Gaussian-shaped mountains are performed for a conditionally unstable atmosphere under diurnal radiative forcing. The results show considerable spatial variability in terms of timing and amount of convective precipitation. This variability relates to different physical mechanisms responsible for convection initiation in different parts of the domain. During the late morning, the mass convergence from the radiatively driven diurnal upslope flow confronting the large-scale incident background flow triggers strong convective precipitation over the mountain lee slope.more » As a consequence, instabilities in the boundary layer are swept out by the emerging cold pool in the vicinity of the mountain, and some parts over the mountain near-field receive less rainfall than the far-field. Over the latter, an unperturbed boundary-layer growth allows for sporadic convective initiation. Still, secondary convection triggered over the leading edge of the cold pool spreads some precipitation over the downstream near-field. Detailed analysis of our control simulation provides further explanation of this frequently observed precipitation pattern over mountains and adjacent plains. Sensitivity experiments indicate a significant influence of the mountain height on the precipitation pattern over the domain.« less

  9. Effects of Convoluted Divergent Flap Contouring on the Performance of a Fixed-Geometry Nonaxisymmetric Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the effects of convoluted divergent-flap contouring on the internal performance of a fixed-geometry, nonaxisymmetric, convergent-divergent exhaust nozzle. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and four convoluted configurations. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at overexpanded conditions. Convoluted configurations were found to significantly reduce, and in some cases totally alleviate separation at overexpanded conditions. This result was attributed to the ability of convoluted contouring to energize and improve the condition of the nozzle boundary layer. Separation alleviation offers potential for installed nozzle aeropropulsive (thrust-minus-drag) performance benefits by reducing drag at forward flight speeds, even though this may reduce nozzle thrust ratio as much as 6.4% at off-design conditions. At on-design conditions, nozzle thrust ratio for the convoluted configurations ranged from 1% to 2.9% below the baseline configuration; this was a result of increased skin friction and oblique shock losses inside the nozzle.

  10. A Numerical Combination of Extended Boundary Condition Method and Invariant Imbedding Method Applied to Light Scattering by Large Spheroids and Cylinders

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.

    2013-01-01

    The extended boundary condition method (EBCM) and invariant imbedding method (IIM) are two fundamentally different T-matrix methods for the solution of light scattering by nonspherical particles. The standard EBCM is very efficient but encounters a loss of precision when the particle size is large, the maximum size being sensitive to the particle aspect ratio. The IIM can be applied to particles in a relatively large size parameter range but requires extensive computational time due to the number of spherical layers in the particle volume discretization. A numerical combination of the EBCM and the IIM (hereafter, the EBCM+IIM) is proposed to overcome the aforementioned disadvantages of each method. Even though the EBCM can fail to obtain the T-matrix of a considered particle, it is valuable for decreasing the computational domain (i.e., the number of spherical layers) of the IIM by providing the initial T-matrix associated with an iterative procedure in the IIM. The EBCM+IIM is demonstrated to be more efficient than the IIM in obtaining the optical properties of large size parameter particles beyond the convergence limit of the EBCM. The numerical performance of the EBCM+IIM is illustrated through representative calculations in spheroidal and cylindrical particle cases.

  11. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  12. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  13. New Evidence for Quaternary Strain Partitioning Along the Queen Charlotte Fault System, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Miller, N. C.; Brothers, D. S.; Kluesner, J.; Haeussler, P. J.; Conrad, J. E.; Andrews, B. D.; Ten Brink, U. S.

    2017-12-01

    The Queen Charlotte Fault (QCF) is a fast-moving ( 53 mm/yr) transform plate boundary fault separating the Pacific Plate from the North American Plate along western Canada and southeastern Alaska. New high-resolution bathymetric data along the fault show that the QCF main trace accommodates nearly all strike-slip plate motion along a single narrow deformation zone, though questions remain about how and where smaller amounts of oblique convergence are accommodated along-strike. Obliquity and convergence rates are highest in the south, where the 2012 Haida Gwaii, British Columbia MW 7.8 thrust earthquake was likely caused by Pacific underthrusting. In the north, where obliquity is lower, aftershocks from the 2013 Craig, Alaska MW 7.5 strike-slip earthquake also indicate active convergent deformation on the Pacific (west) side of the plate boundary. Off-fault structures previously mapped in legacy crustal-scale seismic profiles may therefore be accommodating part of the lesser amounts of Quaternary convergence north of Haida Gwaii. Between 2015 and 2017, the USGS acquired more than 8,000 line-km of offshore high-resolution multichannel seismic (MCS) data along the QCF to better understand plate boundary deformation. The new MCS data show evidence for Quaternary deformation associated with a series of elongate ridges located within 30 km of the QCF main trace on the Pacific side. These ridges are anticlinal structures flanked by growth faults, with recent deformation and active fluid flow characterized by seafloor scarps and seabed gas seeps at ridge crests. Structural and morphological evidence for contractional deformation decreases northward along the fault, consistent with a decrease in Pacific-North America obliquity along the plate boundary. Preliminary interpretations suggest that plate boundary transpression may be partitioned into distinctive structural domains, in which convergent stress is accommodated by margin-parallel thrust faulting, folding, and ridge formation within the Pacific Plate, with strike-slip faulting localized to the primary trace of the QCF. Contractional structures may be occupying zones of pre-existing crustal weakness and/or re-activated fabrics in the oceanic crust, possibly explaining strain partitioning behavior in areas with a low convergence angle (<15°).

  14. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  15. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  16. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  17. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  18. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  19. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  20. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  1. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  2. The unidirectional motion of two heat-conducting liquids in a flat channel

    NASA Astrophysics Data System (ADS)

    Andreev, V. K.; Cheremnykh, E. N.

    2017-10-01

    The unidirectional motion of two viscous incompressible liquids in a flat channel is studied. Liquids contact on a flat interface. External boundaries are fixed solid walls, on which the non-stationary temperature gradients are given. The motion is induced by a joint action of thermogravitational and thermocapillary forces and given total non - stationary fluid flow rate in layers. The corresponding initial boundary value problem is conjugate and inverse because the pressure gradients along axes channel have to be determined together with the velocity and temperature field. For this problem the exact stationary solution is found and a priori estimates of non - stationary solutions are obtained. In Laplace images the solution of the non - stationary problem is found in quadratures. It is proved, that the solution converges to a steady regime with time, if the temperature on the walls and the fluid flow rate are stabilized. The numerical calculations for specific liquid media good agree with the theoretical results.

  3. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  4. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  5. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  6. Applications of the conjugate gradient FFT method in scattering and radiation including simulations with impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Barkeshli, Kasra; Volakis, John L.

    1991-01-01

    The theoretical and computational aspects related to the application of the Conjugate Gradient FFT (CGFFT) method in computational electromagnetics are examined. The advantages of applying the CGFFT method to a class of large scale scattering and radiation problems are outlined. The main advantages of the method stem from its iterative nature which eliminates a need to form the system matrix (thus reducing the computer memory allocation requirements) and guarantees convergence to the true solution in a finite number of steps. Results are presented for various radiators and scatterers including thin cylindrical dipole antennas, thin conductive and resistive strips and plates, as well as dielectric cylinders. Solutions of integral equations derived on the basis of generalized impedance boundary conditions (GIBC) are also examined. The boundary conditions can be used to replace the profile of a material coating by an impedance sheet or insert, thus, eliminating the need to introduce unknown polarization currents within the volume of the layer. A general full wave analysis of 2-D and 3-D rectangular grooves and cavities is presented which will also serve as a reference for future work.

  7. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  8. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  9. Tectonics and volcanism of Eastern Aphrodite Terra, Venus - No subduction, no spreading

    NASA Technical Reports Server (NTRS)

    Hansen, Vicki L.; Phillips, Roger J.

    1993-01-01

    Eastern Aphrodite Terra, a deformed region with high topographic relief on Venus, has been interpreted as analogous to a terrestrial extensional or convergent plate boundary. However, analysis of geological and structural relations indicates that the tectonics of eastern Aphrodite Terra is dominated by blistering of the crust by magma diapirs. The findings imply that, within this region, vertical tectonism dominates over horizontal tectonism and, consequently, that this region is neither a divergent nor a convergent plate boundary.

  10. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West Greenland and the Mesozoic Sulu orogenic belt of eastern China are similar, consistent with the formation of Archean continental crust by subduction zone processes.

  11. Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution

    NASA Astrophysics Data System (ADS)

    Wild, O.; Prather, M. J.

    2005-12-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.

  12. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    NASA Astrophysics Data System (ADS)

    Wild, Oliver; Prather, Michael J.

    2006-06-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.

  13. Practical calculation of laminar and turbulent bled-off boundary layers

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1978-01-01

    Bleed-off of boundary layer material is shown to be an effective means for reducing drag by conserving the laminar boundary layer and preventing separation of the turbulent boundary layer. The case in which the two effects of bleed-off overlap is examined. Empirical methods are extended to the case of bleed-off. Laminar and turbulent boundary layers are treated simultaneously and the approximation differential equations are solved without an uncertain error. The case without bleed-off is also treated.

  14. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  15. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  16. Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Priestley, K. F.; Borah, Kajaljyoti; Gaur, V. K.

    2018-01-01

    We use data from 24 broadband seismographs located south of the Eastern Himalayan plate boundary system to investigate the crustal structure beneath Northeast India. P wave receiver function analysis reveals felsic continental crust beneath the Brahmaputra Valley, Shillong Plateau and Mikir Hills, and mafic thinned passive margin transitional crust (basement layer) beneath the Bengal Basin. Within the continental crust, the central Shillong Plateau and Mikir Hills have the thinnest crust (30 ± 2 km) with similar velocity structure, suggesting a unified origin and uplift history. North of the plateau and Mikir Hills the crustal thickness increases sharply by 8-10 km and is modeled by ˜30∘ north dipping Moho flexure. South of the plateau, across the ˜1 km topographic relief of the Dawki Fault, the crustal thickness increases abruptly by 12-13 km and is modeled by downfaulting of the plateau crust, overlain by 13-14 km thick sedimentary layer/rocks of the Bengal Basin. Farther south, beneath central Bengal Basin, the basement layer is thinner (20-22 km) and has higher Vs (˜4.1 km s-1) indicating a transitional crystalline crust, overlain by the thickest sedimentary layer/rocks (18-20 km). Our models suggest that the uplift of the Shillong Plateau occurred by thrust faulting on the reactivated Dawki Fault, a continent margin paleorift fault, and subsequent back thrusting on the south dipping Oldham Fault, in response to flexural loading of the Eastern Himalaya. Our estimated Dawki Fault offset combined with timing of surface uplift of the plateau reveals a reasonable match between long-term uplift and convergence rate across the Dawki Fault with present-day GPS velocities.

  17. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules

    DOE PAGES

    Haines, Brian M.; Yi, S. A.; Olson, R. E.; ...

    2017-07-10

    The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. In this paper, we present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surfacemore » roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Finally and nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).« less

  18. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.; Yi, S. A.; Olson, R. E.; Khan, S. F.; Kyrala, G. A.; Zylstra, A. B.; Bradley, P. A.; Peterson, R. R.; Kline, J. L.; Leeper, R. J.; Shah, R. C.

    2017-07-01

    The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).

  19. Prediction of turbulent shear layers in turbomachines

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1974-01-01

    The characteristics of turbulent shear layers in turbomachines are compared with the turbulent boundary layers on airfoils. Seven different aspects are examined. The limits of boundary layer theory are investigated. Boundary layer prediction methods are applied to analysis of the flow in turbomachines.

  20. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  1. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  2. A Performance Evaluation of NACK-Oriented Protocols as the Foundation of Reliable Delay- Tolerant Networking Convergence Layers

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis; Hylton, Alan; Ishac, Joseph

    2012-01-01

    Delay-Tolerant Networking (DTN) is an active area of research in the space communications community. DTN uses a standard layered approach with the Bundle Protocol operating on top of transport layer protocols known as convergence layers that actually transmit the data between nodes. Several different common transport layer protocols have been implemented as convergence layers in DTN implementations including User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Licklider Transmission Protocol (LTP). The purpose of this paper is to evaluate several stand-alone implementations of negative-acknowledgment based transport layer protocols to determine how they perform in a variety of different link conditions. The transport protocols chosen for this evaluation include Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP), Licklider Transmission Protocol (LTP), NACK-Oriented Reliable Multicast (NORM), and Saratoga. The test parameters that the protocols were subjected to are characteristic of common communications links ranging from terrestrial to cis-lunar and apply different levels of delay, line rate, and error.

  3. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  4. Relaxation of sound fields in rooms of diffusely reflecting boundaries and its application in acoustical radiosity simulation.

    PubMed

    Zhang, Honghu

    2006-04-01

    The acoustical radiosity method is a computationally expensive acoustical simulation algorithm that assumes an enclosure with ideal diffuse reflecting boundaries. Miles observed that for such an enclosure, the sound energy decay of every point on the boundaries will gradually converge to exponential manner with a uniform decay rate. Therefore, the ratio of radiosity between every pair of points on the boundaries will converge to a constant, and the radiosity across the boundaries will approach a fixed distribution during the sound decay process, where radiosity is defined as the acoustic power per unit area leaving (or being received by) a point on a boundary. We call this phenomenon the "relaxation" of the sound field. In this paper, we study the relaxation in rooms of different shapes with different boundary absorptions. Criteria based on the relaxation of the sound field are proposed to terminate the costly and unnecessary radiosity computation in the later phase, which can then be replaced by a fast regression step to speed up the acoustical radiosity simulation.

  5. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  6. Mechanisms initiating deep convection over complex terrain during COPS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kottmeier, C.; Kalthoff, N.; Barthlott, C.

    2008-12-01

    Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study) that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i) surface heating and low-level flow convergence; (ii) surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii) mid-tropospheric dynamical processes duemore » to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analyzed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data) are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line, and the flow generated by a gust front.« less

  7. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube

    NASA Astrophysics Data System (ADS)

    Zhou, Guangzhao; Xu, Kun; Liu, Feng

    2018-01-01

    The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.

  8. Mathematical modelling of the Phloem: the importance of diffusion on sugar transport at osmotic equilibrium.

    PubMed

    Payvandi, S; Daly, K R; Zygalakis, K C; Roose, T

    2014-11-01

    Plants rely on the conducting vessels of the phloem to transport the products of photosynthesis from the leaves to the roots, or to any other organs, for growth, metabolism, and storage. Transport within the phloem is due to an osmotically-generated pressure gradient and is hence inherently nonlinear. Since convection dominates over diffusion in the main bulk flow, the effects of diffusive transport have generally been neglected by previous authors. However, diffusion is important due to boundary layers that form at the ends of the phloem, and at the leaf-stem and stem-root boundaries. We present a mathematical model of transport which includes the effects of diffusion. We solve the system analytically in the limit of high Münch number which corresponds to osmotic equilibrium and numerically for all parameter values. We find that the bulk solution is dependent on the diffusion-dominated boundary layers. Hence, even for large Péclet number, it is not always correct to neglect diffusion. We consider the cases of passive and active sugar loading and unloading. We show that for active unloading, the solutions diverge with increasing Péclet. For passive unloading, the convergence of the solutions is dependent on the magnitude of loading. Diffusion also permits the modelling of an axial efflux of sugar in the root zone which may be important for the growing root tip and for promoting symbiotic biological interactions in the soil. Therefore, diffusion is an essential mechanism for transport in the phloem and must be included to accurately predict flow.

  9. Regime-Dependent Differences in Surface Freshwater Exchange Estimates Over the Ocean

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Behrangi, Ali

    2018-01-01

    Differences in gridded precipitation (P), surface evaporation (E), and the resultant surface freshwater exchange (P - E) among different products over the ocean are diagnosed as functions of moisture advection (Qadvt) and moisture tendency by dynamical convergence (Qcnvg). Compared to the GPCP product, the TRMM3B42 product captures higher frequency of precipitation with larger extreme precipitation rates in regimes of deep convection and more light rain detections in regimes of frequent occurrence of boundary layer clouds. Discrepancies in E depend on moisture flux divergence, with the OAFlux product having the largest E in regimes of divergence. Discrepancies in mean P - E in deep convective regimes are highly influenced by differences in precipitation, with the TRMM3B42 product yielding P - E histograms closer to those inferred from the reanalysis moisture flux convergence. In nonconvergent regimes, observation-based P - E histograms skew toward positive values while the inferred reanalysis histograms are symmetric about the means.

  10. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  11. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  12. Developpement et implementation d'une methode pour resoudre les equations de la couche limite laminaire et turbulente

    NASA Astrophysics Data System (ADS)

    Leuca, Maxim

    CFD (Computational Fluid Dynamics) is a computational tool for studying flow in science and technology. The Aerospace Industry uses increasingly the CFD modeling and design phase of the aircraft, so the precision with which phenomena are simulated boundary layer is very important. The research efforts are focused on optimizing the aerodynamic performance of airfoils to predict the drag and delay the laminar-turbulent transition. CFD codes must be fast and efficient to model complex geometries for aerodynamic flows. The resolution of the boundary layer equations requires a large amount of computing resources for viscous flows. CFD codes are commonly used to simulate aerodynamic flows, require normal meshes to the wall, extremely fine, and, by consequence, the calculations are very expensive. . This thesis proposes a new approach to solve the equations of boundary layer for laminar and turbulent flows using an approach based on the finite difference method. Integrated into a code of panels, this concept allows to solve airfoils avoiding the use of iterative algorithms, usually computing time and often involving convergence problems. The main advantages of panels methods are their simplicity and ability to obtain, with minimal computational effort, solutions in complex flow conditions for relatively complicated configurations. To verify and validate the developed program, experimental data are used as references when available. Xfoil code is used to obtain data as a pseudo references. Pseudo-reference, as in the absence of experimental data, we cannot really compare two software together. Xfoil is a program that has proven to be accurate and inexpensive computing resources. Developed by Drela (1985), this program uses the method with two integral to design and analyze profiles of wings at low speed (Drela et Youngren, 2014), (Drela, 2003). NACA 0012, NACA 4412, and ATR-42 airfoils have been used for this study. For the airfoils NACA 0012 and NACA 4412 the calculations are made using the Mach number M =0.17 and Reynolds number Re = 6x10 6 conditions for which we have experimental results. For the airfoil ATR-42 the calculations are made using the Mach number M =0.1 and Reynolds number Re=536450 as it was analysed in LARCASE's Price-Paidoussis wind tunnel. Keywords: boundary layer, direct method, displacement thickness, finite differences, Xfoil code.

  13. 3D Thermal/Mechanical Evolution Of The Plate Boundary Corner In SE Alaska

    NASA Astrophysics Data System (ADS)

    Barker, A.; Koons, P.; Upton, P.; Pavlis, T.; Chapman, J.

    2007-12-01

    The St Elias orogen of southeast Alaska forms part of an actively deforming plate boundary corner. The corner accommodates the transition from a strike-slip lateral boundary to a convergent normal boundary. Oblique convergence of the Yakutat microplate into the corner generates early stage tectonic characteristics associated with other corner systems (e.g. Himalayan Eastern Syntaxis). In combination with the high relief, the extreme erosive processes of the region redistribute crustal material, partition tectonic strain, and influence the advection of deep crustal material. The evolution of the convergent corner is investigated using 3D numerical models and sandbox analog models. Preliminary model results indicate the deformation partitions into a narrow two-sided orogen along the lateral boundary. The pattern transitions into a wider zone of shortening bounded by inboard and outboard directed thrusts along the frontal boundary. The inclusion of erosion boundary conditions leads to nascent tectonic aneurysm behavior, involving increased strain localization and focused vertical advection of deep crustal material. Thermal models, using the 3D velocity field from these mechanical solutions, show a vertical deflection (towards the surface) of isotherms beneath the eroding region. Sensitivity of the aneurysm behavior is related to the efficiency of the imposed erosion rate (i.e. greater erosion rates led to greater bedrock uplift rates). Higher erosion rates are localized within zones containing major glacier systems in SE Alaska: Bering Glacier, Bagley Icefield, Malaspina Glacier, and Seward Glacier. Combined thermal/mechanical solutions identify the glacier valleys as rheological weakspots, defined by localized strain and differential advection of deep crustal material.

  14. The optimal modified variational iteration method for the Lane-Emden equations with Neumann and Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Singh, Randhir; Das, Nilima; Kumar, Jitendra

    2017-06-01

    An effective analytical technique is proposed for the solution of the Lane-Emden equations. The proposed technique is based on the variational iteration method (VIM) and the convergence control parameter h . In order to avoid solving a sequence of nonlinear algebraic or complicated integrals for the derivation of unknown constant, the boundary conditions are used before designing the recursive scheme for solution. The series solutions are found which converges rapidly to the exact solution. Convergence analysis and error bounds are discussed. Accuracy, applicability of the method is examined by solving three singular problems: i) nonlinear Poisson-Boltzmann equation, ii) distribution of heat sources in the human head, iii) second-kind Lane-Emden equation.

  15. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  16. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  17. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  18. Skin-Friction Measurements at Subsonic and Transonic Mach Numbers with Embedded-Wire Gages

    DTIC Science & Technology

    1981-01-01

    Model ................................... 17 9. Boundary-Layer Rake Installation on EBOR Model...boundary-layer total pressure rake eliminates this bulky mechanism and the long data acquisition time, but it introduces interferences which affect the...its construction. Further, boundary-layer rakes are restricted to measurements in thick boundary layers. Surface pressure probes such as Stanton tubes

  19. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  20. Three dimensional flow field inside compressor rotor, including blade boundary layers

    NASA Technical Reports Server (NTRS)

    Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.

    1982-01-01

    The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.

  1. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  2. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  3. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  4. Cenozoic forearc tectonics in northeastern Japan: Relationships between outer forearc subsidence and plate boundary kinematics

    NASA Astrophysics Data System (ADS)

    Regalla, Christine

    Here we investigate the relationships between outer forearc subsidence, the timing and kinematics of upper plate deformation and plate convergence rate in Northeast Japan to evaluate the role of plate boundary dynamics in driving forearc subsidence. The Northeastern Japan margin is one of the first non-accretionary subduction zones where regional forearc subsidence was argued to reflect tectonic erosion of large volumes of upper crustal rocks. However, we propose that a significant component of forearc subsidence could be the result of dynamic changes in plate boundary geometry. We provide new constraints on the timing and kinematics of deformation along inner forearc faults, new analyses of the evolution of outer forearc tectonic subsidence, and updated calculations of plate convergence rate. These data collectively reveal a temporal correlation between the onset of regional forearc subsidence, the initiation of upper plate extension, and an acceleration in local plate convergence rate. A similar analysis of the kinematic evolution of the Tonga, Izu-Bonin, and Mariana subduction zones indicates that the temporal correlations observed in Japan are also characteristic of these three non-accretionary margins. Comparison of these data with published geodynamic models suggests that forearc subsidence is the result of temporal variability in slab geometry due to changes in slab buoyancy and plate convergence rate. These observations suggest that a significant component of forearc subsidence at these four margins is not the product of tectonic erosion, but instead reflects changes in plate boundary dynamics driven by variable plate kinematics.

  5. The formation and dust lifting processes associated with a large Saharan meso-scale convective system (MCS)

    NASA Astrophysics Data System (ADS)

    Roberts, Alex; Knippertz, Peter

    2013-04-01

    This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and forced dust high into the atmosphere. As well as the expected behaviour of a gravity current there also seems to be a complex relationship between the cold pool and diurnal variation in boundary layer structure. These include: (1) the production of nocturnal low-level jet in the area previously covered by the cold pool allowing for further dust uplift the following morning, (2) the development of a bore on the nocturnal boundary layer travelling ahead of the cold pool and capable of deflating dust further into the desert and (3) the production of bores on the nocturnal boundary layer by the collision of fronts formed through the collapse of the well mixed daytime boundary layer and nocturnal frontogenesis. It is hoped that this work will add to the understanding of the production of large Saharan MCSs and the processes that can influence their formation. Also it shows the complex dynamical interactions that occur within the Saharan boundary layer and how these might impact our understanding of dust uplift processes associated with the passage of MCSs.

  6. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  7. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  8. The Importance of Three Physical Processes in a Minimal Three-Dimensional Tropical Cyclone Model.

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyan; Smith, Roger K.

    2002-06-01

    The minimal three-dimensional tropical cyclone model developed by Zhu et al. is used to explore the role of shallow convection, precipitation-cooled downdrafts, and the vertical transport of momentum by deep convection on the dynamics of tropical cyclone intensification. The model is formulated in coordinates and has three vertical levels, one characterizing a shallow boundary layer, and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale.In the model, as in reality, shallow convection transports air with low moist static energy from the lower troposphere to the boundary layer, stabilizing the atmosphere not only to itself, but also to deep convection. Also it moistens and cools the lower troposphere. For realistic parameter values, the stabilization in the vortex core region is the primary effect: it reduces the deep convective mass flux and therefore the rate of heating and drying in the troposphere. This reduced heating, together with the direct cooling of the lower troposphere by shallow convection, diminishes the buoyancy in the vortex core and thereby the vortex intensification rate.The effects of precipitation-cooled downdrafts depend on the closure scheme chosen for deep convection. In the two closures in which the deep cloud mass flux depends on the degree of convective instability, the downdrafts do not change the total mass flux of air that subsides into the boundary layer, but they carry air with a lower moist static energy into this layer than does subsidence outside downdrafts. As a result they decrease the rate of intensification during the early development stage. Nevertheless, by reducing the deep convective mass flux and the drying effect of compensating subsidence, they enable grid scale saturation, and therefore rapid intensification, to occur earlier than in calculations where they are excluded. In the closure in which the deep cloud mass flux depends on the mass convergence in the boundary layer, downdrafts reduce the gestation period and increase the intensification rate.Convective momentum transport as represented in the model weakens both the primary and secondary circulations of the vortex. However, it does not significantly reduce the maximum intensity attained after the period of rapid development. The weakening of the secondary circulation impedes vortex development and significantly prolongs the gestation period.Where possible the results are compared with those found in other studies.

  9. On modeling the sound propagation through a lined duct with a modified Ingard-Myers boundary condition

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Fang, Yi; Zhao, Chao; Zhang, Xin

    2018-06-01

    A duct acoustics model is an essential component of an impedance eduction technique and its computation cost determines the impedance measurement efficiency. In this paper, a model is developed for the sound propagation through a lined duct carrying a uniform mean flow. In contrast to many existing models, the interface between the liner and the duct field is defined with a modified Ingard-Myers boundary condition that takes account of the effect of the boundary layer above the liner. A mode-matching method is used to couple the unlined and lined duct segments for the model development. For the lined duct segment, the eigenvalue problem resulted from the modified boundary condition is solved by an integration scheme which, on the one hand, allows the lined duct modes to be computed in an efficient manner, and on the other hand, orders the modes automatically. The duct acoustics model developed from the solved lined duct modes is shown to converge more rapidly than the one developed from the rigid-walled duct modes. Validation against the experiment data in the literature shows that the proposed model is able to predict more accurately the liner performance measured by the two-source method. This, however, cannot be made by a duct acoustics model associated with the conventional Ingard-Myers boundary condition. The proposed model has the potential to be integrated into an impedance eduction technique for more reliable liner measurement.

  10. Finite-difference solution of the compressible stability eigenvalue problem

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1982-01-01

    A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.

  11. Radiation effects on the flow of Powell-Eyring fluid past an unsteady inclined stretching sheet with non-uniform heat source/sink.

    PubMed

    Hayat, Tasawar; Asad, Sadia; Mustafa, Meraj; Alsaedi, Ahmed

    2014-01-01

    This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.

  12. Gas turbine engine with supersonic compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, II, William Byron; Lawlor, Shawn P.

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more,more » when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less

  13. Measurements in the annular shear layer of high subsonic and under-expanded round jets

    NASA Astrophysics Data System (ADS)

    Feng, Tong; McGuirk, James J.

    2016-01-01

    An experimental study has been undertaken to document compressibility effects in the annular shear layers of axisymmetric jets. Comparison is made of the measured flow development with the well-documented influence of compressibility in planar mixing layers. High Reynolds number (~106) and high Mach number jets issuing from a convergent nozzle at nozzle pressure ratios (NPRs) from 1.28 to 3.0 were measured using laser Doppler anemometry instrumentation. Detailed radial profile data are reported, particularly within the potential core region, for mean velocity, turbulence rms, and turbulence shear stress. For supercritical NPRs the presence of the pressure waves in the inviscid shock cell region as the jet expanded back to ambient pressure was found to exert a noticeable effect on shear layer location, causing this to shift radially outwards at high supercritical NPR conditions. After a boundary layer to free shear layer transition zone, the turbulence development displayed a short region of similarity before adjustment to near-field merged jet behaviour. Peak turbulence rms reduction due to compressibility was similar to that observed in planar layers with radial rms suppression much stronger than axial. Comparison of the compressibility-modified annular shear layer growth rate with planar shear layer data on the basis of the convective Mach number ( M C) showed notable differences; in the annular shear layer, compressibility effects began at lower M C and displayed a stronger reduction in growth. For high Mach number aerospace propulsion applications involving round jets, the current measurements represent a new data set for the calibration/validation of compressibility-affected turbulence models.

  14. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less

  15. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  16. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  17. Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Todd, C. A.

    1974-01-01

    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region.

  18. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  19. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  20. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  1. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  2. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  3. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  4. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  5. A nonperturbing boundary-layer transition detector

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-11-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels. The boundary-layer transition detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Data which depict boundary-layer transition from laminar to turbulent flow are presented to provide comparisons of the BLTD with other measurement methods. Spectra from the BLTD reveals the presence of a high-frequency peak during transition which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  6. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  7. High-fidelity large eddy simulation for supersonic jet noise prediction

    NASA Astrophysics Data System (ADS)

    Aikens, Kurt M.

    The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the wall model treatment are then utilized to simulate military-style nozzles with and without beveling of the nozzle exit plane. Experiments of beveled converging-diverging nozzles have found reduced noise levels for some observer locations. Predicting the noise for these geometries provides a good initial test of the overall methodology for a more complex nozzle. The jet flowfield and acoustic data are analyzed and compared to similar experiments and excellent agreement is found. Potential areas of improvement are discussed for future research.

  8. Kinematic signature of India/Australia plates break-up

    NASA Astrophysics Data System (ADS)

    Iaffaldano, G.; Bunge, H.

    2008-12-01

    The paradigm of Plate Tectonics states that the uppermost layer of the Earth is made of a number of quasi- rigid blocks moving at different rates in different directions, while most of the deformation is focused along their boundaries. Perhaps one of the most interesting and intriguing processes in Plate Tectonics is the generation of new plate boundaries. The principle of inertia implies that any such event would invariably trigger changes in plate motions, because the budget of mantle basal-drag and plate-boundary forces would be repartitioned. A recent episode is thought to have occurred in the Indian Ocean, where a variety of evidences - including localized seismicity along the Nienty East Ridge, compression-generated unconformities of ocean-floor sediments, and identified paleomagnetic isochrones - suggest the genesis of a boundary separating the India and Australia plates. Here we use global numerical models of the coupled mantle/lithosphere system to show for the first time that an event of separation between India and Australia, having occurred sometime between 11 and 8 Myrs ago, has left a distinct signature in the observed record of plate motions. Specifically, while motions of India and Australia relative to fixed Eurasia are almost indistinguishable prior to 11 Myrs ago, their convergence to Eurasia since then differs significantly, by as much as 2 cm/yr. Finally, we speculate about possible causes for the separation between India and Australia plates.

  9. Kinematic signature of India/Australia plates break-up

    NASA Astrophysics Data System (ADS)

    Iaffaldano, G.; Bunge, H.-P.

    2009-04-01

    The paradigm of Plate Tectonics states that the uppermost layer of the Earth is made of a number of quasi-rigid blocks moving at different rates in different directions, while most of the deformation is focused along their boundaries. Perhaps one of the most interesting and intriguing processes in Plate Tectonics is the generation of new plate boundaries. The principle of inertia implies that any such event would invariably trigger changes in plate motions, because the budget of mantle basal-drag and plate-boundary forces would be repartitioned. A recent episode is thought to have occurred in the Indian Ocean, where a variety of evidences - including localized seismicity along the Nienty East Ridge, compression-generated unconformities of ocean-floor sediments, and identified paleomagnetic isochrones - suggest the genesis of a boundary separating the India and Australia plates. Here we use global numerical models of the coupled mantle/lithosphere system to show for the first time that an event of separation between India and Australia, having occurred sometime between 11 and 8 Myrs ago, has left a distinct signature in the observed record of plate motions. Specifically, while motions of India and Australia relative to fixed Eurasia are almost indistinguishable prior to 11 Myrs ago, their convergence to Eurasia since then differs significantly, by as much as 2 cm/yr. Finally, we speculate about possible causes for the separation between India and Australia plates.

  10. The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis

    PubMed Central

    Roberts, A J; Knippertz, P

    2014-01-01

    Haboobs are dust storms produced by the spreading of evaporatively cooled air from thunderstorms over dusty surfaces and are a major dust uplift process in the Sahara. In this study observations, reanalysis, and a high-resolution simulation using the Weather Research and Forecasting model are used to analyze the multiscale dynamics which produced a long-lived (over 2 days) Saharan mesoscale convective system (MCS) and an unusually large haboob in June 2010. An upper level trough and wave on the subtropical jet 5 days prior to MCS initiation produce a precipitating tropical cloud plume associated with a disruption of the Saharan heat low and moistening of the central Sahara. The restrengthening Saharan heat low and a Mediterranean cold surge produce a convergent region over the Hoggar and Aïr Mountains, where small convective systems help further increase boundary layer moisture. Emerging from this region the MCS has intermittent triggering of new cells, but later favorable deep layer shear produces a mesoscale convective complex. The unusually large size of the resulting dust plume (over 1000 km long) is linked to the longevity and vigor of the MCS, an enhanced pressure gradient due to lee cyclogenesis near the Atlas Mountains, and shallow precipitating clouds along the northern edge of the cold pool. Dust uplift processes identified are (1) strong winds near the cold pool front, (2) enhanced nocturnal low-level jet within the aged cold pool, and (3) a bore formed by the cold pool front on the nocturnal boundary layer. PMID:25844277

  11. Simulation of Couette flow using conventional Burnett equations with modified slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Hualin; Zhao, Wenwen; Chen, Weifang

    2016-11-01

    Gas or liquid flow through small channels has become more and more popular due to the micro-electro-mechanical systems (MEMS) fabrication technologies such as micro-motors, electrostatic comb-drive, micro-chromatographs, micro-actuators, micro-turbines and micro-pumps, etc. The flow conditions in and around these systems are always recognized as typical transitional regimes. Under these conditions, the mean free path of gas molecules approaches the characteristic scale of the micro-devices itself, and due to the little collisions the heat and momentum cannot equilibrate between the wall and fluids quickly. Couette flow is a simple and critical model in fluid dynamics which focuses on the mechanism of the heat transfer in shear-driven micro-cavities or micro-channels. Despite numerous work on the numerical solutions of the Couette flow, how to propose stable and accurate slip boundary conditions in rarefied flow conditions still remains to be elucidated. In this paper, converged solutions for steady-state micro Couette flows are obtained by using conventional Burnett equations with a set of modified slip boundary conditions. Instead of using the physical variables at the wall, the modified slip conditions use the variables at the edge of the Knudsen layer based on a physically plausible assumption in literature that Knudsen layer has a thickness only in the order of a mean free path and molecules are likely to travel without collision in this layer. Numerical results for non-dimensional wall shear stress and heat flux are compared with those of the DSMC solutions. Although there are not much improvement in the accuracy by using this modified slip conditions, the modified conditions perform much better than the unmodified slip conditions for numerical stabilization. All results show that the set of conventional Burnett equations with second order modified conditions are proved to be an appropriate model for the micro-Couette flows.

  12. Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.

    2005-02-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.

  13. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  14. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  15. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  16. Variable convergence liquid layer implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Yi, S. A.; Haines, B. M.; Olson, R. E.; Leeper, R. J.; Braun, T.; Biener, J.; Kline, J. L.; Batha, S. H.; Berzak Hopkins, L.; Bhandarkar, S.; Bradley, P. A.; Crippen, J.; Farrell, M.; Fittinghoff, D.; Herrmann, H. W.; Huang, H.; Khan, S.; Kong, C.; Kozioziemski, B. J.; Kyrala, G. A.; Ma, T.; Meezan, N. B.; Merrill, F.; Nikroo, A.; Peterson, R. R.; Rice, N.; Sater, J. D.; Shah, R. C.; Stadermann, M.; Volegov, P.; Walters, C.; Wilson, D. C.

    2018-05-01

    Liquid layer implosions using the "wetted foam" technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. We report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ˜ 12, but we observe a significant discrepancy at CR ˜ 20. This may be due to suppressed hot-spot formation or an anomalous energy loss mechanism.

  17. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    AFRL-AFOSR-CL-TR-2016-0011 Towards natural transition in compressible boundary layers Marcello Faraco de Medeiros FUNDACAO PARA O INCREMENTO DA...to 29-03-2016 Towards natural transition in compressible boundary layers FA9550-11-1-0354 Marcello A. Faraco de Medeiros Germán Andrés Gaviria...unlimited. 109 Final report Towards natural transition in compressible boundary layers Principal Investigator: Marcello Augusto Faraco de Medeiros

  18. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  19. Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance

    NASA Astrophysics Data System (ADS)

    Cao, Fangfei; Liu, Jinkun

    2018-05-01

    In this paper, we consider a boundary control problem for a constrained two-link rigid-flexible manipulator. The nonlinear system is described by hybrid ordinary differential equation-partial differential equation (ODE-PDE) dynamic model. Based on the coupled ODE-PDE model, boundary control is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. With the help of prescribed performance functions, the tracking error can converge to an arbitrarily small residual set and the convergence rate is no less than a certain pre-specified value. Asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle extended to infinite-dimensional system. Numerical simulations are provided to demonstrate the effectiveness of the proposed controller.

  20. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  1. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  2. A new method of imposing boundary conditions for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Funaro, D.; ative.

    1987-01-01

    A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.

  3. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1039:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  4. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1030:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  5. Time-resolved measurements of coherent structures in the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    LeHew, J. A.; Guala, M.; McKeon, B. J.

    2013-04-01

    Time-resolved particle image velocimetry was used to examine the structure and evolution of swirling coherent structure (SCS), one interpretation of which is a marker for a three-dimensional coherent vortex structure, in wall-parallel planes of a turbulent boundary layer with a large field of view, 4.3 δ × 2.2 δ. Measurements were taken at four different wall-normal locations ranging from y/ δ = 0.08-0.48 at a friction Reynolds number, Re τ = 410. The data set yielded statistically converged results over a larger field of view than typically observed in the literature. The method for identifying and tracking swirling coherent structure is discussed, and the resulting trajectories, convection velocities, and lifespan of these structures are analyzed at each wall-normal location. The ability of a model in which the entirety of an individual SCS travels at a single convection velocity, consistent with the attached eddy hypothesis of Townsend (The structure of turbulent shear flows. Cambridge University Press, Cambridge, 1976), to describe the data is investigated. A methodology for determining whether such structures are "attached" or "detached" from the wall is also proposed and used to measure the lifespan and convection velocity distributions of these different structures. SCS were found to persist for longer periods of time further from the wall, particularly those inferred to be "detached" from the wall, which could be tracked for longer than 5 eddy turnover times.

  6. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    NASA Technical Reports Server (NTRS)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  7. Evolution of the Planetary Boundary Layer on the northern coast of Brazil during the CHUVA campaign

    NASA Astrophysics Data System (ADS)

    Ramos, Diogo Nunes da Silva; Fernandez, Julio Pablo Reyes; Fisch, Gilberto

    2018-05-01

    This study aims to characterize the wind and thermodynamic structure of the Planetary Boundary Layer (PBL) on the northern coast of Brazil (NCB) via the CHUVA datasets. Three synoptic conditions were present in the NCB region between March 1 and 25, 2010: a dry period, the Upper Tropospheric Cyclonic Vortex (UTCV) and the Intertropical Convergence Zone (ITCZ). Nighttime precipitation accounted for 78% of the total precipitation observed in the month, mainly during the ITCZ. In general, the surface meteorological fields were few changed by intense weather events due to proximity to the ocean and the predominant contribution of the northeasterly trade winds. There was also a weak sea breeze signal that maintained the horizontal moisture flow in the studied area. On dry days, the PBL depth was higher, drier, and warmer, resulting in stronger winds below 500 m. Moreover, trends throughout the period suggest that PBLs are near-neutral below 500 m. However, the wind variability was intensified by up to 20% due to downdrafts and higher wind shears during the deep convection mechanisms derived by UTCV. Furthermore, ITCZ mixed rainfall cooled the PBL at approximately 2 K, making it very stable according to the Richardson number classification adopted. The observed temporal and spatial scale represent challenges to the physical parameterizations used to improve numerical weather prediction models over tropical coastal areas.

  8. Oscillation of Surface PM2.5 Concentration Resulting from an Alternation of Easterly and Southerly Winds in Beijing: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Sun, Zhaobin; Zhang, Xiaoling; Zhao, Xiujuan; Xia, Xiangao; Miao, Shiguang; Li, Ziming; Cheng, Zhigang; Wen, Wei; Tang, Yixi

    2018-04-01

    We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern-central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.

  9. Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results

    NASA Astrophysics Data System (ADS)

    Boutelier, D.; Oncken, O.

    2008-12-01

    We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.

  10. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  11. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  12. On the Boussinesq-Burgers equations driven by dynamic boundary conditions

    NASA Astrophysics Data System (ADS)

    Zhu, Neng; Liu, Zhengrong; Zhao, Kun

    2018-02-01

    We study the qualitative behavior of the Boussinesq-Burgers equations on a finite interval subject to the Dirichlet type dynamic boundary conditions. Assuming H1 ×H2 initial data which are compatible with boundary conditions and utilizing energy methods, we show that under appropriate conditions on the dynamic boundary data, there exist unique global-in-time solutions to the initial-boundary value problem, and the solutions converge to the boundary data as time goes to infinity, regardless of the magnitude of the initial data.

  13. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  14. Sound-turbulence interaction in transonic boundary layers

    NASA Astrophysics Data System (ADS)

    Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva

    2014-11-01

    Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.

  15. Pitot-probe displacement in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  16. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  17. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  18. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  19. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, B. E.; Olson, B. J.; White, J. E.

    High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less

  1. Inventory of File gfs.t06z.smartguam15.tm00.grib2

    Science.gov Websites

    hour fcst Visibility [m] 014 planetary boundary layer WDIR 15 hour fcst Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND 15 hour fcst Wind Speed [m/s] 016 planetary boundary layer RH 15 hour fcst Relative Humidity [%] 017 planetary boundary layer DIST 15 hour fcst Geometric

  2. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  3. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  4. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  5. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  6. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  7. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  8. Studies on the influence on flexural wall deformations on the development of the flow boundary layer

    NASA Technical Reports Server (NTRS)

    Schilz, W.

    1978-01-01

    Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.

  9. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  10. Effect of aspect ratio on sidewall boundary-layer influence in two-dimensional airfoil testing

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1986-01-01

    The effect of sidewall boundary layers in airfoil testing in two-dimensional wind tunnels is investigated. The non-linear crossflow velocity variation induced because of the changes in the sidewall boundary-layer thickness is represented by the flow between a wavy wall and a straight wall. Using this flow model, a correction for the sidewall boundary-layer effects is derived in terms of the undisturbed sidewall boundary-layer properties, the test Mach number and the airfoil aspect ratio. Application of the proposed correction to available experimental data showed good correlation for the shock location and pressure distribution on airfoils.

  11. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  12. Numerical investigation of an internal layer in turbulent flow over a curved hill

    NASA Technical Reports Server (NTRS)

    Kim, S-W.

    1989-01-01

    The development of an internal layer in a turbulent boundary layer flow over a curved hill is investigated numerically. The turbulence field of the boundary layer flow over the curved hill is compared with that of a turbulent flow over a symmetric airfoil (which has the same geometry as the curved hill except that the leading and trailing edge plates were removed) to study the influence of the strongly curved surface on the turbulence field. The turbulent flow equations are solved by a control-volume based finite difference method. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. Computational results for the mean flow field (pressure distributions on the walls, wall shearing stresses and mean velocity profiles), the turbulence structure (Reynolds stress and turbulent kinetic energy profiles), and the integral parameters (displacement and momentum thicknesses) compared favorably with the measured data. Computational results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall-bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner of the hill, merges with the external boundary layer, and develops into a new fully turbulent boundary layer as the fluid flows in the downstream direction. For the flow over the symmetric airfoil, the boundary layer began to form from almost the same location as that of the curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow.

  13. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  14. Observing the Vertical Extent of the Urban Boundary Layer Over Jersey City, NJ: A Diurnal and Seasonal Analysis

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.

    2015-12-01

    The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).

  15. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    PubMed

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  16. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less

  17. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  18. A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.

    2017-12-01

    The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

  19. Self-similarity of a Rayleigh–Taylor mixing layer at low Atwood number with a multimode initial perturbation

    DOE PAGES

    Morgan, B. E.; Olson, B. J.; White, J. E.; ...

    2017-06-29

    High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less

  20. Food-Pharma Convergence in Medical Nutrition– Best of Both Worlds?

    PubMed Central

    Weenen, Tamar C.; Ramezanpour, Bahar; Pronker, Esther S.; Commandeur, Harry; Claassen, Eric

    2013-01-01

    At present, industries within the health and life science sector are moving towards one another resulting in new industries such as the medical nutrition industry. Medical nutrition products are specific nutritional compositions for intervention in disease progression and symptom alleviation. Industry convergence, described as the blurring of boundaries between industries, plays a crucial role in the shaping of new markets and industries. Assuming that the medical nutrition industry has emerged from the convergence between the food and pharma industries, it is crucial to research how and which distinct industry domains have contributed to establish this relatively new industry. The first two stages of industry convergence (knowledge diffusion and consolidation) are measured by means of patent analysis. First, the extent of knowledge diffusion within the medical nutrition industry is graphed in a patent citation interrelations network. Subsequently the consolidation based on technological convergence is determined by means of patent co-classification. Furthermore, the medical nutrition core domain and technology interrelations are measured by means of a cross impact analysis. This study proves that the medical nutrition industry is a result of food and pharma convergence. It is therefore crucial for medical nutrition companies to effectively monitor technological developments within as well as across industry boundaries. This study further reveals that although the medical nutrition industry’s core technology domain is food, technological development is mainly driven by pharmaceutical/pharmacological technologies Additionally, the results indicate that the industry has surpassed the knowledge diffusion stage of convergence, and is currently in the consolidation phase of industry convergence. Nevertheless, while the medical nutrition can be classified as an industry in an advanced phase of convergence, one cannot predict that the pharma and food industry segments will completely converge or whether the medical industry will become an individual successful industry. PMID:24358214

  1. Food-pharma convergence in medical nutrition- best of both worlds?

    PubMed

    Weenen, Tamar C; Ramezanpour, Bahar; Pronker, Esther S; Commandeur, Harry; Claassen, Eric

    2013-01-01

    At present, industries within the health and life science sector are moving towards one another resulting in new industries such as the medical nutrition industry. Medical nutrition products are specific nutritional compositions for intervention in disease progression and symptom alleviation. Industry convergence, described as the blurring of boundaries between industries, plays a crucial role in the shaping of new markets and industries. Assuming that the medical nutrition industry has emerged from the convergence between the food and pharma industries, it is crucial to research how and which distinct industry domains have contributed to establish this relatively new industry. The first two stages of industry convergence (knowledge diffusion and consolidation) are measured by means of patent analysis. First, the extent of knowledge diffusion within the medical nutrition industry is graphed in a patent citation interrelations network. Subsequently the consolidation based on technological convergence is determined by means of patent co-classification. Furthermore, the medical nutrition core domain and technology interrelations are measured by means of a cross impact analysis. This study proves that the medical nutrition industry is a result of food and pharma convergence. It is therefore crucial for medical nutrition companies to effectively monitor technological developments within as well as across industry boundaries. This study further reveals that although the medical nutrition industry's core technology domain is food, technological development is mainly driven by pharmaceutical/pharmacological technologies Additionally, the results indicate that the industry has surpassed the knowledge diffusion stage of convergence, and is currently in the consolidation phase of industry convergence. Nevertheless, while the medical nutrition can be classified as an industry in an advanced phase of convergence, one cannot predict that the pharma and food industry segments will completely converge or whether the medical industry will become an individual successful industry.

  2. Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1983-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.

  3. Turbulent boundary layers with secondary flow

    NASA Technical Reports Server (NTRS)

    Grushwitz, E.

    1984-01-01

    An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.

  4. Investigation of blown boundary layers with an improved wall jet system. Ph.D. Thesis. Final Technical Report, 1 Jul. 1978 - Dec. 1979; [to prevent turbulent boundary layer separation

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1979-01-01

    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.

  5. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  6. Inventory of File gfs.t06z.smartguam24.tm00.grib2

    Science.gov Websites

    boundary layer WDIR 24 hour fcst Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND 24 hour fcst Wind Speed [m/s] 017 planetary boundary layer RH 24 hour fcst Relative Humidity [%] 018 planetary boundary layer DIST 24 hour fcst Geometric Height [m] 019 surface 4LFTX 24 hour fcst

  7. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  8. On optical imaging through aircraft turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Sutton, G. W.

    1980-01-01

    Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.

  9. Application of the E - Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Duynkerke, P. G.

    1988-03-01

    In the E - turbulence model an eddy-exchange coefficient is evaluated from the turbulent kinetic energy E and viscous dissipation . In this study we will apply the E - model to the stable and neutral atmospheric boundary layer. A discussion is given on the equation for , which terms should be included and how we have evaluated the constants. Constant cooling rate results for the stable atmospheric boundary layer are compared with a second-order closure study. For the neutral atmospheric boundary layer a comparison is made with observations, large-eddy simulations and a second-order closure study. It is shown that a small stability effect can change the neutral atmospheric boundary layer quite drastically, and therefore, it will be difficult to observe a neutral boundary layer in the atmosphere.

  10. a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu

    A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.

  11. A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983

    NASA Technical Reports Server (NTRS)

    Moffat, R. J.; Kays, W. M.

    1984-01-01

    For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.

  12. Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wei, C. Q.

    1993-01-01

    The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.

  13. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  14. The Convergence Years

    ERIC Educational Resources Information Center

    Kolodzy, Janet; Grant, August E.; DeMars, Tony R.; Wilkinson, Jeffrey S.

    2014-01-01

    The emergence of the Internet, social media, and digital technologies in the twenty-first century accelerated an evolution in journalism and communication that fit under the broad term of convergence. That evolution changed the relationship between news producers and consumers. It broke down the geographical boundaries in defining our communities,…

  15. Boundary-Layer Characteristics Over a Coastal Megacity

    NASA Astrophysics Data System (ADS)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  16. Variable convergence liquid layer implosions on the National Ignition Facility

    DOE PAGES

    Zylstra, A. B.; Yi, S. A.; Haines, B. M.; ...

    2018-03-19

    Liquid layer implosions using the “wetted foam” technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. In this paper, we report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ~ 12, but we observe a significant discrepancy at CR ~ 20. Finally, this may be due tomore » suppressed hot-spot formation or an anomalous energy loss mechanism.« less

  17. Variable convergence liquid layer implosions on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B.; Yi, S. A.; Haines, B. M.

    Liquid layer implosions using the “wetted foam” technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. In this paper, we report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ~ 12, but we observe a significant discrepancy at CR ~ 20. Finally, this may be due tomore » suppressed hot-spot formation or an anomalous energy loss mechanism.« less

  18. Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Wilcox, D. C.

    1977-01-01

    Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.

  19. Using Google Earth to Explore Strain Rate Models of Southern California

    NASA Astrophysics Data System (ADS)

    Richard, G. A.; Bell, E. A.; Holt, W. E.

    2007-12-01

    A series of strain rate models for the Transverse Ranges of southern California were developed based on Quaternary fault slip data and geodetic data from high precision GPS stations in southern California. Pacific-North America velocity boundary conditions are applied for all models. Topography changes are calculated using the model dilatation rates, which predict crustal thickness changes under the assumption of Airy isostasy and a specified rate of crustal volume loss through erosion. The models were designed to produce graphical and numerical output representing the configuration of the region from 3 million years ago to 3 million years into the future at intervals of 50 thousand years. Using a North American reference frame, graphical output for the topography and faults and numerical output for locations of faults and points on the crust marked by the locations on cities were used to create data in KML format that can be used in Google Earth to represent time intervals of 50 thousand years. As markers familiar to students, the cities provide a geographic context that can be used to quantify crustal movement, using the Google Earth ruler tool. By comparing distances that markers for selected cities have moved in various parts of the region, students discover that the greatest amount of crustal deformation has occurred in the vicinity of the boundary between the North American and Pacific plates. Students can also identify areas of compression or extension by finding pairs of city markers that have converged or diverged, respectively, over time. The Google Earth layers also reveal that faults that are not parallel to the plate boundary have tended to rotate clockwise due to the right lateral motion along the plate boundary zone. KML TimeSpan markup was added to two versions of the model, enabling the layers to be displayed in an automatic sequenced loop for a movie effect. The data is also available as QuickTime (.mov) and Graphics Interchange Format (.gif) animations and in ESRI Shapefile format.

  20. Biogeophysical consequences of a tropical deforestation scenario: A GCM simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sud, Y.C.; Lau, W.K.M.; Walker, G.K.

    1996-12-01

    Two 3-year (1979-1982) integrations were carried out with a version of the GLA GCM that contains the Simple Biosphere Model (SiB) for simulating land-atmosphere interactions. The control case used the usual SiB vegetation cover (comprising 12 vegetation types), while its twin, the deforestation case, imposed a scenario in which all tropical rainforests were entirely replaced by grassland. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both integrations. An intercomparison of the integrations shows that tropical: deforestation decreases evapotranspiration and increases land surface outgoing longwave radiation and sensible heat flux, thereby warming and dryingmore » the planetary boundary layer. This happens despite the reduced absorption of solar radiation due to higher surface albedo of the deforested land. Produces significant and robust local as well as global climate changes. The local effect includes significant changes (mostly reductions) in precipitation and diabatic heating, while the large-scale effect is to weaken the Hadley circulation but invigorate the southern Ferrel cell, drawing larger air mass from the indirect polar cells. Decreases the surface stress (drag force) owing to reduced surface roughness of deforested land, which in turn intensifies winds in the planetary boundary layer, thereby affecting the dynamic structure of moisture convergence. The simulated surface winds are about 70% stronger and are accompanied by significant changes in the power spectrum of the annual cycle of surface and PBL winds and precipitation. Our results broadly confirm several findings of recent tropical deforestation simulation experiments. In addition, some global-scale climatic influences of deforestation not identified in earlier studies are delineated. 57 refs., 10 figs., 3 tabs.« less

  1. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  2. Internal and external 2-d boundary layer flows

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.

    1978-01-01

    Computer program computes general two dimensional turbulent boundary-layer flow using finite-difference techniques. Structure allows for user modification to accommodate unique problems. Program should prove useful in many applications where accurate boundary-layer flow calculations are required.

  3. Dependence of Tropical Cyclone Intensification on the Latitude under Vertical Shear

    NASA Astrophysics Data System (ADS)

    Bi, Mingyu; Ge, Xuyang; Li, Tim

    2018-02-01

    The sensitivity of tropical cyclone (TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand, the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated.

  4. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  5. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; Zylstra, A. B.; Yi, S. A.; Biener, J.; Braun, T.; Kozioziemski, B. J.; Sater, J. D.; Bradley, P. A.; Peterson, R. R.; Haines, B. M.; Yin, L.; Berzak Hopkins, L. F.; Meezan, N. B.; Walters, C.; Biener, M. M.; Kong, C.; Crippen, J. W.; Kyrala, G. A.; Shah, R. C.; Herrmann, H. W.; Wilson, D. C.; Hamza, A. V.; Nikroo, A.; Batha, S. H.

    2016-12-01

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D2 and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12 30 ) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  6. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility.

    PubMed

    Olson, R E; Leeper, R J; Kline, J L; Zylstra, A B; Yi, S A; Biener, J; Braun, T; Kozioziemski, B J; Sater, J D; Bradley, P A; Peterson, R R; Haines, B M; Yin, L; Berzak Hopkins, L F; Meezan, N B; Walters, C; Biener, M M; Kong, C; Crippen, J W; Kyrala, G A; Shah, R C; Herrmann, H W; Wilson, D C; Hamza, A V; Nikroo, A; Batha, S H

    2016-12-09

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D_{2} and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (1230) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  7. Comparison of Theoretical and Experimental Heat-Transfer Characteristics of Bodies of Revolution at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Scherrer, Richard

    1951-01-01

    An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.

  8. Study of the Effect of Free-Stream Turbulence upon Disturbances in the Pre-Transitional Laminar Boundary Layer. Part I. Laminar Boundary Layer Distortion by Surface Roughness; Effect upon Stability. Part II.

    DTIC Science & Technology

    1982-04-01

    Boundary Layer Near a Plate." NACA Rept. 562, 1936. 5) A. A. Hall and G. S. Hislop , "Experiments on the Transition of the Laminar Boundary Layer on a...Cylinder." Proc. 5th Inter. Congr. Appl. Math, 1938. 7) G. S. Hislop , "The Transition of a Laminar Boundary Layer in a Wind Tunnel." Ph.D. Thesis...Small Vertical Cylinder Attached to a Flat Plate", h Fa- Elul"s, Vol. 23, Part 1, pp. 221-223, Jan. 1980 . 9. A. Von Doenhoff and E. A. Horton, "A Low

  9. Electron distributions in the plasma sheet boundary layer - Time-of-flight effects

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.; Gosling, J. T.; Bame, S. J.

    1990-01-01

    The electron edge of the plasma sheet boundary layer lies lobeward of the ion edge. Measurements obtained near the electron edge of the boundary layer reveal low-speed cutoffs for earthward and tailward-flowing electrons. These cutoffs progress to lower speeds with deeper penetration into the boundary layer, and are consistently lower for the earthward-directed electrons than for the tailward-direction electrons. The cutoffs and their variation with distance from the edge of the boundary layer can be consistently interpreted in terms of a time-of-flight effect on recently reconnected magnetic field lines. The observed cutoff speeds are used to estimate the downtail location of the reconnection site.

  10. Goertler instability in compressible boundary layers along curved surfaces with suction and cooling

    NASA Technical Reports Server (NTRS)

    El-Hady, N.; Verma, A. K.

    1982-01-01

    The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.

  11. A review of quasi-coherent structures in a numerically simulated turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.; Kline, S. J.; Spalart, P. R.

    1989-01-01

    Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.

  12. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  13. Sublayer of Prandtl Boundary Layers

    NASA Astrophysics Data System (ADS)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  14. Extrapolating surface structures to depth in transpressional systems: the role of rheology and convergence angle deduced from analogue experiments

    NASA Astrophysics Data System (ADS)

    Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.

    2014-12-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  15. Methods and results of boundary layer measurements on a glider

    NASA Technical Reports Server (NTRS)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  16. A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona

    1992-01-01

    A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.

  17. Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Mader, Charles A.; Kenway, Gaetan K. W.; Martins, Joaquim R. R. A.

    2017-01-01

    Airframe-propulsion integration concepts that use boundary layer ingestion have the potential to reduce aircraft fuel burn. One concept that has been recently explored is NASA's Starc-ABL aircraft configuration, which offers the potential for 12% mission fuel burn reduction by using a turbo-electric propulsion system with an aft-mounted electrically driven boundary layer ingestion propulsor. This large potential for improved performance motivates a more detailed study of the boundary layer ingestion propulsor design, but to date, analyses of boundary layer ingestion have used uncoupled methods. These methods account for only aerodynamic effects on the propulsion system or propulsion system effects on the aerodynamics, but not both simultaneously. This work presents a new approach for building fully coupled propulsive-aerodynamic models of boundary layer ingestion propulsion systems. A 1D thermodynamic cycle analysis is coupled to a RANS simulation to model the Starc-ABL aft propulsor at a cruise condition and the effects variation in propulsor design on performance are examined. The results indicates that both propulsion and aerodynamic effects contribute equally toward the overall performance and that the fully coupled model yields substantially different results compared to uncoupled. The most significant finding is that boundary layer ingestion, while offering substantial fuel burn savings, introduces throttle dependent aerodynamics effects that need to be accounted for. This work represents a first step toward the multidisciplinary design optimization of boundary layer ingestion propulsion systems.

  18. Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    King, RUdolph A.; Berry, Scott A.; Kegerise, Michael A.

    2008-01-01

    This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent.

  19. Upper-tropospheric inversion and easterly jet in the tropics

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Xie, S.-P.; Shiotani, M.; Hashizume, H.; Hasebe, F.; VöMel, H.; Oltmans, S. J.; Watanabe, T.

    2003-12-01

    Shipboard radiosonde measurements revealed a persistent temperature inversion layer with a thickness of ˜200 m at 12-13 km in a nonconvective region over the tropical eastern Pacific, along 2°N, in September 1999. Simultaneous relative humidity measurements indicated that the thin inversion layer was located at the top of a very wet layer with a thickness of 3-4 km, which was found to originate from the intertropical convergence zone (ITCZ) to the north. Radiative transfer calculations suggested that this upper tropospheric inversion (UTI) was produced and maintained by strong longwave cooling in this wet layer. A strong easterly jet stream was also observed at 12-13 km, centered around 4°-5°N. This easterly jet was in the thermal wind balance, with meridional temperature gradients produced by the cloud and radiative processes in the ITCZ and the wet outflow. Furthermore, the jet, in turn, acted to spread inversions further downstream through the transport of radiatively active water vapor. This feedback mechanism may explain the omnipresence of temperature inversions and layering structures in trace gases in the tropical troposphere. Examination of high-resolution radiosonde data at other sites in the tropical Pacific indicates that similar UTIs often appear around 12-15 km. The UTI around 12-15 km may thus be characterized as one of the "climatological" inversions in the tropical troposphere, forming the lower boundary of the so-called tropical tropopause layer, where the tropospheric air is processed photochemically and microphysically before entering the stratosphere.

  20. Boundary-layer exchange by bubble: A novel method for generating transient nanofluidic layers

    NASA Astrophysics Data System (ADS)

    Jennissen, Herbert P.

    2005-10-01

    Unstirred layers (i.e., Nernst boundary layers) occur on every dynamic solid-liquid interface, constituting a diffusion barrier, since the velocity of a moving liquid approaches zero at the surface (no slip). If a macromolecule-surface reaction rate is higher than the diffusion rate, the Nernst layer is solute depleted and the reaction rate becomes mass-transport limited. The thickness of a Nernst boundary layer (δN) generally lies between 5 and 50μm. In an evanescent wave rheometer, measuring fibrinogen adsorption to fused silica, we made the fundamental observation that an air bubble preceding the sample through the flow cell abolishes the mass-transport limitation of the Nernst diffusion layer. Instead exponential kinetics are found. Experimental and simulation studies strongly indicate that these results are due to the elimination of the Nernst diffusion layer and its replacement by a dynamic nanofluidic layer (δν) maximally 200-300nm thick. It is suggested that the air bubble leads to a transient boundary-layer separation into a novel nanoboundary layer on the surface and the bulk fluid velocity profile separated by a vortex sheet with an estimated lifetime of 30-60s. A bubble-induced boundary-layer exchange from the Nernst to the nanoboundary layer and back is obtained, giving sufficient time for the measurement of unbiased exponential surface kinetics. Noteworthy is that the nanolayer can exist at all and displays properties such as (i) a long persistence and resistance to dissipation by the bulk liquid (boundary-layer-exchange-hysteresis) and (ii) a lack of solute depletion in spite of boundary-layer separation. The boundary-layer-exchange by bubble (BLEB) method therefore appears ideal for enhancing the rates of all types of diffusion-limited macromolecular reactions on surfaces with contact angles between 0° and 90° and only appears limited by slippage due to nanobubbles or an air gap beneath the nanofluidic layer on very hydrophobic surfaces. The possibility of producing nanoboundary layers without any nanostructuring or nanomachining should also be useful for fundamental physical studies in nanofluidics.

  1. Convergence of an hp-Adaptive Finite Element Strategy in Two and Three Space-Dimensions

    NASA Astrophysics Data System (ADS)

    Bürg, Markus; Dörfler, Willy

    2010-09-01

    We show convergence of an automatic hp-adaptive refinement strategy for the finite element method on the elliptic boundary value problem. The strategy is a generalization of a refinement strategy proposed for one-dimensional situations to problems in two and three space-dimensions.

  2. Sentence Frame Effects on Children's Category Judgments.

    ERIC Educational Resources Information Center

    Adams, Alison K.

    Two studies of concept development and categorization among 1-, 2-, and 3-year-old children suggest that concept formation is a socially guided process involving convergence on an adult model. Convergence in labeling is an early strategy for shaping children's category boundaries, while later, more elaborate linguistic means are used to…

  3. Structure of the low-latitude boundary layer. [in magnetopause

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. OE.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1981-01-01

    High temporal resolution observations of the frontside magnetopause and plasma boundary layer made with the fast plasma analyzer aboard the ISEE 1 and 2 spacecraft are reported. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Periods are included when the thickness is essentially zero and others when it is of the order of 1 earth radius. The duration of these periods is highly variable but is typically in the range of 2-5 min corresponding to a distance along the magnetopuase of approximately 3-8 earth radii. The observed boundary layer features include a steep density gradient at the magnetopause with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer.

  4. Convergence results for pseudospectral approximations of hyperbolic systems by a penalty type boundary treatment

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele; Gottlieb, David

    1989-01-01

    A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.

  5. Axioms of adaptivity

    PubMed Central

    Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.

    2014-01-01

    This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390

  6. Accuracy Analysis for Finite-Volume Discretization Schemes on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    A new computational analysis tool, downscaling test, is introduced and applied for studying the convergence rates of truncation and discretization errors of nite-volume discretization schemes on general irregular (e.g., unstructured) grids. The study shows that the design-order convergence of discretization errors can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all. The downscaling test is a general, efficient, accurate, and practical tool, enabling straightforward extension of verification and validation to general unstructured grid formulations. It also allows separate analysis of the interior, boundaries, and singularities that could be useful even in structured-grid settings. There are several new findings arising from the use of the downscaling test analysis. It is shown that the discretization accuracy of a common node-centered nite-volume scheme, known to be second-order accurate for inviscid equations on triangular grids, degenerates to first order for mixed grids. Alternative node-centered schemes are presented and demonstrated to provide second and third order accuracies on general mixed grids. The local accuracy deterioration at intersections of tangency and in flow/outflow boundaries is demonstrated using the DS tests tailored to examining the local behavior of the boundary conditions. The discretization-error order reduction within inviscid stagnation regions is demonstrated. The accuracy deterioration is local, affecting mainly the velocity components, but applies to any order scheme.

  7. The behavior of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient. Ph.D. Thesis - Washington Univ., Seattle, Aug. 1972

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1973-01-01

    The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.

  8. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  9. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  10. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  11. Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas

    2016-09-01

    Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

  12. Inventory of File nam.t00z.smartpr00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  13. Inventory of File nam.t00z.smartak00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  14. Inventory of File nam.t00z.smarthi00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  15. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  16. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  17. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions

    DTIC Science & Technology

    2008-02-07

    micro-ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier... Supersonic boundary layer flow with micro-ramp and no shock wave 3.2 SBLI with no micro-ramp 3.3 SBLI with micro-ramp 3.4 Micro-ramp size and location IV . C...ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier

  18. The Effects of Rotation on Boundary Layers in Turbomachine Rotors

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.

    1974-01-01

    The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.

  19. Boundary layers in cataclysmic variables - The HEAO 1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1984-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated. Previously announced in STAR as N84-13046

  20. Some Features of Artificially Thickened Fully Developed Turbulent Boundary Layers with Zero Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S; Diehl, Z W

    1952-01-01

    Report gives an account of an investigation conducted to determine the feasibility of artificially thickening a turbulent boundary layer on a flat plate. A description is given of several methods used to thicken artificially the boundary layer. It is shown that it is possible to do substantial thickening and obtain a fully developed turbulent boundary layer, which is free from any distortions introduced by the thickening process, and, as such, is a suitable medium for fundamental research.

  1. Measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, J. H.; Coles, D. E.

    Some measurements in a synthetic turbulent boundary layer (SBL) are reported. The main diagnostic tool is an X-wire probe. The velocity of the large eddies is determined to be 0.842 times the freestream velocity. The mean properties of the SBL are reasonably close to those of a natural turbulent boundary layer. The large eddy in the SBL appears to be a pair of counterrotating eddies in the stream direction, inclined at a shallow angle and occupying much of the boundary-layer thickness.

  2. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    NASA Astrophysics Data System (ADS)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  3. Re-Innovating Recycling for Turbulent Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Joseph; Blanquart, Guillaume

    2017-11-01

    Historically, turbulent boundary layers along a flat plate have been expensive to simulate numerically, in part due to the difficulty of initializing the inflow with ``realistic'' turbulence, but also due to boundary layer growth. The former has been resolved in several ways, primarily dedicating a region of at least 10 boundary layer thicknesses in width to rescale and recycle flow or by extending the region far enough downstream to allow a laminar flow to develop into turbulence. Both of these methods are relatively costly. We propose a new method to remove the need for an inflow region, thus reducing computational costs significantly. Leveraging the scale similarity of the mean flow profiles, we introduce a coordinate transformation so that the boundary layer problem can be solved as a parallel flow problem with additional source terms. The solutions in the new coordinate system are statistically homogeneous in the downstream direction and so the problem can be solved with periodic boundary conditions. The present study shows the stability of this method, its implementation and its validation for a few laminar and turbulent boundary layer cases.

  4. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  5. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    NASA Astrophysics Data System (ADS)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  6. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  7. Extrapolating subsurface geometry by surface expressions in transpressional strike slip fault, deduced from analogue experiments with settings of rheology and convergence angle

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz

    2015-04-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  8. Bristled shark skin: a microgeometry for boundary layer control?

    PubMed

    Lang, A W; Motta, P; Hidalgo, P; Westcott, M

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  9. Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation

    NASA Astrophysics Data System (ADS)

    Blumenthal, Benjamin J.; Zhan, Hongbin

    2016-08-01

    We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux - one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10-14.

  10. Experimental study of the separating confluent boundary-layer. Volume 2: Experimental data

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Whipkey, R. R.; Jones, G. S.; Lilley, D. E.

    1983-01-01

    An experimental low speed study of the separating confluent boundary layer on a NASA GAW-1 high lift airfoil is described. The airfoil was tested in a variety of high lift configurations comprised of leading edge slat and trailing edge flap combinations. The primary test instrumentation was a two dimensional laser velocimeter (LV) system operating in a backscatter mode. Surface pressures and corresponding LV derived boundary layer profiles are given in terms of velocity components, turbulence intensities and Reynolds shear stresses as characterizing confluent boundary layer behavior up to and beyond stall. LV derived profiles and associated boundary layer parameters and those obtained from more conventional instrumentation such as pitot static transverse, Preston tube measurements and hot-wire surveys are compared.

  11. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  12. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  13. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.

  14. A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers

    NASA Astrophysics Data System (ADS)

    Bassett, Gene Marcel

    1993-01-01

    Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low resolution simulations this entrainment process is impeded by numerical viscosity. The three-dimensional jet simulations behave similarly to two-dimensional jet runs with the same grid resolutions.

  15. A perspective on coherent structures and conceptual models for turbulent boundary layer physics

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1990-01-01

    Direct numerical simulations of turbulent boundary layers have been analyzed to develop a unified conceptual model for the kinematics of coherent motions in low Reynolds number canonical turbulent boundary layers. All classes of coherent motions are considered in the model, including low-speed streaks, ejections and sweeps, vortical structures, near-wall and outer-region shear layers, sublayer pockets, and large-scale outer-region eddies. The model reflects the conclusions from the study of the simulated boundary layer that vortical structures are directly associated with the production of turbulent shear stresses, entrainment, dissipation of turbulence kinetic energy, and the fluctuating pressure field. These results, when viewed from the perspective of the large body of published work on the subject of coherent motions, confirm that vortical structures may be considered the central dynamic element in the maintenance of turbulence in the canonical boundary layer. Vortical structures serve as a framework on which to construct a unified picture of boundary layer structure, providing a means to relate the many known structural elements in a consistent way.

  16. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  17. Upper plate contraction north of the migrating Mendocino triple junction northern California: Implications for partitioning of strain

    USGS Publications Warehouse

    McCrory, P.A.

    2000-01-01

    Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.

  18. A novel body frame based approach to aerospacecraft attitude tracking.

    PubMed

    Ma, Carlos; Chen, Michael Z Q; Lam, James; Cheung, Kie Chung

    2017-09-01

    In the common practice of designing an attitude tracker for an aerospacecraft, one transforms the Newton-Euler rotation equations to obtain the dynamic equations of some chosen inertial frame based attitude metrics, such as Euler angles and unit quaternions. A Lyapunov approach is then used to design a controller which ensures asymptotic convergence of the attitude to the desired orientation. Although this design methodology is pretty standard, it usually involves singularity-prone coordinate transformations which complicates the analysis process and controller design. A new, singularity free error feedback method is proposed in the paper to provide simple and intuitive stability analysis and controller synthesis. This new body frame based method utilizes the concept of Euleraxis and angles to generate the smallest error angles from a body frame perspective, without coordinate transformations. Global tracking convergence is illustrated with the use of a feedback linearizing PD tracker, a sliding mode controller, and a model reference adaptive controller. Experimental results are also obtained on a quadrotor platform with unknown system parameters and disturbances, using a boundary layer approximated sliding mode controller, a PIDD controller, and a unit sliding mode controller. Significant tracking quality is attained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.

  20. The Finite-Surface Method for incompressible flow: a step beyond staggered grid

    NASA Astrophysics Data System (ADS)

    Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru

    2017-11-01

    We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.

  1. Turbulent boundary layer heat transfer experiments: Convex curvature effects, including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1980-01-01

    Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.

  2. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  3. Exact Calculation of Laminar Boundary Layer in Longitudinal Flow over a Flat Plate with Homogeneous Suction

    NASA Technical Reports Server (NTRS)

    Iglisch, Rudolf

    1949-01-01

    Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.

  4. Dynamic behavior of an unsteady trubulent boundary layer

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Reynolds, W. C.; Jayaramen, R.; Carr, L. W.

    1981-01-01

    Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle.

  5. The Western North American Cretaceous-Tertiary (K-T) boundary interval and its content of shock-metamorphosed minerals: Implications concerning the K-T boundary impact-extinction theory

    NASA Technical Reports Server (NTRS)

    Izett, G. A.

    1988-01-01

    At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.

  6. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    PubMed

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  7. Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.

    2003-01-01

    The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.

  8. Internal Acoustics of a Pintle Valve with Supercritical Helium Flow

    NASA Technical Reports Server (NTRS)

    Fishbach, Sean R.; Davis, R. Benjamin

    2010-01-01

    Large amplitude flow unsteadiness is a common phenomenon within the high flow rate ducts and valves associated with propulsion systems. Boundary layer noise, shear layers and vortex shedding are a few of the many sources of flow oscillations. The presence of lightly damped acoustic modes can organize and amplify these sources of flow perturbation, causing undesirable loading of internal parts. The present study investigates the self-induced acoustic environment within a pintle valve subject to high Reynolds Number flow of helium gas. Experiments were conducted to measure the internal pressure oscillations of the Ares I Launch Abort System (LAS) Attitude Control Motor (ACM) valve. The AGM consists of a solid propellant gas generator with eight pintle valves attached to the aft end. The pintle valve is designed to deliver variable upstream conditions to an attache( converging diverging nozzle. In order to investigate the full range of operating conditions 28 separate tests were conducted with varying pintle position and upstream pressure. Helium gas was utilized in order to closely mimic the speed of sound of the gas generator exhaust, minimizing required scaling during data analysis. The recordec pressure measurements were interrogated to multiple ends. The development of root mean square (RMS) value! versus Reynolds Number and Pintle position are important to creating bounding unsteady load curves for valve internal parts. Spectral analysis was also performed, helping to identify power spectral densities (PSD) of acoustic natural frequencies and boundary layer noise. An interesting and unexpected result was the identification of an acoustic mode within the valve which does not respond until the valve was over 60% open. Further, the response amplitude around this mode can be as large or larger than those associated with lower frequency modes.

  9. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  10. Aeroacoustic simulation of a linear cascade by a prefactored compact scheme

    NASA Astrophysics Data System (ADS)

    Ghillani, Pietro

    This work documents the development of a three-dimensional high-order prefactored compact finite-difference solver for computational aeroacoustics (CAA) based on the inviscid Euler equations. This time explicit scheme is applied to representative problems of sound generation by flow interacting with solid boundaries. Four aeroacoustic problems are explored and the results validated against available reference analytical solution. Selected mesh convergence studies are conducted to determine the effective order of accuracy of the complete scheme. The first test case simulates the noise emitted by a still cylinder in an oscillating field. It provides a simple validation for the CAA-compatible solid wall condition used in the remainder of the work. The following test cases are increasingly complex versions of the turbomachinery rotor-stator interaction problem taken from NASA CAA workshops. In all the cases the results are compared against the available literature. The numerical method features some appreciable contributions to computational aeroacoustics. A reduced data exchange technique for parallel computations is implemented, which requires the exchange of just two values for each boundary node, independently of the size of the zone overlap. A modified version of the non-reflecting buffer layer by Chen is used to allow aerodynamic perturbations at the through flow boundaries. The Giles subsonic boundary conditions are extended to three-dimensional curvilinear coordinates. These advances have enabled to resolve the aerodynamic noise generation and near-field propagation on a representative cascade geometry with a time-marching scheme, with accuracy similar to spectral methods..

  11. Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery

    2015-01-01

    In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.

  12. The Interactions of a Flame and Its Self-Induced Boundary Layer

    NASA Technical Reports Server (NTRS)

    Ott, James D.; Oran, Elaine S.; Anderson, John D.

    1999-01-01

    The interaction of a laminar flame with its self-generated boundary layer in a rectangular channel was numerically simulated using the two-dimensional, reacting, Navier-Stokes equations. A two species chemistry model was implemented which simulates the stoichiometric reaction of acetylene and air. Calculations were performed to investigate the effects of altering the boundary condition of the wall temperature, the Lewis number, the dynamic viscosity, and the ignition method. The purpose of this study was to examine the fundamental physics of the formation of the boundary layer and the interaction of the flame as it propagates into the boundary layer that its own motion has created.

  13. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In the observations, several strong temperature inversion layers are also found in the surface layer and the middle part of the boundary layer, which lead to the suppression of the vertical mixing of the air pollutants. The jet stream occurring in the boundary layer also contributes to the prevention of the vertical dissipation of the air pollutants. It is also observed that the temporal and spatial evolution of the air pollutants and the hygroscopic growth of the aerosols in the boundary layer are heavily dependent on the humidity of the air.

  14. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  15. Structure of the Madden-Julian oscillation in coupled and uncoupled versions of the superparameterized community atmosphere model

    NASA Astrophysics Data System (ADS)

    Benedict, James J.

    The Madden-Julian Oscillation (MJO), an eastward-propagating atmospheric disturbance resembling a transient Walker cell, dominates intraseasonal (20--100 days) variability in the tropical Indian and West Pacific Ocean regions. The phenomenon is most active during the Northern Hemisphere winter and is characterized by cyclic periods of suppressed (dry phase) and active (wet phase) cloudiness and precipitation. Numerous complexities---multi-scale interactions of moist convection and large-scale wave dynamics, air-sea fluxes and feedbacks, topographical impacts, and tropical-extratropical interactions---challenge our ability to fully understand the MJO and result in its poor representation in most current general circulation models (GCMs). This study examines the representation of the MJO in a modified version of the NCAR Community Atmosphere Model (CAM). The modifications involve substituting conventional boundary layer, turbulence, and cloud parameterizations with a configuration of cloud-resolving models (CRMs) embedded into each GCM grid cell in a technique termed "superparameterization" (SP). Unlike many GCMs including the standard CAM, the SP-CAM displays robust intraseasonal convective variability. Two SP-CAM simulations are utilized in this study: one forced by observed sea-surface temperatures (SSTs; "uncoupled") and a second identical to the first except for a new treatment of tropical SSTs in which a simplified mixed-layer ocean model is used to predict SST anomalies that are coupled to the atmosphere ("coupled"). Key physical features of the MJO are captured in the uncoupled SP-CAM. Ahead (east) of the disturbance there is meridional boundary layer moisture convergence and a vertical progression of warmth, moisture, and convective heating from the lower to upper troposphere. The space-time dynamical response to convective heating is also reproduced, especially the vertical structure of anomalous westerly wind and its migration into the region of heavy rainfall as the disturbance propagates eastward. Advective drying processes in the MJO wake are also represented well. The coupled SP-CAM shows more realistic MJO eastward propagation, signal coherence and spatial structure relative to the uncoupled SP-CAM. The improvement varies with longitude but generally stems from better space-time relationships among MJO convective heating, its dynamical response, SSTs, surface fluxes, boundary layer properties, and vertical moisture structure. Coupled MJO events in the Indian Ocean display more realistic intensity; in the West Pacific, the coupled SP-CAM overestimates convective strength but shows an improved vertical structure relative to the uncoupled SP-CAM. Biases related to MJO convection are also examined. Overestimated convective intensity in the West Pacific appears to be linked to basic state biases, Maritime Continent topographical impacts, unrealistic convection-wind-evaporation feedbacks, and the neglect of convective momentum transport in the model. Phase errors between observed and simulated boundary layer moisture appear to stem from an unrealistic representation of shallow cumuli.

  16. New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS

    NASA Astrophysics Data System (ADS)

    Koulali, A.; Tregoning, P.; McClusky, S.; Stanaway, R.; Wallace, L.; Lister, G.

    2015-08-01

    New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993-2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench with rates exceeding 90 mm yr-1, indicating that this is the major active interplate boundary. However, some convergent deformation is partitioned into a shear component with ˜12 per cent accommodated by the Bewani-Torricelli fault zone and the southern Highlands Fold-and-Thrust Belt. New GPS velocities in the eastern New Guinea Highlands region have led to the identification of the New Guinea Highlands and the Papuan Peninsula being distinctly different blocks, separated by a boundary through the Aure Fold-and-Thrust Belt complex which accommodates an estimated 4-5 mm yr-1 of left-lateral and 2-3 mm yr-1 of convergent motion. This implies that the Highlands Block is rotating in a clockwise direction relative to the rigid Australian Plate, consistent with the observed transition to left-lateral strike-slip regime observed in western New Guinea Highlands. We find a better fit of our block model to the observed velocities when assigning the current active boundary between the Papuan Peninsula and the South Bismark Block to be to the north of the city of Lae on the Gain Thrust, rather than on the more southerly Ramu-Markham fault as previously thought. This may indicate a temporary shift of activity onto out of sequence thrusts like the Gain Thrust as opposed to the main frontal thrust (the Ramu-Markham fault). In addition, we show that the southern Highlands Fold-and-Thrust Belt is the major boundary between the rigid Australian Plate and the New Guinea Highlands Block, with convergence occurring at rates between ˜6 and 13 mm yr-1.

  17. An experimental investigation of the effect of boundary layer refraction on the noise from a high-speed propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Burns, R. J.; Leciejewski, D. J.

    1984-01-01

    Models of supersonic propellers were previously tested for acoustics in the Lewis 8- by 6-Foot Wind Tunnel using pressure transducers mounted in the tunnel ceiling. The boundary layer on the tunnel ceiling is believed to refract some of the propeller noise away from the measurement transducers. Measurements were made on a plate installed in the wind tunnel which had a thinner boundary layer than the ceiling boundary layer. The plate was installed in two locations for comparison with tunnel ceiling noise data and with fuselage data taken on the NASA Dryden Jetstar airplane. Analysis of the data indicates that the refraction increases with: increasing boundary layer thickness; increasing free stream Mach number; increasing frequency; and decreasing sound radiation angle (toward the inlet axis). At aft radiation angles greater than about 100 deg there was little or no refraction. Comparisons with the airplane data indicated that not only is the boundary layer thickness important but also the shape of the velocity profile. Comparisons with an existing two-dimensional theory, using an idealized shear layer to approximate the boundary layer, showed that the theory and data had the same trends. Analysis of the data taken in the tunnel at two different distances from the propeller indicates a decay with distance in the wind tunnel at high Mach numbers but the decay at low Mach numbers is not as clear.

  18. F-16XL ship #1 wing close-up showing boundary layer detection Preston tubes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows the boundary layer Preston tubes mounted on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  19. On the Existence of the Logarithmic Surface Layer in the Inner Core of Hurricanes

    DTIC Science & Technology

    2012-01-01

    characteristics of eyewall boundary layer of Hurricane Hugo (1989). Mon. Wea. Rev., 139, 1447-1462. Zhang, JA, Montgomery MT. 2012 Observational...the inner core of hurricanes Roger K. Smitha ∗and Michael T. Montgomeryb a Meteorological Institute, University of Munich, Munich, Germany b Dept. of...logarithmic surface layer”, or log layer, in the boundary layer of the rapidly-rotating core of a hurricane . One such study argues that boundary-layer

  20. The boundary layer as a means of controlling the flow of liquids and gases

    NASA Technical Reports Server (NTRS)

    Schrenk, Oskar

    1930-01-01

    According to one of the main propositions of the boundary layer theory the scarcely noticeable boundary layer may, under certain conditions, have a decisive influence on the form of the external flow by causing it to separate from the wing surface. These phenomena are known to be caused by a kind of stagnation of the boundary layer at the point of separation. The present report deals with similar phenomena. It is important to note that usually the cause (external interference) directly affects only the layer close to the wall, while its indirect effect extends to a large portion of the external flow.

  1. On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs

    NASA Astrophysics Data System (ADS)

    Kaltenbacher, Barbara; Klassen, Andrej

    2018-05-01

    In this paper we provide a convergence analysis of some variational methods alternative to the classical Tikhonov regularization, namely Ivanov regularization (also called the method of quasi solutions) with some versions of the discrepancy principle for choosing the regularization parameter, and Morozov regularization (also called the method of the residuals). After motivating nonequivalence with Tikhonov regularization by means of an example, we prove well-definedness of the Ivanov and the Morozov method, convergence in the sense of regularization, as well as convergence rates under variational source conditions. Finally, we apply these results to some linear and nonlinear parameter identification problems in elliptic boundary value problems.

  2. A class of convergent neural network dynamics

    NASA Astrophysics Data System (ADS)

    Fiedler, Bernold; Gedeon, Tomáš

    1998-01-01

    We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.

  3. Application of a transonic similarity rule to correct the effects of sidewall boundary layers in two-dimensional transonic wind tunnels. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Sewall, W. G.

    1982-01-01

    A transonic similarity rule which accounts for the effects of attached sidewall boundary layers is presented and evaluated by comparison with the characteristics of airfoils tested in a two dimensional transonic tunnel with different sidewall boundary layer thicknesses. The rule appears valid provided the sidewall boundary layer both remains attached in the vicinity of the model and occupies a small enough fraction of the tunnel width to preserve sufficient two dimensionality in the tunnel.

  4. Comparative Measurements of Total Temperature in a Supersonic Turbulent Boundary Layer Using a Conical Equilibrium and Combined Temperature-Pressure Probe

    DTIC Science & Technology

    1974-07-01

    AD/A-002 982 COMPARATIVE MEASUREMENTS CF TOTAL TEMPERATURE IN A SUPERSONIC TURBULENT BOUNDARY LAYER USING A CONICAL EQUILIB- RIUM AND COMBINED...SUPERSONIC TURBULENT BOUNDARY LAYER USING A CONICAL EQUILIORIUM AND COMBINED TEMPERATURE-PRESSURE PROBE H.L.P. Vowt R.E. L" 0H.U. M.i July 1974 NAVAL...1 ~~o iotaPRO eig ature In A Supersonic Turbulent Boundary ____________ Layer Using A Conical Equilibrium and 6. 111111ORWING OR. 0111001117,~t

  5. Vortex/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1989-01-01

    Detailed and high quality measurements with hot-wires and pressure probes are presented for two different interactions between a vortex pair with common flow down and a turbulent boundary layer. The interactions studied have larger values of the vortex circulation parameter than those studied previously. The results indicate that the boundary layer under the vortex pair is thinned by lateral divergence and that boundary layer fluid is entrained into the vortex. The effect of the interaction on the vortex core (other than the inviscid effect of the image vortices behind the surface) is small.

  6. An eddy-viscosity treatment of the unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.

  7. Notes on the Prediction of Shock-induced Boundary-layer Separation

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  8. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  9. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  10. A novel concept for subsonic inlet boundary-layer control

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1977-01-01

    A self-bleeding method for boundary layer control is described and tested for a subsonic inlet designed to operate in the flowfield generated by high angles of attack. Naturally occurring surface static pressure gradients are used to remove the boundary layer from a separation-prone region of the inlet and to reinject it at a less critical location with a net performance gain. The results suggest that this self-bleeding method for boundary-layer control might be successfully applied to other inlets operating at extreme aerodynamic conditions.

  11. The atmospheric boundary layer — advances in knowledge and application

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.

    1996-02-01

    We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.

  12. Boundary-layer cumulus over land: Some observations and conceptual models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, R.B.

    1993-09-01

    Starting in 1980, the Boundary Layer Research Team at the University of Wisconsin has been systematically studying the formation and evolution of nonprecipitating boundary-layer cumulus clouds (BLCu) in regions of fair weather (anticyclones) over land (Stull, 1980). Our approach is to quantify the average statistical characteristics of the surface, thermals, boundary layer, and clouds over horizontal regions of roughly 20 km in diameter. Within such a region over land, there is typically quite a variation in land use, and associated variations in surface albedo and moisture.

  13. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    NASA Technical Reports Server (NTRS)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  14. Calculations of unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.; Patel, V. C.

    1975-01-01

    The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.

  15. Energy efficient engine, low-pressure turbine boundary layer program

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1981-01-01

    A study was conducted to investigate development of boundary layers under the influence of velocity distributions simulating the suction side of two state-of-the-art turbine airfoils: a forward loaded airfoil (squared-off design) and an aft loaded airfoil (aft-loaded design). These velocity distributions were simulated in a boundary layer wind tunnel. Detailed measurements of boundary layer mean velocity and turbulence intensity profiles were obtained for an inlet turbulence level of 2.4 percent and an exit Reynolds number of 800,000. Flush-mounted hot film probes identified the boundary layer transition regimes in the adverse pressure gradient regions for both velocity distributions. Wall intermittency data showed good agreement with the correlations of Dhawan and Narasimha for the intermittency factor distribution in transitional flow regimes.

  16. Experimental measurements of unsteady turbulent boundary layers near separation

    NASA Technical Reports Server (NTRS)

    Simpson, R. L.

    1982-01-01

    Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.

  17. Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    An accurate method was developed for predicting effects of streamline curvature and coordinate system rotation on turbulent boundary layers. A new two-equation model of turbulence was developed which serves as the basis of the study. In developing the new model, physical reasoning is combined with singular perturbation methods to develop a rational, physically-based set of equations which are, on the one hand, as accurate as mixing-length theory for equilibrium boundary layers and, on the other hand, suitable for computing effects of curvature and rotation. The equations are solved numerically for several boundary layer flows over plane and curved surfaces. For incompressible boundary layers, results of the computations are generally within 10% of corresponding experimental data. Somewhat larger discrepancies are noted for compressible applications.

  18. Effect of Sub-Boundary Layer Vortex Generations on Incident Turbulence

    NASA Technical Reports Server (NTRS)

    Casper, J.; Lin, J. C.; Yao, C. S.

    2003-01-01

    Sub-boundary layer vortex generators were tested in a wind tunnel to assess their effect on the velocity field within the wake region of a turbulent boundary layer. Both mean flow quantities and turbulence statistics were measured. Although very small relative to the boundary layer thickness, these so-called micro vortex generators were found to have a measurable effect on the power spectra and integral length scales of the turbulence at a distance many times the height of the devices themselves. In addition, the potential acoustic impact of these devices is also discussed. Measured turbulence spectra are used as input to an acoustic formulation in a manner that compares predicted sound pressure levels that result from the incident boundary-layer turbulence, with and without the vortex generators in the flow.

  19. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  20. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  1. Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate. Part 3

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; Radke, R. E.

    1996-01-01

    Boundary layer transition and development on a turbomachinery blade is subjected to highly periodic unsteady turbulent flow, pressure gradient in longitudinal as well as lateral direction, and surface curvature. To study the effects of periodic unsteady wakes on the concave surface of a turbine blade, a curved plate was utilized. On the concave surface of this plate, detailed experimental investigations were carried out under zero and negative pressure gradient. The measurements were performed in an unsteady flow research facility using a rotating cascade of rods positioned upstream of the curved plate. Boundary layer measurements using a hot-wire probe were analyzed by the ensemble-averaging technique. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity. As the results show, the turbulent patches generated by the wakes have different leading and trailing edge velocities and merge with the boundary layer resulting in a strong deformation and generation of a high turbulence intensity core. After the turbulent patch has totally penetrated into the boundary layer, pronounced becalmed regions were formed behind the turbulent patch and were extended far beyond the point they would occur in the corresponding undisturbed steady boundary layer.

  2. An experimental study of the turbulent boundary layer on a transport wing in subsonic and transonic flow

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Roos, Frederick W.; Hicks, Raymond M.

    1990-01-01

    The upper surface boundary layer on a transport wing model was extensively surveyed with miniature yaw probes at a subsonic and a transonic cruise condition. Additional data were obtained at a second transonic test condition, for which a separated region was present at mid-semispan, aft of mid-chord. Significant variation in flow direction with distance from the surface was observed near the trailing edge except at the wing root and tip. The data collected at the transonic cruise condition show boundary layer growth associated with shock wave/boundary layer interaction, followed by recovery of the boundary layer downstream of the shock. Measurements of fluctuating surface pressure and wingtip acceleration were also obtained. The influence of flow field unsteadiness on the boundary layer data is discussed. Comparisons among the data and predictions from a variety of computational methods are presented. The computed predictions are in reasonable agreement with the experimental data in the outboard regions where 3-D effects are moderate and adverse pressure gradients are mild. In the more highly loaded mid-span region near the trailing edge, displacement thickness growth was significantly underpredicted, except when unrealistically severe adverse pressure gradients associated with inviscid calculations were used to perform boundary layer calculations.

  3. Measurements of tropospheric nitric acid over the Western United States and Northeastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Huebert, B. J.; Schiff, H. I.; Vay, S. A.; Vanbramer, S. E.; Hastie, D. R.

    1990-01-01

    Over 240 measurements of nitric acid (HNO3) were made in the free troposphere as well as in the boundary layer. Marine HNO3 measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO3 average, 62 parts-per-trillion by volume (pptv), was 1/3 lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric 5-flight average of 61 pptv. However, the nighttime results may be influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. The continental boundary layer HNO3 average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO3. The distribution of continental boundary layer HNO3 data, from averages of 123 over rural Nevada and Utah to 1057 pptv in the polluted San Joaquin Valley of California suggest a close tie between boundary layer HNO3 and anthropogenic activity.

  4. Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew

    2017-11-01

    Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.

  5. PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.

    2008-01-01

    Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.

  6. The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Leck, Caroline; Persson, P. Ola G.; Jensen, Michael L.; Oncley, Steven P.; Targino, Admir

    2004-09-01

    An atmospheric boundary layer experiment into the high Arctic was carried out on the Swedish ice-breaker Oden during the summer of 2001, with the primary boundary layer observations obtained while the icebreaker drifted with the ice near 89°N during 3 weeks in August. The purposes of the experiment were to gain an understanding of atmospheric boundary layer structure and transient mixing mechanisms, in addition to their relationships to boundary layer clouds and aerosol production. Using a combination of in situ and remote sensing instruments, with temporal and spatial resolutions previously not deployed in the Arctic, continuous measurements of the lower-troposphere structure and boundary layer turbulence were taken concurrently with atmospheric gas and particulate chemistry, and marine biology measurements.The boundary layer was strongly controlled by ice thermodynamics and local turbulent mixing. Near-surface temperatures mostly remained between near the melting points of the sea- and freshwater, and near-surface relative humidity was high. Low clouds prevailed and fog appeared frequently. Visibility outside of fog was surprisingly good even with very low clouds, probably due to a lack of aerosol particles preventing the formation of haze. The boundary layer was shallow but remained well mixed, capped by an occasionally very strong inversion. Specific humidity often increased with height across the capping inversion.In contrast to the boundary layer, the free troposphere often retained its characteristics from well beyond the Arctic. Elevated intrusions of warm, moist air from open seas to the south were frequent. The picture that the Arctic atmosphere is less affected by transport from lower latitudes in summer than the winter may, thus, be an artifact of analyzing only surface measurements. The transport of air from lower latitudes at heights above the boundary layer has a major impact on the Arctic boundary layer, even very close to the North Pole. During a few week-long periods synoptic-scale weather systems appeared, while weaker and shallower mesoscale fronts were frequent. While frontal passages changed the properties of the free troposphere, changes in the boundary layer were more determined by local effects that often led to changes contrary to those aloft. For example, increasing winds associated with a cold front often led to a warming of the near-surface air by mixing and entrainment.

  7. Linking Dynamics of the Near-surface Flow to Deeper Boundary Layer Forcing in the Nocturnal Boundary Layer

    DTIC Science & Technology

    2012-06-01

    Kaimal and Finnigan (1994), modified) Figure 2.2 illustrates the evolution from unstable CBL to a nocturnal Stable Bound- ary Layer ( SBL ) in the absence...mixed layer acts as a cap for the SBL . The SBL persists through the night until sunrise when surface heating resumes and a new unstable layer begins...to form at the surface, gradually returning to a CBL. 7 2.2.1 Dynamics of the stable boundary layer Because the SBL is stably stratified, buoyancy

  8. A numerical scheme to solve unstable boundary value problems

    NASA Technical Reports Server (NTRS)

    Kalnay Derivas, E.

    1975-01-01

    A new iterative scheme for solving boundary value problems is presented. It consists of the introduction of an artificial time dependence into a modified version of the system of equations. Then explicit forward integrations in time are followed by explicit integrations backwards in time. The method converges under much more general conditions than schemes based in forward time integrations (false transient schemes). In particular it can attain a steady state solution of an elliptical system of equations even if the solution is unstable, in which case other iterative schemes fail to converge. The simplicity of its use makes it attractive for solving large systems of nonlinear equations.

  9. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems

    NASA Astrophysics Data System (ADS)

    Ge, Yongbin; Cao, Fujun

    2011-05-01

    In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33-53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.

  10. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yidong, E-mail: yidong.xia@inl.gov; Wang, Chuanjin; Luo, Hong

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the Hydra-TH code. -- Highlights: •We performed a comprehensive study to verify and validate the turbulence models in Hydra-TH. •Hydra-TH delivers 2nd-order grid convergence for the incompressible Navier–Stokes equations. •Hydra-TH can accurately simulate the laminar boundary layers. •Hydra-TH can accurately simulate the turbulent boundary layers with RANS turbulence models. •Hydra-TH delivers high-fidelity LES capability for simulating turbulent flows in confined space.« less

  11. Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.

    2006-01-01

    A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.

  12. Global climatology of planetary boundary layer top obtained from multi-satellite GPS RO observations

    NASA Astrophysics Data System (ADS)

    Basha, Ghouse; Kishore, P.; Ratnam, M. Venkat; Ravindra Babu, S.; Velicogna, Isabella; Jiang, Jonathan H.; Ao, Chi O.

    2018-05-01

    Accurate estimation of the planetary boundary layer (PBL) top is essential for air quality prediction, weather forecast, and assessment of regional and global climate models. In this article, the long-term climatology of seasonal, global distribution of PBL is presented by using global positioning system radio occultation (GPSRO) based payloads such as Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), Communication/Navigation Outage Forecast System (C/NOFS), TerraSAR-X, and The Gravity Recovery and Climate Experiment (GRACE) from the year 2006-2015. We used Wavelet Covariance Transform (WCT) technique for precise PBL top identification. The derived PBL top from GPSRO data is rigorously evaluated with GPS radiosonde data over Gadanki. Significant seasonal variation is noticed in both radiosonde and GPSRO observations. Further, we compared the PBL obtained GPS RO with global radiosonde network and observed very good correlation. The number of occultations reaching down to 500 m and retrieval rate of PBL top from WCT method is very high in mid-latitudes compared to tropical latitudes. The global distribution of PBL top shows significant seasonal variation with higher during summer followed by spring, fall, and minimum in winter. In the vicinity of Inter Tropical Convergence Zone (ITCZ), the PBL top is high over eastern Pacific compared to other regions. The ERA-Interim reanalysis data underestimate the PBL top compared to GPS RO observations due to different measurement techniques. The seasonal variation of global averaged PBL top over land and ocean shows contrasting features at different latitude bands.

  13. Boundary-layer effects in droplet splashing

    NASA Astrophysics Data System (ADS)

    Riboux, Guillaume; Gordillo, Jose Manuel

    2017-11-01

    A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity exceeds the so called critical velocity for splashing. Under these circumstances, the very thin liquid sheet ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it and finally breaks into smaller droplets, violently ejected radially outwards, provoking the splash. Here, the tangential deceleration experienced by the fluid entering the thin liquid sheet is investigated making use of boundary layer theory. The velocity component tangent to the solid, computed using potential flow theory provides the far field boundary condition as well as the pressure gradient for the boundary layer equations. The structure of the flow permits to find a self similar solution of the boundary layer equations. This solution is then used to calculate the boundary layer thickness at the root of the lamella as well as the shear stress at the wall. The splash model presented in, which is slightly modified to account for the results obtained from the boundary layer analysis, provides a very good agreement between the measurements and the predicted values of the critical velocity for the splash.

  14. Boundary layer and fundamental problems of hydrodynamics (compatibility of a logarithmic velocity profile in a turbulent boundary layer with the experience values)

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.

    2017-11-01

    The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.

  15. Semi-discrete Galerkin solution of the compressible boundary-layer equations with viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Day, Brad A.; Meade, Andrew J., Jr.

    1993-01-01

    A semi-discrete Galerkin (SDG) method is under development to model attached, turbulent, and compressible boundary layers for transonic airfoil analysis problems. For the boundary-layer formulation the method models the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby providing high resolution near the wall and permitting the use of a uniform finite element grid which automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past RAE 2822 and NACA 0012 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack.

  16. 27 CFR 9.50 - Temecula Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the point where it converges with the Riverside County-San Diego County line. (3) The boundary follows the Riverside County-San Diego County line southwesterly, then southeasterly to the point where the Riverside County-San Diego County line diverges southward and the Santa Rosa Land Grant boundary continues...

  17. 27 CFR 9.50 - Temecula Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the point where it converges with the Riverside County-San Diego County line. (3) The boundary follows the Riverside County-San Diego County line southwesterly, then southeasterly to the point where the Riverside County-San Diego County line diverges southward and the Santa Rosa Land Grant boundary continues...

  18. 27 CFR 9.50 - Temecula Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the point where it converges with the Riverside County-San Diego County line. (3) The boundary follows the Riverside County-San Diego County line southwesterly, then southeasterly to the point where the Riverside County-San Diego County line diverges southward and the Santa Rosa Land Grant boundary continues...

  19. Systems and methods for producing hydrocarbons from tar sands formations

    DOEpatents

    Li, Ruijian [Katy, TX; Karanikas, John Michael [Houston, TX

    2009-07-21

    A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

  20. Determining relative error bounds for the CVBEM

    USGS Publications Warehouse

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Methods provides a measure of relative error which can be utilized to subsequently reduce the error or provide information for further modeling analysis. By maximizing the relative error norm on each boundary element, a bound on the total relative error for each boundary element can be evaluated. This bound can be utilized to test CVBEM convergence, to analyze the effects of additional boundary nodal points in reducing the modeling error, and to evaluate the sensitivity of resulting modeling error within a boundary element from the error produced in another boundary element as a function of geometric distance. ?? 1985.

Top