Development of perturbations in the boundary layer
NASA Technical Reports Server (NTRS)
Dovgal, A. V.; Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.; Maksimov, V. P.
1986-01-01
The transition of laminar flows into turbulent flows in a boundary layer is discussed. The individual aspects of the transition process, observed under controllable model conditions are examined. The aspect of this problem, namely the development or excitation of the natural oscillations in the boundary layer, the so-called Tollmin-Schlichting waves is covered. Three types of excitation of these waves are considered: (1) distributed generation throughout the boundary layer; (2) generation in the vicinity of the forward edge of a model, having either a sharp edge or an edge with a large radius or curvature, and (3) generation in a developed boundary layer by means of a focused effect.
NASA Technical Reports Server (NTRS)
Loitsianskii. L. G.
1956-01-01
The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.
The nonlinear development of Gortler vortices in growing boundary layers
NASA Technical Reports Server (NTRS)
Hall, Philip
1986-01-01
The development of Gortler vortices in boundary layers over curved walls in the nonlinear regime is investigated. The growth of the boundary layer makes a parallel flow analysis impossible except in the high wavenumber regime so in general the instability equations must be integrated numerically. Here the spanwise dependence of the basic flow is described using Fourier series expansion whilst the normal and streamwise variations are taken into account using finite differences. The calculations suggest that a given disturbance imposed at some position along the wall will eventually reach a local equilibrium state essentially independent of the initial conditions. In fact, the equilibrium state reached is qualitatively similar to the large amplitude high wave-number solution described asymptotically by Hall (1982). In general, it is found that the nonlinear interactions are dominated by a mean field type of interaction between the mean flow and the fundamental. Thus, even though higher harmonics of the fundamental are necessarily generated, most of the disturbance energy is confined to the mean flow correction and the fundamental. A major result of the calculations is finding that the downstream velocity field develops a strongly inflection character as the flow moves downstream. The latter result suggests that the major effect of Gortler vortices on boundary layers of practical importance might be to make them highly receptive to rapidly growing Rayleigh modes of instability.
Grey zone simulations of the morning convective boundary layer development
NASA Astrophysics Data System (ADS)
Efstathiou, G. A.; Beare, R. J.; Osborne, S.; Lock, A. P.
2016-05-01
Numerical simulations of two cases of morning boundary layer development are conducted to investigate the impact of grid resolution on mean profiles and turbulent kinetic energy (TKE) partitioning from the large eddy simulation (LES) to the mesoscale limit. Idealized LES, using the 3-D Smagorinsky scheme, is shown to be capable of reproducing the boundary layer evolution when compared against measurements. However, increasing grid spacing results in the damping of resolved TKE and the production of superadiabatic temperature profiles in the boundary layer. Turbulence initiation is significantly delayed, exhibiting an abrupt onset at intermediate resolutions. Two approaches, the bounding of vertical diffusion coefficient and the blending of the 3-D Smagorinsky with a nonlocal 1D scheme, are used to model subgrid diffusion at grey zone resolutions. Simulations are compared against the coarse-grained fields from the validated LES results for each case. Both methods exhibit particular strengths and weaknesses, indicating the compromise that needs to be made currently in high-resolution numerical weather prediction. The blending scheme is able to reproduce the adiabatic profiles although turbulence is underestimated in favor of the parametrized heat flux, and the spin-up of TKE remains delayed. In contrast, the bounding approach gives an evolution of TKE that follows the coarse-grained LES very well, relying on the resolved motions for the nonlocal heat flux. However, bounding gives unrealistic static instability in the early morning temperature profiles (similar to the 3-D Smagorinsky scheme) because model dynamics are unable to resolve TKE when the boundary layer is too shallow compared to the grid spacing.
On the development of turbulent boundary layer with wall transpiration
NASA Astrophysics Data System (ADS)
Ferro, Marco; Downs, Robert S., III; Fallenius, Bengt E. G.; Fransson, Jens H. M.
2015-11-01
An experimental study of the development of the transpired boundary layer in zero pressure gradient is carried out on a 6.4 m long hydrodynamically smooth and perforated plate. The relatively longer development length of the present perforated plate compared to the ones used in previous studies allows us to investigate whether an asymptotic suction boundary layer with constant thickness is achieved for the turbulent state, analogously to what happens in the laminar state. Velocity profiles are obtained via hot-wire anemometry while the wall shear stress is measured at several streamwise locations with hot-film and wall-wire probes as well as with oil-film interferometry. The threshold suction coefficient above which relaminarization starts to occur is examined. The scaling of the mean velocity and of higher order velocity moments is discussed in light of the measured wall shear stress data. Support from the European Research Council of the Advanced Fluid Research On Drag reduction in Turbulence Experiments (AFRODITE) is acknowledged.
Hypersonic Boundary-Layer Trip Development for Hyper-X
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Auslender, Aaron H.; Dilley, Authur D.; Calleja, John F.
2000-01-01
Boundary layer trip devices for the Hper-X forebody have been experimentally examined in several wind tunnels. Five different trip configurations were compared in three hypersonic facilities, the LaRC 20-Inch Mach 6 Air Tunnel, the LaRC 31 -Inch Mach 10 Air Tunnel, and in the HYPULSE Reflected Shock Tunnel at GASL. Heat transfer distributions, utilizing the phosphor thermography and thin-film techniques, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million: and inlet cowl door simulated in both open and closed positions. Comparisons of transition due to discrete roughness elements have led to the selection of a trip configuration for the Hyper-X Mach 7 flight vehicle.
Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.
2011-01-01
Two-dimensional eigenvalue analysis is used on a massive scale to study spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other type of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined.
Further development and testing of a second-order bulk boundary layer model. Master's thesis
Krasner, R.D.
1993-05-03
A one-layer bulk boundary layer model is developed. The model predicts the mixed layer values of the potential temperature, mixing ratio, and u- and v-momentum. The model also predicts the depth of the boundary layer and the vertically integrated turbulence kinetic energy (TKE). The TKE is determined using a second-order closure that relates the rate of dissipation to the TKE. The fractional area covered by rising motion sigma and the entrainment rate (E) are diagnostically determined. The model is used to study the clear convective boundary layer (CBL) using data from the Wangara, Australia boundary layer experiment. The Wangara data is also used as an observation base to validate model results. A further study is accomplished by simulating the planetary boundary layer (PBL) over an ocean surface. This study is designed to find the steady-state solutions of the prognostic variable.
Developments in the computation of turbulent boundary layers
NASA Technical Reports Server (NTRS)
Rubesin, M. W.
1979-01-01
Computational techniques applicable to turbulent boundary layers are classified into solutions of Reynolds-averaged equations, in which all the effects of the turbulence are modelled, and solutions of three-dimensional, time dependent Navier-Stokes equations, in which the large eddies are calculated and only the turbulence at scales smaller than the computational mesh spacings has to be modelled. Current computation costs place engineering computations in the first of these categories; large eddy simulations are appropriate currently for special studies of the dynamical processes of turbulence in idealized flow fields. It is shown that the two methods are interrelated and that each can gain from advances in the other. The degree of success of a pair of increasingly complex Reynolds stress models to broaden their range of applicability is examined through comparisons with experimental data for a variety of flow conditions. An example of a large-eddy simulation is presented, compared with experimental results, and used to evaluate the models for pressure rate-of-strain correlations and dissipation in the Reynolds-averaged equations.
The hub wall boundary layer development and losses in an axial flow compressor rotor passage
NASA Technical Reports Server (NTRS)
Murthy, K. N. S.; Lakshminarayana, B.
1987-01-01
The hub wall boundary layer development in a compressor stage including the rotor passage is experimentally investigated. A miniature five-hole probe was employed to measure the hub wall boundary layer inside the inlet guide vane passage, upstream and far downstream of the rotor. The hub wall boundary layer inside the rotor passage was acquired using a rotating miniature five-hole probe. The boundary layer is well behaved upstream and far downstream of the rotor. The migration of the hub wall boundary layer towards the suction surface corner is observed. The limiting streamline angles and static pressure distribution across the stage were also measured. The mean velocity profiles and the integral properties upstream, inside and downstream of the rotor, and the losses are presented and interpreted.
The atmospheric boundary layer
Garratt, J.R.
1992-01-01
This book is aimed at researchers in the atmospheric and associated sciences who require a moderately advanced text on the Atmospheric Boundary Layer (ABL) in which the many links between turbulence, air-surface transfer, boundary-layer structure and dynamics, and numerical modeling are discussed and elaborated upon. Chapter 1 serves as an introduction, with Chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and Chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and the sea. The structure of the clear-sky, thermally stratified ABL is treated in Chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant since the extensive stratocumulus regions over the sub-tropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, Chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes for the general circulation models of the atmosphere that are being used for climate simulation.
Boundary Layer Development on a Turbine Blade in a Linear Cascade
NASA Technical Reports Server (NTRS)
Halstead, Dave; Okiishi, Ted; Wisler, Dave
2007-01-01
Several different boundary-layer development patterns for flow over the suction surface of a turbine airfoil in a linear cascade were studied and documented using a sliding surface hot-film sensor. The state of the boundary layer, whether laminar, transitional or turbulent, was determined at numerous locations along the airfoil suction surface from leading to trailing edge. Boundary-layer transition from laminar to turbulent flow through laminar separation and turbulent reattachment, or through a combination of bypass transition and strong and weak separation and turbulent reattachment, or through solely bypass transition without separation, was observed and benchmark data were recorded. Surface flow visualization and numerical boundary-layer analysis results are consistent with the hot-film data. Flow and geometry information necessary for nmerical code operation is available.
Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Kegerise, Michael A.; Wilkinson, Stephen P.
2011-01-01
Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7 half-angle cone at 0 angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a low-disturbance supersonic flow is presented.
The Atmospheric Boundary Layer
ERIC Educational Resources Information Center
Tennekes, Hendrik
1974-01-01
Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)
Development of a Boundary Layer Property Interpolation Tool in Support of Orbiter Return To Flight
NASA Technical Reports Server (NTRS)
Greene, Francis A.; Hamilton, H. Harris
2006-01-01
A new tool was developed to predict the boundary layer quantities required by several physics-based predictive/analytic methods that assess damaged Orbiter tile. This new tool, the Boundary Layer Property Prediction (BLPROP) tool, supplies boundary layer values used in correlations that determine boundary layer transition onset and surface heating-rate augmentation/attenuation factors inside tile gouges (i.e. cavities). BLPROP interpolates through a database of computed solutions and provides boundary layer and wall data (delta, theta, Re(sub theta)/M(sub e), Re(sub theta)/M(sub e), Re(sub theta), P(sub w), and q(sub w)) based on user input surface location and free stream conditions. Surface locations are limited to the Orbiter s windward surface. Constructed using predictions from an inviscid w/boundary-layer method and benchmark viscous CFD, the computed database covers the hypersonic continuum flight regime based on two reference flight trajectories. First-order one-dimensional Lagrange interpolation accounts for Mach number and angle-of-attack variations, whereas non-dimensional normalization accounts for differences between the reference and input Reynolds number. Employing the same computational methods used to construct the database, solutions at other trajectory points taken from previous STS flights were computed: these results validate the BLPROP algorithm. Percentage differences between interpolated and computed values are presented and are used to establish the level of uncertainty of the new tool.
Boundary layer development and energy exchange over a patchy mountain snow cover
NASA Astrophysics Data System (ADS)
Mott, Rebecca; Daniels, Megan; Horender, Stefan; Crivelli, Philip; Lehning, Michael
2014-05-01
Once the snow cover gets patchy in spring, small-scale thermal internal boundary layers develop, involving strong vertical and horizontal flux divergences. Furthermore, the advection of warm air from bare ground towards snow-covered areas can promote strong atmospheric stabilities and boundary layer decoupling above snow, that suppress the net turbulent heat flux close to the snow surface, thus, changing the heat budget there. We experimentally and numerically investigated the small-scale boundary layer dynamics over snow patches and their effect on the energy balance at the snow surface. Local eddy flux measurements at an alpine test site revealed that wind velocity, wind fetch distance and topographical curvature control the boundary layer growth, boundary layer decoupling and the efficiency of advective heat transport to contribute to snow ablation. These results were verified in a wind tunnel experiment on the boundary layer development over a single snow patch. The experiments showed that heat advection was very efficient at short fetch distances and high wind velocities forming strong thermal gradients close to the snow surface. The heat potentially available from the advective heat transport was, however, not efficiently transferred towards the snow surface. The turbulent heat exchange was strongly suppressed at the lowest centimetres above the snow surface, where the Richardson number exceeded the critical value. Thus, boundary layer decoupling caused by very shallow layers of increased thermal stability could be shown to be very efficient, even for higher wind velocities. In addition to experiments, we numerically analysed the effect of heat advection, boundary layer decoupling and changing patterns of secondary flows on the energy balance of patchy snow cover characterized by different snow-cover fractions. The atmospheric boundary layer flows over patchy snow-covers were calculated with an atmospheric model (Advanced Regional Prediction System) on a very
NASA Technical Reports Server (NTRS)
Wood, G. M., Jr.; Lewis, B. W.; Nowak, R. J.; Eide, D. G.; Paulin, P. A.; Upchurch, B. T.
1983-01-01
Thermodynamic flow properties of gases in the boundary layer or the flowfield have been mainly deduced from pressures and temperatures measured on a model. However, further progress with respect to an understanding of these properties requires a more complete characterization of the layer including determination of the gas composition and chemistry. Most attempts to measure boundary layer chemistry involve the employment of a mass spectrometer and an associated gas sampling system. The three major limiting factors which must be addressed for species measurement in aerothermodynamic investigations on models at reentry stream velocities, are gas sampling effects, instrument limitations, and problems with data acquisition. The present investigation is concerned with a concentrated effort to quantitatively identify and correct for instrument and sampling system effects, and to develop a miniaturized high performance mass spectrometer for on-model real-time analysis of the boundary layer and its associated atmosphere.
NASA Astrophysics Data System (ADS)
Han, Bo; Lü, Shihua; Ao, Yinhuan
2012-01-01
In this study, the development of a convective boundary layer (CBL) in the Badanjilin region was investigated by comparing the observation data of two cases. A deep neutral layer capped a CBL that occurred on 30 August 2009. This case was divided into five sublayers from the surface to higher atmospheric elevations: surface layer, mixed layer, inversion layer, neutral layer, and sub-inversion layer. The development process of the CBL was divided into three stages: S1, S2, and S3. This case was quite different from the development of the three-layer CBL observed on 31 August 2009 because the mixed layer of the five-layer CBL (CBL5) eroded the neutral layer during S2. The specific initial structure of the CBL5 was correlated to the synoptic background of atmosphere during nighttime. The three-stage development process of the CBL5 was confirmed by six simulations using National Center for Atmospheric Research (USA) large-eddy simulation (NCAR-LES), and some of its characteristics are presented in detail.
Boundary layer transition studies
NASA Technical Reports Server (NTRS)
Watmuff, Jonathan H.
1995-01-01
A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated
Reynolds shear stress development in pressure-driven three-dimensional turbulent boundary-layers
NASA Technical Reports Server (NTRS)
Anderson, S. D.; Eaton, J. K.
1987-01-01
The development of the Reynolds stresses has been examined experimentally in an initially two-dimensional boundary layer which is driven to three dimensionality by a spanwise pressure gradient. The pressure field was imposed by an upstream-facing wedge. Two different wedge angles were used in order to vary the level of boundary layer skewing. Bradshaw's Al parameter was found to decrease with the rate of decrease being dependent on the level of skewing between the freestream and the wall flow. It was also concluded that the ratio of the cross-stream to streamwise shear stress components was governed by the rate of freestream turning.
NASA Astrophysics Data System (ADS)
Bannier, Amaury; Garnier, Eric; Sagaut, Pierre
2016-03-01
Various control strategies, such as active feedback control or riblets, end up restraining near-wall turbulence. An analytical study is conducted to estimate the drag-reduction achievable by such control in zero-pressure-gradient turbulent boundary-layers. Based on an idealized control which damps all fluctuations within a near-wall layer, a composite flow profile is established. It leads to explicit models for both the drag-reduction and the boundary-layer development rate. A skin-friction decomposition is applied and gives physical insights on the underlying phenomena. The control is found to alter the spatial development of the boundary-layer, resulting in detrimental impact on the skin-friction. However, the drag-reducing mechanism, attributed to the turbulence weakening, is found predominant and massive drag reductions remain achievable at high Reynolds number, although a minute part of the boundary-layer is manipulated. The model is finally assessed against Large Eddy Simulations of riblet-controlled flow.
Shaw, W.J.; Doran, J.C.
1994-03-01
During the last decade there has been a surge in efforts to understand the processes at work in the inhomogeneous atmospheric boundary layer. Much of the interest in the problem has been driven by increasingly urgent needs to develop accurate assessments of man`s Contribution to climate change. It has been argued that subgrid-scale secondary circulations in the boundary layer can cause significant errors in parameterized turbulent surface fluxes. Such circulations -- variously termed ``inland breezes``, ``lake breezes``, ``snow breezes``, or ``nonclassical mesoscale circulations`` are becoming widely discussed and modeled. Because surface fluxes are part of the lower boundary condition for global climate models, it is important to understand when these circulations occur and what their effects are on overall turbulent transfer. What are not yet clear are the combinations of the ambient wind and the horizontal scale and intensity of surface flux variability under which we may expect boundary layer secondary circulations to occur. Several authors have modeled the development of these circulations for ad hoc situations of alternating surface characteristics, and SA have developed one parameterization relating the scale of surface heat flux variability and the ambient wind to the evolution of NCMCs. In this paper we present observations, collected in a region of inhomogeneous surface fluxes, that suggest the development of a ``farm breeze``, and we develop an alternative scaling argument to that of SA that better represents our measurement conditions.
Visualization of boundary-layer development on turbomachine blades with liquid crystals
NASA Technical Reports Server (NTRS)
Vanzante, Dale E.; Okiishi, Theodore H.
1991-01-01
This report documents a study of the use of liquid crystals to visualize boundary layer development on a turbomachine blade. A turbine blade model in a linear cascade of blades was used for the tests involved. Details of the boundary layer development on the suction surface of the turbine blade model were known from previous research. Temperature sensitive and shear sensitive liquid crystals were tried as visual agents. The temperature sensitive crystals were very effective in their ability to display the location of boundary layer flow separation and reattachment. Visualization of natural transition from laminar to turbulent boundary layer flow with the temperature sensitive crystals was possible but subtle. The visualization of separated flow reattachment with the shear sensitive crystals was easily accomplished when the crystals were allowed to make a transition from the focal-conic to a Grandjean texture. Visualization of flow reattachment based on the selective reflection properties of shear sensitive crystals was achieved only marginally because of the larger surface shear stress and shear stress gradient levels required for more dramatic color differences.
Boundary layer simulator improvement
NASA Technical Reports Server (NTRS)
Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.
1989-01-01
Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.
Field evidence of the viscous sublayer in a tidally forced developing boundary layer
NASA Astrophysics Data System (ADS)
Wengrove, M. E.; Foster, D. L.
2014-07-01
Field observations of boundary layer development within a tidally forced estuary revealed evidence of an observable viscous sublayer. Evidence is provided by several independent measures of the flow field, including hydrodynamic smoothness, an immobile bed, and characteristic velocity, constant stress, and higher-order moment structures. This investigation reports what may be the second comprehensive observation of the viscous sublayer in a marine environment, and what could be the first observation of a momentum balance that includes the viscous sublayer within a shallow estuarine environment. Hydrodynamic observations were made in a straight channel within the Great Bay Estuary of New Hampshire over a flat sandy mud with low water depth of 1.5 m at the sampling location. Beyond quantifying the role of the benthic boundary layer in nutrient dynamics, these observations are useful to provide insight into very near boundary stress estimates leading to incipient motion in estuarine and coastal environments.
Reynolds stress development in pressure-driven three-dimensional turbulent boundary layers
NASA Technical Reports Server (NTRS)
Anderson, Shawn D.; Eaton, John K.
1989-01-01
The development of the Reynolds stress field was studied for flows in which an initially two-dimensional boundary layer was skewed sideways by a spanwise pressure gradient ahead of an upstream-facing wedge. Two different wedges were used, providing a variation in the boundary-layer skewing. Measurements of all components of the Reynolds stress tensor and all ten triple products were measured using a rotatable cross-wire anemometer. The results show the expected lag of the shear stress vector behind the strain rate. Comparison of the two present experiments with previous data suggests that the lag can be estimated if the radius of curvature of the free-stream streamline is known. The magnitude of the shear stress vector in the plane of the wall is seen to decrease rapidly as the boundary-layer skewing increases. The amount of decrease is apparently related to the skewing angle between the wall and the free stream. The triple products evolve rapidly and profiles in the three-dimensional boundary layer are considerably different than two-dimensional profiles, leaving little hope for gradient transport models for the Reynolds stresses. The simplified model presented by Rotta (1979) performs reasonably well providing that an appropriate value of the T-parameter is chosen.
NASA Astrophysics Data System (ADS)
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate
Study of Boundary Layer Development in a Two-Stage Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Ashpis, David E.; Halstead, David E.; Wisler, David C.
1999-01-01
Experimental data from jet-engine tests have indicated that unsteady blade row interactions and separation can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study numerical simulations have been performed to study the boundary layer development in a two-stage low-pressure turbine, and to evaluate the transition models available for low Reynolds number flows in turbomachinery. The results of the simulations have been compared with experimental data, including airfoil loadings and integral boundary layer quantities. The predicted unsteady results display similar trends to the experimental data, but significantly overestimate the amplitude of the unsteadiness. The time-averaged results show close agreement with the experimental data.
Boundary layer simulator improvement
NASA Technical Reports Server (NTRS)
Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.
1984-01-01
High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.
NASA Astrophysics Data System (ADS)
Mantilla, E.; Sanz, M. J.; Millán., M. M.
Within the framework of the EU project RECAB ("Regional Assessment and Model- ing of the Carbon Balance of Europe", EVK2-1999-00236), during July and December of 2001, convective boundary-layer measurements were performed systematically for several days at the coastline near El Saler (Valencia, Spain). A tethersonde sound- ing system was used, with a 1000 m maximum altitude. The measurement strategy included the realization of different profiles during the day: before or about sunrise to determine the characteristics of the drainage flow; at about the time of maximum boundary-layer development after noon; and in the afternoon-evening, to show the collapse of the diurnal flow. The objective was to document experimentally the struc- ture and daily evolution of the coastal boundary layer in the area, as well as to show seasonal variability in response to differences in mesoscale forcing. One of the most important aspects registered in the profiles, and expanding the previous evidences on the western Mediterranean coast, is the intense compensatory sinking on the coast oc- curring within the general subsidence process related to the persistent high pressure system in these latitudes during the summer period in response to the development of the sea breeze coastal cycles. This extra sinking, not present in the winter mea- surements (due to the fact that in this period meteorological processes are dominated by higher scale structures), gives rise to a rich thermal structure in the first hundreds meters of the atmosphere, creating intense superadiabatic lapse rates (a very strati- fied structure can often be appreciated, where different more-or-less uncoupled layers persist), which suppose an important barrier to the vertical diffusion of any surface emissions. This fact is very important for understanding the general process of the surface-atmosphere interchange mechanisms, and especially for modeling such pro- cesses with simple mixing layer schemes.
Boundary-layer Development and Skin Friction at Mach Number 3.05
NASA Technical Reports Server (NTRS)
Brinich, Paul F; Diaconis, Nick S
1952-01-01
Experimental and theoretical results are presented for boundary layer studies consisting of Schlieren observations and momentum surveys made on hollow cylinder models with their axes aligned parallel to the stream. Results were obtained for three model diameters and for natural and artificially induced turbulent boundary layer flows.
The Effects of Blade Count on Boundary Layer Development in a Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Flitan, Horia C.; Ashpis, David E.; Solomon, William J.
2000-01-01
Experimental data from jet-engine tests have indicated that turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Recent studies have shown that Reynolds number effects contribute to the lower efficiencies at cruise conditions. In the current study numerical simulations have been performed to study the boundary layer development in a two-stage low-pressure turbine, and to evaluate the models available for low Reynolds number flows in turbomachinery. In a previous study using the same geometry the predicted time-averaged boundary layer quantities showed excellent agreement with the experimental data, but the predicted unsteady results showed only fair agreement with the experimental data. It was surmised that the blade count approximation used in the numerical simulations generated more unsteadiness than was observed in the experiments. In this study a more accurate blade approximation has been used to model the turbine, and the method of post-processing the boundary layer information has been modified to more closely resemble the process used in the experiments. The predicted results show improved agreement with the unsteady experimental data.
NASA Astrophysics Data System (ADS)
Xia, Qian-Jin; Huang, Wei-Xi; Xu, Chun-Xiao; Cui, Gui-Xiang
2015-04-01
Opposition control of spatially developing turbulent boundary layers for skin friction drag reduction is studied by direct numerical simulations. The boundary layer extends 800θ0 in the streamwise (x) direction, with θ0 denoting the momentum thickness at the flow inlet. The Reynolds number, based on the external flow velocity and the momentum thickness, ranges from 300 to 860. Opposition control applied in different streamwise ranges, i.e. 200\\lt x/{{θ }0}\\lt 350 and 200\\lt x/{{θ }0}\\lt 550, as well as the uncontrolled case, are simulated. Statistical results and instantaneous flow fields are presented, with special attention paid to the spatial evolution properties of the boundary layer flow with control and the underlying mechanism. It is observed that a long spatial transient region after the control start and a long recovery region after the control end are present in the streamwise direction. A maximum drag reduction rate of about 22% is obtained as the transient region is passed, and an overshoot in the local skin friction coefficient (Cf) occurs in the recovery region. A new identity is derived for dynamical decomposition of Cf. Reduction of Cf by opposition control and overshoot of Cf in the recovery region are explained by quantifying the contributions from the viscous shear stress term, the Reynolds shear stress term, the mean convection term and other terms.
NASA Astrophysics Data System (ADS)
Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat
2015-06-01
Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.
NASA Technical Reports Server (NTRS)
Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat
2015-01-01
Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary
Nonequilibrium chemistry boundary layer integral matrix procedure
NASA Technical Reports Server (NTRS)
Tong, H.; Buckingham, A. C.; Morse, H. L.
1973-01-01
The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.
Unsteady turbulent boundary layer analysis
NASA Technical Reports Server (NTRS)
Singleton, R. E.; Nash, J. F.; Carl, L. W.; Patel, V. C.
1973-01-01
The governing equations for an unsteady turbulent boundary layer on a swept infinite cylinder, composed of a continuity equation, a pair of momentum equations and a pair of turbulent energy equations which include upstream history efforts, are solved numerically. An explicit finite difference analog to the partial differential equations is formulated and developed into a computer program. Calculations were made for a variety of unsteady flows in both two and three dimensions but primarily for two dimensional flow fields in order to first understand some of the fundamental physical aspects of unsteady turbulent boundary layers. Oscillating free stream flows without pressure gradient, oscillating retarded free stream flows and monotonically time-varying flows have all been studied for a wide frequency range. It was found that to the lowest frequency considered, the lower frequency bound being determined by economic considerations (machine time), there were significant unsteady effects on the turbulent boundary layer.
Boundary layer control for airships
NASA Technical Reports Server (NTRS)
Pake, F. A.; Pipitone, S. J.
1975-01-01
An investigation is summarized of the aerodynamic principle of boundary layer control for nonrigid LTA craft. The project included a wind tunnel test on a BLC body of revolution at zero angle of attack. Theoretical analysis is shown to be in excellent agreement with the test data. Methods are evolved for predicting the boundary layer development on a body of revolution and the suction pumping and propulsive power requirements. These methods are used to predict the performance characteristics of a full-scale airship. The analysis indicates that propulsive power reductions of 15 to 25 percent and endurance improvements of 20 to 40 percent may be realized in employing boundary-layer control to nonrigid airships.
Dynamical Model Simulation of the Morning Boundary Layer Development in Deep Mountain Valleys.
NASA Astrophysics Data System (ADS)
Bader, David C.; McKee, Thomas B.
1983-03-01
A dry, two-dimensional version of the Colorado State University Multi-dimensional Cloud/Mesoscale Model was used to study the cross-valley evolution of the wind and temperature structures in an idealized east-west oriented mountain valley. Two simulations were performed, one in which the valley was heated symmetrically and a second in which a mid-latitude heating distribution was imposed. Both runs were initiated identically with a stable layer filling the valley to ridgetop and a neutral layer above the ridge. A specified sinusoidal surface potential temperature flux function approximating the diurnal cycle forced the model at the lower boundary.The results of the two simulations were remarkably similar. The model realistically reproduced the gross features found in actual valleys in both structure and timing. The simulated inversions were destroyed three and one-half hours after sunrise as a result of a neutral layer growing up from the surface meeting a descending inversion top. Slope winds with speeds of 3-5 m s1 developed over both sidewalls two and one-half hours after sunrise. Both cases revealed the development of strongly stable pockets of air over the sidewalls which form when cold air advected upslope loses its buoyancy at higher elevations. These stable pockets temporarily block the slope flow and force transient cross-valley circulations to form which act to destabilize the valley boundary layer. Cross-valley mixing and gravity waves rapidly redistribute heat across the valley to prevent large potential temperature gradients from forming. As a result, oven large differences in heating rates between opposing sidewalls do not result in significant cross-valley potential temperature differences. Organized cross-valley circulations and eddy motions enhance lateral mixing in the stable layer as well.
Experimental analysis and computation of the onset and development of the boundary layer transition
NASA Technical Reports Server (NTRS)
Arnal, D.; Juillen, J. C.; Michel, R.
1978-01-01
The transition of an incompressible boundary layer, with zero pressure gradient and low free-stream turbulence is studied. Mean velocity, turbulence and Reynolds shear stress profiles are presented. The development of the Tollmien-Schlichting waves is clearly shown until the turbulent spots appear. The intermittency phenomenon is studied by conditional sampling of the hotwire signal. The comparison with calculation results obtained by resolution of a set of transport equations shows a good agreement for the mean characteristics of the flow; discrepancies observed for the turbulent quantities evolution are due to the intermittency phenomenon.
HUD - PREDICTION OF BOUNDARY-LAYER DEVELOPMENT ON TWO-DIMENSIONAL OR AXISYMETRIC BODIES
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1994-01-01
HUD is an integral code based on the Spaulding-Chi method for predicting boundary-layer development in laminar, transitional, and turbulent flow regions on two-dimensional or axisymetric bodies. This program was developed using integral-momentum, moment-of-momentum, and energy equations and has the capability of approximating non-equilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was also developed for predicting heat transfer in a turbulent boundary layer in the presence of a high axial pressure gradient. Provisions are included for pressure gradients normal and lateral to the surface. The program is designed with particular emphasis on its applicability to supersonic combustion, thus, real gas flow effects were included. The resulting method permits estimation of cooling requirements for scramjet engines. Because of this capability, the HUD program has been incorporated into several scramjet cycle performance analysis codes including SCRAM (ARC-12338) and SRGULL (LEW-15093). HUD is written in machine independent FORTRAN 77 and should be portable to any computer with a valid FORTRAN compiler. On an IBM PC compatible under MS-DOS, HUD requires 145K RAM. The program is available on a 5.25 inch 360K MS-DOS diskette. HUD was developed in 1970 and last updated in 1991. IBM PC is a registered trademark of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.
NASA Astrophysics Data System (ADS)
Huang, M.; Mielikainen, J.; Huang, B.; Chen, H.; Huang, H.-L. A.; Goldberg, M. D.
2015-09-01
The planetary boundary layer (PBL) is the lowest part of the atmosphere and where its character is directly affected by its contact with the underlying planetary surface. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transport in the whole atmospheric column. It determines the flux profiles within the well-mixed boundary layer and the more stable layer above. It thus provides an evolutionary model of atmospheric temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. For such purposes, several PBL models have been proposed and employed in the weather research and forecasting (WRF) model of which the Yonsei University (YSU) scheme is one. To expedite weather research and prediction, we have put tremendous effort into developing an accelerated implementation of the entire WRF model using graphics processing unit (GPU) massive parallel computing architecture whilst maintaining its accuracy as compared to its central processing unit (CPU)-based implementation. This paper presents our efficient GPU-based design on a WRF YSU PBL scheme. Using one NVIDIA Tesla K40 GPU, the GPU-based YSU PBL scheme achieves a speedup of 193× with respect to its CPU counterpart running on one CPU core, whereas the speedup for one CPU socket (4 cores) with respect to 1 CPU core is only 3.5×. We can even boost the speedup to 360× with respect to 1 CPU core as two K40 GPUs are applied.
Development and Breakdown of Goertler Vortices in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; Wu, Minwei; Greene, Ptrick T.
2010-01-01
The nonlinear development of G rtler instability over a concave surface gives rise to a highly distorted stationary flow in the boundary layer that has strong velocity gradients in both spanwise and wall-normal directions. This distorted flow is susceptible to strong, high frequency secondary instability that leads to the onset of transition. For high Mach number flows, the boundary layer is also subject to the second mode instability. The nonlinear development of G rtler vortices and the ensuing growth and breakdown of secondary instability, the G rtler vortex interactions with second mode instabilities as well as oblique second mode interactions are examined in the context of both internal and external hypersonic configurations using nonlinear parabolized stability equations, 2-D eigenvalue analysis and direct numerical simulation. For G rtler vortex development inside the Purdue Mach 6 Ludwieg tube wind tunnel, multiple families of unstable secondary eigenmodes are identified and their linear and nonlinear evolution is examined. The computation of secondary instability is continued past the onset of transition to elucidate the physical mechanisms underlying the laminar breakdown process. Nonlinear breakdown scenarios associated with transition over a Mach 6 compression cone configuration are also explored.
Numerical Study of Broadband Disturbance Development in APG Boundary Layer Flow
NASA Astrophysics Data System (ADS)
Chen, Weijia; Chen, Jim; Lo, Edmond
2014-03-01
A numerical model is developed with combined compact difference methods to simulation boundary layer transition problems. The model is used to investigate the formation and development of coherent structures in late stage of a laminar-turbulent transition initiated by a two-dimensional Tollmien-Schlichting (TS) wave and initially weak broadband disturbances. The numerical simulation closely follows the conditions in the experiments by Borodulin (2006). The boundary layer base flow has an Adverse Pressure Gradient (APG) with Hartree parameter βH = - 0.115. The instantaneous flow structures are visualized, which demonstrate results comparable with experiments. Interaction between the TS wave and broadband disturbances leads to the formation of Λ-vortices, Ω-vortices, and ring-like vortices. In comparison with those in classical transition paths, i.e., fundamental and subharmonic resonances, these structures are distributed in a random order and have distorted shapes. However, their local evolution properties are qualitatively similar with those in classical transition paths. The authors thank Nanyang Techonological Univerisity for funding support.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.
2008-01-01
This paper reports on progress towards developing a spatial stability code for compressible shear flows with two inhomogeneous directions, such as crossflow dominated swept-wing boundary layers and attachment line flows. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined. Finally, extension of the spatial stability analysis to supersonic attachment line flows is also considered.
Inception length to a fully-developed fin-generated shock wave boundary-layer interaction
NASA Technical Reports Server (NTRS)
Lu, Frank K.; Settles, Gary S.
1989-01-01
An experimental study of fin-generated shock wave turbulent boundary-layer interactions confirmed previous observations that, sufficiently far from the fin apex, such interactions become conical. The inception length to conical symmetry was found to increase weakly with Mach number for Mach numbers from 2.5 to 4 and fin angles from 4 to 22 deg. For the range of interactions examined, the inception length was found to depend primarily upon the inviscid shock angle, this angle ranging from 21 to 40 deg. The behavior of the inception length with shock angle can be broadly divided into two categories. For 'weak' interactions with shock angles less than about 35 deg, the inception length decreased as the shock angle increased. For 'strong' interactions with shock angles greater than about 35 deg, the inception region was small and was approximately constant at three boundary-layer thicknesses in length. In the latter, strong interaction case, the inception length was an order of magnitude smaller than that found in the weakest interactions examined, to the extent that strong interactions were practically fully-developed from the apex.
NASA Astrophysics Data System (ADS)
Laurence, S. J.; Wagner, A.; Hannemann, K.
2014-08-01
Three variants of schlieren techniques are employed to investigate the development of second-mode instability waves in the hypersonic boundary layer of a slender cone in a reflected shock tunnel. First, a previously proposed technique using high frame rate (i.e., at least as high as the dominant instability frequency) schlieren visualization with a continuous light source is shown to provide repeatable measurements of the instability propagation speed and frequency. A modified version of the technique is then introduced whereby a pulsed light source allows the use of a higher-resolution camera with a lower frame rate: this provides significant benefits in terms of spatial resolution and total recording time. A detailed picture of the surface-normal intensity distribution for individual wave packets is obtained, and the images provide comprehensive insight into the unsteady flow structures within the boundary layer. Finally, two-point schlieren deflectometry is implemented and shown to be capable of providing second-mode growth information in the challenging shock tunnel environment.
Study of Boundary Layer Development in a Two-Stage Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Ashpis, David E.; Halstead, David E.; Wisler, David C.
1998-01-01
Experimental data from jet-engine tests have indicated that unsteady blade row (wake) interactions and separation can have a significant impact on the efficiency of turbine stages. The effects of these interactions can be intensified in low-pressure turbine stages because of the low Reynolds number operating environment. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Thus, during the last decade a significant amount of effort has been put into determining the effects of transition and turbulence on the performance of low pressure turbine stages. Experimental investigations have been performed, for example, by Hodson et al. and Halstead et al. These investigations have helped identify/clarify the roles that factors such as the Reynolds number, free stream turbulence intensity, pressure gradient and curvature have in the generation of losses. In parallel to the experimental investigations, there have been significant analytical efforts to improve the modeling of transition. Examples of such efforts include the works of Mayle and Gostelow et al. These newer models show promise of providing accurate transition predictions over a wide range of flow conditions, although they have yet to be implemented into the numerical flow analyses used by the turbine design community. Some recent computational investigations of interest include the works of Chernobrovkin and Lakshminarayana and Eulitz and Engel. The focus of the current effort has been to -use a viscous, unsteady quasi-three-dimensional Navier-Stokes analysis to study boundary layer development in a two-stage low-pressure turbine. A two-layer algebraic turbulence model, along with a natural transition model and a bubble transition model, have been used, The geometry used in the simulations has been the subject of extensive experiments. The predicted results have been compared with experimental data, including airfoil loadings and time
NASA Technical Reports Server (NTRS)
Bretherton, Christopher S.
2002-01-01
The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.
Streamwise development of the wind turbine boundary layer over a model wind turbine array
NASA Astrophysics Data System (ADS)
Newman, Jensen; Lebron, Jose; Meneveau, Charles; Castillo, Luciano
2013-08-01
The streamwise development of turbulence statistics and mean kinetic energy in a model wind farm consisting of 3 × 5 wind turbines is studied experimentally in a wind tunnel. The analysis uses planar Particle Image Velocimetry data obtained at the centerline plane of the wind farm, covering the inflow as well as four planes in between five downstream wind turbines. The data analysis is organized by dividing these measurement planes into three regions: the above-rotor, rotor-swept, and below-rotor regions. For each field, flow development is quantified using a properly defined relative difference norm based on an integration over each of the regions. Using this norm, it is found that the mean streamwise velocity approaches a fully developed state most rapidly, whereas the flow development is more gradual for the second-order statistics. The vertical entrainment flux of the mean kinetic energy by the Reynolds shear stress, ⟨U⟩⟨u'v'⟩, is observed to develop at a rate similar to that of the Reynolds shear stress rather than the mean streamwise velocity component. Its development is slowest in the layer nearest to the ground. Analysis of various terms in the mean kinetic energy equation shows that the wind turbine boundary layer has not yet reached fully developed conditions by the fifth turbine but that it is approaching such conditions. By comparing the vertical entrainment flux with the horizontal flux due to the mean flow, it is found that the former increases, whereas the latter decreases, as function of downstream distance, but that the former is already an important contributor in the developing region.
Microgravity Effects on Plant Boundary Layers
NASA Technical Reports Server (NTRS)
Stutte, Gary; Monje, Oscar
2005-01-01
The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.
Turbulent boundary layers over nonstationary plane boundaries
NASA Technical Reports Server (NTRS)
Roper, A. T.
1976-01-01
Methods of predicting integral parameters and skin-friction coefficients of turbulent boundary layers developing over moving-ground-planes are evaluated using test information from three different wind tunnel facilities at the NASA Langley Research Center. These data include test information from the VSTOL tunnel which is presented for the first time. The three methods evaluated were: (1) relative integral parameter method, (2) relative power law method, and (3) modified law of the wall method. Methods (1) and (2) can be used to predict moving-ground-plane shape factors with an expected accuracy of + or - 10%. They may also be used to predict moving-ground-plane displacement and momentum thicknesses with lower expected accuracy. This decrease in accuracy can be traced to the failure of approximations upon which these methods are based to prove universal when compared with VSTOL tunnel test results.
Coupled groundwater-atmosphere modeling: effects on atmospheric boundary layer development
NASA Astrophysics Data System (ADS)
Chow, F. K.; Maxwell, R. M.; Kollet, S. J.; Daniels, M. H.; Rihani, J. F.
2007-12-01
Newly-developed coupled land-atmosphere models which incorporate both subsurface and atmospheric moisture dynamics have the potential to change our understanding of the hydrologic cycle. This presentation describes the effects of coupled groundwater-atmosphere modeling on simulations of the atmospheric boundary layer. Both field observations and simulations indicate strong sensitivity of atmospheric dynamics to land-surface conditions, in particular surface soil moisture. Simulations of atmospheric flow in Owens Valley (California) and in the Riviera Valley (Switzerland) show strong sensitivity to land-surface conditions, thus motivating the need for more accurate representations of soil moisture. In addition to influences from weather and seasonal changes, soil moisture dynamics respond to diurnal heat fluxes on the land surface. Using our new fully-coupled groundwater-atmosphere model, we have demonstrated correlations of soil moisture and land-surface heat fluxes with groundwater fluctuations on short, diurnal time scales. By explicitly calculating groundwater dynamics for our domain of interest, we are able to produce realistic time- and space-varying soil moisture distributions that naturally correspond to variations in topography and surface evaporation. Simulations in idealized and real watersheds are shown to illustrate these effects. The observed variations in surface moisture distribution have large impacts on the moisture and temperature structure in the atmosphere, leading to changes in boundary layer depth and convective motions as compared to standard soil moisture representations. Our coupled model framework will allow detailed investigation of the complex cycle of land-atmosphere processes affecting moisture distributions in the subsurface and the atmosphere.
NEW DEVELOPMENT IN DISPERSION EXPERIMENTS AND MODELS FOR THE CONVECTIVE BOUNDARY LAYER
We present recent experiments and modeling studies of dispersion in the convective boundary layer (CBL) with focus on highly-buoyant plumes that "loft" near the CBL top and resist downward mixing. Such plumes have been a significant problem in earlier dispersion models; they a...
Boundary layer receptivity and control
NASA Technical Reports Server (NTRS)
Hill, D. C.
1993-01-01
Receptivity processes initiate natural instabilities in a boundary layer. The instabilities grow and eventually break down to turbulence. Consequently, receptivity questions are a critical element of the analysis of the transition process. Success in modeling the physics of receptivity processes thus has a direct bearing on technological issues of drag reduction. The means by which transitional flows can be controlled is also a major concern: questions of control are tied inevitably to those of receptivity. Adjoint systems provide a highly effective mathematical method for approaching many of the questions associated with both receptivity and control. The long term objective is to develop adjoint methods to handle increasingly complex receptivity questions, and to find systematic procedures for deducing effective control strategies. The most elementary receptivity problem is that in which a parallel boundary layer is forced by time-harmonic sources of various types. The characteristics of the response to such forcing form the building blocks for more complex receptivity mechanisms. The first objective of this year's research effort was to investigate how a parallel Blasius boundary layer responds to general direct forcing. Acoustic disturbances in the freestream can be scattered by flow non-uniformities to produce Tollmien-Schlichting waves. For example, scattering by surface roughness is known to provide an efficient receptivity path. The present effort is directed towards finding a solution by a simple adjoint analysis, because adjoint methods can be extended to more complex problems. In practice, flows are non-parallel and often three-dimensional. Compressibility may also be significant in some cases. Recent developments in the use of Parabolized Stability Equations (PSE) offer a promising possibility. By formulating and solving a set of adjoint parabolized equations, a method for mapping the efficiency with which external forcing excites the three
Modeling the urban boundary layer
NASA Technical Reports Server (NTRS)
Bergstrom, R. W., Jr.
1976-01-01
A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.
Large Eddy Simulation study of fully developed thermal wind-turbine array boundary layers
NASA Astrophysics Data System (ADS)
Meneveau, Charles; Calaf, Marc; Parlange, Marc B.
2010-05-01
It is well known that when wind turbines are deployed in large arrays, their efficiency decreases due to complex interactions among themselves and with the atmospheric boundary layer (ABL). For wind farms whose length exceeds the height of the ABL by over an order of magnitude, a "fully developed" flow regime can be established. In this asymptotic regime, changes in the stream-wise direction can be neglected and the relevant exchanges occur in the vertical direction. Such a fully developed wind-turbine array boundary layer (WTABL) has recently been studied using Large Eddy Simulations (LES) under neutral stability conditions (Calaf et al. Physics of Fluids 22, 2010). Related wind-tunnel experiments on the WTABL are reported in Cal et al., J. Renewable and Sustainable Energy 2, 2010). The simulations showed the existence of two log-laws, one above and one below the wind turbine region. These results confirm basic assumptions made in prior work by Frandsen (J. Wind Eng. Ind. Aerodyn. 39, 1992) and Frandsen et al. (Wind Energy 9, 2006), and have enabled the development of more accurate parameterizations of the effective roughness scale for a wind farm. Now, a suite of Large Eddy Simulations, in which wind turbines are also modeled using the classical "drag disk" concept are performed but for non-neutral conditions. The aim is to study the effects of different thermal ABL stratifications, and thus to better understand the efficiency and characteristics of large wind farms and the associated land-atmosphere interactions for realistic atmospheric flow regimes. Such studies help to unravel the physics involved in extensive aggregations of wind turbines, allowing us to design better wind farm arrangements. By considering various turbine loading factors, surface roughness values and different atmospheric stratifications, it is possible to analyze the influence of these on the induced surface roughness, and the sensible heat roughness length. These last two can be used to
Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2015-11-01
In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.
Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces
NASA Astrophysics Data System (ADS)
Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.
2015-11-01
The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.
NASA Technical Reports Server (NTRS)
Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.
1985-01-01
A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.
Boundary Layers of Air Adjacent to Cylinders
Nobel, Park S.
1974-01-01
Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855
Boundary Layer Heights from CALIOP
NASA Astrophysics Data System (ADS)
Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.
2012-12-01
This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.
Boundary Layer Control on Airfoils.
ERIC Educational Resources Information Center
Gerhab, George; Eastlake, Charles
1991-01-01
A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)
Removing Boundary Layer by Suction
NASA Technical Reports Server (NTRS)
Ackeret, J
1927-01-01
Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.
Modelling the transitional boundary layer
NASA Technical Reports Server (NTRS)
Narasimha, R.
1990-01-01
Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.
Numerical investigation of the three-dimensional development in boundary layer transition
NASA Astrophysics Data System (ADS)
Fasel, H. F.; Rist, U.; Konzelmann, U.
1987-06-01
A numerical method for solving the complete Navier-Stokes equations for incompressible flows is introduced that is applicable for investigating three-dimensional transition phenomena in a spatially-growing boundary layer. Results are discussed for a test case with small three-dimensional disturbances for which detailed comparison to linear stability theory is possible. The validity of this numerical model for investigating nonlinear transition phenomena is demonstrated by realistic spatial simulations of the experiments by Kachanov and Levchenko (1984) for a subharmonic resonance breakdown and of the experiments of Klebanoff et al. (1962) for a fundamental resonance breakdown.
Drennov, O. B.; Mikhailov, A. L.
2006-07-28
The elimination effect of disturbances and mutual mixing on a contact boundaries of metal layers at oblique impact during Kelvin - Helmholtz instability development was established and investigated. Thin layers of metal coatings ({delta}{approx}30 {mu}m) reduce amplitude of disturbance realization in 10 - 100 times and eliminate mutual mixing of contacting materials (eliminate the formation of a welded point). The foils of the same materials and thicknesses are not characterized by the same strong stabilizing properties. This stabilizing effect is explained by physical properties of a metal coating as a whole. Thermophysical limits for coating layers are pointed out.
Boundary-layer linear stability theory
NASA Technical Reports Server (NTRS)
Mack, L. M.
1984-01-01
Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer
Boundary-layer linear stability theory
NASA Astrophysics Data System (ADS)
Mack, L. M.
1984-06-01
Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer
Physics of magnetospheric boundary layers
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1995-01-01
This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.
Nonparallel stability of boundary layers
NASA Technical Reports Server (NTRS)
Nayfeh, Ali H.
1987-01-01
The asymptotic formulations of the nonparallel linear stability of incompressible growing boundary layers are critically reviewed. These formulations can be divided into two approaches. The first approach combines a numerical method with either the method of multiple scales, or the method of averaging, of the Wentzel-Kramers-Brillouin (WKB) approximation; all these methods yield the same result. The second approach combined a multi-structure theory with the method of multiple scales. The first approach yields results that are in excellent agreement with all available experimental data, including the growth rates as well as the neutral stability curve. The derivation of the linear stability of the incompressible growing boundary layers is explained.
NASA Astrophysics Data System (ADS)
Case Hanks, Anne Theresa
This work presents the development of a laser-induced fluorescence technique to measure atmospheric formaldehyde. In conjunction with the technique, the design of a compact, narrow linewidth, etalon-tuned titanium: sapphire laser cavity which is pumped by the second harmonic of a kilohertz Nd:YAG laser is also presented. The fundamental tunable range is from 690-1100 nm depending on mirror reflectivities and optics kit used. The conversion efficiency is at least 25% for the fundamental, and 2-3% for intracavity frequency doubling from 3.5-4W 532 nm pump power. The linewidth is <0.1 cm-1, and the pulsewidth is 18 nsec. Applications of this cavity include the measurement of trace gas species by laser-induced fluorescence, cavity ringdown spectroscopy, and micropulse lidar in the UV-visible region. Also presented are observations of gas-phase sulfuric acid from the NEAQS-ITCT 2K4 (New England Air Quality Study--- Intercontinental Transport and Chemical Transformation) field campaign in July and August 2004. Sulfuric acid values are reported for a polluted environment and possible nucleation events as well as particle growth within the boundary layer are explored. Sulfate production rates via gas phase oxidation of sulfur dioxide are also reported. This analysis allows an important test of our ability to predict sulfuric acid concentration and probe its use as a fast time response photochemical tracer for the hydroxyl radical, OH. In comparison, the NASA time-dependent photochemical box model is used to calculate OH concentration. Nighttime H2SO4 values are examined to test our understanding of nocturnal OH levels and oxidation processes. In comparison, sulfuric acid from a large ground based mission in Tecamac, Mexico (near the northern boundary of Mexico City) during MIRAGE-Mex field campaign (March 2006) is presented. This and other measurements are used to characterize atmospheric oxidation and predict sulfuric acid and OH concentrations at the site. The
Shizawa, T.; Eaton, J.K.
1990-12-31
The interaction of a longitudinal vortex with a pressure-driven, three dimensional turbulent boundary layer was investigated experimentally. The vortex was attenuated much more rapidly in the three dimensional layer than in a two-dimensional boundary layer. The persistence for the vortex-induced perturbation was strongly dependent on the sign of the vortex.
Development of an effusive inlet for mass spectrometric gas analysis of hypersonic boundary layer
NASA Technical Reports Server (NTRS)
Brown, Kenneth G.; Fishel, Charles E.; Brown, David R.; Lewis, Beverley W.; Wood, George M., Jr.
1987-01-01
The use of a microchannel plate (MCP) as a mass spectrometer inlet device to allow nonintrusive sampling of flight vehicle boundary layers is investigated. Two possible configurations for mounting the inlet are studied: (1) flow coaxial with the channels; and (2) flow perpendicular to the channel axis. The test gases are pure Kr; pure Ne; and a mixture of 10 pct Kr, 10 pct Ne, and 80 pct N2. The pressure ranges studied vary from 500 to 10 microns. A mass discrimination at the quadrupole mass spectrometer is observed, indicating an enrichment in the heavier gas. Possible explanations for this enrichment are discussed. It is shown that an MCP is capable of acting as a nonintrusive sampling device. Further work that will enable quantitative determination of the species at the surface is discussed.
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Rosner, D. E.
1984-01-01
Modification of the code STAN5 to properly include thermophoretic mass transport, and examination of selected test cases developing boundary layers which include variable properties, viscous dissipation, transition to turbulence and transpiration cooling. Under conditions representative of current and projected GT operation, local application of St(M)/St(M),o correlations evidently provides accurate and economical engineering design predictions, especially for suspended particles characterized by Schmidt numbers outside of the heavy vapor range.
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David
1999-01-01
We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.
Physics of magnetospheric boundary layers
NASA Technical Reports Server (NTRS)
Cairns, I. H.
1993-01-01
The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.
NASA Astrophysics Data System (ADS)
Tilton, Nils; Daniel, Don; Riaz, Amir
2013-09-01
Gravitationally unstable, transient, diffusive boundary layers play an important role in carbon dioxide sequestration. Though the linear stability of these layers has been studied extensively, there is wide disagreement in the results, and it is not clear which methodology best reflects the physics of the instability. We demonstrate that this disagreement stems from an inherent sensitivity of the problem to how perturbation growth is measured. During an initial transient period, the concentration and velocity fields exhibit different growth rates and these rates depend on the norm used to measure perturbation amplitude. This sensitivity decreases at late times as perturbations converge to dominant quasi-steady eigenmodes. Therefore, we characterize the linear regime by measuring the duration of the initial transient period, and we interpret the convergence process by examining the growth rates and non-orthogonality of the quasi-steady eigenmodes. To judge the relevance of various methodologies and perturbation structures to physical systems, we demonstrate that every perturbation has a maximum allowable initial amplitude above which the sum of the base-state and perturbation produces unphysical negative concentrations. We then perform direct numerical simulations to demonstrate that optimal perturbations considered in previous studies cannot support finite initial amplitudes. Consequently, convection in physical systems is more likely triggered by "sub-optimal" perturbations that support finite initial amplitudes.
NASA Astrophysics Data System (ADS)
Reuder, Joachim; Jonassen, Marius; Ólafsson, Haraldur
2012-10-01
During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.
Boundary Layers, Transitions and Separation
NASA Technical Reports Server (NTRS)
2010-01-01
Effects of roughness in boundary layers have to be addressed. Until adverse pressure gradient effects are understood, roughness will not significantly drive design. Mechanisms responsible for separation not understood. Effects on Zero Pressure Gradient boundary layers (shear stress). Effects on separation in pressure gradient (prediction of separation). Effect on scalar transport (heat transfer) not understood. Model for skin friction needed in simulations - first grid point likely to be in buffer layer. Definition of roughness important for useful experiments. A lot of validation experiments will be needed. How to get to ks for roughness of engineering interest? - depends on wavelength height, etc. for engineering interest? Re-discovering the wheel should be avoided: existing knowledge (theoretical and experimental) should find its way into the engineering models. It is a task of the industry to filter out the existing information in the literature for results relevant to its application, being external or internal.
Albrecht, Bruce,
2013-07-12
This is a collaborative project with Dr. Ping Zhu at Florida International University. It was designed to address key issues regarding the treatment of boundary layer cloud processes in climate models with UM’s research focusing on the analyses of ARM cloud radar observations from MMCR and WACR and FIU’s research focusing on numerical simulations of boundary layer clouds. This project capitalized on recent advancements in the ARM Millimeter Cloud Radar (MMCR) processing and the development of the WACR (at the SGP) to provide high temporal and spatial resolution Doppler cloud radar measurements for characterizing in-cloud turbulence, large-eddy circulations, and high resolution cloud structures of direct relevance to high resolution numerical modeling studies. The principal focus of the observational component of this collaborative study during this funding period was on stratocumulus clouds over the SGP site and fair-weather cumuli over the Nauru site. The statistical descriptions of the vertical velocity structures in continental stratocumulus clouds and in the Nauru shallow cumuli that are part of this study represents the most comprehensive observations of the vertical velocities in boundary layer clouds to date and were done in collaboration with Drs. Virendra Ghate and Pavlos Kollias.
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.; Hickey, Jean-Pierre
2013-11-01
Direct numerical simulations of spatially evolving pipe flow and boundary layer have been performed. The pipe is 250R long, the flow Reynolds number is 6000 and 8000, and the calculation used up to 1.7 billion grid points. Pipe inlet disturbance is from a very-thin wire ring placed at different radial locations. It is found that energy norm in the flow downstream of such disturbance can grow exponentially with axial distance. The boundary layer's momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Its mesh has 4 billion grid points. Good quantitative agreement with experimental data is obtained. In both the pipe flow and the boundary layer, under these inlet disturbances, Lambda vortex, hairpin packet, infant turbulent spot, mature turbulent spot, and hairpin forest occur naturally and sequentially. Passive scalar was also introduced in the simulation in a manner analogous to the color band experiment of Osborne Reynolds.
NASA Astrophysics Data System (ADS)
Reuder, J.; Jonassen, M. O.; Ólafsson, H.
2012-04-01
During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a new and flexible tool for atmospheric boundary layer (ABL) research to be operated as controllable and recoverable atmospheric sounding system for the lowest 4 km above the Earth's surface. In the year 2011 two main technical improvements of the system have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation to now even allowing incloud flights. In the field of sensor technology the implementation of a 5-hole probe for the determination of the 3 dimensional flow vector impinging the aircraft with a 100 Hz resolution and of a faster Pt1000 based temperature sensor have distinctly enhanced the meteorological measurement capabilities. The extended SUMO version has recently been operated during two field campaigns. The first one in a wind farm close to Vindeby on Lolland, Denmark, was dedicated to the investigation of the effects of wind turbines on boundary layer turbulence. In spite of a few pitfalls related to configuration and synchronisation of the corresponding data logging systems, this campaign provided promising results indicating the capability and future potential of small UAS for turbulence characterization in and around wind farms. The second one, the international BLLAST (Boundary Layer Late Afternoon and Sunset Transition) field campaign at the foothills of the Pyrenees in Lannemezan, France was focussing on processes related to the afternoon transition of the convective boundary layer. On a calm sunny day during this experiment, the SUMO soundings revealed an unexpected 2°C cooling in the ABL during morning hours. By a comparison with model simulations this cooling can be associated with thermally-driven upslope winds and the subsequent advection of relatively cool air from the lowlands north of the Pyrenees.
Boundary Layer Cloudiness Parameterizations Using ARM Observations
Bruce Albrecht
2004-09-15
This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.
Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat
2015-06-19
Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.
Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; et al
2015-06-19
Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less
Stability of compressible boundary layers
NASA Technical Reports Server (NTRS)
Nayfeh, Ali H.
1989-01-01
The stability of compressible 2-D and 3-D boundary layers is reviewed. The stability of 2-D compressible flows differs from that of incompressible flows in two important features: There is more than one mode of instability contributing to the growth of disturbances in supersonic laminar boundary layers and the most unstable first mode wave is 3-D. Whereas viscosity has a destabilizing effect on incompressible flows, it is stabilizing for high supersonic Mach numbers. Whereas cooling stabilizes first mode waves, it destabilizes second mode waves. However, second order waves can be stabilized by suction and favorable pressure gradients. The influence of the nonparallelism on the spatial growth rate of disturbances is evaluated. The growth rate depends on the flow variable as well as the distance from the body. Floquet theory is used to investigate the subharmonic secondary instability.
NASA Astrophysics Data System (ADS)
Klein, Petra M.; Hu, Xiao-Ming; Shapiro, Alan; Xue, Ming
2016-03-01
In the Southern Great Plains, nocturnal low-level jets (LLJs) develop frequently after sunset and play an important role in the transport and dispersion of moisture and atmospheric pollutants. However, our knowledge regarding the LLJ evolution and its feedback on the structure of the nocturnal boundary layer (NBL) is still limited. In the present study, NBL characteristics and their interdependencies with LLJ evolution are investigated using datasets collected across the Oklahoma City metropolitan area during the Joint Urban field experiment in July 2003 and from three-dimensional simulations with the Weather Research and Forecasting (WRF) model. The strength of the LLJs and turbulent mixing in the NBL both increase with the geostrophic forcing. During nights with the strongest LLJs, turbulent mixing persisted after sunset in the NBL and a strong surface temperature inversion did not develop. However, the strongest increase in LLJ speed relative to the mixed-layer wind speed in the daytime convective boundary layer (CBL) occurred when the geostrophic forcing was relatively weak and thermally-induced turbulence in the CBL was strong. Under these conditions, turbulent mixing at night was typically much weaker and a strong surface-based inversion developed. Sensitivity tests with the WRF model confirm that weakening of turbulent mixing during the decay of the CBL in the early evening transition is critical for LLJ formation. The cessation of thermally-induced CBL turbulence during the early evening transition triggers an inertial oscillation, which contributes to the LLJ formation.
Jupiter's deep magnetotail boundary layer
NASA Astrophysics Data System (ADS)
Nicolaou, G.; McComas, D. J.; Bagenal, F.; Elliott, H. A.; Ebert, R. W.
2015-06-01
In 2007 the New Horizons (NH) spacecraft flew by Jupiter for a gravity assist en route to Pluto. After closest approach on day of year (DOY) 58, 2007, NH followed a tailward trajectory that provided a unique opportunity to explore the deep jovian magnetotail and the surrounding magnetosheath. After DOY 132, 16 magnetopause crossings were observed between 1654 and 2429 Jupiter radii (Rj) along the dusk flank tailward of the planet. In some cases the crossings were identified as rapid transitions from the magnetotail to the magnetosheath and vice versa. In other cases a boundary layer was observed just inside the magnetopause. Solar Wind Around Pluto (SWAP) is an instrument on board NH that obtained spectra of low energy ions during the flyby period. We use a forward model including the SWAP instrument response to derive plasma parameters (density, temperature and velocity) which best reproduce the observations. We also vary the plasma parameters in our model in order to fit the observations more accurately on occasions where the measurements exhibit significant variability. We compare the properties of the plasma in the boundary layer with those of the magnetosheath plasma derived in our earlier work. We attempt to estimate the magnetic field in the boundary layer assuming pressure balance between it and the magnetosheath. Finally, we investigate several possible scenarios to assess if magnetopause movement and structure could cause the variations seen in the data.
Liu, J T C
2008-08-13
The intent of the present contribution is to explain theoretically the experimentally measured surface heat transfer rates on a slightly concave surface with a thin boundary layer in an otherwise laminar flow. As the flow develops downstream, the measured heat transfer rate deviates from the local laminar value and eventually exceeds the local turbulent value in a non-trivial manner even in the absence of turbulence. While the theory for steady strong nonlinear development of streamwise vortices can bridge the heat transfer from laminar to the local turbulent value, further intensification is attributable to the transport effects of instability of the basic steady streamwise vortex system. The problem of heat transport by steady and fluctuating nonlinear secondary instability is formulated. An extended Reynolds analogy for Prandtl number unity, Pr=1, is developed, showing the similarity between streamwise velocity and the temperature. The role played by the fluctuation-induced heat flux is similar to momentum flux by the Reynolds shear stress. Inferences from the momentum problem indicate that the intensified heat flux developing well beyond the local turbulent value is attributed to the transport effects of the nonlinear secondary instability, which leads to the formation of 'coherent structures' of the flow. The basic underlying pinions of the non-linear hydrodynamic stability problem are the analyses of J. T. Stuart, which uncovered physical mechanisms of nonlinearities that are crucial to the present developing boundary layers supporting streamwise vortices and their efficient scalar transporting mechanisms. PMID:18495623
The entraining moist boundary layer
NASA Technical Reports Server (NTRS)
Randall, D. A.
1978-01-01
A unified theory of entrainment into the planetary boundary layer is presented. It is assumed that the rates of buoyant and shear production of turbulence kinetic energy can be determined in terms of the entrainment mass flux. An expression is derived from the conservation law for turbulence kinetic energy, which, with the introduction of an empirical parameter, can be used together with a second relation between turbulence kinetic energy and the turbulence velocity scale to obtain the mass entrainment flux. The theory provides descriptions of storage-limited entrainment, buoyancy-limited entrainment into a clear mixed layer, and shallowing. It has been incorporated into a simulation of Day 33 of the Wangara experiment using a simple mixed layer model.
Hairpin vortices in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Eitel-Amor, G.; Örlü, R.; Schlatter, P.; Flores, O.
2015-02-01
The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Reτ ≲ 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of νt) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Reθ > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical
Numerical simulation of supersonic boundary layer transition
NASA Technical Reports Server (NTRS)
Guo, Y.; Adams, N. A.; Sandham, N. D.; Kleiser, L.
1994-01-01
The present contribution reviews some of the recent progress obtained at our group in the direct numerical simulation (DNS) of compressible boundary layer transition. Elements of the different simulation approaches and numerical techniques employed are surveyed. Temporal and spatial simulations, as well as comparisons with results obtained from Parabolized Stability Equations, are discussed. DNS results are given for flat plate boundary layers in the Mach number range 1.6 to 4.5. A temporal DNS at Mach 4.5 has been continued through breakdown all the way to the turbulent stage. In addition results obtained with a recently developed extended temporal DNS approach are presented, which takes into account some nonparallel effects of a growing boundary layer. Results from this approach are quite close to those of spatial DNS, while preserving the efficiency of the temporal DNS.
Stability of an oscillating boundary layer
NASA Technical Reports Server (NTRS)
Levchenko, V. Y.; Solovyev, A. S.
1985-01-01
Levchenko and Solov'ev (1972, 1974) have developed a stability theory for space periodic flows, assuming that the Floquet theory is applicable to partial differential equations. In the present paper, this approach is extended to unsteady periodic flows. A complete unsteady formulation of the stability problem is obtained, and the stability characteristics over an oscillating period are determined from the solution of the problem. Calculations carried out for an oscillating incompressible boundary layer on a plate showed that the boundary layer flow may be regarded as a locally parallel flow.
Stability of an oscillating boundary layer
NASA Astrophysics Data System (ADS)
Levchenko, V. Y.; Solovyev, A. S.
1985-03-01
Levchenko and Solov'ev (1972, 1974) have developed a stability theory for space periodic flows, assuming that the Floquet theory is applicable to partial differential equations. In the present paper, this approach is extended to unsteady periodic flows. A complete unsteady formulation of the stability problem is obtained, and the stability characteristics over an oscillating period are determined from the solution of the problem. Calculations carried out for an oscillating incompressible boundary layer on a plate showed that the boundary layer flow may be regarded as a locally parallel flow.
Boundary-Layer Code For Supersonic Combustion
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.; Walton, J. T.
1994-01-01
HUD is integral computer code based on Spaulding-Chi method for predicting development of boundary layers in laminar, transitional, and turbulent regions of flows on two-dimensional or axisymmetric bodies. Approximates nonequilibrium velocity profiles as well as local surface friction in presence of pressure gradient. Predicts transfer of heat in turbulent boundary layer in presence of high axial presure gradient. Provides for pressure gradients both normal and lateral to surfaces. Also used to estimate requirements for cooling scramjet engines. Because of this capability, HUD program incorporated into several scramjet-cycle-performance-analysis codes, including SCRAM (ARC-12338) and SRGULL (LEW-15093). Written in FORTRAN 77.
Boundary-layer theory for blast waves
NASA Technical Reports Server (NTRS)
Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.
1975-01-01
It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.
Turbulent boundary layer of an airfoil
NASA Technical Reports Server (NTRS)
Fediaevsky, K
1937-01-01
A need has arisen for a new determination of the velocity profiles in the boundary layer. Assuming that the character of the velocity distribution depends to a large extent on the character of the shear distribution across the boundary layer, we shall consider the nature of the shear distribution for a boundary layer with a pressure gradient.
NASA Technical Reports Server (NTRS)
Bretherton, Christopher S.
1998-01-01
The goal of this project was to compare observations of marine and arctic boundary layers with (i) parameterization systems used in climate and weather forecast models, and (ii) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type and thickness as functions of large scale conditions that are predicted by global climate models.
Performance and boundary-layer evaluation of a sonic inlet
NASA Technical Reports Server (NTRS)
Schmidt, J. F.; Ruggeri, R. S.
1976-01-01
Tests were conducted to determine the boundary layer characteristics and aerodynamic performance of a radial vane sonic inlet with a length/diameter ratio of 1 for several vane configurations. The sonic inlet was designed with a slight wavy wall type of diffuser geometry, which permits operation at high inlet Mach numbers (sufficiently high for good noise suppression) without boundary layer flow separation and with good total pressure recovery. A new method for evaluating the turbulent boundary layer was developed to separate the boundary layer from the inviscid core flow, which is characterized by a total pressure variation from hub to tip, and to determine the experimental boundary layer parameters.
Accretion disk boundary layers in cataclysmic variables. 1: Optically thick boundary layers
NASA Technical Reports Server (NTRS)
Popham, Robert; Narayan, Ramesh
1995-01-01
We develop numerical models of accretions disks in cataclysmic variables (CVs), including and emphasizing the boundary layer region where the accretion disk meets the accreting white dwarf. We confine ourselves to solutions where the boundary layer region is vertically optically thick, and find that these solutions share several common features. The angular and radial velocities of the accreting material drop rapidly in a dynamical boundary layer, which has a radial width approximately 1%-3% of the white dwarf radius. The energy dissipated in this region diffuses through the inner part of the disk and is radiated from the disk surface in a thermal boundary layer, which has a radial width comparable to the disk thickness, approximately 5%-15% of the white dwarf radius. We examine the dependence of the boundary layer structure on the mass accretion rate, the white dwarf mass and rotation rate, and the viscosity parameter alpha. We delineate the boundary between optically thick and optically thin boundary layer solutions as a function of these parameters and suggest that by means of a careful comparison with observations it may be possible to estimate alpha in CVs. We derive an expression for the total boundary layer luminosities as a function of the parameters and show that it agrees well with the luminosites of our numerical solutions. Finally, we calcuate simple blackbody continuum spectra of the boundary layer and disk emission for our solutions and compare these to soft X-ray, EUV, and He II emission-line observations of CVs. We show that, through such comparisons, it may be possible to determine the rotation rates of the accreting stars in CVs, and perhaps also the white dwarf masses and the accretion rates. The spectra are quite insensitive to alpha, so the uncertainty in this parameter does not affect such comparisons.
Bursting frequency prediction in turbulent boundary layers
LIOU,WILLIAM W.; FANG,YICHUNG
2000-02-01
The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.
NASA Astrophysics Data System (ADS)
Tang, Qing; Zhu, Yiding; Chen, Xi; Lee, Cunbiao
2015-06-01
Particle image velocimetry, PCB pressure sensors, and planar Rayleigh scattering are combined to study the development of second-mode instability in a Mach 6 flow over a flat plate with two-dimensional roughness. To the best of the authors' knowledge, this is the first time that the instantaneous velocity fields and flow structures of the second-mode instability waves passing through the roughness are shown experimentally. A two-dimensional transverse wall blowing is used to generate second-mode instability in the boundary layer and seeding tracer particles. The two-dimensional roughness is located upstream of the synchronization point between mode S and mode F. The experimental results showed that the amplitude of the second-mode instability will be greatly increased upstream of the roughness. Then it damps and recovers quickly in the vicinity downstream of the roughness. Further downstream, it acts as no-roughness case, which confirms Fong's numerical results [K. D. Fong, X. W. Wang, and X. L. Zhong, "Numerical simulation of roughness effect on the stability of a hypersonic boundary layer," Comput. Fluids 96, 350 (2014)]. It also has been observed that the strength of the amplification and damping effect depends on the height of the roughness.
Flow unsteadiness effects on boundary layers
NASA Technical Reports Server (NTRS)
Murthy, Sreedhara V.
1989-01-01
The development of boundary layers at high subsonic speeds in the presence of either mass flux fluctuations or acoustic disturbances (the two most important parameters in the unsteadiness environment affecting the aerodynamics of a flight vehicle) was investigated. A high quality database for generating detailed information concerning free-stream flow unsteadiness effects on boundary layer growth and transition in high subsonic and transonic speeds is described. The database will be generated with a two-pronged approach: (1) from a detailed review of existing literature on research and wind tunnel calibration database, and (2) from detailed tests in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). Special instrumentation, including hot wire anemometry, the buried wire gage technique, and laser velocimetry were used to obtain skin friction and turbulent shear stress data along the entire boundary layer for various free stream noise levels, turbulence content, and pressure gradients. This database will be useful for improving the correction methodology of applying wind tunnel test data to flight predictions and will be helpful for making improvements in turbulence modeling laws.
Orbiter Boundary Layer Transition Prediction Tool Enhancements
NASA Technical Reports Server (NTRS)
Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.
2010-01-01
Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.
Diverging boundary layers with zero streamwise pressure gradient
NASA Technical Reports Server (NTRS)
Pauley, Wayne R.; Eaton, John K.; Cutler, Andrew D.
1989-01-01
The effects of spanwise divergence on the boundary layer forming between a pair of embedded streamwise vortices with the common flow between them directed toward the wall was studied. Measurements indicate that divergence controls the rate of development of the boundary layer and that large divergence significantly retards boundary layer growth and enhances skin friction. For strongly diverging boundary layers, divergence accounts for nearly all of the local skin friction. Even with divergence, however, the local similarity relationships for two-dimensional boundary layers are satisfactory. Although divergence modifies the mean development of the boundary layer, it does not significantly modify the turbulence structure. In the present experiments with a zero streamwise pressure gradient, it was found that spanwise divergence dit not significantly affect the Reynolds stress and the turbulent triple product distributions.
Goertler instability of compressible boundary layers
NASA Technical Reports Server (NTRS)
El-Hady, N. M.; Verma, A. K.
1984-01-01
The instability of the laminar compressible boundary-layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating, longitudinal-type vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear system of coordinates. The basic approximation of the disturbance equations, which includes the effect of the growth of the boundary layer, is considered and solved numerically.
Turbulent boundary layers with secondary flow
NASA Technical Reports Server (NTRS)
Grushwitz, E.
1984-01-01
An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.
Three-dimensional boundary layers approaching separation
NASA Technical Reports Server (NTRS)
Williams, J. C., III
1976-01-01
The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.
NASA Technical Reports Server (NTRS)
Balakumar, P.; Jeyasingham, Samarasingham
1999-01-01
A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.
Interactions in boundary-layer transition
NASA Technical Reports Server (NTRS)
Smith, Frank T.
1989-01-01
Certain theoretical studies of boundary-layer transition are described, based on high Reynolds numbers and with attention drawn to the various nonlinear interactions and scales present. The article concentrates in particular on theories for which the mean-flow profile is completely altered from its original state. Two- and three-dimensional flow theory and conjectures on turbulent-boundary-layer structures are included. Specific recent findings noted, and in qualitative agreement with experiments, are: nonlinear finite-time break-ups in unsteady interactive boundary layers; strong vortex/wave interactions; and prediction of turbulent boundary-layer displacement- and stress sublayer-thicknesses.
Nonlinear breakdowns in boundary layer transition
NASA Technical Reports Server (NTRS)
Smith, Frank T.
1990-01-01
Theoretical studies of boundary-layer transition are described, based on high Reynolds numbers and with attention drawn to nonlinear interactions, breakdowns and scales. The article notes in particular truly nonlinear theories for which the mean-flow profile is completely altered from its original state. Two- and three-dimensional flow theory and conjectures on turbulent boundary-layer structures are included. Specific recent findings noted, and in qualitative agreement with experiments, are: nonlinear finite-time break-ups in unsteady interactive boundary layers; strong vortex/wave interactions; and prediction of turbulent boundary-layer displacement- and stress sublayer-thicknesses.
Structure of the low latitude boundary layer
NASA Technical Reports Server (NTRS)
Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. O.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.
1980-01-01
Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more.
Methods and results of boundary layer measurements on a glider
NASA Technical Reports Server (NTRS)
Nes, W. V.
1978-01-01
Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.
Shock-wave boundary layer interactions
NASA Technical Reports Server (NTRS)
Delery, J.; Marvin, J. G.; Reshotko, E.
1986-01-01
Presented is a comprehensive, up-to-date review of the shock-wave boundary-layer interaction problem. A detailed physical description of the phenomena for transonic and supersonic speed regimes is given based on experimental observations, correlations, and theoretical concepts. Approaches for solving the problem are then reviewed in depth. Specifically, these include: global methods developed to predict sudden changes in boundary-layer properties; integral or finite-difference methods developed to predict the continuous evolution of a boundary-layer encountering a pressure field induced by a shock wave; coupling methods to predict entire flow fields; analytical methods such as multi-deck techniques; and finite-difference methods for solving the time-dependent Reynolds-averaged Navier-Stokes equations used to predict the development of entire flow fields. Examples are presented to illustrate the status of the various methods and some discussion is devoted to delineating their advantages and shortcomings. Reference citations for the wide variety of subject material are provided for readers interested in further study.
Toward parameterization of the stable boundary layer
NASA Technical Reports Server (NTRS)
Wetzel, P. J.
1982-01-01
Wangara data is used to examine the depth of the nocturnal boundary layer (NBL) and the height to which surface-linked turbulence extends. It is noted that a linearity of virtual temperature profiles has been found to extend up to a significant portion of the NBL, and then diverge where the wind shear rides over the surface-induced turbulence. A series of Richardson numbers are examined for varying degrees of turbulence and the significant cooling region is observed to have greater depth than the depth of the linear relationship layer. A three-layer parameterization of the thermodynamic structure of the NBL is developed so that a system of five equations must be solved when the wind velocity profile and the temperature at the surface are known. A correlation between the bulk Richardson number and the depth of the linear layer was found to be 0.89.
Boundary layers of the earth's outer magnetosphere
NASA Technical Reports Server (NTRS)
Eastman, T. E.; Frank, L. A.
1984-01-01
The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.
Technology developments for laminar boundary layer control on subsonic transport aircraft
NASA Technical Reports Server (NTRS)
Wagner, R. D.; Maddalon, D. V.; Fischer, M. C.
1984-01-01
An overview of laminar flow control (LFC) technology developments is presented, along with a description of NASA's broadened program concerning laminar flow concepts for commercial transports. Topics covered include developments in LFC airfoils, wing surface panels, and leading-edge systems, as well as the effects of high altitude ice particles and insect impacts. It is suggested that the electron beam perforated titanium surface is superior to the Dynapore surface. The Douglas LFC wing design, the Krueger flap, the Lockheed, and the Douglas leading-edge concepts are covered. Future research includes an evaluation of a hybrid LFC concept, which combines LFC suction in the leading-edge region with natural laminar flow over the wing box.
NASA Astrophysics Data System (ADS)
Taylor, Blaine Keith
An experimental study was conducted in Lehigh University's low-speed water channel to examine the effects of a zero, adverse, and favorable pressure gradients on the development of single hairpin vortices. Single hairpin vortices were generated in an initially laminar environment using controlled fluid injection through a streamwise slot at a Re(delta)* = 380, 440, and 570. Behavior of hairpin structures was determined by the use of dye and hydrogen bubble flow visualization techniques. Visualization results indicate that as a single hairpin vortex convects downstream a complicated growth process due to viscous-inviscid interactions and Biot-Savart deformation results in the generation of secondary and subsidiary vortices, eventually yielding a turbulent spot-like structure. The hairpin vortex structures are observed to be strongly affected by the presence of a pressure gradient, undergoing significant spatial growth changes, as well as experiencing significant flow structure modifications. As the hairpin initiation location is moved further into an adverse pressure gradient, the hairpin vortex lifts and rotates farther away from the surface relative to the behavior in a zero pressure gradient. Regions of low and high-velocity fluid near the surface are accentuated within an adverse pressure gradient, which amplifies the low-speed streak formation and breakdown process, accelerating the formation of vortical substructures and ejection of fluid from the surface.
The role of nonlinear critical layers in boundary layer transition
NASA Technical Reports Server (NTRS)
Goldstein, M.E.
1995-01-01
Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.
Cyclone separator having boundary layer turbulence control
Krishna, Coimbatore R.; Milau, Julius S.
1985-01-01
A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.
NASA Technical Reports Server (NTRS)
Hansen, Arthur G.
1958-01-01
Analysis is presented on the possible similarity solutions of the three-dimensional, laminar, incompressible, boundary-layer equations referred to orthogonal, curvilinear coordinate systems. Requirements of the existence of similarity solutions are obtained for the following: flow over developable surface and flow over non-developable surfaces with proportional mainstream velocity components.
Structure of relaminarizing turbulent boundary layers
NASA Astrophysics Data System (ADS)
Ramesh, O.; Patwardhan, Saurabh
2014-11-01
Relaminarization of a turbulent boundary layer in a strongly accelerated flow has received a great attention in recent times. It has been found that such relaminarization is a general and regularly occurring phenomenon in the leading-edge region of a swept wing of an airplane (van Dam et al., 1993). In this work, we investigate the effect of initial Reynolds number on the process of relaminarization in turbulent boundary layers. The experimental and numerical investigation of relaminarizing turbulent boundary layers undergoing same history reveals that the boundary layer with higher initial Reynolds number relaminarizes at a lower pressure gradient value compared to the one with lower Reynolds number. This effect can be explained on the inviscid theory proposed earlier in the literature. Further, various parameter criteria proposed to predict relaminarization, are assessed and the structure of relaminarizing boundary layers is investigated. A mechanism for stabilization of near-wall low speed streaks is proposed.
LDV measurements of turbulent baroclinic boundary layers
Neuwald, P.; Reichenbach, H.; Kuhl, A.L.
1993-07-01
Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.
NASA Astrophysics Data System (ADS)
Kanada, Sachie; Wada, Akiyoshi; Nakano, Masuo; Kato, Teruyuki
2012-02-01
We studied the role of the planetary boundary layer (PBL) in intensity and inner core structure of extremely intense tropical cyclones (TC) using a 2 km mesh nonhydrostatic atmospheric model (NHM2) developed for operational use by the Japan Meteorological Agency. To investigate the effects of the PBL on simulated TCs, we used four PBL schemes: level 2.5 and level 3 Mellor-Yamada-Nakanishi-Niino closure schemes, a nonlocal scheme, and the Deardorff-Blackadar scheme. The numerical results indicated that the subgrid-scale mixing length determined by the PBL scheme plays a critical role in the determination of maximum TC intensity and inner core structure, even when the same expressions are provided for surface roughness lengths and the air-sea momentum and heat transfer coefficients. Different vertical eddy-diffusivity coefficient values derived from the PBL schemes cause differences in the TC intensity, inner core structure, and the relationship between maximum wind speed (MWS) and central pressure (CP). In particular, large vertical eddy diffusivities in lower layers (height <300 m) lead to large heat and water vapor transfers, resulting in extremely intense TCs accompanied by an upright, contracted eyewall structure. We also conducted numerical experiments using a 5 km mesh nonhydrostatic atmospheric model (NHM5) and the same PBL schemes to investigate the effect of horizontal resolution on simulated TCs. The NHM5 was insufficient to accurately represent the MWS or CP of an extremely intense TC, suggesting that NHM2 is required to simulate an extremely intense TC characterized by an upright, contracted eyewall structure.
NASA Astrophysics Data System (ADS)
Ribeiro, F. N. D.; Soares, J.; Oliveira, A. P.; Miranda, R. M.; Chen, F.
2015-12-01
The gradual replacement of natural by built surfaces and the ongoing emission of particulate matter and other pollutants that happens in urban environments, besides degrading the environment, influence the local weather and climate patterns. Urban areas have different albedo, heat and hydraulic capacity and conductivity, roughness, emissivity, and transmissivity, when compared to naturally vegetated areas. This set of characteristics may change the surface energy budget, air temperature, humidity, atmospheric chemical composition, wind direction and velocity, and therefore the planetary boundary layer (PBL) development. The effects of urbanization on the PBL have been studied in many mid-latitude areas, however in the tropical or subtropical areas they are scarce. The MCITY Brazil project developed in 2 cities of Brazil, Sao Paulo (23°32' S) and Rio de Janeiro (latitude 22° 55' S), has provided the necessary data to properly investigate the effects of urbanization in these two cities. The project included a campaign of soundings launched every 3 hours for 10 consecutive days in August (Austral winter) from an airport at the north part of the city of Sao Paulo, that allowed the study of the PBL development, and also the measurements of the components of the energy budget equation by micrometeorological towers. Therefore, the goal of this work is to simulate the development of the PBL in the metropolitan area of Sao Paulo during winter, comparing its characteristics in urbanized and non urbanized sites, in order to assess the impact of urbanization on the development of the PBL in this area. The model used is the Weather Research and Forecast (WRF) with a single layer urban canopy parameterization (SLUCM) and realistic anthropogenic heat diurnal evolution. Preliminary results showed that the model is able to reproduce the PBL development during the campaign, including the passage of a cold-frontal system. The urban PBL reaches greater heights during the day than
NASA Astrophysics Data System (ADS)
Pearson, Juli K.
The growing demand for increased efficiency in turbine engine designs has sparked a growing interest for research of air flow around curved surfaces. The turbine's operating conditions result in material property constraints, especially in the first stage turbine vanes and blades. These turbine vane components experience extreme loading conditions of both high temperature and high turbulence intensities exiting the combustor. The surface of the turbine blades has cylindrical leading edges that promote stabilizing flow accelerations. These convex surfaces can cause a reduced eddy diffusivity across the boundary layer. This thesis reviews measurements of velocity and turbulence intensities taken just shy of the thirty degrees offset from the stagnation line of a two-dimensional cylindrical leading edge under a wide range of turbulence and flow conditions flow conditions. Flow conditions and velocity measurements were gathered with respect to the distance to the surface. The length of the measurements extended from the surface to beyond the boundary layer's edge. The instrumentation used to collect data was a single wire driven by a constant temperature anemometer bridge. The hot wire is specially modified to measure data near the cylindrical leading edges curved surface. The traversing system allowed the acquisition of high-resolution boundary layer data. The traversing system was installed internally to the cylindrical leading edge to reduce probe blockage.
NASA Technical Reports Server (NTRS)
Smith, Tamara A.
1988-01-01
Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1030:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.
NASA Technical Reports Server (NTRS)
Smith, Tamara A.
1988-01-01
Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1039:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.
Unsteadiness of Shock Wave / Boundary Layer Interactions
NASA Astrophysics Data System (ADS)
Clemens, Noel
2009-11-01
Shock wave / boundary layer interactions are an important feature of high-speed flows that occur in a wide range of practical configurations including aircraft control surfaces, inlets, missile base flows, nozzles, and rotating machinery. These interactions are often associated with severe boundary layer separation, which is highly unsteady, and exhibits high fluctuating pressure and heat loads. The unsteady motions are characterized by a wide range of frequencies, including low-frequency motions that are about two orders of magnitude lower than those that characterize the upstream boundary layer. It is these low-frequency motions that are of most interest because they have been the most difficult to explain and model. Despite significant work over the past few decades, the source of the low-frequency motions remains a topic of intense debate. Owing to a flurry of activity over the past decade on this single topic we are close to developing a comprehensive understanding of the low-frequency unsteadiness. For example, recent work in our laboratory and others suggests that the driving mechanism is related to low-frequency fluctuations in the upstream boundary layer. However, several recent studies suggest the dominant mechanism is an intrinsic instability of the separated flow. Here we attempt to reconcile these views by arguing that the low-frequency unsteadiness is driven by both upstream and downstream processes, but the relative importance of each mechanism depends on the strength (or length-scale) of separation. In cases where the separation bubble is relatively small, then the flow is intermittently separated, and there exists a strong correlation between upstream velocity fluctuations and the separation bubble dynamics. It appears that superstructures in the upstream boundary layer can play an important role in driving the unsteadiness for this case. It is not clear, however, if the upstream fluctuations directly move the separation point or indirectly couple
Scaling the heterogeneously heated convective boundary layer
NASA Astrophysics Data System (ADS)
Van Heerwaarden, C.; Mellado, J.; De Lozar, A.
2013-12-01
We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux
Longitudinal vortices imbedded in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Mehta, R. D.; Shabaka, I. M. M.; Shibl, A.; Bradshaw, P.
1983-01-01
The attenuation of skew-induced longitudinal vortices by turbulent or viscous stresses is studied for the case of pure, artificially-generated longitudinal vortices entrained into initially two-dimensional boundary layers in nominally zero pressure gradients. Three types of vortex-boundary interactions are studied in detail: (1) an isolated vortex in a two-dimensional boundary layer; (2) a vortex pair in a turbulent boundary layer with the common flow between the vortices moving away from the surface; (3) a vortex pair in a boundary layer with the common flow moving towards the surface. Detailed mean flow and turbulence measurements are made, showing that the eddy viscosities defined for the different shear-stress components behave in different and complicated ways. Terms in the Reynolds stress transport equations, notably the triple products that effect turbulent diffusion of Reynolds stress, also fail to obey simple rules.
An Evaluation of Boundary Conditions for Modeling Urban Boundary Layers
Calhoun, R.J.; Chan, S.T.; Lee, R.L.
2000-05-18
Numerical modeling of the urban boundary layer is complicated by the need to describe airflow patterns outside of the computational domain. These patterns have an impact on how successfully the simulation is able to model the turbulence associated with the urban boundary layer. This talk presents experiments with the model boundary conditions for simulations that were done to support two Department of Energy observational programs involving the Salt Lake City basin. The Chemical/Biological Non-proliferation Program (CBNP) is concerned with the effects of buildings on influencing dispersion patterns in urban environments. The Vertical Transport and Mixing Program (VTMX) investigating mixing mechanisms in the stable boundary layer and how they are influenced by the channeling caused by drainage flows or by obstacles such as building complexes. Both of these programs are investigating the turbulent mixing caused by building complexes and other urban obstacles.
Planetary Boundary Layer Simulation Using TASS
NASA Technical Reports Server (NTRS)
Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael
1996-01-01
Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.
Calculation methods for compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1976-01-01
Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.
NASA Astrophysics Data System (ADS)
Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles
2014-11-01
A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).
The boundary layer growth in an urban area.
Pino, D; Vilà-Guerau de Arellano, J; Comerón, A; Rocadenbosch, F
2004-12-01
The development and maintenance of the atmospheric boundary layer (ABL) plays a key role in the distribution of atmospheric constituents, especially in a polluted urban area. In particular, the ABL has a direct impact on the concentration and transformation of pollutants. In this work, in order to analyze the different mechanisms which control the boundary layer growth, we have simulated by means of the non-hydrostatic model MM5 several boundary layer observed in the city of Barcelona (Spain). Sensitivity analysis of the modelled ABL is carried out by using various descriptions of the planetary boundary layer (PBL). Direct and continuous measurements of the boundary layer depth taken by a lidar are used to evaluate the results obtained by the model. PMID:15504507
NASA Astrophysics Data System (ADS)
Chechin, Dmitry G.; Lüpkes, Christof
2016-08-01
A new quasi-analytical mixed-layer model is formulated describing the evolution of the convective atmospheric boundary layer (ABL) during cold-air outbreaks (CAO) over polar oceans downstream of the marginal sea-ice zones. The new model is superior to previous ones since it predicts not only temperature and mixed-layer height but also the height-averaged horizontal wind components. Results of the mixed-layer model are compared with dropsonde and aircraft observations carried out during several CAOs over the Fram Strait and also with results of a 3D non-hydrostatic (NH3D) model. It is shown that the mixed-layer model reproduces well the observed ABL height, temperature, low-level baroclinicity and its influence on the ABL wind speed. The mixed-layer model underestimates the observed ABL temperature only by about 10 %, most likely due to the neglect of condensation and subsidence. The comparison of the mixed-layer and NH3D model results shows good agreement with respect to wind speed including the formation of wind-speed maxima close to the ice edge. It is concluded that baroclinicity within the ABL governs the structure of the wind field while the baroclinicity above the ABL is important in reproducing the wind speed. It is shown that the baroclinicity in the ABL is strongest close to the ice edge and slowly decays further downwind. Analytical solutions demonstrate that the e -folding distance of this decay is the same as for the decay of the difference between the surface temperature of open water and of the mixed-layer temperature. This distance characterizing cold-air mass transformation ranges from 450 to 850 km for high-latitude CAOs.
Modelling the low-latitude boundary layer with reconnection entry
NASA Technical Reports Server (NTRS)
Song, P.; Holzer, T. E.; Russell, C. T.; Wang, Z.
1994-01-01
We develop a one-dimensional Low Latitude Boundary Layer (LLBL) model for northward interplanetary magnetic field (IMF). The boundary layer in this model is uniform in the direction normal to the magnetopause, a 'plateau-type' boundary layer. The boundary layer motion is decoupled from the magnetosheath motion and driven by the plasma pressure associated with the incoming solar wind plasma near local noon, which has become entrained on closed field lines as a result of reconnection in the cusp region. Dissipation in the ionosphere at the feet of the boundary layer field lines opposes this motion. There are two physical solutions for the model. In one, the boundary layer reaches a terminal velocity in the tail as the boundary layer plasma effectively joins the solar wind flow. In the other solution, the flow is nearly stopped in the far tail. In combination with other mechanisms, this latter solution may correspond to the case in which the boundary layer plasma participates in magnetospheric convection and returns sunward. The density, velocity, and thickness as functions of distance from local noon are studied, assuming that the magnetopause hasa elliptical shape and the magnetospheric field is dipolar.
NASA Astrophysics Data System (ADS)
Sempreviva, A. M.; Schiano, M. E.; Pensieri, S.; Semedo, A.; Tomé, R.; Bozzano, R.; Borghini, M.; Grasso, F.; Soerensen, L. L.; Teixeira, J.; Transerici, C.
2010-01-01
In the marine environment, complete datasets describing the surface layer and the vertical structure of the Marine Atmospheric Boundary Layer (MABL), through its entire depth, are less frequent than over land, due to the high cost of measuring campaigns. During the seven days of the Ligurian Air-Sea Interaction Experiment (LASIE), organized by the NATO Undersea Research Centre (NURC) in the Mediterranean Sea, extensive in situ and remote sensing measurements were collected from instruments placed on a spar buoy and a ship. Standard surface meteorological measurements were collected by meteorological sensors mounted on the buoy ODAS Italia1 located in the centre of the Gulf of Genoa. The evolution of the height (zi) of the MABL was monitored using radiosondes and a ceilometer on board of the N/O Urania. Here, we present the database and an uncommon case study of the evolution of the vertical structure of the MABL, observed by two independent measuring systems: the ceilometer and radiosondes. Following the changes of surface flow conditions, in a sequence of onshore - offshore - onshore wind direction shifting episodes, during the mid part of the campaign, the overall structure of the MABL changed. Warm and dry air from land advected over a colder sea, induced a stably stratified Internal Boundary Layer (IBL) and a consequent change in the structure of the vertical profiles of potential temperature and relative humidity.
Boundary layer flow visualization for flight testing
NASA Technical Reports Server (NTRS)
Obara, Clifford J.
1986-01-01
Flow visualization is used extensively in flight testing to determine aerodynamic characteristics such as surface flow direction and boundary layer state. Several visualization techniques are available to the aerodynamicist. Two of the most popular are oil flows and sublimating chemicals. Oil is used to visualize boundary layer transition, shock wave location, regions of separated flow, and surface flow direction. Boundary layer transition can also be visualized with sublimating chemicals. A summary of these two techniques is discussed, and the use of sublimating chemicals is examined in some detail. The different modes of boundary layer transition are characterized by different patterns in the sublimating chemical coating. The discussion includes interpretation of these chemical patterns and the temperature and velocity operating limitations of the chemical substances. Information for selection of appropriate chemicals for a desired set of flight conditions is provided.
Dynamic Acoustic Detection of Boundary Layer transition
NASA Technical Reports Server (NTRS)
Grohs, Jonathan R.
1995-01-01
The wind tunnel investigation into the acoustic nature of boundary layer transition using miniature microphones. This research is the groundwork for entry into the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). Due to the extreme environmental conditions of NTF testing, low temperatures and high pressures, traditional boundary layer detection methods are not available. The emphasis of this project and further studies is acoustical sampling of a typical boundary layer and environmental durability of the miniature microphones. The research was conducted with the 14 by 22 Foot Subsonic Tunnel, concurrent with another wind tunnel test. Using the resources of LaRC, a full inquiry into the feasibility of using Knowles Electronics, Inc. EM-3086 microphones to detect the surface boundary layer, under differing conditions, was completed. This report shall discuss the difficulties encountered, product performance and observations, and future research adaptability of this method.
Boundary-layer control for drag reduction
NASA Technical Reports Server (NTRS)
Harvey, William D.
1988-01-01
Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.
Boundary-layer stability and airfoil design
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.
1986-01-01
Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.
NASA Technical Reports Server (NTRS)
Burnel, S.; Gougat, P.; Martin, F.
1981-01-01
The natural instabilities which propagate in the laminar boundary layer of a flat plate composed of intermittent wave trains are described. A spectral analysis determines the frequency range and gives a frequency and the harmonic 2 only if there is a wall deformation. This analysis provides the amplitude modulation spectrum of the instabilities. Plots of the evolution of power spectral density are compared with the numerical results obtained from the resolve of the Orr-Sommerfeld equation, while the harmonic is related to a micro-recirculating flow near the wall deformation.
Dependence of Boundary Layer Mixing On Lateral Boundary Conditions
NASA Astrophysics Data System (ADS)
Straub, D.
Ocean circulation models often show strong mixing in association with lateral bound- ary layers. Such mixing is generally considered to be artifactual rather than real. Fur- thermore, the severity of the problem is boundary condition dependent. For example, an inconsistency between geostrophy and insulating boundary conditions on tempera- ture and salinity cause many modelers to opt for the no slip, rather than slip boundary condtion on the tangential component of momentum. As modellers increasingly move into the eddy revealing regime, biharmonic, rather than harmonic dissipative operators are likely to become more common. Biharmonic operators, however, require specifi- cation of additional boundary conditions. For example, there are several `natural ex- tensions' to each of the slip and no slip conditions. Here, these various possiblities are considered in the context of a simple model. Particular attention is payed to how mixing (and the associated overturning cell) is affected by the choice of boundary condition.
Modeling the summertime Arctic cloudy boundary layer
Curry, J.A.; Pinto, J.O.; McInnes, K.L.
1996-04-01
Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.
NASA Technical Reports Server (NTRS)
Omori, S.; Krebsbach, A.; Gross, K. W.
1972-01-01
Modifications of the turbulent boundary layer (TBL) computer program refer to a more accurate representation of boundary layer edge conditions, internal calculation of the Prandtl number, a changed friction coefficient relationship, and computation of the performance degradation. Important input parameters of the modified TBL program such as wall temperature distribution, Prandtl number, Stanton number, and velocity profile exponent were changed and the individual effects on significant boundary layer parameters, heat transfer, and performance degradation are described.
Convective boundary layer and modeling of dispersion
NASA Astrophysics Data System (ADS)
Ahmed, Nizam Uddin
Looping, bifurcation, and meandering of a plume are generally observed in a convective field. The blobby or puffy concentration patterns associated with these plumes are marked deviations from what is expected from either conventional K-theory or Gaussian distribution formulae. A numerical model was developed for material dispersion in a convective boundary layer from both elevated and ground sources. Mechanistic formulation, rather than parameterization, or statistical behavior of planetary boundary layer (PBL) phenomena, was used as a basis. The dispersion mechanism is considered to be due to mixing between the updraft and the downdraft. This model uses two universal constants, (turbulent entrainment constant, a, and decay constant A) and a mixing scheme directly supported by observations. Researchers examined the dispersion pattern from the elevated and ground sources. For elevated sources, the maximum concentration descends first to the ground level at some distance downwind, and then rises, depending on the inversion height, the mean wind and height at which material is released. The updrafts have a higher velocity than the downdrafts and consequently the downdrafts occupy a larger horizontal area. In some cases the updrafts and downdrafts are comparable and materials are caught equally in the updrafts and downdrafts. The concentration of materials is split into two parts, one moving downward and the other upward. It is shown using the same mechanistic principles, that different convective situations cause different concentration patterns (for example, looping, bifurcating of a plume, and ascending of center line).
Structure of turbulence in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.
1993-01-01
This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.
Lear jet boundary layer/shear layer laser propagation experiments
NASA Technical Reports Server (NTRS)
Gilbert, K.
1980-01-01
Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Eastman, Timothy E.
1995-01-01
theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.
Boundary-layer receptivity and laminar-flow airfoil design
NASA Technical Reports Server (NTRS)
Kerschen, Edward J.
1987-01-01
Boundary-layer receptivity examines the way in which external disturbances generate instability waves in boundary layers. Receptivity theory is complementary to stability theory, which studies the evolution of disturbances that are already present in the boundary layer. A transition prediction method which combines receptivity with linear stability theory would directly account for the influence of free-stream disturbances and also consider the characteristics of the boundary layer upstream of the neutral stability point. The current e sup N transition prediction methods require empirical correlations for the influence of environmental disturbances, and totally ignore the boundary layer characteristics upstream of the neutral stability point. The regions where boundary-layer receptivity occurs can be separated into two classes, one near the leading edges and the other at the downstream points where the boundary layer undergoes rapid streamwise adjustments. Analyses were developed for both types of regions, and parametric studies which examine the relative importance of different mechanisms were carried out. The work presented here has focused on the low Mach number case. Extensions to high subsonic and supersonic conditions are presently underway.
On the theory of laminar boundary layers involving separation
NASA Technical Reports Server (NTRS)
Von Karman, TH; Millikan, C
1934-01-01
This paper presents a mathematical discussion of the laminar boundary layer, which was developed with a view of facilitating the investigation of those boundary layers in particular for which the phenomenon of separation occurs. The treatment starts with a slight modification of the form of the boundary layer equation first published by Von Mises. Two approximate solutions of this equation are found, one of which is exact at the outer edge of the boundary layer while the other is exact at the wall. The final solution is obtained by joining these two solutions at the inflection points of the velocity profiles. The final solution is given in terms of a series of universal functions for a fairly broad class of potential velocity distributions outside of the boundary layer. Detailed calculations of the boundary layer characteristics are worked out for the case in which the potential velocity is a linear function of the distance from the upstream stagnation point. Finally, the complete separation point characteristics are determined for the boundary layer associated with a potential velocity distribution made up of two linear functions of the distance from the stagnation point. It appears that extensions of the detailed calculations to more complex potential flows can be fairly easily carried out by using the explicit formulae given in the paper. (author)
High enthalpy hypersonic boundary layer flow
NASA Technical Reports Server (NTRS)
Yanow, G.
1972-01-01
A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.
Boundary-Layer-Ingesting Inlet Flow Control
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.
2008-01-01
An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.
The Kinematics of Turbulent Boundary Layer Structure
NASA Technical Reports Server (NTRS)
Robinson, Stephen Kern
1991-01-01
The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.
Boundary layer roll circulations during FIRE
NASA Technical Reports Server (NTRS)
Shirer, Hampton N.; Haack, Tracy
1990-01-01
The probable mechanism underlying the development of boundary layer roll circulations are studied using wind and temperature profiles measured by the National Center for Atmospheric Research (NCAR) Electra during the stratocumulus phase of the First ISCCP Regional Experiment (FIRE). The expected, or preferred, roll orientations, horizontal wavelengths, and propagation periods are determined by finding the minimum values of the dynamic and thermodynamic forcing parameters, which here are the eddy Reynolds number (Re) and moist Rayleigh number (Ra sub m). These minimum values depend on the height z sub T of the capping temperature inversion and on the values of the Fourier coefficients of the background height-dependent vector wind profile. As input to our nonlinear spectral model, descent and ascent runs by the Electra provide for initial estimates of the inversion height and the wind profiles. In the first phase of the investigation presented here, a mechanism is said to be a probable contributor to the development of roll circulations within the stratocumulus-topped boundary layer if the modeled roll orientation and wavelengths agree with their observed values. Preliminary results using the 14-coefficient model of Haack-Hirschberg (1988) are discussed for the 7 July 1987 Electra Mission 188-A (Flight 5). This mission was flown across a sharp cloud boundary that was within a LANDSAT/SPOT scene. The stratocumulus deck was relatively solid in the eastern part of the scene, while there was a rapid decrease in cloud cover to scattered cumulus clouds aligned in streets to the west. These cloud streets were oriented nearly parallel to the mean wind direction in the layer, which was approximately 340 degrees. The hypothesis that roll circulations occurred in both the relatively clear and the cloudy regions is investigated using as model input a descent profile obtained in the relatively clear air and an ascent profile obtained in the cloudy air. Initial results for the
A Turbulent Boundary Layer over Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Park, Hyunwook; Kim, John
2015-11-01
Direct numerical simulations of a spatially developing turbulent boundary layer (TBL) developing over superhydrophobic surfaces (SHS) were performed in order to investigate the underlying physics of turbulent flow over SHS. SHS were modeled through the shear-free boundary condition, assuming that the gas-liquid interfaces remained as non-deformable. Pattern-averaged turbulence statistics were examined in order to determine the effects of SHS on turbulence in no-slip and slip regions separately. Near-wall turbulence over the slip region was significantly affected by SHS due to insufficient mean shear required to sustain near-wall turbulence. SHS also indirectly affected near-wall turbulence over the no-slip region. In addition to the effects of the spanwise width of SHS on skin-friction drag reduction reported previously, spatial effects in the streamwise direction were examined. A guideline for optimal design of SHS geometry will be discussed. This research was supported by the ONR (Grant No. N000141410291).
Atmospheric boundary layer over steep surface waves
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Sergeev, Daniil A.; Druzhinin, Oleg; Kandaurov, Alexander A.; Ermakova, Olga S.; Ezhova, Ekaterina V.; Esau, Igor; Zilitinkevich, Sergej
2014-08-01
Turbulent air-sea interactions coupled with the surface wave dynamics remain a challenging problem. The needs to include this kind of interaction into the coupled environmental, weather and climate models motivate the development of a simplified approximation of the complex and strongly nonlinear interaction processes. This study proposes a quasi-linear model of wind-wave coupling. It formulates the approach and derives the model equations. The model is verified through a set of laboratory (direct measurements of an airflow by the particle image velocimetry (PIV) technique) and numerical (a direct numerical simulation (DNS) technique) experiments. The experiments support the central model assumption that the flow velocity field averaged over an ensemble of turbulent fluctuations is smooth and does not demonstrate flow separation from the crests of the waves. The proposed quasi-linear model correctly recovers the measured characteristics of the turbulent boundary layer over the waved water surface.
Chemistry of a polluted cloudy boundary layer
NASA Technical Reports Server (NTRS)
Jacob, Daniel J.; Gottlieb, Elaine W.; Prather, Michael J.
1989-01-01
A one-dimensional photochemical model for cloud-topped boundary layers has been developed to include descriptions of gas- and aqueous-phase chemistry and the radiation field in and below the cloud. The model is applied to the accumulation of pollutants during a wintertime episode with low stratus over Bakersfield, CA. The mechanisms of sulfate production and the balance between the concentrations of acids and bases are examined. It is shown that most of the sulfate production may be explained by the Fe(III)-catalyzed autoxidation of S(IV). Another source of sulfate is the oxidation of SO2 by OH in both the gas and the aqueous phase. It is shown that the sulfate production in the model is controlled by the availability of NH3. It is suggested that this explains the balance observed between total concentration of acids and bases.
Modelling of the Evolving Stable Boundary Layer
NASA Astrophysics Data System (ADS)
Sorbjan, Zbigniew
2014-06-01
A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.
NASA Technical Reports Server (NTRS)
Mack, L. M.
1967-01-01
The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.
NASA Astrophysics Data System (ADS)
Nowotarski, Christopher J.
Nearly all previous numerical simulations of supercell thunderstorms have neglected surface uxes of heat, moisture, and momentum as well as horizontal inhomogeneities in the near-storm environment from resulting dry boundary layer convection. This investigation uses coupled radiation and land-surface schemes within an idealized cloud model to identify the effects of organized boundary layer convection in the form of horizontal convective rolls (HCRs) on the strength, structure, and evolution of simulated supercell thunderstorms. The in uence of HCRs and the importance of their orientation relative to storm motion is tested by comparing simulations with a convective boundary layer (CBL) against those with a horizontally homogeneous base state having the same mean environment. The impact of anvil shading on the CBL is tested by comparing simulations with and without the effects of clouds in the radiative transfer scheme. The results of these simulations indicate that HCRs provide a potentially important source of environmental vertical vorticity in the sheared, near-storm boundary layer. These vorticity perturbations are amplified both beneath the main supercell updraft and along the trailing out ow boundary, leading to the formation of occasionally intense misovortices. HCRs perpendicular to storm motion are found to have a detrimental effect on the strength and persistence of the lowlevel mesocyclone, particularly during its initial development. Though the mean environment is less supportive of low-level rotation with a wind profile conducive to HCRs oriented parallel to storm motion, such HCRs are found to often enhance the low-level mesocyclone circulation. When anvil shading is included, stabilization results in generally weaker low-level mesocyclone circulation, regardless of HCR orientation. Moreover, HCRs diminish in the near-storm environment such that the effects of HCRs on the supercell are mitigated. HCRs are also shown to be a necessary condition for the
Aerosol buffering of marine boundary layer cloudiness
NASA Astrophysics Data System (ADS)
Kazil, J.; Feingold, G.; Wang, H.
2010-12-01
The role of aerosol particles in maintaining a cloudy boundary layer in the remote marine environment is explored. It has previously been shown that precipitation can result in the transition from a closed- to open-cellular state but that the boundary layer cannot maintain this open-cell state without a resupply of particles. Potential sources include wind-driven production of sea salt particles from the ocean, nucleation from the gas phase, and entrainment from the free troposphere. Here we investigate with model simulations how the interplay of cloud properties, aerosol production, and boundary layer dynamics results in aerosol sources acting as a buffer against processes that destabilize cloudiness and the dynamic state of the marine boundary layer. For example, at nighttime, cloud liquid water increases in the absence of solar heating, resulting in increased precipitation, stronger cloud top cooling, accelerated boundary layer turbulence, and faster surface wind speeds. Faster surface wind speeds drive an enhanced flux of sea salt aerosol, at a time when aerosol particles are scavenged more readily by enhanced precipitation. In contrast, absorption of solar radiation during daytime reduces cloud water, decelerates boundary layer turbulence, reduces surface wind speeds, and therefore slows surface emissions. This is compensated by nucleation of small aerosol particles from the gas phase in response to the nigh complete removal of cloud condensation nuclei in precipitating open cell walls. These newly formed particles need to grow to larger sizes before they can serve as cloud condensation nuclei (CCN), but will likely contribute to the CCN population during the nighttime and, together with ocean emissions, buffer the system against precipitation removal.
Boundary layer halogens in coastal Antarctica.
Saiz-Lopez, Alfonso; Mahajan, Anoop S; Salmon, Rhian A; Bauguitte, Stephane J-B; Jones, Anna E; Roscoe, Howard K; Plane, John M C
2007-07-20
Halogens influence the oxidizing capacity of Earth's troposphere, and iodine oxides form ultrafine aerosols, which may have an impact on climate. We report year-round measurements of boundary layer iodine oxide and bromine oxide at the near-coastal site of Halley Station, Antarctica. Surprisingly, both species are present throughout the sunlit period and exhibit similar seasonal cycles and concentrations. The springtime peak of iodine oxide (20 parts per trillion) is the highest concentration recorded anywhere in the atmosphere. These levels of halogens cause substantial ozone depletion, as well as the rapid oxidation of dimethyl sulfide and mercury in the Antarctic boundary layer. PMID:17641195
Improved Boundary Layer Depth Retrievals from MPLNET
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Welton, Ellsworth J.; Molod, Andrea M.; Joseph, Everette
2013-01-01
Continuous lidar observations of the planetary boundary layer (PBL) depth have been made at the Micropulse Lidar Network (MPLNET) site in Greenbelt, MD since April 2001. However, because of issues with the operational PBL depth algorithm, the data is not reliable for determining seasonal and diurnal trends. Therefore, an improved PBL depth algorithm has been developed which uses a combination of the wavelet technique and image processing. The new algorithm is less susceptible to contamination by clouds and residual layers, and in general, produces lower PBL depths. A 2010 comparison shows the operational algorithm overestimates the daily mean PBL depth when compared to the improved algorithm (1.85 and 1.07 km, respectively). The improved MPLNET PBL depths are validated using radiosonde comparisons which suggests the algorithm performs well to determine the depth of a fully developed PBL. A comparison with the Goddard Earth Observing System-version 5 (GEOS-5) model suggests that the model may underestimate the maximum daytime PBL depth by 410 m during the spring and summer. The best agreement between MPLNET and GEOS-5 occurred during the fall and they diered the most in the winter.
A compressible boundary layer algorithm for use with SINDA '85
NASA Technical Reports Server (NTRS)
Sakowski, Barbara; Darling, Douglas; Vandewall, Allan
1992-01-01
It is useful to interface a high-speed-flow solution and SINDA to analyze the thermal behavior of systems that include both conduction and high speed flows. When interfacing a high-speed-flow solution to SINDA, it may be necessary to include the viscous effects in the energy equations. Boundary layer effects of interest include heat transfer coefficients (including convection and viscous dissipation) and friction coefficients. To meet this need, a fast, uncoupled, compressible, two-dimensional, boundary layer algorithm was developed that can model flows with and without separation. This algorithm was used as a subroutine with SINDA. Given the core flow properties and the wall heat flux from SINDA, the boundary layer algorithm returns a wall temperature to SINDA and boundary layer algorithm are iterated until they predict the same wall temperature.
Experimental measurements of unsteady turbulent boundary layers near separation
NASA Technical Reports Server (NTRS)
Simpson, R. L.
1982-01-01
Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.
Large Eddy Simulation of Transitional Boundary Layer
NASA Astrophysics Data System (ADS)
Sayadi, Taraneh; Moin, Parviz
2009-11-01
A sixth order compact finite difference code is employed to investigate compressible Large Eddy Simulation (LES) of subharmonic transition of a spatially developing zero pressure gradient boundary layer, at Ma = 0.2. The computational domain extends from Rex= 10^5, where laminar blowing and suction excites the most unstable fundamental and sub-harmonic modes, to fully turbulent stage at Rex= 10.1x10^5. Numerical sponges are used in the neighborhood of external boundaries to provide non-reflective conditions. Our interest lies in the performance of the dynamic subgrid scale (SGS) model [1] in the transition process. It is observed that in early stages of transition the eddy viscosity is much smaller than the physical viscosity. As a result the amplitudes of selected harmonics are in very good agreement with the experimental data [2]. The model's contribution gradually increases during the last stages of transition process and the dynamic eddy viscosity becomes fully active and dominant in the turbulent region. Consistent with this trend the skin friction coefficient versus Rex diverges from its laminar profile and converges to the turbulent profile after an overshoot. 1. Moin P. et. al. Phys Fluids A, 3(11), 2746-2757, 1991. 2. Kachanov Yu. S. et. al. JFM, 138, 209-247, 1983.
Simulations of Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
Herbert, Thorwald
2007-01-01
For incompressible benchmark flows, we have demonstrated the capability of the parabolized stability equations (PSE) to simulate the transition process in excellent agreement with microscopic experiments and direct Navier-Stokes simulations at modest computational cost. Encouraged by these results, we have developed the PSE methodology of three-dimensional boundary-layers in general curvilinear coordinates for the range from low to hypersonic speeds, and for both linear and nonlinear problems. For given initial and boundary conditions, the approach permits simulations from receptivity through linear and secondary instabilities into the late stages of transition where significant changes in skin friction and heat transfer coefficients occur. We have performed transition simulations for a variety of two- and three-dimensional similarity solutions and for realistic flows over swept wings at subsonic and supersonic speeds, the pressure ans suction side of turbine blades at low and medium turbulence levels, and over a blunt cone at Mach number Ma = 8. We present selected results for different transition mechanisms with emphasis on the late stage of transition and the evolution of wall-shear stress and heat transfer.
NASA Technical Reports Server (NTRS)
Tucker, Maurice
1950-01-01
Numerical solutions of the differential equation obtained from the momentum theorem for the development of a turbulent boundary layer along a thermally insulated surface in two-dimensional and in radial shock-free flow are presented in tabular form for a range of Mach numbers from 0.100 to 10. The solution can be used in a step-wise procedure with any given distribution of favorable pressure gradients and for zero pressure gradients. Solutions are also given for use with moderate adverse pressure gradients. The mean velocity in the boundary layer is approximated by a power-law profile. In view of the stepwise integration methods to be used, the exponent designated the profile shape can be varied along the surface between the integral fraction limits 1/5 and 1/11 through interpolation. Agreement obtained between theoretical and experimental boundary-layer development in a supersonic nozzle at a nominal Mach number of 2 indicates the general validity of the approximations used in the analysis - in particular, the method of extrapolating low-speed skin-friction relations to high Mach number flows. The extrapolation method used assumes that the skin-friction coefficient depend primarily on Reynolds number, provided that the density and the kinematic viscosity are evaluated at surface conditions.
Soot and radiation in combusting boundary layers
Beier, R.A.
1981-12-01
In most fires thermal radiation is the dominant mode of heat transfer. Carbon particles within the fire are responsible for most of this emitted radiation and hence warrant quantification. As a first step toward understanding thermal radiation in full scale fires, an experimental and theoretical study is presented for a laminar combusting boundary layer. Carbon particulate volume fraction profiles and approximate particle size distributions are experimentally determined in both free and forced flow for several hydrocarbon fuels and PMMA (polymethylmethacrylate). A multiwavelength laser transmission technique determines a most probable radius and a total particle concentration which are two unknown parameters in an assumed Gauss size distribution. A sooting region is observed on the fuel rich side of the main reaction zone. For free flow, all the flames are in air, but the free stream ambient oxygen mass fraction is a variable in forced flow. To study the effects of radiation heat transfer, a model is developed for a laminar combusting boundary layer over a pyrolyzing fuel surface. An optically thin approximation simplifies the calculation of the radiant energy flux at the fuel surface. For the free flames in air, the liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v/ approx. 10/sup -7/ for toluene, an aromatic. The PMMA soot volume fractions, f/sub v/ approx. 5 x 10/sup -7/, are approximately the same as the values previously reported for pool fires. Soot volume fraction increases monotonically with ambient oxygen mass fraction in the forced flow flames. For all fuels tested, a most probable radius between 20 nm and 80 nm is obtained which varies only slightly with oxygen mass fraction, streamwise position, or distance normal to the fuel surface. The theoretical analysis yields nine dimensionless parameters, which control the mass flux rate at the pyrolyzing fuel surface.
Calculation methods for compressible turbulent boundary layers, 1976
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1977-01-01
Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.
Nonlinear Transient Growth and Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei
2016-01-01
Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.
Boundary Layer Transition on X-43A
NASA Technical Reports Server (NTRS)
Berry, Scott; Daryabeigi, Kamran; Wurster, Kathryn; Bittner, Robert
2008-01-01
The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X s propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to groundbased data. Pre-flight estimations of boundary layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the pre-flight analysis.
Planetary Boundary Layer from AERI and MPL
Sawyer, Virginia
2014-02-13
The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.
Astrophysical Boundary Layers: A New Picture
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James
2016-04-01
Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.
Boundary layer control device for duct silencers
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)
1993-01-01
A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.
Structure and Growth of the Marine Boundary Layer
NASA Technical Reports Server (NTRS)
Mccumber, M.
1984-01-01
LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.
Large eddy simulation of boundary layer flow under cnoidal waves
NASA Astrophysics Data System (ADS)
Li, Yin-Jun; Chen, Jiang-Bo; Zhou, Ji-Fu; Zhang, Qiang
2016-02-01
Water waves in coastal areas are generally nonlinear, exhibiting asymmetric velocity profiles with different amplitudes of crest and trough. The behaviors of the boundary layer under asymmetric waves are of great significance for sediment transport in natural circumstances. While previous studies have mainly focused on linear or symmetric waves, asymmetric wave-induced flows remain unclear, particularly in the flow regime with high Reynolds numbers. Taking cnoidal wave as a typical example of asymmetric waves, we propose to use an infinite immersed plate oscillating cnoidally in its own plane in quiescent water to simulate asymmetric wave boundary layer. A large eddy simulation approach with Smagorinsky subgrid model is adopted to investigate the flow characteristics of the boundary layer. It is verified that the model well reproduces experimental and theoretical results. Then a series of numerical experiments are carried out to study the boundary layer beneath cnoidal waves from laminar to fully developed turbulent regimes at high Reynolds numbers, larger than ever studied before. Results of velocity profile, wall shear stress, friction coefficient, phase lead between velocity and wall shear stress, and the boundary layer thickness are obtained. The dependencies of these boundary layer properties on the asymmetric degree and Reynolds number are discussed in detail.
INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT
Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...
Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation
Reichenbach, H.; Neuwald, P.; Kuhl, A.L.
1992-11-01
This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.
Modeling turbulent boundary layers in adverse pressure gradients
NASA Technical Reports Server (NTRS)
Belcher, Stephen E.
1991-01-01
Many of the turbulent layers encountered in practical flows develop in adverse pressure gradients; hence, the dynamics of the thickening and possible separation of the boundary layer has important implications for design practices. What are the key physical processes that govern how a turbulent boundary layer responds to an adverse pressure gradient, and how should these processes be modeled? Despite the ubiquity of such flows in engineering and nature, these equations remain largely unanswered. The turbulence closure models presently used to describe these flows commonly use 'wall functions' that have ad hoc corrections for the effects of pressure gradients. There is, therefore, a practical and theoretical need to examine the effects of adverse pressure gradients on wall bounded turbulent flows in order to develop models based on sound physical principle. The evolution of a turbulent boundary layer on a flat wall with an externally imposed pressure gradient is studied.
Application of a Reynolds stress model to separating boundary layers
NASA Technical Reports Server (NTRS)
Ko, Sung HO
1993-01-01
Separating turbulent boundary layers occur in many practical engineering applications. Nonetheless, the physics of separation/reattachment of flows is poorly understood. During the past decade, various turbulence models were proposed and their ability to successfully predict some types of flows was shown. However. prediction of separating/reattaching flows is still a formidable task for model developers. The present study is concerned with the process of separation from a smooth surface. Features of turbulent separating boundary layers that are relevant to modeling include the following: the occurrence of zero wall shear stress, which causes breakdown of the boundary layer approximation; the law of the wall not being satisfied in the mean back flow region; high turbulence levels in the separated region; a significant low-frequency motion in the separation bubble; and the turbulence structure of the separated shear layer being quite different from that of either the mixing layers or the boundary layers. These special characteristics of separating boundary layers make it difficult for simple turbulence models to correctly predict their behavior.
Coupling of magnetopause-boundary layer to the polar ionosphere
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.
1993-01-01
The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.
Boundary Layer Flow Over a Moving Wavy Surface
NASA Astrophysics Data System (ADS)
Hendin, Gali; Toledo, Yaron
2016-04-01
novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.
Particulate plumes in boundary layers with obstacles
NASA Astrophysics Data System (ADS)
Petrosyan, Arakel; Karelsky, Kirill
2013-04-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by non-slip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of big wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations.We deal with describing big field
Hairpin vortices in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Eitel-Amor, G.; Flores, O.; Schlatter, P.
2014-04-01
The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Reτ = 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Reτ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.
Feasibility study of optical boundary layer transition detection method
NASA Technical Reports Server (NTRS)
Azzazy, M.; Modarress, D.; Trolinger, J. D.
1986-01-01
A high sensitivity differential interferometer was developed to locate the region where the boundary layer flow undergoes transition from laminar to turbulent. Two laboratory experimental configurations were used to evaluate the performance of the interferometer: open shear layer, and low speed wind tunnel turbulent spot configuration. In each experiment, small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements were compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of 0.001 the laser wavelength. An attempt to detect boundary layer transition over a flat plate at NASA-Langley Unitary Supersonic Wind Tunnel using the interferometer system was performed. The phase variations during boundary layer transition in the supersonic wind tunnel were beyond the minimum signal-to-noise level of the instrument.
Boundary Layer Theory. Part 1; Laminar Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.
Numerical simulation of boundary-layer transition
NASA Technical Reports Server (NTRS)
Spalart, P. R.
1984-01-01
The transition to turbulence in boundary layers was investigated by direct numerical solution of the nonlinear, three-dimensional, incompressible Navier-Stokes equations in the half-infinite domain over a flat plate. Periodicity was imposed in the streamwise and spanwise directions. A body force was applied to approximate the effect of a nonparallel mean flow. The numerical method was spectra, based on Fourier series and Jacobi polynomials, and used divergence-free basis functions. Extremely rapid convergence was obtained when solving the linear Orr-Sommerfeld equation. The early nonlinear and three-dimensional stages of transition, in a boundary layer disturbed by a vibrating ribbon, were successfully simulated. Excellent qualitative agreement was observed with either experiments or weakly nonlinear theories. In particular, the breakdown pattern was staggered or nonstaggered depending on the disturbance amplitude.
Turbulent shear stresses in compressible boundary layers
NASA Technical Reports Server (NTRS)
Laderman, A. J.; Demetriades, A.
1979-01-01
Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.
Boundary layer transition detection by luminescence imaging
NASA Technical Reports Server (NTRS)
Mclachlan, B. G.; Bell, J. H.; Gallery, J.; Gouterman, M.; Callis, J.
1993-01-01
In recent experiments we have demonstrated the feasibility of a new approach to boundary layer transition detection. This new approach employs the temperature dependence of certain photoluminescent materials in the form of a surface coating or 'paint' to detect the change in heat transfer characteristics that accompany boundary layer transition. The feasibility experiments were conducted for low subsonic to transonic Mach numbers on two-dimensional airfoil and flat plate configurations. Paint derived transition locations were determined and compared to those obtained from Preston pressure probe measurements. Artificial heating of the models was used to obtain transition temperature signatures suitable for the instrumentation available to us. Initial estimates show, however, that passive kinetic heating at high Mach numbers is a promising alternative.
Burst vortex/boundary layer interaction
NASA Technical Reports Server (NTRS)
Bradshaw, P.; Naaseri, M.
1988-01-01
Several configurations of delta wing vortex generator and boundary layer test plate were tested, and two final ones selected. Sample measurements and flow visualizations in the candidate configurations, together with more detailed measurements in one of the two final arrangements, which were selected so that a pure vortex bursts repeatably and then interacts, in as simple fashion as possible, with a simple turbulent boundary layer, are included. It is concluded that different intensities of bursting or breakdown, like different strengths of shock wave or hydraulic jump, can be produced by minor changes of configuration. The weaker breakdowns do not produce flow reversal. The initial measurements were done with a fairly weak, but repeatable, breakdown. Basic measurements on the second final arrangement, with a stronger breakdown, are in progress.
BOREAS AFM-6 Boundary Layer Height Data
NASA Technical Reports Server (NTRS)
Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Shock-boundary-layer interaction in flight
NASA Technical Reports Server (NTRS)
Bertelrud, Arild
1989-01-01
A brief survey is given on the study of transonic shock/boundary layer effects in flight. Then the possibility of alleviating the adverse shock effects through passive shock control is discussed. A Swedish flight experiment on a swept wing attack aircraft is used to demonstrate how it is possible to reduce the extent of separated flow and increase the drag-rise Mach number significantly using a moderate amount of perforation of the surface.
The boundary layer on compressor cascade blades
NASA Technical Reports Server (NTRS)
Deutsch, S.
1981-01-01
Some redesign of the cascade facility was necessary in order to incoporate the requirements of the LDA system into the design. Of particular importance was the intended use of a combination of suction upstream of the blade pack with diverging pack walls, as opposed to blade pack suction alone, for spanwise dimensionality control. An ARL blade was used to redo some tests using this arrangement. Preliminary testing and boundary layer measurements began on the double circular arc blades.
Clidar Mountain Boundary Layer Case Studies
NASA Astrophysics Data System (ADS)
Sharma, Nimmi C. P.; Barnes, John E.
2016-06-01
A CCD Camera Lidar system called the CLidar system images a vertically pointing laser from the side with a spatially separated CCD camera and wide angle optics. The system has been used to investigate case studies of aerosols in mountain boundary layers in in the times following sunset. The aerosols detected by the system demonstrate the wide variation of near ground aerosol structure and capabilities of the CLidar system.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
NASA Technical Reports Server (NTRS)
Williams, E.; Rosenfeld, D.; Madden, N.; Labrada, C.; Gerlach, J.; Atkinson, L.
1999-01-01
Comparisons are made between the cloud condensation nuclei (CCN) concentration in the boundary layer and radar/electrical observations of the vertical development of precipitation and lightning in both the 'break period' and 'monsoon' regimes in tropical Brazil. The initial radar echoes and the maximum flash rates are found to be higher when the CCN concentration is higher, characteristic of the 'break period' conditions. One possible explanation for both observations is the survival of cloud droplets against coalescence and their attainment of the mixed phase region aloft.
Pressure gradient influence in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Reuther, Nico; Kaehler, Christian J.
2015-11-01
Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200
Coupled wake boundary layer model of windfarms
NASA Astrophysics Data System (ADS)
Stevens, Richard; Gayme, Dennice; Meneveau, Charles
2014-11-01
We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.
Particle motion in atmospheric boundary layers of Mars and Earth
NASA Technical Reports Server (NTRS)
White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.
1975-01-01
To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.
Investigation of turbulent processes in magnetospheric boundary layers
NASA Technical Reports Server (NTRS)
Lotko, William; Sonnerup, B. U. O.
1990-01-01
A self-consistent non-evolving two dimensional slab model of a viscous low-latitude boundary layer (LLBL) coupled to the ionosphere was developed by Phan, et al., (1989). Numerical results from the model and possible use of observations to determine the model parameters are discussed. The dynamical model developed by Lotko, et al., (1987) was used by Lotko and Shen (1991) to examine dynamical processes relevant to the LLBL with particular application to post-noon auroral shear layers. Initial results from a magnetohydrodynamic study of flank-side mangetopause boundary configuration are described. Effects of compressibility, scalar viscosity, and electrical resistivity are included in the MHD equations.
Bypass transition and spot nucleation in boundary layers
NASA Astrophysics Data System (ADS)
Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno
2016-08-01
The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.
Nature, theory and modelling of geophysical convective planetary boundary layers
NASA Astrophysics Data System (ADS)
Zilitinkevich, Sergej
2015-04-01
Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in
A simplified Reynolds stress model for unsteady turbulent boundary layers
NASA Technical Reports Server (NTRS)
Fan, Sixin; Lakshminarayana, Budugur
1993-01-01
A simplified Reynolds stress model has been developed for the prediction of unsteady turbulent boundary layers. By assuming that the net transport of Reynolds stresses is locally proportional to the net transport of the turbulent kinetic energy, the time dependent full Reynolds stress model is reduced to a set of ordinary differential equations. These equations contain only time derivatives and can be readily integrated in a time dependent boundary layer or Navier-Stokes code. The turbulent kinetic energy and dissipation rate needed for the model are obtained by solving the k-epsilon equations. This simplified Reynolds stress turbulence model (SRSM) does not use the eddy viscosity assumption, which may not be valid for unsteady turbulent flows. The anisotropy of both the steady and the unsteady turbulent normal stresses can be captured by the SRSM model. Through proper damping of the shear stresses, the present model can be used in the near wall region of turbulent boundary layers. This model has been validated against data for steady and unsteady turbulent boundary layers, including periodic turbulent boundary layers subjected to a mean adverse pressure gradient. For the cases tested, the predicted unsteady velocity and turbulent stress components agree well with the experimental data. Comparison between the predictions from the SRSM model and a k-epsilon model is also presented.
Highly buoyant bent-over plumes in a boundary layer
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Kaye, Nigel B.
2016-04-01
Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.
The inner core thermodynamics of the tropical cyclone boundary layer
NASA Astrophysics Data System (ADS)
Williams, Gabriel J.
2016-02-01
Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ ), specific humidity (q), and reversible equivalent potential temperature (θ _e ) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.
NASA Technical Reports Server (NTRS)
Schobeiri, M. T.; Ozturk, B.; Ashpis, David E.
2007-01-01
The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.
NASA Astrophysics Data System (ADS)
Mullally, D. M.; Lowell, R. P.
2012-12-01
We investigate a means of developing a large-scale hydrothermal experiment at the DUSEL site in the Homestake Mine, South Dakota, or elsewhere, by considering boundary layer flow, heat, and chemical transfer near an internally heated vertical borehole or borehole array emplaced in a water-saturated porous medium with homogeneous permeability. We use scale analysis to determine the relationships between vertical fluid velocity u, boundary layer thickness δ and the Rayleigh number Ra for both a single borehole maintained at constant temperature and a linear array of boreholes maintained at constant heat flux. For a single borehole, u ~ (a/y)Ra and δ ~ yRa^-1/2, whereas for the borehole array u ~(a/y) Ra^-1/3 and δ ~ yRa^-1/3, where y is the borehole height and a is the thermal diffusivity. We find that for y = 100 m, optimum initial permeability lies between ~ 10^-10 -10^-12 m^2 and the optimum heat flux is ~ 60 W/m^2. We also use scale analysis to determine the permeability change resulting from thermoelastic stresses generated by heating the rock near the boreholes and find that these stresses do not significantly impact the permeability so long as the initial porosity is ~ 5%, or the initial crack aspect ratios are less than or equal to 10^-2. Finally, we use scale analysis to investigate mineral dissolution within the boundary layer flow adjacent to the boreholes. Using the above velocity scaling and assuming linear reaction kinetics, and a crustal porosity of 5%, thermodynamic equilibrium may be obtained at the top of a 100 m high borehole provided reaction rate constants are in the range of ~ 10^-7 - 10^-8 s-1.
Effects of forebody geometry on subsonic boundary-layer stability
NASA Technical Reports Server (NTRS)
Dodbele, Simha S.
1990-01-01
As part of an effort to develop computational techniques for design of natural laminar flow fuselages, a computational study was made of the effect of forebody geometry on laminar boundary layer stability on axisymmetric body shapes. The effects of nose radius on the stability of the incompressible laminar boundary layer was computationally investigated using linear stability theory for body length Reynolds numbers representative of small and medium-sized airplanes. The steepness of the pressure gradient and the value of the minimum pressure (both functions of fineness ratio) govern the stability of laminar flow possible on an axisymmetric body at a given Reynolds number. It was found that to keep the laminar boundary layer stable for extended lengths, it is important to have a small nose radius. However, nose shapes with extremely small nose radii produce large pressure peaks at off-design angles of attack and can produce vortices which would adversely affect transition.
Wind Tunnel Simulation of the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Hohman, Tristen; Smits, Alexander; Martinelli, Luigi
2013-11-01
To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique [Counihan 1969] in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. To examine the development and formation of the artificial ABL hotwire and SPIV measurements were taken at various downstream locations with changes in wall roughness, wall type, and vortex generator arrangements. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained for high Reynolds number flat plate turbulent boundary layers [Hultmark et al. 2010]. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.
Wind Tunnel Simulation of the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Hohman, Tristen; Smits, Alexander; Martinelli, Luigi
2012-11-01
To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. We report hotwire measurements in a plane normal to the flow direction at various downstream positions and free stream velocities to examine the development and formation of the artificial ABL. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained by Hultmark in 2010 for high Reynolds number flat plate turbulent boundary layers. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.
Turbulence and diffusion in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Baskett, Ronald L.
1990-05-01
This conference addressed recent theoretical advancements of turbulence and diffusion in the atmospheric boundary layer (ABL). Activities were centered on the technical sessions of the conference. Sessions addressed clouds and the marine atmospheric boundary layer, field experimental techniques, physical and numerical simulations, transport and diffusion, surface properties, general boundary layer, stratified turbulence and turbulence in complex terrain. A jointly authored poster on an evaluation of the ARAC emergency response models with and without on-site sound detection and ranging systems (sodars) which measure vertical wind profiles was presented. Several scientists commented on our work and some requested further information. In addition, there was a workshop on dispersion around groups of buildings and a tour of Riso National Laboratory. Developments relevant to our work included work on dispersion model evaluation, especially using Monte Carlo random walk techniques, parameterizations of mixing height and turbulence from remote sensing systems such as sodars and radars, and measurements and parameterizations of enhanced turbulence around groups of buildings.
Anisotropic Mesh Adaptivity for Turbulent Flows with Boundary Layers
NASA Astrophysics Data System (ADS)
Chitale, Kedar C.
Turbulent flows are found everywhere in nature and are studied, analyzed and simulated using various experimental and numerical tools. For computational analysis, a variety of turbulence models are available and the accuracy of these models in capturing the phenomenon depends largely on the mesh spacings, especially near the walls, in the boundary layer region. Special semi-structured meshes called "mesh boundary layers" are widely used in the CFD community in simulations of turbulent flows, because of their graded and orthogonal layered structure. They provide an efficient way to achieve very fine and highly anisotropic mesh spacings without introducing poorly shaped elements. Since usually the required mesh spacings to accurately resolve the flow are not known a priori to the simulations, an adaptive approach based on a posteriori error indicators is used to achieve an appropriate mesh. In this study, we apply the adaptive meshing techniques to turbulent flows with a focus on boundary layers. We construct a framework to calculate the critical wall normal mesh spacings inside the boundary layers based on the flow physics and the knowledge of the turbulence model. This approach is combined with numerical error indicators to adapt the entire flow region. We illustrate the effectiveness of this hybrid approach by applying it to three aerodynamic flows and studying their superior performance in capturing the flow structures in detail. We also demonstrate the capabilities of the current developments in parallel boundary layer mesh adaptation by applying them to two internal flow problems. We also study the application of adaptive boundary layer meshes to complex geometries like multi element wings. We highlight the advantage of using such techniques for superior wake and tip region resolution by showcasing flow results. We also outline the future direction for the adaptive meshing techniques to be useful to the large scale flow computations.
An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake
NASA Technical Reports Server (NTRS)
Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.
2001-01-01
An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.
Interactive-Boundary-Layer Computations For Oscillating Airfoil
NASA Technical Reports Server (NTRS)
Carr, L. W.; Cebeci, T.; Jang, Hong-Ming
1993-01-01
Interactive-boundary-layer method developed for computations of steady flow, extended under assumption of quasi-steady flow, to computations of evolution of two-dimensional flow about oscillating airfoil under light-dynamic-stall conditions. Represents advance toward ability to compute unsteady flows at even greater angles of attack with solutions of equations normally used for description of boundary-layer flows on airfoils prior to stall. Important in practical studies of flow on blades of helicopter rotors, axial compressors, and turbines.
Numerical Study of Boundary-Layer in Aerodynamics
NASA Technical Reports Server (NTRS)
Shih, Tom I-P.
1997-01-01
The accomplishments made in the following three tasks are described: (1) The first task was to study shock-wave boundary-layer interactions with bleed - this study is relevant to boundary-layer control in external and mixed-compression inlets of supersonic aircraft; (2) The second task was to test RAAKE, a code developed for computing turbulence quantities; and (3) The third task was to compute flow around the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage. The appendices include two reports submitted to AIAA for publication.
Acoustic radar investigations of boundary layer phenomena
NASA Technical Reports Server (NTRS)
Marks, J. R.
1974-01-01
A comparison is made between acoustic radar echoes and conventional meteorological data obtained from the WKY tower, for the purpose of better understanding the relationships between acoustic radar echoes and boundary layer processes. Two thunderstorm outflow cases are presented and compared to both acoustic radar data and Charba's gust front model. The acoustic radar echoes reveal the boundary between warm and cold air and other areas of mixing and strong thermal gradient quite well. The thunderstorm outflow of 27 June 1972 is found to compare with in most respects to Charba's gust front model. The major difference is the complete separation of the head from the main body of cold air, probably caused by erosion of the area behind the head by mixing with the ambient air. Two cases of nocturnal inversions caused by advection of warmer air aloft are presented. It is found that areas of turbulent mixing or strong thermal gradient can be identified quite easily in the acoustic radar record.
Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Kim, Pilbum
Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to
Boundary-Layer-Ingesting Inlet Flow Control
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.
2006-01-01
This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.
Boundary-Layer-Ingesting Inlet Flow Control
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.
2006-01-01
This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.
Symmetries in Turbulent Boundary Layer Flows
NASA Technical Reports Server (NTRS)
Oberlack, M.
1996-01-01
The objective is the development of a new theory which enables the algorithmic computation of all self-similar mean velocity profiles. The theory is based on Liegroup analysis and unifies a large set of self-similar solutions for the mean velocity of stationary parallel turbulent shear flows. The results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the middle of a Couette flow and in the middle of a rotating channel flow, and a new exponential mean velocity profile not previously reported. Experimental results taken in the outer parts of a high Reynolds number flat-plate boundary layer, strongly support the exponential profile. From experimental as well as from DNS data of a turbulent channel flow the algebraic scaling law could be confirmed in both the center region and in the near wall region. In the case of the logarithmic law of the wall, the scaling with the wall distance arises as a result of the analysis and has not been assumed in the derivation. The crucial part of the derivation of all the different mean velocity profiles is to consider the invariance of the equation for the velocity fluctuations at the same time as the invariance of the equation for the velocity product equations. The latter is the dyad product of the velocity fluctuations with the equation for the velocity fluctuations. It has been proven that all the invariant solutions are also consistent with similarity of all velocity moment equations up to any arbitrary order.
Boundary layer measurements using hot-film sensors
NASA Technical Reports Server (NTRS)
Holmes, Harlan K.; Carraway, Debra L.
1986-01-01
Measurements in the aerodynamic boundary layer using heat transfer, hot-film sensors are receiving a significant amount of effort at the Langley Research Center. A description of the basic sensor, the signal conditioning employed, and several manifestations of the sensor are given. Results of a flow reversal sensor development are presented, and future work areas are outlined.
Boundary-layer Transition at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Low, George M
1956-01-01
Recent results of the effects of Mach number, stream turbulence, leading-edge geometry, leading-edge sweep, surface temperature, surface finish, pressure gradient, and angle of attack on boundary-layer transition are summarized. Factors that delay transition are nose blunting, surface cooling, and favorable pressure gradient. Leading-edge sweep and excessive surface roughness tend to promote early transition. The effects of leading-edge blunting on two-dimensional surfaces and surface cooling can be predicted adequately by existing theories, at least in the moderate Mach number range.
Coherent motions in the turbulent boundary layer
NASA Technical Reports Server (NTRS)
Robinson, Stephen K.
1991-01-01
The role of coherent structures in the production and dissipation of turbulence in a boundary layer is characterized, summarizing the results of recent investigations. Coherent motion is defined as a three-dimensional region of flow where at least one fundamental variable exhibits significant correlation with itself or with another variable over a space or time range significantly larger than the smallest local scales of the flow. Sections are then devoted to flow-visualization experiments, statistical analyses, numerical simulation techniques, the history of coherent-structure studies, vortices and vortical structures, conceptual models, and predictive models. Diagrams and graphs are provided.
The minisodar and planetary boundary layer studies
Coulter, R.L.
1996-06-01
The minisodar, in addition to being smaller than conventional sodar, operates at higher frequencies, obtains usable signal returns closer to the surface, and can use smaller range gates. Because the max range is generally limited to the lower 200 m above the surface, the minisodar is not able to interrogate the entire daytime atmospheric Planetary Boundary Layer (PBL); however it can be a very useful tool for understanding the PBL. In concert with other instruments, the minisodar can add significant new insights to our understanding of the PBL. This paper gives examples of past and potential uses of minisodars in such situations.
Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions
NASA Technical Reports Server (NTRS)
Wood, William A.; Erickson, David W.; Greene, Francis A.
2007-01-01
Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.
Direct Numerical Simulation of Supersonic Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Guarini, Stephen; Moser, R.; Shariff, K.; Wray, A.; Merriam, Marshal (Technical Monitor)
1997-01-01
The talk will present some initial results from the direct numerical simulation (DNS) of compressible turbulent boundary layers. We solve numerically the compressible Navier-Stokes equations using a method based on Spalart's transformation for the incompressible turbulent boundary layer. This allows the spatially developing boundary layer to be transformed to a calculation with periodic boundary conditions in the streamwise and spanwise directions. The equations are solved using Fourier expansions in the horizontal directions and B-splines in the wall-normal direction. The first simulation is at Mach 2.5 with a momentum thickness Reynolds number based on wall viscosity of R(sub theta(sup 1)) = 825. We are examining the physics of the compressible boundary layer using turbulence statistics and budget equations. The turbulence statistics include: rms (root mean square) and mean profiles, energy spectra, and two-point correlations. It is found that there are large density gradients which require significantly more resolution than the incompressible case.
Numerical Modeling of the Evolving Stable Boundary Layer
NASA Astrophysics Data System (ADS)
Sorbjan, Z.
2013-12-01
A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Carr, L. W.
1981-01-01
A procedure which solves the governing boundary layer equations within Keller's box method was developed for calculating unsteady laminar flows with flow reversal. This method is extended to turbulent boundary layers with flow reversal. Test cases are used to investigate the proposition that unsteady turbulent boundary layers also remain free of singularities. Turbulent flow calculations are performed. The governing equations for both models are solved. As in laminar flows, the unsteady turbulent boundary layers are free from singularities, but there is a clear indication of rapid thickening of the boundary layer with increasing flow reversal. Predictions of both turbulence models are the same for all practical purposes.
Sound radiation due to boundary layer transition
NASA Technical Reports Server (NTRS)
Wang, Meng
1993-01-01
This report describes progress made to date towards calculations of noise produced by the laminar-turbulence transition process in a low Mach number boundary layer formed on a rigid wall. The primary objectives of the study are to elucidate the physical mechanisms by which acoustic waves are generated, to clarify the roles of the fluctuating Reynolds stress and the viscous stress in the presence of a solid surface, and to determine the relative efficiency as a noise source of the various transition stages. In particular, we will examine the acoustic characteristics and directivity associated with three-dimensional instability waves, the detached high-shear layer, and turbulent spots following a laminar breakdown. Additionally, attention will be paid to the unsteady surface pressures during the transition, which provide a source of flow noise as well as a forcing function for wall vibration in both aeronautical and marine applications.
Lateral straining of turbulent boundary layers. I - Streamline divergence
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.; Joubert, Peter N.
1991-01-01
The effect of prolonged streamline divergence on developing turbulent boundary layers is investigated using an experimental approximation of the source flow over a flat plate to achieve a simple divergence. Results are presented of hot-wire measurements for the planes of symmetry of two layers which had the same (low) Reynolds number and were developed in the presence of the same amount of simple divergence with a maximum divergence parameter of about 0.075 but with different (by a factor of 2) pressure-gradient parameters. It was found that there were two overlapping stages of development. In the initial stage, which covered a distance of about 20 initial boundary-layer thicknesses from the start of divergence, the coupled effects of both the pressure gradient and divergence were present. In the second region, which lasts nearly to the end of the diverging section, the pressure-gradient effects were negligible.
NASA Astrophysics Data System (ADS)
Anderson, Catherine; Brzek, Brian; Castillo, Luciano; Turan, Ozden
2004-11-01
The increasingly adverse pressure gradient boundary layer flow of Samuel and Joubert (1974) is compared with a similar flow from the Victoria University wind tunnel. The flow development in these two flows is described with the Zagarola/Smits (1998) scaling. Moreover, the equilibrium pressure parameter of Castillo/George (2001) is used to further quantify the transition from FPG/ZPG to APG flow behavior, as exhibited by the variation of the pressure coefficient, Cp. Although Cp is insufficient to predict outer flow scaling characteristics, it is important in understanding the nature of the flow development. Reynolds stress data from the Victoria University wind tunnel experiment is also presented to show that an equilibrium behavior in the sense of Townsend, is not demonstrated either with the classical or Castillo/George (2001) scaling.
Turbulent Plasmaspheric Boundary Layer: Observables and Consequences
NASA Astrophysics Data System (ADS)
Mishin, Evgeny
2014-10-01
In situ satellite observations reveal strong lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves in the substorm subauroral geospace at and earthward of the electron plasmasheet boundary. These coincide with subauroral ion drifts/polarization streams (SAID/SAPS) in the plasmasphere and topside ionosphere. SAID/SAPS appear in ~10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasma jet (injection fronts over the plasmasphere. Plasma turbulence leads to the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. As a result, a turbulent boundary layer forms between the inner edge of the electron plasmasheet and plasmasphere. The SAID/SAPS-related VLF emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions inside the plasmasphere. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms. Supported by the Air Force Office of Scientific Research.
Boundary Layer Transition Flight Experiment Overview
NASA Technical Reports Server (NTRS)
Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.
2011-01-01
In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.
Halogen chemistry in the trosopheric boundary layer
NASA Astrophysics Data System (ADS)
Plane, John M. C.; Mahajan, Anoop; Oetjen, Hilke
Iodine and bromine chemistry can affect the lower troposphere in several important ways: (1), change the oxidizing capacity by destroying ozone and affecting the hydroxyl radical concentration; (2), react efficiently with dimethyl sulphide (in the marine boundary layer) and mercury (in the polar regions); and (3), form ultra-fine particles (iodine oxides are highly condensable), which may contribute to cloud condensation nuclei and hence affect climate. This paper will report measurements of IO, BrO, OIO and I2 , made by the technique of differential optical absorption spectroscopy (DOAS), in several contrasting environments: equatorial clean mid-ocean (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar boundary layer (Halley Bay, Antarctica and Hudson Bay, Canada). Both IO and BrO are observed in all these locations at concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. The concentrations of IO in coastal Antarctica, and coastlines rich in certain species of macro-algae, are large enough (> 10 pptv) to promote ultra-fine particle formation. Recently, the first satellite measurements of IO, using the SCIAMACHY instrument on ENVISAT, have been reported by two groups; their results will be compared with the ground-based measurements.
Soot profiles in boundary-layer flames
Beier, R.A.; Pagni, P.J.
1981-12-01
Carbon particulate volume fractions and approximate particle size distributions are measured in a free laminar combusting boundary layer for liquid hydrocarbon fuels (n-heptane, iso-octane, cyclohexane, cyclohexene, toluene) and polymethylmethacrylate (PMMA). A multiwavelength laser transmission technique determines a most probable radius and the total particle concentration, which are two parameters in an assumed form for the size distribution. In the combusting boundary layer, a sooting region exists between the pyrolyzing fuel surface and the flame zone. The liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v approx. 10/sup -5/ for toluene, an aromatic. The PMMA volume fractions, f/sub v/ approx. 5 X 10/sup -7/, are approximately the same as the values previously reported for pool fires. The soot volume fractions increase with height; convection of carbon particles downstream widens the soot region with height. For all fuels tested, the most probable radius is between 20 nm and 50 nm, and it changes only slightly with height and distance from the fuel surface.
X-33 Hypersonic Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II
1999-01-01
Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.
Sound Radiation from a Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Laufer, J.
1961-01-01
If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.
Physical description of boundary-layer transition: Experimental evidence
NASA Technical Reports Server (NTRS)
Saric, William S.
1994-01-01
The problems of understanding the origins of turbulent flow and transition to turbulent flow are the most important unsolved problems of fluid mechanics and aerodynamics. It is well known that the stability, transition, and turbulent characteristics of bounded shear layers are fundamentally different from those of free shear layers. Likewise, the stability, transition, and turbulent characteristics of open systems are fundamentally different from those of closed systems. Because of the influence of indigenous disturbances, surface geometry and roughness, sound, heat transfer, and ablation, it is not possible to develop general prediction schemes for transition location and the nature of turbulent structures in boundary-layer flows. At the present time no mathematical model exists that can predict the transition Reynolds number on a flat plate. The recent progress in this area is encouraging, in that a number of distinct transition mechanisms have been found experimentally. The theoretical work finds them to be amplitude and Reynolds-number dependent. The theory remains rather incomplete with regard to predicting transition. Amplitude and spectral characteristics of the disturbances inside the laminar viscous layer strongly influence which type of transition occurs. The major need in this area is to understand how freestream disturbances are entrained into the boundary layer, i.e., to answer the question of receptivity. We refer receptivity to the mechanism(s) that cause freestream disturbances to enter the boundary layer and create the initial amplitudes for unstable waves.
Rough-wall turbulent boundary layers in the transition regime
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Promode R.
1987-01-01
An experimental investigation of turbulent boundary layers over two-dimensional spanwise groove and three-dimensional sandgrain roughnesses in the transition regime between hydraulically smooth and fully rough conditions is presented. It is found that a self-preserving state can be reached in boundary layers developing over both d-type groove and sandgrain roughnesses, and that the drag of a k-type rough wall can be reduced by lowering the spanwise aspect ratio of the roughness elements. The two roughness Reynolds numbers defining the boundaries of the transition regime of the k-type roughnesses are shown to decrease with increasing roughness-element spanwise aspect ratio, and the upper critical transition Reynolds number is shown to determine the roughness behavior in both the transition and fully rough regime.
SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS
Belyaev, Mikhail A.; Rafikov, Roman R.
2012-06-20
Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.
NASA Technical Reports Server (NTRS)
Chiles, H. R.; Johnson, J. B.
1985-01-01
A hot-film constant-temperature anemometer (CTA) system was flight-tested and evaluated as a candidate sensor for determining boundary-layer transition on high-performance aircraft. The hot-film gage withstood an extreme flow environment characterized by shock waves and high dynamic pressures, although sensitivity to the local total temperature with the CTA indicated the need for some form of temperature compensation. A temperature-compensation scheme was developed and two CTAs were modified and flight-tested on the F-104/Flight Test Fixture (FTF) facility at a variety of Mach numbers and altitudes, ranging from 0.4 to 1.8 and 5,000 to 40,000 ft respectively.
Secondary eyewall formation as a progressive boundary layer response
NASA Astrophysics Data System (ADS)
Abarca, S. F.; Montgomery, M. T.; Bell, M. M.
2012-12-01
The robust observational (satellite based) evidence that secondary eyewalls are common features in major hurricanes contrasts with the scarce in situ observations of the phenomena and its life cycle. This lack of observations has resulted in an incomplete understanding of the dynamics of secondary eyewall formation (SEF). A wide variety of physical processes have been invoked to explain SEF, but only the recently proposed theory of a progressive boundary layer control in SEF has been supported by a variety of full physics mesoscale numerical integrations. The RAINEX field project provided unique observations of the secondary eyewall of Hurricane Rita (2005) both before and during the time Rita exhibited a clear secondary eyewall structure. These observations have contributed to the advancement of the understanding of the secondary eyewall phenomenon. However, in the RAINEX experiment, there was limited data sampling during the development of the secondary wind maxima, thereby precluding a complete observational investigation of the dynamics of SEF. In this presentation we adopt an azimuthally-averaged perspective of the flow dynamics and we test the newly proposed theory of a progressive boundary layer control on SEF. Specifically, we use both RAINEX data as well as data from high resolution, full physics mesoscale numerical simulations to initialize and force an axisymmetric slab boundary layer model with radial diffusion included. The objective is to investigate whether such a reduced boundary layer model can generate secondary wind maxima as a response to environments like those that result in SEF in nature and in full physics simulations.
On the Effects of Surface Roughness on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack
2009-01-01
Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.
Supersonic boundary-layer flow turbulence modeling
NASA Technical Reports Server (NTRS)
Wang, Chi-Rong
1993-01-01
Baldwin-Lomax and kappa-epsilon turbulence models were modified for use in Navier-Stokes numerical computations of Mach 2.9 supersonic turbulent boundary layer flows along compression ramps. The computational results of Reynolds shear stress profiles were compared with experimental data. The Baldwin-Lomax model was modified to account for the Reynolds shear stress amplification within the flow field. A hybrid kappa-epsilon model with viscous sublayer turbulence treatment was constructed to predict the Reynolds shear stress profiles within the entire flow field. These modified turbulence models were effective for the computations of the surface pressure and the skin friction factor variations along an 8 deg ramp surface. The hybrid kappa-epsilon model could improve the predictions of the Reynolds shear stress profile and the skin friction factor near the corner of a 16 deg ramp.
Persistent Structures in the Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Palumbo, Dan; Chabalko, Chris
2005-01-01
Persistent structures in the turbulent boundary layer are located and analyzed. The data are taken from flight experiments on large commercial aircraft. An interval correlation technique is introduced which is able to locate the structures. The Morlet continuous wavelet is shown to not only locates persistent structures but has the added benefit that the pressure data are decomposed in time and frequency. To better understand how power is apportioned among these structures, a discrete Coiflet wavelet is used to decompose the pressure data into orthogonal frequency bands. Results indicate that some structures persist a great deal longer in the TBL than would be expected. These structure contain significant power and may be a primary source of vibration energy in the airframe.
Geometric invariance of compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.
2003-01-01
Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.
Fifty Years of Boundary-Layer Theory and Experiment
NASA Technical Reports Server (NTRS)
Dryden, Hugh L.
1955-01-01
The year 1954 marked the 50th anniversary of the Prandtl boundary-layer theory from which we may date the beginning of man's understanding of the dynamics of real fluids. A backward look at this aspect of the history of the last 50 years may be instructive. This paper (1) attempts to compress the events of those 50 years into a few thousand words, to tell in this brief space the interesting story of the development of a new concept, its slow acceptance and growth, its spread from group to group within its country of origin, and its diffusion to other countries of the world. The original brief paper of Prandtl (2) was presented at the Third International Mathematical Congress at Heidelberg in 1904 and published in the following year. It was an attempt to explain the d'Alembert paradox, namely, that the neglect of the small friction of air in the theory resulted in the prediction of zero resistance to motion. Prandtl set himself the task of computing the motion of a fluid of small friction, so small that its effect could be neglected everywhere except where large velocity differences were present or a cumulative effect of friction occurred This led to the concept of boundary layer, or transition layer, near the wall of a body immersed in a fluid stream in which the velocity rises from zero to the free-stream value. It is interesting that Prandtl used the term Grenzsehicht (boundary layer) only once and the term Ubergangsschicht (transition layer) seven times in the brief article. Later writers also used Reibungsschicht (friction layer), but most writers today use Grenzschicht (boundary layer).
Autumnal Mixed-Phase Cloudy Boundary Layers in the Arctic.
NASA Astrophysics Data System (ADS)
Pinto, James O.
1998-06-01
Two mixed-phase cloudy boundary layer events observed over the Arctic ice pack in autumn are extensively analyzed. The local dynamic and thermodynamic structure of the boundary layers is determined from aircraft measurements including analysis of turbulence, longwave radiative transfer, and cloud microphysics. The large-scale forcing is determined from the National Centers for Environmental Prediction reanalysis fields while mesoscale forcing is estimated from 40-km aircraft box patterns. The two cases differed somewhat in their local static stability, surface characteristics, and large-scale forcing. One case was characterized by a stably stratified cloudy boundary layer over a heterogeneous surface containing numerous open leads. The other case occurred over a fairly homogenous surface of multiyear ice and consisted of a surface-based stable layer surmounted by a low-level jet and a cloud-topped mixed layer. An important large-scale factor in the development of low clouds appears to have been water vapor advection. Low clouds formed irrespective of the sign of the large-scale vertical velocity. Observed flux profiles indicate that both cloudy boundary layers are cooled through turbulent eddies except at cloud top where entrainment of warm moist air aloft occurs. Maximum turbulent kinetic energy occurs near cloud top where turbulent motions are driven by strong radiative cooling (>70 K day1) and in the vicinity of the low-level jet where turbulence is shear induced. The presence of both liquid and ice in the cloud layers appears to be a nearly steady-state feature at temperatures between 13° and 20°C. Results of a simple condensed water budget indicate that these colloidally unstable mixed-phase clouds may be maintained through strong cloud-top radiative cooling. The isobaric cooling rate required to maintain the presence of both liquid and ice in a stratiform cloud is quite sensitive to variations in the highly uncertain concentration of ice-forming nuclei.
Acoustics of laminar boundary layers breakdown
NASA Technical Reports Server (NTRS)
Wang, Meng
1994-01-01
Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.
Halogen chemistry in the marine boundary layer
NASA Astrophysics Data System (ADS)
Plane, J. M. C.; Gomez Martin, J. C.; Kumar, R.; Mahajan, A. S.; Oetjen, H.; Saunders, R. W.
2009-04-01
Important atmospheric sources of iodine include the air-sea exchange of biogenic iodocarbons, and the emission of I2 from macro-algae. The major source of bromine is the release of bromide ions from sea-salt aerosol. The subsequent atmospheric chemistry of these halogens (1), changes the oxidizing capacity of the marine boundary layer by destroying ozone and changing the hydroxyl radical concentration; (2), reacts efficiently with dimethyl sulphide and mercury (in the polar regions); and (3), leads to the formation of ultra-fine particles which may contribute to cloud condensation nuclei (CCN) and hence affect climate. This paper will report observations of IO, BrO, OIO and I2 made by the technique of differential optical absorption spectroscopy, in several contrasting marine environments: the equatorial mid-Atlantic (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar marine boundary layer (Hudson Bay, Canada). Both IO and BrO are observed in all these locations at significant concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. To complement the field campaigns we have also carried out wide-ranging laboratory investigation. A new study of OIO photochemistry shows that absorption in the visible bands between 490 and 630 nm leads to I atom production with a quantum yield of unity, which now means that iodine is a particularly powerful ozone-depleting agent. We have also studied the formation and growth kinetics of iodine oxide nano-particles, and their uptake of water, sulphuric acid and di-carboxylic organic acids, in order to model their growth to a size where they can act as CCN. Their ice-nucleating properties will also be reported.
Some Basic Aspects of Magnetohydrodynamic Boundary-Layer Flows
NASA Technical Reports Server (NTRS)
Hess, Robert V.
1959-01-01
An appraisal is made of existing solutions of magnetohydrodynamic boundary-layer equations for stagnation flow and flat-plate flow, and some new solutions are given. Since an exact solution of the equations of magnetohydrodynamics requires complicated simultaneous treatment of the equations of fluid flow and of electromagnetism, certain simplifying assumptions are generally introduced. The full implications of these assumptions have not been brought out properly in several recent papers. It is shown in the present report that for the particular law of deformation which the magnetic lines are assumed to follow in these papers a magnet situated inside the missile nose would not be able to take up any drag forces; to do so it would have to be placed in the flow away from the nose. It is also shown that for the assumption that potential flow is maintained outside the boundary layer, the deformation of the magnetic lines is restricted to small values. The literature contains serious disagreements with regard to reductions in heat-transfer rates due to magnetic action at the nose of a missile, and these disagreements are shown to be mainly due to different interpretations of reentry conditions rather than more complicated effects. In the present paper the magnetohydrodynamic boundary-layer equation is also expressed in a simple form that is especially convenient for physical interpretation. This is done by adapting methods to magnetic forces which in the past have been used for forces due to gravitational or centrifugal action. The simplified approach is used to develop some new solutions of boundary-layer flow and to reinterpret certain solutions existing in the literature. An asymptotic boundary-layer solution representing a fixed velocity profile and shear is found. Special emphasis is put on estimating skin friction and heat-transfer rates.
Boundary Layer Dynamical Structure During Secondary Eyewall Formation
NASA Astrophysics Data System (ADS)
Abarca, S. F.; Montgomery, M. T.; McWilliams, J. C.
2014-12-01
Secondary eyewall formation (SEF) is widely recognized as an important research problem in the dynamics of mature tropical cyclones. It has been shown that the development of the wind maxima in SEF occurs within the boundary layer and that it follows a chain of events initiated by a substantial radial expansion of the tangential wind field. In this context, there is not yet a consensus on the phenomenon's essential physics. It has been proposed that the boundary-layer dynamics of a maturing hurricane vortex is an important controlling element in SEF. However, recent literature also argues that hurricane boundary layers and the related coupling with the interior flow can be described through an Ekman-like balance and that shock-like structures are relevant in the swirling boundary layer of the inner core of mature storms. We analyze the radial and vertical structure of the specific forces and accelerations in in the boundary layer in a mature hurricane that includes a canonical eyewall replacement cycle. The case occurred in a mesoscale, convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation has been studied extensively in the literature. We find that momentum advection is almost everywhere important (some of it is associated with asymmetric eddies). We discuss the implication of our findings on the proposed importance of Ekman-like balance dynamics during SEF. Finally, our analysis does not support the recently proposed idea that the radial advection of radial momentum, and shock-like structures, are closely related to the supergradient wind phenomena observed during SEF.
Acoustic sounding in the planetary boundary layer
NASA Technical Reports Server (NTRS)
Kelly, E. H.
1974-01-01
Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.
Behaviour of Atmospheric Boundary Layer Height at Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Pietroni, I.; Argentini, S.
2009-09-01
The Antarctic Atmospheric Boundary Layer presents characteristics which are substantially different from the mid-latitudes ABLs. On the Antarctic plateau two different extreme situations are observed. During the summer a mixing height develops during the warmer hours of the day although the sensible heat flux is reduced compared to that at mid-latitudes. During the winter a long lived stable boundary layer is continuously present, the residual layer is never observed, consequently the inversion layer is connected at the free atmosphere. To understand the stable ABL process the STABLEDC (Study of the STAble Boundary Layer Environmental at Dome C) experimental field was held at Concordia, the French Italian plateau station at Dome C, during 2005. In the same period the RMO (Routine Measurements Observations) started. The data included turbulence data at the surface, temperature profiles by a microwave profiler (MTP-5P), a mini-sodar and radio-soundings. In this work we will show the results of a comparison of the ABL height at Concordia (3233 m a.s.l) during the summer and the winter using direct measurements and parameterization. The winter ABL height was estimated directly using experimental data (radio-soundings and radiometer temperature and wind velocity profiles) and different methods proposed in literature. The stable ABL height was also estimated using the formulation proposed by Zilitinkevich et al. (2007) for the long-lived stable boundary layer. The correlation of ABL height with the temperature and wind speed is also shown. The summer mixing height was instead estimated by mini-sodar data and compared with the height given by the model suggested by Batchvarova and Gryning (1991) which use as input the turbulence data.
Works on theory of flapping wing. [considering boundary layer
NASA Technical Reports Server (NTRS)
Golubev, V. V.
1980-01-01
It is shown mathematically that taking account of the boundary layer is the only way to develop a theory of flapping wings without violating the basic observations and mathematics of hydromechanics. A theory of thrust generation by flapping wings can be developed if the conventional downstream velocity discontinuity surface is replaced with the observed Karman type vortex streets behind a flapping wing. Experiments show that the direction of such vortices is the reverse of that of conventional Karman streets. The streets form by breakdown of the boundary layer. Detailed analysis of the movements of certain birds and insects during flight 'in place' is fully consistent with this theory of the lift, thrust and drag of flapping wings. Further directions for research into flight with flapping wings are indicated.
Boundary-layer turbulence as a kangaroo process
NASA Astrophysics Data System (ADS)
Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.
1995-09-01
A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent ɛ (with ɛ-->∞ in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ~=0.58.
BLSTA: A boundary layer code for stability analysis
NASA Technical Reports Server (NTRS)
Wie, Yong-Sun
1992-01-01
A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.
Study of boundary-layer transition using transonic-cone preston tube data
NASA Technical Reports Server (NTRS)
Reed, T. D.; Moretti, P. M.
1980-01-01
The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.
Boundary Layer Transition Flight Experiment Implementation on OV-103
NASA Technical Reports Server (NTRS)
Spanos, Theodoros A.
2009-01-01
This slide presentation reviews the boundary layer transition experiment flown on Discovery. The purpose of the boundary layer transition flight experiment was to obtain hypersonic aero-thermodynamic data for the purpose of better understanding the flow transition from a laminar to turbulent boundary layer using a known height protuberance. The preparation of the shuttle is described, with the various groups responsibilities outlined. Views of the shuttle in flight with the experimental results are shown.
Vortex/boundary-layer interactions: Data report, volume 1
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Bradshaw, P.
1987-01-01
This report summarizes the work done under NASA Grant NAGw-581, Vortex/Boundary Layer Interactions. The experimental methods are discussed in detail and numerical results are presented, but are not fully interpreted. This report should be useful to anyone who wishes to make further use of the data (available on floppy disc or magnetic tape) for the development of turbulence models or the validation of predictive methods. Journal papers are in course of preparation.
Trends in hypersonic boundary layer stability and transition research
NASA Astrophysics Data System (ADS)
Kimmel, Roger L.
1999-01-01
Boundary layer transition impacts hypersonic vehicle performance more profoundly than low speed vehicle performance. Accurate prediction is difficult due to the sensitivity of transition to initial conditions. Computational tools continue to improve, but their use is limited largely to specialists. Ground testing continues to be a valuable tool, but new facility development is slow. Emphasis on transition control methods will increase as our understanding of the physics of hypersonic transition improves.
Boundary Layer Transition Experiments in Support of the Hypersonics Program
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Chen, Fang-Jenq; Wilder, Michael C.; Reda, Daniel C.
2007-01-01
Two experimental boundary layer transition studies in support of fundamental hypersonics research are reviewed. The two studies are the HyBoLT flight experiment and a new ballistic range effort. Details are provided of the objectives and approach associated with each experimental program. The establishment of experimental databases from ground and flight are to provide better understanding of high-speed flows and data to validate and guide the development of simulation tools.
Determination of general relations for the behavior of turbulent boundary layers
NASA Technical Reports Server (NTRS)
Von Doenhoff, Albert E; Tetervin, Neal
1943-01-01
An analysis has been made of a considerable amount of data for turbulent boundary layers along wings and bodies of various shapes in order to determine the fundamental variables that control the development of turbulent boundary layers. It was found that the type of velocity distribution in the boundary layer could be expressed in terms of a single parameter. This parameter was chosen as the ratio of the displacement thickness to the momentum thickness of the boundary layer. The variables that control the development of the turbulent boundary layer apparently are: (1) the ratio of the nondimensional pressure gradient, expressed in terms of the local dynamic pressure outside the boundary layer and boundary-layer thickness, to the local skin-friction coefficient and (2) the shape of the boundary layer. An empirical equation has been developed in terms of these variables that, when used with the momentum equation and the skin-friction relation, makes it possible to trace the development of the turbulent boundary layer to the separation point.
Direct numerical simulation of supersonic turbulent boundary layers
NASA Astrophysics Data System (ADS)
Guarini, Stephen
The objectives of this research were to develop a method by which the spatially developing compressible turbulent boundary layer could be simulated using a temporally developing numerical simulation and to study the physics of the compressible turbulent boundary layer. We take advantage of the technique developed by Spalart (1987, 1988) for the incompressible case. In this technique, it is recognized that the boundary layer exhibits slow growth in the streamwise direction, so the turbulence can be treated as approximately homogeneous in this direction. The slow growth is accounted for with a coordinate transformation and a multiple scale analysis. The result is a modified system of equations (Navier-Stokes plus some extra terms, which we call "slow growth terms") that are homogeneous in both the streamwise and spanwise directions and represent the state of the boundary layer at a given streamwise location (or, equivalently, a given thickness). The compressible Navier-Stokes equations are solved using a mixed Fourier and B-spline "spectral" method. The dependent variables are expanded in terms of a Fourier representation in the horizontal directions and a B-spline representation in the wall-normal direction. In the wall-normal direction non-reflecting boundary conditions are used at the freestream boundary, and zero-heat-flux no-slip boundary conditions are used at the wall. This combination of splines and Fourier methods produces a very accurate numerical method. Mixed implicit/explicit time discretization is used. Results are presented for a case with a Mach number of 2.5, and a Reynolds number, based on momentum integral thickness and wall viscosity, of Rsb{thetasp'} = 840. The results show that the van Driest transformed velocity satisfies the incompressible scalings and a narrow logarithmic region is obtained. The results for the turbulence intensities compare well with the incompressible simulations of Spalart. Pressure fluctuations are found to be higher than
Whiteman, C.D.; Alzheimer, J.M.; Anderson, G.A.; Shaw, W.J.
1993-03-01
A stabilized platform has been developed to carry broadband short-wave and long-wave radiometric sensors on the tether line of a small tethered balloon that ascends through atmospheric depths of up to 1.5 km to obtain vertical profiles of radiative flux and flux divergence for evaluating atmospheric radiative transfer models. The Sky Platform was designed to keep the radiometers level despite unpredictable movements of the balloon and tether line occasioned by turbulence and wind shear. The automatic control loop drives motors, gears, and pulleys located on two of the vertices of the triangular frame to climb the harness lines to keep the platform level. Radiometric sensors, an electronic compass, and an on-board data acquisition system make up the remainder of the Sky Platform. Because knowledge of the dynamic response of the tether line-platform system is essential to properly close the automatic control loop on the Sky Platform, a Motion Sensing Platform (MSP) was developed to fly in place of the Sky Platform on the tether line to characterize the Sky Platform`s operating environment. This unstabilized platform uses an array of nine solid-state linear accelerometers to measure the lateral and angular accelerations, velocities, and displacements that the Sky Platform will experience. This paper presents field performance tests of the Sky and Motion Sensing Platforms, as conducted at Richland, Washington, on February 17, 1993. The tests were performed primarily to characterize the stabilization system on the Sky Platform. Test flights were performed on this cold winter day from 1400 to 1800 Pacific Standard Time (PST). During this period, temperature profiles were near the dry adiabatic lapse rate. Flights were made through a jet wind speed profile having peak wind speeds of 7 m/s at a height of 100 m AGL. Wind directions were from the northwest. All flights were performed as continuous ascents, rather than ascending in discrete steps with halts at set altitudes.
Whiteman, C.D.; Alzheimer, J.M.; Anderson, G.A.; Shaw, W.J.
1993-03-01
A stabilized platform has been developed to carry broadband short-wave and long-wave radiometric sensors on the tether line of a small tethered balloon that ascends through atmospheric depths of up to 1.5 km to obtain vertical profiles of radiative flux and flux divergence for evaluating atmospheric radiative transfer models. The Sky Platform was designed to keep the radiometers level despite unpredictable movements of the balloon and tether line occasioned by turbulence and wind shear. The automatic control loop drives motors, gears, and pulleys located on two of the vertices of the triangular frame to climb the harness lines to keep the platform level. Radiometric sensors, an electronic compass, and an on-board data acquisition system make up the remainder of the Sky Platform. Because knowledge of the dynamic response of the tether line-platform system is essential to properly close the automatic control loop on the Sky Platform, a Motion Sensing Platform (MSP) was developed to fly in place of the Sky Platform on the tether line to characterize the Sky Platform's operating environment. This unstabilized platform uses an array of nine solid-state linear accelerometers to measure the lateral and angular accelerations, velocities, and displacements that the Sky Platform will experience. This paper presents field performance tests of the Sky and Motion Sensing Platforms, as conducted at Richland, Washington, on February 17, 1993. The tests were performed primarily to characterize the stabilization system on the Sky Platform. Test flights were performed on this cold winter day from 1400 to 1800 Pacific Standard Time (PST). During this period, temperature profiles were near the dry adiabatic lapse rate. Flights were made through a jet wind speed profile having peak wind speeds of 7 m/s at a height of 100 m AGL. Wind directions were from the northwest. All flights were performed as continuous ascents, rather than ascending in discrete steps with halts at set altitudes.
Mixing length in low Reynolds number compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Holley, B. B.
1975-01-01
The paper studies the effect of low Reynolds number in high-speed turbulent boundary layers on variations of mixing length. Boundary layers downstream of natural transition on plates, cones and cylinders, and boundary layers on nozzle walls without laminarization-retransition are considered. The problem of whether low Reynolds number amplification of shear stress is a result of transitional flow structure is considered. It is concluded that a knowledge of low Reynolds number boundary layer transition may be relevant to the design of high-speed vehicles.
Incorporation of the planetary boundary layer in atmospheric models
NASA Technical Reports Server (NTRS)
Moeng, Chin-Hoh; Wyngaard, John; Pielke, Roger; Krueger, Steve
1993-01-01
The topics discussed include the following: perspectives on planetary boundary layer (PBL) measurements; current problems of PBL parameterization in mesoscale models; and convective cloud-PBL interactions.
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.
1991-01-01
An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.
Air Flow in a Separating Laminar Boundary Layer
NASA Technical Reports Server (NTRS)
Schubauer, G B
1936-01-01
The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.
Transition experiments in a boundary layer with embedded streamwise vortices
NASA Astrophysics Data System (ADS)
Bakchinov, A. A.; Grek, G. R.; Klingmann, B. G. B.; Kozlov, V. V.
1995-04-01
The stability of a flat plate boundary layer modulated by stationary streamwise vortices was studied experimentally in the T-324 low speed wind tunnel in Novosibirsk. Vortices were generated inside the boundary layer by means of roughness elements arranged in a regular array along the spanwise (z-) direction. Transition is not caused directly by these structures, but by the growth of small amplitude traveling waves riding on top of the steady vortices. This situation is analogous to the transition process in Görtler and cross-flows. The waves were found to amplify up to a stage where higher harmonics are generated, leading to turbulent breakdown and disintegration of the spanwise boundary layer structure. For strong modulations, the observed instability is quite powerful, and can be excited ``naturally'' by small uncontrollable background disturbances. Controlled oscillations were then introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave characteristics. The instability seems to be associated with the spanwise gradients of the mean flow, ∂U/∂z, and at all z-positions, the maximum wave amplitude was found at a wall-normal position where the mean velocity is equal to the phase velocity of the wave, U(y)=c, i.e., at the local critical layer. Unstable waves were observed at frequencies well above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary layer. Excitation at lower frequencies and milder basic flow modulations showed that TS-type waves may also develop. The relation between TS-type waves and the observed high-frequency instability is discussed in the light of previous authors' findings.
Acoustic Radiation From a Mach 14 Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2016-01-01
Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.
Effect of sound on boundary layer stability
NASA Astrophysics Data System (ADS)
Saric, William S.; Spencer, Shelly Anne
1993-06-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.
The boundary layer on compressor cascade blades
NASA Technical Reports Server (NTRS)
Deutsch, S.; Zierke, W. C.
1986-01-01
The purpose of NASA Research Grant NSG-3264 is to characterize the flowfield about an airfoil in a cascade at chord Reynolds number(R sub C)near 5 x 10 to the 5th power. The program is experimental and combines laser Doppler velocimeter (LDV) measurements with flow visualization techniques in order to obtain detailed flow data, e.g., boundary layer profiles, points of separation and the transition zone, on a cascade of highly-loaded compressor blades. The information provided by this study is to serve as benchmark data for the evaluation of current and future compressor cascade predictive models, in this way aiding in the compressor design process. Summarized is the research activity for the period 1 December 1985 through 1 June 1986. Progress made from 1 June 1979 through 1 December 1985 is presented. Detailed measurements have been completed at the initial cascade angle of 53 deg. (incidence angle 5 degrees). A three part study, based on that data, has been accepted as part of the 1986 Gas Turbine Conference and will be submitted for subsequent journal publication. Also presented are data for a second cascade angle of 45 deg (an incidence angle of 3 degrees).
A boundary layer model for magnetospheric substorms
NASA Technical Reports Server (NTRS)
Rostoker, Gordon; Eastman, Tim
1987-01-01
An alternative framework for understanding magnetospheric substorm activity is presented. It is argued that observations of magnetic field and plasma flow variations in the magnetotail can be explained in terms of the passage of the plasma sheet boundary layer over the satellite detecting the tail signatures. It is shown that field-aligned currents and particle acceleration processes on magnetic field lines threading the ionospheric Harang discontinuity lead to the distinctive particle and field signatures observed in the magnetotail during substorms. It is demonstrated that edge effects of field-aligned currents associated with the westward traveling surge can lead to the negative B(z) perturbations observed in the tail that are presently attributed to observations made on the anti-earthward side of a near-earth neutral line. Finally, it is shown that the model can provide a physical explanation of both the driven system and the loading-unloading system whose combined effects provide the observed substorm perturbation pattern in the magnetosphere and ionosphere.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S. (Principal Investigator); Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S.; Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.
Stereoscopic PIV measurement of boundary layer affected by DBD actuator
NASA Astrophysics Data System (ADS)
Procházka, Pavel; Uruba, Václav
2016-03-01
The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.). Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.
Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.
2016-01-01
Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.
Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Morrill-Winter, C.; Klewicki, J.; Baidya, R.; Marusic, I.
2015-12-01
Multi-element hot-wire anemometry was used to measure spanwise vorticity fluctuations in turbulent boundary layers. Smooth wall boundary layer profiles, with very good spatial and temporal resolution, were acquired over a Kármán number range of 2000-12,700 at the Melbourne Wind Tunnel at the University of Melbourne and the University of New Hampshire's Flow Physics Facility. A custom hot-wire probe was necessary to simultaneously obtain velocity and spanwise vorticity measurements centered at a fixed point in space. A custom calibration/processing scheme was developed to utilize single-wall-parallel wires to optimize the accuracy of the measured wall-normal velocity fluctuations derived from the sensor's ×-array.
Clues and modelling for missing boundary layer in cataclysmic variables
Huang, M.; Sion, E.M.; Sparks, W.M.
1996-12-31
Recently, it has become observationally evident that during a dwarf nova (DN) outburst, a significant portion of the gravitational energy accreted onto the white dwarf (WD) may not be radiated away instantly from a narrow boundary layer as predicted by the standard disk theory. Instead, it may be stored in the WD through various mechanisms and the radiative area may be much larger; thus the long-puzzling {ital missing boundary layer} may be accounted for when the response of the WD to the accretion is considered. The results from our group and collaborators on this aspect are outlined in the first part. A progress report on the development, of a new numerical model forms the second.
Leading-edge effects on boundary-layer receptivity
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.; Kerschen, Edward J.
1990-01-01
Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.
NASA Astrophysics Data System (ADS)
Yazid, A. W. M.; Che Sidik, N. A.; Mansor, S.; Rahman, A. B. Abdul; Ishak, I. S.; Dahalan, N.
2015-12-01
An experimental investigation was conducted in an effort to artificially thicken the boundary layer which has the characteristics of an urban boundary layer in a short wind tunnel. Turbulence grid was developed and then systematically tested to quantitatively investigate the formation of a thick and uniform boundary layer over location of interest. Investigated parameters were the mean velocity and turbulence intensity to assess the similarity of the simulated boundary layer. The measurement analysis shows that the current design provides the desired boundary layer profile under fully rough conditions at just 1.5 m downstream of the test section inlet, which allows for the building models to be placed over turntable. However, the roughness length value is high which reflects the determination of the model scale while the turbulence intensities levels is low which is not desirable characteristics of an urban boundary layer. The results presented here may facilitate future improvements in the design of the turbulence grid and measurement techniques.
Aero-optic characteristics of turbulent compressible boundary layers
NASA Astrophysics Data System (ADS)
Wyckham, Christopher Mark
This dissertation presents a detailed study of the aberrating effect on a plane incident wavefront of light due to its passage through a turbulent, compressible boundary layer. This aberration has important implications for the design of airborne optical systems for imaging, communications, or projection. A Shack-Hartmann sensor and associated data analysis software suite were developed and validated for the high resolution measurement of two dimensional wavefront phase. Significant improvements in wavefront reconstruction were achieved by using the calculated centroid uncertainties to weight the least squares fitting of the phase surface. Using the Shack-Hartmann sensor in a high speed, one dimensional mode, individual structures are observed propagating past the sensor in a transonic flow. The uncertainties on the reconstructed phase in this mode are very high, however. In a two dimensional mode the uncertainties are greatly reduced and a large database of individual, uncorrelated wavefronts was collected, allowing statistics to be calculated such as the rms wavefront height and the Strehl ratio. Data were collected at transonic and hypersonic speeds and with no injection or with helium or nitrogen injection into the boundary layer. In all cases except the hypersonic helium injection case, the time averaged wavefronts reveal no features in the boundary layer which are steady in time. In the hypersonic helium injection case, however, steady, longitudinal features are observed, in agreement with previous observations. When helium is injected for window cooling at high speeds, the results show there may be an opportunity to reduce the resulting distortion by taking advantage of the stable structures that form in the boundary layer by using a low bandwidth adaptive optic system. A new scaling argument is also presented to allow the prediction and comparison of wavefront data for different compressible boundary layer flow conditions. The proposed formula gives
Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS
Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng; Sun, Ruiyu N.; Han, J.
2014-09-23
The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.
Acoustic explorations of the upper ocean boundary layer
NASA Astrophysics Data System (ADS)
Vagle, Svein
2005-04-01
The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.
Vortex Generator Induced Flow in a High Re Boundary Layer
NASA Astrophysics Data System (ADS)
Velte, C. M.; Braud, C.; Coudert, S.; Foucaut, J.-M.
2014-12-01
Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow development was examined. Three VG geometries were investigated: rectangular, triangular and cambered. The various VG geometries tested are seen to produce different impacts on the boundary layer flow. Helical symmetry of the generated vortices is confirmed for all investigated VG geometries in this high Reynolds number boundary layer. From the parameters resulting from this analysis, it is observed at the most upstream measurement position that the rectangular and triangular VGs produce vortices of similar size, strength and velocity induction whilst the cambered VGs produce smaller and weaker vortices. Studying the downstream development in the ensemble and spanwise averaged measurements, it is observed that the impact from the rectangular and triangular VGs differs. For the rectangular VGs, self-similarity in the streamwise component was confirmed.
Coupling of magnetopause-boundary layer to the polar ionosphere
Wei, C.Q.; Lee, L.C. )
1993-04-01
The authors develop a model which seeks to explain ultraviolet auroral images from the Viking satellite which show periodic bright regions which resemble [open quotes]beads[close quotes] or [open quotes]pearls[close quotes] aligned along the postnoon auroral oval. ULF geomagnetic pulsations observed in the cusp region are also addressed by this model. The model addresses plasma dynamics in the low-latitude boundary layer and interactions with the polar ionosphere by means of field-aligned current. The Kelvin-Helmholtz instability can develop in the presence of driven plasma flow, which can lead to the formation and growth of plasma vortices in the boundary layer. The finite conductivity of the earth ionosphere causes these vortices to decay. However regions of enhanced field-aligned power density in the postnoon auroral oval can be associated with field-aligned current filaments and boundary layer vortices. These structures may explain the observed bright spots. The authors also discuss the frequency spectrum and the polarization state of the pulsations.
Review of Orbiter Flight Boundary Layer Transition Data
NASA Technical Reports Server (NTRS)
Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.
2006-01-01
In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.
New insights into adverse pressure gradient boundary layers
NASA Astrophysics Data System (ADS)
George, William K.; Stanislas, Michel; Laval, Jean-Philippe
2010-11-01
In a recent paper Shah et al. 2010 (Proc. of the WALLTURB Meeting, 2009), Lille, FR, Springer, in press) documented a number of adverse pressure gradient flows (APG's), with and without wall curvature, where the turbulence intensity peak moved quite sharply away from the wall with increasing distance. They further suggested that this peak was triggered by the adverse pressure gradient and had its origin in an instability hidden in the turbulent boundary layer, developing soon after the change of sign of the pressure gradient. They then offered that this may explain the difficulties encountered up to now in finding a universal scaling for turbulent boundary layers. We build on these observations, and show that in fact there is clear evidence in the literature (in most experiments, both old and new) for such a development downstream of the imposition of an adverse pressure gradient. The exact nature of the evolution and the distance over which it occurs depends on the upstream boundary layer and the manner in which the APG is imposed. But far enough downstream the mean velocity profile in all cases becomes an inflectional point profile with the location of the inflection point corresponding quite closely to the observed peak in the streamwise turbulence intensity. This does not seem to have been previously noticed.
Green House Gases Flux Model in Boundary Layer
NASA Astrophysics Data System (ADS)
Nurgaliev, Ildus
Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.
The simulation of coherent structures in a laminar boundary layer
NASA Technical Reports Server (NTRS)
Breuer, Kenny; Landahl, Marten T.; Spalart, Philippe R.
1987-01-01
Coherent structures in turbulent shear flows were studied extensively by several techniques, including the VITA technique which selects rapidly accelerating or decelerating regions in the flow. The evolution of a localized disturbance in a laminar boundary layer shows strong similarity to the evolution of coherent structures in a turbulent-wall bounded flow. Starting from a liftup-sweep motion, a strong shear layer develops which shares many of the features seen in conditionally-sampled turbulent velocity fields. The structure of the shear layer, Reynolds stress distribution, and wall pressure footprint are qualitatively the same, indicating that the dynamics responsible for the structure's evolution are simple mechanisms dependent only on the presence of a high mean shear and a wall and independent of the effects of local random fluctuations and outer flow effects. As the disturbance progressed, the development of streak-like-high- and low-speed regions associated with the three-dimensionality.
NASA Astrophysics Data System (ADS)
Blair, M. F.
1983-02-01
The effect of free stream turbulence on the heat transfer in the boundary layer flow was examined in a zero pressure gradient, two-dimensional channel. A heated flat plate was instrumented for turbulence intensity measurements. The free stream turbulence intensity distributions, turbulence length scale distributions, and power spectral density distributions were quantified. The two dimensionality of the test boundary layers was verified in various test conditions and the Stanton number distributions were measured for five free stream turbulence levels as a function of Re. The skin friction number was also determined as a function of the momentum thickness Re at specific locations. The test data were found to agree well with two-dimensional, incompressible analytical predictions and correlations. The free stream turbulence was determined to have significant effect on the skin friction and heat transfer, e.g., up to a 20% increase in friction for a turbulence intensity of 6%.
NASA Technical Reports Server (NTRS)
Adams, J. C., Jr.; Martindale, W. R.; Mayne, A. W., Jr.; Marchand, E. O.
1976-01-01
Inviscid and viscous (laminar boundary-layer) flow-field calculations under perfect gas hypersonic wind tunnel and equilibrium real gas flight conditions are presented for the windward centerline of the Rockwell International 139 Space Shuttle Orbiter at a 30-deg angle of attack. Correlation parameters for laminar boundary-layer edge quantities and surface heat transfer are developed which properly account for entropy-layer-swallowing effects under both real and perfect gas conditions. Some implications of the proposed correlation parameters on boundary-layer transition are discussed.
NASA Astrophysics Data System (ADS)
Kaiser, J.; Wolfe, G. M.; Keutsch, F. N.
2012-12-01
Stagnant meteorological conditions and high anthropogenic emissions make the Po Valley in Northern Italy one of Europe's most polluted regions. Understanding the processes controlling ozone production in this environment is essential for developing effective mitigation strategies. As both a source of HO2 radicals and an intermediate in the oxidation of most volatile organic compounds (VOCs), formaldehyde (HCHO) is a useful tracer for the oxidative processing of hydrocarbons that leads to ozone production. During the Pan-European Gas-AeroSOls Climate Interaction Study (PEGASOS), HCHO measurements were acquired via a Fiber Laser-Induced Fluorescence (FiLIF) instrument onboard a Zeppelin airship. This mission represents the first successful airborne deployment of the FiLIF instrument. With low flight speeds and vertical profiling capabilities, these Zeppelin-based observations in conjunction with other measurements may offer new insights into the spatial and temporal variability of atmospheric composition within the Po Valley region. Preliminary comparisons of modeled and measured HCHO concentrations at various altitudes and VOC/NOx regimes will be presented. Analysis will focus on 1) the transition from nocturnal to daytime boundary layers, and 2) the potential role of "non-classical" radical chemistry in ozone production.
A study of methods to investigate nozzle boundary layer transition
NASA Technical Reports Server (NTRS)
Pauley, Laura L.
1991-01-01
To further investigate nozzle flow, numerical computations are employed. The computations produce complete flow velocity and temperature fields within the nozzle. As a check, these results can be compared with experimental data at the wall. Once an accurate numerical scheme has been validated, it can be used as a design tool to predict the performance of other nozzle designs without the cost of experimental testing. Typically, the numerical analysis assumes either a laminar boundary layer or a fully turbulent boundary layer which is steady and two-dimensional. Boundary layer transition is not considered. Computing both the completely laminar boundary layer and the completely turbulent boundary layer conditions gives the minimum and maximum wall heat flux possible for a specified geometry. When the experimental heat flux measurements lie between these two values, the nature of the boundary layer is unknown. The boundary layer may have transitioned from laminar to turbulent; three-dimensional structures may be present in the boundary layer, or the inlet flow conditions may not be correctly specified in the computation.
Nonequilibrium boundary layer of potassium-seeded combustion products
Benilov, M.S.; Pozdeev, P.A.; Rogov, B.V.; Sinel'shchikov, V.A. . Inst. for High Temperatures)
1994-09-01
Results are reported from numerical modeling and experimental study of a chemically reacting boundary layer, formed on a body inserted into a stream of potassium-seeded combustion products of gaseous hydrocarbon fuels. The numerical model developed in previous work is modified to incorporate current data on potassium chemical kinetics. The temperature and potassium atom number density profiles are measured across the boundary layer formed on a cylindrical specimen of Al[sub 2]O[sub 3] dense ceramics by flow of combustion products of a propane-air mixture. The numerical results are compared with present experimental data as well as those available from the literature. The comparison is carried out for a broad range of experimental conditions including the postflame burned-gas region, and the boundary layers on a cylinder and on a flat plate. It provides verification of the proposed model, revision of the rate constants of some reactions of potassium-containing species, and supports the value of potassium superoxide dissociation energy of 247 kJ/mol.
Effect of wall temperature on a supersonic turbulent boundary layer
NASA Technical Reports Server (NTRS)
Laderman, A. J.
1978-01-01
Measurement of mean flow profiles in a fully developed Mach 3 turbulent boundary layer with negligible pressure gradient is reported. Data were acquired at several streamwise locations for wall-to-total temperature ratios of 0.94, 0.71, and 0.54. The results demonstrate that the velocity defect formulation of the law-of-the-wake, which successfully correlates compressible, adiabatic boundary layers, is also valid for nonadiabatic flows. It is also shown that for adiabatic walls, the linear Crocco relation between total temperature and velocity does not provide a valid test of the nature of the boundary-layer flow for practical cases where the Prandtl number departs from unity. Finally, the turbulent shear stress, mixing length, and eddy viscosity were extracted from the 'time-averaged' conservation equations using the measured mean flow profiles and found to be insensitive to wall temperature. In particular, the latter properties are in good agreement with earlier compressible, adiabatic correlations of turbulent transport properties.
Turbulent boundary layer over porous surfaces with different surface geometries
NASA Technical Reports Server (NTRS)
Kong, F. Y.; Schetz, J. A.
1982-01-01
The turbulent boundary layer over three porous walls with different surface geometries was studied in order to investigate the individual influences of porosity and small roughness, as well as their combined effects, on turbulent boundary layer behavior. The tests were conducted in a 2 m x 2 m tunnel on a large axisymmetric model at speeds corresponding to Re(L) = 5,000,000-6,000,000. The development of the turbulent boundary layer was compared for that of sintered metal, bonded screening, and perforated sheet and then to that for the flow over a solid smooth wall and a solid, sand-roughened wall. The comparisons reveal that the effect of porosity is to shift the logarithmic region of the wall law down by a certain amount from the solid wall results and to increase the skin friction values by about 30-40%. The downward shift of the logarithmic region of the wall law and the increase of the skin friction value by the combined effects of small roughness and porosity are found to be roughly the sum of their individual effects.
Turbulent Boundary Layers in the Vicinity of Separation
NASA Astrophysics Data System (ADS)
Indinger, Thomas; Buschmann, Matthias H.; Gad-El-Hak, Mohamed
2004-11-01
There has been some controversy regarding the behavior of the mean velocity profile of turbulent boundary layers approaching separation. While a number of experiments show that the logarithmic law is sustained even under strong adverse-pressure-gradient and non-equilibrium conditions, other experiments and DNS results reveal that the mean velocity profile breaks down in the vicinity of separation. Measurements at TU Dresden of a decelerated, fully developed turbulent boundary layer over a smooth flat plate in a closed water channel show that the classical log law no longer describes the mean velocity in the overlap region after a certain fraction of the flow travels in the upstream direction. This finding is consistent with the physical explanation advanced by Dengel & Fernholz (J. Fluid Mech. 212, 1990) that the log law failure is caused by the first occurrence of reverse flow. Analyzing adverse-pressure-gradient turbulent boundary layer data from three independent groups, we demonstrate that the log law can be restored by replacing y^+ with a new variable depending both on the wall-normal coordinate and the reverse-flow parameter \\chi_w. This finding is of importance in cases where other complexities such as surface roughness or structured walls (riblets, dimples, etc.) are involved and a universal profile in inner variables is desired.
Improved Inlet Noise Attenuation by Alteration of Boundary Layer Profiles
NASA Technical Reports Server (NTRS)
Mani, Ramani; Luedke, Jon; Jones, Michael G.; Nark, Douglas M.
2004-01-01
Acoustic liners are an essential component of technology used to reduce aircraft engine noise. Flow affects attenuation due to the liner in several ways, one of which is that boundary layers adjacent to the liner refract the sound. In the case of inlet noise, the boundary layer causes sound to be refracted away from the liner, thus degrading attenuation. A concept to improve attenuation by the liner by alteration of inlet boundary layer profiles is presented. The alteration of profiles is achieved by inlet blowing. Computational fluid dynamics and duct mode propagation theory for ducts carrying a parallel sheared flow have been used to design experiments to explore such a possibility in the NASA Langley Research Center Grazing Incidence Tube using an inlet blowing scheme developed at General Electric Global Research. The effects of inlet blowing on two liner configurations were evaluated. Calculated results will be shown for blowing ratios (injected flow/duct flow) of approximately 12% and frequencies up to 3 kHz. These results emphasize changes of attenuation achieved by blowing for the two liners. Experimental results of measured flow profiles (with and without blowing) in the Grazing Incidence Tube, and of corresponding changes in attenuation by the liner due to blowing will be presented.
Evolutionary geometry of Lagrangian structures in a transitional boundary layer
NASA Astrophysics Data System (ADS)
Zheng, Wenjie; Yang, Yue; Chen, Shiyi
2016-03-01
We report a geometric study of Lagrangian structures in a weakly compressible, spatially evolving transitional boundary layer at the Mach number 0.7. The Lagrangian structures in the transition process are extracted from the Lagrangian scalar field by a sliding window filter at a sequence of reference times. The multi-scale and multi-directional geometric analysis is applied to characterize the geometry of spatially evolving Lagrangian structures, including the averaged inclination and sweep angles at different scales ranging from one half of the boundary layer thickness to several viscous length scales. Here, the inclination angle is on the plane of the streamwise and wall-normal directions, and the sweep angle is on the plane of the streamwise and spanwise directions. In general, the averaged inclination angle is increased and the sweep angle is decreased with the reference time. The variation of the angles for large-scale structures is smaller than that for small-scale structures. Before the transition, the averaged inclination and sweep angles are only slightly altered for all the scales. As the transition occurs, averaged inclination angles increase and sweep angles decrease rapidly for small-scale structures. In the late transitional stage, the averaged inclination angle of small-scale structures with 30 viscous length scales is approximately 42°, and the averaged sweep angle in the logarithm law region is approximately 30°. Additionally, the geometry of Lagrangian structures in transitional boundary layer flow is compared with that in the fully developed turbulent channel flow.
Turbulent thermal boundary layers subjected to severe acceleration
NASA Astrophysics Data System (ADS)
Araya, Guillermo; Castillo, Luciano
2013-11-01
Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.
Advanced boundary layer transition measurement methods for flight applications
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.
1986-01-01
In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.
Boundary-layer equations in generalized curvilinear coordinates
NASA Technical Reports Server (NTRS)
Panaras, Argyris G.
1987-01-01
A set of higher-order boundary-layer equations is derived valid for three-dimensional compressible flows. The equations are written in a generalized curvilinear coordinate system, in which the surface coordinates are nonorthogonal; the third axis is restricted to be normal to the surface. Also, higher-order viscous terms which are retained depend on the surface curvature of the body. Thus, the equations are suitable for the calculation of the boundary layer about arbitrary vehicles. As a starting point, the Navier-Stokes equations are derived in a tensorian notation. Then by means of an order-of-magnitude analysis, the boundary-layer equations are developed. To provide an interface between the analytical partial differentiation notation and the compact tensor notation, a brief review of the most essential theorems of the tensor analysis related to the equations of the fluid dynamics is given. Many useful quantities, such as the contravariant and the covariant metrics and the physical velocity components, are written in both notations.
Topographically generated internal waves and boundary layer instabilities
NASA Astrophysics Data System (ADS)
Soontiens, Nancy; Stastna, Marek; Waite, Michael L.
2015-08-01
Flow over topography has been shown to generate finite amplitude internal waves upstream, over the topography and downstream. Such waves can interact with the viscous bottom boundary layer to produce vigorous instabilities. However, the strength and size of such instabilities depends on whether viscosity significantly modifies the wave generation process, which is usually treated using inviscid theory in the literature. In this work, we contrast cases in which boundary layer separation profoundly alters the wave generation process and cases for which the generated internal waves largely match inviscid theory. All results are generated using a numerical model that simulates stratified flow over topography. Several issues with using a wave-based Reynolds number to describe boundary layer properties are discussed by comparing simulations with modifications to the domain depth, background velocity, and viscosity. For hill-like topography, three-dimensional aspects of the instabilities are also discussed. Decreasing the Reynolds number by a factor of four (by increasing the viscosity), while leaving the primary two-dimensional instabilities largely unchanged, drastically affects their three-dimensionalization. Several cases at the laboratory scale with a depth of 1 m are examined in both two and three dimensions and a subset of the cases is scaled up to a field scale 10-m deep fluid while maintaining similar values for the background current and viscosity. At this scale, increasing the viscosity by an order of magnitude does not significantly change the wave properties but does alter the wave's interaction with the bottom boundary layer through the bottom shear stress. Finally, two subcritical cases for which disturbances are able to propagate upstream showcase a set of instabilities forming on the upstream slope of the elevated topography. The time scale over which these instabilities develop is related to but distinct from the advective time scale of the waves. At a
Dusty boundary layer in a surface-burst explosion
Kuhl, A.L.; Ferguson, R.E.; Chien, K.Y.; Collins, J.P.
1993-08-01
Dusty boundary layers are an inherent feature of explosions over ground surfaces. Detailed knowledge of dusty boundary layer characteristics is needed in explosion safety analysis (e.g., to calculate the drag loads on structures). Also, to predicct the amount of dust in the rising fireball of an explsion, one must know the dusty boundary layer swept up during the positive and negative phases of the blast wave and how much of this boundary layer dust is entrained into the stem of the dust cloud. This paper describes the results of numerical simulations of the dusty boundary layer created by a surface burst explosion. The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws.
Destiny of earthward streaming plasma in the plasmasheet boundary layer
NASA Technical Reports Server (NTRS)
Green, J. L.; Horwitz, J. L.
1986-01-01
The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.
Dynamic behavior of an unsteady trubulent boundary layer
NASA Technical Reports Server (NTRS)
Parikh, P. G.; Reynolds, W. C.; Jayaramen, R.; Carr, L. W.
1981-01-01
Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle.
NASA Technical Reports Server (NTRS)
Dolling, David S.; Barter, John W.
1995-01-01
The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.
A class of unsteady, three-dimensional flow structures in turbulent boundary layers
NASA Technical Reports Server (NTRS)
Ash, R. L.
1981-01-01
A restricted class of mathematically admissible, unsteady, three dimensional flows was identified which may constitute part of the structure observed in turbulent boundary layers. The development of the model and some general results are discussed. The resulting solution has characteristics which suggest how upwelling low speed flow can trigger a downward jetting of irrotational high speed fluid into the boundary layer.
An Equation for the Mean Velocity Distribution of Boundary Layers
NASA Technical Reports Server (NTRS)
Sandborn, V. A.
1959-01-01
A general relation, empirical in origin, for the mean velocity distribution of both laminar and turbulent boundary layers is proposed. The equation, in general, accurately describes the profiles in both laminar and turbulent flows. The calculation of profiles is based on a prior knowledge of momentum, displacement, and boundary-layer thickness together with free-stream conditions. The form for turbulent layers agrees with the present concepts of similarity of the outer layer. For the inner region or turbulent boundary layers the present relation agrees very closely with experimental measurements even in cases where the logarithmic law of the wall is inadequate. A unique relation between profile form factors and the ratio of displacement thickness to boundary-layer thickness is obtained for turbulent separation. A similar criterion is also obtained for laminar separation. These relations are demonstrated to serve as an accurate criterion for identifying separation in known profiles.
Boundary Layer Rolls Observed Above and Below a Jet in a Marine Boundary Layer
NASA Astrophysics Data System (ADS)
Foster, R. C.; Emmitt, G. D.; Godwin, K.; Greco, S.
2013-12-01
We have flown a coherent Doppler wind lidar (DWL) on the Cirpas Twin Otter off the California coast near Monterey since 2003. One scientific purpose of these flights is to understand the relationship between the turbulent fluxes measured on the aircraft or on other platforms and the observed structure of the marine boundary layer (MBL). Two common features are found in the MBL flow: (1) a strong jet at approximately 200 m above the sea surface; and (2) organized large eddies (OLE) in the form of roll vortices that are approximately aligned along the mean wind direction. On two flights (April 13, 2007 and September 30, 2012), the DWL data indicated that roll OLE existed simultaneously both above and below the jet. The DWL winds suggest that the OLE in these layers are sometimes independent and sometimes connected. Standard flux data are obtained on the Twin Otter at flight level, which is nominally 300 m. The 10 Hz wind and temperature data exhibit variability at spatial scales corresponding to the OLE wavelength. We have constructed a nonlinear theoretical model that includes triad wave-wave interactions to test the hypothesis that rolls could form both above and below the jet. This model shows that this is possible and that the rolls in the two layers could have unique characteristics compared to standard boundary layer rolls. The model further shows that the rolls above and below the jet are due to separate instabilities that interact. This is consistent with the observations of both connected and independent OLE above and below the jet. Contrast-enhanced DWL line-of-sight winds. Jet maximum 200 m below aircraft. Typical resonant triad solution for rolls above and below a PBL jet.
End-wall boundary layer prediction for axial compressors
NASA Technical Reports Server (NTRS)
Sockol, P. M.
1978-01-01
An integral boundary layer procedure was developed for the computation of viscous and secondary flows along the annulus walls of an axial compressor. The procedure is an outgrowth and extension of the pitch-averaged methods of Mellor and Horlock. In the present work secondary flow theory is used to develop approximations for the velocity profiles inside a rotating blade row and for the blade force deficit terms in the momentum integral equations. The computer code based on this procedure was iteratively coupled to a quasi-one-dimensional model for the external inviscid flow. Computed results are compared with measurements in a compressor cascade.
NASA Technical Reports Server (NTRS)
Spina, Eric F.
1995-01-01
The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic
The wave-induced boundary layer under long internal waves
NASA Astrophysics Data System (ADS)
Lin, Yuncheng; Redekopp, Larry G.
2011-08-01
The boundary layer formed under the footprint of an internal solitary wave is studied by numerical simulation for waves of depression in a two-layer model of the density stratification. The inviscid outer flow, in the perspective of boundary-layer theory, is based on an exact solution for the long wave-phase speed, yielding a family of fully nonlinear solitary wave solutions of the extended Korteweg-de Vries equation. The wave-induced boundary layer corresponding to this outer flow is then studied by means of simulation employing the Reynolds-averaged Navier-Stokes (RANS) formulation coupled with a turbulence closure model validated for wall-bounded flows. Boundary-layer characteristics are computed for an extensive range of environmental conditions and wave amplitudes. Boundary-layer transition, identified by monitoring the eddy viscosity, is correlated in terms of a boundary-layer Reynolds number. The frictional drag is evaluated for laminar, transitional, and turbulent cases, and correlations are presented for the friction coefficient plus relevant measures of the boundary-layer thickness.
On Reflection of Shock Waves from Boundary Layers
NASA Technical Reports Server (NTRS)
Liepmann, H W; Roshko, A; Dhawan, S
1952-01-01
Measurements are presented at Mach numbers from about 1.3 to 1.5 of reflection characteristics and the relative upstream influence of shock waves impinging on a flat surface with both laminar and turbulent boundary layers. The difference between impulse and step waves is discussed and their interaction with the boundary layer is compared. General considerations on the experimental production of shock waves from wedges and cones and examples of reflection of shock waves from supersonic shear layers are also presented.
Instabilities in compressible attachment-line boundary layers
NASA Astrophysics Data System (ADS)
Le Duc, Anne; Sesterhenn, Jörn; Friedrich, Rainer
2006-04-01
The hydrodynamic stability of the weakly compressible attachment-line boundary layer, with a sweep Mach number ranging from 0.1 to 1.3, is studied using a temporal compressible direct numerical simulation. A flow impinging non-normally onto an infinitely extended flat plate was computed. This complements the study of Hall et al. [Proc. R. Soc. London, Ser. A 395, 229 (1984)] who investigated the linear stability of an incompressible attachment-line boundary layer under the assumption of Görtler-Hämmerlin perturbation modes. In the present work, the base flow is modeled starting from the incompressible swept Hiemenz flow. Using Rayleigh-Jansen Mach number expansions, we obtain a family of base flows parameterized with the sweep Mach number ranging from 0.1 to 1.3. The Reynolds number of the simulation is higher than the incompressible critical Reynolds number, and the plate is adiabatic. Small purely vortical stochastic perturbations are inserted in the boundary layer and followed in time. For Mach numbers up to 0.3, developed velocity and pressure modes are similar to the ones assumed by Görtler and Hämmerlin. The chordwise dependencies of the temperature mode are presented. When increasing the Mach number, the structure of the modes changes; for high Mach numbers, a significantly slower decay of the eigenfunction with wall-normal distance is observed. Above M =0.5, the perturbations are exponentially decaying. This demonstrates the strong stabilizing effect of compressibility in the moderate Mach regime. Furthermore, for the same base flow, a higher exponential growth rate of the perturbation is obtained, if an isothermal wall boundary condition is applied instead of an adiabatic one.
Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer
NASA Technical Reports Server (NTRS)
Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.
1985-01-01
The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.
Spatial Linear Instability of Confluent Wake/Boundary Layers
NASA Technical Reports Server (NTRS)
Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)
2001-01-01
The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.
Crosshatch roughness distortions on a hypersonic turbulent boundary layer
NASA Astrophysics Data System (ADS)
Peltier, S. J.; Humble, R. A.; Bowersox, R. D. W.
2016-04-01
The effects of periodic crosshatch roughness (k+ = 160) on a Mach 4.9 turbulent boundary layer (Reθ = 63 000) are examined using particle image velocimetry. The roughness elements generate a series of alternating shock and expansion waves, which span the entire boundary layer, causing significant (up to +50% and -30%) variations in the Reynolds shear stress field. Evidence of the hairpin vortex organization of incompressible flows is found in the comparative smooth-wall boundary layer case (Reθ = 47 000), and can be used to explain several observations regarding the rough-wall vortex organization. In general, the rough-wall boundary layer near-wall vortices no longer appear to be well-organized into streamwise-aligned packets that straddle relatively low-speed regions like their smooth-wall counterpart; instead, they lean farther away from the wall, become more spatially compact, and their populations become altered. In the lower half of the boundary layer, the net vortex swirling strength and outer-scaled Reynolds stresses increase relative to the smooth-wall case, and actually decrease in the outer half of the boundary layer, as ejection and entrainment processes are strengthened and weakened in these two regions, respectively. A spectral analysis of the data suggests a relative homogenizing of the most energetic scales near Λ = ˜ 0.5δ across the rough-wall boundary layer.
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Yang, L.
1985-01-01
A method of solving the boundary-layer equations that arise in singular-perturbation analysis of flightpath optimization problems is presented. The method is based on Picard iterations of the integrated form of the equations and does not require iteration to find unknown boundary conditions. As an example, the method is used to develop a solution algorithm for the zero-order boundary-layer equations of the aircraft minimum-time-to-climb problem.
Identification of lagrangian coherent structures in the turbulent boundary layer
NASA Astrophysics Data System (ADS)
Pan, Chong; Wang, Jinjun; Zhang, Cao
2009-02-01
Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vortices extending deep into the near wall region with an inclination angle θ to the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of θ accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is implemented to get the ensemble-averaged inclination angle θ R of typical LCS. θ R first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of θ saturates at y +=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around y +=100. The ensemble- averaged convection velocity U c of typical LCS is finally calculated from temporal-spatial correlation analysis of FTLE field. It is found that the wall-normal profile of the convection velocity U c( y) accords well with the local mean velocity profile U( y) beyond the buffer layer, evidencing that the downstream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.
Defining the Entrainment Zone in Stratocumulus-topped Boundary Layers
NASA Astrophysics Data System (ADS)
Wang, Q.; Zhou, M.; Kalogiros, J. A.; Lenschow, D. H.; Dai, C.; Wang, S.
2010-12-01
The presence of an entrainment zone near the top of the stratocumulus-topped boundary layers has been identified by many early studies. However, the definition of the entrainment zone was rather vague. We have examined the fine vertical variations of cloud liquid water content, wind, temperature and humidity near the stratocumulus top and developed a new method to identify the entrainment zone objectively. Aircraft measurements from various field projects in stratocumulus-topped boundary layers are used, taking advantage of the fast sampling capability of many of the aircraft sensors. Because of the inhomogeneous mixing of two air masses with distinctively different thermodynamic properties, the magnitude of temperature perturbations within the entrainment zone is significantly larger than those above or below. This characteristics is used to define the upper and lower boundaries of the entrainment zone using a wavelet spectra analyses. The definition of the entrainment zone is further evaluated by the presence of a linear mixing line through mixing line analyses. Various other interfaces at the cloud top are also examined, including the cloud interface, temperature interface (inversion), and moisture interface. The heights of these interfaces are examined relative to the height of the entrainment zone. This study also systematically revealed the presence of turbulence above the local cloud top and/or above the entrainment zone. Wind shear near the cloud top is one possible source that generated local turbulence. Other potential sources of turbulence will also be discussed.
NASA Astrophysics Data System (ADS)
Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.
2012-12-01
We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.
NASA Astrophysics Data System (ADS)
Williams, Peter T.
2016-01-01
Twenty-five years ago, Pringle suggested a boundary-layer origin for jets from YSOs. The jets were driven by a toroidal magnetic field generated by strong shear in the accretion boundary layer. Such a mechanism is clearly non-magnetocentrifugal in nature.Nearly fifteen years ago, we suggested a cartoon of the jet-launching mechanism in protostars in which shear, acting upon MHD turbulence generated by the magnetorotational instability (MRI), generated a tangled, toroidal magnetic field capable of driving a jet. This picture, which is also manifestly non-magnetocentrifugal in nature, relied upon a novel model for MRI-driven MHD turbulence based on a viscoelastic, rather than a viscous, prescription for the turbulent stress. Our hypothesis has some clear similarities to Pringle's mechanism, but it relied upon a large envelope surrounding the central star.An accretion boundary layer has long been recognized as a promising source for protostellar jets in good part because in a standard thin disk, matter loses circa half of all its accretion energy in this layer, but it is problematic to drive a well-collimated outflow from a boundary layer in a thin disk. In this presentation, we argue paradoxically that the "boundary layer" can drive jets when a true boundary layer, like the thin disk, does not exist. This changes the inner boundary condition for viscous angular momentum flux in the disk.The standard argument for a thin boundary layer is, we argue, circular. In high accretion-rate systems, or when the gas cannot cool efficiently, there is no reason to suspect the turbulent viscosity in this boundary layer to be small, and therefore neither is the boundary layer. When the boundary layer becomes larger than the central accretor itself, it is arguably no longer a boundary layer, but rather an envelope. It is still, however, a substantial source of power and toroidal MRI-driven magnetic fields.It is, again, only in relatively hot or high-accretion rate systems in which
Size distributions of boundary-layer clouds
Stull, R.; Berg, L.; Modzelewski, H.
1996-04-01
Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.
Numerical experiments on the stability of controlled boundary layers
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Hussaini, M. Y.
1988-01-01
Nonlinear simulations are presented for instability and transition in parallel water boundary layers subjected to pressure gradient, suction, or heating control. In the nonlinear regime, finite amplitude, 2-D Tollmein-Schlichting waves grow faster than is predicted by linear theory. Moreover, this discrepancy is greatest in the case of heating control. Likewise, heating control is found to be the least effective in delaying secondary instabilities of both the fundamental and subharmonic type. Flow field details (including temperature profiles) are presented for both the uncontrolled boundary layer and the heated boundary layer.
Formation of pre-sheath boundary layers in electronegative plasmas
Vitello, P., LLNL
1998-05-01
In electronegative plasmas Coulomb scattering between positive and negative ions can lead to the formation of a pre-sheath boundary layer containing the bulk of the negative ions. The negative ion boundary layer forms when momentum transfer from positive to negative ions dominates the negative ion acceleration from the electric field. This condition is met in Inductively Coupled Plasma reactors that operate at low pressure and high plasma density. Simulations of the GEC reactor for Chlorine and Oxygen chemistries using the INDUCT95 2D model are presented showing the pre-sheath boundary layer structure as a function of applied power and neutral pressure.
Further Improvements to Nozzle Boundary Layer Calculations in BLIMPJ
NASA Technical Reports Server (NTRS)
Praharaj, S. C.; Gross, Klaus W.
1989-01-01
Further improvements made to advance the current Boundary Layer Integral Matrix Procedure - Version J (BLIMPJ) containing previously modeled simplified calculation methods by accounting for condensed phase, thick boundary layer and free stream turbulence effects are discussed. The condensed phase effects were included through species composition effect considered via input to the code and through particle damping effect considered via a turbulence model. The thrust loss calculation procedure for thick boundary layer effects was improved and the optimization of net thrust with respect to nozzle length was performed. The effects of free stream turbulence were approximately modeled in the turbulence model.
Control of turbulent boundary layer flows by sound
NASA Astrophysics Data System (ADS)
Ahuja, K. K.; Whipkey, R. R.; Jones, G. S.
1983-04-01
The effects of acoustic excitation on the turbulent boundary-layer characteristics over an airfoil were examined as a function of excitation frequency and level and also flow velocity. The measured data primarily consisted of: (1) lift coefficients, (2) mean velocities and turbulence intensities as measured by a laser velocimeter, and (3) flow visualization. The experiments successfully demonstrated that separation of turbulent boundary layer flows can be controlled by sound in both pre- and post-stall regions. In addition, it was shown that, with high-frequency acoustic excitation, the turbulence levels in the boundary layer at a fixed measurement point can be reduced considerably.
Boundary Layer Control by Means of Plasma Actuators
Quadros, R.
2007-09-06
The development of controlled transition in a flat-plate boundary layer is investigated using Large Eddy Simulations (LES) with the dynamic Smagorinsky model. The analysis of flow control with the objective to optimize the effects of Tollmien-Schlichting waves on a flat plate by means of plasma actuators was studied. The plasma effect is modeled as a body force in the momentum equations. These equations are solved in a uniform grid using a 2nd-order finite difference scheme in time and space. The response of plasma actuators operating in different time-dependent conditions, produced by transient or periodic inputs at different frequencies, is also analyzed.
Injection-induced turbulence in stagnation-point boundary layers
NASA Astrophysics Data System (ADS)
Park, C.
1984-02-01
A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.
Injection-induced turbulence in stagnation-point boundary layers
NASA Technical Reports Server (NTRS)
Park, C.
1984-01-01
A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.
Numerical simulation of transition control in boundary layers
NASA Astrophysics Data System (ADS)
Laurien, E.; Kleiser, L.
The transition process from laminar to turbulent boundary layers is simulated by numerical integration of the 3D incompressible Navier-Stokes equations. Spatially periodic wave disturbances in a parallel Blasius flow are assumed. A spectral method with real-space Chebyshev collocation in the normal direction is employed. Both the classical K-type and the subharmonic type of transition are investigated. Good agreement with measurements and flow visualizations of transition experiments is obtained. Control of transition by wave superposition is simulated using periodic wall suction/blowing. It is shown that 2D control works well at an early stage but fails after significant 3D disturbances have developed.
Investigation of catalytic combustion within a fin boundary layer
Griffin, G.J.; Wood, D.G.
1999-07-01
A mathematical model of a catalytic fin, a flat plate coated with a catalyst, operating under steady-state conditions where air carrying a fuel flows parallel to the surface, is developed. The model equations are derived from the basic equations of change, and model predictions of tin and boundary layer temperature are compared with experimental data for the combustion of propane and carbon monoxide (CO) over the flat plate coated with platinum(Pt)/alumina catalyst. Good qualitative agreement is found between the results of the experiments and the model predictions, although the model generally predicts higher fin temperatures and ignition of reaction to occur at lower temperatures.
Energy dissipating structures in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Farge, Marie; Nguyen van Yen, Romain; Schneider, Kai
2011-11-01
We present numerical experiments of a dipole crashing into a wall, a generic event in two-dimensional incompressible flows with solid boundaries. The Reynolds number Re is varied from 985 to 7880, and no-slip boundary conditions are approximated by Navier boundary conditions with a slip length proportional to Re-1 . Energy dissipation is shown to first set up within a vorticity sheet of thickness proportional to Re-1 in the neighborhood of the wall, and to continue as this sheet rolls up into a spiral and detaches from the wall. The energy dissipation rate integrated over these regions appears to converge towards Rey -independent values, indicating the existence of energy dissipating structures that persist in the vanishing viscosity limit. Details can be found in Nguyen van yen, Farge and Schneider, PRL, 106, 184502 (2011).
Nonequilibrium Behavior of the Daytime Atmospheric Boundary Layer, from LES
NASA Astrophysics Data System (ADS)
Jayaraman, Balaji; Brasseur, James; McCandless, Tyler; Haupt, Sue
2014-11-01
LES of the daytime atmospheric boundary layer (ABL) over flat topography is universally developed as an equilibrium ABL with steady surface heat flux Q0 and steady unidirectional ``geostrophic'' wind vector Vg above a capping inversion, where Vg also defines a spatially uniform transverse mean pressure gradient. The LES approaches a quasiequilibrium state characterized statistically by the ratio of boundary layer depth to Obukhov length scale. In contrast, the true daytime ABL is driven by surface heat flux increases to peak mid-day and drops in the afternoon, and by mesoscale wind vectors Ug that change in magnitude and direction during the day. We study the consequences of mesoscale weather on ABL dynamics by forcing ABL LES with a WRF simulation of the Midwest during 3 days of frontal passage over Kansas. Assuming horizontal homogeneity, we derive the relationship between Ug and Vg and study ABL response with systematic variation in Q0 and the magnitude and direction of Ug. Interesting results include: (1) asymmetry nonequilibrium diurnal response of the ABL; (2) directional changes in surface layer winds relevant to wind turbine function; and (3) changes in ABL stability state arising solely from changes in the direction of Ug. Supported by DOE. Computer resources by NSF/XSEDE.
Infrared Imaging of Boundary Layer Transition Flight Experiments
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J., Jr.; Schwartz, Richard; Ross, Martin; Anderson, Brian; Campbell, Charles H.
2008-01-01
The Hypersonic Thermodynamic Infrared Measurement (HYTHIRM) project is presently focused on near term support to the Shuttle program through the development of an infrared imaging capability of sufficient spatial and temporal resolution to augment existing on-board Orbiter instrumentation. Significant progress has been made with the identification and inventory of relevant existing optical imaging assets and the development, maturation, and validation of simulation and modeling tools for assessment and mission planning purposes, which were intended to lead to the best strategies and assets for successful acquisition of quantitative global surface temperature data on the Shuttle during entry. However, there are longer-term goals of providing global infrared imaging support to other flight projects as well. A status of HYTHIRM from the perspective of how two NASA-sponsored boundary layer transition flight experiments could benefit by infrared measurements is provided. Those two flight projects are the Hypersonic Boundary layer Transition (HyBoLT) flight experiment and the Shuttle Boundary Layer Transition Flight Experiment (BLT FE), which are both intended for reducing uncertainties associated with the extrapolation of wind tunnel derived transition correlations for flight application. Thus, the criticality of obtaining high quality flight data along with the impact it would provide to the Shuttle program damage assessment process are discussed. Two recent wind tunnel efforts that were intended as risk mitigation in terms of quantifying the transition process and resulting turbulent wedge locations are briefly reviewed. Progress is being made towards finalizing an imaging strategy in support of the Shuttle BLT FE, however there are no plans currently to image HyBoLT.
Mean flow in turbulent boundary layers disturbed to alter skin friction
NASA Technical Reports Server (NTRS)
Bandyopadhyay, P. R.
1986-01-01
A comparative evaluation is made of recent developments in methods for the reduction of boundary layer drag, encompassing longitudinal surface riblets, 'outer layer' devices, (OLDs) and longitudinal convex surface curvature. The boundary layer of a surface with a longitudinal concave curvature is also studied, to complement the convex case results. The net drag reductions achievable by both riblets and OLDs are noted to be a rather modest 10 percent. Boundary layers exhibit asymmetric response to streamwise surface curvatures, with the response being slower for the case of a concave than a convex curvature.
Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers
NASA Technical Reports Server (NTRS)
Stock, H. W.
1978-01-01
The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.
Nonlinear spatial evolution of inviscid instabilities on hypersonic boundary layers
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The spatial development of an initially linear vorticity-mode instability on a compressible flat-plate boundary layer is considered. The analysis is done in the framework of the hypersonic limit where the free-stream Mach number M approaches infinity. Nonlinearity is shown to become important locally, in a thin critical layer, when sigma, the deviation of the phase speed from unity, becomes o(M(exp -8/7)) and the magnitude of the pressure fluctuations becomes 0(sigma(exp 5/2)M(exp 2)). The unsteady flow outside the critical layer takes the form of a linear instability wave but with its amplitude completely determined by the nonlinear flow within the critical layer. The coupled set of equations which govern the critical-layer dynamics reflect a balance between spatial-evolution, (linear and nonlinear) convection and nonlinear vorticity-generation terms. The numerical solution to these equations shows that nonlinear effects produce a dramatic reduction in the instability-wave amplitude.
A thermal plume model for the Martian convective boundary layer
NASA Astrophysics Data System (ADS)
Colaïtis, A.; Spiga, A.; Hourdin, F.; Rio, C.; Forget, F.; Millour, E.
2013-07-01
The Martian planetary boundary layer (PBL) is a crucial component of the Martian climate system. Global climate models (GCMs) and mesoscale models (MMs) lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in large-eddy simulations (LESs). We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking into account stability and turbulent gustiness to calculate surface-atmosphere fluxes. Those new parameterizations for the surface and mixed layers are validated against near-surface lander measurements. Using a thermal plume model moreover enables a first-order estimation of key turbulent quantities (e.g., PBL height and convective plume velocity) in Martian GCMs and MMs without having to run costly LESs.
NASA Astrophysics Data System (ADS)
Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa
2014-05-01
Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.
Influences on the Height of the Stable Boundary Layer as seen in LES
Kosovic, B; Lundquist, J
2004-06-15
Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.
Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.
2013-06-10
The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.
Optimizing EDMF parameterization for stratocumulus-topped boundary layer
NASA Astrophysics Data System (ADS)
Jones, C. R.; Bretherton, C. S.; Witek, M. L.; Suselj, K.
2014-12-01
We present progress in the development of an Eddy Diffusion / Mass Flux (EDMF) turbulence parameterization, with the goal of improving the representation of the cloudy boundary layer in NCEP's Global Forecast System (GFS), as part of a multi-institution Climate Process Team (CPT). Current GFS versions substantially under-predict cloud amount and cloud radiative impact over much of the globe, leading to large biases in the surface and top of atmosphere energy budgets. As part of the effort to correct these biases, the CPT is developing a new EDMF turbulence scheme for GFS, in which local turbulent mixing is represented by an eddy diffusion term while nonlocal shallow convection is represented by a mass flux term. The sum of both contributions provides the total turbulent flux. Our goal is for this scheme to more skillfully simulate cloud radiative properties without negatively impacting other measures of weather forecast skill. One particular challenge faced by an EDMF parameterization is to be able to handle stratocumulus regimes as well as shallow cumulus regimes. In order to isolate the behavior of the proposed EDMF parameterization and aid in its further development, we have implemented the scheme in a portable MATLAB single column model (SCM). We use this SCM framework to optimize the simulation of stratocumulus cloud top entrainment and boundary layer decoupling.
Toward evaluation of heat fluxes in the convective boundary layer
Sorbjan, Z.
1995-05-01
This article demonstrates that vertical profiles of the heat flux in the convective boundary layer can be diagnosed through an integration over height of the time change rates of observed potential temperature profiles. Moreover, the basic characteristics of the convective boundary layer, such as the mixed-layer height z{sub t}, the depth of the interfacial (entrainment) layer, and the heat flux zero-crossing height h{sub 0} can be uniquely evaluated based on a time evolution of potential temperature profiles in the lower atmosphere. 12 refs., 12 figs., 1 tab.
Further studies of unsteady boundary layers with flow reversal
NASA Technical Reports Server (NTRS)
Nash, J. F.
1976-01-01
One set of calculations was performed using the first order, time dependent turbulent boundary layer equations, and extended earlier work by Nash and Patel to a wider range of flows. Another set of calculations was performed for laminar flow using the time dependent Navier-Stokes equations. The results of the calculations confirm previous conclusions concerning the existence of a regime of unseparated flow, containing an embedded region of reversal, which is accessible to first order boundary layer theory. However, certain doubts are cast on the precise nature of the events which accompany the eventual breakdown of the theory due to singularity onset. The earlier view that the singularity appears as the final event in a sequence involving rapid thickening of the boundary layer and the formation of a localized region of steep gradients is called into question by the present results. It appears that singularity onset is not necessarily preceded by rapid boundary layer thickening, or even necessarily produces immediate thickening.
Interacting turbulent boundary layer over a wavy wall
NASA Technical Reports Server (NTRS)
Polak, A.; Werle, M. J.
1977-01-01
The two dimensional supersonic flow of a thick turbulent boundary layer over a train of relatively small wave-like protuberances is considered. The flow conditions and the geometry are such that there exists a strong interaction between the viscous and inviscid flow. The problem cannot be solved without inclusion of interaction effects due to the occurrence of the separation singularity in classical boundary layer methods. The interacting boundary layer equations are solved numerically using a time-like relaxation method with turbulence effects represented by the inclusion of the eddy viscosity model. Results are presented for flow over a train of up to six waves for Mach numbers of 10 and 32 million/meter, and wall temperature rations (T sub w/T sub 0) of 0.4 and 0.8. Limited comparisons with independent experimental and analytical results are also given. Detailed results on the influence of small protuberances on surface heating by boundary layers are presented.
The current structure of stratified tidal planetary boundary layer flow
Myrhaug, D.; Slaattelid, O.H.
1995-12-31
The paper presents the bottom shear stress and velocity profiles in stratified tidal planetary boundary layer flow by using similarity theory. For a given seabed roughness length, free stream current velocity components, frequency of tidal oscillation, Coriolis parameter and stratification parameter the maximum bottom shear stress is determined for flow conditions in the rough, smooth and transitional smooth-to-rough turbulent regime. Further, the direction of the bottom shear stress and the velocity profiles are given. Comparison is made with data from field measurements of time-independent as well as tidal planetary boundary layer flow for neutral conditions, and the agreement between the predictions and the data is generally good. Further, an example of application for stable stratification is given, and qualitatively the predictions show, as expected, that the bottom shear stress and the thickness of the boundary layer become smaller for stable than for neutral stratification. Other features of the tidal planetary boundary layer flow are also discussed.
Viscous boundary layers in rotating fluids driven by periodic flows
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Cogley, A. C.
1976-01-01
The paper analyzes the boundary layers formed in a rotating fluid by an oscillating flow over an infinite half plate, with particular attention paid to the effects of unsteadiness, the critical latitude effect and the structure of the solution to the boundary layer equations at resonance. The Navier-Stokes boundary layer equations are obtained through an asymptotic expansion with the incorporation of the Rossby and Ekman numbers and are analyzed as the sum of a nonlinear steady solution and a linearized unsteady solution. The solution is predominantly composed of two inertial wave vector components, one circularly polarized to the left and the other circularly polarized to the right. The problem considered here has relevance in oceanography and meteorology, with special reference to the unsteady atmospheric boundary layer.
The structure and evolution of boundary layers in stratified convection
NASA Astrophysics Data System (ADS)
Anders, Evan H.; Brown, Benjamin; Brandenburg, Axel; Rast, Mark
2016-05-01
Solar convection is highly stratified, and the density in the Sun increases by many orders of magnitude from the photosphere to the base of the convection zone. The photosphere is an important boundary layer, and interactions between the surface convection and deep convection may lie at the root of the solar convection conundrum, where observed large-scale velocities are much lower than predicted by full numerical simulations. Here, we study the structure and time evolution of boundary layers in numerical stratified convection. We study fully compressible convection within plane-parallel layers using the Dedalus pseudospectral framework. Within the context of polytropic stratification, we study flows from low (1e-3) to moderately high (0.1) Mach number, and at moderate to high Rayleigh number to study both laminar and turbulent convective transport. We aim to characterize the thickness and time variation of velocity and thermal (entropy) boundary layers at the top and bottom boundaries of the domain.
Boundary-layer transition effects on airplane stability and control
NASA Technical Reports Server (NTRS)
Van Dam, C. P.; Holmes, B. J.
1986-01-01
Surface contamination of laminar-flow airfoils can significantly modify the location of transition from laminar-to-turbulent boundary-layer flow. The contamination can be the result of insect debris, environmental effects such as ice crystals and moisture due to mist or rain, surface damage, or other contamination adhering to the surface. Location and mode of transition have a dominant effect on the lift-and-drag characteristics of a lifting surface. The influences of laminar boundary-layer flow behavior on airplane stability and control are examined through theoretical results and experimental (wind-tunnel and free-flight) data. For certain airfoils with a relatively steep pressure recovery it is shown that loss of laminar flow near the leading edge can result in premature separation of the turbulent boundary layer and, consequently, in loss of lift and control effectiveness. Aerodynamic modifications which minimize boundary-layer transition effects on airplane stability and control are also discussed.
Stability of the laminar boundary layer in a streamwise corner
NASA Technical Reports Server (NTRS)
Lakin, W. D.
1984-01-01
The stability of viscous, incompressible flow along a streamwise corner, often called the corner boundary layer problem is examined. The semi-infinite boundary value problem satisfied by small amplitude disturbances in the "bending boundary layer' region is obtained. The mean secondary flow induced by the corner exhibits a flow reversal in this region. Uniformly valid "first approximations' to solutions of the governing differential equations are derived. Uniformity at infinity is achieved by a suitable choice of the large parameter and use of an approximate Langer variable. Approximations to solutions of balanced type have a phase shift across the critical layer which is associated with instabilities in the case of two dimensional boundary layer profiles.
NASA Technical Reports Server (NTRS)
Wahls, Richard A.
1990-01-01
The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.
Approximation theory for boundary layer suction through individual slits
NASA Technical Reports Server (NTRS)
Walz, A.
1979-01-01
The basic concepts of influencing boundary layers are summarized, especially the prevention of flow detachment and the reduction of frictional resistance. A mathematical analysis of suction through a slit is presented with two parameters, for thickness and for shape of the boundary layer, being introduced to specify the flow's velocity profile behind the slit. An approximation of the shape parameter produces a useful formula, which can be used to determine the most favorable position of the slit. An aerodynamic example is given.
Tropical boundary layer equilibrium in the last ice age
NASA Technical Reports Server (NTRS)
Betts, Alan K.; Ridgway, W.
1992-01-01
A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.
Wave phenomena in a high Reynolds number compressible boundary layer
NASA Technical Reports Server (NTRS)
Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.
1985-01-01
Growth of unstable disturbances in a high Reynolds number compressible boundary layer is numerically simulated. Localized periodic surface heating and cooling as a means of active control of these disturbances is studied. It is shown that compressibility in itself stabilizes the flow but at a lower Mach number, significant nonlinear distortions are produced. Phase cancellation is shown to be an effective mechanism for active boundary layer control.
Classification of structures in the stable boundary layer
NASA Astrophysics Data System (ADS)
Belusic, Danijel
2015-04-01
Ubiquitous but generally unknown flow structures populate the stable boundary layer at scales larger than turbulence. They introduce nonstationarity, affect the generation of turbulence and induce fluxes. Classification of the structures into clusters based on a similarity measure could reduce their apparent complexity and lead to better understanding of their characteristics and mechanisms. Here we explore different approaches to detect and classify structures, the usefulness of those approaches, and their potential to provide better understanding of the stable boundary layer.
MPLNET V3 Cloud and Planetary Boundary Layer Detection
NASA Astrophysics Data System (ADS)
Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.
2016-06-01
The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.
Wall pressure spectra calculations for equilibrium boundary layers
NASA Technical Reports Server (NTRS)
Panton, R. L.; Linebarger, J. H.
1974-01-01
Calculation of the flow direction wave-number spectrum of pressure fluctuations on the wall under a turbulent boundary layer. Particular attention is paid to finding the spectral density of the wall pressure fluctuations as a function of the streamwise wave number. For this purpose a five-dimensional integration is employed in which the equilibrium boundary layers are assumed to have velocity profiles given by the law of the wall plus Cole's wake function.
Lateral straining of turbulent boundary layers. Part 2. Streamline convergence
NASA Astrophysics Data System (ADS)
Panchapakesan, N. R.; Nickels, T. B.; Joubert, P. N.; Smits, A. J.
1997-10-01
Experimental measurements are presented showing the effects of streamline convergence on developing turbulent boundary layers. The longitudinal pressure-gradient in these experiments is nominally zero so the only extra rate-of-strain is the lateral convergence. Measurements have been made of mean flow and turbulence quantities at two different Reynolds numbers. The results show that convergence leads to a significant reduction in the skin-friction and an increase in the boundary layer thickness. There are also large changes in the Reynolds stresses with reductions occurring in the inner region and some increase in the outer flow. This is in contrast to the results of Saddoughi & Joubert (1991) for a diverging flow of the same included angle and zero pressure-gradient which show much smaller changes in the stresses and an approach to equilibrium. A new non-dimensional parameter, [beta]D, is proposed to characterize the local effect of the convergence and it is shown how this parameter is related to Clauser's pressure-gradient parameter, [beta]x. It is suggested that this is an equilibrium parameter for turbulent boundary layers with lateral straining. In the present flow case [beta]D increases rapidly with streamwise distance leading to a significant departure from equilibrium. Measurement of terms in the transport equations suggest that streamline convergence leads to a reduction in production and generation and large increases in mean advection. The recovery of the flow after the removal of convergence has been shown to be characterized by a significant increase in the turbulent transport of shear-stress and turbulent kinetic energy from the very near-wall region to the flow further out where the stresses have been depleted by convergence.
Boundary layer polarization and voltage in the 14 MLT region
NASA Astrophysics Data System (ADS)
Lundin, R.; Yamauchi, M.; Woch, J.; Marklund, G.
1995-05-01
Viking midlatitude observations of ions and electrons in the postnoon auroral region show that field-aligned acceleration of electrons and ions with energies up to a few kiloelectron volts takes place. The characteristics of the upgoing ion beams and the local transverse electric field observed by Viking indicate that parallel ion acceleration is primarily due to a quasi-electrostatic field-aligned acceleration process below Viking altitudes, i.e., below 10,000-13,500 km. A good correlation is found between the maximum upgoing ion beam energy and the depth of the local potential well determined by the Viking electric field experiment within dayside 'ion inverted Vs.' The total transverse potential throughout the entire region near the ion inverted Vs. is generally much higher than the field-aligned potential and may reach well above 10 kV. However, the detailed mapping of the transverse potential out to the boundary layer, a fundamental issue which remains controversial, was not attempted here. An important finding in this study is the strong correlation between the maximum up going ion beam energy of dayside ion inverted Vs and the solar wind velocity. This suggests a direct coupling of the solar wind plasma dynamo/voltage generator to the region of field-aligned particle acceleration. The fact that the center of dayside ion inverted Vs coincide with convection reversals/flow stagnation and upward Birkeland currents on what appears to be closed field lines (Woch et al., 1993), suggests that field-aligned potential structures connect to the inner part of an MHD dyanmo in the low-latitude boundary layer. Thus the Viking observations substantiate the idea of a solar wind induced boundary layer polarization where negatively charged perturbations in the postnoon sector persistently develops along the magnetic field lines, establishing accelerating potential drops along the geomagnetic field lines in the 0.5-10 kV range.
A multidisciplinary optimization method for designing boundary layer ingesting inlets
NASA Astrophysics Data System (ADS)
Rodriguez, David Leonard
2001-07-01
The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over-wing engines. Two types of engine installations have been considered for this aircraft. One installation is quite conventional with podded engines mounted on pylons. The other installation has partially buried engines with boundary layer ingesting inlets. Although ingesting the low-momentum flow in a boundary layer can improve propulsive efficiency, poor inlet performance can offset and even overwhelm this potential advantage. For both designs, the tight coupling between the aircraft aerodynamics and the propulsion system poses a difficult design integration problem. This dissertation presents a design method that solves the problem using multidisciplinary optimization. A Navier-Stokes flow solver, an engine analysis method, and a nonlinear optimizer are combined into a design tool that correctly addresses the tight coupling of the problem. The method is first applied to a model 2D problem to expedite development and thoroughly test the scheme. The low computational cost of the 2D method allows for several inlet installations to be optimized and analyzed. The method is then upgraded by using a validated 3D Navier-Stokes solver. The two candidate engine installations are analyzed and optimized using this inlet design method. The method is shown to be quite effective at integrating the propulsion and aerodynamic systems of the Blend-Wing-Body for both engine installations by improving overall performance and satisfying any specified design constraints. By comparing the two optimized designs, the potential advantages of ingesting boundary layer flow for this aircraft are demonstrated.
Planetary Boundary Layer Dynamics over Reno, Nevada in Summer
NASA Astrophysics Data System (ADS)
Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.
2014-12-01
Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.
Turbulent Boundary Layer in High Rayleigh Number Convection in Air
NASA Astrophysics Data System (ADS)
du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian
2014-03-01
Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra =1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re ≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.
Experimental studies on two dimensional shock boundary layer interactions
NASA Technical Reports Server (NTRS)
Skebe, S. A.; Greber, I.; Hingst, W. R.
1984-01-01
Experiments have been performed on the interaction of oblique shock waves with flat plate boundary layers in the 30.48 cm x 30.48 cm (1 ft. x 1 ft.) supersonic wind tunnel at NASA Lewis Research Center. High accuracy measurements of the plate surface static pressure and shear stress distributions as well as boundary layer velocity profiles were obtained through the interaction region. Documentation was also performed of the tunnel test section flow field and of the two-dimensionality of the interaction regions. The findings provide detailed description of two-dimensional interaction with initially laminar boundary layers over the Mach number range 2.0 to 4.0. Additional information with regard to interactions involving initially transitional boundary layers is presented over the Mach number range 2.0 to 3.0 and those for initially turbulent boundary layers at Mach 2.0. These experiments were directed toward providing well documented information of high accuracy useful as test cases for analytic and numerical calculations. Flow conditions encompassed a Reynolds number range of 4.72E6 to 2.95E7 per meter. The shock boundary layer interaction results were found to be generally in good agreement with the experimental work of previous authors both in terms of direct numerical comparison and in support of correlations establishing laminar separation characteristics.
Orbiter Boundary Layer Transition Stability Modeling at Flight Entry Conditions
NASA Technical Reports Server (NTRS)
Bartkowicz, Matt; Johnson, Heath; Candler, Graham; Campbell, Charles H.
2009-01-01
State of the art boundary layer stability modeling capabilities are increasingly seeing application to entry flight vehicles. With the advent of user friendly and robust implementations of two-dimensional chemical nonequilibrium stability modeling with the STABL/PSE-CHEM software, the need for flight data to calibrate such analyses capabilities becomes more critical. Recent efforts to perform entry flight testing with the Orbiter geometry related to entry aerothermodynamics and boundary layer transition is allowing for a heightened focus on the Orbiter configuration. A significant advancement in the state of the art can likely be achieved by establishing a basis of understanding for the occurrence of boundary layer transition on the Orbiter due to discrete protruding gap fillers and the nominal distributed roughness of the actual thermal protection system. Recent success in demonstrating centerline two-dimensional stability modeling on the centerline of the Orbiter at flight entry conditions provides a starting point for additional investigations. The more detailed paper will include smooth Orbiter configuration boundary layer stability results for several typical orbiter entry conditions. In addition, the numerical modeling approach for establishing the mean laminar flow will be reviewed and the method for determining boundary layer disturbance growth will be overviewed. In addition, if actual Orbiter TPS surface data obtained via digital surface scans become available, it may be possible to investigate the effects of an as-flown flight configuration on boundary layer transition compared to a smooth CAD reference.
Dynamic Boundary Layer Properties in Turbulent Thermal Convection
NASA Astrophysics Data System (ADS)
Xia, Ke-Qing; Har Cheung, Yin; Sun, Chao
2004-11-01
We report an experimental study on the properties of the velocity and temperature boundary layers in turbulent thermal convection in a rectangular-shaped box over a range of Rayleigh numbers and at a constant Prandtl number. Velocity components both parallel and perpendicular to the conducting plate are measured simultaneously using the PIV technique. Our results show that, for the given geometry of the cell, the velocity boundary layer at the conduction plate is of a Blasius type, i.e. the boundary layer thickness δv scales with the Reynolds number Re as δv ˜ Re-1/2. The measurement further reveals that, at the velocity boundary layer, the turbulent (Reynolds) shear tress becomes larger than the viscous shear stress when Ra reaches 1-2×10^10, indicating that the boundary layer becomes turbulent for Ra >10^10. The viscous dissipation rate calculated based on the measured velocity field shows that it is dominated by contribution from the bulk over that from the boundary layer.
Turbulent Boundary Layer Facility to Investigate Superhydrophobic Drag Reduction
NASA Astrophysics Data System (ADS)
Gose, James W.; Perlin, Marc; Ceccio, Steven L.
2013-11-01
Recent developments in superhydrophobic surfaces have led to potential economic and environmental benefits, perhaps most notably in skin-friction drag reduction. A team from the University of Michigan has developed a recirculating turbulent boundary layer facility to investigate the reduction of drag along engineered superhydrophobic surfaces (SHS). The facility can accommodate both small and large SHS samples in a test section 7 mm (depth)×100 mm (span)×1000 mm (length). Coupled with an 11.2 kilowatt pump and a 30:1 contraction the facility is capable of producing an average flow velocity of 25 m/s, yielding a Reynolds number of 84,000. Flexure-mounted test samples subjected to shear deflect to a max of 50 microns; movements are measured using a digital microscope composed of a high-resolution camera and a water immersion objective. The setup yields an optical resolution of about one micron whereas sub-micron resolution is achieved by implementing an FFT of two Ronchi rulings. Additional drag measurement methods include pressure drop across the test specimen and PIV measured boundary layers. Additional SHS investigations include the implementation of active gas replenishment, providing an opportunity to replace gas-pockets that would otherwise be disrupted in traditional passive SHS surfaces due to high shear stress and turbulent pressure fluctuations. The authors recognize the support of ONR.
Onset of turbulent mean dynamics in boundary layer flow
NASA Astrophysics Data System (ADS)
Hamman, Curtis; Sayadi, Taraneh; Moin, Parviz
2012-11-01
Statistical properties of turbulence in low Reynolds number boundary layers are compared. Certain properties are shown to approach an asymptotic state resembling higher Reynolds number flow much earlier during transition than previously thought. This incipient turbulence is less stochastic and more organized than developed turbulence farther downstream, but the mean dynamics and production mechanisms are remarkably similar. The onset of turbulence in our recent simulations is also similar to that observed in the bypass transition of Wu & Moin where continuous freestream turbulence, rather than small-amplitude linear waves, triggers transition. For these inflow disturbances, self-sustaining turbulence occurs rapidly after laminar flow breakdown without requiring a significant development length nor significant randomization. Slight disagreements with FST-induced bypass transition are observed that correlate with the extra strain a turbulent freestream would impose upon the near-wall dynamics. Nevertheless, the turbulence statistics are similar shortly after the skin-friction overshoot independent of upstream receptivity. This early onset of deterministic turbulence provides support for reduced-order modeling of turbulent boundary layers based on non-linear stability mechanisms.
Interaction of a Boundary Layer with a Turbulent Wake
NASA Technical Reports Server (NTRS)
Piomelli, Ugo
2004-01-01
The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low
Calculation of three-dimensional boundary layers on rotor blades using integral methods
Karimipanah, M.T.; Olsson, E. )
1993-04-01
The important effects of rotation and compressibility on rotor blade boundary layers are theoretically investigated. The calculations are based on the momentum integral method and results from calculations of a transonic compressor rotor are presented. Influence of rotation is shown by comparing the incompressible rotating flow with the stationary one. Influence of compressibility is shown by comparing the compressible rotating flow with the incompressible rotating one. Two computer codes for three-dimensional laminar and turbulent boundary layers, originally developed by SSPA Maritime Consulting AB, have been further developed by introducing rotation and compressibility terms into the boundary layer equations. The effect of rotation and compressibility on the transition have been studied. The Coriolis and centrifugal forces that contribute to the development of the boundary layers and influence its behavior generate crosswise flow inside the blade boundary layers, the magnitude of which depends upon the angular velocity of the rotor and the rotor geometry. The calculations show the influence of rotation and compressibility on the boundary layer parameters. Momentum thickness and shape factor increase with increasing rotation and decrease when compressible flow is taken into account. For skin friction such effects have inverse influences. The different boundary layer parameters behave similarly on the suction and pressure sides with the exception of the crossflow angle, the crosswise momentum thickness, and the skin friction factor. The codes use a nearly orthogonal streamline coordinate system, which is fixed to the blade surface and rotates with the blade.
Observations of the Arctic boundary layer clouds during ACSE 2014
NASA Astrophysics Data System (ADS)
Achtert, P.; Sotiropoulou, G.; Brooks, I. M.; Brooks, B. J.; Johnston, P. E.; Persson, O. P. G.; Prytherch, J.; Salisbury, D.; Sedlar, J.; Tjernstrom, M. K. H.; Wolfe, D. E.; Shupe, M.
2015-12-01
Boundary-layer structure and dynamics are intimately linked with both surface exchange processes and the properties of boundary-layer clouds, which in turn exert a strong control on the surface energy budget. Sea ice melt and formation are thus closely coupled with boundary layer clouds and turbulent exchange. Coordinated observations of boundary layer processes and cloud dynamics are sparse in over the Arctic Ocean. This holds especially for observations that extend over the entire ice melt season. Measurements with surface-based remote-sensing instruments and near-surface meteorological sensors as well as through radiosoundings were perfomed during the 3-month Arctic Clouds in Summer Experiment (ACSE) in the East Siberian Arctic Ocean during the summer and early autumn of 2014. We will present a detailed view of cloud and fog properties in connection with boundary layer structure (e.g. inversions, stratification), vertical mixing processes, and the effect of a variety of surface conditions from open water, through marginal ice to dense pack ice on the overlaying cloud layers over. Most of the observed clouds showed a base height of 300 m or less. Strongly stable near-surface conditions with fog were often observed during the beginning of the cruise (summer season), whereas deeper surface-based mixed layers capped by mixed-phase clouds occured more frequently in autumn.
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.
2006-01-01
The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
Boundary layer equations and symmetry analysis of a Carreau fluid
NASA Astrophysics Data System (ADS)
Dolapci, Ihsan Timuçin
2016-06-01
In this paper, boundary layer equations of the Carreau fluid have been examined. Lie group theory is applied to the governing equations and symmetries of the equations are determined. The non-linear partial differential equations and their boundary conditions are transformed into a system of ordinary differential equations using the similarity transformations obtained from the symmetries. The system of ordinary differential equations are numerically solved for the boundary layer conditions. Finally, effects of non-Newtonian parameters on the solutions are investigated in detail.
Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Ahn, B-K.; Graham, W. R.; Rizzi, S. A.
2004-01-01
As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.
Multiple paths to subharmonic laminar breakdown in a boundary layer
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Hussaini, M. Yousuff
1989-01-01
Numerical simulations demonstrate that laminar breakdown in a boundary layer induced by the secondary instability of two-dimensional Tollmien-Schlichting waves to three-dimensional subharmonic disturbances need not take the conventional lambda vortex/high-shear layer path.
ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS
There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...
Ekberg, Peter; Su, Rong; Chang, Ernest W.; Yun, Seok Hyun; Mattsson, Lars
2014-01-01
Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 µm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness. PMID:24562018
Direct numerical simulation of turbulent thermal boundary layers
NASA Astrophysics Data System (ADS)
Kong, Hojin; Choi, Haecheon; Lee, Joon Sik
2000-10-01
In this paper, a method of generating realistic turbulent temperature fluctuations at a computational inlet is proposed and direct numerical simulations of turbulent thermal boundary layers developing on a flat plate with isothermal and isoflux wall boundary conditions are carried out. Governing equations are integrated using a fully implicit fractional-step method with 352×64×128 grids for the Reynolds number of 300, based on the free-stream velocity and the inlet momentum thickness, and the Prandtl number of 0.71. The computed Stanton numbers for the isothermal and isoflux walls are in good agreement with power-law relations without transient region from the inlet. The mean statistical quantities including root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and skewness and flatness of temperature fluctuations agree well with existing experimental and numerical data. A quadrant analysis is performed to investigate the coherence between the velocity and temperature fluctuations. It is shown that the behavior of the wall-normal heat flux is similar to that of the Reynolds shear stress, indicating close correlation between the streamwise velocity and temperature. The effect of different thermal boundary conditions at the wall on the near-wall turbulence statistics is also discussed.
Wintertime Boundary Layer Structure in the Grand Canyon.
NASA Astrophysics Data System (ADS)
Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi
1999-08-01
Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.
Orientation and circulation of vortices in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gao, Qi; Ortiz-Dueñas, Cecilia; Longmire, Ellen
2007-11-01
The strengths of individual vortices are important in determining the generation and development of surrounding vortices in turbulent boundary layers. The dual-plane PIV data at z^+ = 110 and z/δ = 0.53 in a turbulent boundary layer at Reτ=1160 obtained by Ganapathisubramani et al. (2006) were investigated. 3D swirl strength was used to identify vortex cores. The eigenvector of the velocity gradient tensor was used to determine the orientation of each core, and the resulting eigenvector direction was compared with the average vorticity direction. Circulation of the cores was calculated using the vorticity vector only and using the vorticity vector projected onto the eigenvector. The probability distribution of the angle between the eigenvector and the vorticity vector indicated a peak at 15-20 degrees. The eigenvector angle distributions indicate that at z^+=110, more hairpin legs cross the measurement plane while at z/δ = 0.53, more heads are evident. Details of the orientation and circulation distributions will be discussed in the presentation.
Using GPS Radio Occultation to study polar boundary layer properties
NASA Astrophysics Data System (ADS)
Ganeshan, M.; Wu, D. L.
2015-12-01
The sensitivity of GPS RO refractivity to moisture and temperature variations in polar regions is explored using radiosonde observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. A retrieval algorithm for the boundary layer inversion height and surface-based inversion (SBI) frequency is developed for dry atmospheric conditions (total precipitable water < 3.6 mm) that typically exist during polar winter, as well as in high-latitude, elevated regions such as eastern Antarctica and central Greenland. The algorithm is applied to the high-resolution refractivity profiles obtained over the polar Arctic region using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) dataset for the period 2006-2013. The method is found useful for capturing the spatiotemporal variability in Arctic inversion properties. For the Arctic Ocean, the spatial patterns show a minimum inversion height (maximum SBI frequency) over the ice-covered Pacific sector similar to that observed in past studies. Monthly evolution of the inversion characteristics suggests a surface temperature control in the multi-year sea ice region, with the peak in SBI frequency occurring during the transition period from winter to spring. For central Greenland, the seasonal peak in SBI frequency occurs during winter. The diurnal variability in SBI frequency is forced mainly by solar heating, consistent with past observations. Despite some limitations, the RO refractivity profile is found quite useful for monitoring the Arctic boundary layer, and is able to capture the interannual variability of inversion characteristics.
Near-wall turbulence modeling for boundary layers with separation
NASA Astrophysics Data System (ADS)
Ko, S. H.
1991-12-01
As a turbulent boundary layer undergoes a strong adverse pressure gradient, the flow may separate from the wall, and the use of empirical wall functions is inappropriate. The turbulence transport equations as well as the momentum equations must be solved through the laminar sublayer to the wall. The laminar sublayer encompasses a region where viscous effects become increasingly important. For the past two decades, many proposals for near-wall turbulence models of the kappa-epsilon type have been presented for calculating near-wall flows. A thorough review and a systematic evaluation of these models was previously given. It was found that some of the models tested failed to reproduce even the simple flat-plate boundary layer flow. Overall, the authors concluded that the near-wall turbulence models needed further refinement if they were to be used with confidence to calculate near-wall flows. Recently, the use of a direct numerical simulation (DNS) data base has provided new insight and data for development and testing of near-wall turbulence models.
Low Cost Geothermal Separators BLISS Boundary Layer Inline Separator Scrubber
Jung, Douglas; Wai, King
2000-05-26
A new compact, low cost, and high performance separator is being developed to help reduce the installed and O and M cost of geothermal power generation. This device has been given the acronym ''BLISS'' that stands for ''Boundary Layer Inline Separator Scrubber''. The device is the first of a series of separators, and in the case of injectates, scrubbers to address the cost-reduction needs of the industry. The BLISS is a multi-positional centrifugal separator primarily designed to be simply installed between pipe supports, in a horizontal position. This lower profile reduces the height safety concern for workers, and significantly reduces the total installation cost. The vessel can demand as little as one-quarter (25%) the amount of steel traditionally required to fabricate many large vertical separators. The compact nature and high separating efficiency of this device are directly attributable to a high centrifugal force coupled with boundary layer control. The pseudo isokinetic flow design imparts a self-cleaning and scale resistant feature. This polishing separator is designed to remove moderate amounts of liquid and entrained solids.
Numerical Studies of Boundary-Layer Receptivity
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1995-01-01
Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.
Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
King, RUdolph A.; Berry, Scott A.; Kegerise, Michael A.
2008-01-01
This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent.
An experimental investigation of turbulent boundary layers along curved surfaces
NASA Technical Reports Server (NTRS)
So, R. M. C.; Mellor, G. L.
1972-01-01
A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.
Pressure-strain correlations in curved wall boundary layers
NASA Technical Reports Server (NTRS)
Hong, S. K.; Murthy, S. N. B.
1984-01-01
Pressure-strain correlations, which represent some part of production and dissipation of Reynolds stress in turbulent wall-bounded shear layers, have been determined for the cases of boundary layer flow past a convex, a concave and a flat wall, the latter also in the case when it follows a convex wall (relaxing flow). The Large Eddy Interaction Model utilized for prediction also permits determination of the contribution from different parts of the turbulence spectra to the correlations in different parts across the boundary layer. The relation between the anisotropic nature of the correlations and the spectra in the different flow cases provides a means of testing models for the correlations.
NASA Astrophysics Data System (ADS)
Trip, Renzo; Fransson, Jens H. M.
2014-12-01
The wake characteristics of a two-dimensional rectangular forebody with a smooth leading edge and a blunt trailing edge are investigated. Wall suction is applied along the forebody in order to modify the developing boundary layer. An initially laminar boundary layer subject to suction yields an asymptotic suction boundary layer at the trailing edge of the body, whereas a high enough suction coefficient relaminarizes an initially turbulent boundary layer. The critical suction velocity required to achieve this significant modification of the boundary layer properties is typically in the order of 1% of the free-stream velocity, where the critical suction coefficient depends on the Reynolds number. We show that a thinner boundary layer induces a higher vortex shedding frequency and a lower base pressure. Furthermore, the boundary layer state, laminar or turbulent, has a significant influence on the wake. For example, the Strouhal number based on the effective body thickness is being reduced by 25% from laminar to turbulent inlet conditions.
Vortex Generators to Control Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)
2014-01-01
Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.
Investigation of Boundary Layers on an Airplane Wing in Free Flight
NASA Technical Reports Server (NTRS)
Stuper, J
1934-01-01
This report describes the equipment and method developed for recording the boundary layers on the surface of an airfoil in free flight. The results are in close agreement with the wind-tunnel tests of other experimenters. The intensity of the turbulent boundary layer, even at the much higher Reynolds Numbers reached, is determinable with Gruschwitz's formulas, although it was impossible to definitely establish a direct relationship between the turbulent boundary layer and the Reynolds Number within the limits of the obtained accuracy. The observations on the transition from laminar to turbulent flow check with previous wind-tunnel tests and calculations.
Diamagnetic boundary layers - A kinetic theory. [for collisionless magnetized plasmas
NASA Technical Reports Server (NTRS)
Lemaire, J.; Burlaga, L. F.
1976-01-01
A kinetic theory is presented for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma, such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers in which the current is carried by protons are discussed; in particular, cases are considered in which the magnetic-field intensity, direction, or both, changed across the layer. In every case, the thickness was of the order of a few proton gyroradii, and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. These results are consistent with observations of boundary layers in the solar wind near 1 AU.
Investigation of the temperature field in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Byers, Clayton; Hultmark, Marcus
2015-11-01
The scaling and evolution of a developing turbulent thermal boundary layer is investigated. By allowing the temperature differences in the fluid to remain small enough to treat temperature as a passive scalar, the analysis can be extended to any turbulent convection/diffusion problem. Mean temperature scaling is developed and analyzed by utilizing the ``Asymptotic Invariance Principle'' developed by George and Castillo (1997). Possible effects of the Reynolds and Prandtl number are discussed. The derived power law solution for the inner and outer scaling is then used to develop a ``heat transfer law'' for the wall heat flux, qw. Data collection is performed with a newly developed MEMS sensor, allowing improved performance and reduced spatial and temporal filtering of the signal. Integration with a PIV system will allow direct measurements of the turbulent heat flux - θv to investigate the extent of the overlap layer and validity of the proposed scaling laws. Temperature variance 1/2 θ2 will also be investigated, with a possible scaling proposed.
Linear stability analysis of three-dimensional compressible boundary layers
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Orszag, Steven A.
1987-01-01
A compressible stability analysis computer code is developed. The code uses a matrix finite-difference method for local eigenvale solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used inital-value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed that may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black-box stability code. Sample stability calculations are presented for the boundary layer profiles of an LFC swept wing.
Turbulence models for compressible boundary layers
NASA Technical Reports Server (NTRS)
Huang, P. G.; Bradshaw, P.; Coakley, T. J.
1994-01-01
It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
NASA Astrophysics Data System (ADS)
Dekker, H.; de Leeuw, G.; van den Brink, A. Maassen
A nonlocal turbulence transport theory is presented by means of a novel analysis of the Reynolds stress, inter alia involving the construct of a sample path space and a stochastic hypothesis. An analytical sampling rate model (satisfying exchange) and a nonlinear scaling relation (mapping the path space onto the boundary layer) lead to an integro-differential equation for the mixing of scalar densities, which represents fully-developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The underlying near-wall behavior (i.e. for y +→0) of fluctuating velocities fully agrees with recent direct numerical simulations. The model involves a scaling exponent ɛ, with ɛ→∞ in the diffusion limit. For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ≈0.58. The significance of ɛ as a turbulence Cantor set dimension (in the logarithmic profile region, i.e. for y +→∞) is discussed.
Similarity theory of the buoyantly interactive planetary boundary layer with entrainment
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Sud, Y. C.
1976-01-01
A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.
Linear and nonlinear PSE for compressible boundary layers
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Yousuff
1993-01-01
Compressible stability of growing boundary layers is studied by numerically solving the partial differential equations under a parabolizing approximation. The resulting parabolized stability equations (PSE) account for nonparallel as well as nonlinear effects. Evolution of disturbances in compressible flat-plate boundary layers are studied for freestream Mach numbers ranging from 0 to 4.5. Results indicate that the effect of boundary-layer growth is important for linear disturbances. Nonlinear calculations are performed for various Mach numbers. Two-dimensional nonlinear results using the PSE approach agree well with those from direct numerical simulations using the full Navier-Stokes equations while the required computational time is less by an order of magnitude. Spatial simulation using PSE were carried out for both the fundamental and subharmonic type breakdown for a Mach 1.6 boundary layer. The promising results obtained show that the PSE method is a powerful tool for studying boundary-layer instabilities and for predicting transition over a wide range of Mach numbers.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.
Turbulent boundary-layer structure of flows over freshwater biofilms
NASA Astrophysics Data System (ADS)
Walker, J. M.; Sargison, J. E.; Henderson, A. D.
2013-12-01
The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.
Stabilization of boundary layer streaks by plasma actuators
NASA Astrophysics Data System (ADS)
Riherd, Mark; Roy, Subrata
2014-03-01
A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien-Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier-Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow.
Interferometric data for a shock-wave/boundary-layer interaction
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Brown, James L.; Miles, John B.
1986-01-01
An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.
The upper-branch stability of compressible boundary layer flows
NASA Technical Reports Server (NTRS)
Gajjar, J. S. B.; Cole, J. W.
1989-01-01
The upper-branch linear and nonlinear stability of compressible boundary layer flows is studied using the approach of Smith and Bodonyi (1982) for a similar incompressible problem. Both pressure gradient boundary layers and Blasius flow are considered with and without heat transfer, and the neutral eigenrelations incorporating compressibility effects are obtained explicitly. The compressible nonlinear viscous critical layer equations are derived and solved numerically and the results indicate some solutions with positive phase shift across the critical layer. Various limiting cases are investigated including the case of much larger disturbance amplitudes and this indicates the structure for the strongly nonlinear critical layer of the Benney-Bergeon (1969) type. It is also shown how a match with the inviscid neutral inflexional modes arising from the generalized inflexion point criterion, is achieved.
Three-dimensional visualization of large structures in the turbulent boundary layer
NASA Astrophysics Data System (ADS)
Hoyt, J. W.; Sellin, R. H. J.
A new method of visualizing the coherent structures in the boundary layer is used to develop insight into how these structures form and to provide information on the relative frequency of typical shapes noticed in the near-wall flow. These results were achieved in a water channel using a recently developed tracer which remains as a moving dye streak while conforming to the convoluted motions in the boundary layer. The tracer is formulated from a surfactant-polymer-emulsion mixture which retains its capabilities as a marker of evolving flow motions in the boundary layer for a meter or more before eventually dispersing. Three-dimensional, continuous visualization of the structures can be obtained as they move along a flat plate. Photos and video frames demonstrate the evolution and properties of the most widely discussed boundary-layer structure, the Theodorsen (horseshoe) vortex.
Rubin, H.; Buddemeier, R.W.
1996-01-01
This paper presents improvements in the 'classical boundary layer' (CBL) approximation method to obtain simple but robust initial characterization of aquifer contamination processes. Contaminants are considered to penetrate into the groundwater through the free surface of the aquifer. The improved method developed in this study is termed the 'top specified boundary layer' (TSBL) approach. It involves the specification of the contaminant concentration at the top of the contaminated 'region of interest' (ROI), which is simulated as a boundary layer. the TSBL modification significantly improves the ability of the boundary layer method to predict the development of concentration profiles over both space and time. The TSBL method can be useful for the simulation of cases in which the contaminant concentration is prescribed at the aquifer's free surface as well as for cases in which the contaminant mass flux is prescribed at the surface.
NASA Technical Reports Server (NTRS)
Vanness, W.
1978-01-01
A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.
Structure of reconnection boundary layers in incompressible MHD
Sonnerup, B.U.Oe.; Wang, D.J. )
1987-08-01
The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process.
FOREWORD: International Conference on Planetary Boundary Layer and Climate Change
NASA Astrophysics Data System (ADS)
Djolov, G.; Esau, I.
2010-05-01
and convection in the climate system and the prominent demonstration of the climate sensitivity to the ocean heat uptake observed off Cape Town. The international conference responded to the urgent need of advancing our understanding of the complex climate system and development of adequate measures for saving the planet from environmental disaster. It also fits well with the Republic of South African government's major political decision to include the responses to global change/climate change at the very top of science and technology policy. The conference participants are grateful to the Norway Research Council and the National Research Foundation (NRF) RSA who supported the Conference through the project "Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes" realized in the framework of the Programme for Research and Co-operation Phase II between the two countries. Kirstenbosh Biodiversity Institute and Botanical Gardens, Cape Town contribution of securing one of the most beautiful Conference venues in the world and technical support is also highly appreciated. G. Djolov and I. Esau Editors Conference_Photo Conference Organising Comittee Djolov, G.South AfricaUniversity of Pretoria Esau, I.NorwayNansen Environmental and Remote Sensing Center Hewitson, B.South AfricaUniversity of Cape Town McGregor, J.AustraliaCSIRO Marine and Atmospheric Research Midgley, G.South AfricaSouth African National Botanical Institute Mphepya, J.South AfricaSouth African Weather Service Piketh, S.South AfricaUniversity of the Witwatersrand Pielke, R.USAUniversity of Colorado, Boulder Pienaar, K.South AfricaUniversity of the North West Rautenbach, H.South AfricaUniversity of Pretoria Zilitinkevich, S.FinlandUniversity of Helsinki The conference was organized by: University of Pretoria Nansen Environmental and Remote Sensing Center With support and sponsorship from: Norwegian Research Council (grant N 197649
NASA Astrophysics Data System (ADS)
Wagner, Johannes; Gohm, Alexander; Rotach, Mathias; Leukauf, Daniel; Posch, Christian
2014-05-01
The role of horizontal model grid resolution on the development of the daytime boundary layer over mountainous terrain is studied. A simple idealized valley topography with a cross-valley width of 20~km, a valley depth of 1.5~km and a constant surface heat flux forcing is used to generate upslope flows in a warming valley boundary layer. The goal of this study is to investigate differences in the upslope flow and boundary layer structure of the valley when its topography is either fully resolved, smoothed or not resolved by the numerical model. This is done by performing both large-eddy (LES) and kilometer-scale simulations with mesh sizes of 50, 1000, 2000, 4000, 5000 and 10000~m. In LES mode a valley inversion layer develops, which separates two vertically stacked circulation cells in an upper and lower boundary layer. These structures weaken with decreasing horizontal model grid resolution and change to a convective boundary layer similar to the one over an elevated flat plain when the valley is no longer resolved. Mean profiles of the LES run, which are obtained by horizontal averaging over the valley show a three-layer thermal structure and a secondary heat flux maximum at ridge height. Strong smoothing of the valley topography prevents the development of a valley inversion layer with stacked circulation cells and leads to higher valley temperatures due to smaller valley volumes. This investigation shows that a parameterization is needed in coarse resolution models to capture exchange processes over mountainous terrain.
Effect of Far-Field Boundary Conditions on Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
Bertolotti, Fabio P.; Joslin, Ronald D.
1994-01-01
The effect of far-field boundary conditions on the evolution of a finite-amplitude two-dimensional wave in the Blasius boundary layer is assessed. With the use of the parabolized stability equations (PSE) theory for the numerical computations, either asymptotic, Dirichlet, Neumann or mixed boundary conditions are imposed at various distances from the wall. The results indicate that asymptotic and mixed boundary conditions yield the most accurate mean-flow distortion and unsteady instability modes in comparison with the results obtained with either Dirichlet or Neumann conditions.
Effect of Far-Field Boundary Conditions on Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
Bertolotti, Fabio P.; Joslin, Ronald D.
1995-01-01
The effect of far-field boundary conditions on the evolution of a finite-amplitude two-dimensional wave in the Blasius boundary layer is assessed. With the use of the parabolized stability equations (PSE) theory for the numerical computations, either asymptotic, Dirichlet, Neumann or mixed boundary conditions are imposed at various distances from the wall. The results indicate that asymptotic and mixed boundary conditions yield the most accurate mean-flow distortion and unsteady instability modes in comparison with the results obtained with either Dirichlet or Neumann conditions.
The effects of forcing on a single stream shear layer and its parent boundary layer
NASA Technical Reports Server (NTRS)
Haw, Richard C.; Foss, John F.
1990-01-01
Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.
Wind sensing in an atmospheric boundary layer by means of micropulse coherent Doppler lidars
NASA Astrophysics Data System (ADS)
Banakh, V. A.; Smalikho, I. N.
2016-07-01
An algorithm is developed and computer simulation of wind sensing by means of micropulse coherent Doppler lidars (CDLs) in the atmospheric boundary layer is conducted for low values of the signalto- noise (SNR) ratio. The accuracy of lidar wind measurements is studied numerically for parameters of micropulse Stream Line CDLs. Optimal parameters of the measurements and processing data obtained at low SNR, which allow reconstructing vertical profiles of the wind velocity vector with required accuracy within an entire atmospheric boundary layer, are determined.
Shipboard measurements of the cloud-capped marine boundary layer during FIRE/ASTEX
1997-09-01
Results are reported on measurements of the cloud-capped marine boundary layer during FIRE/ASTEX. A method was developed from the ASTEX dataset for measuring profiles of liquid water content, droplet size and concentration from cloud radar/microwave radiometer data in marine boundary layer clouds. Profiles were also determined from the first three moments of the Doppler spectrum measured in drizzle with the ETL cloud radar during ASTEX.
NASA Technical Reports Server (NTRS)
Schmidt, J. F.; Boldman, D. R.; Todd, C.
1972-01-01
A laminarization model which consists of a completely laminar sublayer region near the wall and a turbulent wake region is developed for the turbulent eddy transport in accelerated turbulent boundary layers. This laminarization model is used in a differential boundary layer calculation which was applied to nozzle flows. The resulting theoretical velocity profiles are in good agreement with the experimental nozzle data in the convergent region.
Horton, pipe hydraulics, and the atmospheric boundary layer (The Robert E. Horton Memorial Lecture)
NASA Technical Reports Server (NTRS)
Brutsaert, Wilfried
1993-01-01
The early stages of Horton's scientific career which provided the opportunity and stimulus to delve into the origins of some contemporary concepts on the atmospheric boundary layer are reviewed. The study of Saph and Schoder provided basis for the experimental verification and validation of similarity by Blasius, Staton and Pannel, and for the subsequent developments that led to the present understanding of the turbulent boundary layer. Particular attention is given to incorporation of similarity and scaling in the analysis of turbulent flow.
Effect of Blowing on Boundary Layer of Scarf Inlet
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Clark, Lorenzo R.
2004-01-01
When aircraft operate in stationary or low speed conditions, airflow into the engine accelerates around the inlet lip and pockets of turbulence that cause noise and vibration can be ingested. This problem has been encountered with engines equipped with the scarf inlet, both in full scale and in model tests, where the noise produced during the static test makes it difficult to assess the noise reduction performance of the scarf inlet. NASA Langley researchers have implemented boundary layer control in an attempt to reduce the influence of the flow nonuniformity in a 12-in. diameter model of a high bypass fan engine mounted in an anechoic chamber. Static pressures and boundary layer profiles were measured in the inlet and far field acoustic measurements were made to assess the effectiveness of the blowing treatment. The blowing system was found to lack the authority to overcome the inlet distortions. Methods to improve the implementation of boundary layer control to reduce inlet distortion are discussed.
Boundary layer integral matrix procedure: Verification of models
NASA Technical Reports Server (NTRS)
Bonnett, W. S.; Evans, R. M.
1977-01-01
The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.
Roughness Induced Transition in a Supersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; Kergerise, Michael A.
2013-01-01
Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.
The Turbulent Boundary Layer on a Rough Curvilinear Surface
NASA Technical Reports Server (NTRS)
Droblenkov, V. F.
1958-01-01
A number of semiempirical approximate methods exist for determining the characteristics of the turbulent boundary layer on a curvilinear surface. At present, among these methods, the one proposed by L. G. Loitsianskii is given frequent practical application. This method is sufficiently effective and permits, in the case of wing profiles with technically smooth surfaces, calculating the basic characteristics of the boundary layer and the values of the overall drag with an accuracy which suffices for practical purposes. The idea of making use of the basic integral momentum equation ((d delta(sup xx))/dx) + ((V' delta(sup xx))/V) (2 + H) = (tau(sub 0))/(rho V(exp 2)) proves to be fruitful also for the solution of the problems in the determination of the characteristics of the turbulent boundary layer on a rough surface.
Turbulence in the convective boundary layer observed by microwave interferometry
Shao, X.M.; Carlos, R.C.; Kirkland, M.W.
1997-12-01
A 9-antenna, 400 meter microwave interferometer was utilized in SALSA MEX on the San Pedro River area in July and August, 1997, to measure the turbulence in the Convective Boundary Layer. Water vapor has an appreciable index of refraction at radio frequencies around 10 GHz, and acts as a passive tracer of the magnitude and motion of turbulence. The relative phase changes of a signal from a satellite were tracked by an array of 9 antennas, and the phase differences between antennas were then used to derive the turbulence properties of the boundary layer. Preliminary analysis shows clearly different characteristics for the convection activity of the boundary layer between day and night. From the structure function analysis they can see that the turbulence structure starts to decorrelate at scale sizes of 200 meters for a temporal passband around 100 seconds. Derivation of average wind fields is currently in process.
Hypersonic flow separation in shock wave boundary layer interactions
NASA Technical Reports Server (NTRS)
Hamed, A.; Kumar, Ajay
1992-01-01
An assessment is presented for the experimental data on separated flow in shock wave turbulent boundary layer interactions at hypersonic and supersonic speeds. The data base consists mainly of two dimensional and axisymmetric interactions in compression corners or cylinder-flares, and externally generated oblique shock interactions with boundary layers over flat plates or cylindrical surfaces. The conditions leading to flow separation and the subsequent changes in the flow empirical correlations for incipient separation are reviewed. The effects of the Mach number, Reynolds number, surface cooling and the methods of detecting separation are discussed. The pertinent experimental data for the separated flow characteristics in separated turbulent boundary layer shock interaction are also presented and discussed.
Localized travelling waves in the asymptotic suction boundary layer
NASA Astrophysics Data System (ADS)
Kreilos, Tobias; Gibson, John F.; Schneider, Tobias M.
2016-05-01
We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.
A compilation of unsteady turbulent boundary-layer experimental data
NASA Technical Reports Server (NTRS)
Carr, L. W.
1981-01-01
An extensive literature search was conducted and those experiments related to unsteady boundary layer behavior were cataloged. In addition, an international survey of industrial, university, and governmental research laboratories was made in which new and ongoing experimental programs associated with unsteady turbulent boundary layer research were identified. Pertinent references were reviewed and classified based on the technical emphasis of the various experiments. Experiments that include instantaneous or ensemble averaged profiles of boundary layer variables are stressed. The experimental apparatus and flow conditions are described and summaries of acquired data and significant conclusions are summarized. Measurements obtained from the experiments which exist in digital form were stored on magnetic tape. Instructions are given for accessing these data sets for further analysis.
DNS of Turbulent Boundary Layers under Highenthalpy Conditions
NASA Astrophysics Data System (ADS)
Duan, Lian; Martín, Pino
2010-11-01
To study real-gas effects and turbulence-chemistry interaction, direct numerical simulations (DNS) of hypersonic boundary layers are conducted under typical hypersonic conditions. We consider the boundary layer on a lifting-body consisting of a flat plate at an angle of attack, which flies at altitude 30km with a Mach number 21. Two different inclined angles, 35^o and 8^o, are considered,representing blunt and slender bodies. Both noncatalytic and supercatalytic wall conditions are considered. The DNS data are studied to assess the validity of Morkovin's hypothesis, the strong Reynolds analogy, as well as the behaviors of turbulence structures under high-enthalpy conditions.Relative to low-enthalpy conditions [1], significant differences in typical scalings are observed. [4pt] [1] L. Duan and I. Beekman and M. P. Mart'in, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2: Effect of temperature, J. Fluid Mech. 655 (2010), 419-445.
Nonlocalized receptivity of boundary layers to three-dimensional disturbances
NASA Astrophysics Data System (ADS)
Crouch, J. D.; Bertolotti, F. P.
1992-01-01
The nonlocalized receptivity of the Blasius boundary layer over a wavy surface is analyzed using two different approaches. First, a mode-interaction theory is employed to unveil basic mechanisms and to explore the interplay between different components of the disturbance field. The second approach is derived from the parabolized stability equations. These nonlinear equations incorporate the effects of the stream-wise divergence of the boundary layer. The analysis provides results for three-dimensional disturbances and also considers nonparallel effects. Results for two-dimensional disturbances demonstrate that nonparallel effects are negligible and substantiates the mechanism described by the mode-interaction theory. Nonparallel effects become significant with increasing three-dimensionality. Receptivity amplitudes are shown to be large over a broad range of surface wave numbers. When operative, this mechanism is likely to dominate the boundary-layer receptivity.
Numerical Simulations of Wake/Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Choudhari, Meelan M.; Ovchinnikov, Victor; Balaras, Elias
2003-01-01
Direct and large-eddy simulations of the interaction between the wake of a circular cylinder and a flat-plate boundary layer are conducted. Two Reynolds numbers are examined. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re(sub theta) achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established.
Blow-up and control of marginally separated boundary layers.
Braun, Stefan; Kluwick, Alfred
2005-05-15
Interactive solutions for steady two-dimensional laminar marginally separated boundary layers are known to exist up to a critical value Gamma(c) of the controlling parameter (e.g. the angle of attack of a slender airfoil) Gamma only. Here, we investigate three-dimensional unsteady perturbations of such boundary layers, assuming that the basic flow is almost critical, i.e. in the limit Gamma(c)-Gamma-->0. It is then shown that the interactive equations governing such perturbations simplify significantly, allowing, among others, a systematic study of the blow-up phenomenon observed in earlier investigations and the optimization of devices used in boundary-layer control. PMID:16105768
Particle motion inside Ekman and Bödewadt boundary layers
NASA Astrophysics Data System (ADS)
Duran Matute, Matias; van der Linden, Steven; van Heijst, Gertjan
2014-11-01
We present results from both laboratory experiments and numerical simulations of the motion of heavy particles inside Ekman and Bödewadt boundary layers. The particles are initially at rest on the bottom of a rotating cylinder filled with water and with its axis parallel to the axis of rotation. The particles are set into motion by suddenly diminishing the rotation rate and the subsequent creation of a swirl flow with the boundary layer above the bottom plate. We consider both spherical and non-spherical particles with their size of the same order as the boundary layer thickness. It was found that the particle trajectories define a clear logarithmic spiral with its shape depending on the different parameters of the problem. Numerical simulations show good agreement with experiments and help explain the motion of the particles. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.
Defects and boundary layers in non-Euclidean plates
NASA Astrophysics Data System (ADS)
Gemmer, J. A.; Venkataramani, S. C.
2012-12-01
We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the Föppl-von Kármán reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers—deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet.
Optical measurements of degradation in aircraft boundary layers
NASA Technical Reports Server (NTRS)
Kelsall, D.
1980-01-01
Visible wavelength measurements of the degradation of optical beams when transmitted through the thin aerodynamic boundary layers around an aircraft are reviewed. The measured results indicated degradation levels for the KC-135 airplanes between 0.10 to 0.13 lambda increasing to 0.18 lambda (rms wavefront distortion). For the Lear Jet, degradation with a 25 mm diameter optics was roughly 0.07 lambda. The corresponding infinite aperture degradation levels are also calculated. The corresponding measured correlation lengths of roughly 12 mm for the KC-135 aircraft and 6 mm for the Lear Jet scale to roughly 20 and 25 mm, respectively, for infinite apertures. These boundary layer correlation lengths do not appear to reflect the different boundary layer thicknesses on the two different aircraft.
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
Influence of wall permeability on turbulent boundary-layer properties
NASA Technical Reports Server (NTRS)
Wilkinson, S. P.
1983-01-01
Experimental boundary-layer studies of a series of low pressure drop, permeable surfaces have been conducted to characterize their surface interaction with a turbulent boundary layer. The models were flat and tested at nominally zero pressure gradient in low speed air. The surfaces were thin metal sheets with discrete perforations. Direct drag balance measurements of skin friction indicate that the general effect of surface permeability is to increase drag above that of a smooth plate reference level. Heuristic arguments are presented to show that this type of behavior is to be expected. Other boundary-layer data are also presented including mean velocity profiles and conditionally sampled streamwise velocity fluctuations (hot wire) for selected models.
Atmospheric boundary layer processes during a total solar eclipse
SethuRaman, S.; Prabhu, A.; Narahari Rao, K.; Narasimha, R.
1980-01-01
The total solar eclipse that occurred over the southern part of India on February 16, 1980, gave a unique opportunity to study the earth's atmospheric boundary layer. The meteorological experiments during the 1980 solar eclipse were conducted at Raichur, India (16/sup 0/12'N, 77/sup 0/21'E) located in the state of Karnataka, approximately 400-m above sea level. The main objective was to determine the changes in the earth's atmosphere during and immediately after the eclipse. The goal was to study the changes in the momentum and heat fluxes in the boundary layer due to the eclipse. Measurements were made for 2 days prior to and 1 day after the day of the eclipse to determine background characteristics of the boundary layer which might be site-dependent.
Finite volume solution of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Loyd, B.; Murman, E. M.
1986-01-01
A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.
Instability of a Supersonic Boundary-Layer with Localized Roughness
NASA Technical Reports Server (NTRS)
Marxen, Olaf; Iaccarino, Gianluca; Shaqfeh, Eric S. G.
2010-01-01
A localized 3-D roughness causes boundary-layer separation and (weak) shocks. Most importantly, streamwise vortices occur which induce streamwise (low U, high T) streaks. Immersed boundary method (volume force) suitable to represent roughness element in DNS. Favorable comparison between bi-global stability theory and DNS for a "y-mode" Outlook: Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS).
Transition and Breakdown to Turbulence in Incompressible Boundary Layers
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam
1998-01-01
We have developed a code where the nonlinear terms are treated implicitly. The equations are discretized using the two-point fourth order compact scheme in the y-direction and the backward Euler method in the x-direction. We investigated the transition process in a Blasius boundary layer due to fundamental type breakdown. With 8 modes in the w and 3 planes, we could compute the evolution of disturbances up to Re(x)=910, which is well into the strongly nonlinear region. The transition onset point is located around Re(x)=850. The comparison with the measurements and with the DNS computations are very good up to Re(x)=880.
Unsteady boundary layers with an intelligent numerical scheme
NASA Astrophysics Data System (ADS)
Cebeci, T.
1986-02-01
A numerical method has been developed to represent unsteady boundary layers with large flow reversal. It makes use of the characteristic box scheme which examines the finite-difference grid in relation to the magnitude and direction of local velocity and reaches and implements a decision to ensure that the Courant, Friedricks and Lewey stability criterion is not violated. The method has been applied to the problem of an impulsively started circular cylinder and the results, though generally consistent with those of van Dommelen and Shen obtained with a Lagrangian method, show some differences. The time step is identified as very important and, with the present intelligent numerical scheme, the results were readily extended to times far beyond those previously achieved with Eulerian methods. Extrapolation of the results suggests that the much-discussed singularity for this unsteady flow is the same as that of the corresponding steady flow.
Control of flow separation in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Cho, Minjeong; Choi, Sangho; Choi, Haecheon
2015-11-01
Towards the development of successful control methods for separation delay in a turbulent boundary layer, we adopt a model flow field, in which a turbulent separation occurs above a flat plate (Na and Moin 1998 JFM), and apply controls to this flow for reducing the size of the separation bubble and investigating the interaction between the forcing and flow near the separation bubble. We provide a single-frequency forcing with zero net mass flow rate at the upstream of the separation bubble. At low forcing frequencies, spanwise vortices are generated and travel downstream, bringing high momentum toward the wall and reducing the size of the separation bubble. Also, these vortices cause the separation and reattachment points to travel downstream. On the other hand, at high forcing frequencies, the size of the separation bubble becomes smaller and larger in time, respectively, due to the pressure gradient alternating favorably and adversely in time. Supported by NRF-2011-0028032 and 2014048162.
Combined core/boundary layer transport simulations in tokamaks
Prinja, A.K.; Schafer, R.F. Jr.; Conn, R.W.; Howe, H.C.
1986-04-01
Significant new numerical results are presented from self-consistent core and boundary or scrape-off layer plasma simulations with 3-D neutral transport calculations. For a symmetric belt limiter it is shown that, for plasma conditions considered here, the pump limiter collection efficiency increases from 11% to 18% of the core efflux as a result of local reionization of blade deflected neutrals. This hitherto unobserved effect causes a significant amplification of upstream ion flux entering the pump limiter. Results from coupling of an earlier developed two-zone edge plasma model ODESSA to the PROCTR core plasma simulation code indicates that intense recycling divertor operation may not be possible because of stagnation of upstream flow velocity. This results in a self-consistent reduction of density gradient in an intermediate region between the central plasma and separatrix, and a concomitant reduction of core-efflux. There is also evidence of increased recycling at the first wall.
The numerical calculation of laminar boundary-layer separation
NASA Technical Reports Server (NTRS)
Klineberg, J. M.; Steger, J. L.
1974-01-01
Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.
A low-density boundary-layer wind tunnel facility
NASA Technical Reports Server (NTRS)
White, B. R.
1987-01-01
This abstract describes a low-density wind-tunnel facility that was established at NASA Ames in order to aid interpretation and understanding of data received from the Mariner and Viking spacecraft through earth-based simulation. The wind tunnel is a boundary-layer type which is capable of operating over a range of air densities ranging from 0.01 to 1.24 kg/cu m, with the lower values being equivalent to the near-surface density of the planet Mars. Although the facility was developed for space and extraterrestrial simulation, it also can serve as a relatively large-scale, low-density aerodynamic test facility. A description of this unique test facility and some Pitot-tube and hot-wire anemometry data acquired in the facility are presented.
Boundary-layer-ingesting inlet flow control system
NASA Technical Reports Server (NTRS)
Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)
2010-01-01
A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.
Effect of curvature on three-dimensional boundary layer stability
NASA Technical Reports Server (NTRS)
Malik, M. R.; Poll, D. I. A.
1984-01-01
The problem of the stability of a three-dimensional laminar boundary layer formed on a curved surface is considered. A calculation scheme, which takes account of the curvature of the flow streamlines and of the surface is proposed for the prediction of the development of small amplitude temporal disturbances. Computations have been performed for the flow over the windward face of an infinitely long yawed cylinder and comparisons have been made with experimental data. These indicate that the theory correctly predicts many of the features of the unstable laminar flow. The theory also suggests that transition, in this particular situation, is dominated by traveling disturbance waves and that, at the experimentally observed transition location, the wave which has undergone greatest total amplification has an amplitude ratio of approximately e to the 11th. When the effects of curvature are omitted the maximum amplitude ratio at transition is about e to the 17th.
Tracking Coherent Structures in a Mach 4 Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Subbareddy, Pramod; Moss, Alin; Marusic, Ivan; Candler, Graham
2000-11-01
We describe a study of different criteria for the detection and tracking of coherent vortical structures in a turbulent compressible boundary layer. Several vortex identification methods are presented, with special attention to methods based on the eigenvalues of the velocity gradient tensor. We find that for the Mach 4 compressible flow, the discriminant of the characteristic polynomial of the tensor is most suitable in the sense that the near wall coherent features are better defined. The vortex connection/reconnection process that we observe is tracked in time and studied. The visualizations are done using a classical ray-casting volume renderer which makes it possible to color-fill specific structures and follow their motion through the flow field. A qualitative comparison with an incompressible wall turbulence is also made. The long term goal of this study is to develop feature extraction tools which can track the evolution of structures in large data sets efficiently.
Langevin equation model of dispersion in the convective boundary layer
Nasstrom, J S
1998-08-01
This dissertation presents the development and evaluation of a Lagrangian stochastic model of vertical dispersion of trace material in the convective boundary layer (CBL). This model is based on a Langevin equation of motion for a fluid particle, and assumes the fluid vertical velocity probability distribution is skewed and spatially homogeneous. This approach can account for the effect of large-scale, long-lived turbulent structures and skewed vertical velocity distributions found in the CBL. The form of the Langevin equation used has a linear (in velocity) deterministic acceleration and a skewed randomacceleration. For the case of homogeneous fluid velocity statistics, this ""linear-skewed" Langevin equation can be integrated explicitly, resulting in a relatively efficient numerical simulation method. It is shown that this approach is more efficient than an alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear deterministic acceleration and a Gaussian random acceleration) assuming homogeneous turbulence, and much more efficient than alternative approaches using Langevin equation models assuming inhomogeneous turbulence. "Reflection" boundary conditions for selecting a new velocity for a particle that encounters a boundary at the top or bottom of the CBL were investigated. These include one method using the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated, and two alternatives in which the magnitudes of these velocities are negatively correlated and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed tracer must be the same as those of the fluid, was used to develop the Langevin equation models and the reflection boundary conditions. The two Langevin equation models and three reflection methods were successfully tested using cases for which exact, analytic statistical properties of particle velocity and position are known, including well
Effect of pressure gradient fluctuations on boundary layer turbulence
NASA Astrophysics Data System (ADS)
Joshi, Pranav; Katz, Joseph; Liu, Xiaofeng
2013-11-01
The present study focuses on the effect of large-scale pressure gradient fluctuations on turbulence in both, zero pressure gradient (ZPG) and mean favorable pressure gradient (FPG) boundary layers. Time-resolved, two-dimensional PIV data in the streamwise-wall-normal plane enables us to calculate the instantaneous pressure distributions by integrating the planar projection of the material acceleration of the fluid. In both boundary layers, sweeps (u'> 0, v'< 0) mostly occur during periods of adverse pressure gradient fluctuations (∂p'/ ∂x > 0), while favorable pressure gradient fluctuations (∂p'/ ∂x < 0) accompany ejections (u'< 0, v'> 0). Conditional averaging indicates that in the ZPG boundary layer, large-scale ∂p'/ ∂x > 0 events accompanying sweeps lead to the formation of a growing region of ejection downstream, in a phenomenon resembling adverse-pressure induced flow separation. This phenomenon is much less pronounced in the FPG boundary layer, as the large-scale ∂p'/ ∂x > 0 events are for the most part significantly weaker than the mean FPG. Conditional sampling and instantaneous data in the ZPG boundary layer also confirm that although some of the ejections are preceded, and presumably initiated, by regions of adverse pressure gradients and sweeps, others are not. In the FPG boundary layer, there is no evidence of sweeps or adverse pressure gradients immediately upstream of ejections. The mechanisms initiating these structures presumably occur far upstream of the peak in favorable pressure gradient fluctuations. Sponsored by NSF, CBET Division, Fluid Dynamics program.
Similarity Theory for Boundary Layers with Pressure Gradient
NASA Astrophysics Data System (ADS)
Castillo, Luciano
1997-11-01
The analysis of George et al. (1996)(George, W.K., Castillo, L. and Knecht, P. (1996). The Zero Pressure-Gradient Turbulent Boundary Layer. Tech. Rep. TRL-153a, Turb. Res. Lab., SUNY Buffalo.) for the zero-pressure gradient turbulent boundary layer is extended to boundary layers with pressure gradient. As noted by George and Castillo (1993)(George, W.K. and Castillo, L. (1993). Boundary layers with pressure gradient: Another look at the equilibrium boundary layer, Near Wall Turbulent Flows), (So, R.M.C. et al. eds.), 901--910, Elsevier, NY., the velocity deficit scales with U_∞ and a parameter, Λ = δ /(ρ U_∞^2 dδ/dx)dP_∞/dx, which is proportional to the Clauser parameter in the limit of infinite Reynolds number. Like the zero-pressure gradient boundary layer, the velocity profile in the overlap region is also a power law in y+a where a^+ is an offset which is nearly constant and accounts for the mesolayer. In inner variables: u^+ = C_ipy^+^γ_p in outer: \\overlineu = C_op\\overliney^γ_p. It can be shown theoretically that away from separation, both C_ip and γp are equal to the zero pressure gradient values. Moreover, C_op differs from the zero-pressure gradient value only by an additive parameter which depends only on Λ. Thus, the Reynolds number dependence is independent of the pressure gradient.
Studying the Afternoon Transition of the Planetary Boundary Layer
NASA Astrophysics Data System (ADS)
Lothon, Marie; Lenschow, Donald H.
2010-07-01
The planetary boundary layer is the part of the atmosphere that interacts directly with the Earth's surface on a time scale of a few hours or less. In daytime, solar heating of the surface can generate buoyant turbulent eddies that efficiently mix the air through a depth of more than a kilometer. This convective boundary layer (CBL) is a conduit for trace gases such as water vapor and carbon dioxide that are emitted or absorbed by the surface (and surface vegetation) to be transported into or out of the layer nearest the surface. The CBL has been extensively observed and relatively successfully modeled. But the early morning transition—when the CBL emerges from the nocturnal boundary layer—and the late afternoon transition—when the CBL decays to an intermittently turbulent “residual layer” overlying a shallower, stably stratified boundary layer—are difficult to observe and model due to turbulence intermittency and anisotropy, horizontal heterogeneity, and rapid time changes. Even the definition of the boundary layer during these transitional periods is fuzzy; there is no consensus on what criteria to use and no simple scaling laws, as there are for the CBL, that apply during these transitions.
Optically relevant turbulence parameters in the Marine boundary layer
NASA Technical Reports Server (NTRS)
Davidson, K. L.; Houlihan, T. M.
1976-01-01
Shipboard measurements of temperature and velocity fluctuations were performed to determine optical propagation properties of the marine boundary layer. Empirical expressions describing the temperature structure parameter in terms of the Richardson Number overland were used to analyze data obtained for open ocean conditions. Likewise, profiles of mean wind and velocity fluctuation spectra derived from shipboard observations were utilized to calculate associated boundary layer turbulence parameters. In general, there are considerable differences between the open-ocean results of this study and previously determined overland results.
Boundary layer study on nozzle wall at hypersonic velocities
NASA Technical Reports Server (NTRS)
Jones, Kenneth M.; Dejarnette, Fred R.; Griffith, Wayland C.; Yanta, William J.
1992-01-01
The boundary layer on the wall of the Hypervelocity Tunnel 9 was investigated with pitot pressure and total temperature measurements. Experimental results are presented for standard and supercooled Mach 14 runs. The boundary layer data at supercooled conditions are compared to numerical predictions made with a Navier-Stokes algorithm including vibrational nonequilibrium and intermolecular force effects. For standard tunnel conditions, the numerical solutions agree well with experimental data. For the supercooled cases, the numerical code predicts the total temperature but overpredicts the pitot pressure.
Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report
Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S
2015-11-01
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.
Carbon vaporization into a nonequilibrium, stagnation-point boundary layer
NASA Technical Reports Server (NTRS)
Suzuki, T.
1978-01-01
The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.
Simulation of glancing shock wave and boundary layer interaction
NASA Technical Reports Server (NTRS)
Hung, Ching-Mao
1989-01-01
Shock waves generated by sharp fins, glancing across a laminar boundary layer growing over a flat plate, are simulated numerically. Several basic issues concerning the resultant three-dimensional flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of grid resolution on the origin of the line of separation. Various shock strengths (generated by different fin angles) are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of the secondary separation. The usual interpretations of the flow field from previous studies and new interpretations arising from the present simulation are discussed.
Plasma behavior in the boundary layer near a railgun surface
Kang, S.W.; McCallen, R. )
1989-01-01
Viscous flow and thermal characteristics are theoretically analyzed for the plasma behind a moving projectile inside a railgun. When only convective effects are included in the turbulent boundary layer analysis, the results suggest a temperature maximum in the wall region for very high velocity flows. The case of radiative as well as convective transport has also been investigated for an optically thick boundary layer flow by application of an approximate method. Results show a sizable effect of radiation on the flow characteristics, especially on the heat transfer rate to the railgun surface.
Plasma behavior in the boundary layer near a railgun surface
Kang, Sang-Wook; McCallen, R.E.
1988-03-01
Viscous flow and thermal characteristics are theoretically analyzed for the plasma behind a moving projectile inside a railgun. When only convective effects are included in the turbulent boundary layer analysis, the results suggest a temperature maximum in the wall region for very high velocity flows. The case of radiative as well as convective transport has also been investigated for an optically-thick boundary layer flow by application of an approximate method. Results show a sizable effect of radiation on the flow characteristics, especially on the heat-transfer rate to the railgun surface. 7 refs., 2 figs.
Characteristics of turbulence in boundary layer with zero pressure gradient
NASA Technical Reports Server (NTRS)
Klebanoff, P S
1955-01-01
The results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented. Measurements with the hot-wire anemometer were made of turbulent energy and turbulent shear stress, probability density and flattening factor of u-fluctuation (fluctuation in x-direction), spectra of turbulent energy and shear stress, and turbulent dissipation. The importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated. Attention is given to the energy balance and the intermittent character of the outer region of the boundary layer. Also several interesting features of the spectral distribution of the turbulent motions are discussed.
Methods for determining the height of the atmospheric boundary layer
Sugiyama, Gayle; Nasstrom, John S.
1999-02-01
The Atmospheric Release Advisory Capability (ARAC) is an operational emergency response program which provides real-time dose assessments of airborne pollutant releases. This report reviews methodologies for determining the height of the atmospheric boundary layer (ABL), which were investigated for use in the next generation of ARAC diagnostic and dispersion models. The ABL height, h_{ABL}, is an essential parameter in atmospheric dispersion modeling, controlling the extent of the vertical mixing of pollutants near the surface. Although eventually instrumentation (radiosonde, lidar, sodar, etc.) may provide accurate means for determining h_{ABL}, at present the availability of such data is too limited to provide a general capability for ARAC. The current operational ARAC diagnostic models use a fixed value of h_{ABL} for any given time. ARAC's new models support a horizontally-varying atmospheric boundary layer height, which is used to generate meteorological (mean wind, temperature, etc.) and turbulence fields. The purpose of the present work is to develop methods to derive the ABL height for all atmospheric stability regimes. One of our key requirements is to provide approaches which are applicable to routinely available data, which may be of limited temporal and spatial resolution. The final objective is to generate a consistent set of meteorological and turbulence or eddy diffusivity fields to drive the new ARAC dispersion model. A number of alternative definitions of the atmospheric boundary layer exist, leading to different approaches to deriving h_{ABL}. The definitions are based on either the turbulence characteristics of the atmosphere or the vertical structure of one or more meteorological variables. Most diagnostic analyses determine h_{ABL} from profiles of temperature or occasionally wind. A class of methods of considerable current interest are based on Richardson number criteria. Prognostic methods calculate the
The high-order statistics of APG turbulent boundary layers
NASA Astrophysics Data System (ADS)
Maciel, Yvan; Gungor, Ayse G.; Simens, Mark P.; Soria, Julio
2013-11-01
One and two-point statistics are presented from a new direct numerical simulation of an adverse pressure gradient boundary layer, at Reθ = 250 - 2175 , in which the transition to turbulence is triggered by a trip wire which is modeled using the immersed boundary method. Mean velocity results in the attached turbulent region do not show log law profiles. Departure from the law of the wall occurs throughout the inner region. The production and Reynolds stress peaks move to roughly the middle of the boundary layer. The profiles of the uv correlation factor reveal that de-correlation between u and v takes place throughout the boundary layer, but especially near the wall, as the mean velocity defect increases. The non-dimensional stress ratios and quadrant analysis of uv indicate changes to the turbulence structure. The structure parameter is low, similar to equilibrium APG flows and mixing layers in the present flow and seems to be decreasing as the mean velocity defect increases. The statistics of the upper half of the APG flow show resemblance with results for a mixing layer. Funded in part by ITU, NSERC of Canada, ARC Discovery Grant, and Multiflow program of the ERC.
Turbulent boundary layers subjected to multiple curvatures and pressure gradients
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Promode R.; Ahmed, Anwar
1993-01-01
The effects of abruptly applied cycles of curvatures and pressure gradients on turbulent boundary layers are examined experimentally. Two two-dimensional curved test surfaces are considered: one has a sequence of concave and convex longitudinal surface curvatures and the other has a sequence of convex and concave curvatures. The choice of the curvature sequences were motivated by a desire to study the asymmetric response of turbulent boundary layers to convex and concave curvatures. The relaxation of a boundary layer from the effects of these two opposite sequences has been compared. The effect of the accompaying sequences of pressure gradient has also been examined but the effect of curvature dominates. The growth of internal layers at the curvature junctions have been studied. Measurements of the Gortler and corner vortex systems have been made. The boundary layer recovering from the sequence of concave to convex curvature has a sustained lower skin friction level than in that recovering from the sequence of convex to concave curvature. The amplification and suppression of turbulence due to the curvature sequences have also been studied.
NASA Technical Reports Server (NTRS)
Von Doenhoff, Albert E
1938-01-01
Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.
Goertler instability in compressible boundary layers along curved surfaces with suction and cooling
NASA Technical Reports Server (NTRS)
El-Hady, N.; Verma, A. K.
1982-01-01
The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.
Numerical simulations of two-fluid boundary layers beneath free-stream turbulence
NASA Astrophysics Data System (ADS)
Jung, Seo Yoon; Zaki, Tamer
2011-11-01
In two-fluid boundary layers, a wall-film is sheared by an external stream with different density and viscosity. As a result, the flow becomes prone to both shear and interfacial instabilities. In this study, the evolution of two-fluid boundary layers beneath free-stream vortical forcing is investigated using DNS. The simulations employ a conservative level-set technique in conjunction with a ghost fluid approach in order to capture a sharp interface. The wall film is less viscous than the outer flow, and its thickness is 10 % of that of the boundary layer at the inlet. The choice of viscosity ratio influences the spatial development of disturbances within the boundary layer. The spatial growth of instabilities is examined into the non-linear regime, which includes the region of breakdown to turbulence. We demonstrate that, at moderate levels of free-stream turbulence intensities, appropriate choice of the viscosity ratio can yield considerable transition delay.
Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14
NASA Technical Reports Server (NTRS)
Randall, D. A.; Shao, Q.; Branson, M.
1997-01-01
The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.
Investigations of shock wave boundary layer interaction on suction side of compressor profile
NASA Astrophysics Data System (ADS)
Piotrowicz, M.; Flaszyński, P.; Doerffer, P.
2014-08-01
The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to look more closely into the flow structure on the suction side of a blade, a design of a generic test section in linear transonic wind tunnel was proposed. The test section which could reproduce flow structure, shock wave location, pressure distribution and boundary layer development similar to the obtained on a cascade profile is the main objective of the presented here design. The design of the proposed test section is very challenging, because of shock wave existence, its interaction with boundary layer and its influence on the 3-D flow structure in the test section.
Shuttle Return To Flight Experimental Results: Protuberance Effects on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Horvath, Thomas J.
2006-01-01
The effect of isolated roughness elements on the windward boundary layer of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamic Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental effort was initiated to provide a roughness effects database for developing transition criteria to support on-orbit decisions to repair damage to the thermal protection system. Boundary layer transition results were obtained using trips of varying heights and locations along the centerline and attachment lines of 0.0075-scale models. Global heat transfer images using phosphor thermography of the Orbiter windward surface and the corresponding heating distributions were used to infer the state of the boundary layer (laminar, transitional, or turbulent). The database contained within this report will be used to formulate protuberance-induced transition correlations using predicted boundary layer edge parameters.
Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.
2012-01-01
Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.
NASA Technical Reports Server (NTRS)
Brandon, H. J.; Masek, R. V.
1974-01-01
The flow conditions for which heating distributions were measured on corrugated surfaces and wavy walls in turbulent boundary layers are shown, along with the ratio of the displacement thickness to the roughness height versus the local edge Mach number for an equivalent smooth surface. The present data are seen to greatly extend the range of data available on corrugated surfaces in turbulent boundary layers. These data were obtained by testing fullscale corrugation roughened panels in the wall boundary layer of a supersonic and hypersonic wind tunnel. The experimental program used to obtain the data is described. The data are analyzed and correlated in terms of the pertinent flow and geometric parameters. The developed correlations are compared with the available thin boundary layer data, as well as with previously published correlation techniques.
Large-eddy simulation of plume dispersion under various thermally stratified boundary layers
NASA Astrophysics Data System (ADS)
Nakayama, H.; Takemi, T.; Nagai, H.
2014-07-01
Contaminant gas dispersion in atmospheric boundary layer is of great concern to public health. For the accurate prediction of the dispersion problem, the present study numerically investigates the behavior of plume dispersion by taking into account the atmospheric stability which is classified into three types; neutral, stable, and convective boundary layers. We first proposed an efficient method to generate spatially-developing, thermally-stratified boundary layers and examined the usefulness of our approach by comparing to wind tunnel experimental data for various thermal boundary layers. The spreads of plume in the spanwise direction are quantitatively underestimated especially at large downwind distances from the point source, owing to the underestimation of turbulence intensities for the spanwise component; however, the dependence of the spanwise spreads to atmospheric stability is well represented in a qualitative sense. It was shown that the large-eddy simulation (LES) model provides physically reasonable results.
Large-eddy simulation of the tidal-cycle variations of an estuarine boundary layer
NASA Astrophysics Data System (ADS)
Li, Ming; Radhakrishnan, Senthilkumaran; Piomelli, Ugo; Rockwell Geyer, W.
2010-08-01
The estuarine boundary layer affected by a horizontal density gradient exhibits temporal evolution over a tidal cycle, in a manner similar to the diurnal cycle of the ocean surface mixed layer. A large eddy simulation (LES) model is developed to investigate the physics controlling the growth of the boundary layer during the flood tide and restratification during the ebb tide. Turbulent kinetic energy, momentum and salt fluxes, bottom stress, and energy dissipation rates calculated from the LES model all show a strong flood-ebb asymmetry. Analysis of the turbulent kinetic energy (TKE) budget shows a primary balance between shear production and dissipation in the well-mixed boundary layer over the tidal cycle. However, TKE transport term is found to be important across the edge of the boundary layer during the flood tide so turbulent energy generated in the bottom boundary layer can be transferred to the stratified pycnocline region. Tidal straining leads to a small and weakly convective region inside the boundary layer during the flood tide but the strain-induced buoyancy flux does not make a significant contribution to the turbulence generation. Additional LES runs are conducted by switching off the baroclinic pressure gradient term in the momentum equation and the tidal straining term in the salinity equation to show that the baroclinic pressure gradient is the main mechanism responsible for generating the flood-ebb mixing asymmetry.
An alternative approach to disturbances in boundary layers
Easthope, P.F.; Criminale, W.O.
1990-01-01
By modelling the boundary layer on a flat plate as a piece-wise linear velocity profile it is possible to analyze disturbances in the flow in a systematic manner. The approach is that of an initial-value, boundary-value problem but, unlike classical normal modes employed in stability theory, the solutions here can be obtained in closed form and they are non separable. A specific example is treated where the vertical component of the perturbation velocity is prescribed as a localized pulse initially. The amplitude is then depicted as a function of time and the coordinates of the plane of the flat plate at a fixed vertical location. The role of three-dimensionality and the initial transient period of development -- heretofore unknown -- are both shown to be of significant importance in the dynamics. An argument is given to strongly suggest that the origin of large-scale oscillations known to be prevalent in turbulent shear flows may well be explained using these bases. 15 refs., 8 figs.
The Saharan atmospheric boundary layer: Turbulence, stratification and mixing
NASA Astrophysics Data System (ADS)
Garcia-Carreras, Luis; Parker, Douglas J.; Marsham, John H.; Rosenberg, Philip D.; Marenco, Franco; Mcquaid, James B.
2013-04-01
High-resolution large-eddy model simulations, combined with aircraft and radiosonde observations from the Fennec observational campaign are used to describe the vertical structure of the Saharan atmospheric boundary layer (SABL). The SABL, probably the deepest dry convective boundary layer on Earth, is crucial in controlling the vertical redistribution and long-range transport of dust, heat, water and momentum in the Sahara, with significant implications for the large-scale Saharan heat low and West African monsoon systems. The daytime SABL has a unique structure, with an actively growing convective region driven by high sensible heating at the surface, capped by a weak (≤1K) temperature inversion and a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ~500hPa. Large-eddy model (LEM) simulations were initialized with radiosonde data and driven by surface heat flux observations from Fennec supersite-1 at Bordj Bardji Mokhtar (BBM), southern Algeria. Aircraft observations are used to validate the processes of interest identified in the model, as well as providing unprecedented detail of the turbulent characteristics of the SABL. Regular radiosondes from BBM during June 2011 are used to generate a climatology of the day-time SABL structure, providing further evidence that the processes identified with the LEM are recurrent features of the real SABL. The model is shown to reproduce the typical SABL structure from observations, and different tracers are used to illustrate the penetration of the convective boundary layer into the residual layer above as well as mixing processes internal to the residual layer. Despite the homogeneous surface fluxes and tracer initialization, the large characteristic length-scale of the turbulent eddies leads to large horizontal changes in boundary layer depth (which control the formation of clouds) and significant heterogeneity in tracer
Boundary layer eddies at the Goodnoe Hills site
Aspliden, C.I.; Wendell, L.L.; Clem, K.S.; Gower, G.L.
1991-05-01
Data from nine instrumented meteorological towers at the MOD-2 wind turbine site at Goodnoe Hills in Washington State were analyzed to evaluate high-frequency perturbations, which were observed in the lower boundary-layer flow. Horizontal winds and temperature measurements for a period of 8 min, undisturbed by turbine operation, were available for this study. The data are in 1-s values from June 27, 1985. Throughout the study, departures from the mean for the period and for each sensor were used on area maps and on line-time and tower-time cross sections. Conventional streamline and isotach analyses were employed; they show highly organized flow fields with embedded perturbations traversing the site. Most of the flow fields have a well-developed vortical structure that reaches from the surface through the top level of the highest tower. These structures consist of a system of clockwise and counter-clockwise circulations. The wave length is about 500 to 600 m. Their wave speed is slightly greater than the mean wind speed and their movement is in the general direction of the mean flow. The results of the study show two main reasons why wind conditions and turbine power output in a wind farm may vary in a remarkable and abrupt fashion in space and time under certain circumstances: (1) The boundary-layer flow contains highly organized coherent perturbations with a typical size of 300 {times} 300 M{sup 2}. (2) The transition zones between the perturbations moving through a wind farm are associated with very definitive changes in the wind field that are on the order of meters and seconds. 2 refs., 11 figs.
Nanoscale Hot-Wire Probes for Boundary-Layer Flows
NASA Technical Reports Server (NTRS)
Tedjojuwono, Ken T.; Herring, Gregory C.
2003-01-01
Hot-wire probes having dimensions of the order of nanometers have been proposed for measuring temperatures (and possibly velocities) in boundary-layer flows at spatial resolutions much finer and distances from walls much smaller than have been possible heretofore. The achievable resolutions and minimum distances are expected to be of the order of tens of nanometers much less than a typical mean free path of a molecule and much less than the thickness of a typical flow boundary layer in air at standard temperature and pressure. An additional benefit of the small scale of these probes is that they would perturb the measured flows less than do larger probes. The hot-wire components of the probes would likely be made from semiconducting carbon nanotubes or ropes of such nanotubes. According to one design concept, a probe would comprise a single nanotube or rope of nanotubes laid out on the surface of an insulating substrate between two metallic wires. According to another design concept, a nanotube or rope of nanotubes would be electrically connected and held a short distance away from the substrate surface by stringing it between two metal electrodes. According to a third concept, a semiconducting nanotube or rope of nanotubes would be strung between the tips of two protruding electrodes made of fully conducting nanotubes or ropes of nanotubes. The figure depicts an array of such probes that could be used to gather data at several distances from a wall. It will be necessary to develop techniques for fabricating the probes. It will also be necessary to determine whether the probes will be strong enough to withstand the aerodynamic forces and impacts of micron-sized particles entrained in typical flows of interest.
Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei
2010-01-01
Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.
Turbulence in rough-wall boundary layers: universality issues
NASA Astrophysics Data System (ADS)
Amir, Mohammad; Castro, Ian P.
2011-08-01
Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number ( Re θ) range of 1,300-28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 ≤ h/δ ≤ 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend's wall similarity hypothesis at low h/δ and also suggest that a single critical roughness
Simulating Dispersion in the Evening-Transition Boundary Layer
NASA Astrophysics Data System (ADS)
Taylor, Alexander C.; Beare, Robert J.; Thomson, David J.
2014-12-01
We investigate dispersion in the evening-transition boundary layer using large-eddy simulation (LES). In the LES, a particle model traces pollutant paths using a combination of the resolved flow velocities and a random displacement model to represent subgrid-scale motions. The LES is forced with both a sudden switch-off of the surface heat flux and also a more gradual observed evolution. The LES shows `lofting' of plumes from near-surface releases in the pre-transition convective boundary layer; it also shows the subsequent `trapping' of releases in the post-transition near-surface stable boundary layer and residual layer above. Given the paucity of observations for pollution dispersion in evening transitions, the LES proves a useful reference. We then use the LES to test and improve a one-dimensional Lagrangian Stochastic Model (LSM) such as is often used in practical dispersion studies. The LSM used here includes both time-varying and skewed turbulence statistics. It is forced with the vertical velocity variance, skewness and dissipation from the LES for particle releases at various heights and times in the evening transition. The LSM plume spreads are significantly larger than those from the LES in the post-transition stable boundary-layer trapping regime. The forcing from the LES was thus insufficient to constrain the plume evolution, and inclusion of the significant stratification effects was required. In the so-called modified LSM, a correction to the vertical velocity variance was included to represent the effect of stable stratification and the consequent presence of wave-like motions. The modified LSM shows improved trapping of particles in the post-transition stable boundary layer.
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2014-05-01
Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as
NASA Technical Reports Server (NTRS)
Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)
2000-01-01
Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.
Hypersonic Shock/Boundary-Layer Interaction Database
NASA Technical Reports Server (NTRS)
Settles, G. S.; Dodson, L. J.
1991-01-01
Turbulence modeling is generally recognized as the major problem obstructing further advances in computational fluid dynamics (CFD). A closed solution of the governing Navier-Stokes equations for turbulent flows of practical consequence is still far beyond grasp. At the same time, the simplified models of turbulence which are used to achieve closure of the Navier-Stokes equations are known to be rigorously incorrect. While these models serve a definite purpose, they are inadequate for the general prediction of hypersonic viscous/inviscid interactions, mixing problems, chemical nonequilibria, and a range of other phenomena which must be predicted in order to design a hypersonic vehicle computationally. Due to the complexity of turbulence, useful new turbulence models are synthesized only when great expertise is brought to bear and considerable intellectual energy is expended. Although this process is fundamentally theoretical, crucial guidance may be gained from carefully-executed basic experiments. Following the birth of a new model, its testing and validation once again demand comparisons with data of unimpeachable quality. This report concerns these issues which arise from the experimental aspects of hypersonic modeling and represents the results of the first phase of an effort to develop compressible turbulence models.
Simulations of curved turbulent boundary layers
NASA Technical Reports Server (NTRS)
Orlandi, Paolo
1991-01-01
The objective of this work is to develop a space-time accurate numerical method for the solution of incompressible Navier-Stokes equations in generalized coordinates. The resulting code is to be used for direct and large-eddy simulation of turbulence in complex geometries. In a previous paper, the system of Navier-Stokes equations in general curvilinear coordinates was solved by a second-order accurate finite-difference scheme. Satisfactory results were obtained for several flows in two and three dimensions. The system of Navier-Stokes for the fluxes are given in Orlandi (1989). The main deficiency of the numerical scheme was the large CPU time required for the solution of the Poisson equation for the 'pressure' field. The point SOR relaxation, in conjunction with a multigrid scheme, was used for the Poisson equation. In some cases, particularly with very fine grids, it was impossible to obtain a divergent-free flow. A preliminary attempt is made to compute the spatially evolving flow of Swearingen & Blackwelder. To reduce the streamwise distance, the inflow was at a distance x = 60 cm from the leading edge.
Passive Control of Supersonic Rectangular Jets through Boundary Layer Swirl
NASA Astrophysics Data System (ADS)
Han, Sang Yeop; Taghavi, Ray R.; Farokhi, Saeed
2013-06-01
Mixing characteristics of under-expanded supersonic jets emerging from plane and notched rectangular nozzles are computationally studied using nozzle exit boundary layer swirl as a mean of passive flow control. The coupling of the rectangular jet instability modes, such as flapping, and the swirl is investigated. A three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) code with shock adaptive grids is utilized. For plane rectangular nozzle with boundary layer swirl, the flapping and spanwise oscillations are captured in the jet's small and large dimensions at twice the frequencies of the nozzles without swirl. A symmetrical oscillatory mode is also observed in the jet with double the frequency of spanwise oscillation mode. For the notched rectangular nozzle with boundary layer swirl, the flapping oscillation in the small jet dimension and the spanwise oscillation in the large jet dimension are observed at the same frequency as those without boundary layer swirl. The mass flow rates in jets at 11 and 8 nozzle heights downstream of the nozzles increased by nearly 25% and 41% for the plane and notched rectangular nozzles respectively, due to swirl. The axial gross thrust penalty due to induced swirl was 5.1% for the plane and 4.9% for the notched rectangular nozzle.
Retinal layer segmentation of macular OCT images using boundary classification
Lang, Andrew; Carass, Aaron; Hauser, Matthew; Sotirchos, Elias S.; Calabresi, Peter A.; Ying, Howard S.; Prince, Jerry L.
2013-01-01
Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in several diseases. Since manual segmentation of these layers is time consuming and prone to bias, automatic segmentation methods are critical for full utilization of this technology. In this work, we build a random forest classifier to segment eight retinal layers in macular cube images acquired by OCT. The random forest classifier learns the boundary pixels between layers, producing an accurate probability map for each boundary, which is then processed to finalize the boundaries. Using this algorithm, we can accurately segment the entire retina contained in the macular cube to an accuracy of at least 4.3 microns for any of the nine boundaries. Experiments were carried out on both healthy and multiple sclerosis subjects, with no difference in the accuracy of our algorithm found between the groups. PMID:23847738
Boundary-Layer Receptivity and Integrated Transition Prediction
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan
2005-01-01
The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.
Three-Dimensional Turbulent Boundary Layer With Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Driver, David M.; Hebbar, Sheshagiri K.
1992-01-01
Report describes experiment to measure effects of adverse pressure gradient on three-dimensional turbulent boundary-layer flow; effect of streamwise gradient of pressure on crossflow of particular interest. Production of turbulent kinetic energy grows rapidly in vicinity of step as result of steep mean-flow velocity gradients. Dissipation grows less quickly than production; leading to net growth with distance along streamline.
Secondary three-dimensional instability in compressible boundary layers
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1989-01-01
Three dimensional linear secondary instability theory is extended for compressible boundary layers on a flat plate in the presence of finite amplitude Tollmien-Schlichting waves. The focus is on principal parametric resonance responsible for strong growth of subharmonics in low disturbance environment.
Atmospheric boundary layer evening transitions over West Texas
Technology Transfer Automated Retrieval System (TEKTRAN)
A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...
Response of Hypervelocity Boundary Layers to Global and Local Distortion
NASA Astrophysics Data System (ADS)
Flaherty, William; Austin, Joanna
2013-11-01
Concave surface curvature can impose significant distortion to compressible boundary layer flows due to multiple, potentially coupled, effects including an adverse pressure gradient, bulk flow compression, and possible centrifugal instabilities. Approximate methods provide insight into dominant mechanisms, however few strategies are capable of treating heat transfer effects and predictions diverge significantly from the available experimental data at larger pressure gradient. In this work, we examine the response of boundary layers to global and local distortions in hypervelocity flows where thermochemical energy exchange has significant impact on boundary layer structure and stability. Experiments are carried out in a novel expansion tube facility built at Illinois. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle, even at the conditions of greatest distortion. As a model problem to study the evolution of large-scale structures under strained conditions, streamwise vortices are imposed into the boundary layer. The impact of the additional local distortion is investigated. The heat transfer scaling is found to be robust even in the presence of the imposed structures.
ON HYDROMAGNETIC STRESSES IN ACCRETION DISK BOUNDARY LAYERS
Pessah, Martin E.; Chan, Chi-kwan E-mail: ckch@nordita.org
2012-05-20
Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified significantly, their associated stresses oscillate around zero, rendering them an inefficient mechanism to transport significant angular momentum (inward). These findings are consistent with the results obtained in numerical simulations of MHD accretion disk boundary layers and challenge the standard assumption of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity.
ATMOSPHERIC DISPERSION IN THE ARCTIC: WINTERTIME BOUNDARY-LAYER MEASUREMENTS
The wintertime arctic atmospheric boundary layer was investigated with micro-meteorological and SF6 tracer measurements collected in Prudhoe Bay, AK. he flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. he relatively warm maritime ...