Sample records for boundary layer parameterizations

  1. Coordinated Parameterization Development and Large-Eddy Simulation for Marine and Arctic Cloud-Topped Boundary Layers

    NASA Technical Reports Server (NTRS)

    Bretherton, Christopher S.

    2002-01-01

    The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.

  2. The parameterization of the planetary boundary layer in the UCLA general circulation model - Formulation and results

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1983-01-01

    A planetary boundary layer (PBL) parameterization for general circulation models (GCMs) is presented. It uses a mixed-layer approach in which the PBL is assumed to be capped by discontinuities in the mean vertical profiles. Both clear and cloud-topped boundary layers are parameterized. Particular emphasis is placed on the formulation of the coupling between the PBL and both the free atmosphere and cumulus convection. For this purpose a modified sigma-coordinate is introduced in which the PBL top and the lower boundary are both coordinate surfaces. The use of a bulk PBL formulation with this coordinate is extensively discussed. Results are presented from a July simulation produced by the UCLA GCM. PBL-related variables are shown, to illustrate the various regimes the parameterization is capable of simulating.

  3. A method for coupling a parameterization of the planetary boundary layer with a hydrologic model

    NASA Technical Reports Server (NTRS)

    Lin, J. D.; Sun, Shu Fen

    1986-01-01

    Deardorff's parameterization of the planetary boundary layer is adapted to drive a hydrologic model. The method converts the atmospheric conditions measured at the anemometer height at one site to the mean values in the planetary boundary layer; it then uses the planetary boundary layer parameterization and the hydrologic variables to calculate the fluxes of momentum, heat and moisture at the atmosphere-land interface for a different site. A simplified hydrologic model is used for a simulation study of soil moisture and ground temperature on three different land surface covers. The results indicate that this method can be used to drive a spatially distributed hydrologic model by using observed data available at a meteorological station located on or nearby the site.

  4. Parameterization Interactions in Global Aquaplanet Simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ritthik; Bordoni, Simona; Suselj, Kay; Teixeira, João.

    2018-02-01

    Global climate simulations rely on parameterizations of physical processes that have scales smaller than the resolved ones. In the atmosphere, these parameterizations represent moist convection, boundary layer turbulence and convection, cloud microphysics, longwave and shortwave radiation, and the interaction with the land and ocean surface. These parameterizations can generate different climates involving a wide range of interactions among parameterizations and between the parameterizations and the resolved dynamics. To gain a simplified understanding of a subset of these interactions, we perform aquaplanet simulations with the global version of the Weather Research and Forecasting (WRF) model employing a range (in terms of properties) of moist convection and boundary layer (BL) parameterizations. Significant differences are noted in the simulated precipitation amounts, its partitioning between convective and large-scale precipitation, as well as in the radiative impacts. These differences arise from the way the subcloud physics interacts with convection, both directly and through various pathways involving the large-scale dynamics and the boundary layer, convection, and clouds. A detailed analysis of the profiles of the different tendencies (from the different physical processes) for both potential temperature and water vapor is performed. While different combinations of convection and boundary layer parameterizations can lead to different climates, a key conclusion of this study is that similar climates can be simulated with model versions that are different in terms of the partitioning of the tendencies: the vertically distributed energy and water balances in the tropics can be obtained with significantly different profiles of large-scale, convection, and cloud microphysics tendencies.

  5. The "Grey Zone" cold air outbreak global model intercomparison: A cross evaluation using large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel

    2017-03-01

    A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.

  6. Evaluation of Warm-Rain Microphysical Parameterizations in Cloudy Boundary Layer Transitions

    NASA Astrophysics Data System (ADS)

    Nelson, K.; Mechem, D. B.

    2014-12-01

    Common warm-rain microphysical parameterizations used for marine boundary layer (MBL) clouds are either tuned for specific cloud types (e.g., the Khairoutdinov and Kogan 2000 parameterization, "KK2000") or are altogether ill-posed (Kessler 1969). An ideal microphysical parameterization should be "unified" in the sense of being suitable across MBL cloud regimes that include stratocumulus, cumulus rising into stratocumulus, and shallow trade cumulus. The recent parameterization of Kogan (2013, "K2013") was formulated for shallow cumulus but has been shown in a large-eddy simulation environment to work quite well for stratocumulus as well. We report on our efforts to implement and test this parameterization into a regional forecast model (NRL COAMPS). Results from K2013 and KK2000 are compared with the operational Kessler parameterization for a 5-day period of the VOCALS-REx field campaign, which took place over the southeast Pacific. We focus on both the relative performance of the three parameterizations and also on how they compare to the VOCALS-REx observations from the NOAA R/V Ronald H. Brown, in particular estimates of boundary-layer depth, liquid water path (LWP), cloud base, and area-mean precipitation rate obtained from C-band radar.

  7. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    NASA Astrophysics Data System (ADS)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach), and iii) process-level evaluation at climate time-scales. The advantages and disadvantages of each approach will be identified and discussed, and some thoughts about possible future developments will be given.

  8. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India

    NASA Astrophysics Data System (ADS)

    Madhulatha, A.; Rajeevan, M.

    2018-02-01

    Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.

  9. Boundary-layer cumulus over heterogeneous landscapes: A subgrid GCM parameterization. Final report, December 1991--November 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, R.B.; Tripoli, G.

    1996-01-08

    The authors developed single-column parameterizations for subgrid boundary-layer cumulus clouds. These give cloud onset time, cloud coverage, and ensemble distributions of cloud-base altitudes, cloud-top altitudes, cloud thickness, and the characteristics of cloudy and clear updrafts. They tested and refined the parameterizations against archived data from Spring and Summer 1994 and 1995 intensive operation periods (IOPs) at the Southern Great Plains (SGP) ARM CART site near Lamont, Oklahoma. The authors also found that: cloud-base altitudes are not uniform over a heterogeneous surface; tops of some cumulus clouds can be below the base-altitudes of other cumulus clouds; there is an overlap regionmore » near cloud base where clear and cloudy updrafts exist simultaneously; and the lognormal distribution of cloud sizes scales to the JFD of surface layer air and to the shape of the temperature profile above the boundary layer.« less

  10. Evaluation of Planetary Boundary Layer Scheme Sensitivities for the Purpose of Parameter Estimation

    EPA Science Inventory

    Meteorological model errors caused by imperfect parameterizations generally cannot be overcome simply by optimizing initial and boundary conditions. However, advanced data assimilation methods are capable of extracting significant information about parameterization behavior from ...

  11. Stochastic Convection Parameterizations: The Eddy-Diffusivity/Mass-Flux (EDMF) Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2013-12-01

    In this presentation it is argued that moist convection parameterizations need to be stochastic in order to be realistic - even in deterministic atmospheric prediction systems. A new unified convection and boundary layer parameterization (EDMF) that optimally combines the Eddy-Diffusivity (ED) approach for smaller-scale boundary layer mixing with the Mass-Flux (MF) approach for larger-scale plumes is discussed. It is argued that for realistic simulations stochastic methods have to be employed in this new unified EDMF. Positive results from the implementation of the EDMF approach in atmospheric models are presented.

  12. Incorporation of the planetary boundary layer in atmospheric models

    NASA Technical Reports Server (NTRS)

    Moeng, Chin-Hoh; Wyngaard, John; Pielke, Roger; Krueger, Steve

    1993-01-01

    The topics discussed include the following: perspectives on planetary boundary layer (PBL) measurements; current problems of PBL parameterization in mesoscale models; and convective cloud-PBL interactions.

  13. ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS

    EPA Science Inventory

    There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...

  14. Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Tao, Wei-Kuo

    1999-01-01

    The MM5 mesoscale model is used to simulate Hurricane Bob (1991) using grids nested to high resolution (4 km). Tests are conducted to determine the sensitivity of the simulation to the available planetary boundary layer parameterizations, including the bulk-aerodynamic, Blackadar, Medium-RanGe Forecast (MRF) model, and Burk-Thompson boundary-layer schemes. Significant sensitivity is seen, with minimum central pressures varying by up to 17 mb. The Burk-Thompson and bulk-aerodynamic boundary-layer schemes produced the strongest storms while the MRF scheme produced the weakest storm. Precipitation structure of the simulated hurricanes also varied substantially with the boundary layer parameterizations. Diagnostics of boundary-layer variables indicated that the intensity of the simulated hurricanes generally increased as the ratio of the surface exchange coefficients for heat and momentum, C(sub h)/C(sub M), although the manner in which the vertical mixing takes place was also important. Findings specific to the boundary-layer schemes include: 1) the MRF scheme produces mixing that is too deep and causes drying of the lower boundary layer in the inner-core region of the hurricane; 2) the bulk-aerodynamic scheme produces mixing that is probably too shallow, but results in a strong hurricane because of a large value of C(sub h)/C(sub M) (approximately 1.3); 3) the MRF and Blackadar schemes are weak partly because of smaller surface moisture fluxes that result in a reduced value of C(sub h)/C(sub M) (approximately 0.7); 4) the Burk-Thompson scheme produces a strong storm with C(sub h)/C(sub M) approximately 1; and 5) the formulation of the wind-speed dependence of the surface roughness parameter, z(sub 0), is important for getting appropriate values of the surface exchange coefficients in hurricanes based upon current estimates of these parameters.

  15. A new scheme for the parameterization of the turbulent planetary boundary layer in the GLAS fourth order GCM

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1985-01-01

    Methods being used to increase the horizontal and vertical resolution and to implement more sophisticated parameterization schemes for general circulation models (GCM) run on newer, more powerful computers are described. Attention is focused on the NASA-Goddard Laboratory for Atmospherics fourth order GCM. A new planetary boundary layer (PBL) model has been developed which features explicit resolution of two or more layers. Numerical models are presented for parameterizing the turbulent vertical heat, momentum and moisture fluxes at the earth's surface and between the layers in the PBL model. An extended Monin-Obhukov similarity scheme is applied to express the relationships between the lowest levels of the GCM and the surface fluxes. On-line weather prediction experiments are to be run to test the effects of the higher resolution thereby obtained for dynamic atmospheric processes.

  16. Intercomparison of 7 Planetary Boundary-Layer/Surface-Layer Physics Schemes over Complex Terrain for Battlefield Situational Awareness

    DTIC Science & Technology

    This study considers the performance of 7 of the Weather Research and Forecast model boundary-layer (BL) parameterization schemes in a complex...schemes performed best. The surface parameters, planetary BL structure, and vertical profiles are important for US Army Research Laboratory

  17. Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.

    2003-01-01

    The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.

  18. Parameterization of turbulence and the planetary boundary layer in the GLA Fourth Order GCM

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1985-01-01

    A new scheme has been developed to model the planetary boundary layer in the GLAS Fourth Order GCM through explicit resolution of its vertical structure into two or more vertical layers. This involves packing the lowest layers of the GCM close to the ground and developing new parameterization schemes that can express the turbulent vertical fluxes of heat, momentum and moisture at the earth's surface and between the layers that are contained with the PBL region. Offline experiments indicate that the combination of the modified level 2.5 second-order turbulent closure scheme and the 'extended surface layer' similarity scheme should work well to simulate the behavior of the turbulent PBL even at the coarsest vertical resolution with which such schemes will conceivably be used in the GLA Fourth Order GCM.

  19. Ultra-Parameterized CAM: Progress Towards Low-Cloud Permitting Superparameterization

    NASA Astrophysics Data System (ADS)

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Khairoutdinov, M.; Wyant, M. C.; Singh, B.

    2016-12-01

    A leading source of uncertainty in climate feedback arises from the representation of low clouds, which are not resolved but depend on small-scale physical processes (e.g. entrainment, boundary layer turbulence) that are heavily parameterized. We show results from recent attempts to achieve an explicit representation of low clouds by pushing the computational limits of cloud superparameterization to resolve boundary-layer eddy scales relevant to marine stratocumulus (250m horizontal and 20m vertical length scales). This extreme configuration is called "ultraparameterization". Effects of varying horizontal vs. vertical resolution are analyzed in the context of altered constraints on the turbulent kinetic energy statistics of the marine boundary layer. We show that 250m embedded horizontal resolution leads to a more realistic boundary layer vertical structure, but also to an unrealistic cloud pulsation that cannibalizes time mean LWP. We explore the hypothesis that feedbacks involving horizontal advection (not typically encountered in offline LES that neglect this degree of freedom) may conspire to produce such effects and present strategies to compensate. The results are relevant to understanding the emergent behavior of quasi-resolved low cloud decks in a multi-scale modeling framework within a previously unencountered grey zone of better resolved boundary-layer turbulence.

  20. Evaluation of WRF physical parameterizations against ARM/ASR Observations in the post-cold-frontal region to improve low-level clouds representation in CAM5

    NASA Astrophysics Data System (ADS)

    Lamraoui, F.; Booth, J. F.; Naud, C. M.

    2017-12-01

    The representation of subgrid-scale processes of low-level marine clouds located in the post-cold-frontal region poses a serious challenge for climate models. More precisely, the boundary layer parameterizations are predominantly designed for individual regimes that can evolve gradually over time and does not accommodate the cold front passage that can overly modify the boundary layer rapidly. Also, the microphysics schemes respond differently to the quick development of the boundary layer schemes, especially under unstable conditions. To improve the understanding of cloud physics in the post-cold frontal region, the present study focuses on exploring the relationship between cloud properties, the local processes and large-scale conditions. In order to address these questions, we explore the WRF sensitivity to the interaction between various combinations of the boundary layer and microphysics parameterizations, including the Community Atmospheric Model version 5 (CAM5) physical package in a perturbed physics ensemble. Then, we evaluate these simulations against ground-based ARM observations over the Azores. The WRF-based simulations demonstrate particular sensitivities of the marine cold front passage and the associated post-cold frontal clouds to the domain size, the resolution and the physical parameterizations. First, it is found that in multiple different case studies the model cannot generate the cold front passage when the domain size is larger than 3000 km2. Instead, the modeled cold front stalls, which shows the importance of properly capturing the synoptic scale conditions. The simulation reveals persistent delay in capturing the cold front passage and also an underestimated duration of the post-cold-frontal conditions. Analysis of the perturbed physics ensemble shows that changing the microphysics scheme leads to larger differences in the modeled clouds than changing the boundary layer scheme. The in-cloud heating tendencies are analyzed to explain this sensitivity.

  1. Correction of Excessive Precipitation over Steep and High Mountains in a GCM: A Simple Method of Parameterizing the Thermal Effects of Subgrid Topographic Variation

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2015-01-01

    The excessive precipitation over steep and high mountains (EPSM) in GCMs and meso-scale models is due to a lack of parameterization of the thermal effects of the subgrid-scale topographic variation. These thermal effects drive subgrid-scale heated slope induced vertical circulations (SHVC). SHVC provide a ventilation effect of removing heat from the boundary layer of resolvable-scale mountain slopes and depositing it higher up. The lack of SHVC parameterization is the cause of EPSM. The author has previously proposed a method of parameterizing SHVC, here termed SHVC.1. Although this has been successful in avoiding EPSM, the drawback of SHVC.1 is that it suppresses convective type precipitation in the regions where it is applied. In this article we propose a new method of parameterizing SHVC, here termed SHVC.2. In SHVC.2 the potential temperature and mixing ratio of the boundary layer are changed when used as input to the cumulus parameterization scheme over mountainous regions. This allows the cumulus parameterization to assume the additional function of SHVC parameterization. SHVC.2 has been tested in NASA Goddard's GEOS-5 GCM. It achieves the primary goal of avoiding EPSM while also avoiding the suppression of convective-type precipitation in regions where it is applied.

  2. A Vertically Resolved Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1984-01-01

    Increase of the vertical resolution of the GLAS Fourth Order General Circulation Model (GCM) near the Earth's surface and installation of a new package of parameterization schemes for subgrid-scale physical processes were sought so that the GLAS Model GCM will predict the resolved vertical structure of the planetary boundary layer (PBL) for all grid points.

  3. Large-eddy simulations of a Salt Lake Valley cold-air pool

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2017-09-01

    Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.

  4. Effects of Land Surface Heterogeneity on Simulated Boundary-Layer Structures from the LES to the Mesoscale

    NASA Astrophysics Data System (ADS)

    Poll, Stefan; Shrestha, Prabhakar; Simmer, Clemens

    2017-04-01

    Land heterogeneity influences the atmospheric boundary layer (ABL) structure including organized (secondary) circulations which feed back on land-atmosphere exchange fluxes. Especially the latter effects cannot be incorporated explicitly in regional and climate models due to their coarse computational spatial grids, but must be parameterized. Current parameterizations lead, however, to uncertainties in modeled surface fluxes and boundary layer evolution, which feed back to cloud initiation and precipitation. This study analyzes the impact of different horizontal grid resolutions on the simulated boundary layer structures in terms of stability, height and induced secondary circulations. The ICON-LES (Icosahedral Nonhydrostatic in LES mode) developed by the MPI-M and the German weather service (DWD) and conducted within the framework of HD(CP)2 is used. ICON is dynamically downscaled through multiple scales of 20 km, 7 km, 2.8 km, 625 m, 312 m, and 156 m grid spacing for several days over Germany and partial neighboring countries for different synoptic conditions. We examined the entropy spectrum of the land surface heterogeneity at these grid resolutions for several locations close to measurement sites, such as Lindenberg, Jülich, Cabauw and Melpitz, and studied its influence on the surface fluxes and the evolution of the boundary layer profiles.

  5. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    DOE PAGES

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; ...

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less

  6. A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Pergaud, Julien; Masson, Valéry; Malardel, Sylvie; Couvreux, Fleur

    2009-07-01

    For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy DiffusivityMass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCSARM) and conserve a realistic evolution of stratocumulus (EUROCSFIRE).

  7. A Parameterization for Land-Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land.

    NASA Astrophysics Data System (ADS)

    Wetzel, Peter J.; Boone, Aaron

    1995-07-01

    This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were this result to be bourne out by further analysis, it would suggest that today's average land surface parameterization has little credibility when applied to discriminating the local impacts of any plausible future climate change.

  8. On the sensitivity of mesoscale models to surface-layer parameterization constants

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pielke, R. A.

    1989-09-01

    The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.

  9. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  10. A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Klein, S. A.; Ma, H. -Y.

    The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less

  11. A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations

    DOE PAGES

    Zheng, X.; Klein, S. A.; Ma, H. -Y.; ...

    2017-08-24

    The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less

  12. An Investigation on the role of Planetary Boundary Layer Parameterization scheme on the performance of a hydrostatic atmospheric model over a Coastal Region

    NASA Astrophysics Data System (ADS)

    Anurose, J. T.; Subrahamanyam, Bala D.

    2012-07-01

    As part of the ocean/land-atmosphere interaction, more than half of the total kinetic energy is lost within the lowest part of atmosphere, often referred to as the planetary boundary layer (PBL). A comprehensive understanding of the energetics of this layer and turbulent processes responsible for dissipation of kinetic energy within the PBL require accurate estimation of sensible and latent heat flux and momentum flux. In numerical weather prediction (NWP) models, these quantities are estimated through different surface-layer and PBL parameterization schemes. This research article investigates different factors influencing the accuracy of a surface-layer parameterization scheme used in a hydrostatic high-resolution regional model (HRM) in the estimation of surface-layer turbulent fluxes of heat, moisture and momentum over the coastal regions of the Indian sub-continent. Results obtained from this sensitivity study of a parameterization scheme in HRM revealed the role of surface roughness length (z_{0}) in conjunction with the temperature difference between the underlying ground surface and atmosphere above (ΔT = T_{G} - T_{A}) in the estimated values of fluxes. For grid points over the land surface where z_{0} is treated as a constant throughout the model integration time, ΔT showed relative dominance in the estimation of sensible heat flux. In contrast to this, estimation of sensible and latent heat flux over ocean were found to be equally sensitive on the method adopted for assigning the values of z_{0} and also on the magnitudes of ΔT.

  13. Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Shao, Q.; Branson, M.

    1997-01-01

    The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.

  14. Comparison of Measured and WRF-LES Turbulence Statistics in a Real Convective Boundary Layer over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Rai, R. K.; Berg, L. K.; Kosovic, B.; Mirocha, J. D.; Pekour, M. S.; Shaw, W. J.

    2015-12-01

    Resolving the finest turbulent scales present in the lower atmosphere using numerical simulations helps to study the processes that occur in the atmospheric boundary layer, such as the turbulent inflow condition to the wind plant and the generation of the wake behind wind turbines. This work employs several nested domains in the WRF-LES framework to simulate conditions in a convectively driven cloud free boundary layer at an instrumented field site in complex terrain. The innermost LES domain (30 m spatial resolution) receives the boundary forcing from two other coarser resolution LES outer domains, which in turn receive boundary conditions from two WRF-mesoscale domains. Wind and temperature records from sonic anemometers mounted at two vertical levels (30 m and 60 m) are compared with the LES results in term of first and second statistical moments as well as power spectra and distributions of wind velocity. For the two mostly used boundary layer parameterizations (MYNN and YSU) tested in the WRF mesoscale domains, the MYNN scheme shows slightly better agreement with the observations for some quantities, such as time averaged velocity and Turbulent Kinetic Energy (TKE). However, LES driven by WRF-mesoscale simulations using either parameterization have similar velocity spectra and distributions of velocity. For each component of the wind velocity, WRF-LES power spectra are found to be comparable to the spectra derived from the measured data (for the frequencies that are accurately represented by WRF-LES). Furthermore, the analysis of LES results shows a noticeable variability of the mean and variance even over small horizontal distances that would be considered sub-grid scale in mesoscale simulations. This observed statistical variability in space and time can be utilized to further analyze the turbulence quantities over a heterogeneous surface and to improve the turbulence parameterization in the mesoscale model.

  15. Sensitivity of boundary layer variables to PBL schemes over the central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, L.; Liu, H.; Wang, L.; Du, Q.; Liu, Y.

    2017-12-01

    Planetary Boundary Layer (PBL) parameterization schemes play critical role in numerical weather prediction and research. They describe physical processes associated with the momentum, heat and humidity exchange between land surface and atmosphere. In this study, two non-local (YSU and ACM2) and two local (MYJ and BouLac) planetary boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model have been tested over the central Tibetan Plateau regarding of their capability to model boundary layer parameters relevant for surface energy exchange. The model performance has been evaluated against measurements from the Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III). Simulated meteorological parameters and turbulence fluxes have been compared with observations through standard statistical measures. Model results show acceptable behavior, but no particular scheme produces best performance for all locations and parameters. All PBL schemes underestimate near surface air temperatures over the Tibetan Plateau. By investigating the surface energy budget components, the results suggest that downward longwave radiation and sensible heat flux are the main factors causing the lower near surface temperature. Because the downward longwave radiation and sensible heat flux are respectively affected by atmosphere moisture and land-atmosphere coupling, improvements in water vapor distribution and land-atmosphere energy exchange is meaningful for better presentation of PBL physical processes over the central Tibetan Plateau.

  16. RACORO Continental Boundary Layer Cloud Investigations: 3. Separation of Parameterization Biases in Single-Column Model CAM5 Simulations of Shallow Cumulus

    NASA Technical Reports Server (NTRS)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-01-01

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.

  17. RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus

    DOE PAGES

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; ...

    2015-06-19

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only amore » relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.« less

  18. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  19. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Edward G.

    This project used a combination of turbulence-resolving large-eddy simulations, single-column modeling (where turbulence is parameterized), and currently available observations to improve, assess, and develop a parameterization of the impact of non-equilibrium wave states and stratification on the buoy-observed winds to establish reliable wind data at the turbine hub-height level. Analysis of turbulence-resolving simulations and observations illuminates the non-linear coupling between the atmosphere and the undulating sea surface. This analysis guides modification of existing boundary layer parameterizations to include wave influences for upward extrapolation of surface-based observations through the turbine layer. Our surface roughness modifications account for the interaction between stratificationmore » and the effects of swell’s amplitude and wavelength as well as swell’s relative motion with respect to the mean wind direction. The single-column version of the open source Weather and Research Forecasting (WRF) model (Skamarock et al., 2008) serves as our platform to test our proposed planetary boundary layer parameterization modifications that account for wave effects on marine atmospheric boundary layer flows. WRF has been widely adopted for wind resource analysis and forecasting. The single column version is particularly suitable to development, analysis, and testing of new boundary layer parameterizations. We utilize WRF’s single-column version to verify and validate our proposed modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer parameterization (Nakanishi and Niino, 2004). We explore the implications of our modifications for two-way coupling between WRF and wave models (e.g.,Wavewatch III). The newly implemented parameterization accounting for marine atmospheric boundary layer-wave coupling is then tested in three-dimensional WRF simulations at grid sizes near 1 km. These simulations identify the behavior of simulated winds at the wind plant scale. Overall project conclusions include; In the presence of fast-moving swell (significant wave height Hs = 6.4 m, and phase speed cp = 18 ms -1), the atmospheric boundary layer grows more rapidly when waves propagate opposite to the winds compared to when winds and waves are aligned. Pressure drag increases by nearly a factor of 2 relative to the turbulent stress for the extreme case where waves propagate at 180° compared to the pressure gradient forcing. Net wind speed reduces by nearly 15% at hub-height for the 180°-case compared to the 0°-case, and turbulence intensities increase by nearly a factor of 2. These impacts diminish with decreasing wave age; Stratification increases hub height wind speeds and increases the vertical shear of the mean wind across the rotor plane. Fortuitously, this stability-induced enhanced shear does not influence turbulence intensity at hub height, but does increase (decrease) turbulence intensity below (above) hub height. Increased stability also increases the wave-induced pressure stress by ~ 10%; Off the East Coast of the United States during Coupled Boundary Layers Air-Sea Transfer - Low Wind (CBLAST-Low), cases with short fetch include thin stable boundary layers with depths of only a few tens of meters. In the coastal zone, the relationship between the mean wind and the surface fiction velocity (u*(V )) is significantly related to wind direction for weak winds but is not systematically related to the air sea difference of virtual potential temperature, δθv; since waves generally propagate from the south at the Air-Sea Interaction Tower (ASIT) tower, these results suggest that under weak wind conditions waves likely influence surface stress more than stratification does; and Winds and waves are frequently misaligned in the coastal zone. Stability conditions persist for long duration. Over a four year period, the Forschungsplattformen in Nord- und Ostsee Nr. 1 (FINO1) tower (a site with long fetch) primarily experienced weakly-unstable conditions, while stability at the ASIT tower (with a larger influence of offshore winds) experiences a mix of both unstable and stable conditions, where the summer months are predominantly stable. Wind-wave misalignment likely explains the large scatter in observed non-dimensional surface roughness under swell-dominated conditions. Andreas et al.’s (2012) relationship between u* and the 10-m wind speed under predicts the increased u* produced by wave-induced pressure drag produced by misaligned winds and waves. Incorporating wave-state (speed and direction) influences in parameterizations improves predictive skill. In a broad sense, these results suggest that one needs information on winds, temperature, and wave state to upscale buoy measurements to hub-height and across the rotor plane. Our parameterization of wave-state influences on surface drag has been submitted for inclusion in the next publicly available release. In combination, our project elucidates the impacts of two important physical processes (non-equilibrium wind/waves and stratification) on the atmosphere within which offshore turbines operate. This knowledge should help guide and inform manufacturers making critical decisions surrounding design criteria of future turbines to be deployed in the coastal zone. Reductions in annually averaged hub height wind speed error using our new wave-state-aware surface layer parameterization are relatively modest. However since wind turbine power production depends on the wind speed cubed, the error in estimated power production is close to 5%; which is significant and can substantially impact wind resource assessment and decision making with regards to the viability of particular location for a wind plant location. For a single 30-hour forecast, significant reductions in wind speed prediction errors can yield substantially improved wind power forecast skill, thereby mitigating costs and/or increasing revenue through improved; forecasting for maintenance operations and planning; day-ahead forecasting for power trading and resource allocation; and short-term forecasting for dispatch and grid balancing.« less

  20. Turbulence characteristics of velocity and scalars in an internal boundary-layer above a lake

    NASA Astrophysics Data System (ADS)

    Sahlee, E.; Rutgersson, A.; Podgrajsek, E.

    2012-12-01

    We analyze turbulence measurements, including methane, from a small island in a Swedish lake. The turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies displayed a daily variation, increasing in the morning and decreasing in the afternoon. We interpret this behavior as a sign of spectral lag, where the low frequency energy, large eddies, originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrates with new surface forcing. However, the larger eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variance of the horizontal velocity is increased by these large eddies however, momentum fluxes and scalar variances and fluxes appear unaffected. The drag coefficient, Stanton number and Dalton number used to parameterize the momentum flux, heat flux and latent heat flux respectively all compare very well with parameterizations developed for open ocean conditions.

  1. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was initialized and compared with meteorological and SF6 tracer measurements from the Basel UrBan Boundary Layer Experiment (BUBBLE). The proposed modification does not improve the model's agreement with concentration observations, even though the trapping time shows promising agreement with measurements. Additionally, the modification's influence is smaller than those of different turbulence profiles, zero-plane displacement height and Roughness Sublayer height.

  2. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    Treesearch

    Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer

    2011-01-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...

  3. Observational Constraints on Ephemeral Wind Gusts that MobilizeSoil Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Leung, M. F.

    2017-12-01

    Dust aerosol models resolve the planetary scale winds that disperse particles throughout the globe, but the winds raising dust are often organized on smaller scales that are below the resolution of the model. These winds, including ephemeral wind gusts associated with boundary layer mixing, are typically parameterized. For example, gusts by dry convective eddies are related to the sensible heat flux. What remains is to constrain the magnitude of the wind gusts using boundary layer measurements, so that dust emission has the correct sensitivity to these gusts, relative to the resolved wind. Here, we use a year of ARM measurements with high temporal resolution from Niamey, Niger in the Sahel to evaluate our parameterization. This evaluation is important for dust aerosol models that use 'nudging' to reproduce observed transport patterns.

  4. Sensitivity of WRF precipitation on microphysical and boundary layer parameterizations during extreme events in Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Pytharoulis, I.; Karagiannidis, A. F.; Brikas, D.; Katsafados, P.; Papadopoulos, A.; Mavromatidis, E.; Kotsopoulos, S.; Karacostas, T. S.

    2010-09-01

    Contemporary atmospheric numerical models contain a large number of physical parameterization schemes in order to represent the various atmospheric processes that take place in sub-grid scales. The choice of the proper combination of such schemes is a challenging task for research and particularly for operational purposes. This choice becomes a very important decision in cases of high impact weather in which the forecast errors and the concomitant societal impacts are expected to be large. Moreover, it is well known that one of the hardest tasks for numerical models is to predict precipitation with a high degree of accuracy. The use of complex and sophisticated schemes usually requires more computational time and resources, but it does not necessarily lead to better forecasts. The aim of this study is to investigate the sensitivity of the model predicted precipitation on the microphysical and boundary layer parameterizations during extreme events. The nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW Version 3.1.1) is utilized. It is a flexible, state-of-the-art numerical weather prediction system designed to operate in both research and operational mode in global and regional scales. Nine microphysical and two boundary layer schemes are combined in the sensitivity experiments. The 9 microphysical schemes are: i) Lin, ii) WRF Single Moment 5-classes, iii) Ferrier new Eta, iv) WRF Single Moment 6-classes, v) Goddard, vi) New Thompson V3.1, vii) WRF Double Moment 5-classes, viii) WRF Double Moment 6-classes, ix) Morrison. The boundary layer is parameterized using the schemes of: i) Mellor-Yamada-Janjic (MYJ) and ii) Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5. The model is integrated at very high horizontal resolution (2 km x 2 km in the area of interest) utilizing 38 vertical levels. Three cases of high impact weather in Eastern Mediterranean, associated with strong synoptic scale forcing, are employed in the numerical experiments. These events are characterized by strong precipitation with daily amounts exceeding 100 mm. For example, the case of 24 to 26 October 2009 was associated with floods in the eastern mainland of Greece. In Pieria (northern Greece), that was the most afflicted area, one individual perished in the overflowed Esonas river and significant damages were caused in both the infrastructure and cultivations. Precipitation amounts of 347 mm in 3 days were measured in the station of Vrontou, Pieria (which is at an elevation of only 120 m). The model results are statistically analysed and compared to the available surface observations and satellite derived precipitation data in order to identify the parameterizations (and their combinations) that provide the best representation of the spatiotemporal variability of precipitation in extreme conditions. Preliminary results indicate that the MYNN boundary layer parameterization outperforms the one of MYJ. However, the best results are produced by the combination of the Ferrier new Eta microphysics with the MYJ scheme, which are the default schemes of the well-known and reliable ETA and WRF-NMM models. Similarly, good results are produced by the combination of the New Thompson V3.1 microphysics with MYNN boundary layer scheme. On the other hand, the worst results (with mean absolute error up to about 150 mm/day) appear when the WRF Single Moment 5-classes scheme is used with MYJ. Finally, an effort is made to identify and analyze the main factors that are responsible for the aforementioned differences.

  5. Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.

    2010-10-01

    The impact of urban surface parameterizations in the WRF (Weather Research and Forecasting) model on the simulation of local meteorological fields is investigated. The Noah land surface model (LSM), a modified LSM, and a single-layer urban canopy model (UCM) have been compared, focusing on urban patches. The model simulations were performed for 6 days from 12 August to 17 August during the Texas Air Quality Study 2006 field campaign. Analysis was focused on the Houston-Galveston metropolitan area. The model simulated temperature, wind, and atmospheric boundary layer (ABL) height were compared with observations from surface meteorological stations (Continuous Ambient Monitoring Stations, CAMS), wind profilers, the NOAA Twin Otter aircraft, and the NOAA Research Vessel Ronald H. Brown. The UCM simulation showed better results in the comparison of ABL height and surface temperature than the LSM simulations, whereas the original LSM overestimated both the surface temperature and ABL height significantly in urban areas. The modified LSM, which activates hydrological processes associated with urban vegetation mainly through transpiration, slightly reduced warm and high biases in surface temperature and ABL height. A comparison of surface energy balance fluxes in an urban area indicated the UCM reproduces a realistic partitioning of sensible heat and latent heat fluxes, consequently improving the simulation of urban boundary layer. However, the LSMs have a higher Bowen ratio than the observation due to significant suppression of latent heat flux. The comparison results suggest that the subgrid heterogeneity by urban vegetation and urban morphological characteristics should be taken into account along with the associated physical parameterizations for accurate simulation of urban boundary layer if the region of interest has a large fraction of vegetation within the urban patch. Model showed significant discrepancies in the specific meteorological conditions when nocturnal low-level jets exist and a thermal internal boundary layer over water forms.

  6. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    EPA Science Inventory

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  7. A model of air-sea gas exchange incorporating the physics of the turbulent boundary layer and the properties of the sea surface

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Schluessel, Peter

    The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the air-sea gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the air-sea gas exchange can be extended to the global scale, using remote sensing techniques.

  8. Simulation of the planetary boundary layer with the UCLA general circulation model

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1981-01-01

    A planetary boundary layer (PBL) model is presented which employs a mixed layer entrainment formulation to describe the mass exchange between the mixed layer with the upper, laminar atmosphere. A modified coordinate system couples the mixed layer model with large scale and sub-grid scale processes of a general circulation model. The vertical coordinate is configured as a sigma coordinate with the lower boundary, the top of the PBL, and the prescribed pressure level near the tropopause expressed as coordinate surfaces. The entrainment mass flux is parameterized by assuming the dissipation rate of turbulent kinetic energy to be proportional to the positive part of the generation by convection or mechanical production. The results of a simulation of July are presented for the entire globe.

  9. The Bottom Boundary Layer.

    PubMed

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  10. The Bottom Boundary Layer

    NASA Astrophysics Data System (ADS)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  11. Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.

    2017-12-01

    Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.

  12. Modelling of surface fluxes and Urban Boundary Layer over an old mediterannean city core

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Masson, V.; Grimmond, Cs. B.

    2003-04-01

    In the frameworks of the UBL(Urban Boundary Layer)-ESCOMPTE campaign, the Town Energy Balance (TEB) model was run in off-line mode for Marseille. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the campaign. Parameterization improvements allow to better represent the energy exchanges between the air inside the canyon and the atmosphere above the roof level. Then, high resolution Méso-NH simulations are done to study the 3-D structure and the evolution of the Urban Boundary Layer (UBL) over Marseille. Will will give a special attention to the impact of the seabord effects (sea-breeze circulation) on the UBL.

  13. Diurnal changes in urban boundary layer environment induced by urban greening

    NASA Astrophysics Data System (ADS)

    Song, Jiyun; Wang, Zhi-Hua

    2016-11-01

    Urban green infrastructure has been widely used for mitigating adverse environmental problems as well as enhancing urban sustainability of cities worldwide. Here we develop an integrated urban-land-atmosphere modeling framework with the land surface processes parameterized by an advanced urban canopy model and the atmospheric processes parameterized by a single column model. The model is then applied to simulate a variety of forms of green infrastructure, including urban lawns, shade trees, green and cool roofs, and their impact on environmental changes in the total urban boundary layer (UBL) for a stereotypical desert city, viz. Phoenix, Arizona. It was found that green roofs have a relatively uniform cooling effect proportional to their areal coverage. In particular, a reduction of UBL temperature of 0.3 °C and 0.2 °C per 10% increase of green roof coverage was observed at daytime and nighttime, respectively. In contrast, the effect of greening of street canyons is constrained by the overall abundance of green infrastructure and the energy available for evapotranspiration. In addition, the increase in urban greening causes boundary-layer height to decrease during daytime but increase at nighttime, leading to different trends of changes in urban air quality throughout a diurnal cycle.

  14. Validation of the Martilli's Urban Boundary Layer Scheme with measurements from two mid-latitude European cities

    NASA Astrophysics Data System (ADS)

    Hamdi, R.; Schayes, G.

    2005-07-01

    The Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate the Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme is able to reproduce the generation of the Urban Heat Island (UHI) effect over urban area and represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of the Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.

  15. Validation of Martilli's urban boundary layer scheme with measurements from two mid-latitude European cities

    NASA Astrophysics Data System (ADS)

    Hamdi, R.; Schayes, G.

    2007-08-01

    Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.

  16. Effect of canopy and topography induced wakes on land-atmosphere fluxes of momentum and scalars

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porté-Agel, F.; Stefan, H. G.

    2012-04-01

    Wakes shed from natural and anthropogenic landscape features affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases (e.g. CO2). Canopies and bluff bodies, such as forests, buildings and topography, cause boundary layer flow separation, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances (>100 typical length scales) and affect a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere models, and little is known about how heterogeneity of wake-generating features affect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous flow requirements for the standard eddy correlation (EC) method. This phenomenon, often referred to as wind sheltering, has been shown to affect momentum and kinetic energy fluxes at the lake-atmosphere interface (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using particle image velocimetry (PIV) and custom x-wire/cold-wire anemometry, to understand how the physical structure of upstream bluff bodies and porous canopies as well as how thermal stability affect the flow separation zone, boundary layer recovery and surface fluxes. We have found that there is a nonlinear relationship between canopy length/porosity and flow separation downwind of a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for the EC measurements over open fields, lakes, and wetlands. Key words: Atmospheric boundary layer; Wakes; Stratification; Land-Atmosphere Parameterization; Canopy

  17. Scaling oxygen microprofiles at the sediment interface of deep stratified waters

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien

    2017-02-01

    Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.

  18. Air-Sea Interaction in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Friehe, C. A.; Melville, W. K.

    2007-05-01

    Measurements of meteorological fields and turbulence were made during gap wind events in the Gulf of Tehuantepec using the NSF C-130 aircraft. The flight patterns started at the shore and progressed to approximately 300km offshore with low-level (30m) tracks, stacks and soundings. Parameterizations of the wind stress, sensible and latent heat fluxes were obtained from approximately 700 5 km low-level tracks. Structure of the marine boundary layer as it evolved off-shore was obtained with stack patterns, aircraft soundings and deployment of dropsondes. The air-sea fluxes approximately follow previous parameterizations with some evidence of the drag coefficient leveling out at about 20 meters/sec with the latent heat flux slightly increasing. The boundary layer starts at shore as a gap wind low-level jet, thins as the jet expands out over the gulf, exhibits a hydraulic jump, and then increases due to turbulent mixing.

  19. Processing Doppler Lidar and Cloud Radar Observations for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations

    DTIC Science & Technology

    2014-09-30

    for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations R. Michael Hardesty CIRES/University of Colorado/NOAA 325...the RV-Revell during legs 2 & 3 of the DYNAMO experiement to help characterize vertical transport through the boundary layer and to build statistics...obtained during DYNAMO , and to investigate whether cold pools that emanate from convection organize the interplay between humidity and convection and

  20. Testing a common ice-ocean parameterization with laboratory experiments

    NASA Astrophysics Data System (ADS)

    McConnochie, C. D.; Kerr, R. C.

    2017-07-01

    Numerical models of ice-ocean interactions typically rely upon a parameterization for the transport of heat and salt to the ice face that has not been satisfactorily validated by observational or experimental data. We compare laboratory experiments of ice-saltwater interactions to a common numerical parameterization and find a significant disagreement in the dependence of the melt rate on the fluid velocity. We suggest a resolution to this disagreement based on a theoretical analysis of the boundary layer next to a vertical heated plate, which results in a threshold fluid velocity of approximately 4 cm/s at driving temperatures between 0.5 and 4°C, above which the form of the parameterization should be valid.

  1. A unified view of convective transports by stratocumulus clouds, shallow cumulus clouds, and deep convection

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    A bulk planetary boundary layer (PBL) model was developed with a simple internal vertical structure and a simple second-order closure, designed for use as a PBL parameterization in a large-scale model. The model allows the mean fields to vary with height within the PBL, and so must address the vertical profiles of the turbulent fluxes, going beyond the usual mixed-layer assumption that the fluxes of conservative variables are linear with height. This is accomplished using the same convective mass flux approach that has also been used in cumulus parameterizations. The purpose is to show that such a mass flux model can include, in a single framework, the compensating subsidence concept, downgradient mixing, and well-mixed layers.

  2. A model for the estimation of the surface fluxes of momentum, heat and moisture of the cloud topped marine atmospheric boundary layer from satellite measurable parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Allison, D. E.

    1984-01-01

    A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.

  3. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  4. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  5. A parameterization of the passive layer of a quasigeostrophic flow in a continuously-stratified ocean

    NASA Astrophysics Data System (ADS)

    Benilov, E. S.

    2018-05-01

    This paper examines quasigeostrophic flows in an ocean that can be subdivided into an upper active layer (AL) and a lower passive layer (PL), with the flow and density stratification mainly confined to the former. Under this assumption, an asymptotic model is derived parameterizing the effect of the PL on the AL. The model depends only on the PL's depth, whereas its Väisälä-Brunt frequency turns out to be unimportant (as long as it is small). Under an additional assumption-that the potential vorticity field in the PL is well-diffused and, thus, uniform-the derived model reduces to a simple boundary condition. This condition is to be applied at the AL/PL interface, after which the PL can be excluded from consideration.

  6. Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.

    2011-03-01

    The performance of different urban surface parameterizations in the WRF (Weather Research and Forecasting) in simulating urban boundary layer (UBL) was investigated using extensive measurements during the Texas Air Quality Study 2006 field campaign. The extensive field measurements collected on surface (meteorological, wind profiler, energy balance flux) sites, a research aircraft, and a research vessel characterized 3-dimensional atmospheric boundary layer structures over the Houston-Galveston Bay area, providing a unique opportunity for the evaluation of the physical parameterizations. The model simulations were performed over the Houston metropolitan area for a summertime period (12-17 August) using a bulk urban parameterization in the Noah land surface model (original LSM), a modified LSM, and a single-layer urban canopy model (UCM). The UCM simulation compared quite well with the observations over the Houston urban areas, reducing the systematic model biases in the original LSM simulation by 1-2 °C in near-surface air temperature and by 200-400 m in UBL height, on average. A more realistic turbulent (sensible and latent heat) energy partitioning contributed to the improvements in the UCM simulation. The original LSM significantly overestimated the sensible heat flux (~200 W m-2) over the urban areas, resulting in warmer and higher UBL. The modified LSM slightly reduced warm and high biases in near-surface air temperature (0.5-1 °C) and UBL height (~100 m) as a result of the effects of urban vegetation. The relatively strong thermal contrast between the Houston area and the water bodies (Galveston Bay and the Gulf of Mexico) in the LSM simulations enhanced the sea/bay breezes, but the model performance in predicting local wind fields was similar among the simulations in terms of statistical evaluations. These results suggest that a proper surface representation (e.g. urban vegetation, surface morphology) and explicit parameterizations of urban physical processes are required for accurate urban atmospheric numerical modeling.

  7. The Role of Boundary-Layer and Cumulus Convection on Dust Emission, Mixing, and Transport Over Desert Regions

    NASA Astrophysics Data System (ADS)

    Takemi, T.; Yasui, M.

    2005-12-01

    Recent studies on dust emission and transport have been concerning the small-scale atmospheric processes in order to incorporate them as a subgrid-scale effect in large-scale numerical prediction models. In the present study, we investigated the dynamical processes and mechanisms of dust emission, mixing, and transport induced by boundary-layer and cumulus convection under a fair-weather condition over a Chinese desert. We performed a set of sensitivity experiments as well as a control simulation in order to examine the effects of vertical wind shear, upper-level wind speed, and moist convection by using a simplified and idealized modeling framework. The results of the control experiment showed that surface dust emission was at first caused before the noon time by intense convective motion which not only developed in the boundary layer but also penetrated into the free troposphere. In the afternoon hours, boundary-layer dry convection actively mixed and transported dust within the boundary layer. Some of the convective cells penetrated above the boundary layer, which led to the generation of cumulus clouds and hence gradually increased the dust content in the free troposphere. Coupled effects of the dry and moist convection played an important role in inducing surface dust emission and transporting dust vertically. This was clearly demonstrated through the comparison of the results between the control and the sensitivity experiments. The results of the control simulation were compared with lidar measurements. The simulation well captured the observed diurnal features of the upward transport of dust. We also examined the dependence of the simulated results on grid resolution: the grid size was changed from 250 m up to 4 km. It was found that there was a significant difference between the 2-km and 4-km grids. If a cumulus parameterization was added to the 4-km grid run, the column content was comparable to the other cases. This result suggests that subgrid parameterizations are required if the grid size is larger than the order of 1 km in a fair-weather condition.

  8. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.

    1986-01-01

    Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.

  9. Challenges in Understanding and Forecasting Winds in Complex Terrain.

    NASA Astrophysics Data System (ADS)

    Mann, J.; Fernando, J.; Wilczak, J. M.

    2017-12-01

    An overview will be given of some of the challenges in understanding and forecasting winds in complex terrain. These challenges can occur for several different reasons including 1) gaps in our understanding of fundamental physical boundary layer processes occurring in complex terrain; 2) a lack of adequate parameterizations and/or numerical schemes in NWP models; and 3) inadequate observations for initialization of NWP model forecasts. Specific phenomena that will be covered include topographic wakes/vortices, cold pools, gap flows, and mountain-valley winds, with examples taken from several air quality and wind energy related field programs in California as well as from the recent Second Wind Forecast Improvement Program (WFIP2) field campaign in the Columbia River Gorge/Basin area of Washington and Oregon States. Recent parameterization improvements discussed will include those for boundary layer turbulence, including 3D turbulence schemes, and gravity wave drag. Observational requirements for improving wind forecasting in complex terrain will be discussed, especially in the context of forecasting pressure gradient driven gap flow events.

  10. Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Bruce; Fang, Ming; Ghate, Virendra

    2016-02-01

    Observations from an upward-pointing Doppler cloud radar are used to examine cloud-top entrainment processes and parameterizations in a non-precipitating continental stratocumulus cloud deck maintained by time varying surface buoyancy fluxes and cloud-top radiative cooling. Radar and ancillary observations were made at the Atmospheric Radiation Measurement (ARM)’s Southern Great Plains (SGP) site located near Lamont, Oklahoma of unbroken, non-precipitating stratocumulus clouds observed for a 14-hour period starting 0900 Central Standard Time on 25 March 2005. The vertical velocity variance and energy dissipation rate (EDR) terms in a parameterized turbulence kinetic energy (TKE) budget of the entrainment zone are estimated using themore » radar vertical velocity and the radar spectrum width observations from the upward-pointing millimeter cloud radar (MMCR) operating at the SGP site. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlates strongly (r=0.72) to the dissipation rate term in the entrainment zone. However, the ratio of the variance term to the dissipation decreases at night due to decoupling of the boundary layer. When the night -time decoupling is accounted for, the correlation between the variance and the EDR term increases (r=0.92). To obtain bulk coefficients for the entrainment parameterizations derived from the TKE budget, independent estimate of entrainment were obtained from an inversion height budget using ARM SGP observations of the local time derivative and the horizontal advection of the cloud-top height. The large-scale vertical velocity at the inversion needed for this budget from EMWF reanalysis. This budget gives a mean entrainment rate for the observing period of 0.76±0.15 cm/s. This mean value is applied to the TKE budget parameterizations to obtain the bulk coefficients needed in these parameterizations. These bulk coefficients are compared with those from previous and are used to in the parameterizations to give hourly estimates of the entrainment rates using the radar derived vertical velocity variance and dissipation rates. Hourly entrainment rates were estimated from a convective velocity w* parameterization depends on the local surface buoyancy fluxes and the calculated radiative flux divergence, parameterization using a bulk coefficient obtained from the mean inversion height budget. The hourly rates from the cloud turbulence estimates and the w* parameterization, which is independent of the radar observations, are compared with the hourly we values from the budget. All show rough agreement with each other and capture the entrainment variability associated with substantial changes in the surface flux and radiative divergence at cloud top. Major uncertainties in the hourly estimates from the height budget and w* are discussed. The results indicate a strong potential for making entrainment rate estimates directly from the radar vertical velocity variance and the EDR measurements—a technique that has distinct advantages over other methods for estimating entrainment rates. Calculations based on the EDR alone can provide high temporal resolution (for averaging intervals as small as 10 minutes) of the entrainment processes and do not require an estimate of the boundary layer depth, which can be difficult to define when the boundary layer is decoupled.« less

  11. Technical Report Series on Global Modeling and Data Assimilation. Volume 14; A Comparison of GEOS Assimilated Data with FIFE Observations

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Suarez, Max J. (Editor); Schubert, Siegfried D.

    1998-01-01

    First ISLSCP Field Experiment (FIFE) observations have been used to validate the near-surface proper- ties of various versions of the Goddard Earth Observing System (GEOS) Data Assimilation System. The site- averaged FIFE data set extends from May 1987 through November 1989, allowing the investigation of several time scales, including the annual cycle, daily means and diurnal cycles. Furthermore, the development of the daytime convective planetary boundary layer is presented for several days. Monthly variations of the surface energy budget during the summer of 1988 demonstrate the affect of the prescribed surface soil wetness boundary conditions. GEOS data comes from the first frozen version of the assimilation system (GEOS-1 DAS) and two experimental versions of GEOS (v. 2.0 and 2.1) with substantially greater vertical resolution and other changes that influence the boundary layer. This report provides a baseline for future versions of the GEOS data assimilation system that will incorporate a state-of-the-art land surface parameterization. Several suggestions are proposed to improve the generality of future comparisons. These include the use of more diverse field experiment observations and an estimate of gridpoint heterogeneity from the new land surface parameterization.

  12. Using Satellite Observations to Infer the Relationship Between Cold Pools and Subsequent Convection Development

    NASA Technical Reports Server (NTRS)

    Elsaesser, Gregory

    2015-01-01

    Cold pools are increasingly being recognized as important players in the evolution of both shallow and deep convection; hence, the incorporation of cold pool processes into a number of recently developed convective parameterizations. Unfortunately, observations serving to inform cold pool parameterization development are limited to select field programs and limited radar domains. However, a number of recent studies have noted that cold pools are often associated with arcs-lines of shallow clouds traversing 10 100 km in visible satellite imagery. Boundary layer thermodynamic perturbations are plausible at such scales, coincident with such mesoscale features. Atmospheric signatures of features at these spatial scales are potentially observable from satellites. In this presentation, we discuss recent work that uses multi-sensor, high-resolution satellite products for observing mesoscale wind vector fluctuations and boundary layer temperature depressions attributed to cold pools produced by antecedent convection. The relationship to subsequent convection as well as convective system longevity is discussed. As improvements in satellite technology occur and efforts to reduce noise in high-resolution orbital products progress, satellite pixel level (10 km) thermodynamic and dynamic (e.g. mesoscale convergence) parameters can increasingly serve as useful benchmarks for constraining convective parameterization development, including for regimes where organized convection contributes substantially to the cloud and rainfall climatology.

  13. The T-REX valley wind intercomparison project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidli, J; Billings, B J; Burton, R

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less

  14. ADVANCED URBANIZED METEOROLOGICAL MODELING AND AIR QUALITY SIMULATIONS WITH CMAQ AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    We present results from a study testing the new boundary layer parameterization method, the canopy drag approach (DA) which is designed to explicitly simulate the effects of buildings, street and tree canopies on the dynamic, thermodynamic structure and dispersion fields in urban...

  15. Trade-Wind Cloudiness and Climate

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1997-01-01

    Closed Mesoscale Cellular Convection (MCC) consists of mesoscale cloud patches separated by narrow clear regions. Strong radiative cooling occurs at the cloud top. A dry two-dimensional Bousinesq model is used to study the effects of cloud-top cooling on convection. Wide updrafts and narrow downdrafts are used to indicate the asymmetric circulations associated with the mesoscale cloud patches. Based on the numerical results, a conceptual model was constructed to suggest a mechanism for the formation of closed MCC over cool ocean surfaces. A new method to estimate the radioative and evaporative cooling in the entrainment layer of a stratocumulus-topped boundary layer has been developed. The method was applied to a set of Large-Eddy Simulation (LES) results and to a set of tethered-balloon data obtained during FIRE. We developed a statocumulus-capped marine mixed layer model which includes a parameterization of drizzle based on the use of a predicted Cloud Condensation Nuclei (CCN) number concentration. We have developed, implemented, and tested a very elaborate new stratiform cloudiness parameterization for use in GCMs. Finally, we have developed a new, mechanistic parameterization of the effects of cloud-top cooling on the entrainment rate.

  16. Characteristics of the Martian atmosphere surface layer

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1991-01-01

    Researchers extend elements of various terrestrial boundary layer models to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface layer. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed. Parameterizations for specific heat and and binary diffusivity were also determined. The Prandtl and Schmidt numbers derived from these thermophysical properties were found to range from 0.78 - 1.0 and 0.47 - 0.70, respectively, for Mars. Brutsaert's model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the researchers modified the definition of the Monin-Obukhov length to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. This length scale was then utilized with similarity theory turbulent flux profiles with the same form as those used by Businger et al. and others. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  17. Vertical Transport Processes for Inert and Scavenged Species: TRACE-A Measurements

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    The TRACE-A mission of the NASA DC-8 aircraft made a large-scale survey of the tropical and subtropical atmosphere in September and October of 1992. Both In-situ measurements of CO (G. Sachsen NASA Langley) and aerosol size (J. Browell group, NASA Langley) provide excellent data sets with which to constrain vertical transport by planetary boundary layer mixing and deep-cloud cumulus convection. Lidar profiles of aerosol-induced scattering and ozone (also by Bremen) are somewhat require more subtle interpretation as tracers, but the vertical information on layering largely compensates for these complexities. The reason this DC-8 dataset is so useful is that very large areas of biomass burning over Africa and South America provide surface sources of appropriate sizes with which to characterize vertical and horizontal motions; the major limitation of our source description is that biomass burning patterns move considerably every few days, and daily burning inventories are a matter of concurrent, intensive research. We use the Penn State / NCAR MM5 model in an assimilation mode on the synoptic and intercontinental scale, and assess the success it shows in vertical transport descriptions. We find that the general level of emissions suggested by the climatological approach (Will. Has, U. of Montana) appears to be approximately correct, possibly a bit low, for this October, 1992, time period. Vertical transport in planetary boundary layer mixing to 5.5 kin was observed and reproduced in our simulations. Furthermore we find evidence that Blackader "transilient" or matrix-transport scheme is needed, but may require some adaptation in our tracer model: CO seems to exhibit very high values at the top of the planetary boundary layer, a process that stretches the eddy-diffusion parameterization. We will report on progress in improving the deep convective transport of carbon monoxide: the Grail scheme as we used it at 100 kin resolution did not transport enough material to the upper troposphere. We expect to be able to attribute this to either parameterization reasons (inadequacy of this parameterization at the large 100km scale) or other reasons. Nevertheless, the qualitative nature of deep transport by clouds shows up well in the simulations. As for scavengable species, the simulations predict tens of micrograms per standard cubic meter of smoke aerosol in the boundary layer. In a straightforward illustration of our simple bulk-mass scavenging parameterization, to one or two micrograms per standard cubic meter of smoke aerosol in the free troposphere just above the source regions: very high concentrations for the free troposphere. We expect to report on comparisons of these predictions to a variety of observations.

  18. Response and Sensitivity of the Nocturnal Boundary Layer Over Land to Added Longwave Radiative Forcing

    NASA Astrophysics Data System (ADS)

    McNider, R. T.; Steeneveld, G.; Holtslag, B.; Pielke, R. A.; Mackaro, S.; Nair, U. S.; Biazar, A. P.; Christy, J. R.; Walters, J.

    2012-12-01

    . One of the most significant signals in the thermometer-observed temperature record since 1900 is the decrease in the diurnal temperature range (DTR) over land. CMIP3 climate models only captured about 20% of this trend difference. An update of observed trends through 2010 indicates that CMIP5 models still only capture about 28%. Because climate models have not captured this asymmetry, many investigators have looked to forcing or processes that models have not included to explain the lack of fidelity of models. Our paper takes an alternative view of the role nonlinear dynamics of the stable nocturnal boundary layer (SNBL) may provide as a general explanation of the asymmetry. This was first postulated in a nonlinear analysis of a simple two layer model that found slight changes in incoming longwave radiation might result in large changes in the near surface temperature as the boundary is destabilized slightly due to the added downward radiation. This produced a mixing of warmer temperatures from aloft to the surface as the turbulent mixing was enhanced. In the present study we examine whether this behavior is retained in a more complete multi-layer column model with a state of the art radiation scheme for the stable boundary layer. The response of a nocturnal boundary layer to an added increment of downward radiation from CO2 and water vapor (4.8 W m -2 ) was compared to the solution without this forcing. These experiments showed that indeed the SNBL grew slightly and was less stable due to the added longwave radiation. The model showed that the shelter temperature warmed substantially due to this destabilization. Moreover, the budget calculations showed that only about 20% of the warming was due to the added longwave energy. Most of the warming at shelter height was due to the redistribution. Budget calculations in the paper also showed that the ultimate fate of the added input of longwave energy was highly sensitive to boundary layer parameters and turbulent parameterizations. The model showed that at light winds (weak turbulence) the atmosphere was not able to lift this energy off the surface and into the atmosphere. Thus, more radiation was emitted from the surface. If soil conductivity or heat capacity were large then more of the energy would heat the ground. Parameterizations of the type used in large scale models added much more sensible heat to the atmosphere. Based on these model analyses, it is likely that part of the observed long-term increase in minimum temperature is reflecting a redistribution of heat by changes in turbulence and not by an accumulation of heat in the SNBL. Because of the sensitivity of the shelter temperature to parameters and to uncertain turbulence parameterization in the SNBL, there should be caution about the use of minimum temperatures as a global warming metric in either observations or models.

  19. Parameterization of gaseous constituencies concentration profiles in the planetary boundary layer as required in support of airborne and satellite borne sensors

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Condon, E.; Casas, J.

    1976-01-01

    The research to develop the capabilities for sensing air pollution constituencies using satellite or airborne remote sensors is reported. Sensor evaluation and calibration are analyzed including data reduction. The proposed follow-on research is presented.

  20. Effects of surface wave breaking on the oceanic boundary layer

    NASA Astrophysics Data System (ADS)

    He, Hailun; Chen, Dake

    2011-04-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge ismore » how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.« less

  2. Performance of WRF for Simulation of Mesoscale Meteorological Characteristics for Air Quality Assessment over Tropical Coastal City, Chennai

    NASA Astrophysics Data System (ADS)

    Madala, Srikanth; Srinivas, C. V.; Satyanarayana, A. N. V.

    2018-01-01

    The land-sea breezes (LSBs) play an important role in transporting air pollution from urban areas on the coast. In this study, the Advanced Research WRF (ARW) mesoscale model is used for predicting boundary layer features to understand the transport of pollution in different seasons over the coastal region of Chennai in Southern India. Sensitivity experiments are conducted with two non-local [Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2)] and three turbulence kinetic energy (TKE) closure [Mellor-Yamada-Nakanishi and Niino Level 2.5 (MYNN2) and Mellor-Yamada-Janjic (MYJ) and quasi-normal scale elimination (QNSE)], planetary boundary layer (PBL) parameterization schemes for simulating the thermodynamic structure, and low-level atmospheric flow in different seasons. Comparison of simulations with observations from a global positioning system (GPS) radiosonde, meteorological tower, automated weather stations, and Doppler weather radar (DWR)-derived wind data reveals that the characteristics of LSBs vary widely in different seasons and are more prominent during the pre-monsoon and monsoon seasons (March-September) with large horizontal and vertical extents compared to the post-monsoon and winter seasons. The qualitative and quantitative results indicate that simulations with ACM2 followed by MYNN2 and YSU produced various features of the LSBs, boundary layer parameters and the thermo-dynamical structure in better agreement with observations than other tested physical parameterization schemes. Simulations revealed seasonal variation of onset time, vertical extent of LSBs, and mixed layer depth, which would influence the air pollution dispersion in different seasons over the study region.

  3. Chemical transport models: the combined non-local diffusion and mixing schemes, and calculation of in-canopy resistance for dry deposition fluxes.

    PubMed

    Mihailovic, Dragutin T; Alapaty, Kiran; Podrascanin, Zorica

    2009-03-01

    Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  4. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  5. A modeling study of marine boundary layer clouds

    NASA Technical Reports Server (NTRS)

    Wang, Shouping; Fitzjarrald, Daniel E.

    1993-01-01

    Marine boundary layer (MBL) clouds are important components of the earth's climate system. These clouds drastically reduce the amount of solar radiation absorbed by the earth, but have little effect on the emitted infrared radiation on top of the atmosphere. In addition, these clouds are intimately involved in regulating boundary layer turbulent fluxes. For these reasons, it is important that general circulation models used for climate studies must realistically simulate the global distribution of the MBL. While the importance of these cloud systems is well recognized, many physical processes involved in these clouds are poorly understood and their representation in large-scale models remains an unresolved problem. The present research aims at the development and improvement of the parameterization of these cloud systems and an understanding of physical processes involved. This goal is addressed in two ways. One is to use regional modeling approach to validate and evaluate two-layer marine boundary layer models using satellite and ground-truth observations; the other is to combine this simple model with a high-order turbulence closure model to study the transition processes from stratocumulus to shallow cumulus clouds. Progress made in this effort is presented.

  6. Dynamics, thermodynamics, radiation, and cloudiness associated with cumulus-topped marine boundary layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghate, Virendra P.; Miller, Mark

    The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur atmore » temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.« less

  7. An Integrated Modeling and Observational Study of Three-Dimensional Upper Ocean Boundary Layer Dynamics and Parameterizations

    DTIC Science & Technology

    2012-04-26

    for public release ; distribution is unlimited. 4 Figure 3. First Kuroshio survey. Colors show MODIS SST image. Inset shows the survey...Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA. *To whom correspondence should be addressed. E-mail: stevens@scripps.edu 15

  8. Final Technical Report for "High-resolution global modeling of the effects of subgrid-scale clouds and turbulence on precipitating cloud systems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Vincent

    2016-11-25

    The Multiscale Modeling Framework (MMF) embeds a cloud-resolving model in each grid column of a General Circulation Model (GCM). A MMF model does not need to use a deep convective parameterization, and thereby dispenses with the uncertainties in such parameterizations. However, MMF models grossly under-resolve shallow boundary-layer clouds, and hence those clouds may still benefit from parameterization. In this grant, we successfully created a climate model that embeds a cloud parameterization (“CLUBB”) within a MMF model. This involved interfacing CLUBB’s clouds with microphysics and reducing computational cost. We have evaluated the resulting simulated clouds and precipitation with satellite observations. Themore » chief benefit of the project is to provide a MMF model that has an improved representation of clouds and that provides improved simulations of precipitation.« less

  9. The interactive role of subsynoptic scale jet sreak and planetary boundary layer adjustments in organizing an apparently isolated convective complex

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.; Coats, G. D.

    1982-01-01

    A mesoscale atmospheric simulation system is described that is being developed in order to improve the simulation of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development, and significant atmospheric transport processes. Present emphasis in model development is in the parameterization of physical processes, time-dependent boundary conditions, sophisticated initialization and analysis procedures, nested grid solutions, and applications software development. Basic characteristics of the system as of March 1982 are listed. In a case study, the Grand Island tornado outbreak of 3 June 1980 is considered in substantial detail. Results of simulations with a mesoscale atmospheric simulation system indicate that over the high plains subtle interactions between existing jet streaks and deep well mixed boundary layers can lead to well organized patterns of mesoscale divergence and pressure falls. The amplitude and positioning of these mesoscale features is a function of the subtle nonlinear interaction between the pre-existing jet-streak and deep well mixed boundary layers. Model results for the case study indicate that the model has the potential for forecasting the precursor mesoscale convective environment.

  10. Physics of Canopy Boundary Layer Resistance for Better Quantification of Sensitivity of Deforestation Scenarios

    NASA Astrophysics Data System (ADS)

    Ragi, K. B.; Patel, R.

    2015-12-01

    A great deal of studies focused on deforestation scenarios in the tropical rainforests. Though all these efforts are useful in the understanding of its response to climate, the systematic understanding of uncertainties in representation of physical processes related to vegetation through sensitivity studies is imperative antecedently to understand the real role of vegetation in changing the climate. It is understood that the dense vegetation fluxes energy and moisture to the atmosphere. But, how much a specific process/a group of processes in the surface conditions of a specific area helps flux energy, moisture and tracers is unknown due to lack of process sensitivity studies and uncertain due to malfunctioning of processes. In this presentation, we have found a faulty parameterization, through process sensitivity studies, that would abet in energy and moisture fluxes to the atmosphere. The model we have employed is the Common Land Model2014. The area we have chosen is the Congolese rainforest. We have discovered the flaw in the leaf boundary layer resistance (LBLR), through sensitivity studies in the LSMs, especially in the dense forest regions. This LBLR is over-parameterized with constant heat transfer coefficient and characteristic dimension of leaves; and friction velocity. However, it is too scant because of overlooking of significant complex physics of turbulence and canopy roughness boundary layer to function it realistically. Our sensitivity results show the deficiency of this process and we have formulated canopy boundary layer resistance, instead of LBLR, with depending variables such as LAI, roughness length, vegetation temperature using appropriate thermo-fluid dynamical principles. We are running the sensitivity experiments with new formulations for setting the parameter values for the data not available so far. This effort would lead to better physics for the land-use change studies and demand for the retrieval of new parameters from satellite/field experiments such as leaf mass per area and specific heat capacity of vegetation.

  11. The terminal area simulation system. Volume 1: Theoretical formulation

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.

    1987-01-01

    A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.

  12. Application of a numerical model for the planetary boundary layer to the vertical distribution of radon and its daughter products

    NASA Astrophysics Data System (ADS)

    Vinod Kumar, A.; Sitaraman, V.; Oza, R. B.; Krishnamoorthy, T. M.

    A one-dimensional numerical planetary boundary layer (PBL) model is developed and applied to study the vertical distribution of radon and its daughter products in the atmosphere. The meteorological model contains parameterization for the vertical diffusion coefficient based on turbulent kinetic energy and energy dissipation ( E- ɛ model). The increased vertical resolution and the realistic concentration of radon and its daughter products based on the time-dependent PBL model is compared with the steady-state model results and field observations. The ratio of radon concentration at higher levels to that at the surface has been studied to see the effects of atmospheric stability. The significant change in the vertical profile of concentration due to decoupling of the upper portion of the boundary layer from the shallow lower stable layer is explained by the PBL model. The disequilibrium ratio of 214Bi/ 214Pb broadly agrees with the observed field values. The sharp decrease in the ratio during transition from unstable to stable atmospheric condition is also reproduced by the model.

  13. A nested-grid limited-area model for short term weather forecasting

    NASA Technical Reports Server (NTRS)

    Wong, V. C.; Zack, J. W.; Kaplan, M. L.; Coats, G. D.

    1983-01-01

    The present investigation is concerned with a mesoscale atmospheric simulation system (MASS), incorporating the sigma-coordinate primitive equations. The present version of this model (MASS 3.0) has 14 vertical layers, with the upper boundary at 100 mb. There are 128 x 96 grid points in each layer. The earlier version of this model (MASS 2.0) has been described by Kaplan et al. (1982). The current investigation provides a summary of major revisions to that version and a description of the parameterization schemes which are presently included in the model. The planetary boundary layer (PBL) is considered, taking into account aspects of generalized similarity theory and free convection, the surface energy budget, the surface moisture budget, and prognostic equations for the depth h of the PBL. A cloud model is discussed, giving attention to stable precipitation, and cumulus convection.

  14. Nonrotating Convective Self-Aggregation in a Limited Area AGCM

    NASA Astrophysics Data System (ADS)

    Arnold, Nathan P.; Putman, William M.

    2018-04-01

    We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.

  15. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    NASA Astrophysics Data System (ADS)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  16. A dynamic subgrid-scale parameterization of the effective wall stress in atmospheric boundary layer flows over multiscale, fractal-like surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, William; Meneveau, Charles

    2010-05-01

    A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).

  17. Vertical structure of mean cross-shore currents across a barred surf zone

    USGS Publications Warehouse

    Haines, John W.; Sallenger, Asbury H.

    1994-01-01

    Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.

  18. Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.

    2004-01-01

    Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.

  19. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    DOE PAGES

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; ...

    2015-04-27

    The critical bulk Richardson number (Ri cr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ri cr. The results show that the simulated global average of PBL height increases nearly linearly with Ri cr, with a change of about 114 m for a change of 0.5 in Ri cr. The surface sensible (latent) heat flux decreases (increases) as Ri cr increases. The influence of Ri cr on surface air temperature and specificmore » humidity is not significant. The increasing Ri cr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ri cr affect stratiform and convective precipitations differently. Increasing Ri cr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.

    Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce themore » bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.« less

  1. Multi-Scale Modeling and the Eddy-Diffusivity/Mass-Flux (EDMF) Parameterization

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2015-12-01

    Turbulence and convection play a fundamental role in many key weather and climate science topics. Unfortunately, current atmospheric models cannot explicitly resolve most turbulent and convective flow. Because of this fact, turbulence and convection in the atmosphere has to be parameterized - i.e. equations describing the dynamical evolution of the statistical properties of turbulence and convection motions have to be devised. Recently a variety of different models have been developed that attempt at simulating the atmosphere using variable resolution. A key problem however is that parameterizations are in general not explicitly aware of the resolution - the scale awareness problem. In this context, we will present and discuss a specific approach, the Eddy-Diffusivity/Mass-Flux (EDMF) parameterization, that not only is in itself a multi-scale parameterization but it is also particularly well suited to deal with the scale-awareness problems that plague current variable-resolution models. It does so by representing small-scale turbulence using a classic Eddy-Diffusivity (ED) method, and the larger-scale (boundary layer and tropospheric-scale) eddies as a variety of plumes using the Mass-Flux (MF) concept.

  2. Evaluating and Improving Wind Forecasts over South China: The Role of Orographic Parameterization in the GRAPES Model

    NASA Astrophysics Data System (ADS)

    Zhong, Shuixin; Chen, Zitong; Xu, Daosheng; Zhang, Yanxia

    2018-06-01

    Unresolved small-scale orographic (SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model (GRAPES TMM). The SSO drags are represented by adding a sink term in the momentum equations. The maximum height of the mountain within the grid box is adopted in the SSO parameterization (SSOP) scheme as compensation for the drag. The effects of the unresolved topography are parameterized as the feedbacks to the momentum tendencies on the first model level in planetary boundary layer (PBL) parameterization. The SSOP scheme has been implemented and coupled with the PBL parameterization scheme within the model physics package. A monthly simulation is designed to examine the performance of the SSOP scheme over the complex terrain areas located in the southwest of Guangdong. The verification results show that the surface wind speed bias has been much alleviated by adopting the SSOP scheme, in addition to reduction of the wind bias in the lower troposphere. The target verification over Xinyi shows that the simulations with the SSOP scheme provide improved wind estimation over the complex regions in the southwest of Guangdong.

  3. Did Irving Langmuir Observe Langmuir Circulations?

    NASA Astrophysics Data System (ADS)

    D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.

    2012-12-01

    Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.

  4. Assessing impacts of PBL and surface layer schemes in simulating the surface–atmosphere interactions and precipitation over the tropical ocean using observations from AMIE/DYNAMO

    DOE PAGES

    Qian, Yun; Yan, Huiping; Berg, Larry K.; ...

    2016-10-28

    Accuracy of turbulence parameterization in representing Planetary Boundary Layer (PBL) processes in climate models is critical for predicting the initiation and development of clouds, air quality issues, and underlying surface-atmosphere-cloud interactions. In this study, we 1) evaluate WRF model-simulated spatial patterns of precipitation and surface fluxes, as well as vertical profiles of potential temperature, humidity, moist static energy and moisture tendency terms as simulated by WRF at various spatial resolutions and with PBL, surface layer and shallow convection schemes against measurements, 2) identify model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments,more » and 3) evaluate the dependence of modeled surface latent heat (LH) fluxes onPBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation, convection initiation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in PBL and free atmosphere, and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and LH flux biases, which suggests that the model drifts at least partly because of a positive feedback between precipitation and surface fluxes. The updated shallow convection scheme KF-CuP tends to suppress the initiation and development of deep convection, consequently decreasing precipitation. The Eta surface layer scheme predicts more reasonable LH fluxes and the LH-Wind Speed relationship than the MM5 scheme, especially when coupled with the MYJ scheme. By examining various parameterization schemes in WRF, we identify sources of biases and weaknesses of current PBL, surface layer and shallow convection schemes in reproducing PBL processes, the initiation of convection and intra-seasonal variability of precipitation.« less

  5. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, K A

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model.more » First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.« less

  6. A high-resolution model of the planetary boundary layer - Sensitivity tests and comparisons with SESAME-79 data

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Anthes, R. A.

    1982-01-01

    A one-dimensional, planetary boundary layer (PBL) model is presented and verified using April 10, 1979 SESAME data. The model contains two modules to account for two different regimes of turbulent mixing. Separate parameterizations are made for stable and unstable conditions, with a predictive slab model for surface temperature. Atmospheric variables in the surface layer are calculated with a prognostic model, with moisture included in the coupled surface/PBL modeling. Sensitivity tests are performed for factors such as moisture availability, albedo, surface roughness, and thermal capacity, and a 24 hr simulation is summarized for day and night conditions. The comparison with the SESAME data comprises three hour intervals, using a time-dependent geostrophic wind. Close correlations were found with daytime conditions, but not in nighttime thermal structure, while the turbulence was faithfully predicted. Both geostrophic flow and surface characteristics were shown to have significant effects on the model predictions

  7. Development and Testing of Coupled Land-surface, PBL and Shallow/Deep Convective Parameterizations within the MM5

    NASA Technical Reports Server (NTRS)

    Stauffer, David R.; Seaman, Nelson L.; Munoz, Ricardo C.

    2000-01-01

    The objective of this investigation was to study the role of shallow convection on the regional water cycle of the Mississippi and Little Washita Basins using a 3-D mesoscale model, the PSUINCAR MM5. The underlying premise of the project was that current modeling of regional-scale climate and moisture cycles over the continents is deficient without adequate treatment of shallow convection. It was hypothesized that an improved treatment of the regional water cycle can be achieved by using a 3-D mesoscale numerical model having a detailed land-surface parameterization, an advanced boundary-layer parameterization, and a more complete shallow convection parameterization than are available in most current models. The methodology was based on the application in the MM5 of new or recently improved parameterizations covering these three physical processes. Therefore, the work plan focused on integrating, improving, and testing these parameterizations in the MM5 and applying them to study water-cycle processes over the Southern Great Plains (SGP): (1) the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) described by Wetzel and Boone; (2) the 1.5-order turbulent kinetic energy (TKE)-predicting scheme of Shafran et al.; and (3) the hybrid-closure sub-grid shallow convection parameterization of Deng. Each of these schemes has been tested extensively through this study and the latter two have been improved significantly to extend their capabilities.

  8. Mean and turbulent flow downstream of a low-intensity fire: influence of canopy and background atmospheric conditions

    Treesearch

    Michael T. Kiefer; Warren E. Heilman; Shiyuan Zhong; Joseph J. Charney; Xindi Bian

    2015-01-01

    This study examines the sensitivity of mean and turbulent flow in the planetary boundary layer and roughness sublayer to a low-intensity fire and evaluates whether the sensitivity is dependent on canopy and background atmospheric properties. The ARPS-CANOPY model, a modified version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization...

  9. Stepping towards new parameterizations for non-canonical atmospheric surface-layer conditions

    NASA Astrophysics Data System (ADS)

    Calaf, M.; Margairaz, F.; Pardyjak, E.

    2017-12-01

    Representing land-atmosphere exchange processes as a lower boundary condition remains a challenge. This is partially a result of the fact that land-surface heterogeneity exists at all spatial scales and its variability does not "average" out with decreasing scales. Such variability need not rapidly blend away from the boundary thereby impacting the near-surface region of the atmosphere. Traditionally, momentum and energy fluxes linking the land surface to the flow in NWP models have been parameterized using atmospheric surface layer (ASL) similarity theory. There is ample evidence that such representation is acceptable for stationary and planar-homogeneous flows in the absence of subsidence. However, heterogeneity remains a ubiquitous feature eliciting appreciable deviations when using ASL similarity theory, especially in scalars such moisture and air temperature whose blending is less efficient when compared to momentum. The focus of this project is to quantify the effect of surface thermal heterogeneity with scales Ο(1/10) the height of the atmospheric boundary layer and characterized by uniform roughness. Such near-canonical cases describe inhomogeneous scalar transport in an otherwise planar homogeneous flow when thermal stratification is weak or absent. In this work we present a large-eddy simulation study that characterizes the effect of surface thermal heterogeneities on the atmospheric flow using the concept of dispersive fluxes. Results illustrate a regime in which the flow is mostly driven by the surface thermal heterogeneities, in which the contribution of the dispersive fluxes can account for up to 40% of the total sensible heat flux. Results also illustrate an alternative regime in which the effect of the surface thermal heterogeneities is quickly blended, and the dispersive fluxes provide instead a quantification of the flow spatial heterogeneities produced by coherent turbulent structures result of the surface shear stress. A threshold flow-dynamics parameter is introduced to differentiate dispersive fluxes driven by surface thermal heterogeneities from those induced by surface shear. We believe that results from this research are a first step in developing new parameterizations appropriate for non-canonical ASL conditions.

  10. Performance of WRF in simulating terrain induced flows and atmospheric boundary layer characteristics over the tropical station Gadanki

    NASA Astrophysics Data System (ADS)

    Hari Prasad, K. B. R. R.; Srinivas, C. V.; Rao, T. Narayana; Naidu, C. V.; Baskaran, R.

    2017-03-01

    In this study the evolution of the topographic flows and boundary layer features over a tropical hilly station Gadanki in southern India were simulated using Advanced Research WRF (ARW) mesoscale model for fair weather days during southwest monsoon (20-22 July 2011) and winter (18-20 Jan. 2011). Turbulence measurements from an Ultra High Frequency (UHF) Wind Profiler, Ultra Sonic Anemometer, GPS Sonde and meteorological tower were used for comparison. Simulations revealed development of small-scale slope winds in the lower boundary layer (below 800 m) at Gadanki which are more prevalent during nighttime. Stronger slope winds during winter and weaker flows in the monsoon season are simulated indicating the sensitivity of slope winds to the background synoptic flows and radiative heating/cooling. Higher upward surface fluxes (sensible, latent heat) and development of very deep convective boundary layer ( 2500 m) is simulated during summer monsoon relative to the winter season in good agreement with observations. Four PBL parameterizations (YSU, MYJ, MYNN and ACM) were evaluated to simulate the above characteristics. Large differences were noticed in the simulated boundary layer features using different PBL schemes in both the seasons. It is found that the TKE-closures (MYJ, MYNN) produced extremities in daytime PBL depth, surface fluxes, temperature, humidity and winds. The differences in the simulations are attributed to the eddy diffusivities, buoyancy and entrainment fluxes which were simulated differently in the respective schemes. The K-based YSU followed by MYNN best produced the slope winds as well as daytime boundary layer characteristics realistically in both the summer and winter synoptic conditions at Gadanki hilly site though with slight overestimation of nocturnal PBL height.

  11. Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective

    NASA Astrophysics Data System (ADS)

    Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik

    2010-02-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  12. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  13. Using In Situ Observations and Satellite Retrievals to Constrain Large-Eddy Simulations and Single-Column Simulations: Implications for Boundary-Layer Cloud Parameterization in the NASA GISS GCM

    NASA Astrophysics Data System (ADS)

    Remillard, J.

    2015-12-01

    Two low-cloud periods from the CAP-MBL deployment of the ARM Mobile Facility at the Azores are selected through a cluster analysis of ISCCP cloud property matrices, so as to represent two low-cloud weather states that the GISS GCM severely underpredicts not only in that region but also globally. The two cases represent (1) shallow cumulus clouds occurring in a cold-air outbreak behind a cold front, and (2) stratocumulus clouds occurring when the region was dominated by a high-pressure system. Observations and MERRA reanalysis are used to derive specifications used for large-eddy simulations (LES) and single-column model (SCM) simulations. The LES captures the major differences in horizontal structure between the two low-cloud fields, but there are unconstrained uncertainties in cloud microphysics and challenges in reproducing W-band Doppler radar moments. The SCM run on the vertical grid used for CMIP-5 runs of the GCM does a poor job of representing the shallow cumulus case and is unable to maintain an overcast deck in the stratocumulus case, providing some clues regarding problems with low-cloud representation in the GCM. SCM sensitivity tests with a finer vertical grid in the boundary layer show substantial improvement in the representation of cloud amount for both cases. GCM simulations with CMIP-5 versus finer vertical gridding in the boundary layer are compared with observations. The adoption of a two-moment cloud microphysics scheme in the GCM is also tested in this framework. The methodology followed in this study, with the process-based examination of different time and space scales in both models and observations, represents a prototype for GCM cloud parameterization improvements.

  14. Continental Shallow Convection Cloud-Base Mass Flux from Doppler Lidar and LASSO Ensemble Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Vogelmann, A. M.; Zhang, D.; Kollias, P.; Endo, S.; Lamer, K.; Gustafson, W. I., Jr.; Romps, D. M.

    2017-12-01

    Continental boundary layer clouds are important to simulations of weather and climate because of their impact on surface budgets and vertical transports of energy and moisture; however, model-parameterized boundary layer clouds do not agree well with observations in part because small-scale turbulence and convection are not properly represented. To advance parameterization development and evaluation, observational constraints are needed on critical parameters such as cloud-base mass flux and its relationship to cloud cover and the sub-cloud boundary layer structure including vertical velocity variance and skewness. In this study, these constraints are derived from Doppler lidar observations and ensemble large-eddy simulations (LES) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Facility Southern Great Plains (SGP) site in Oklahoma. The Doppler lidar analysis will extend the single-site, long-term analysis of Lamer and Kollias [2015] and augment this information with the short-term but unique 1-2 year period since five Doppler lidars began operation at the SGP, providing critical information on regional variability. These observations will be compared to the statistics obtained from ensemble, routine LES conducted by the LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso). An Observation System Simulation Experiment (OSSE) will be presented that uses the LASSO LES fields to determine criteria for which relationships from Doppler lidar observations are adequately sampled to yield convergence. Any systematic differences between the observed and simulated relationships will be examined to understand factors contributing to the differences. Lamer, K., and P. Kollias (2015), Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover, Geophys. Res. Lett., 42, 8693-8701, doi:10.1002/2015GL064534

  15. Quality and sensitivity of high-resolution numerical simulation of urban heat islands

    NASA Astrophysics Data System (ADS)

    Li, Dan; Bou-Zeid, Elie

    2014-05-01

    High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (<1.5 °C) in the surface temperature fields as compared to satellite observations during daytime. The boundary layer potential temperature profiles are captured by WRF reasonable well at both urban and rural sites; the biases in these profiles relative to aircraft-mounted senor measurements are on the order of 1.5 °C. Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014).

  16. Multiscale Modeling of Grain-Boundary Fracture: Cohesive Zone Models Parameterized From Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Phillips, Dawn R.; Yamakov, Vesselin

    2006-01-01

    A multiscale modeling strategy is developed to study grain boundary fracture in polycrystalline aluminum. Atomistic simulation is used to model fundamental nanoscale deformation and fracture mechanisms and to develop a constitutive relationship for separation along a grain boundary interface. The nanoscale constitutive relationship is then parameterized within a cohesive zone model to represent variations in grain boundary properties. These variations arise from the presence of vacancies, intersticies, and other defects in addition to deviations in grain boundary angle from the baseline configuration considered in the molecular dynamics simulation. The parameterized cohesive zone models are then used to model grain boundaries within finite element analyses of aluminum polycrystals.

  17. Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabha, Thara V.; Balaji, B.; Resmi, E. A.; Karipot, Anandakumar

    2017-09-01

    Accurate representations of the planetary boundary layer (PBL) are important in all weather forecast systems, especially in simulations of turbulence, wind and air quality in the lower atmosphere. In the present study, detailed observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign (CAIPEEX-IGOC) 2014 comprising of the complete surface energy budget and detailed boundary layer observations are used to validate Advanced Research Weather Research and Forecasting (WRF) model simulations over a diverse terrain over the Ganges valley region, Uttar Pradesh, India. A drying event in June 2014 associated with a heat wave is selected for validation.Six local and nonlocal PBL schemes from WRF at 1 km resolution are compared with hourly observations during the diurnal cycle. Near-surface observations of weather parameters, radiation components and eddy covariance fluxes from micrometeorological tower, and profiles of variables from microwave radiometer, and radiosonde observations are used for model evaluations. Models produce a warmer, drier surface layer with higher wind speed, sensible heat flux and temperature than observations. Layered boundary layer dynamics, including the residual layer structure as illustrated in the observations over the Ganges valley are missed in the model, which lead to deeper mixed layers and excessive drying.Although it is difficult to identify any single scheme as the best, the qualitative and quantitative analyses for the entire study period and overall reproducibility of the observations indicate that the MYNN2 simulations describe lower errors and more realistic simulation of spatio-temporal variations in the boundary layer height.

  18. Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Pierce, J. R.; Adams, P. J.

    2013-01-01

    In models, nucleation mode (1 nm

  19. Delay in convection in nocturnal boundary layer due to aerosol-induced cooling

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.

    2012-11-01

    Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.

  20. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  1. Winter and summer simulations with the GLAS climate model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Straus, D.; Randall, D.; Sud, Y.; Marx, L.

    1981-01-01

    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations.

  2. The Parameterization of PBL height with Helicity and preliminary Application in Tropical Cyclone Prediction

    NASA Astrophysics Data System (ADS)

    Ma, Leiming

    2015-04-01

    Planetary Boundary Layer (PBL) plays an important role in transferring the energy and moisture from ocean to tropical cyclone (TC). Thus, the accuracy of PBL parameterization determines the performance of numerical model on TC prediction to a large extent. Among various components of PBL parameterization, the definition on the height of PBL is the first should be concerned, which determines the vertical scale of PBL and the associated processes of turbulence in different scales. However, up to now, there is lacked consensus on how to define the height of PBL in the TC research community. The PBL heights represented by current numerical models usually exhibits significant difference with TC observation (e.g., Zhang et al., 2011; Storm et al., 2008), leading to the rapid growth of error in TC prediction. In an effort to narrow the gap between PBL parameterization and reality, this study presents a new parameterization scheme for the definition of PBL height. Instead of using traditional definition for PBL height with Richardson number, which has been verified not appropriate for the strongly sheared structure of TC PBL in recent observation studies, the new scheme employs a dynamical definition based on the conception of helicity. In this sense the spiral structures associated with inflow layer and rolls are expected to be represented in PBL parameterization. By defining the PBL height at each grid point, the new scheme also avoids to assume the symmetric inflow layer that is usually implemented in observational studies. The new scheme is applied to the Yonsei University (YSU) scheme in the Weather Research and Forecasting (WRF) model of US National Center for Atmospheric Research (NCAR) and verified with numerical experiments on TC Morakot (2009), which brought torrential rainfall and disaster to Taiwan and China mainland during landfall. The Morakot case is selected in this study to examine the performance of the new scheme in representing various structures of PBL over land and ocean. The results of simulations show that, in addition to enhancing the PBL height in the situation of intensive convection, the new scheme also significantly reduces the PBL height and 2m-temperature over land during the night time, a well-known problem for YSU scheme according to previous studies. The activity of PBL processes are modulated due to the improved PBL height, which ultimately leads to the improvement of prediction on TC Morakot. Key Words: PBL; Parameterization; Numerical Prediction; Tropical Cyclone Acknowledgements. This study was jointly supported by the Chinese National 973 Project (No. 2013CB430300, and No. 2009CB421500) and grant from the National Natural Science Foundation (No. 41475059). References Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer, Mon. Weather Rev., 139, 2523-2535. Storm B., J. Dudhia, S. Basu, et al., 2008: Evaluation of the Weather Research and Forecasting Model on forecasting Low-level Jets: Implications for Wind Energy. Wind Energ., DOI: 10.1002/we.

  3. The Role of Law-of-the-Wall and Roughness Scale in the Surface Stress Model for LES of the Rough-wall Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paes, Paulo; Chamecki, Marcelo

    2017-11-01

    Large-eddy simulation (LES) of the high Reynolds number rough-wall boundary layer requires both a subfilter-scale model for the unresolved inertial term and a ``surface stress model'' (SSM) for space-time local surface momentum flux. Standard SSMs assume proportionality between the local surface shear stress vector and the local resolved-scale velocity vector at the first grid level. Because the proportionality coefficient incorporates a surface roughness scale z0 within a functional form taken from law-of-the-wall (LOTW), it is commonly stated that LOTW is ``assumed,'' and therefore ``forced'' on the LES. We show that this is not the case; the LOTW form is the ``drag law'' used to relate friction velocity to mean resolved velocity at the first grid level consistent with z0 as the height where mean velocity vanishes. Whereas standard SSMs do not force LOTW on the prediction, we show that parameterized roughness does not match ``true'' z0 when LOTW is not predicted, or does not exist. By extrapolating mean velocity, we show a serious mismatch between true z0 and parameterized z0 in the presence of a spurious ``overshoot'' in normalized mean velocity gradient. We shall discuss the source of the problem and its potential resolution.

  4. THOR: A New Higher-Order Closure Assumed PDF Subgrid-Scale Parameterization; Evaluation and Application to Low Cloud Feedbacks

    NASA Astrophysics Data System (ADS)

    Firl, G. J.; Randall, D. A.

    2013-12-01

    The so-called "assumed probability density function (PDF)" approach to subgrid-scale (SGS) parameterization has shown to be a promising method for more accurately representing boundary layer cloudiness under a wide range of conditions. A new parameterization has been developed, named the Two-and-a-Half ORder closure (THOR), that combines this approach with a higher-order turbulence closure. THOR predicts the time evolution of the turbulence kinetic energy components, the variance of ice-liquid water potential temperature (θil) and total non-precipitating water mixing ratio (qt) and the covariance between the two, and the vertical fluxes of horizontal momentum, θil, and qt. Ten corresponding third-order moments in addition to the skewnesses of θil and qt are calculated using diagnostic functions assuming negligible time tendencies. The statistical moments are used to define a trivariate double Gaussian PDF among vertical velocity, θil, and qt. The first three statistical moments of each variable are used to estimate the two Gaussian plume means, variances, and weights. Unlike previous similar models, plume variances are not assumed to be equal or zero. Instead, they are parameterized using the idea that the less dominant Gaussian plume (typically representing the updraft-containing portion of a grid cell) has greater variance than the dominant plume (typically representing the "environmental" or slowly subsiding portion of a grid cell). Correlations among the three variables are calculated using the appropriate covariance moments, and both plume correlations are assumed to be equal. The diagnosed PDF in each grid cell is used to calculate SGS condensation, SGS fluxes of cloud water species, SGS buoyancy terms, and to inform other physical parameterizations about SGS variability. SGS condensation is extended from previous similar models to include condensation over both liquid and ice substrates, dependent on the grid cell temperature. Implementations have been included in THOR to drive existing microphysical and radiation parameterizations with samples drawn from the trivariate PDF. THOR has been tested in a single-column model framework using standardized test cases spanning a range of large-scale conditions conducive to both shallow cumulus and stratocumulus clouds and the transition between the two states. The results were compared to published LES intercomparison results using the same cases, and the gross characteristics of both cloudiness and boundary layer turbulence produced by THOR were within the range of results from the respective LES ensembles. In addition, THOR was used in a single-column model framework to study low cloud feedbacks in the northeastern Pacific Ocean. Using initialization and forcings developed as part of the CGILS project, THOR was run at 8 points along a cross-section from the trade-wind cumulus region east of Hawaii to the coastal stratocumulus region off the coast of California for both the control climate and a climate perturbed by +2K SST. A neutral to weakly positive cloud feedback of 0-4 W m-2 K-1 was simulated along the cross-section. The physical mechanisms responsible appeared to be increased boundary layer entrainment and stratocumulus decoupling leading to reduced maximum cloud cover and liquid water path.

  5. A satellite observation test bed for cloud parameterization development

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suselj, K.

    2015-12-01

    We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.

  6. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  7. Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars

    NASA Astrophysics Data System (ADS)

    Williams, B.; Nair, U. S.

    2014-12-01

    Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.

  8. Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.

  9. New Approaches to Parameterizing Convection

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Lappen, Cara-Lyn

    1999-01-01

    Many general circulation models (GCMs) currently use separate schemes for planetary boundary layer (PBL) processes, shallow and deep cumulus (Cu) convection, and stratiform clouds. The conventional distinctions. among these processes are somewhat arbitrary. For example, in the stratocumulus-to-cumulus transition region, stratocumulus clouds break up into a combination of shallow cumulus and broken stratocumulus. Shallow cumulus clouds may be considered to reside completely within the PBL, or they may be regarded as starting in the PBL but terminating above it. Deeper cumulus clouds often originate within the PBL with also can originate aloft. To the extent that our models separately parameterize physical processes which interact strongly on small space and time scales, the currently fashionable practice of modularization may be doing more harm than good.

  10. CAT (Clear Air Turbulence) Forecasting Using Transilient Turbulence Theory

    DTIC Science & Technology

    1988-02-20

    FILE COP.y AIOL-M-80106 CAT Fwmsft Using Transilient 00 % to, N - 0 William H. Raymond ) Rhad B. Stull O University of Wisconsin V CImSS/epannint...PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO ACCESSIO NO. 62101F 6670 10 DB 11. TITLE (Include Security Classification) CAT Forecasting Using...necessary and identify by block number) FIELD GROUP SUB-GROUP Clear Air Turbulence ( CAT ) Boundary Layer Turbulence parameterization Surface Fluxes 19

  11. Assessment of NASA GISS E2 CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations: Cloud fraction and properties

    NASA Astrophysics Data System (ADS)

    Stanfield, R.; Dong, X.; Xi, B.; Kennedy, A. D.; Del Genio, A. D.; Minnis, P.; Jiang, J. H.

    2013-12-01

    Recent changes to boundary layer turbulence and convection parameterizations of the NASA GISS E2 GCM have led to drastic improvements in the newest Post-CMIP5 (P5) model simulations. A study has been performed to evaluate these changes. Variables including Cloud Fraction (CF), Liquid Water Path (LWP), Ice Water Path (IWP), Cloud Water Path (LWP+IWP, CWP), Precipitable Water Vapor (PWV), and Relative Humidity (RH), from P5 and its CMIP5 (C5) predecessor have been compared to multiple satellite observations including CERES-MODIS (CM), CloudSat/CALIPSO (CC), AIRS, and AMSR-E. P5 simulations show drastic improvements for regional CFs, resulting in better correlations with observations. The largest improvements were found over the Southern Mid-Latitudes (SMLs), where newly implemented changes to the boundary layer turbulence parameterization increased low-level CF by ~20% while generating less optically thick clouds. The double InterTropical Convergence Zone (ITCZ) issue that plagues many GCMs, including previous GISS C5 simulations, is also removed with the new changes to convection parameterizations when decoupled from the ocean. P5 simulations show a decrease in global CWP, more closely resembling CC and CM observations. Globally, P5 simulated PWV is in better agreement with AMSR-R and AIRS, particularly over the SML oceans. RH comparisons show improvement when compared with AIRS. Spatial and variability analyses using Taylor diagrams indicate overall better correlations and smaller standard deviations in PWV and RH comparisons between P5/C5 simulations and AMSR-R/AIRS observations than CF and CWP/LWP/IWP comparisons.

  12. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    DOE PAGES

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; ...

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less

  13. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    NASA Astrophysics Data System (ADS)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4PhantomParameterisation with boundary skipping for the head and neck patient. The maximum memory usage ranged from 0.8 to 1.8 GB depending on the CT volume independent of parameterizations, except for the 15-19 times greater memory usage with the G4VPVParameterisation when using the option with a higher simulation speed. The G4VNestedParameterisation was selected as the preferred choice for the patient geometries and treatment plans studied.

  14. Cloud Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM

    NASA Technical Reports Server (NTRS)

    Yao, Mao-Sung; Cheng, Ye

    2013-01-01

    The response of cloud simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5).Without the turbulence parameterization, the relative humidity (RH) and the low cloud cover peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low cloud cover have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the cloud and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in cloud and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low cloud distribution over oceans. This suggests that a cloud-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.

  15. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  16. On the role of surface friction in tropical cyclone intensification

    NASA Astrophysics Data System (ADS)

    Wang, Yuqing

    2017-04-01

    Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.

  17. Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marjanovic, Nikola; Mirocha, Jeffrey D.; Kosović, Branko

    A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulationsmore » show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.« less

  18. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Li, Ming; Mourrain, Bernard; Rabczuk, Timon; Xu, Jinlan; Bordas, Stéphane P. A.

    2018-01-01

    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach.

  19. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from below and the wave resistance parameterization from above. The available field data (Powell et al., 2003; Black et al., 2007) fall between these two parameterizations, for wind speeds of up to 50 m/s. A few points from the dropsonde data from Powell et al. (2003), obtained at very high wind speeds, are below the theoretical lower limit on the drag coefficient. We also conducted a numerical experiment with imposed short wavelets. Streamwise coherent structures were observed on the water surface, which were especially prominent on the top of wave crests. These intermittent streamwise structures on the top of wavelets, with periodicity in the transverse direction, presumably were a result of the Tollmien-Schlichting (TS) instability. Similar processes take place at the atomization of liquid fuels in cryogenic and diesel engines (Yecko et al., 2002). According to McNaughton and Brunet (2002), the nonlinear stage of the TS instability results in streamwise streaks followed by fluid ejections. This mechanism can contribute to the generation of spume in the form of streaks. Foam streaks are an observable feature on photographic images of the ocean surface under hurricane conditions. The mechanism of the TS instability can also contribute to dispersion of oil spills and other pollutants in hurricane conditions.

  20. An inter-model comparison of urban canopy effects on climate

    NASA Astrophysics Data System (ADS)

    Halenka, Tomas; Karlicky, Jan; Huszar, Peter; Belda, Michal; Bardachova, Tatsiana

    2017-04-01

    The role of cities is increasing and will continue to increase in future, as the population within the urban areas is growing faster, with the estimate for Europe of about 84% living in urban areas in about mid of 21st century. To assess the impact of cities and, in general, urban surfaces on climate, using of modeling approach is well appropriate. Moreover, with higher resolution, urban areas becomes to be better resolved in the regional models and their relatively significant impacts should not be neglected. Model descriptions of urban canopy related meteorological effects can, however, differ largely given the odds in the driving models, the underlying surface models and the urban canopy parameterizations, representing a certain uncertainty. In this study we try to contribute to the estimation of this uncertainty by performing numerous experiments to assess the urban canopy meteorological forcing over central Europe on climate for the decade 2001-2010, using two driving models (RegCM4 and WRF) in 10 km resolution driven by ERA-Interim reanalyses, three surface schemes (BATS and CLM4.5 for RegCM4 and Noah for WRF) and five urban canopy parameterizations available: one bulk urban scheme, three single layer and a multilayer urban scheme. Actually, in RegCM4 we used our implementation of the Single Layer Urban Canopy Model (SLUCM) in BATS scheme and CLM4.5 option with urban parameterization based on SLUCM concept as well, in WRF we used all the three options, i.e. bulk, SLUCM and more complex and sophisticated Building Environment Parameterization (BEP) connected with Building Energy Model (BEM). As a reference simulations, runs with no urban areas and with no urban parameterizations were performed. Effects of cities on urban and rural areas were evaluated. Effect of reducing diurnal temperature range in cities (around 2 °C in summer) is noticeable in all simulation, independent to urban parameterization type and model. Also well-known warmer summer city nights appear in all simulations. Further, winter boundary layer increase by 100-200 m, together with wind reduction, is visible in all simulations. The spatial distribution of the night-time temperature response of models to urban canopy forcing is rather similar in each set-up, showing temperature increases up to 3°C in summer. In general, much lower increase are modeled for day-time conditions, which can be even slightly negative due to dominance of shadowing in urban canyons, especially in the morning hours. The winter temperature response, driven mainly by anthropogenic heat (AH) is strong in urban schemes where the building-street energy exchange is more resolved and is smaller, where AH is simply prescribed as additive flux to the sensible heat. Somewhat larger differences between the models are encountered for the response of wind and the height of planetary boundary layer (ZPBL), with dominant increases from a few 10 m up to 250 m depending on the model. The comparison of observation of diurnal temperature amplitude from ECAD data with model results and hourly data from Prague with model hourly values show improvement when urban effects are considered. Larger spread encountered for wind and turbulence (as ZPBL) should be considered when choices of urban canopy schemes are made, especially in connection with modeling transport of pollutants within/from cities. Another conclusion is that choosing more complex urban schemes does not necessary improves model performance and using simpler and computationally less demanding (e.g. single layer) urban schemes, is often sufficient.

  1. Numerical study on the impacts of the bogus data assimilation and sea spray parameterization on typhoon ducts

    NASA Astrophysics Data System (ADS)

    Fei, Jianfang; Ding, Juli; Huang, Xiaogang; Cheng, Xiaoping; Hu, Xiaohua

    2013-06-01

    The Weather Research and Forecasting model version 3.2 (WRF v3.2) was used with the bogus data assimilation (BDA) scheme and sea spray parameterization (SSP), and experiments were conducted to assess the impacts of the BDA and SSP on prediction of the typhoon ducting process induced by Typhoon Mindule (2004). The global positioning system (GPS) dropsonde observations were used for comparison. The results show that typhoon ducts are likely to form in every direction around the typhoon center, with the main type of ducts being elevated duct. With the BDA scheme included in the model initialization, the model has a better performance in predicting the existence, distribution, and strength of typhoon ducts. This improvement is attributed to the positive effect of the BDA scheme on the typhoon's ambient boundary layer structure. Sea spray affects typhoon ducts mainly by changing the latent heat (LH) flux at the air-sea interface beyond 270 km from the typhoon center. The strength of the typhoon duct is enhanced when the boundary layer under this duct is cooled and moistened by the sea spray; otherwise, the typhoon duct is weakened. The sea spray induced changes in the air-sea sensible heat (SH) flux and LH flux are concentrated in the maximum wind speed area near the typhoon center, and the changes are significantly weakened with the increase of the radial range.

  2. Scientific investigations planned for the Lidar in-Space Technology Experiment (LITE)

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Winker, D. M.; Browell, E. V.; Coakley, J. A.; Gardner, C. S.; Hoff, R. M.; Kent, G. S.; Melfi, S. H.; Menzies, R. T.; Platt, C. M. R.

    1993-01-01

    The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series of flights on the space shuttle beginning in 1994. Employing a three-wavelength Nd:YAG laser and a 1-m-diameter telescope, the system is a test-bed for the development of technology required for future operational spaceborne lidars. The system has been designed to observe clouds, tropospheric and stratospheric aerosols, characteristics of the planetary boundary layer, and stratospheric density and temperature perturbations with much greater resolution than is available from current orbiting sensors. In addition to providing unique datasets on these phenomena, the data obtained will be useful in improving retrieval algorithms currently in use. Observations of clouds and the planetary boundary layer will aid in the development of global climate model (GCM) parameterizations. This article briefly describes the LITE program and discusses the types of scientific investigations planned for the first flight.

  3. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  4. Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Ming; Zhang, Fuqing; Nielsen-Gammon, John W.

    2010-04-01

    This study explores the treatment of model error and uncertainties through simultaneous state and parameter estimation (SSPE) with an ensemble Kalman filter (EnKF) in the simulation of a 2006 air pollution event over the greater Houston area during the Second Texas Air Quality Study (TexAQS-II). Two parameters in the atmospheric boundary layer parameterization associated with large model sensitivities are combined with standard prognostic variables in an augmented state vector to be continuously updated through assimilation of wind profiler observations. It is found that forecasts of the atmosphere with EnKF/SSPE are markedly improved over experiments with no state and/or parameter estimation. More specifically, the EnKF/SSPE is shown to help alleviate a near-surface cold bias and to alter the momentum mixing in the boundary layer to produce more realistic wind profiles.

  5. GEWEX Cloud Systems Study (GCSS)

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitch

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.

  6. Effects of Planetary Boundary Layer Parameterizations on CWRF Regional Climate Simulation

    NASA Astrophysics Data System (ADS)

    Liu, S.; Liang, X.

    2011-12-01

    Planetary Boundary Layer (PBL) parameterizations incorporated in CWRF (Climate extension of the Weather Research and Forecasting model) are first evaluated by comparing simulated PBL heights with observations. Among the 10 evaluated PBL schemes, 2 (CAM, UW) are new in CWRF while the other 8 are original WRF schemes. MYJ, QNSE and UW determine the PBL heights based on turbulent kinetic energy (TKE) profiles, while others (YSU, ACM, GFS, CAM, TEMF) are from bulk Richardson criteria. All TKE-based schemes (MYJ, MYNN, QNSE, UW, Boulac) substantially underestimate convective or residual PBL heights from noon toward evening, while others (ACM, CAM, YSU) well capture the observed diurnal cycle except for the GFS with systematic overestimation. These differences among the schemes are representative over most areas of the simulation domain, suggesting systematic behaviors of the parameterizations. Lower PBL heights simulated by the QNSE and MYJ are consistent with their smaller Bowen ratios and heavier rainfalls, while higher PBL tops by the GFS correspond to warmer surface temperatures. Effects of PBL parameterizations on CWRF regional climate simulation are then compared. The QNSE PBL scheme yields systematically heavier rainfall almost everywhere and throughout the year; this is identified with a much greater surface Bowen ratio (smaller sensible versus larger latent heating) and wetter soil moisture than other PBL schemes. Its predecessor MYJ scheme shares the same deficiency to a lesser degree. For temperature, the performance of the QNSE and MYJ schemes remains poor, having substantially larger rms errors in all seasons. GFS PBL scheme also produces large warm biases. Pronounced sensitivities are also found to the PBL schemes in winter and spring over most areas except the southern U.S. (Southeast, Gulf States, NAM); excluding the outliers (QNSE, MYJ, GFS) that cause extreme biases of -6 to +3°C, the differences among the schemes are still visible (±2°C), where the CAM is generally more realistic. QNSE, MYJ, GFS and BouLac PBL parameterizations are identified as obvious outliers of overall performance in representing precipitation, surface air temperature or PBL height variations. Their poor performance may result from deficiencies in physical formulations, dependences on applicable scales, or trouble numerical implementations, requiring future detailed investigation to isolate the actual cause.

  7. Factors Affecting the Evolution of Hurricane Erin and the Distributions of Hydrometeors: Role of Microphysical Processes

    NASA Technical Reports Server (NTRS)

    McFarquhar, Greg M.; Zhang, Henian; Dudhia, Jimy; Halverson, Jeffrey B.; Heymsfield, Gerald; Hood, Robbie; Marks, Frank, Jr.

    2003-01-01

    Fine-resolution simulations of Hurricane Erin 2001 are conducted using the Penn State University/National Center for Atmospheric Research mesoscale model version 3.5 to investigate the role of thermodynamic, boundary layer and microphysical processes in Erin's growth and maintenance, and their effects on the horizontal and vertical distributions of hydrometeors. Through comparison against radar, radiometer, and dropsonde data collected during the Convection and Moisture Experiment 4, it is seen that realistic simulations of Erin are obtained provided that fine resolution simulations with detailed representations of physical processes are conducted. The principle findings of the study are as follows: 1) a new iterative condensation scheme, which limits the unphysical increase of equivalent potential temperature associated with most condensation schemes, increases the horizontal size of the hurricane, decreases its maximum rainfall rate, reduces its intensity, and makes its eye more moist; 2) in general, microphysical parameterization schemes with more categories of hydrometeors produce more intense hurricanes, larger hydrometeor mixing ratios, and more intense updrafts and downdrafts; 3) the choice of coefficients describing hydrometeor fall velocities has as big of an impact on the hurricane simulations as does choice of microphysical parameterization scheme with no clear relationship between fall velocity and hurricane intensity; and 4) in order for a tropical cyclone to adequately intensify, an advanced boundary layer scheme (e.g., Burk-Thompson scheme) must be used to represent boundary layer processes. The impacts of varying simulations on the horizontal and vertical distributions of different categories of hydrometeor species, on equivalent potential temperature, and on storm updrafts and downdrafts are examined to determine how the release of latent heat feedbacks upon the structure of Erin. In general, all simulations tend to overpredict precipitation rate and hydrometeor mixing ratios. The ramifications of these findings for quantitative precipitation forecasts (QPFs) of tropical cyclones are discussed.

  8. Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    2011-01-01

    In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive.

  9. Characteristics of the Martian atmosphere surface layer

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1990-01-01

    Elements of various terrestrial boundary layer models are extended to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface ('constant flux') layer. The atmospheric surface layer consists of an interfacial sublayer immediately adjacent to the ground and an overlying fully turbulent surface sublayer where wind-shear production of turbulence dominates buoyancy production. Within the interfacial sublayer, sensible and latent heat are transported by non-steady molecular diffusion into small-scale eddies which intermittently burst through this zone. Both the thickness of the interfacial sublayer and the characteristics of the turbulent eddies penetrating through it depend on whether airflow is aerodynamically smooth or aerodynamically rough, as determined by the Roughness Reynold's number. Within the overlying surface sublayer, similarity theory can be used to express the mean vertical windspeed, temperature, and water vapor profiles in terms of a single parameter, the Monin-Obukhov stability parameter. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed using data from the TPRC Data Series and the first-order Chapman-Cowling expressions; the required collision integrals were approximated using the Lenard-Jones potential. Parameterizations for specific heat and binary diffusivity were also determined. The Brutsart model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the definition of the Monin-Obukhov length was modified to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  10. The Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  11. Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.

    The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved modeling framework for wind farm - atmosphere interaction, 2) to determine how heterogeneous patches of forest affect the structure of the ABL and its interactions with clearings and water bodies, 3) to investigate how landscape heterogeneity, including wakes, may be parameterized in regional-scale weather and climate models to improve the representation of surface fluxes, e.g. from lakes/wetlands and forest clearings. To achieve these objectives, this research employs an interdisciplinary strategy, utilizing concepts and methods from fluid mechanics, micrometeorology, ecosystem ecology and environmental sciences, and combines laboratory and field experiments. In particular, a) wind tunnel experiments of flow through and over model wind farms and model forest canopies were used to improve our fundamental understanding of how wakes affect land-atmosphere coupling, including surface fluxes, after wind farm installation and for heterogeneous landscapes of canopies and clearings or lakes, and b) extensive field studies over lakes and wetlands were undertaken to study the effects of wakes downwind of forest canopies and the effect of wind sheltering on lake stratification dynamics and gas fluxes. These experiments were also used to improve and validate numerical simulation techniques for the atmospheric boundary layer, specifically the large eddy simulation technique, which is used to simulate flow in wind farms and flow over heterogeneous terrain.

  12. Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.

    2011-01-01

    Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.

  13. Directional bottom roughness associated with waves, currents, and ripples

    USGS Publications Warehouse

    Sherwood, Christopher R.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    Roughness lengths are used in wave-current bottom boundary layer models to parameterize drag associated with grain roughness, the effect of saltating grains during sediment transport, and small-scale bottom topography (ripples and biogenic features). We made field measurements of flow parameters and recorded sonar images of ripples at the boundary of a sorted-bedform at ~12-m depth on the inner shelf for a range of wave and current conditions over two months. We compared estimates of apparent bottom roughness inferred from the flow measurements with bottom roughness calculated using ripple geometry and the Madsen (1994) one-dimensional (vertical) wave-current bottom boundary layer model. One result of these comparisons was that the model over predicted roughness of flow from the dormant large ripples when waves were small. We developed a correction to the ripple-roughness model that incorporates an apparent ripple wavelength related to the combined wave-current flow direction. This correction provides a slight improvement for low-wave conditions, but does not address several other differences between observations and the modeled roughness.

  14. Turbulent properties of oceanic near-surface stable boundary layers subject to wind, fresh water, and thermal forcing.

    NASA Astrophysics Data System (ADS)

    St. Laurent, Louis; Clayson, Carol Anne

    2015-04-01

    The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.

  15. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U. S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Case, J. L.; Zavodsky, B. T.; Srikishen, J.; Medlin, J. M.; Wood, L.

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics parameterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRT Center to select NOAA/NWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boundary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage of lightning activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the physics package choices. The design of the experiments thus allows for more direct interpretation of the sensitivities to each possible physics combination. The results should assist forecasters in their efforts to anticipate and correct for possible biases in simulated WRF convection patterns, and help the modeling community refine their model parameterizations.

  16. Scaling Characteristics of Mesoscale Wind Fields in the Lower Atmospheric Boundary Layer: Implications for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kiliyanpilakkil, Velayudhan Praju

    Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta t within 10 minutes to 6 hours range). The ESS framework based study is extended further to enquire its validity over complex terrain. This study, based on multiyear wind observations, demonstrate that the ESS holds for the lower ABL wind speed over the complex terrain as well. Another important inference from this study is that the ESS relative scaling exponents corresponding to the mesoscale wind speed closely matches the scaling characteristics of the inertial range turbulence, albeit not exactly identical. The current study proposes benchmark using ESS-based quasi-universal wind speed scaling characteristics in the ABL for the mesoscale modeling community. Using a state-of-the-art atmospheric mesoscale model in conjunction with different planetary boundary layer (PBL) parameterization schemes, multiple wind speed simulations have been conducted. This study reveals that the ESS scaling characteristics of the model simulated wind speed time series in the lower ABL vary significantly from their observational counterparts. The study demonstrate that the model simulated wind speed time series for the time intervals Delta t < 2 hours do not capture the ESS-based scaling characteristics. The detailed analysis of model simulations using different PBL schemes lead to the conclusion that there is a need for significant improvements in the turbulent closure parameterizations adapted in the new-generation atmospheric models. This study is unique as the ESS framework has never been reported or examined for the validation of PBL parameterizations.

  17. Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone

    NASA Astrophysics Data System (ADS)

    Green, Benjamin W.; Zhang, Fuqing

    2015-03-01

    Current numerical simulations of tropical cyclones (TCs) use a horizontal grid spacing as small as Δx = 103 m, with all boundary layer (BL) turbulence parameterized. Eventually, TC simulations can be conducted at Large Eddy Simulation (LES) resolution, which requires Δx to fall in the inertial subrange (often <102 m) to adequately resolve the large, energy-containing eddies. Between the two lies the so-called "terra incognita" because some of the assumptions used by mesoscale models and LES to treat BL turbulence are invalid. This study performs several 4-6 h simulations of Hurricane Katrina (2005) without a BL parameterization at extremely fine Δx [333, 200, and 111 m, hereafter "Large Eddy Permitting (LEP) runs"] and compares with mesoscale simulations with BL parameterizations (Δx = 3 km, 1 km, and 333 m, hereafter "PBL runs"). There are profound differences in the hurricane BL structure between the PBL and LEP runs: the former have a deeper inflow layer and secondary eyewall formation, whereas the latter have a shallow inflow layer without a secondary eyewall. Among the LEP runs, decreased Δx yields weaker subgrid-scale vertical momentum fluxes, but the sum of subgrid-scale and "grid-scale" fluxes remain similar. There is also evidence that the size of the prevalent BL eddies depends upon Δx, suggesting that convergence to true LES has not yet been reached. Nevertheless, the similarities in the storm-scale BL structure among the LEP runs indicate that the net effect of the BL on the rest of the hurricane may be somewhat independent of Δx.

  18. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Schroedter-Homscheidt, Marion

    Some applications, e.g. from traffic or energy management, require air temperature data in high spatial and temporal resolution at two metres height above the ground ( T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (SEVIRI data aboard the MSG and MODIS data aboard Terra and Aqua satellites). The method consists of two parts. First, a downscaling procedure from the SEVIRI pixel resolution of several kilometres to a one kilometre spatial resolution is performed using a regression analysis between the land surface temperature ( LST) and the normalized differential vegetation index ( NDVI) acquired by the MODIS instrument. Second, the lapse rate between the LST and T2m is removed using an empirical parameterization that requires albedo, down-welling surface short-wave flux, relief characteristics and NDVI data. The method was successfully tested for Slovenia, the French region Franche-Comté and southern Germany for the period from May to December 2005, indicating that the parameterization is valid for Central Europe. This parameterization results in a root mean square deviation RMSD of 2.0 K during the daytime with a bias of -0.01 K and a correlation coefficient of 0.95. This is promising, especially considering the high temporal (30 min) and spatial resolution (1000 m) of the results.

  19. Quality Assessment of the Cobel-Isba Numerical Forecast System of Fog and Low Clouds

    NASA Astrophysics Data System (ADS)

    Bergot, Thierry

    2007-06-01

    Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the value of the visibility.

  20. Comparison of in situ microstructure measurements to different turbulence closure schemes in a 3-D numerical ocean circulation model

    NASA Astrophysics Data System (ADS)

    Costa, Andrea; Doglioli, Andrea M.; Marsaleix, Patrick; Petrenko, Anne A.

    2017-12-01

    In situ measurements of kinetic energy dissipation rate ε and estimates of eddy viscosity KZ from the Gulf of Lion (NW Mediterranean Sea) are used to assess the ability of k - ɛ and k - ℓ closure schemes to predict microscale turbulence in a 3-D numerical ocean circulation model. Two different surface boundary conditions are considered in order to investigate their influence on each closure schemes' performance. The effect of two types of stability functions and optical schemes on the k - ɛ scheme is also explored. Overall, the 3-D model predictions are much closer to the in situ data in the surface mixed layer as opposed to below it. Above the mixed layer depth, we identify one model's configuration that outperforms all the other ones. Such a configuration employs a k - ɛ scheme with Canuto A stability functions, surface boundary conditions parameterizing wave breaking and an appropriate photosynthetically available radiation attenuation length. Below the mixed layer depth, reliability is limited by the model's resolution and the specification of a hard threshold on the minimum turbulent kinetic energy.

  1. Insights into Evaporative Droplet Dynamics in the High-Wind Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Peng, T.; Richter, D. H.

    2017-12-01

    Sea-spray droplets ejected into the air-sea boundary layer take part in a series of complex transport processes. To model the air-sea exchange of heat and moisture under high-wind conditions, it is important yet challenging to understand influences of evaporative droplets in the atmospheric boundary layer. We implement a high-resolution Eulerian-Lagrangian algorithm with droplets laden in a turbulent open-channel flow to reveal the dynamic and thermodynamic characteristics of evaporating sea spray. Our past numerical simulations demonstrated an overall weak modification to the total heat flux by evaporative droplets. This is due to redistributed sensible and latent heat fluxes from relatively small droplets that respond rapidly to the ambient environment or the limited residence time of larger droplets. However, droplets with a slower thermodynamic response to the environment indicate a potential to enhance the total heat flux, but this is dependent on concentration and suspension time. In the current study, we focus on correlations between the residence time and thermodynamic statistics of droplets in order to better understand how best to parameterize in large-scale models. In addition, we focus in detail on the different scales of turbulence to further characterize the range of influence that evaporating droplets have on the surrounding fluid.

  2. Planetary boundary layer height retrieval at UMBC in the frame of NOAA/ARL campaign

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Delgado, R.; Compton, J.; Hoff, R.

    2011-11-01

    The determination of the depth of daytime and nighttime Planetary Boundary Layer Height (PBLH) must be known very accurately to relate boundary layer concentrations of gases or particles to upstream fluxes. Moreover, the air quality forecasts rely upon semi-empirical parameterizations within numerical models for the description of dispersion, formation and fate of pollutants influenced by the spatial and temporal distribution of emissions in cities, topography, and weather. The particulate matter (PM) mass measured at the ground level is a common way to quantify the amount of aerosol particles in the atmosphere and is the standard used to evaluate air quality. Remote sensing of atmospheric aerosols in the lower troposphere that affect air quality is done at the University of Maryland, Baltimore County (UMBC) by the Atmospheric Lidar Group, that supported the joint NOAA/ARL and NCEP ad hoc field study. These campaigns launched radiosondes from Howard University (HU) (26.6km south of UMBC) and RFK Stadium (29.15 km south of UMBC) during September 14-22, 2009 to develop a database to investigate the evolution and spatial variability of the PBLH. In this paper, we examined the potential for continual observation of PBLH by performing a statistical comparison of the spatial and temporal resolution of PBLH from lidars, wind profiler, and radiosonde measurements

  3. Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.

    Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less

  4. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    PubMed

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence

    DOE PAGES

    Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; ...

    2017-06-19

    Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less

  6. Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence

    NASA Astrophysics Data System (ADS)

    Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; Wyant, Matthew C.; Khairoutdinov, Marat

    2017-07-01

    Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called "ultraparameterization" (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (˜14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers. Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.

  7. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2008-12-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is done using MOZAIC observations of ozone, carbon monoxide, nitrogen oxides (NOx+PAN) and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June 03:00 UTC and 10:00 UTC and in a vertical profile over Washington DC on 30 June 17:00 UTC, and by lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle. The isentropic levels (above 335 K) correspond to those of the downstream MOZAIC observations. The parameterized convective detrainment flux is intense enough to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air in a time period compatible with the convective diurnal cycle, i.e. about 5 h. The maximum instantaneous detrainment fluxes deposited about 15-20% of the initial boundary layer tracer concentration at 335 K, which according to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over eastern Atlantic, would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  8. Effect of wakes on land-atmosphere fluxes

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porte-Agel, F.; Stefan, H. G.

    2011-12-01

    Wakes affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases. Canopies and bluff bodies, including forests, buildings and topography, cause boundary layer flow separation, significantly extend flow recovery, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances affecting a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere modeling, and little is known about how heterogeneity of wake-generating features effect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous requirements for the standard eddy correlation (EC) method. This phenomenon often referred to as sheltering has been shown to affect momentum and kinetic energy fluxes into lakes from the atmosphere (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using PIV and custom x-wire/cold-wire anemometry, designed to understand how the physical structure of upstream bluff bodies or porous canopies and thermal stability affect the separation zone, boundary layer recovery and surface fluxes. We also compare these results to field measurements taken with a Doppler LiDAR in the wake of a canopy and a building. We have found that there is a nonlinear relationship between porosity and flow separation behind a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for EC measurements over open fields, lakes, and wetlands.

  9. Wind direction variability in Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations, Atmospheric Enviroment 33, 4909-4917. Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA. Mahrt L., 2011. Surface Wind Direction Variability, Journal of Applied Meteorology and Climatology 50. 144-152. Nagle J.C., 2011. Adapting to Pollution, Research Roundtable on Climate Change, Adaptation, and Enviromental Law, Northwestern Law Searle Center, Legal and Regulatory Studies 7-18 April, IL, USA.

  10. Using Laboratory Experiments to Improve Ice-Ocean Parameterizations

    NASA Astrophysics Data System (ADS)

    McConnochie, C. D.; Kerr, R. C.

    2017-12-01

    Numerical models of ice-ocean interactions are typically unable to resolve the transport of heat and salt to the ice face. Instead, models rely upon parameterizations that have not been sufficiently validated by observations. Recent laboratory experiments of ice-saltwater interactions allow us to test the standard parameterization of heat and salt transport to ice faces - the three-equation model. The three-equation model predicts that the melt rate is proportional to the fluid velocity while the experimental results typically show that the melt rate is independent of the fluid velocity. By considering an analysis of the boundary layer that forms next to a melting ice face, we suggest a resolution to this disagreement. We show that the three-equation model makes the implicit assumption that the thickness of the diffusive sublayer next to the ice is set by a shear instability. However, at low flow velocities, the sublayer is instead set by a convective instability. This distinction leads to a threshold velocity of approximately 4 cm/s at geophysically relevant conditions, above which the form of the parameterization should be valid. In contrast, at flow speeds below 4 cm/s, the three-equation model will underestimate the melt rate. By incorporating such a minimum velocity into the three-equation model, predictions made by numerical simulations could be easily improved.

  11. New Boundary Layer Facility at Andøya, 69N 16E

    NASA Astrophysics Data System (ADS)

    Gausa, M. A.; Reuder, J.; Blindheim, S.

    2016-12-01

    The present presentation introduces an inative for a new boundary layer research facility on the island of Andøya (69N,16E) in Norway. The facility will appreciate international cooperation and contributions.Most boundary layer observatories (as e.g. the Lindenberg Observatory in Germany, the Cabauw facility in the Netherlands, or the Boulder Atmospheric Observatory in the US) are located in mid latitudes. Arctic or sub-arctic stations are rare or not representative due to their location in valleys (e.g. Ny Ålesund). In addition, most of the existing sites are representative for a continental boundary layer and do not allow to observe coupling processes to the free troposphere and the upper atmosphere. The island of Andøya has a unique location at 69N. To the West, Andøya is open to the Norwegian Sea. Its orology maintains an almost undisturbed marine boundary on the foreseen location under SW and W wind weather conditions. Due to rugged mountains, other wind directions provide a more transformed PBL. The understanding of the Planetary Boundary Layer (PBL), in particular with respect to turbulence and turbulent exchange processes, is crucial for a wide range of science fields and environmental monitoring tasks: To name a few: basic atmospheric science, monitoring of pollutants, weather forecast, and climate projection. The PBL is consequently research focus for several research groups, which investigate the empirical and theoretical description of this complex height region. In particular, in high latitudes this lowermost layer of the atmosphere the understanding is poor. The following research topics of the new facility are foreseen: present climate projections show their largest bias in polar regions; this is mostly attributed to inappropriate parameterization of PBL processes in the numerical models forecasts of extreme weather events at high latitudes, e.g. of Polar lows with their potential of hazards for infrastructure and traffic, are still poor for the same reason natural aerosols and anthropogenic pollutants form and change in the PBL due to chemical and coagulation processes upward transport of energy are gravity (buoyancy) waves, which in many cases originate from the PBL precise measurements of precipitation under difficult meteorological conditions

  12. MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows

    NASA Astrophysics Data System (ADS)

    van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro

    2017-08-01

    This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.

  13. A one-dimensional photochemical model of the troposphere with planetary boundary-layer parameterization

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Carney, T. A.

    1984-01-01

    A time-dependent, one-dimensional photochemical model of the troposphere is used to describe the vertical distribution of atmospheric trace constituents for summer-time conditions at midlatitudes in the Northern Hemisphere. The model incorporates a planetary boundary layer (PBL) parametrization and a detailed chemical mechanism that includes the photochemistry of important nonmethane hydrocarbon species formed during the oxidation process. One result of the parametrized PBL is that the concentrations of some trace species in the free troposphere are 20-30 percent higher than when mixing processes are described by a vertical eddy diffusion coefficient which is held constant with respect to height and time. The lifetime of the oxides of nitrogen against photochemical conversion to nitric acid during summertime conditions is on the order of six hours. This lifetime is short enough to deplete most of the NO(x) in the PBL so that other reactive nitrogen species are more abundant than NO(x) throughout the free troposphere.

  14. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.« less

  15. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  16. Better estimates of Entrainment Mixing, Subsidence, and Photochemical Ozone Production using Aircraft and WRF data during the California Baseline Ozone Transport Study (CABOTS)

    NASA Astrophysics Data System (ADS)

    Trousdell, J.; Faloona, I. C.

    2017-12-01

    In situ flight data collected in the San Joaquin Valley of California during the summer of 2016 is used to measure boundary layer entrainment rates, ozone photochemical production, regional methane and NOx emissions. The San Joaquin Valley is plagued with air quality issues including a high frequency of ozone exceedances in the summer and an aerosol issue in the winter exacerbated by a complex mesoscale environment with a different mountain range on three sides creating an effective cul-de-sac which limits outflow and ventilation. In addition, higher elevation air brought over top of the valley can influence the valley air by entrainment at the top of the turbulent daytime atmospheric boundary layer. The flights were conducted during the California Baseline Ozone Transport Study (CABOTS). Flights are valley wide between the cities of Fresno and Visalia with a thorough probing of the atmospheric boundary layer (ABL) including vertical profiling to diagnose the ABL height and its growth rate. Entrainment velocities, which are the parameterized mixing of free tropospheric air into the boundary layer, are determined by a detailed budget equation of the inversion height. A novel scalar budgeting technique is then applied to expose residual terms of individual equations that amount to ozone photochemical production and emission rates, including; NOx and methane. The budget equations are closed out by our predicted entrainment velocities, time rate of change and horizontal advection all determined via flight data. The results of our NOx budget suggests that the California Air Resources Board emission estimates for soil NOx is grossly underestimated. A strong relationship between entrainment rates and vertical wind shear has been observed, suggesting a significant contribution to entrainment driven by vertical shear compared to the surface buoyancy flux which drives the turbulent vertical motions in the boundary layer.

  17. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NASA Astrophysics Data System (ADS)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.

  18. Experiments on aerosol-induced cooling in the nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Sreenivas, K.; Singh, D. K.; Vk, P.; Mukund, V.; Subramanian, G.

    2012-12-01

    In the nocturnal boundary layer (NBL), under calm & clear-sky conditions, radiation is the principal mode of heat transfer & it determines the temperature distribution close to the ground. Radiative processes thus influence the surface energy budget, & play a decisive role in many micro-meteorological processes including the formation of radiation-fog & inversion layer. Here, we report hyper-cooling of air layers close to the ground that has a radiative origin. Resulting vertical temperature distribution has an anomalous profile with an elevated minimum few decimetres above the ground (known as Lifted Temperature Minimum; LTM). Even though the first observation of this type of profile dates back to 1930s, its origin has not been explained till recently. We report field experiments to elucidate effects of emissivity and other physical properties of the ground on the LTM profile. Field observations clearly indicate that LTM-profiles are observed as a rule in the lowest meter of the NBL. We also demonstrate that the air-layer near the ground, rather than the ground itself, leads the post sunset cooling. This fact changes the very nature of the sensible heat-flux boundary condition. A laboratory experimental setup has been developed that can reproduce LTM. Lab-experiments demonstrate that the high cooling rates observed in the field experiments arise from the presence of aerosols & the intensity of cooling is proportional to aerosol concentration (Fig-1). We have also captured penetrative convection cells in the field experiments (Fig-2). Results presented here thus help in parameterizing transport processes in the NBL.

  19. Scaling of water vapor in the meso-gamma (2-20km) and lower meso-beta (20-50km) scales from tall tower time series

    NASA Astrophysics Data System (ADS)

    Pressel, K. G.; Collins, W.; Desai, A. R.

    2011-12-01

    Deficiencies in the parameterization of boundary layer clouds in global climate models (GCMs) remains one of the greatest sources of uncertainty in climate change predictions. Many GCM cloud parameterizations, which seek to include some representation of subgrid-scale cloud variability, do so by making assumptions regarding the subgrid-scale spatial probability density function (PDF) of total water content. Properly specifying the form and parameters of the total water PDF is an essential step in the formulation of PDF based cloud parameterizations. In the cloud free boundary layer, the PDF of total water mixing ratio is equivalent to the PDF of water vapor mixing ratio. Understanding the PDF of water vapor mixing ratio in the cloud free atmosphere is a necessary step towards understanding the PDF of water vapor in the cloudy atmosphere. A primary challenge in empirically constraining the PDF of water vapor mixing ratio is a distinct lack of a spatially distributed observational dataset at or near cloud scale. However, at meso-beta (20-50km) and larger scales, there is a wealth of information on the spatial distribution of water vapor contained in the physically retrieved water vapor profiles from the Atmospheric Infrared Sounder onboard NASA`s Aqua satellite. The scaling (scale-invariance) of the observed water vapor field has been suggested as means of using observations at satellite observed (meso-beta) scales to derive information about cloud scale PDFs. However, doing so requires the derivation of a robust climatology of water vapor scaling from in-situ observations across the meso- gamma (2-20km) and meso-beta scales. In this work, we present the results of the scaling of high frequency (10Hz) time series of water vapor mixing ratio as observed from the 447m WLEF tower located near Park Falls, Wisconsin. Observations from a tall tower offer an ideal set of observations with which to investigate scaling at meso-gamma and meso-beta scales requiring only the assumption of Taylor`s Hypothesis to convert observed time scales to spatial scales. Furthermore, the WLEF tower holds an instrument suite offering a diverse set of variables at the 396m, 122m, and 30m levels with which to characterize the state of the boundary layer. Three methods are used to compute scaling exponents for the observed time series; poor man`s variance spectra, first order structure functions, and detrended fluctuation analysis. In each case scaling exponents are computed by linear regression. The results for each method are compared and used to build a climatology of scaling exponents. In particular, the results for June 2007 are presented, and it is shown that the scaling of water vapor time series at the 396m level is characterized by two regimes that are determined by the state of the boundary layer. Finally, the results are compared to, and shown to be roughly consistent with, scaling exponents computed from AIRS observations.

  20. Wind field near complex terrain using numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Chim, Kin-Sang

    The PennState/NCAR MM5 model was modified to simulate an idealized flow pass through a 3D obstacle in the Micro- Alpha Scale domain. The obstacle used were the idealized Gaussian obstacle and the real topography of Lantau Island of Hong Kong. The Froude number under study is ranged from 0.22 to 1.5. Regime diagrams for both the idealized Gaussian obstacle and Lantau island were constructed. This work is divided into five parts. The first part is the problem definition and the literature review of the related publications. The second part briefly discuss as the PennState/NCAR MM5 model and a case study of long- range transport is included. The third part is devoted to the modification and the verification of the PennState/NCAR MM5 model on the Micro-Alpha Scale domain. The implementation of the Orlanski (1976) open boundary condition is included with the method of single sounding initialization of the model. Moreover, an upper dissipative layer, Klemp and Lilly (1978), is implemented on the model. The simulated result is verified by the Automatic Weather Station (AWS) data and the Wind Profiler data. Four different types of Planetary Boundary Layer (PBL) parameterization schemes have been investigated in order to find out the most suitable one for Micro-Alpha Scale domain in terms of both accuracy and efficiency. Bulk Aerodynamic type of PBL parameterization scheme is found to be the most suitable PBL parameterization scheme. Investigation of the free- slip lower boundary condition is performed and the simulated result is compared with that with friction. The fourth part is the use of the modified PennState/NCAR MM5 model for an idealized flow simulation. The idealized uniform flow used is nonhydrostatic and has constant Froude number. Sensitivity test is performed by varying the Froude number and the regime diagram is constructed. Moreover, nondimensional drag is found to be useful for regime identification. The model result is also compared with the analytic results by Miles (1969) and Smith (1980, 1985), and the numerical results of Stein (1992), Miranda and James (1992) and Olaffson and Bougeault (1997). It is found that the simulated result in the present study is comparable with others. The fifth part is the construction of the regime diagram for the Lantau island of Hong Kong. All eight major wind directions are discussed.

  1. Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas

    2018-04-01

    The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.

  2. Chemical differentiation of a convecting planetary interior: Consequences for a one-plate planet such as Venus

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Hess, P. C.

    1992-01-01

    Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution is assumed. The rate of melt production is calculated as the product of the volume flux of mantle into the thermal boundary layer and the degree of melting that this mantle undergoes. The volume flux of mantle into the thermal boundary layer is simply the heat flux divided by amount of heat lost in cooling mantle to the average temperature in the thermal boundary layer. The degree of melting is calculated as the temperature difference above the solidus, divided by the latent heat of melting. A maximum degree of melting is prescribed corresponding to the maximum amount of basaltic melt that the mantle can initially generate. As the crust thickens, the pressure at the base of the crust becomes high enough and the temperature remains low enough for basalt to transform to dense eclogite.

  3. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley; Srikishen, Jayanthi; Medlin, Jeffrey; Wood, Lance

    2014-01-01

    Convection-allowing numerical weather simula- tions have often been shown to produce convective storms that have significant sensitivity to choices of model physical parameterizations. Among the most important of these sensitivities are those related to cloud microphysics, but planetary boundary layer parameterizations also have a significant impact on the evolution of the convection. Aspects of the simulated convection that display sensitivity to these physics schemes include updraft size and intensity, simulated radar reflectivity, timing and placement of storm initi- ation and decay, total storm rainfall, and other storm features derived from storm structure and hydrometeor fields, such as predicted lightning flash rates. In addition to the basic parameters listed above, the simulated storms may also exhibit sensitivity to im- posed initial conditions, such as the fields of soil temper- ature and moisture, vegetation cover and health, and sea and lake water surface temperatures. Some of these sensitivities may rival those of the basic physics sensi- tivities mentioned earlier. These sensitivities have the potential to disrupt the accuracy of short-term forecast simulations of convective storms, and thereby pose sig- nificant difficulties for weather forecasters. To make a systematic study of the quantitative impacts of each of these sensitivities, a matrix of simulations has been performed using all combinations of eight separate microphysics schemes, three boundary layer schemes, and two sets of initial conditions. The first version of initial conditions consists of the default data from large-scale operational model fields, while the second features specialized higher- resolution soil conditions, vegetation conditions and water surface temperatures derived from datasets created at NASA's Short-term Prediction and Operational Research Tran- sition (SPoRT) Center at the National Space Science and Technology Center (NSSTC) in Huntsville, AL. Simulations as outlined above, each 48 in number, were conducted for five midsummer weakly sheared coastal convective events each at two sites, Mobile, AL (MOB) and Houston, TX (HGX). Of special interest to operational forecasters at MOB and HGX were accuracy of timing and placement of convective storm initiation, reflectivity magnitudes and coverage, rainfall and inferred lightning threat.

  4. An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection

    NASA Astrophysics Data System (ADS)

    Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.

    2018-03-01

    Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.

  5. Turbulent flow and scalar transport in a large wind farm

    NASA Astrophysics Data System (ADS)

    Porte-Agel, F.; Markfort, C. D.; Zhang, W.

    2012-12-01

    Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO_2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interaction is complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics, and atmospheric thermal stability. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux is affected by wind farms and needs to be properly parameterized in meso-scale and/or high-resolution numerical models. Experiments involving model wind farms, with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a thermally-controlled boundary-layer wind tunnel. A neutrally stratified turbulent boundary layer was developed with a surface heat source. Measurements of the turbulent flow and fluxes over and through the wind farm were made using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors far within the quasi-developed region of the wind-farm. The turbulence statistics exhibit similar properties to those of canopy-type flows, but retain some characteristics of surface-layer flows in a limited region above the wind farms as well. The flow equilibrates faster and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling and leads to a larger effective roughness. Although the overall surface heat flux change produced by the wind farms is found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero change for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. This comprehensive first wind-tunnel dataset on turbulent flow and scalar transport in wind farms will be further used to develop and validate new parameterizations of surface fluxes in numerical models.

  6. Application of a simple power law for transport ratio with bimodal distributions of spherical grains under oscillatory forcing

    NASA Astrophysics Data System (ADS)

    Holway, Kevin; Thaxton, Christopher S.; Calantoni, Joseph

    2012-11-01

    Morphodynamic models of coastal evolution require relatively simple parameterizations of sediment transport for application over larger scales. Calantoni and Thaxton (2008) [6] presented a transport parameterization for bimodal distributions of coarse quartz grains derived from detailed boundary layer simulations for sheet flow and near sheet flow conditions. The simulation results, valid over a range of wave forcing conditions and large- to small-grain diameter ratios, were successfully parameterized with a simple power law that allows for the prediction of the transport rates of each size fraction. Here, we have applied the simple power law to a two-dimensional cellular automaton to simulate sheet flow transport. Model results are validated with experiments performed in the small oscillating flow tunnel (S-OFT) at the Naval Research Laboratory at Stennis Space Center, MS, in which sheet flow transport was generated with a bed composed of a bimodal distribution of non-cohesive grains. The work presented suggests that, under the conditions specified, algorithms that incorporate the power law may correctly reproduce laboratory bed surface measurements of bimodal sheet flow transport while inherently incorporating vertical mixing by size.

  7. Numerical Study of the Role of Shallow Convection in Moisture Transport and Climate

    NASA Technical Reports Server (NTRS)

    Seaman, Nelson L.; Stauffer, David R.; Munoz, Ricardo C.

    2001-01-01

    The objective of this investigation was to study the role of shallow convection on the regional water cycle of the Mississippi and Little Washita Basins of the Southern Great Plains (SGP) using a 3-D mesoscale model, the PSU/NCAR MM5. The underlying premise of the project was that current modeling of regional-scale climate and moisture cycles over the continents is deficient without adequate treatment of shallow convection. At the beginning of the study, it was hypothesized that an improved treatment of the regional water cycle can be achieved by using a 3-D mesoscale numerical model having high-quality parameterizations for the key physical processes controlling the water cycle. These included a detailed land-surface parameterization (the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) sub-model of Wetzel and Boone), an advanced boundary-layer parameterization (the 1.5-order turbulent kinetic energy (TKE) predictive scheme of Shafran et al.), and a more complete shallow convection parameterization (the hybrid-closure scheme of Deng et al.) than are available in most current models. PLACE is a product of researchers working at NASA's Goddard Space Flight Center in Greenbelt, MD. The TKE and shallow-convection schemes are the result of model development at Penn State. The long-range goal is to develop an integrated suite of physical sub-models that can be used for regional and perhaps global climate studies of the water budget. Therefore, the work plan focused on integrating, improving, and testing these parameterizations in the MM5 and applying them to study water-cycle processes over the SGP. These schemes have been tested extensively through the course of this study and the latter two have been improved significantly as a consequence.

  8. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 whenmore » the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.« less

  9. An analysis of MM5 sensitivity to different parameterizations for high-resolution climate simulations

    NASA Astrophysics Data System (ADS)

    Argüeso, D.; Hidalgo-Muñoz, J. M.; Gámiz-Fortis, S. R.; Esteban-Parra, M. J.; Castro-Díez, Y.

    2009-04-01

    An evaluation of MM5 mesoscale model sensitivity to different parameterizations schemes is presented in terms of temperature and precipitation for high-resolution integrations over Andalusia (South of Spain). As initial and boundary conditions ERA-40 Reanalysis data are used. Two domains were used, a coarse one with dimensions of 55 by 60 grid points with spacing of 30 km and a nested domain of 48 by 72 grid points grid spaced 10 km. Coarse domain fully covers Iberian Peninsula and Andalusia fits loosely in the finer one. In addition to parameterization tests, two dynamical downscaling techniques have been applied in order to examine the influence of initial conditions on RCM long-term studies. Regional climate studies usually employ continuous integration for the period under survey, initializing atmospheric fields only at the starting point and feeding boundary conditions regularly. An alternative approach is based on frequent re-initialization of atmospheric fields; hence the simulation is divided in several independent integrations. Altogether, 20 simulations have been performed using varying physics options, of which 4 were fulfilled applying the re-initialization technique. Surface temperature and accumulated precipitation (daily and monthly scale) were analyzed for a 5-year period covering from 1990 to 1994. Results have been compared with daily observational data series from 110 stations for temperature and 95 for precipitation Both daily and monthly average temperatures are generally well represented by the model. Conversely, daily precipitation results present larger deviations from observational data. However, noticeable accuracy is gained when comparing with monthly precipitation observations. There are some especially conflictive subregions where precipitation is scarcely captured, such as the Southeast of the Iberian Peninsula, mainly due to its extremely convective nature. Regarding parameterization schemes performance, every set provides very similar results either for temperature or precipitation and no configuration seems to outperform the others both for the whole region and for every season. Nevertheless, some marked differences between areas within the domain appear when analyzing certain physics options, particularly for precipitation. Some of the physics options, such as radiation, have little impact on model performance with respect to precipitation and results do not vary when the scheme is modified. On the other hand, cumulus and boundary layer parameterizations are responsible for most of the differences obtained between configurations. Acknowledgements: The Spanish Ministry of Science and Innovation, with additional support from the European Community Funds (FEDER), project CGL2007-61151/CLI, and the Regional Government of Andalusia project P06-RNM-01622, have financed this study. The "Centro de Servicios de Informática y Redes de Comunicaciones" (CSIRC), Universidad de Granada, has provided the computing time. Key words: MM5 mesoscale model, parameterizations schemes, temperature and precipitation, South of Spain.

  10. Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model

    NASA Astrophysics Data System (ADS)

    Solman, Silvina A.; Pessacg, Natalia L.

    2012-01-01

    In this study the capability of the MM5 model in simulating the main mode of intraseasonal variability during the warm season over South America is evaluated through a series of sensitivity experiments. Several 3-month simulations nested into ERA40 reanalysis were carried out using different cumulus schemes and planetary boundary layer schemes in an attempt to define the optimal combination of physical parameterizations for simulating alternating wet and dry conditions over La Plata Basin (LPB) and the South Atlantic Convergence Zone regions, respectively. The results were compared with different observational datasets and model evaluation was performed taking into account the spatial distribution of monthly precipitation and daily statistics of precipitation over the target regions. Though every experiment was able to capture the contrasting behavior of the precipitation during the simulated period, precipitation was largely underestimated particularly over the LPB region, mainly due to a misrepresentation in the moisture flux convergence. Experiments using grid nudging of the winds above the planetary boundary layer showed a better performance compared with those in which no constrains were imposed to the regional circulation within the model domain. Overall, no single experiment was found to perform the best over the entire domain and during the two contrasting months. The experiment that outperforms depends on the area of interest, being the simulation using the Grell (Kain-Fritsch) cumulus scheme in combination with the MRF planetary boundary layer scheme more adequate for subtropical (tropical) latitudes. The ensemble of the sensitivity experiments showed a better performance compared with any individual experiment.

  11. Field Investigation of the Turbulent Flux Parameterization and Scalar Turbulence Structure over a Melting Valley Glacier

    NASA Astrophysics Data System (ADS)

    Guo, X.; Yang, K.; Yang, W.; Li, S.; Long, Z.

    2011-12-01

    We present a field investigation over a melting valley glacier on the Tibetan Plateau. One particular aspect lies in that three melt phases are distinguished during the glacier's ablation season, which enables us to compare results over snow, bare-ice, and hummocky surfaces [with aerodynamic roughness lengths (z0M) varying on the order of 10-4-10-2 m]. We address two issues of common concern in the study of glacio-meteorology and micrometeorology. First, we study turbulent energy flux estimation through a critical evaluation of three parameterizations of the scalar roughness lengths (z0T for temperature and z0q for humidity), viz. key factors for the accurate estimation of sensible heat and latent heat fluxes using the bulk aerodynamic method. The first approach (Andreas 1987, Boundary-Layer Meteorol 38:159-184) is based on surface-renewal models and has been very widely applied in glaciated areas; the second (Yang et al. 2002, Q J Roy Meteorol Soc 128:2073-2087) has never received application over an ice/snow surface, despite its validity in arid regions; the third approach (Smeets and van den Broeke 2008, Boundary-Layer Meteorol 128:339-355) is proposed for use specifically over rough ice defined as z0M > 10-3 m or so. This empirical z0M threshold value is deemed of general relevance to glaciated areas (e.g. ice sheet/cap and valley/outlet glaciers), above which the first approach gives underestimated z0T and z0q. The first and the third approaches tend to underestimate and overestimate turbulent heat/moisture exchange, respectively (relative errors often > 30%). Overall, the second approach produces fairly low errors in energy flux estimates; it thus emerges as a practically useful choice to parameterize z0T and z0q over an ice/snow surface. Our evaluation of z0T and z0q parameterizations hopefully serves as a useful source of reference for physically based modeling of land-ice surface energy budget and mass balance. Second, we explore how scalar turbulence behaves in the glacier winds, based on the turbulent fluctuations of temperature (T'), and water vapor (q') and CO2 (c') concentrations. This dataset is advantageous to analyses of turbulent scalar similarity, because the source/sink distribution of scalars is uniform over an ice/snow surface. New pieces of knowledge are: (1) T' and q' can be highly correlated, even when sensible heat and latent heat fluxes are in opposite directions. - The same direction of scalar fluxes is not a necessary condition for high scalar correlation. (2) The vertical transport efficiency of T' is always higher than that of q'. - The Bowen ratio (|β| > 1) is one factor underlying the T'-to-q' transport efficiency in stable conditions as well. (3) We provide confirmatory evidence of Detto and Katul's (Boundary-Layer Meteorol 122:205-216) original argument: density effect correction to q' and c' is necessitated for eddy-covariance analyses of turbulence structure.

  12. Non-local Second Order Closure Scheme for Boundary Layer Turbulence and Convection

    NASA Astrophysics Data System (ADS)

    Meyer, Bettina; Schneider, Tapio

    2017-04-01

    There has been scientific consensus that the uncertainty in the cloud feedback remains the largest source of uncertainty in the prediction of climate parameters like climate sensitivity. To narrow down this uncertainty, not only a better physical understanding of cloud and boundary layer processes is required, but specifically the representation of boundary layer processes in models has to be improved. General climate models use separate parameterisation schemes to model the different boundary layer processes like small-scale turbulence, shallow and deep convection. Small scale turbulence is usually modelled by local diffusive parameterisation schemes, which truncate the hierarchy of moment equations at first order and use second-order equations only to estimate closure parameters. In contrast, the representation of convection requires higher order statistical moments to capture their more complex structure, such as narrow updrafts in a quasi-steady environment. Truncations of moment equations at second order may lead to more accurate parameterizations. At the same time, they offer an opportunity to take spatially correlated structures (e.g., plumes) into account, which are known to be important for convective dynamics. In this project, we study the potential and limits of local and non-local second order closure schemes. A truncation of the momentum equations at second order represents the same dynamics as a quasi-linear version of the equations of motion. We study the three-dimensional quasi-linear dynamics in dry and moist convection by implementing it in a LES model (PyCLES) and compare it to a fully non-linear LES. In the quasi-linear LES, interactions among turbulent eddies are suppressed but nonlinear eddy—mean flow interactions are retained, as they are in the second order closure. In physical terms, suppressing eddy—eddy interactions amounts to suppressing, e.g., interactions among convective plumes, while retaining interactions between plumes and the environment (e.g., entrainment and detrainment). In a second part, we employ the possibility to include non-local statistical correlations in a second-order closure scheme. Such non-local correlations allow to directly incorporate the spatially coherent structures that occur in the form of convective updrafts penetrating the boundary layer. This allows us to extend the work that has been done using assumed-PDF schemes for parameterising boundary layer turbulence and shallow convection in a non-local sense.

  13. Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-07-01

    Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.

  14. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2009-08-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is based on airborne MOZAIC observations of ozone, carbon monoxide, nitrogen oxides and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June and on a vertical profile over Washington DC on 30 June, and on lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the observed CO plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle at isentropic levels (above 335 K) corresponding to those of the downstream MOZAIC observations. It is shown that the order of magnitude of the time needed by the parameterized convective detrainment flux to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air would be about 7.5 h, i.e. a time period compatible with the convective diurnal cycle. Over the area of interest, the maximum instantaneous detrainment fluxes deposited about 15 to 20% of the initial boundary layer tracer concentration at 335 K. According to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over Eastern Atlantic, such detrainment fluxes would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  15. Sea Fog Forecasting with Lagrangian Models

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    2014-12-01

    In 1913, G. I. Taylor introduced us to a Lagrangian view of sea fog formation. He conducted his study off the coast of Newfoundland in the aftermath of the Titanic disaster. We briefly review Taylor's classic work and then apply these same principles to a case of sea fog formation and dissipation off the coast of California. The resources used in this study consist of: 1) land-based surface and upper-air observations, 2) NDBC (National Data Buoy Center) observations from moored buoys equipped to measure dew point temperature as well as the standard surface observations at sea (wind, sea surface temperature, pressure, and air temperature), 3) satellite observations of cloud, and 4) a one-dimensional (vertically directed) boundary layer model that tracks with the surface air motion and makes use of sophisticated turbulence-radiation parameterizations. Results of the investigation indicate that delicate interplay and interaction between the radiation and turbulence processes makes accurate forecasts of sea fog onset unlikely in the near future. This pessimistic attitude stems from inadequacy of the existing network of observations and uncertainties in modeling dynamical processes within the boundary layer.

  16. Diurnal forcing of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Houben, Howard C.

    1991-01-01

    A free convection parameterization has been introduced into the Mars Planetary Boundary Layer Model (MPBL). Previously, the model would fail to generate turbulence under conditions of zero wind shear, even when statically unstable. This in turn resulted in erroneous results at the equator, for example, when the lack of Coriolis forcing allowed zero wind conditions. The underlying cause of these failures was the level 2 second-order turbulence closure scheme which derived diffusivities as algebraic functions of the Richardson number (the ratio of static stability to wind shear). In the previous formulation, the diffusivities were scaled by the wind shear--a convenient parameter since it is non-negative. This was the drawback that all diffusivities are zero under conditions of zero shear (viz., the free convection case). The new scheme tests for the condition of zero shear in conjunction with static instability and recalculates the diffusivities using a static stability scaling. The results for a simulation of the equatorial boundary layer at autumnal equinox are presented. (Note that after some wind shear is generated, the model reverts to the traditional diffusivity calculation.)

  17. The effects of atmospheric cloud radiative forcing on climate

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1989-01-01

    In order to isolate the effects of atmospheric cloud radiative forcing (ACRF) on climate, the general circulation of an ocean-covered earth called 'Seaworld' was simulated using the Colorado State University GCM. Most current climate models, however, do not include an interactive ocean. The key simplifications in 'Seaworld' are the fixed boundary temperature with no land points, the lack of mountains and the zonal uniformity of the boundary conditions. Two 90-day 'perpetual July' simulations were performed and analyzed the last sixty days of each. The first run included all the model's physical parameterizations, while the second omitted the effects of clouds in both the solar and terrestrial radiation parameterizations. Fixed and identical boundary temperatures were set for the two runs, and resulted in differences revealing the direct and indirect effects of the ACRF on the large-scale circulation and the parameterized hydrologic processes.

  18. Regional Climate Model sesitivity to different parameterizations schemes with WRF over Spain

    NASA Astrophysics Data System (ADS)

    García-Valdecasas Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Hidalgo-Muñoz, Jose Manuel; Argüeso, Daniel; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2015-04-01

    The ability of the Weather Research and Forecasting (WRF) model to simulate the regional climate depends on the selection of an adequate combination of parameterization schemes. This study assesses WRF sensitivity to different parameterizations using six different runs that combined three cumulus, two microphysics and three surface/planetary boundary layer schemes in a topographically complex region such as Spain, for the period 1995-1996. Each of the simulations spanned a period of two years, and were carried out at a spatial resolution of 0.088° over a domain encompassing the Iberian Peninsula and nested in the coarser EURO-CORDEX domain (0.44° resolution). The experiments were driven by Interim ECMWF Re-Analysis (ERA-Interim) data. In addition, two different spectral nudging configurations were also analysed. The simulated precipitation and maximum and minimum temperatures from WRF were compared with Spain02 version 4 observational gridded datasets. The comparison was performed at different time scales with the purpose of evaluating the model capability to capture mean values and high-order statistics. ERA-Interim data was also compared with observations to determine the improvement obtained using dynamical downscaling with respect to the driving data. For this purpose, several parameters were analysed by directly comparing grid-points. On the other hand, the observational gridded data were grouped using a multistep regionalization to facilitate the comparison in term of monthly annual cycle and the percentiles of daily values analysed. The results confirm that no configuration performs best, but some combinations that produce better results could be chosen. Concerning temperatures, WRF provides an improvement over ERA-Interim. Overall, model outputs reduce the biases and the RMSE for monthly-mean maximum and minimum temperatures and are higher correlated with observations than ERA-Interim. The analysis shows that the Yonsei University planetary boundary layer scheme is the most appropriate parameterization in term of temperatures because it better describes monthly minimum temperatures and seems to perform well for maximum temperatures. Regarding precipitation, ERA-Interim time series are slightly higher correlated with observations than WRF, but the bias and the RMSE are largely worse. These results also suggest that CAM V.5.1 2-moment 5-class microphysics schemes should not be used due to the computational cost with no apparent gain with respect to simpler schemes such as WRF single-moment 3-class. For the convection scheme, this study suggests that Betts-Miller-Janjic scheme is an appropriate choice due to its robustness and Kain-Fritsch cumulus scheme should not be used over this region. KEY WORDS: Regional climate modelling, physics schemes, parameterizations, WRF. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  19. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1993-03-01

    Aspects of the land-surface and boundary-layer treatments in some 20 or so atmospheric general circulation models (GCMS) are summarized. In only a small fraction of these have significant sensitivity studies been carried out and published. Predominantly, the sensitivity studies focus upon the parameterization of land-surface processes and specification of land-surface properties-the most important of these include albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. For example, results from numerous studies give an average decrease in continental precipitation of 1 mm day1 in response to an average albedo increase of 0.13. Few conclusive studies have been carried out on the impact of a gross roughness-length change-the primary study included an important statistical assessment of the impact upon the mean July climate around the globe of a decreased continental roughness (by three orders of magnitude). For example, such a decrease reduced the precipitation over Amazonia by 1 to 2 mm day1.The inclusion of a canopy scheme in a GCM ensures the combined impacts of roughness (canopies tend to be rougher than bare soil), albedo (canopies tend to be less reflective than bare soil), and soil-moisture availability (canopies prevent the near-surface soil region from drying out and can access the deep soil moisture) upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. The results of four such studies show that replacing tropical forest with a degraded pasture results in decreased evaporation ( 1 mm day1) and precipitation (1-2 mm day1), and increased near-surface air temperatures (2 K).Sensitivity studies as a whole suggest the need for a realistic surface representation in general circulation models of the atmosphere. It is not yet clear how detailed this representation needs to be, but even allowing for the importance of surface processes, the parameterization of boundary-layer and convective clouds probably represents a greater challenge to improved climate simulations. This is illustrated in the case of surface net radiation for Aniazonia, which is not well simulated and tends to be overestimated, leading to evaporation rates that are too large. Underestimates in cloudiness, cloud albedo, and clear-sky shortwave absorption, rather than in surface albedo, appear to be the main culprits.There are three major tasks that confront the researcher so far as the development and validation of atmospheric boundary-layer (ABL) and surface schemes in GCMs are concerned:(i) There is a need to as' critically the impact of `improved' parameterization schemes on WM simulations, taking into account the problem of natural variability and hence the statistical significance of the induced changes.(ii) There is a need to compare GCM simulations of surface and ABL behavior (particularly regarding the diurnal cycle of surface fluxes, air temperature, and ABL depth) with observations over a range of surface types (vegetation, desert, ocean). In this context, area-average values of surface fluxes will be required to calibrate directly the ABL/land-surface scheme in the GCM.(iii) There is a need for intercomparisons of ABL and land-surface schemes used in GCMS, both for one- dimensional stand-alone models and for GCMs that incorporate the respective schemes.

  20. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the photosynthesis process owing to a better estimation of the Rubisco enzyme kinematics. Finally, to evaluate the effects of the crop-specific parameterizations on the ABL dynamics, we perform a series of semi-idealized land-atmosphere coupled simulations by hypothesizing three cropland configurations. These numerical experiments reveal different heat and moisture budgets of the ABL that clearly impact the evolution of the boundary layer when using the crop-specific physiological properties.

  1. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

  2. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla

    2016-08-01

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  3. The diurnal cycle of clouds and precipitation at the ARM SGP site: Cloud radar observations and simulations from the multiscale modeling framework

    DOE PAGES

    Zhao, Wei; Marchand, Roger; Fu, Qiang

    2017-07-08

    Millimeter Wavelength Cloud Radar (MMCR) data from December 1996 to December 2010, collected at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site, are used to examine the diurnal cycle of hydrometeor occurrence. These data are categorized into clouds (-40 dBZ e ≤ reflectivity < -10 dBZ e), drizzle and light precipitation (-10 dBZ e ≤ reflectivity < 10 dBZ e), and heavy precipitation (reflectivity ≥ 10 dBZ e). The same criteria are implemented for the observation-equivalent reflectivity calculated by feeding outputs from a Multiscale Modeling Framework (MMF) climate model into a radar simulator.more » The MMF model consists of the National Center for Atmospheric Research Community Atmosphere Model with conventional cloud parameterizations replaced by a cloud-resolving model. We find that a radar simulator combined with the simple reflectivity categories can be an effective approach for evaluating diurnal variations in model hydrometeor occurrence. It is shown that the MMF only marginally captures observed increases in the occurrence of boundary layer clouds after sunrise in spring and autumn and does not capture diurnal changes in boundary layer clouds during the summer. Above the boundary layer, the MMF captures reasonably well diurnal variations in the vertical structure of clouds and light and heavy precipitation in the summer but not in the spring.« less

  4. Improving Wind Predictions in the Marine Atmospheric Boundary Layer Through Parameter Estimation in a Single Column Model

    DOE PAGES

    Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; ...

    2016-08-03

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z 0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z 0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z 0 in DART. Using DART to estimate z 0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z 0 ensembles by 4%–22%. Finally, however, parameter estimation of z 0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less

  5. Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements

    NASA Astrophysics Data System (ADS)

    Mo, Ziwei; Liu, Chun-Ho

    2017-04-01

    Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.

  6. Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Melville, W. K.

    2016-02-01

    While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.

  7. Regional climate model assessment of the urban land-surface forcing over central Europe

    NASA Astrophysics Data System (ADS)

    Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J.

    2014-07-01

    For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005-2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0.6 m s-1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts the simulated summer precipitation rate, showing decrease over cities up to -2 mm day-1. Significant temperature increases are simulated over higher elevations as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modeled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage.

  8. Regional climate model assessment of the urban land-surface forcing over central Europe

    NASA Astrophysics Data System (ADS)

    Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J.

    2014-11-01

    For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single-layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005-2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0.6 m s-1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s-1). Urban surfaces significantly reduce the humidity over the surface. This impacts the simulated summer precipitation rate, showing a decrease over cities of up to -2 mm day-1. Significant temperature increases are simulated over higher altitudes as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment, such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modelled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage.

  9. Optimisation of an idealised primitive equation ocean model using stochastic parameterization

    NASA Astrophysics Data System (ADS)

    Cooper, Fenwick C.

    2017-05-01

    Using a simple parameterization, an idealised low resolution (biharmonic viscosity coefficient of 5 × 1012 m4s-1 , 128 × 128 grid) primitive equation baroclinic ocean gyre model is optimised to have a much more accurate climatological mean, variance and response to forcing, in all model variables, with respect to a high resolution (biharmonic viscosity coefficient of 8 × 1010 m4s-1 , 512 × 512 grid) equivalent. For example, the change in the climatological mean due to a small change in the boundary conditions is more accurate in the model with parameterization. Both the low resolution and high resolution models are strongly chaotic. We also find that long timescales in the model temperature auto-correlation at depth are controlled by the vertical temperature diffusion parameter and time mean vertical advection and are caused by short timescale random forcing near the surface. This paper extends earlier work that considered a shallow water barotropic gyre. Here the analysis is extended to a more turbulent multi-layer primitive equation model that includes temperature as a prognostic variable. The parameterization consists of a constant forcing, applied to the velocity and temperature equations at each grid point, which is optimised to obtain a model with an accurate climatological mean, and a linear stochastic forcing, that is optimised to also obtain an accurate climatological variance and 5 day lag auto-covariance. A linear relaxation (nudging) is not used. Conservation of energy and momentum is discussed in an appendix.

  10. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter S. K.; Zelenyuk, Alla

    2011-01-01

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m-2. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5°C to -40°C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  11. Impact of parameterization of physical processes on simulation of track and intensity of tropical cyclone Nargis (2008) with WRF-NMM model.

    PubMed

    Pattanayak, Sujata; Mohanty, U C; Osuri, Krishna K

    2012-01-01

    The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error.

  12. A laboratory examination of the three-equation model of ice-ocean interactions

    NASA Astrophysics Data System (ADS)

    McConnochie, Craig; Kerr, Ross

    2017-11-01

    Numerical models of ice-ocean interactions are typically unable to resolve the transport of heat and salt to the ice face. As such, models rely upon parameterizations that have not been properly validated by data. Recent laboratory experiments of ice-saltwater interactions allow us to test the standard parameterization of heat and salt transport to ice faces - the `three equation model'. We find a significant disagreement in the dependence of the melt rate on the fluid velocity. The three-equation model predicts that the melt rate is proportional to the fluid velocity while the experimental results typically show that the melt rate is independent of the fluid velocity. By considering a theoretical analysis of the boundary layer next to a melting ice face we suggest a resolution to this disagreement. We show that the three-equation model assumes that the thickness of the diffusive sublayer is set by a shear instability. However, at low flow velocities, the sublayer is instead set by a convective instability. This distinction leads to a threshold velocity of approximately 4 cm/s at geophysically relevant conditions, above which the form of the parameterization should be valid. In contrast, at flow speeds below 4 cm/s, the three-equation model will underestimate the melt rate. ARC DP120102772.

  13. Modeling the interplay between sea ice formation and the oceanic mixed layer: Limitations of simple brine rejection parameterizations

    NASA Astrophysics Data System (ADS)

    Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues; Madec, Gurvan

    2015-02-01

    The subtle interplay between sea ice formation and ocean vertical mixing is hardly represented in current large-scale models designed for climate studies. Convective mixing caused by the brine release when ice forms is likely to prevail in leads and thin ice areas, while it occurs in models at the much larger horizontal grid cell scale. Subgrid-scale parameterizations have hence been developed to mimic the effects of small-scale convection using a vertical distribution of the salt rejected by sea ice within the mixed layer, instead of releasing it in the top ocean layer. Such a brine rejection parameterization is included in the global ocean-sea ice model NEMO-LIM3. Impacts on the simulated mixed layers and ocean temperature and salinity profiles, along with feedbacks on the sea ice cover, are then investigated in both hemispheres. The changes are overall relatively weak, except for mixed layer depths, which are in general excessively reduced compared to observation-based estimates. While potential model biases prevent a definitive attribution of this vertical mixing underestimation to the brine rejection parameterization, it is unlikely that the latter can be applied in all conditions. In that case, salt rejections do not play any role in mixed layer deepening, which is unrealistic. Applying the parameterization only for low ice-ocean relative velocities improves model results, but introduces additional parameters that are not well constrained by observations.

  14. Modelling the interplay between sea ice formation and the oceanic mixed layer: limitations of simple brine rejection parameterizations

    NASA Astrophysics Data System (ADS)

    Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues; Madec, Gurvan

    2015-04-01

    The subtle interplay between sea ice formation and ocean vertical mixing is hardly represented in current large-scale models designed for climate studies. Convective mixing caused by the brine release when ice forms is likely to prevail in leads and thin ice areas, while it occurs in models at the much larger horizontal grid cell scale. Subgrid-scale parameterizations have hence been developed to mimic the effects of small-scale convection using a vertical distribution of the salt rejected by sea ice within the mixed layer, instead of releasing it in the top ocean layer. Such a brine rejection parameterization is included in the global ocean--sea ice model NEMO-LIM3. Impacts on the simulated mixed layers and ocean temperature and salinity profiles, along with feedbacks on the sea ice cover, are then investigated in both hemispheres. The changes are overall relatively weak, except for mixed layer depths, which are in general excessively reduced compared to observation-based estimates. While potential model biases prevent a definitive attribution of this vertical mixing underestimation to the brine rejection parameterization, it is unlikely that the latter can be applied in all conditions. In that case, salt rejections do not play any role in mixed layer deepening, which is unrealistic. Applying the parameterization only for low ice--ocean relative velocities improves model results, but introduces additional parameters that are not well constrained by observations.

  15. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  16. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed by Moncrieff and Liu (1999). As a whole, in attempting a statistical description of boundary-layer processes, the cold pool is essentially nothing other than an additional contribution to a TKE (turbulent kinetic energy) budget. Significance of trigger of convection by cold pool in context of convection parameterization must also be seen with much caution. Against a common misunderstanding, current convection parameterization is not designed to describe a trigger process of individual convection. In this respect, process studies on cold pool do not contribute to improvements of convection parameterization until a well-defined parameterization formulation for individual convection processes is developed. Even before then a question should also be posed whether such a development is necessary. Under a current mass-flux convection parameterization, a more important process to consider is re-evaporative cooling of detrained cloudy air, which may also be associated with downdraft, possibly further leading to a generation of a cold pool. Yano and Plant (2012) suggest, from a point of view of the convective-energy cycle, what follows would be far less important than the fact the re-evaporation induces a generation of convective kinetic energy (though it may initially be considered TKE). Both well-focused convective process studies as well as convection parameterization formulation would be much needed.

  17. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign

    NASA Astrophysics Data System (ADS)

    Avolio, E.; Federico, S.; Miglietta, M. M.; Lo Feudo, T.; Calidonna, C. R.; Sempreviva, A. M.

    2017-08-01

    The sensitivity of boundary layer variables to five (two non-local and three local) planetary boundary-layer (PBL) parameterization schemes, available in the Weather Research and Forecasting (WRF) mesoscale meteorological model, is evaluated in an experimental site in Calabria region (southern Italy), in an area characterized by a complex orography near the sea. Results of 1 km × 1 km grid spacing simulations are compared with the data collected during a measurement campaign in summer 2009, considering hourly model outputs. Measurements from several instruments are taken into account for the performance evaluation: near surface variables (2 m temperature and relative humidity, downward shortwave radiation, 10 m wind speed and direction) from a surface station and a meteorological mast; vertical wind profiles from Lidar and Sodar; also, the aerosol backscattering from a ceilometer to estimate the PBL height. Results covering the whole measurement campaign show a cold and moist bias near the surface, mostly during daytime, for all schemes, as well as an overestimation of the downward shortwave radiation and wind speed. Wind speed and direction are also verified at vertical levels above the surface, where the model uncertainties are, usually, smaller than at the surface. A general anticlockwise rotation of the simulated flow with height is found at all levels. The mixing height is overestimated by all schemes and a possible role of the simulated sensible heat fluxes for this mismatching is investigated. On a single-case basis, significantly better results are obtained when the atmospheric conditions near the measurement site are dominated by synoptic forcing rather than by local circulations. From this study, it follows that the two first order non-local schemes, ACM2 and YSU, are the schemes with the best performance in representing parameters near the surface and in the boundary layer during the analyzed campaign.

  18. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  19. Hot Air Balloon Experiments to Measure the Break-up of the Nocturnal Drainage Flow in Complex Terrain.

    NASA Astrophysics Data System (ADS)

    Berman, N. S.; Fernando, H. J. S.; Colomer, J.; Levy, M.; Zieren, L.

    1997-11-01

    In order to extend our understanding of the thermally driven atmospheric winds and their influence on pollutant transport, a hot air balloon experiment was conducted over a four day period in June, 1997 near Nogales, Arizona. The focus was on the early morning break-up of the stable down-slope and down-valley flow and the establishment of a convective boundary layer near the surface in the absence of synoptic winds. Temperature, elevation, position and particulate matter concentration were measured aloft and temperature gradient and wind velocity were measured at ground level. The wind velocity within the stable layer was generally less than 1.5 m/s. Just above the stable layer (about 300 meters above the valley) the wind shifted leading to an erosion of the stable layer from above. Surface heating after sunrise created a convective layer which rose from the ground until the stable layer was destroyed. Examples of temperature fluctuation measurements at various elevations during the establishment of the convective flow will be presented. Implications of results for turbulence parameterizations needed for numerical models of wind fields in complex terrain will be discussed.

  20. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  1. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE PAGES

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  2. Recent developments and assessment of a three-dimensional PBL parameterization for improved wind forecasting over complex terrain

    NASA Astrophysics Data System (ADS)

    Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.

    2017-12-01

    At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.

  3. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene

    PubMed Central

    Hubbard, William A.; White, E. R.; Dawson, Ben; Lodge, M. S.; Ishigami, Masa; Regan, B. C.

    2014-01-01

    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary. PMID:25242882

  4. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene.

    PubMed

    Shevitski, Brian; Mecklenburg, Matthew; Hubbard, William A; White, E R; Dawson, Ben; Lodge, M S; Ishigami, Masa; Regan, B C

    2013-01-15

    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.

  5. Applications of large-eddy simulation: Synthesis of neutral boundary layer models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohmstede, W.D.

    The object of this report is to describe progress made towards the application of large-eddy simulation (LES), in particular, to the study of the neutral boundary layer (NBL). The broad purpose of the study is to provide support to the LES project currently underway at LLNL. The specific purpose of this study is to lay the groundwork for the simulation of the SBL through the establishment and implementation of model criteria for the simulation of the NBL. The idealistic NBL is never observed in the atmosphere and therefore has little practical significance. However, it is of considerable theoretical interest formore » several reasons. The report discusses the concept of Rossby-number similarity theory as it applies to the NBL. A particular implementation of the concept is described. Then, the results from prior simulations of the NBL are summarized. Model design criteria for two versions of the Brost LES (BLES) model are discussed. The general guidelines for the development of Version 1 of the Brost model (BV1) were to implement the model with a minimum of modifications which would alter the design criteria as established by Brost. Two major modifications of BLES incorporated into BV1 pertain to the initialization/parameterization of the model and the generalization of the boundary conditions at the air/earth interface. 18 refs., 4 figs.« less

  6. Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Zhang, Feimin; Pu, Zhaoxia

    2017-04-01

    Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina (2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF (Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer (PBL) schemes, the Mellor-Yamada-Janjic (MYJ) and the Yonsei University (YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies (e.g., over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air-sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.

  7. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; hide

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMott, Paul J; Hill, Thomas CJ

    Measurements were sought to evaluate a hypotheses that sea-spray-sourced ice-nucleating particles (INPs) are of biological origin and represent a distinctly different INP population in comparison to long-range-transported desert or urban and regional land-sourced INP, and that the layering of marine within other aerosol layers feeding orographic storms over the mountains of California and the Western United States thereby leads to common and quantifiable scenarios that influence precipitation over the region. Aerosol collections on the National Oceanic and Atmospheric Administration (NOAA) research vessel (RV) Ronald H. Brown, for subsequent processing of INP immersion freezing activation temperature spectra and composition analyses, addedmore » a valuable measurement component to the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) and related CalWater2 (NOAA) studies for use in parameterizing and modeling the impacts of marine boundary layer and other aerosols on climate and radiation via aerosol indirect effects on mixed-phase clouds. Twenty-five nominally 24-hour collections were made and have been processed for immersion freezing INP number concentrations versus temperature in the mixed-phase cloud temperature regime from -10 to -27°C. The similarity of INP number concentrations compared to typical marine boundary layer values attributed to sea-spray aerosols was noted. Nevertheless, variability of INP concentrations of up to 50 times was noted at individual temperatures over the course of the study. A particular analysis possible with this data set is to examine INP budgets over oceans inside versus outside of atmospheric river conditions. These INP measurements supplemented multiple airborne INP measurements on the ARM Aerial Facility (AAF), and others on the ground during ACAPEX and CalWater2, to provide extensive spatial and temporal analyses of INP immersion freezing spectra during winter storm periods. Future analyses will use thermal sensitivity to examine INP compositions as organic versus inorganic in these marine boundary layer samples. Data set integration is occurring under funding from an Atmospheric System Research (ASR) proposal.« less

  9. Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

    1994-01-01

    The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be used to validate the model for vortex behavior under different atmospheric conditions. The fourth task will be to simulate the wake in a more realistic environment covering a wider area. This will involve grid nesting, since high resolution will be required in the wake region but a larger total domain will be used. During the first allocation year, most of the first task will be accomplished.

  10. Large-eddy simulation of subtropical cloud-topped boundary layers: 1. A forcing framework with closed surface energy balance

    NASA Astrophysics Data System (ADS)

    Tan, Zhihong; Schneider, Tapio; Teixeira, João.; Pressel, Kyle G.

    2016-12-01

    Large-eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large-scale processes need to be prescribed or represented parameterically in the limited-area LES domains. It is important that the representation of large-scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e.g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change.

  11. Development of a nonlocal convective mixing scheme with varying upward mixing rates for use in air quality and chemical transport models.

    PubMed

    Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana

    2008-06-01

    Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  12. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  13. Cloud-System Resolving Models: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncreiff, Mitch

    2008-01-01

    Cloud-system resolving models (CRM), which are based on the nonhydrostatic equations of motion and typically have a grid-spacing of about a kilometer, originated as cloud-process models in the 1970s. This paper reviews the status and prospects of CRMs across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; and the effects of boundary-layer and surface-processes on cloud systems. Since CRMs resolve organized convection, tropical waves and the large-scale circulation, there is the prospect for several advances in both basic knowledge of scale-interaction requisite to parameterizing mesoscale processes in climate models. In superparameterization, CRMs represent convection, explicitly replacing many of the assumptions necessary in contemporary parameterization. Global CRMs have been run on an experimental basis, giving prospect to a new generation of climate weather prediction in a decade, and climate models due course. CRMs play a major role in the retrieval of surface-rain and latent heating from satellite measurements. Finally, enormous wide dynamic ranges of CRM simulations present new challenges for model validation against observations.

  14. Application of the CERES Flux-by-Cloud Type Simulator to GCM Output

    NASA Technical Reports Server (NTRS)

    Eitzen, Zachary; Su, Wenying; Xu, Kuan-Man; Loeb, Norman G.; Sun, Moguo; Doelling, David R.; Bodas-Salcedo, Alejandro

    2016-01-01

    The CERES Flux By CloudType data product produces CERES top-of-atmosphere (TOA) fluxes by region and cloud type. Here, the cloud types are defined by cloud optical depth (t) and cloud top pressure (pc), with bins similar to those used by ISCCP (International Satellite Cloud Climatology Project). This data product has the potential to be a powerful tool for the evaluation of the clouds produced by climate models by helping to identify which physical parameterizations have problems (e.g., boundary-layer parameterizations, convective clouds, processes that affect surface albedo). Also, when the flux-by-cloud type and frequency of cloud types are simultaneously used to evaluate a model, the results can determine whether an unrealistically large or small occurrence of a given cloud type has an important radiative impact for a given region. A simulator of the flux-by-cloud type product has been applied to three-hourly data from the year 2008 from the UK Met Office HadGEM2-A model using the Langley Fu-Lour radiative transfer model to obtain TOA SW and LW fluxes.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boybeyi, Zafer

    The Department of Energy (DOE) awarded George Mason University (GMU) with a research project. This project started on June, 2009 and ended July 2014. Main objectives of this research project are; a) to assess the indirect and semi-direct aerosol effects on microphysical structure and radiative properties of Arctic clouds, b) to assess the impact of feedback between the aerosol-cloud interactions and atmospheric boundary layer (ABL) processes on the surface energy balance, c) to better understand and characterize the important unresolved microphysical processes, aerosol effects, and ABL processes and feedbacks, over meso-γ spatial (~1-2 km) and temporal scales (a few minutesmore » to days), and d) to investigate the scale dependency of microphysical parameterizations and its effect on simulations.« less

  16. Dynamically Consistent Parameterization of Mesoscale Eddies This work aims at parameterization of eddy effects for use in non-eddy-resolving ocean models and focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones.

    NASA Astrophysics Data System (ADS)

    Berloff, P. S.

    2016-12-01

    This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.

  17. Impact of Parameterization of Physical Processes on Simulation of Track and Intensity of Tropical Cyclone Nargis (2008) with WRF-NMM Model

    PubMed Central

    Pattanayak, Sujata; Mohanty, U. C.; Osuri, Krishna K.

    2012-01-01

    The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error. PMID:22701366

  18. Understanding the Impact of Ground Water Treatment and Evapotranspiration Parameterizations in the NCEP Climate Forecast System (CFS) on Warm Season Predictions

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Yang, R.

    2016-12-01

    Skillful short-term weather forecasts, which rely heavily on quality atmospheric initial conditions, have a fundamental limit of about two weeks owing to the chaotic nature of the atmosphere. Useful forecasts at sub-seasonal to seasonal time scales, on the other hand, require well-simulated large-scale atmospheric response to slowly varying lower boundary forcings from both the ocean and land surface. The critical importance of ocean has been recognized, where the ocean indices have been used in a variety of climate applications. In contrast, the impact of land surface anomalies, especially soil moisture and associated evaporation, has been proven notably difficult to demonstrate. The Noah Land Surface Model (LSM) is the land component of NCEP CFS version 2 (CFSv2) used for seasonal predictions. The Noah LSM originates from the Oregon State University (OSU) LSM. The evaporation control in the Noah LSM is based on the Penman-Monteith equation, which takes into account the solar radiation, relative humidity, air temperature, and soil moisture effects. The Noah LSM is configured with four soil layers with a fixed depth of 2 meters and free drainage at the bottom soil layer. This treatment assumes that the soil water table depth is well within the specified range, and also potentially misrepresents the soil moisture memory effects at seasonal time scales. To overcome the limitation, an unconfined aquifer is attached to the bottom of the soil to allow the water table to move freely up and down. In addition, in conjunction with the water table, an alternative Ball-Berry photosynthesis-based evaporation parameterization is examined to evaluate the impact from using a different evaporation control methodology. Focusing on the 2011 and 2012 intense summer droughts in the central US, seasonal ensemble forecast experiments with early May initial conditions are carried out for the two years using an enhanced version of CFSv2, where the atmospheric component of the CFSv2 is coupled to the Noah Multiple-Parameterization (Noah-MP) land model. The Noah-MP has different options for ground water and evaporation control parameterizations. The differences will be presented and results will be discussed.

  19. Atmospheric boundary layer characteristics based on the observations at the Climate Change Tower in Ny Alesund( Svalbard).

    NASA Astrophysics Data System (ADS)

    Schiavon, Mario; Mazzola, Mauro; Lupi, Angelo; Drofa, Oxana; Tampieri, Francesco; Pelliccioni, Armando; Choi, Taejin; Vitale, Vito; Viola, Angelo P.

    2017-04-01

    At high latitudes, the Atmospheric Boundary Layer ( ABL) is often characterized by extremely stable vertical stratification since the surface radiative cooling determines inversions in temperature profiles especially during the polar night over land, ice and snow surfaces. Improvements are required in the theoretical understanding of the turbulent behavior of the high-latitude ABL. The parameterizations of surface-atmosphere exchanges employed in numerical weather prediction and climate models have also to be tested in the Arctic area. Moreover, the boundary layer structure and dynamics influence the vertical distribution of aerosol. The main issue is related to the height of PBL: the question is whether some decoupling occurs between the surface layer and the atmosphere aloft when the PBL is shallow or the mechanical mixing due to the synoptic circulation provides an overall vertical homogeneity of the concentration of the aerosol irrespective of the stability conditions. In this aim, the work investigates the features of the high-latitude ABL with particular attention to its vertical structure, the relationships among the main turbulent statistics (in a similarity approach) and their variation with the ABL state. The used data refer to measurements collected since 2012 to 2016 by slow and fast response sensors deployed at the 34 m high Amundsen-Nobile Climate Change Tower (CCT) installed at Ny-Ålesund, Svalbard. Data from four conventional Young anemometers and Väisäla thermo-hygrometers at 2, 4.8, 10.3 and 33.4 m a.g.l., alternated by three lined up sonic anemometers at 3.7, 7.5 and 21 m a.g.l., are used in the analysis. The presented results highlight that the performance of the commonly adopted ABL similarity schemes (e.g. flux-gradient relationships and parameterizations for the stable ABL height) depends upon the ABL state, determined mainly by the wind speed and the shape of the profiles of second order moments (the two being related) . For neutral or stable stratification, strong wind and second order moments monotonically decreasing with height (traditional stable ABL), classical similarity schemes perform well also in the Arctic ABL. Instead, critical conditions, for which the classical similarity approach is not satisfactory, occur for low wind and profiles of second order moments deviating from the traditional case: e.g. upside-down ABL. Numerical experiments with the atmospheric model Bolam have been performed, for the whole period April-August 2013 in hindcast mode, on a domain covering the area of the observations, in order to assess the capability of an atmospheric numerical model to reproduce the observed vertical profiles in the PBL under different synoptic situations.

  20. Applying Geospatial Techniques to Investigate Boundary Layer Land-Atmosphere Interactions Involved in Tornadogensis

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Knupp, K. R.; Molthan, A.; Coleman, T.

    2017-12-01

    Northern Alabama is among the most tornado-prone regions in the United States. This region has a higher degree of spatial variability in both terrain and land cover than the more frequently studied North American Great Plains region due to its proximity to the southern Appalachian Mountains and Cumberland Plateau. More research is needed to understand North Alabama's high tornado frequency and how land surface heterogeneity influences tornadogenesis in the boundary layer. Several modeling and simulation studies stretching back to the 1970's have found that variations in the land surface induce tornadic-like flow near the surface, illustrating a need for further investigation. This presentation introduces research investigating the hypothesis that horizontal gradients in land surface roughness, normal to the direction of flow in the boundary layer, induce vertically oriented vorticity at the surface that can potentially aid in tornadogenesis. A novel approach was implemented to test this hypothesis using a GIS-based quadrant pattern analysis method. This method was developed to quantify spatial relationships and patterns between horizontal variations in land surface roughness and locations of tornadogenesis. Land surface roughness was modeled using the Noah land surface model parameterization scheme which, was applied to MODIS 500 m and Landsat 30 m data in order to compare the relationship between tornadogenesis locations and roughness gradients at different spatial scales. This analysis found a statistical relationship between areas of higher roughness located normal to flow surrounding tornadogenesis locations that supports the tested hypothesis. In this presentation, the innovative use of satellite remote sensing data and GIS technologies to address interactions between the land and atmosphere will be highlighted.

  1. Near-bottom energy cascade from subinertial flows to ocean mixing in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, Z.; Zhao, Y.; Wang, W.; Li, J.; Xu, J.

    2013-12-01

    The motions with different scales in the bottom boundary layer are potentially important in controlling the water mass transportation. Many physical processes are involved in transferring energy from mesoscale to small-scale motions. Recent studies suggest that subinertial flows should be taken into account in the parameterization of deep-ocean mixing besides topography and tidal forcing. Here, we present the current velocity data obtained from 2 moored downward-looking ADCPs (Acoustic Doppler Current Profiler) and 1 RCM (Recording Current Meter) moored near the bottom boundary layer at a water depth of about 2000 m in the northeastern South China Sea from 2012 to 2013. Specifically, they include an ADCP 1200 kHz deployed at 30 m, an ADCP 300 kHz deployed at 110 m, and a RCM deployed at 40 m above the seafloor. Subinertial flows were calculated from the moored current velocity data by low-pass filtering with a cutoff frequency of 0.3 cycles per day (the local inertial period is about 35 hours). The horizontal subinertial flows were quite strong with average values of 2-5 cm/s. The strong downward vertical velocity with average values of 1-2 cm/s was observed during times of weak subinertial flows. The vertical propagation during both the times of weak and strong subinertial flows can also be shown by vector spectra of horizontal near-inertial current velocity. Turbulent kinetic energy production rate estimated indirectly with the variances of ADCP velocities will be compared with the subinertial kinetic energy to detect the processes of energy cascade from mesoscale motions to small-scale oscillations. The results presented in this study can provide an observational evidence for such energy cascade near the bottom boundary layer in the deep South China Sea.

  2. Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction

    NASA Astrophysics Data System (ADS)

    Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).

  3. The Use of MERRA-2 Near Surface Meteorology to Understand the Behavior of Planetary Boundary Layer heights Derived from Wind Profiler Data Over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Molod, A.; Salmun, H.; Collow, A.

    2017-12-01

    The atmospheric general circulation model (GCM) that underlies the MERRA-2 reanalysis includesa suite of physical parameterizations that describe the processes that occur in theplanetary boundary layer (PBL). The data assimilation system assures that the atmosphericstate variables used as input to these parameterizations are constrained to the bestfit to all of the available observations. Many studies, however, have shown that the GCM-based estimates of MERRA-2 PBL heights are biased high, and so are not reliable forapplication related to constituent transport or the carbon cycle.A new 20-year record of PBL heights was derived from Wind Profiler (WP) backscatter data measuredat a wide network of stations throughout the US Great Plains and has been validated against independent estimates. The behavior of these PBL heights shows geographical and temporalvariations that are difficult to attribute to particular physical processes withoutadditional information that are not part of the observational record.In the present study, we use information on physical processes from MERRA-2 to understand the behavior of the WP derived PBL heights. The behavior of the annual cycle of both MERRA-2 and WP PBL heights shows three classes of behavior: (i) canonical, where the annual cyclefollows the annual cycle of the sun, (ii) delayed, where the PBL height reaches its annual maximum after the annual maximum of the solar insolation, and (iii) double maxima, wherethe PBL height begins to rise with the solar insolation but falls sometimes during the the summer and then rises again. Although the magnitude of these types of variations isdescribed by the WP PBL record, the explanation for these behaviors and the relationshipto local precipitation, temperature, hydrology and sensible and latent heat fluxes is articulated using information from MERRA-2.

  4. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.

  5. Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment

    NASA Astrophysics Data System (ADS)

    Salvador, Nadir; Reis, Neyval Costa; Santos, Jane Meri; Albuquerque, Taciana Toledo de Almeida; Loriato, Ayres Geraldo; Delbarre, Hervé; Augustin, Patrick; Sokolov, Anton; Moreira, Davidson Martins

    2016-12-01

    Three atmospheric boundary layer (ABL) schemes and two land surface models that are used in the Weather Research and Forecasting (WRF) model, version 3.4.1, were evaluated with numerical simulations by using data from the north coast of France (Dunkerque). The ABL schemes YSU (Yonsei University), ACM2 (Asymmetric Convective Model version 2), and MYJ (Mellor-Yamada-Janjic) were combined with two land surface models, Noah and RUC (Rapid Update Cycle), in order to determine the performances under sea-breeze conditions. Particular attention is given in the determination of the thermal internal boundary layer (TIBL), which is very important in air pollution scenarios. The other physics parameterizations used in the model were consistent for all simulations. The predictions of the sea-breeze dynamics output from the WRF model were compared with observations taken from sonic detection and ranging, light detection and ranging systems and a meteorological surface station to verify that the model had reasonable accuracy in predicting the behavior of local circulations. The temporal comparisons of the vertical and horizontal wind speeds and wind directions predicted by the WRF model showed that all runs detected the passage of the sea-breeze front. However, except for the combination of MYJ and Noah, all runs had a time delay compared with the frontal passage measured by the instruments. The proposed study shows that the synoptic wind attenuated the intensity and penetration of the sea breeze. This provided changes in the vertical mixing in a short period of time and on soil temperature that could not be detected by the WRF model simulations with the computational grid used. Additionally, among the tested schemes, the combination of the localclosure MYJ scheme with the land surface Noah scheme was able to produce the most accurate ABL height compared with observations, and it was also able to capture the TIBL.

  6. Assessment of the turbulence parameterization schemes for the Martian mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Temel, Orkun; Karatekin, Ozgur; Van Beeck, Jeroen

    2016-07-01

    Turbulent transport within the Martian atmospheric boundary layer (ABL) is one of the most important physical processes in the Martian atmosphere due to the very thin structure of Martian atmosphere and super-adiabatic conditions during the diurnal cycle [1]. The realistic modeling of turbulent fluxes within the Martian ABL has a crucial effect on the many physical phenomena including dust devils [2], methane dispersion [3] and nocturnal jets [4]. Moreover, the surface heat and mass fluxes, which are related with the mass transport within the sub-surface of Mars, are being computed by the turbulence parameterization schemes. Therefore, in addition to the possible applications within the Martian boundary layer, parameterization of turbulence has an important effect on the biological research on Mars including the investigation of water cycle or sub-surface modeling. In terms of the turbulence modeling approaches being employed for the Martian ABL, the "planetary boundary layer (PBL) schemes" have been applied not only for the global circulation modeling but also for the mesoscale simulations [5]. The PBL schemes being used for Mars are the variants of the PBL schemes which had been developed for the Earth and these schemes are either based on the empirical determination of turbulent fluxes [6] or based on solving a one dimensional turbulent kinetic energy equation [7]. Even though, the Large Eddy Simulation techniques had also been applied with the regional models for Mars, it must be noted that these advanced models also use the features of these traditional PBL schemes for sub-grid modeling [8]. Therefore, assessment of these PBL schemes is vital for a better understanding the atmospheric processes of Mars. In this framework, this present study is devoted to the validation of different turbulence modeling approaches for the Martian ABL in comparison to Viking Lander [9] and MSL [10] datasets. The GCM/Mesoscale code being used is the PlanetWRF, the extended version of WRF model for the extraterrestrial atmospheres [11]. Based on the measurements, the performances of different PBL schemes have been evaluated and some improvements have been proposed. [1] Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., & Millour, E. (2013). A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research: Planets, 118(7), 1468-1487. [2] Balme, M., & Greeley, R. (2006). Dust devils on Earth and Mars. Reviews of Geophysics, 44(3). [3] Olsen, K. S., Cloutis, E., & Strong, K. (2012). Small-scale methane dispersion modelling for possible plume sources on the surface of Mars. Geophysical Research Letters, 39(19). [4] Savijärvi, H., & Siili, T. (1993). The Martian slope winds and the nocturnal PBL jet. Journal of the atmospheric sciences, 50(1), 77-88. [5] Fenton, L. K., Toigo, A. D., & Richardson, M. I. (2005). Aeolian processes in Proctor crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research: Planets, 110(E6). [6] Hong, Song-You, Yign Noh, Jimy Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. [7] Janjic, Zavisa I., 1994: The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. [8] Michaels, T. I., & Rafkin, S. C. (2004). Large-eddy simulation of atmospheric convection on Mars. Quarterly Journal of the Royal Meteorological Society, 130(599), 1251-1274. [9] Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., & Tillman, J. E. (1977). Meteorological results from the surface of Mars: Viking 1 and 2. Journal of Geophysical Research, 82(28), 4559-4574. [10] Martínez, G. et Al. (2015). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus. [11] Richardson, M. I., Toigo, A. D., & Newman, C. E. (2007). PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. Journal of Geophysical Research: Planets, 112(E9).

  7. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE PAGES

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; ...

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore » observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO 2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.« less

  8. Joint inversion of seismic refraction and resistivity data using layered models - applications to hydrogeology

    NASA Astrophysics Data System (ADS)

    Juhojuntti, N. G.; Kamm, J.

    2010-12-01

    We present a layered-model approach to joint inversion of shallow seismic refraction and resistivity (DC) data, which we believe is a seldom tested method of addressing the problem. This method has been developed as we believe that for shallow sedimentary environments (roughly <100 m depth) a model with a few layers and sharp layer boundaries better represents the subsurface than a smooth minimum-structure (grid) model. Due to the strong assumption our model parameterization implies on the subsurface, only a low number of well resolved model parameters has to be estimated, and provided that this assumptions holds our method can also be applied to other environments. We are using a least-squares inversion, with lateral smoothness constraints, allowing lateral variations in the seismic velocity and the resistivity but no vertical variations. One exception is a positive gradient in the seismic velocity in the uppermost layer in order to get diving rays (the refractions in the deeper layers are modeled as head waves). We assume no connection between seismic velocity and resistivity, and these parameters are allowed to vary individually within the layers. The layer boundaries are, however, common for both parameters. During the inversion lateral smoothing can be applied to the layer boundaries as well as to the seismic velocity and the resistivity. The number of layers is specified before the inversion, and typically we use models with three layers. Depending on the type of environment it is possible to apply smoothing either to the depth of the layer boundaries or to the thickness of the layers, although normally the former is used for shallow sedimentary environments. The smoothing parameters can be chosen independently for each layer. For the DC data we use a finite-difference algorithm to perform the forward modeling and to calculate the Jacobian matrix, while for the seismic data the corresponding entities are retrieved via ray-tracing, using components from the RAYINVR package. The modular layout of the code makes it straightforward to include other types of geophysical data, i.e. gravity. The code has been tested using synthetic examples with fairly simple 2D geometries, mainly for checking the validity of the calculations. The inversion generally converges towards the correct solution, although there could be stability problems if the starting model is too erroneous. We have also applied the code to field data from seismic refraction and multi-electrode resistivity measurements at typical sand-gravel groundwater reservoirs. The tests are promising, as the calculated depths agree fairly well with information from drilling and the velocity and resistivity values appear reasonable. Current work includes better regularization of the inversion as well as defining individual weight factors for the different datasets, as the present algorithm tends to constrain the depths mainly by using the seismic data. More complex synthetic examples will also be tested, including models addressing the seismic hidden-layer problem.

  9. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Modulation of the diurnal variations in the convective activities associated with day-by-day changes of surface flux and soil moisture was observed in the beginning of the monsoon season on the central Tibetan plateau (Sugimoto et al., 2008) which indicates the importance of land-atmosphere interactions in determining convective activities over the Tibetan plateau. Detailed interaction processes need to be studied by experiments designed to evaluate a set of hypotheses on mechanisms and linkages of these interactions. A possible function of vegetation to increase precipitation in cases of Tibetan High type was suggested by Yamada and Uyeda (2006). Use of satellite derived plateau scale soil moisture (Wen et al., 2003) enables the verification of these hypotheses (e.g. Trier et al. 2004). To evaluate these feedbacks, the mesoscale WRF model will be used because several numerical experiments are being conducted to improve the soil physical parameterization in the Noah land surface scheme in WRF so that the extreme conditions on the Tibetan plateau could be adequately represented (Van der Velde et al., 2009) such that the impacts on the structure of the atmospheric boundary layer can be assessed and improved. The Tibetan Observational Research Platform (TORP) operated by the Institute of Tibetan Plateau (Ma et al., 2008) will be fully utilized to study the characteristics of the plateau climate and different aspects of the WRF model will be evaluated using this extensive observation platform (e.g. Su et al., 2012). Recently, advanced studies on energy budget have been done by combining field and satellite measurements over the Tibetan Plateau (e.g. Ma et al., 2005). Such studies, however, were based on a single satellite observation and for a few days over an annual cycle, which are insufficient to reveal the relation between the land surface energy budget and the Asian monsoon over the Tibetan plateau. Time series analysis of satellite observations will provide the needed temporal and spatial coupling and means for validation of mesoscale model simulations (Zhong et al., 2009, 2011). When these time series are integrated into energy balance analyses methods (Su, 2002, 2005) with reanalysis data, plateau scale diurnal radiative and turbulence fluxes can be generated (Oku et al., 2005; Su et al., 2010) for the study of the boundary layer atmospheric structures at plateau scale. As such regional land-atmosphere feedbacks and atmospheric boundary layer structures can be studied. The quantification of the multi-scale atmospheric boundary layer and land surface processes over the heterogeneous underlying surface of the Tibetan Plateau is a challenging problem that remains unsettled despite many years of efforts. Using field observation, truth investigation, land surface process parameterization and meso-scale simulation, the dynamical and thermal uniform function of the atmospheric boundary layer and its effect to the atmospheric boundary layer will be analyzed in this research. Results The different characteristics of the Boundary layer with Asia monsoon season exchange over TP The height of atmospheric boundary layer was higher before monsoon season than it in summer. It was around 3-4 km above the ground in spring, while it was 1-2 km during monsoon season. It due to sensible heat flux was stronger in spring than it in summer. Using wavelet analysis method, we decomposed the wind include horizontal and vertical velocity from radiosounding observational data. The reason of high boundary layer height was disclosed. Compared to the observation, the output of model was underestimation during spring, while it was reasonable in summer monsoon. The effect of the Asian Monsoon to the precipitation on the TP Numerical simulation of climate on the TP was implemented for the whole year of 2008 using WRF-Noah model. The output of the WRF model is compared to TRMM data set for precipitation and ERA-interim land product for soil moisture. Modeled precipitation was greater than TRMM observes except for southwest of the TP. The modeled results are good agreement with TRMM data. The mean bias is around 22 mm/month and the standard deviation is around 30. More detailed statistics analysis will be done in the near future. The precipitation of convective increased from Jan. to June and arrives to the maximum of 36 percent in July, then decreases. It was obviously that the convective activity was strong during monsoon season. The monthly total precipitation extents from southeast to northwest with summer monsoon arrived at TP and it is largest in July. Figure 10 shows that there is positive absolute verticity at 500 mb, but it is response on that it exist a negative potential verticity at 300 mb on the TP. Acknowledgments We would like to thank Prof. Su for the valuable advice and support. We would also like to thank all staff of water resources department and my colleague, Xuelong Chen, Donghai Zheng, Yijian Zeng, Shaoning Lv, Cunbo Han et al. for their encouragement and guidance. I appreciate Dr. Joris for his technical support on workstation. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91337212, 41175008), Cold and Arid Regions Environmental and Engineering Research Institute Youth Science Tech-nology Service Network initiative (STS), the China Exchange Project (Grant No. 13CDP007), and the National Natural Science Foundation of China (Grant Nos. 40825015 and 40675012). The authors thank all colleagues and engineers who contributed to the field observations at the NPCE-BJ station.

  10. Evaluation of NASA GISS post-CMIP5 single column model simulated clouds and precipitation using ARM Southern Great Plains observations

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dong, Xiquan; Kennedy, Aaron; Xi, Baike; Li, Zhanqing

    2017-03-01

    The planetary boundary layer turbulence and moist convection parameterizations have been modified recently in the NASA Goddard Institute for Space Studies (GISS) Model E2 atmospheric general circulation model (GCM; post-CMIP5, hereafter P5). In this study, single column model (SCM P5) simulated cloud fractions (CFs), cloud liquid water paths (LWPs) and precipitation were compared with Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) groundbased observations made during the period 2002-08. CMIP5 SCM simulations and GCM outputs over the ARM SGP region were also used in the comparison to identify whether the causes of cloud and precipitation biases resulted from either the physical parameterization or the dynamic scheme. The comparison showed that the CMIP5 SCM has difficulties in simulating the vertical structure and seasonal variation of low-level clouds. The new scheme implemented in the turbulence parameterization led to significantly improved cloud simulations in P5. It was found that the SCM is sensitive to the relaxation time scale. When the relaxation time increased from 3 to 24 h, SCM P5-simulated CFs and LWPs showed a moderate increase (10%-20%) but precipitation increased significantly (56%), which agreed better with observations despite the less accurate atmospheric state. Annual averages among the GCM and SCM simulations were almost the same, but their respective seasonal variations were out of phase. This suggests that the same physical cloud parameterization can generate similar statistical results over a long time period, but different dynamics drive the differences in seasonal variations. This study can potentially provide guidance for the further development of the GISS model.

  11. Effects of downscaled high-resolution meteorological data on the PSCF identification of emission sources

    DOE PAGES

    Cheng, Meng -Dawn; Kabela, Erik D.

    2016-04-30

    The Potential Source Contribution Function (PSCF) model has been successfully used for identifying regions of emission source at a long distance in this study, the PSCF model relies on backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In this study, we investigated the impacts of grid resolution and Planetary Boundary Layer (PBL) parameterization (e.g., turbulent transport of pollutants) on the PSCF analysis. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YUS) parameterization schemes were selected to model the turbulent transport in the PBL within the Weather Research and Forecasting (WRF version 3.6) model. Two separate domain grid sizesmore » (83 and 27 km) were chosen in the WRF downscaling in generating the wind data for driving the HYSPLIT calculation. The effects of grid size and PBL parameterization are important in incorporating the influ- ence of regional and local meteorological processes such as jet streaks, blocking patterns, Rossby waves, and terrain-induced convection on the transport of pollutants by a wind trajectory. We found high resolution PSCF did discover and locate source areas more precisely than that with lower resolution meteorological inputs. The lack of anticipated improvement could also be because a PBL scheme chosen to produce the WRF data was only a local parameterization and unable to faithfully duplicate the real atmosphere on a global scale. The MYJ scheme was able to replicate PSCF source identification by those using the Reanalysis and discover additional source areas that was not identified by the Reanalysis data. In conclusion, a potential benefit for using high-resolution wind data in the PSCF modeling is that it could discover new source location in addition to those identified by using the Reanalysis data input.« less

  12. Effect of roughness formulation on the performance of a coupled wave, hydrodynamic, and sediment transport model

    USGS Publications Warehouse

    Ganju, Neil K.; Sherwood, Christopher R.

    2010-01-01

    A variety of algorithms are available for parameterizing the hydrodynamic bottom roughness associated with grain size, saltation, bedforms, and wave–current interaction in coastal ocean models. These parameterizations give rise to spatially and temporally variable bottom-drag coefficients that ostensibly provide better representations of physical processes than uniform and constant coefficients. However, few studies have been performed to determine whether improved representation of these variable bottom roughness components translates into measurable improvements in model skill. We test the hypothesis that improved representation of variable bottom roughness improves performance with respect to near-bed circulation, bottom stresses, or turbulence dissipation. The inner shelf south of Martha’s Vineyard, Massachusetts, is the site of sorted grain-size features which exhibit sharp alongshore variations in grain size and ripple geometry over gentle bathymetric relief; this area provides a suitable testing ground for roughness parameterizations. We first establish the skill of a nested regional model for currents, waves, stresses, and turbulent quantities using a uniform and constant roughness; we then gauge model skill with various parameterization of roughness, which account for the influence of the wave-boundary layer, grain size, saltation, and rippled bedforms. We find that commonly used representations of ripple-induced roughness, when combined with a wave–current interaction routine, do not significantly improve skill for circulation, and significantly decrease skill with respect to stresses and turbulence dissipation. Ripple orientation with respect to dominant currents and ripple shape may be responsible for complicating a straightforward estimate of the roughness contribution from ripples. In addition, sediment-induced stratification may be responsible for lower stresses than predicted by the wave–current interaction model.

  13. Wind-tunnel experiments of scalar transport in aligned and staggered wind farms

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Markfort, C. D.; Porté-Agel, F.

    2012-04-01

    Wind energy is the fastest growing renewable energy worldwide, and it is expected that many more large-scale wind farms will be built and will cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer, wind farms may affect the exchange/transport of momentum, heat and moisture between the atmosphere and land surface. To ensure the long-term sustainability of wind energy, it is important to understand the influence of large-scale wind farms on land-atmosphere interaction. Knowledge of this impact will also be useful to improve parameterizations of wind farms in numerical prediction tools, such as large-scale weather models and large-eddy simulation. Here, we present wind-tunnel measurements of the surface scalar (heat) flux from model wind farms, consisting of more than 10 rows of wind turbines, in a turbulent boundary layer with a surface heat source. Spatially distributed surface heat flux was obtained in idealized aligned and staggered wind farm layouts, having the same turbine distribution density. Measurements, using surface-mounted heat flux sensors, were taken at the 11th out of 12 rows of wind turbines, where the mean flow achieves a quasi-equilibrium state. In the aligned farm, there exist two distinct regions of increased and decreased surface heat flux on either side of turbine columns. The regions are correlated with coherent wake rotation in the turbine-array. On the upwelling side there is decreased flux, while on the downwelling side cool air moves towards the surface causing increased flux. For the staggered farm, the surface heat flux exhibits a relatively uniform distribution and an overall reduction with respect to the boundary layer flow, except in the vicinity of the turbine tower. This observation is also supported by near-surface temperature and turbulent heat flux measured using a customized x-wire/cold-wire. The overall surface heat flux, relative to that of the boundary layer flow without wind turbines, is reduced by approximately 4% in the staggered wind farm and remains nearly the same in the aligned wind farm.

  14. The HD(CP)2 Observational Prototype Experiment (HOPE) - an overview

    NASA Astrophysics Data System (ADS)

    Macke, Andreas; Seifert, Patric; Baars, Holger; Barthlott, Christian; Beekmans, Christoph; Behrendt, Andreas; Bohn, Birger; Brueck, Matthias; Bühl, Johannes; Crewell, Susanne; Damian, Thomas; Deneke, Hartwig; Düsing, Sebastian; Foth, Andreas; Di Girolamo, Paolo; Hammann, Eva; Heinze, Rieke; Hirsikko, Anne; Kalisch, John; Kalthoff, Norbert; Kinne, Stefan; Kohler, Martin; Löhnert, Ulrich; Lakshmi Madhavan, Bomidi; Maurer, Vera; Muppa, Shravan Kumar; Schween, Jan; Serikov, Ilya; Siebert, Holger; Simmer, Clemens; Späth, Florian; Steinke, Sandra; Träumner, Katja; Trömel, Silke; Wehner, Birgit; Wieser, Andreas; Wulfmeyer, Volker; Xie, Xinxin

    2017-04-01

    The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface-atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10 × 10 × 10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal. First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Hannah C.; Houze, Robert A.

    To equitably compare the spatial pattern of ice microphysical processes produced by three microphysical parameterizations with each other, observations, and theory, simulations of tropical oceanic mesoscale convective systems (MCSs) in the Weather Research and Forecasting (WRF) model were forced to develop the same mesoscale circulations as observations by assimilating radial velocity data from a Doppler radar. The same general layering of microphysical processes was found in observations and simulations with deposition anywhere above the 0°C level, aggregation at and above the 0°C level, melting at and below the 0°C level, and riming near the 0°C level. Thus, this study ismore » consistent with the layered ice microphysical pattern portrayed in previous conceptual models and indicated by dual-polarization radar data. Spatial variability of riming in the simulations suggests that riming in the midlevel inflow is related to convective-scale vertical velocity perturbations. Finally, this study sheds light on limitations of current generally available bulk microphysical parameterizations. In each parameterization, the layers in which aggregation and riming took place were generally too thick and the frequency of riming was generally too high compared to the observations and theory. Additionally, none of the parameterizations produced similar details in every microphysical spatial pattern. Discrepancies in the patterns of microphysical processes between parameterizations likely factor into creating substantial differences in model reflectivity patterns. It is concluded that improved parameterizations of ice-phase microphysics will be essential to obtain reliable, consistent model simulations of tropical oceanic MCSs.« less

  16. Multi-Annual Data Products on Turbulent Heat Fluxes at the Local and Continental Scale Using AATSR and FY-2 Data

    NASA Astrophysics Data System (ADS)

    Menenti, M.; Ghafarian, H.; Tang, B.; Faivre, R.; Colin, J.; Jia, L.; Roupios, L.

    2013-01-01

    This paper summarizes the results of studies carried in the framework of the Dragon 2 Program - Project 5322 Key Eco-Hydrological Parameters Retrieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region. The investigations were focused on monitoring the fluxes of energy and water at the land-atmosphere interface across a range of spatial scales, using multi-spectral radiometric data collected by space-borne imaging radiometers. At the local scale a new approach to parameterize heat and vapour fluxes was developed and applied using Computational Fluid Dynamics to describe state and dynamics of the boundary layer over the heterogeneous and 3D structured land surface. An airborne scanning LIDAR was used to capture in detail surface geometry. Over the large area of the Qinghai-Tibet Plateau a land-atmospheric model was used to characterize the atmospheric Planetary Boundary Layer. The effect of land surface heterogeneity and structure on the exchange of heat and water was captured using the bi-angular observations of brightness temperature provided by the AATSR imaging radiometer. The heat and water flux densities were calculated hourly with Feng-Yun C, D and E VISSR data over the Qinghai-Tibet Plateau and the headwaters of main rivers around it.

  17. Turbulent transport of large particles in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Richter, D. H.; Chamecki, M.

    2017-12-01

    To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.

  18. Improved observations of turbulence dissipation rates from wind profiling radars

    DOE PAGES

    McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.

    2017-07-20

    Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less

  19. Improved observations of turbulence dissipation rates from wind profiling radars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.

    Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less

  20. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, R.

    2016-01-01

    The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiativemore » cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.« less

  1. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of absorption and dispersion and a stochastic model is constructed for ground-based acoustic signals in mountain environments.

  2. Modeling the CAPTEX Vertical Tracer Concentration Profiles.

    NASA Astrophysics Data System (ADS)

    Draxler, Roland R.; Stunder, Barbara J. B.

    1988-05-01

    Perfluorocarbon tracer concentration profiles measured by aircraft 600-900 km downwind of the release locations during CAPTEX are discussed and compared with some model results. In general, the concentrations decreased with height in the upper half of the boundary layer where the aircraft measurements were made. The results of a model sensitivity study suggested that the shape of the profile was primarily due to winds increasing with height and relative position of the sampling with respect to the upwind and downwind edge of the plume. Further modeling studies showed that relatively simple vertical mixing parameterizations could account for the complex vertical plume structure when the model had sufficient vertical resolution. In general, the model performed better with slower winds and corresponding longer transport times.

  3. Wind shear and turbulence around airports

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.; Williamson, G. G.

    1976-01-01

    A two part study was conducted to determine the feasibility of predicting the conditions under which wind/turbulence environments hazardous to aviation operations exist. The computer model used to solve the velocity temperature, and turbulence distributions in the atmospheric boundary layer is described, and the results of a parameteric analysis to determine the expected range of wind shear and turbulence to be encountered in the vicinity of airports are given. The second part describes the delineation of an ensemble of aircraft accidents in which low level wind shear and/or turbulence appeared to be causative factors. This set of accidents, encompassing a wide range of meteorological conditions, should prove useful in developing techniques for reconstructing hazardous wind environments for aircraft safety investigation purposes.

  4. Eddy Fluxes and Sensitivity of the Water Cycle to Spatial Resolution in Idealized Regional Aquaplanet Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.

    2014-02-28

    A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing thismore » sensitivity by representing the unresolved eddies by their marginally resolved counterparts.« less

  5. A second-order Budkyo-type parameterization of landsurface hydrology

    NASA Technical Reports Server (NTRS)

    Andreou, S. A.; Eagleson, P. S.

    1982-01-01

    A simple, second order parameterization of the water fluxes at a land surface for use as the appropriate boundary condition in general circulation models of the global atmosphere was developed. The derived parameterization incorporates the high nonlinearities in the relationship between the near surface soil moisture and the evaporation, runoff and percolation fluxes. Based on the one dimensional statistical dynamic derivation of the annual water balance, it makes the transition to short term prediction of the moisture fluxes, through a Taylor expansion around the average annual soil moisture. A comparison of the suggested parameterization is made with other existing techniques and available measurements. A thermodynamic coupling is applied in order to obtain estimations of the surface ground temperature.

  6. A Basin-Wide Examination of the Arctic Ocean's Double-Diffusive Staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N.; Timmermans, M. L.; Carpenter, J. R.; Toole, J. M.

    2016-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure above the Atlantic Water Layer consisting of multiple mixed layers of order 1-m in height separated by sharp interfaces. This double-diffusive staircase structure is characterized across the entire Arctic Ocean through a detailed analysis of Ice-Tethered Profiler measurements acquired between 2004 and 2013. Staircase properties (mixed layer thicknesses and temperature-salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio for 50-m spanning the staircase stratification. It is shown that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (on the Eurasian side) and higher density ratio (on the Canadian side). We find that the diffusive staircase in the Eurasian Basin is characterized by fewer, thinner mixed layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin staircase mixed layers. Using a double-diffusive 4/3 flux law parameterization, the distribution of vertical heat fluxes through the staircase is estimated across the Arctic; it is found that heat fluxes in the Eurasian Basin [O(1) W/m^2] are generally an order of magnitude larger than those in the Canadian Basin [O(0.1) W/m^2].

  7. Shape optimization of three-dimensional stamped and solid automotive components

    NASA Technical Reports Server (NTRS)

    Botkin, M. E.; Yang, R.-J.; Bennett, J. A.

    1987-01-01

    The shape optimization of realistic, 3-D automotive components is discussed. The integration of the major parts of the total process: modeling, mesh generation, finite element and sensitivity analysis, and optimization are stressed. Stamped components and solid components are treated separately. For stamped parts a highly automated capability was developed. The problem description is based upon a parameterized boundary design element concept for the definition of the geometry. Automatic triangulation and adaptive mesh refinement are used to provide an automated analysis capability which requires only boundary data and takes into account sensitivity of the solution accuracy to boundary shape. For solid components a general extension of the 2-D boundary design element concept has not been achieved. In this case, the parameterized surface shape is provided using a generic modeling concept based upon isoparametric mapping patches which also serves as the mesh generator. Emphasis is placed upon the coupling of optimization with a commercially available finite element program. To do this it is necessary to modularize the program architecture and obtain shape design sensitivities using the material derivative approach so that only boundary solution data is needed.

  8. Sensitivity of the mesosphere to the Lorenz energy cycle of the troposphere

    NASA Astrophysics Data System (ADS)

    Becker, Erich

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability in the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. In particular, a fixed GW source at a single level in the troposphere is often assumed. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs tends to vanish, the main contribution to the EPF divergence at high latitudes of the MLT is due to midand high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of a mechanistic GCM with high spatial resolution and a sophisticated parameterization of turbulence. This model explicitly simulates the wave drag of the MLT that results from the dynamical GW sources in the troposphere. The Smagorinsky-type horizontal and vertical diffusion coefficients are scaled by the Richardson criterion such that no sponge layer is required for the GWs to dissipate in the MLT. A sensitivity experiment shows that a reduced static stability in the lower troposphere, which may be associated with climate change, leads to a stronger Lorenz energy cycle. The intensification of the tropospheric heat engine is accompanied by enhanced GW acitivity in the upper troposphere at middle latitudes. These changes induce the following remote effects in the summer MLT: downshift of the residual circulation, as well as stronger dissipation, lower temperatures, and reduced easterlies below the mesopause. The simulated sensitivity is consistent with enhanced turbulent diffusion at lower altitudes resulting from stronger GW amplitudes.

  9. Hindcasting the Madden‐Julian Oscillation With a New Parameterization of Surface Heat Fluxes

    PubMed Central

    Wang, Jingfeng; Lin, Wenshi

    2017-01-01

    Abstract The recently developed maximum entropy production (MEP) model, an alternative parameterization of surface heat fluxes, is incorporated into the Weather Research and Forecasting (WRF) model. A pair of WRF cloud‐resolving experiments (5 km grids) using the bulk transfer model (WRF default) and the MEP model of surface heat fluxes are performed to hindcast the October Madden‐Julian oscillation (MJO) event observed during the 2011 Dynamics of the MJO (DYNAMO) field campaign. The simulated surface latent and sensible heat fluxes in the MEP and bulk transfer model runs are in general consistent with in situ observations from two research vessels. Compared to the bulk transfer model, the convection envelope is strengthened in the MEP run and shows a more coherent propagation over the Maritime Continent. The simulated precipitable water in the MEP run is in closer agreement with the observations. Precipitation in the MEP run is enhanced during the active phase of the MJO with significantly reduced regional dry and wet biases. Large‐scale ocean evaporation is stronger in the MEP run leading to stronger boundary layer moistening to the east of the convection center, which facilitates the eastward propagation of the MJO. PMID:29399269

  10. Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2014-01-01

    The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.

  11. Anatomical parameterization for volumetric meshing of the liver

    NASA Astrophysics Data System (ADS)

    Vera, Sergio; González Ballester, Miguel A.; Gil, Debora

    2014-03-01

    A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient's liver, and allows comparing livers from several patients in a common framework of reference.

  12. Modeling particle nucleation and growth over northern California during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Lupascu, A.; Easter, R.; Zaveri, R.; Shrivastava, M.; Pekour, M.; Tomlinson, J.; Yang, Q.; Matsui, H.; Hodzic, A.; Zhang, Q.; Fast, J. D.

    2015-11-01

    Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4, while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapor parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates are predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary-layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10-40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. We found that newly formed particles could explain up to 20-30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ~ 36 %.

  13. Parameterization of eddy sensible heat transports in a zonally averaged dynamic model of the atmosphere

    NASA Technical Reports Server (NTRS)

    Genthon, Christophe; Le Treut, Herve; Sadourny, Robert; Jouzel, Jean

    1990-01-01

    A Charney-Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a zonally averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a zonally averaged version of a general circulation model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same zonally averaged boundary conditions in both models. The Charney-Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear appoximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled zonal-mean climate and the parameterized meridional eddy transport is identified.

  14. Four dimensional data assimilation (FDDA) impacts on WRF performance in simulating inversion layer structure and distributions of CMAQ-simulated winter ozone concentrations in Uintah Basin

    NASA Astrophysics Data System (ADS)

    Tran, Trang; Tran, Huy; Mansfield, Marc; Lyman, Seth; Crosman, Erik

    2018-03-01

    Four-dimensional data assimilation (FDDA) was applied in WRF-CMAQ model sensitivity tests to study the impact of observational and analysis nudging on model performance in simulating inversion layers and O3 concentration distributions within the Uintah Basin, Utah, U.S.A. in winter 2013. Observational nudging substantially improved WRF model performance in simulating surface wind fields, correcting a 10 °C warm surface temperature bias, correcting overestimation of the planetary boundary layer height (PBLH) and correcting underestimation of inversion strengths produced by regular WRF model physics without nudging. However, the combined effects of poor performance of WRF meteorological model physical parameterization schemes in simulating low clouds, and warm and moist biases in the temperature and moisture initialization and subsequent simulation fields, likely amplified the overestimation of warm clouds during inversion days when observational nudging was applied, impacting the resulting O3 photochemical formation in the chemistry model. To reduce the impact of a moist bias in the simulations on warm cloud formation, nudging with the analysis water mixing ratio above the planetary boundary layer (PBL) was applied. However, due to poor analysis vertical temperature profiles, applying analysis nudging also increased the errors in the modeled inversion layer vertical structure compared to observational nudging. Combining both observational and analysis nudging methods resulted in unrealistically extreme stratified stability that trapped pollutants at the lowest elevations at the center of the Uintah Basin and yielded the worst WRF performance in simulating inversion layer structure among the four sensitivity tests. The results of this study illustrate the importance of carefully considering the representativeness and quality of the observational and model analysis data sets when applying nudging techniques within stable PBLs, and the need to evaluate model results on a basin-wide scale.

  15. On the urban land-surface impact on climate over Central Europe

    NASA Astrophysics Data System (ADS)

    Huszar, Peter; Halenka, Tomas; Belda, Michal; Zemankova, Katerina; Zak, Michal

    2014-05-01

    For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate over central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM) for urban and suburban land surface. This can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface processes on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0,6 m s-1 and both increases and decreases in summer depending the location with respect to cities and daytime (changes up to 0.3 ms-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts in our simulations the summer precipitation rate showing decrease over cities up to - 2 mm day-1. We further showed, that significant temperature increases are not limited to the urban canopy layer but spawn the whole boundary layer. Above that, a small but statistically significant temperature decrease is modeled. The comparison with observational data showed significant improvement in modeling the monthly surface temperatures in summer and the models better describe the diurnal temperature variation reducing the afternoon and evening bias due to the UHI development, which was not captured by the model if one does not apply the urban parameterization. Sensitivity experiments were carried out as well to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs, anthropogenic heat release etc. and showed that the results are rather robust and the choice of the key SLUCM parameters impacts the results only slightly (mainly temperature, ZPBL and wind velocity). Further, the important conclusion is that statistically significant impacts are modeled not only over large urbanized areas (cities), but the influence of cities is evident over remote rural areas as well with minor or without any urban surfaces. We show that this is the result of the combined effect of the distant influence of surrounding cities and the influence of the minor local urban surface coverage.

  16. Improved P-wave Tomography of the Lowermost Mantle and Consequences for Mantle and Core Dynamics

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Muir, J. B.

    2014-12-01

    The core mantle boundary (CMB) separates the liquid iron core from the slowly-convecting solid mantle. The ~300 km thick barrier above the boundary has proven to be far more than a simple dividing layer; rather it is a complex region with a range of proposed phenomena such as thermal and compositional heterogeneity, partial melting and anisotropy. Characterizing the heterogeneity in the lowermost mantle through seismic tomography will prove crucial to accurately understanding key geodynamical processes within our planet, not just in the mantle above, but also a possible "mapping" onto the inner core boundary (ICB) through a thermochemical convection in the outer core, which in turn might control the growth of the inner core (e.g. Aubert et al., 2008; Gubbins et al., 2011). Here we obtain high-resolution compressional wave (P-wave) velocity images and uncertainty estimates for the lowermost mantle using travel time data collected by waveform cross-correlation. Strikingly, independent datasets of seismic phases that "see" the lowermost mantle in a different way yield similar P-wave velocity distributions at lower harmonic degrees. We also consider the effect of CMB topography. The images obtained are void of explicit model parameterization and regularization (through transdimensional Bayesian tomography) and contain features on multiple spatial scales. Subsequent spectral analyses reveal a power of heterogeneity three times larger than previous estimates. The P-wave tomograms of the lowermost mantle contain the harmonic degree 2-structure, similar to tomographic images derived from S-wave data (e.g. Ritsema et al. 2011), but with additional higher harmonic degrees (notably, 3-7). In other words, the heterogeneity size is uniformly distributed between about 500 and 6000 km. Inter alia, the resulting heterogeneity spectrum provides a bridge between the long-wavelength features of most global models and the very short-scale dimensions of scatterers mapped in independent studies. We argue that the new images of P-wave velocity in the lowermost mantle, void of explicit parameterization and damping, improve the imaging resolution and provide realistic boundary conditions at the CMB (due to a high sensitivity to heat flux) with important consequences for Earth dynamics.

  17. Aviation NOx-induced CH4 effect: Fixed mixing ratio boundary conditions versus flux boundary conditions

    NASA Astrophysics Data System (ADS)

    Khodayari, Arezoo; Olsen, Seth C.; Wuebbles, Donald J.; Phoenix, Daniel B.

    2015-07-01

    Atmospheric chemistry-climate models are often used to calculate the effect of aviation NOx emissions on atmospheric ozone (O3) and methane (CH4). Due to the long (∼10 yr) atmospheric lifetime of methane, model simulations must be run for long time periods, typically for more than 40 simulation years, to reach steady-state if using CH4 emission fluxes. Because of the computational expense of such long runs, studies have traditionally used specified CH4 mixing ratio lower boundary conditions (BCs) and then applied a simple parameterization based on the change in CH4 lifetime between the control and NOx-perturbed simulations to estimate the change in CH4 concentration induced by NOx emissions. In this parameterization a feedback factor (typically a value of 1.4) is used to account for the feedback of CH4 concentrations on its lifetime. Modeling studies comparing simulations using CH4 surface fluxes and fixed mixing ratio BCs are used to examine the validity of this parameterization. The latest version of the Community Earth System Model (CESM), with the CAM5 atmospheric model, was used for this study. Aviation NOx emissions for 2006 were obtained from the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions. Results show a 31.4 ppb change in CH4 concentration when estimated using the parameterization and a 1.4 feedback factor, and a 28.9 ppb change when the concentration was directly calculated in the CH4 flux simulations. The model calculated value for CH4 feedback on its own lifetime agrees well with the 1.4 feedback factor. Systematic comparisons between the separate runs indicated that the parameterization technique overestimates the CH4 concentration by 8.6%. Therefore, it is concluded that the estimation technique is good to within ∼10% and decreases the computational requirements in our simulations by nearly a factor of 8.

  18. Update of global TC simulations using a variable resolution non-hydrostatic model

    NASA Astrophysics Data System (ADS)

    Park, S. H.

    2017-12-01

    Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.

  19. Modeling of Long-Term Evolution of Hydrophysical Fields of the Black Sea

    NASA Astrophysics Data System (ADS)

    Dorofeyev, V. L.; Sukhikh, L. I.

    2017-11-01

    The long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by numerical simulation. The model of the Black Sea circulation has 4.8 km horizontal spatial resolution and 40 levels in z-coordinates. The mixing processes in the upper layer are parameterized by Mellor-Yamada turbulent model. For the sea surface boundary conditions, atmospheric forcing functions were used, provided for the Black Sea region by the Euro mediterranean Center on Climate Change (CMCC) from the COSMO-CLM regional climate model. These data have a spatial resolution of 14 km and a daily temporal resolution. To evaluate the quality of the hydrodynamic fields derived from the simulation, they were compared with in-situ hydrological measurements and similar results from physical reanalysis of the Black Sea.

  20. Resolution analysis of marine seismic full waveform data by Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Ray, A.; Sekar, A.; Hoversten, G. M.; Albertin, U.

    2015-12-01

    The Bayesian posterior density function (PDF) of earth models that fit full waveform seismic data convey information on the uncertainty with which the elastic model parameters are resolved. In this work, we apply the trans-dimensional reversible jump Markov Chain Monte Carlo method (RJ-MCMC) for the 1D inversion of noisy synthetic full-waveform seismic data in the frequency-wavenumber domain. While seismic full waveform inversion (FWI) is a powerful method for characterizing subsurface elastic parameters, the uncertainty in the inverted models has remained poorly known, if at all and is highly initial model dependent. The Bayesian method we use is trans-dimensional in that the number of model layers is not fixed, and flexible such that the layer boundaries are free to move around. The resulting parameterization does not require regularization to stabilize the inversion. Depth resolution is traded off with the number of layers, providing an estimate of uncertainty in elastic parameters (compressional and shear velocities Vp and Vs as well as density) with depth. We find that in the absence of additional constraints, Bayesian inversion can result in a wide range of posterior PDFs on Vp, Vs and density. These PDFs range from being clustered around the true model, to those that contain little resolution of any particular features other than those in the near surface, depending on the particular data and target geometry. We present results for a suite of different frequencies and offset ranges, examining the differences in the posterior model densities thus derived. Though these results are for a 1D earth, they are applicable to areas with simple, layered geology and provide valuable insight into the resolving capabilities of FWI, as well as highlight the challenges in solving a highly non-linear problem. The RJ-MCMC method also presents a tantalizing possibility for extension to 2D and 3D Bayesian inversion of full waveform seismic data in the future, as it objectively tackles the problem of model selection (i.e., the number of layers or cells for parameterization), which could ease the computational burden of evaluating forward models with many parameters.

  1. Modeling the purging of dense fluid from a street canyon driven by an interfacial mixing flow and skimming flow

    NASA Astrophysics Data System (ADS)

    Baratian-Ghorghi, Z.; Kaye, N. B.

    2013-07-01

    An experimental study is presented to investigate the mechanism of flushing a trapped dense contaminant from a canyon by turbulent boundary layer flow. The results of a series of steady-state experiments are used to parameterize the flushing mechanisms. The steady-state experimental results for a canyon with aspect ratio one indicate that dense fluid is removed from the canyon by two different processes, skimming of dense fluid from the top of the dense layer; and by an interfacial mixing flow that mixes fresh fluid down into the dense lower layer (entrainment) while mixing dense fluid into the flow above the canyon (detrainment). A model is developed for the time varying buoyancy profile within the canyon as a function of the Richardson number which parameterizes both the interfacial mixing and skimming processes observed. The continuous release steady-state experiments allowed for the direct measurement of the skimming and interfacial mixing flow rates for any layer depth and Richardson number. Both the skimming rate and the interfacial mixing rate were found to be power-law functions of the Richardson number of the layer. The model results were compared to the results of previously published finite release experiments [Z. Baratian-Ghorghi and N. B. Kaye, Atmos. Environ. 60, 392-402 (2012)], 10.1016/j.atmosenv.2012.06.077. A high degree of consistency was found between the finite release data and the continuous release data. This agreement acts as an excellent check on the measurement techniques used, as the finite release data was based on curve fitting through buoyancy versus time data, while the continuous release data was calculated directly by measuring the rate of addition of volume and buoyancy once a steady-state was established. Finally, a system of ordinary differential equations is presented to model the removal of dense fluid from the canyon based on empirical correlations of the skimming and interfacial mixing taken form the steady-state experiments. The ODE model predicts well the time taken for a finite volume of dense fluid to be flushed from a canyon.

  2. Investigations into the climate of the South Pole

    NASA Astrophysics Data System (ADS)

    Town, Michael S.

    Four investigations into the climate of the South Pole are presented. The general subjects of polar cloud cover, the surface energy balance in a stable boundary layer, subsurface energy transfer in snow, and modification of water stable isotopes in snow after deposition are investigated based on the historical data set from the South Pole. Clouds over the South Pole. A new, accurate cloud fraction time series is developed based on downwelling infrared radiation measurements taken at the South Pole. The results are compared to cloud fraction estimates from visual observations and satellite retrievals of cloud fraction. Visual observers are found to underestimate monthly mean cloud fraction by as much as 20% during the winter, and satellite retrievals of cloud fraction are not accurate for operational or climatic purposes. We find associations of monthly mean cloud fraction with other meteorological variables at the South Pole for use in testing models of polar weather and climate. Surface energy balance. A re-examination of the surface energy balance at the South Pole is motivated by large discrepancies in the literature. We are not able to find closure in the new surface energy balance, likely due to weaknesses in the turbulent heat flux parameterizations in extremely stable boundary layers. These results will be useful for constraining our understanding and parameterization of stable boundary layers. Subsurface energy transfer. A finite-volume model of the snow is used to simulate nine years of near-surface snow temperatures, heating rates, and vapor pressures at the South Pole. We generate statistics characterizing heat and vapor transfer in the snow on submonthly to interannual time scales. The variability of near-surface snow temperatures on submonthly time scales is large, and has potential implications for revising the interpretation of paleoclimate records of water stable isotopes in polar snow. Modification of water stable isotopes after deposition. The evolution of water stable isotopes in near-surface polar snow is simulated using a Rayleigh fractionation model including the processes of pore-space diffusion, forced ventilation, and intra-ice-grain diffusion. We find isotopic enrichment of winter snow during subsequent summers as enriched water vapor is forced into the snow and deposits as frost. This process depends on snow and atmospheric temperatures, surface wind speed, accumulation rate, and surface morphology. We further find that differential enrichment between the present day and the Last Glacial Maximum (LGM) may exaggerate the greenlandic glacial-interglacial temperature difference derived from water stable isotopes. In Antarctica, present-day post-depositional modification is likely equal to that of the LGM due to the compensating factors of lower temperatures and lower accumulation rate during the LGM.

  3. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  4. Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approach

    NASA Astrophysics Data System (ADS)

    Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.

    2017-12-01

    Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.

  5. Evolution of the Planetary Boundary Layer on the northern coast of Brazil during the CHUVA campaign

    NASA Astrophysics Data System (ADS)

    Ramos, Diogo Nunes da Silva; Fernandez, Julio Pablo Reyes; Fisch, Gilberto

    2018-05-01

    This study aims to characterize the wind and thermodynamic structure of the Planetary Boundary Layer (PBL) on the northern coast of Brazil (NCB) via the CHUVA datasets. Three synoptic conditions were present in the NCB region between March 1 and 25, 2010: a dry period, the Upper Tropospheric Cyclonic Vortex (UTCV) and the Intertropical Convergence Zone (ITCZ). Nighttime precipitation accounted for 78% of the total precipitation observed in the month, mainly during the ITCZ. In general, the surface meteorological fields were few changed by intense weather events due to proximity to the ocean and the predominant contribution of the northeasterly trade winds. There was also a weak sea breeze signal that maintained the horizontal moisture flow in the studied area. On dry days, the PBL depth was higher, drier, and warmer, resulting in stronger winds below 500 m. Moreover, trends throughout the period suggest that PBLs are near-neutral below 500 m. However, the wind variability was intensified by up to 20% due to downdrafts and higher wind shears during the deep convection mechanisms derived by UTCV. Furthermore, ITCZ mixed rainfall cooled the PBL at approximately 2 K, making it very stable according to the Richardson number classification adopted. The observed temporal and spatial scale represent challenges to the physical parameterizations used to improve numerical weather prediction models over tropical coastal areas.

  6. A Quantitative Study of Vertical Replenishment and its Contribution to Momentum Recovery for a Large Offshore Windfarm

    NASA Astrophysics Data System (ADS)

    Gupta, T.; Baidya Roy, S.; Miller, L.

    2017-12-01

    With rapid increase in the installed wind capacity around the globe, it is important and interesting to understand the processes involved in wind farm-atmospheric boundary layer interactions. A wind turbine extracts energy from the mean flow and converts it into electrical energy, thereby reducing the mean kinetic energy available. The corresponding reduction in momentum triggers vertical mixing that transports high-momentum air from aloft to the wind turbine layer thereby replenishing the lost momentum, at least partially. This study investigates the phenomenon of vertical replenishment and quantifies its contribution in the momentum recovery as a function of various factors including installed capacity (MW/km2), depth of the wind farm (km) and climatology of the area. Numerical experiments are conducted using the WRF mesoscale model to simulate wind turbine-boundary layer interactions in a hypothetical large off-shore wind farm located deep in the Arabian Sea off the western coast of India. WRF is equipped with a wind turbine parameterization and is capable of simulating both the momentum reduction and vertical replenishment phenomena. It is found that the downward turbulent flux is able to replenish about 66% of momentum lost because of wind turbines. Additionally, the feedback leads to an average increase of 1.5% in generated power capacity in the wind farm. These results indicate that when the momentum deficit occurs, the vertical replenishment in form of turbulent flux tries to dampen the momentum loss, hence, acting as a negative feedback in the wind farm.

  7. Could Crop Height Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2013-12-01

    The agriculture-intensive United States Midwest and Great Plains regions feature some of the best wind resources in the nation. Collocation of cropland and wind turbines introduces complex meteorological interactions that could affect both agriculture and wind power production. Crop management practices may modify the wind resource through alterations of land-surface properties. In this study, we used the Weather Research and Forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. We parameterized a hypothetical array of 121 1.8 MW turbines at the site of the 2011 Crop/Wind-energy Experiment field campaign using the WRF wind farm parameterization. We estimated the impact of crop choices on power production by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 10 cm and 25 cm represent a mature soy crop and a mature corn crop respectively. Results suggest that the presence of the mature corn crop reduces hub-height wind speeds and increases rotor-layer wind shear, even in the presence of a large wind farm which itself modifies the flow. During the night, the influence of the surface was dependent on the boundary layer stability, with strong stability inhibiting the surface drag from modifying the wind resource aloft. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop management practices.

  8. An Extended Eddy‐Diffusivity Mass‐Flux Scheme for Unified Representation of Subgrid‐Scale Turbulence and Convection

    PubMed Central

    Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Teixeira, João

    2018-01-01

    Abstract Large‐scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid‐scale turbulence and convection—such as that they adjust instantaneously to changes in resolved‐scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary‐layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large‐scale models. Here we lay the theoretical foundations for an extended eddy‐diffusivity mass‐flux (EDMF) scheme that has explicit time‐dependence and memory of subgrid‐scale variables and is designed to represent all subgrid‐scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross‐sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large‐scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time‐dependent life cycle. PMID:29780442

  9. Sensitivity of Hypoxia Predictions for the Northern Gulf of Mexico to Sediment Oxygen Consumption and Model Nesting

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert

    2014-05-01

    Interannual variations of the hypoxic area that develops every summer over the Texas-Louisiana Shelf are large. The 2008 Action Plan put forth by an alliance of multiple state and federal agencies and tribes calls for a decrease of the hypoxic area through nutrient management in the watershed. Realistic models help build mechanistic understanding of the processes underlying hypoxia formation and are thus indispensable for devising efficient nutrient reduction strategies. Here we present such a model, evaluate its hypoxia predictions against monitoring observations and assess the sensitivity of hypoxia predictions to model resolution, variations in sediment oxygen consumption and choice of physical horizontal boundary conditions. We find that hypoxia predictions on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We also show that the strength of vertical stratification is an important predictor of oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia predictions.

  10. Comparison of 2-3D convection models with parameterized thermal evolution models: Application to Mars

    NASA Astrophysics Data System (ADS)

    Thiriet, M.; Plesa, A. C.; Breuer, D.; Michaut, C.

    2017-12-01

    To model the thermal evolution of terrestrial planets, 1D parametrized models are often used as 2 or 3D mantle convection codes are very time-consuming. In these parameterized models, scaling laws that describe the convective heat transfer rate as a function of the convective parameters are derived from 2-3D steady state convection models. However, so far there has been no comprehensive comparison whether they can be applied to model the thermal evolution of a cooling planet. Here we compare 2D and 3D thermal evolution models in the stagnant lid regime with 1D parametrized models and use parameters representing the cooling of the Martian mantle. For the 1D parameterized models, we use the approach of Grasset and Parmentier (1998) and treat the stagnant lid and the convecting layer separately. In the convecting layer, the scaling law for a fluid with constant viscosity is valid with Nu (Ra/Rac) ?, with Rac the critical Rayleigh number at which the thermal boundary layers (TBL) - top or bottom - destabilize. ? varies between 1/3 and 1/4 depending on the heating mode and previous studies have proposed intermediate values of b 0.28-0.32 according to their model set-up. The base of the stagnant lid is defined by the temperature at which the mantle viscosity has increased by a factor of 10; it thus depends on the rate of viscosity change with temperature multiplied by a factor? , whose value appears to vary depending on the geometry and convection conditions. In applying Monte Carlo simulations, we search for the best fit to temperature profiles and heat flux using three free parameters, i.e. ? of the upper TBL, ? and the Rac of the lower TBL. We find that depending on the definition of the stagnant lid thickness in the 2-3D models several combinations of ? and ? for the upper TBL can retrieve suitable fits. E.g. combinations of ? = 0.329 and ? = 2.19 but also ? = 0.295 and ? = 2.97 are possible; Rac of the lower TBL is 10 for all best fits. The results show that although the heating conditions change from bottom to mainly internally heating as a function of time, the thermal evolution can be represented by one set of parameters.

  11. Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in East Asia-An analysis using a new parameterization scheme for dust devils

    NASA Astrophysics Data System (ADS)

    Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan

    2018-06-01

    Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.

  12. Numerical simulations and parameterizations of volcanic plumes observed at Reunion Island

    NASA Astrophysics Data System (ADS)

    Gurwinder Sivia, Sandra; Gheusi, Francois; Mari, Celine; DiMuro, Andrea; Tulet, Pierre

    2013-04-01

    Volcanoes are natural composite hazards. The volcanic ejecta can have considerable impact on human health. Volcanic gases and ash, can be especially harmful to people with lung disease such as asthma. Volcanic gases that pose the greatest potential hazards are sulfur dioxide, carbon dioxide, and hydrogen fluoride. Locally, sulfur dioxide gas can lead to acid rain and air pollution downwind from a volcano. These gases can come from lava flows as well as volcano eruptive plumes. This acidic pollution can be transported by wind over large distances. To comply with regulatory rules, modeling tools are needed to accurately predict the contribution of volcanic emissions to air quality degradation. Unfortunately, the ability of existing models to simulate volcanic plume production and dispersion is currently limited by inaccurate volcanic emissions and uncertainties in plume-rise estimates. The present work is dedicated to the study of deep injections of volcanic emissions into the troposphere developed as consequence of intense but localized input of heat near eruptive mouths. This work covers three aspects. First a precise quantification of heat sources in terms of surface, geometry and heat source intensity is done for the Piton de la Fournaise volcano. Second, large eddy simulation (LES) are performed with the Meso-NH model to determine the dynamics and vertical development of volcanic plumes. The estimated energy fluxes and the geometry of the heat source is used at the bottom boundary to generate and sustain the plume, while, passive tracers are used to represent volcanic gases and their injection into the atmosphere. The realism of the simulated plumes is validated on the basis of plume observations. The LES simulations finally serve as references for the development of column parameterizations for the coarser resolution version of the model which is the third aspect of the present work. At spatial resolution coarser than ~1km, buoyant volcanic plumes are sub-grid processes. A new parameterization for the injection height is presented which is based on a modified version of the eddy-diffusivity/mass-flux scheme initially developed for the simulation of convective boundary layer.

  13. An Eddy-Diffusivity Mass-flux (EDMF) closure for the unified representation of cloud and convective processes

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Schneider, T.; Teixeira, J.; Lam, R.; Pressel, K. G.

    2014-12-01

    Sub-grid scale (SGS) closures in current climate models are usually decomposed into several largely independent parameterization schemes for different cloud and convective processes, such as boundary layer turbulence, shallow convection, and deep convection. These separate parameterizations usually do not converge as the resolution is increased or as physical limits are taken. This makes it difficult to represent the interactions and smooth transition among different cloud and convective regimes. Here we present an eddy-diffusivity mass-flux (EDMF) closure that represents all sub-grid scale turbulent, convective, and cloud processes in a unified parameterization scheme. The buoyant updrafts and precipitative downdrafts are parameterized with a prognostic multiple-plume mass-flux (MF) scheme. The prognostic term for the mass flux is kept so that the life cycles of convective plumes are better represented. The interaction between updrafts and downdrafts are parameterized with the buoyancy-sorting model. The turbulent mixing outside plumes is represented by eddy diffusion, in which eddy diffusivity (ED) is determined from a turbulent kinetic energy (TKE) calculated from a TKE balance that couples the environment with updrafts and downdrafts. Similarly, tracer variances are decomposed consistently between updrafts, downdrafts and the environment. The closure is internally coupled with a probabilistic cloud scheme and a simple precipitation scheme. We have also developed a relatively simple two-stream radiative scheme that includes the longwave (LW) and shortwave (SW) effects of clouds, and the LW effect of water vapor. We have tested this closure in a single-column model for various regimes spanning stratocumulus, shallow cumulus, and deep convection. The model is also run towards statistical equilibrium with climatologically relevant large-scale forcings. These model tests are validated against large-eddy simulation (LES) with the same forcings. The comparison of results verifies the capacity of this closure to realistically represent different cloud and convective processes. Implementation of the closure in an idealized GCM allows us to study cloud feedbacks to climate change and to study the interactions between clouds, convections, and the large-scale circulation.

  14. Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Yao, Mao-Sung

    1990-01-01

    A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.

  15. Experimental study of the impact of large-scale wind farms on land-atmosphere exchanges

    NASA Astrophysics Data System (ADS)

    Zhang, wei; Markfort, Corey; Porté-Agel, Fernando

    2013-04-01

    Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interactions and subsequent environmental impacts are complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics and atmospheric thermal stability. In particular, surface scalar flux is influenced by wind farms and needs to be appropriately parameterized in meso-scale and/or high-resolution numerical models. Wind-tunnel experiments of model wind farms with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a neutral turbulent boundary layer with a surface heat source. Turbulent flow and fluxes over and through the wind farm were measured using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors within the quasi-developed flow regime. Although the overall surface heat flux change produced by the wind farms was found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. The difference between the minimum and maximum surface heat fluxes could be up to 12% and 7% in aligned and staggered wind farms, respectively. This finding is important for planning intensive agriculture practices and optimizing agricultural land use with regard to wind energy project development. The well-controlled wind-tunnel experiments presented here also provide a first comprehensive dataset on turbulent flow and scalar transport in wind farms, which can be further used to develop and validate new parameterizations for surface scalar fluxes in numerical models.

  16. Quantified Objectives for Assessing the Contribution of Low Clouds to Climate Sensitivity and Variability

    NASA Astrophysics Data System (ADS)

    Del Genio, A. D.; Platnick, S. E.; Bennartz, R.; Klein, S. A.; Marchand, R.; Oreopoulos, L.; Pincus, R.; Wood, R.

    2016-12-01

    Low clouds are central to leading-order questions in climate and subseasonal weather predictability, and are key to the NRC panel report's goals "to understand the signals of the Earth system under a changing climate" and "for improved models and model projections." To achieve both goals requires a mix of continuity observations to document the components of the changing climate and improvements in retrievals of low cloud and boundary layer dynamical/thermodynamic properties to ensure process-oriented observations that constrain the parameterized physics of the models. We discuss four climate/weather objectives that depend sensitively on understanding the behavior of low clouds: 1. Reduce uncertainty in GCM-inferred climate sensitivity by 50% by constraining subtropical low cloud feedbacks. 2. Eliminate the GCM Southern Ocean shortwave flux bias and its effect on cloud feedback and the position of the midlatitude storm track. 3. Eliminate the double Intertropical Convergence Zone bias in GCMs and its potential effects on tropical precipitation over land and the simulation and prediction of El Niño. 4. Increase the subseasonal predictability of tropical warm pool precipitation from 20 to 30 days. We envision advances in three categories of observations that would be highly beneficial for reaching these goals: 1. More accurate observations will facilitate more thorough evaluation of clouds in GCMs. 2. Better observations of the links between cloud properties and the environmental state will be used as the foundation for parameterization improvements. 3. Sufficiently long and higher quality records of cloud properties and environmental state will constrain low cloud feedback purely observationally. To accomplish this, the greatest need is to replace A-Train instruments, which are nearing end-of-life, with enhanced versions. The requirements are sufficient horizontal and vertical resolution to capture boundary layer cloud and thermodynamic spatial structure; more accurate determination of cloud condensate profiles and optical properties; near-coincident observations to permit multi-instrument retrievals and association with dynamic and thermodynamic structure; global coverage; and, for long-term monitoring, measurement and orbit stability and sufficient mission duration.

  17. Parameterizing Grid-Averaged Longwave Fluxes for Inhomogeneous Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Barker, Howard W.; Wielicki, Bruce A.

    1997-01-01

    This paper examines the relative impacts on grid-averaged longwave flux transmittance (emittance) for Marine Boundary Layer (MBL) cloud fields arising from horizontal variability of optical depth tau and cloud sides, First, using fields of Landsat-inferred tau and a Monte Carlo photon transport algorithm, it is demonstrated that mean all-sky transmittances for 3D variable MBL clouds can be computed accurately by the conventional method of linearly weighting clear and cloudy transmittances by their respective sky fractions. Then, the approximations of decoupling cloud and radiative properties and assuming independent columns are shown to be adequate for computation of mean flux transmittance. Since real clouds have nonzero geometric thicknesses, cloud fractions A'(sub c) presented to isotropic beams usually exceed the more familiar vertically projected cloud fractions A(sub c). It is shown, however, that when A(sub c)less than or equal to 0.9, biases for all-sky transmittance stemming from use of A(sub c) as opposed to A'(sub c) are roughly 2-5 times smaller than, and opposite in sign to, biases due to neglect of horizontal variability of tau. By neglecting variable tau, all-sky transmittances are underestimated often by more than 0.1 for A(sub c) near 0.75 and this translates into relative errors that can exceed 40% (corresponding errors for all-sky emittance are about 20% for most values of A(sub c). Thus, priority should be given to development of General Circulation Model (GCM) parameterizations that account for the effects of horizontal variations in unresolved tau, effects of cloud sides are of secondary importance. On this note, an efficient stochastic model for computing grid-averaged cloudy-sky flux transmittances is furnished that assumes that distributions of tau, for regions comparable in size to GCM grid cells, can be described adequately by gamma distribution functions. While the plane-parallel, homogeneous model underestimates cloud transmittance by about an order of magnitude when 3D variable cloud transmittances are less than or equal to 0.2 and by approx. 20% to 100% otherwise, the stochastic model reduces these biases often by more than 80%.

  18. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas the drops dymanics equations are solved in a Largangain frame. The effects of air flow and drops on the water surface wave are neglected. A point-force approximation is employed to model the feed-back contributions by the drops to the air momentum, heat and moisture transfer.

  19. Forcing, properties, structure, and antecedent synoptic climatology of the Snake River Plain Convergence Zone of eastern Idaho: Analyses of observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Andretta, Thomas A.

    The Snake River Plain Convergence Zone (SPCZ) is a convergent shear zone generated by synoptic-scale post cold-frontal winds in the planetary boundary layer (PBL) interacting with the complex topography of eastern Idaho. The SPCZ produces clouds and occasional precipitation over time scales of 6--12 hours in a significant area of mesoscale dimensions (10--50 x 10 3 km2). This meso-beta-scale feature also contributes to the precipitation climatology in a semi-arid plain. The SPCZ is climatologically linked to the passage of synoptic-scale cold fronts and typically occurs in the fall and winter months with the highest frequencies in October, November, and January. The Snake River Plain of eastern Idaho is covered by a dense surface mesonetwork of towers with sensible weather measurements, single Doppler weather radar, regional soundings, and operational model sources. The ability of numerical weather prediction models to simulate the SPCZ depends on several factors: the accuracy of the large scale flow upstream of the zone, terrain resolution, grid scale, boundary layer parameterizations of stability, cumulus parameterizations, and microphysics schemes. This dissertation explores several of these issues with the aforementioned observations and with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model simulations of selected SPCZ events. This dissertation first explains the conceptual models of the flow patterns related to the genesis of the SPCZ in light of other well-documented topographically-generated zones. The study then explores the links between the theoretical models and observations of the SPCZ in several episodes. With this foundation, the dissertation then tests several hypotheses relating to the horizontal and vertical zone structure, topographic sensitivity on the zone structure, and boundary layer evolution of the zone through the use of high resolution nested grid numerical simulations. The SPCZ consists of windward and leeward flow regimes in Idaho which form under low Froude number (stable blocked flow) in a post cold-frontal environment. The SPCZ is a weak baroclinic feature. The formation of the zone is independent of the vertical wind shear in the middle to upper troposphere. With a grid scale of 4 km, the WRF-ARW model adequately reproduces the post cold-frontal environment, windward and leeward convergence zones, relative vertical vorticity belts, and precipitation bands in several SPCZ cases. The vertical structure of the SPCZ reveals upright reflectivity towers with circulations that tilt slightly with height into the colder air aloft. Topographic sensitivity analyses of the SPCZ indicate that the terrain-driven circulations and resulting snow bands are more defined at the finer terrain scales. The ambient horizontal wind shear in the tributary valleys of the Central Mountains creates potential vorticity (PV) banners. The PV banner maintenance and strength are directly tied to the terrain resolution. An environment of convective instability sometimes occurs as a layer of air is lifted along the gentle elevation rise of the eastern Magic Valley and lower plain. An environment of inertial instability forms within the anticyclonic (negative) vorticity belts in the upper plain. Potential symmetric instability (PSI) may be released in a moist environment near the vorticity banners. The planetary boundary layer perturbed by the SPCZ inside the Snake River Plain is characterized by a deeper mixed layer with stronger vertical motions relative to a PBL in a sheltered valley outside the plain. Finally, a 10-year antecedent synoptic climatology of 78 SPCZ events reveals two pattern types: Type N (wet and warm) and Type S (dry and cold). The 40° N parallel divides these two synoptic patterns.

  20. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  1. Proxies of oceanic Lithosphere/Asthenosphere Boundary from Global Seismic Anisotropy Tomography

    NASA Astrophysics Data System (ADS)

    Burgos, Gael; Montagner, Jean-Paul; Beucler, Eric; Trampert, Jeannot; Capdeville, Yann

    2013-04-01

    Surface waves provide essential information on the knowledge of the upper mantle global structure despite their low lateral resolution. This study, based on surface waves data, presents the development of a new anisotropic tomographic model of the upper mantle, a simplified isotropic model and the consequences of these results for the Lithosphere/Asthenosphere Boundary (LAB). As a first step, a large number of data is collected, these data are merged and regionalized in order to derive maps of phase and group velocity for the fundamental mode of Rayleigh and Love waves and their azimuthal dependence (maps of phase velocity are also obtained for the first six overtones). As a second step, a crustal a posteriori model is developped from the Monte-Carlo inversion of the shorter periods of the dataset, in order to take into account the effect of the shallow layers on the upper mantle. With the crustal model, a first Monte-Carlo inversion for the upper mantle structure is realized in a simplified isotropic parameterization to highlight the influence of the LAB properties on the surface waves data. Still using the crustal model, a first order perturbation theory inversion is performed in a fully anisotropic parameterization to build a 3-D tomographic model of the upper mantle (an extended model until the transition zone is also obtained by using the overtone data). Estimates of the LAB depth are derived from the upper mantle models and compared with the predictions of oceanic lithosphere cooling models. Seismic events are simulated using the Spectral Element Method in order to validate the ability of the anisotropic tomographic model of the upper mantle to re- produce observed seismograms.

  2. Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes

    NASA Astrophysics Data System (ADS)

    Singh, K. S.; Bonthu, Subbareddy; Purvaja, R.; Robin, R. S.; Kannan, B. A. M.; Ramesh, R.

    2018-04-01

    This study attempts to investigate the real-time prediction of a heavy rainfall event over the Chennai Metropolitan City, Tamil Nadu, India that occurred on 01 December 2015 using Advanced Research Weather Research and Forecasting (WRF-ARW) model. The study evaluates the impact of six microphysical (Lin, WSM6, Goddard, Thompson, Morrison and WDM6) parameterization schemes of the model on prediction of heavy rainfall event. In addition, model sensitivity has also been evaluated with six Planetary Boundary Layer (PBL) and two Land Surface Model (LSM) schemes. Model forecast was carried out using nested domain and the impact of model horizontal grid resolutions were assessed at 9 km, 6 km and 3 km. Analysis of the synoptic features using National Center for Environmental Prediction Global Forecast System (NCEP-GFS) analysis data revealed strong upper-level divergence and high moisture content at lower level were favorable for the occurrence of heavy rainfall event over the northeast coast of Tamil Nadu. The study signified that forecasted rainfall was more sensitive to the microphysics and PBL schemes compared to the LSM schemes. The model provided better forecast of the heavy rainfall event using the logical combination of Goddard microphysics, YSU PBL and Noah LSM schemes, and it was mostly attributed to timely initiation and development of the convective system. The forecast with different horizontal resolutions using cumulus parameterization indicated that the rainfall prediction was not well represented at 9 km and 6 km. The forecast with 3 km horizontal resolution provided better prediction in terms of timely initiation and development of the event. The study highlights that forecast of heavy rainfall events using a high-resolution mesoscale model with suitable representations of physical parameterization schemes are useful for disaster management and planning to minimize the potential loss of life and property.

  3. Parameterization of volcanic ash remobilization by wind-tunnel erosion experiments.

    NASA Astrophysics Data System (ADS)

    Del Bello, Elisabetta; Taddeucci, Jacopo; Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob; Scarlato, Piergiorgio

    2017-04-01

    The remobilization of volcanic ash from the ground is one of the many problems posing threat to life and infrastructures during and after the course of an explosive volcanic eruption. A proper management of the risks connected to this problem requires a thorough understanding of the factors that influence and promote the dispersal of particles over large distances. Towards this target, we conducted a series of experiments aimed at defining first-order processes controlling the remobilization threshold of ash particles by wind erosion. In the framework of the EU-funded Europlanet project, we joinly used the environmental wind tunnel facility at Aarhus University (DK) and the state-of-the art high-speed imaging equipment of INGV experimental lab (Italy) to capture at unparalleled temporal and spatial resolution the removal dynamics of ash-sized (half-millimetre to micron-sized) particles. A homogenous layer of particles was set at on a plate placed downwind a boundary layer setup. Resuspension processes were filmed at 2000 fps and 50 micron pixel resolution, and the plate weighted pre and post-experiment. Explored variables include: 1) wind speed (from ca. 1 to 7 m/s) and boundary layer structure; 2) particle grain size (from 32-63 to 90-125 micron), and sample sorting); 3) chemical and textural features, using basalt and trachyte samples from Campi Flegrei (Pomici Principali,10 ka) and Eyjafjallajökull (May 2010) eruptions; and 4) temperature and humidity, by conducting experiments either at ambient conditions or with a heated sample. We found that the grain size distribution exerts a strong control on the fundamental dynamics of gas-particle coupling. Particles > 90 micron detach from the particles layer individually, also entering the gas flow individually. Conversely, removal < 63 micron particles occurs in clumps of aggregates. These clumps, once taken in charge by the gas flow, are frequently disaggregated and dispersed rapidly (order of few milliseconds). Our preliminary results shows that, for a given size distribution, the boundary between the two dynamics may shift greatly as a function of ambient humidity.

  4. Coupling Stable Water Isotopes in Vapor and Precipitation to Raindrop Size Distributions at a Mid-latitude Tall-tower Site to Evaluate the Role of Rain Evaporation in Boundary Layer Moisture Recycling

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Noone, D.

    2016-12-01

    The continental boundary layer moisture balance plays an important role in regulating water and energy exchange between the surface and the atmosphere, yet the mechanisms associated with moistening and drying are both poorly observed and modeled. Stable water isotope ratio measurements can provide insights into air mass origins, convection dynamics and mechanisms dominating atmosphere-land surface water fluxes. Profiles can be exploited to improve estimates of boundary layer moistening associated with evaporation of falling precipitation and contributions from surface evapotranspiration. We present two years of in situ tower-based measurements of isotope ratios of water vapor and precipitation (δD and δ18O) and raindrop size distributions from the Boulder Atmospheric Observatory (BAO) tall-tower site in Erie, Colorado. Isotope vapor measurements were made at 1 Hz with a full cycle from the surface to 300 meters recorded every 80 minutes. At the surface and 300m, water samples were collected during precipitation events and raindrop sizes were measured continuously using Parsivel instruments. We use this unique suite of measurements and, in particular, exploit the differences between the surface and 300m observations to constrain the surface layer hydrological mass balance during and after rain events, and evaluate parameterization choices for rain evaporation and moisture recycling in current isotope-enabled climate models. Aggregate raindrop size measurements showed shifts from populations of smaller raindrops at 300m to larger raindrops at the surface, contrary to what is expected for rain evaporation. Convective storms resulted in more uniform signatures between the surface and 300m, as well as longer isotope equilibration and adjustment time scales, whereas low Dexcess signatures (<9 to negative) during stratiform drizzle events were indicative of a greater degree of rain evaporation. Our observational results suggest that water vapor-rain equilibration is rarely achieved, and modification of the kinetic fractionation factor is necessary to better capture drop-size related isotope changes. This has implications not only for refining current global climate models, but also for interpreting proxy records connected to rainfall signatures that aid in understanding past hydrology.

  5. Modeling particle nucleation and growth over northern California during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Lupascu, A.; Easter, R.; Zaveri, R.; Shrivastava, M.; Pekour, M.; Tomlinson, J.; Yang, Q.; Matsui, H.; Hodzic, A.; Zhang, Q.; Fast, J. D.

    2015-07-01

    Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4 while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapors parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates were predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10-40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. Differences among the three simulations for the 40-100 nm particle diameter range are mostly associated with the timing of the peak total tendencies that shift the morning increase and afternoon decrease in particle number concentration by up to two hours. We found that newly formed particles could explain up to 20-30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ∼ 36 %.

  6. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  7. Weather Research and Forecasting model simulation of an onshore wind farm: assessment against LiDAR and SCADA data

    NASA Astrophysics Data System (ADS)

    Santoni, Christian; Garcia-Cartagena, Edgardo J.; Zhan, Lu; Iungo, Giacomo Valerio; Leonardi, Stefano

    2017-11-01

    The integration of wind farm parameterizations into numerical weather prediction models is essential to study power production under realistic conditions. Nevertheless, recent models are unable to capture turbine wake interactions and, consequently, the mean kinetic energy entrainment, which are essential for the development of power optimization models. To address the study of wind turbine wake interaction, one-way nested mesoscale to large-eddy simulation (LES) were performed using the Weather Research and Forecasting model (WRF). The simulation contains five nested domains modeling the mesoscale wind on the entire North Texas Panhandle region to the microscale wind fluctuations and turbine wakes of a wind farm located at Panhandle, Texas. The wind speed, direction and boundary layer profile obtained from WRF were compared against measurements obtained with a sonic anemometer and light detection and ranging system located within the wind farm. Additionally, the power production were assessed against measurements obtained from the supervisory control and data acquisition system located in each turbine. Furthermore, to incorporate the turbines into very coarse LES, a modification to the implementation of the wind farm parameterization by Fitch et al. (2012) is proposed. This work was supported by the NSF, Grants No. 1243482 (WINDINSPIRE) and IIP 1362033 (WindSTAR), and TACC.

  8. Final report on "Modeling Diurnal Variations of California Land Biosphere CO2 Fluxes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, Inez

    In Mediterranean climates, the season of water availability (winter) is out of phase with the season of light availability and atmospheric demand for moisture (summer). Multi-year half-hourly observations of sap flow velocities in 26 evergreen trees in a small watershed in Northern California show that different species of evergreen trees have different seasonalities of transpiration: Douglas-firs respond immediately to the first winter rain, while Pacific madrones have peak transpiration in the dry summer. Using these observations, we have derived species-specific parameterization of normalized sap flow velocities in terms of insolation, vapor pressure deficit and near-surface soil moisture. A simple 1-Dmore » boundary layer model showed that afternoon temperatures may be higher by 1 degree Celsius in an area with Douglas-firs than with Pacific madrones. The results point to the need to develop a new representation of subsurface moisture, in particular pools beneath the organic soil mantle and the vadose zone. Our ongoing and future work includes coupling our new parameterization of transpiration with new representation of sub-surface moisture in saprolite and weathered bedrock. The results will be implemented in a regional climate model to explore vegetation-climate feedbacks, especially in the dry season.« less

  9. Variability of Wind Speeds and Power over Europe

    NASA Astrophysics Data System (ADS)

    Tambke, J.; von Bremen, L.; de Decker, J.; Schmidt, M.; Steinfeld, G.; Wolff, J.-O.

    2010-09-01

    This study comprises two parts: First, we describe the vertical wind speed and turbulence profiles that result from our improved PBL scheme and compare it to observations and 1-dimensional approaches (Monin-Obukhov etc.). Second, we analyse the spatio-temporal correlations in our meso-scale simulations for the years 2004 to 2007 over entire Europe, with special focus on the Irish, North and Baltic Sea. 1.) Vertical Wind Speed Profiles The vertical wind profile above the sea has to be modelled with high accuracy for tip heights up to 160m in order to achieve precise wind resource assessments, to calculate loads and wakes of wind turbines as well as for reliable short-term wind power forecasts. We present an assessment of different models for wind profiles in unstable, neutral and stable thermal stratification. The meso-scale models comprise MM5, WRF and COSMO-EU (LME). Both COSMO-EU from the German Weather Service DWD and WRF use a turbulence closure of 2.5th order - and lead to similar results. Especially the limiting effect of low boundary layer heights on the wind shear in very stable stratification is well captured. In our new WRF-formulation for the mixing length in the Mellor-Yamada-Janjic (MYJ) parameterisation of the Planetary Boundary Layer (PBL-scheme), the master length scale itself depends on the Monin-Obukhov-Length as a parameter for the heat flux effects on the turbulent mixing. This new PBL-scheme shows a better performance for all weather conditions than the original MYJ-scheme. Apart from the low-boundary-layer-effect in very stable situations (which are seldom), standard Monin-Obukhov formulations in combination with the Charnock relation for the sea surface roughness show good agreement with the FINO1-data (German Bight). Interesting results were achieved with two more detailed micro-scale approaches: - the parameterization proposed by Pena, Gryning and Hasager [BLM 2008] that depends on the boundary layer height - our ICWP-model, were the flux of momentum through the air-sea interface is described by a common wave boundary layer with enhanced Charnock dynamics. 2.) Wind Field Variability Time series of wind speed and power from 400 potential offshore locations and 16,000 onshore sites in the 2020 and 2030 scenarios are part of the design basis of the EU-project www.OffshoreGrid.eu. This project investigates the grid integration of all planned offshore farms in Northern Europe and will serve as the basis for the "Blueprint for Offshore Grids" by the European Commission. The synchronous wind time series were calculated with the WRF-model. The simulation comprises four years and was validated with a number of wind measurements. We present detailed statistics of local, clustered and regional power production. The analysis quantifies spatial and temporal correlations, extreme events and ramps. Important results are the smoothing effects in a pan-European offshore grid. Key words: Offshore Wind Resource Assessment; Marine Meteorology; Wind Speed Profile; Marine Atmospheric Boundary Layer; Wind Variability, Spatio-temporal Correlation; Electricity Grid Integration

  10. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    NASA Astrophysics Data System (ADS)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities associated with the Industrial Revolution such as the addition of greenhouse gases and aerosols has changed the composition of the atmosphere. These changes are likely to have influenced temperature, precipitation, storms and sea level (IPCC, 2007). However, these features of the climate also vary naturally, so determining what fraction of climate changes are due to natural variability versus human activities is challenging and not yet a solved problem. Africa is vulnerable to climate change as its ability to adaptat and mitigate is considerably dampened (IPCC, 2007). Climate change may impede a nations ability to achieve sustainable development and the Millennium Development Goals, and because of that Africa (particularly sub-tropical Africa) will experience increased levels of water stress and reduced agricultural yields of up to 50% by 2020. An example of the scale of the region's vulnerability was demonstrated during the last very dry year (1991/92) when 30% of the southern African population was put on food aid and more than one million people were displaced. Climate change in Africa is essentially dependent on our understanding of the PBL processes both due to the indispensible role of the atmospheric convection in the African climate and due to its tele-connections to other regions, e.g. the tropical Pacific and Indian monsoon regions. Although numerous publications attribute the observed changes to one or another modification of the convective patterns, further progress is impeded by imperfections of the small-scale process parameterizations in the models. The uncertainties include parameter uncertainties of known physical processes, which could be reduced through better observations/modelling, as well as uncertainties in our knowledge of physical processes themselves (or structural uncertainties), which could be reduced only through theoretical development and design of new, original observations/experiments (Oppenheimer et al., Science, 2007). Arguably, the structural uncertainties is hard to reduce and this could be one of the reasons determining slow progress in narrowing the climate model uncertainty range over the last 30 years (Knutti and Hagerl, Nature Geoscience, 2008). One of the most prominent structural uncertainties in the ongoing transient climate change is related to poor understanding and hence incorrect modelling of the turbulent physics and dynamics processes in the planetary boundary layer. Nevertheless, the climate models continue to rely on physically incorrect boundary layer parameterizations (Cuxart et al., BLM, 2006), whose erroneous dynamical response in the climate models may lead to significant abnormalities in simulated climate. At present, international efforts in theoretical understanding of the turbulent mixing have resulted in significant progress in turbulence simulation, measurements and parameterizations. However, this understanding has not yet found its way to the climate research community. Vice versa, climate research is not usually addressed by the boundary layer research community. The gap needs to be closed in order to crucially complete the scientific basis of climate change studies. The focus of the proposed forum could be formulated as follows: The planetary boundary layer determines several key parameters controlling the Earth's climate system but being a dynamic sub-system, just a layer of turbulent mixing in the atmosphere/ocean, it is also controlled by the climate system and its changes. Such a dynamic relationship causes a planetary boundary layer feedback (PBL-feedback) which could be defined as the response of the surface air temperature on changes in the vertical turbulent mixing. The forum participants have discussed both climatological and fluid dynamic aspects of this response, in order to quantify their role in the Earth's transient heat uptake and its representation in climate models. The choice of the forum location and dates are motivated by the role of tropical oceans and convection in the climate system and the prominent demonstration of the climate sensitivity to the ocean heat uptake observed off Cape Town. The international conference responded to the urgent need of advancing our understanding of the complex climate system and development of adequate measures for saving the planet from environmental disaster. It also fits well with the Republic of South African government's major political decision to include the responses to global change/climate change at the very top of science and technology policy. The conference participants are grateful to the Norway Research Council and the National Research Foundation (NRF) RSA who supported the Conference through the project "Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes" realized in the framework of the Programme for Research and Co-operation Phase II between the two countries. Kirstenbosh Biodiversity Institute and Botanical Gardens, Cape Town contribution of securing one of the most beautiful Conference venues in the world and technical support is also highly appreciated. G. Djolov and I. Esau Editors Conference_Photo Conference Organising Comittee Djolov, G.South AfricaUniversity of Pretoria Esau, I.NorwayNansen Environmental and Remote Sensing Center Hewitson, B.South AfricaUniversity of Cape Town McGregor, J.AustraliaCSIRO Marine and Atmospheric Research Midgley, G.South AfricaSouth African National Botanical Institute Mphepya, J.South AfricaSouth African Weather Service Piketh, S.South AfricaUniversity of the Witwatersrand Pielke, R.USAUniversity of Colorado, Boulder Pienaar, K.South AfricaUniversity of the North West Rautenbach, H.South AfricaUniversity of Pretoria Zilitinkevich, S.FinlandUniversity of Helsinki The conference was organized by: University of Pretoria Nansen Environmental and Remote Sensing Center With support and sponsorship from: Norwegian Research Council (grant N 197649) Kirstenbosh Biodiversity Institute and Botanical Gardens

  11. Deterministic chaos in atmospheric radon dynamics

    NASA Astrophysics Data System (ADS)

    Cuculeanu, Vasile; Lupu, Alexandru

    2001-08-01

    The correlation dimension and Lyapunov exponents have been calculated for two time series of atmospheric radon daughter concentrations obtained from four daily measurements during the period 1993-1996. A number of about 6000 activity concentration values of 222Rn and 220Rn daughters have been used. The measuring method is based on aerosol collection on filters. In order to determine the filter activity, a low background gross beta measuring device with Geiger-Müller counter tubes in anticoincidence was used. The small noninteger value of the correlation dimension (≃2.2) and the existence of a positive Lyapunov exponent prove that deterministic chaos is present in the time series of atmospheric 220Rn daughters. This shows that a simple diffusion equation with a parameterized turbulent diffusion coefficient is insufficient for describing the dynamics in the near-ground layer where turbulence is not fully developed and coherent structures dominate. The analysis of 222Rn series confirms that the dynamics of the boundary layer cannot be described by a system of ordinary differential equations with a low number of independent variables.

  12. A senstitivity study of the ground hydrologic model using data generated by an atmospheric general circulation model. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sun, S. F.

    1985-01-01

    The Ground Hydrologic Model (GHM) developed for use in an atmospheric general circulation model (GCM) has been refined. A series of sensitivity studies of the new version of the GHM were conducted for the purpose of understanding the role played by various physical parameters in the GHM. The following refinements have been made: (1) the GHM is coupled directly with the planetary boundary layer (PBL); (2) a bulk vegetation layer is added with a more realistic large-scale parameterization; and (3) the infiltration rate is modified. This version GHM has been tested using input data derived from a GCM simulation run for eight North America regions for 45 days. The results are compared with those of the resident GHM in the GCM. The daily average of grid surface temperatures from both models agree reasonably well in phase and magnitude. However, large difference exists in one or two regions on some days. The daily average evapotranspiration is in general 10 to 30% less than the corresponding value given by the resident GHM.

  13. Parameterizing deep convection using the assumed probability density function method

    DOE PAGES

    Storer, R. L.; Griffin, B. M.; Höft, J.; ...

    2014-06-11

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  14. Parameterizing deep convection using the assumed probability density function method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storer, R. L.; Griffin, B. M.; Höft, J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more » The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  15. Parameterizing deep convection using the assumed probability density function method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storer, R. L.; Griffin, B. M.; Hoft, Jan

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. Themore » same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  16. Anisotropic Shear Dispersion Parameterization for Mesoscale Eddy Transport

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.

    2016-02-01

    The effects of mesoscale eddies are universally treated isotropically in general circulation models. However, the processes that the parameterization approximates, such as shear dispersion, typically have strongly anisotropic characteristics. The Gent-McWilliams/Redi mesoscale eddy parameterization is extended for anisotropy and tested using 1-degree Community Earth System Model (CESM) simulations. The sensitivity of the model to anisotropy includes a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. The parameterization is further extended to include the effects of unresolved shear dispersion, which sets the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.

  17. Approaches for Subgrid Parameterization: Does Scaling Help?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-04-01

    Arguably the scaling behavior is a well-established fact in many geophysical systems. There are already many theoretical studies elucidating this issue. However, the scaling law is slow to be introduced in "operational" geophysical modelling, notably for weather forecast as well as climate projection models. The main purpose of this presentation is to ask why, and try to answer this question. As a reference point, the presentation reviews the three major approaches for traditional subgrid parameterization: moment, PDF (probability density function), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in the atmosphere and the oceans. The PDF approach is intuitively appealing as it directly deals with a distribution of variables in subgrid scale in a more direct manner. The third category, originally proposed by Aubry et al (1988) in context of the wall boundary-layer turbulence, is specifically designed to represent coherencies in compact manner by a low--dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (POD, or empirical orthogonal functions, EOF) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. The mass-flux formulation that is currently adopted in majority of atmospheric models for parameterizing convection can also be considered a special case of the mode decomposition, adopting the segmentally-constant modes for the expansion basis. The mode decomposition can, furthermore, be re-interpreted as a type of Galarkin approach for numerically modelling the subgrid-scale processes. Simple extrapolation of this re-interpretation further suggests us that the subgrid parameterization problem may be re-interpreted as a type of mesh-refinement problem in numerical modelling. We furthermore see a link between the subgrid parameterization and downscaling problems along this line. The mode decomposition approach would also be the best framework for linking between the traditional parameterizations and the scaling perspectives. However, by seeing the link more clearly, we also see strength and weakness of introducing the scaling perspectives into parameterizations. Any diagnosis under a mode decomposition would immediately reveal a power-law nature of the spectrum. However, exploiting this knowledge in operational parameterization would be a different story. It is symbolic to realize that POD studies have been focusing on representing the largest-scale coherency within a grid box under a high truncation. This problem is already hard enough. Looking at differently, the scaling law is a very concise manner for characterizing many subgrid-scale variabilities in systems. We may even argue that the scaling law can provide almost complete subgrid-scale information in order to construct a parameterization, but with a major missing link: its amplitude must be specified by an additional condition. The condition called "closure" in the parameterization problem, and known to be a tough problem. We should also realize that the studies of the scaling behavior tend to be statistical in the sense that it hardly provides complete information for constructing a parameterization: can we specify the coefficients of all the decomposition modes by a scaling law perfectly when the first few leading modes are specified? Arguably, the renormalization group (RNG) is a very powerful tool for reducing a system with a scaling behavior into a low dimension, say, under an appropriate mode decomposition procedure. However, RNG is analytical tool: it is extremely hard to apply it to real complex geophysical systems. It appears that it is still a long way to go for us before we can begin to exploit the scaling law in order to construct operational subgrid parameterizations in effective manner.

  18. A Non-hydrostatic Atmospheric Model for Global High-resolution Simulation

    NASA Astrophysics Data System (ADS)

    Peng, X.; Li, X.

    2017-12-01

    A three-dimensional non-hydrostatic atmosphere model, GRAPES_YY, is developed on the spherical Yin-Yang grid system in order to enforce global high-resolution weather simulation or forecasting at the CAMS/CMA. The quasi-uniform grid makes the computation be of high efficiency and free of pole problem. Full representation of the three-dimensional Coriolis force is considered in the governing equations. Under the constraint of third-order boundary interpolation, the model is integrated with the semi-implicit semi-Lagrangian method using the same code on both zones. A static halo region is set to ensure computation of cross-boundary transport and updating Dirichlet-type boundary conditions in the solution process of elliptical equations with the Schwarz method. A series of dynamical test cases, including the solid-body advection, the balanced geostrophic flow, zonal flow over an isolated mountain, development of the Rossby-Haurwitz wave and a baroclinic wave, are carried out, and excellent computational stability and accuracy of the dynamic core has been confirmed. After implementation of the physical processes of long and short-wave radiation, cumulus convection, micro-physical transformation of water substances and the turbulent processes in the planetary boundary layer include surface layer vertical fluxes parameterization, a long-term run of the model is then put forward under an idealized aqua-planet configuration to test the model physics and model ability in both short-term and long-term integrations. In the aqua-planet experiment, the model shows an Earth-like structure of circulation. The time-zonal mean temperature, wind components and humidity illustrate reasonable subtropical zonal westerly jet, meridional three-cell circulation, tropical convection and thermodynamic structures. The specific SST and solar insolation being symmetric about the equator enhance the ITCZ and tropical precipitation, which concentrated in tropical region. Additional analysis and tuning of the model is still going on, and preliminary results have demonstrated the possibility of high-resolution application of the model to global weather prediction and even seasonal climate projection.

  19. Forest Canopy Processes in a Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip

    2016-04-01

    Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model structure. Process methodology for deposition, biogenic emissions, shading, vertical diffusion, advection, chemical reactive environment and particle microphysics were modified to account for expected conditions within the forest canopy and the additional layers. The revised and original models were compared for a 10km resolution domain covering North America, for a one-month duration simulation. The canopy processes were found to have a very significant impact on model results. We will present a comparison to network observations which suggests that forest canopy processes may account for previously unexplained local and regional biases in model ozone predictions noted in GEM-MACH and other models. The impact of the canopy processes on NO2, PM2.5, and SO2 performance will also be presented and discussed.

  20. Using Ground Measurements to Examine the Surface Layer Parameterization Scheme in NCEP GFS

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Ek, M. B.; Mitchell, K.

    2017-12-01

    Understanding the behavior and the limitation of the surface layer parameneterization scheme is important for parameterization of surface-atmosphere exchange processes in atmospheric models, accurate prediction of near-surface temperature and identifying the role of different physical processes in contributing to errors. In this study, we examine the surface layer paramerization scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) using the ground flux measurements including the FLUXNET data. The model simulated surface fluxes, surface temperature and vertical profiles of temperature and wind speed are compared against the observations. The limits of applicability of the Monin-Obukhov similarity theory (MOST), which describes the vertical behavior of nondimensionalized mean flow and turbulence properties within the surface layer, are quantified in daytime and nighttime using the data. Results from unstable regimes and stable regimes are discussed.

  1. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  2. Ocean-Forced Ice-Shelf Thinning in a Synchronously Coupled Ice-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian

    2018-02-01

    The first fully synchronous, coupled ice shelf-ocean model with a fixed grounding line and imposed upstream ice velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the ice-shelf thickness on the ocean time step. By simulating an idealized, warm-water ice shelf we show how raising the pycnocline leads to a reduction in both ice-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the ice-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary ice thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the ice shelf has relatively thinner sides and a thicker central "bulge" for a given ice-shelf mass. Ice-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given ice-shelf mass due to a thinner ice shelf at the boundaries when compared to coupled model simulations.

  3. Using large eddy simulations to reveal the size, strength, and phase of updraft and downdraft cores of an Arctic mixed-phase stratocumulus cloud

    DOE PAGES

    Roesler, Erika L.; Posselt, Derek J.; Rood, Richard B.

    2017-04-06

    Three-dimensional large eddy simulations (LES) are used to analyze a springtime Arctic mixed-phase stratocumulus observed on 26 April 2008 during the Indirect and Semi-Direct Aerosol Campaign. Two subgrid-scale turbulence parameterizations are compared. The first scheme is a 1.5-order turbulent kinetic energy (1.5-TKE) parameterization that has been previously applied to boundary layer cloud simulations. The second scheme, Cloud Layers Unified By Binormals (CLUBB), provides higher-order turbulent closure with scale awareness. The simulations, in comparisons with observations, show that both schemes produce the liquid profiles within measurement variability but underpredict ice water mass and overpredict ice number concentration. The simulation using CLUBBmore » underpredicted liquid water path more than the simulation using the 1.5-TKE scheme, so the turbulent length scale and horizontal grid box size were increased to increase liquid water path and reduce dissipative energy. The LES simulations show this stratocumulus cloud to maintain a closed cellular structure, similar to observations. The updraft and downdraft cores self-organize into a larger meso-γ-scale convective pattern with the 1.5-TKE scheme, but the cores remain more isotropic with the CLUBB scheme. Additionally, the cores are often composed of liquid and ice instead of exclusively containing one or the other. Furthermore, these results provide insight into traditionally unresolved and unmeasurable aspects of an Arctic mixed-phase cloud. From analysis, this cloud's updraft and downdraft cores appear smaller than other closed-cell stratocumulus such as midlatitude stratocumulus and Arctic autumnal mixed-phase stratocumulus due to the weaker downdrafts and lower precipitation rates.« less

  4. Improving the Understanding and Model Representation of Processes that Couple Shallow Clouds, Aerosols, and Land-Ecosystems

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Berg, L. K.; Schmid, B.; Alexander, M. L. L.; Bell, D.; D'Ambro, E.; Hubbe, J. M.; Liu, J.; Mei, F.; Pekour, M. S.; Pinterich, T.; Schobesberger, S.; Shilling, J.; Springston, S. R.; Thornton, J. A.; Tomlinson, J. M.; Wang, J.; Zelenyuk, A.

    2016-12-01

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations, however, contain uncertainties resulting from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneity in surface layer, boundary layer, and aerosol properties. We describe the measurement strategy and preliminary findings from the recent Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign conducted in May and September of 2016 in the vicinity of the DOE's Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site located in Oklahoma. The goal of the HI-SCALE campaign is to provide a detailed set of aircraft and surface measurements needed to obtain a more complete understanding and improved parameterizations of the lifecycle of shallow clouds. The sampling is done in two periods, one in the spring and the other in the late summer to take advantage of variations in the "greenness" for various types of vegetation, new particle formation, anthropogenic enhancement of biogenic secondary organic aerosol (SOA), and other aerosol properties. The aircraft measurements will be coupled with extensive routine ARM SGP measurements as well as Large Eddy Simulation (LES), cloud resolving, and cloud-system resolving models. Through these integrated analyses and modeling studies, the affects of inhomogeneity in land use, vegetation, soil moisture, convective eddies, and aerosol properties on the evolution of shallow clouds will be determined, including the feedbacks of cloud radiative effects.

  5. Mesoscale Simulations of a Florida Sea Breeze Using the PLACE Land Surface Model Coupled to a 1.5-Order Turbulence Parameterization

    NASA Technical Reports Server (NTRS)

    Lynn, Barry H.; Stauffer, David R.; Wetzel, Peter J.; Tao, Wei-Kuo; Perlin, Natal; Baker, R. David; Munoz, Ricardo; Boone, Aaron; Jia, Yiqin

    1999-01-01

    A sophisticated land-surface model, PLACE, the Parameterization for Land Atmospheric Convective Exchange, has been coupled to a 1.5-order turbulent kinetic energy (TKE) turbulence sub-model. Both have been incorporated into the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model MM5. Such model improvements should have their greatest effect in conditions where surface contrasts dominate over dynamic processes, such as the simulation of warm-season, convective events. A validation study used the newly coupled model, MM5 TKE-PLACE, to simulate the evolution of Florida sea-breeze moist convection during the Convection and Precipitation Electrification Experiment (CaPE). Overall, eight simulations tested the sensitivity of the MM5 model to combinations of the new and default model physics, and initialization of soil moisture and temperature. The TKE-PLACE model produced more realistic surface sensible heat flux, lower biases for surface variables, more realistic rainfall, and cloud cover than the default model. Of the 8 simulations with different factors (i.e., model physics or initialization), TKE-PLACE compared very well when each simulation was ranked in terms of biases of the surface variables and rainfall, and percent and root mean square of cloud cover. A factor separation analysis showed that a successful simulation required the inclusion of a multi-layered, land surface soil vegetation model, realistic initial soil moisture, and higher order closure of the planetary boundary layer (PBL). These were needed to realistically model the effect of individual, joint, and synergistic contributions from the land surface and PBL on the CAPE sea-breeze, Lake Okeechobee lake breeze, and moist convection.

  6. Mechanisms controlling primary and new production in a global ecosystem model - Part I: Validation of the biological simulation

    NASA Astrophysics Data System (ADS)

    Popova, E. E.; Coward, A. C.; Nurser, G. A.; de Cuevas, B.; Fasham, M. J. R.; Anderson, T. R.

    2006-12-01

    A global general circulation model coupled to a simple six-compartment ecosystem model is used to study the extent to which global variability in primary and export production can be realistically predicted on the basis of advanced parameterizations of upper mixed layer physics, without recourse to introducing extra complexity in model biology. The "K profile parameterization" (KPP) scheme employed, combined with 6-hourly external forcing, is able to capture short-term periodic and episodic events such as diurnal cycling and storm-induced deepening. The model realistically reproduces various features of global ecosystem dynamics that have been problematic in previous global modelling studies, using a single generic parameter set. The realistic simulation of deep convection in the North Atlantic, and lack of it in the North Pacific and Southern Oceans, leads to good predictions of chlorophyll and primary production in these contrasting areas. Realistic levels of primary production are predicted in the oligotrophic gyres due to high frequency external forcing of the upper mixed layer (accompanying paper Popova et al., 2006) and novel parameterizations of zooplankton excretion. Good agreement is shown between model and observations at various JGOFS time series sites: BATS, KERFIX, Papa and HOT. One exception is the northern North Atlantic where lower grazing rates are needed, perhaps related to the dominance of mesozooplankton there. The model is therefore not globally robust in the sense that additional parameterizations are needed to realistically simulate ecosystem dynamics in the North Atlantic. Nevertheless, the work emphasises the need to pay particular attention to the parameterization of mixed layer physics in global ocean ecosystem modelling as a prerequisite to increasing the complexity of ecosystem models.

  7. Sea-town interactions over Marseille: 3D urban boundary layer and thermodynamic fields near the surface

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Pigeon, G.; Masson, V.; Moppert, C.

    2006-02-01

    3D numerical simulations with the Meso-NH atmospheric model including the Town Energy Balance urban parameterization, are conducted over the south-east of France and the one million inhabitants city of Marseille in the frameworks of the ESCOMPTE-UBL program. The geographic situation of the area is relatively complex, because of the proximity of the Mediterranean Sea and the presence of numerous massifs, inducing complex meteorological flows. The present work is focused on six days of the campaign, characterized by the development of strong summer sea-breeze circulations. A complete evaluation of the model is initially realized at both regional- and city-scales, by using the large available database. The regional evaluation shows a good behavior of the model, during the six days of simulation, either for the parameters near the surface or for the vertical profiles describing the structure of the atmosphere. The urban-scale evaluation indicates that the fine structure of the horizontal fields of air temperature above the city is correctly simulated by the model. A specific attention is then pointed to the 250-m horizontal resolution outputs, focused on the Marseille area, for two days of the campaign. From the study of the vertical structure of the Urban Boundary Layer and the thermodynamic fields near the surface, one underscores the important differences due to the regional and local flows, and the complex interactions that occur between the urban effects and the effects of sea breezes.

  8. Diabatic modification of potential vorticity in extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Chagnon, J.

    2012-12-01

    Representation of diabatic processes and their impact on extratropical cyclones is a likely source of skill degradation in operational numerical weather prediction systems. This investigation examines the source, structure, and magnitude of diabatic potential vorticity (PV) anomalies generated by small-scale and parameterized processes in both mesoscale and global model simulations of extratropical cyclones in the North Atlantic. Simulations of several cold season extratropical storms have been performed using the Met Office Unified Model. Several cases simulated were drawn from the DIAbatic influences on Mesoscale structures in ExTratropical cyclones (DIAMET) observational campaign during which the National Environmental Research Council (NERC) Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft was deployed. The influence of specific modelled processes was quantified using a set of tracers, each of which represents a history of the PV contributed by a specific segment of the model (e.g., boundary-layer scheme, cloud microphysics, convection scheme , radiation, etc.). This presentation will highlight several differences and similarities in high and low resolution simulations. For example, in high resolution simulations, tropopause folds are sharpened by a tripolar PV anomaly arising from the convection, boundary-layer, and microphysics schemes; this structure is not present in coarser global model simulations. However, a dipole of PV straddling the tropopause is diagnosed in both coarse- and fine-resolution simulations. The PV dipole, which is strongly influenced by long-wave radiative cooling, increases the gradient of PV near the tropopause and therefore modifies the characteristics Rossby wave propagation and moist baroclinic wave growth.

  9. Shallow-to-Deep Convection Transition over Land: Atmospheric and surface controls inferred from long-term ground-based observations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Klein, S. A.

    2016-12-01

    Warm-season decade-long observations are used to investigate mechanisms controlling the transition from shallow to deep convection over land. The data are from the DOE Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. The study focuses on two questions: 1) what environmental parameters differ between the two convective regimes: fair-weather shallow cumulus versus late-afternoon deep convection, especially in the late morning a few hours before deep convection begins? And 2) Do convective regimes such as fair-weather shallow cumulus and late-afternoon deep convection have any preferences over soil moisture conditions (dry or wet) and soil moisture heterogeneities? It is found that a more humid environment immediately above the boundary layer is present before the start of late afternoon heavy precipitation events. Greater boundary layer inhomogeneity in moist static energy, temperature, moisture, and horizontal wind before precipitation begins is correlated to larger rain rates at the initial stage of precipitation. Late-afternoon deep convection tends to prefer drier soil conditions with larger surface heterogeneity. This observational study helps our understanding of convective responses to different environmental factors especially surface versus atmospheric controls. This work leads to the establishment of composite cases of different continental convective regimes for large-eddy simulations and single-column tests of climate model parameterizations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698972

  10. Investigating the scale-adaptivity of a shallow cumulus parameterization scheme with LES

    NASA Astrophysics Data System (ADS)

    Brast, Maren; Schemann, Vera; Neggers, Roel

    2017-04-01

    In this study we investigate the scale-adaptivity of a new parameterization scheme for shallow cumulus clouds in the gray zone. The Eddy-Diffusivity Multiple Mass-Flux (or ED(MF)n ) scheme is a bin-macrophysics scheme, in which subgrid transport is formulated in terms of discretized size densities. While scale-adaptivity in the ED-component is achieved using a pragmatic blending approach, the MF-component is filtered such that only the transport by plumes smaller than the grid size is maintained. For testing, ED(MF)n is implemented in a large-eddy simulation (LES) model, replacing the original subgrid-scheme for turbulent transport. LES thus plays the role of a non-hydrostatic testing ground, which can be run at different resolutions to study the behavior of the parameterization scheme in the boundary-layer gray zone. In this range convective cumulus clouds are partially resolved. We find that at high resolutions the clouds and the turbulent transport are predominantly resolved by the LES, and the transport represented by ED(MF)n is small. This partitioning changes towards coarser resolutions, with the representation of shallow cumulus clouds becoming exclusively carried by the ED(MF)n. The way the partitioning changes with grid-spacing matches the results of previous LES studies, suggesting some scale-adaptivity is captured. Sensitivity studies show that a scale-inadaptive ED component stays too active at high resolutions, and that the results are fairly insensitive to the number of transporting updrafts in the ED(MF)n scheme. Other assumptions in the scheme, such as the distribution of updrafts across sizes and the value of the area fraction covered by updrafts, are found to affect the location of the gray zone.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less

  12. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs

    NASA Astrophysics Data System (ADS)

    Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Pincus, R.

    2016-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC is now incorporated into a version of GFS, as well as into the next generation of the NCEP global model - NOAA Environmental Modeling System (NEMS). Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these variables. Radiative transfer parameterization uses cloudiness computed by SHOC.Outstanding problems include high level tropical cloud fraction being too high in SHOC runs, possibly related to the interaction of SHOC with condensate detrained from deep convection.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate tests with prescribed SSTs. Depending on the results, the model will be tuned or parameterizations modified. Next, SHOC will be implemented in the NCEP CFS, and tuned and evaluated for climate applications - seasonal prediction and long coupled climate runs. Impact of new physics on ENSO, MJO, ISO, monsoon variability, etc will be examined.

  13. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review

    NASA Astrophysics Data System (ADS)

    Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.

    2014-09-01

    The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.

  14. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review

    NASA Astrophysics Data System (ADS)

    Vihma, T.; Pirazzini, R.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Nygård, T.; Fer, I.; Lüpkes, C.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.

    2013-12-01

    The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of super-imposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.

  15. Antarctic sub-shelf melt rates via PICO

    NASA Astrophysics Data System (ADS)

    Reese, Ronja; Albrecht, Torsten; Mengel, Matthias; Asay-Davis, Xylar; Winkelmann, Ricarda

    2018-06-01

    Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice-ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m a-1 for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 m a-1 for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry.

  16. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Payne, A. E.; Jablonowski, C.

    2017-12-01

    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  17. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  18. Air- ice-snow interaction in the Northern Hemisphere under different stability conditions

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Chechin, Dmitry; Artamonov, Arseny

    2013-04-01

    The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface interaction and the diffusion of impurities in the operational models of air pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as sea ice, marginal ice zone or stormy sea). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface air layer and the exchange of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow interaction under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas exchange at the atmosphere ocean interface are developed. The dependence of the exchange coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and even high latitudes of the Northern Hemisphere because the stable conditions above Arctic ice field dominate. Under such conditions the air flow over the uneven surface behaves in the way it does over the even one. This happens because depressions between ridges are filled with heavier air up to the height of irreguralities. As a result, the air moves at the level of ridges without entering depressions. Increased heat and mass transfer over polynyas and leads through self-organization of turbulent convection is found. The work was sponsored by RFBR grants and funded by the Government of the Russian Federation grants.

  19. Thermospheric dynamics during November 21-22, 1981 - Dynamics Explorer measurements and thermospheric general circulation model predictions

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Killeen, T. L.; Spencer, N. W.; Heelis, R. A.; Reiff, P. H.

    1988-01-01

    Time-dependent aurora and magnetospheric convection parameterizations have been derived from solar wind and aurora particle data for November 21-22, 1981, and are used to drive the auroral and magnetospheric convection models that are embedded in the National Center for Atmospheric Research thermospheric general circulation model (TGCM). Neutral wind speeds and transition boundaries between the midlatitude solar-driven circulation and the high-latitude magnetospheric convection-driven circulation are examined on an orbit-by-orbit basis. The results show that TGCM-calculated winds and reversal boundary locations are in generally good agreement with Dynamics Explorer 2 measurements for the orbits studied. This suggests that, at least for this particular period of relatively moderate geomagnetic activity, the TGCM parameterizations on the eveningside of the auroral oval and polar cap are adequate.

  20. Andreas Acrivos Dissertation Award Talk: Modeling drag forces and velocity fluctuations in wall-bounded flows at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Yang, Xiang

    2017-11-01

    The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.

  1. The hourly updated US High-Resolution Rapid Refresh (HRRR) storm-scale forecast model

    NASA Astrophysics Data System (ADS)

    Alexander, Curtis; Dowell, David; Benjamin, Stan; Weygandt, Stephen; Olson, Joseph; Kenyon, Jaymes; Grell, Georg; Smirnova, Tanya; Ladwig, Terra; Brown, John; James, Eric; Hu, Ming

    2016-04-01

    The 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) is a US NOAA hourly updating weather forecast model that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation (GSI). Included in this assimilation is a procedure for initializing ongoing precipitation systems from observed radar reflectivity data (and proxy reflectivity from lightning and satellite data), a cloud analysis to initialize stable layer clouds from METAR and satellite observations, and special techniques to enhance retention of surface observation information. The HRRR is run hourly out to 15 forecast hours over a domain covering the entire conterminous United States using initial and boundary conditions from the hourly-cycled 13km Rapid Refresh (RAP, using similar physics and data assimilation) covering North America and a significant part of the Northern Hemisphere. The HRRR is continually developed and refined at NOAA's Earth System Research Laboratory, and an initial version was implemented into the operational NOAA/NCEP production suite in September 2014. Ongoing experimental RAP and HRRR model development throughout 2014 and 2015 has culminated in a set of data assimilation and model enhancements that will be incorporated into the first simultaneous upgrade of both the operational RAP and HRRR that is scheduled for spring 2016 at NCEP. This presentation will discuss the operational RAP and HRRR changes contained in this upgrade. The RAP domain is being expanded to encompass the NAM domain and the forecast lengths of both the RAP and HRRR are being extended. RAP and HRRR assimilation enhancements have focused on (1) extending surface data assimilation to include mesonet observations and improved use of all surface observations through better background estimates of 2-m temperature and dewpoint including projection of 2-m temperature observations through the model boundary layer and (2) extending the use of radar observations to include both radial velocity and 3-D retrieval of rain hydrometeors from observed radar reflectivities in the warm-season. The RAP hybrid EnKF 3D-variational data assimilation will increase weighting of GFS ensemble-based background error covariance estimation and introduce this hybrid data assimilation configuration in the HRRR. Enhancement of RAP and HRRR model physics include improved land surface and boundary layer prediction using the updated Mellor-Yamada-Nakanishi-Niino (MYNN) parameterization scheme, Grell-Freitas-Olson (GFO) shallow and deep convective parameterization, aerosol-aware Thompson microphysics and upgraded Rapid Update Cycle (RUC) land-surface model. The presentation will highlight improvements in the RAP and HRRR model physics to reduce certain systematic forecast biases including a warm and dry daytime bias over the central and eastern CONUS during the warm season along with improved convective forecasts in more weakly-forced diurnally-driven events. Examples of RAP and HRRR forecast improvements will be demonstrated through both retrospective and real-time verification statistics and case-study examples.

  2. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  3. Image Processing for Planetary Limb/Terminator Extraction

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, S.; Zhu, D. Q.; Chu, C. -C.

    1995-01-01

    A novel image segmentation technique for extracting limb and terminator of planetary bodies is proposed. Conventional edge- based histogramming approaches are used to trace object boundaries. The limb and terminator bifurcation is achieved by locating the harmonized segment in the two equations representing the 2-D parameterized boundary curve. Real planetary images from Voyager 1 and 2 served as representative test cases to verify the proposed methodology.

  4. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  5. Optimal Inlet Shape Design of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the Subsonic Fixed Wing project of NASA Fundamental Aeronautics Program. In the present study, flow simulations are conducted around the N2B configuration by a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by the NPSS thermodynamic engine cycle model. The flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and airframe-propulsion integration. Adjoint-based optimal designs are then conducted for the inlet shape to minimize the airframe drag force and flow distortion at fan faces. Design surfaces are parameterized by NURBS, and the cowl lip geometry is modified by a spring analogy approach. By the drag minimization design, flow separation on the cowl surfaces are almost removed, and shock wave strength got remarkably reduced. For the distortion minimization design, a circumferential distortion indicator DPCP(sub avg) is adopted as the design objective and diffuser bottom and side wall surfaces are perturbed for the design. The distortion minimization results in a 12.5 % reduction in the objective function.

  6. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  7. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree -1 in the lowest part of the atmospheric surface layer with the form ˜ {u}* 2{k}-1, where {u}* is the surface friction velocity and k is the wavenumber. Tchen’s turbulence theory is shown to be able to predict the measured spectra of the wind velocity component parallel to the mean wind direction for eddy sizes larger than the measurement height above the ground. An amended analytical model for the near-neutral surface layer spectrum is then proposed. This model, which is applicable to the scaling of the u spectrum at all heights in the surface layer, is obtained by a combination of Kaimal’s classical spectral model for scaling the inertial subrange with Tchen’s 1953 and 1954 proposed shear production subrange theory. The shear production-amended spectral model is compared with observations of ensemble-averaged near-neutral spectra selected during a nine-month measurement period from recordings from six sonic anemometers at heights of 10, 20, 40, 60, 80, and 100 m in the meteorological tower at the test site for large wind turbines in Høvsøre, Denmark. Finally, potential applications of the new spectral model are discussed, in particular for use within the lowest one-third of the surface layer in which the production subrange component of the spectrum is most prominent. The new spectral model can supply wavenumber-resolved turbulent kinetic energies for the prediction of wind loads on buildings, bridges, and wind turbines, and its spectral parameterization can also be used for scale-dependent parameterization of, e.g., surface-released atmospheric dispersion calculations for regions close to the ground.

  8. Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.

    2016-12-01

    The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk modulus, its pressure derivative, and molar mass and volume, with particular attention paid to the (inherent) trade-offs between the different coefficients. We discuss our results in terms of added uncertainty to the light element composition of the outer core and the potential existence of anomalous structure near the outer core's boundaries.

  9. Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2014-12-01

    The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.

  10. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  11. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    PubMed Central

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  12. Comments on 'Frontogenesis in a moist semigeostrophic model'

    NASA Technical Reports Server (NTRS)

    Keyser, D.; Anthes, R. A.

    1986-01-01

    The development of narrow updrafts or jetlike features in the vertical motion field (VMF) over the leading edge of a surface frontal zone is examined on the basis of model simulations, summarizing and clarifying the results presented by Keyser and Anthes (1982) and responding to critical remarks by Mak and Bannon (1984). Typical velocity and potential-temperature cross sections are shown, and it is concluded that the inclusion of generally parameterized planetary-boundary-layer (PBL) physics in the model has a significant effect on the VMF, suggesting that frictional processes alone (without latent heating) can explain the formation of jetlike frontal updrafts. In a reply by Mak and Bannon it is argued that the increased strength of the VMF in models including PBL physics is not significant, whereas other models show that the VMF can be significantly strengthened and narrowed by condensational heating alone.

  13. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; hide

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  14. Ensemble formulation of surface fluxes and improvement in evapotranspiration and cloud parameterizations in a GCM. [General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    The influence of some modifications to the parameters of the current general circulation model (GCM) is investigated. The aim of the modifications was to eliminate strong occasional bursts of oscillations in planetary boundary layer (PBL) fluxes. Smoothly varying bulk aerodynamic friction and heat transport coefficients were found by ensemble averaging of the PBL fluxes in the current GCM. A comparison was performed of the simulations of the modified model and the unmodified model. The comparison showed that the surface fluxes and cloudiness in the modified model simulations were much more accurate. The planetary albedo in the model was also realistic. Weaknesses persisted in the models positioning of the Inter-tropical convergence zone (ICTZ) and in the temperature estimates for polar regions. A second simulation of the model following reparametrization of the cloud data showed improved results and these are described in detail.

  15. The Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiments at the Martha's Vineyard Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Edson, J. B.

    2001-12-01

    The Woods Hole Oceanographic Institution (WHOI) completed the initial phase of the Martha's Vineyard Coastal Observatory (MVCO) in July of 2001. The MVCO is being using to monitor coastal atmospheric and oceanic processes. Specifically, the observatory is expected to: - Provide continuous long-term observations for climate studies. - Provide a reliable system and rugged sensors that allow opportunistic sampling of extreme events. - Provide a local climatology for intensive, short duration field campaigns. - Further facilitate regional studies of coastal processes by providing infrastructure that supports easy access to power and data. This talk provides an example of the last two objectives using the low wind component of the Office of Naval Research's (ONR) Coupled Boundary Layers and Air-Sea Transfer (CBLAST) program. CBLAST-LOW has been designed to investigate air-sea interaction and coupled atmospheric and oceanic boundary layer dynamics at low wind speeds where the dynamic processes are driven and/or strongly modulated by thermal forcing. This effort is being carried out by scientists at WHOI, NPS, NOAA, NRL, Rutgers, UW/APL, JH/APL, OSU, NCAR, and other institutions, and includes observational and modeling components. The MVCO is providing observations and infrastructure in support of several intensive operating periods in the summers of 2001, 2002, and possibly 2003. During these periods, the observational network around the observatory was and will be greatly expanded using traditional oceanographic moorings and bottom mounted instrumentation, innovative 2- and 3-D moored and drifting arrays, survey ships, AUVs, satellite remote sensing, and heavily instrumented aircraft. In addition, the MVCO cabled components will be extended out to the 20-m isobath where we plan to deploy a 35-m tower. The tower will be instrumented from 15-m above the ocean surface to the ocean bottom with instruments capable of directly measuring the momentum, heat, and radiative fluxes in the atmospheric, oceanic, and bottom boundary layers. This tower will be directly connected to shore via the existing node at the MVCO using an additional fiber-optic-power cable. All of these measurements will be combined to obtain direct measurements of vertical fluxes (transfer) of momentum, heat and mass across the coupled boundary layers (CBLs); to map the 3-D structure of the CBLs over a range of spatial and temporal scales; to identify the processes that drive the fluxes and CBL structure; to develop and evaluate parameterizations of the flux-producing processes; and to test the mean and variance budgets for momentum, heat, mass, and kinetic energy. These measurements will also be used to evaluate and improve mesoscale models, large eddy simulations (LES), and direct numerical simulations (DNS) that will, in-turn, provide nowcasts, forecasts, and simulations of these processes to help interpret the observations. >http://www.whoi.edu/science/AOPE/dept/CBLAST/lowwind.html

  16. Performance of a TKE diffusion scheme in ECMWF IFS Single Column Model

    NASA Astrophysics Data System (ADS)

    Svensson, Jacob; Bazile, Eric; Sandu, Irina; Svensson, Gunilla

    2015-04-01

    Numerical Weather Prediction models (NWP) as well as climate models are used for decision making on all levels in society and their performance and accuracy are of great importance for both economical and safety reasons. Today's extensive use of weather apps and websites that directly uses model output even more highlights the importance of realistic output parameters. The turbulent atmospheric boundary layer (ABL) includes many physical processes which occur on a subgrid scale and need to be parameterized. As the absolute major part of the biosphere is located in the ABL, it is of great importance that these subgrid processes are parametrized so that they give realistic values of e.g. temperature and wind on the levels close to the surface. GEWEX (Global Energy and Water Exchange Project) Atmospheric Boundary Layer Study (GABLS), has the overall objective to improve the understanding and the representation of the atmospheric boundary layers in climate models. The study has pointed out that there is a need for a better understanding and representation of stable atmospheric boundary layers (SBL). Therefore four test cases have been designed to highlight the performance of and differences between a number of climate models and NWP:s in SBL. In the experiments, most global NWP and climate models have shown to be too diffusive in stable conditions and thus give too weak temperature gradients, too strong momentum mixing and too weak ageostrophic Ekman flow. The reason for this is that the models need enhanced diffusion to create enough friction for the large scale weather systems, which otherwise would be too fast and too active. In the GABLS test cases, turbulence schemes that use Turbulent Kinetic Energy (TKE) have shown to be more skilful than schemes that only use stability and gradients. TKE as a prognostic variable allows for advection both vertically and horizontally and gives a "memory" from previous time steps. Therefore, e.g. the ECMWF-GABLS workshop in 2011 recommended a move for global NWP models towards a TKE scheme. Here a comparison between a TKE diffusion scheme (based on the implementation in the ARPEGE model by Meteo France) is compared to ECMWF:s IFS operational first-order scheme and to a less diffusive version, using a single column version of ECMWF:s IFS model. Results from the test cases GABLS 1, 3 and 4 together with the Diurnal land/atmosphere coupling experiment (DICE) are presented.

  17. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  18. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  19. Explicit modeling of marine biogeochemical influence on primary sea spray aerosol composition, and cloud impacts

    NASA Astrophysics Data System (ADS)

    Burrows, S. M.; Elliott, S.; Liu, X.; Ogunro, O. O.; Easter, R. C.; Rasch, P. J.

    2013-12-01

    Aerosol concentrations and their cloud nucleation activity in remote ocean regions represent an important uncertainty in current models of global climate. In particular, the impact of marine biological activity on the primary submicron sea spray aerosol is not yet fully understood, and existing knowledge has not yet been fully integrated into climate modeling efforts. We present recent results addressing two aspects of this problem. First, we present an estimate of the concentrations of ice-nucleation active particles derived from ocean biological material, and show that these may dominate IN concentrations in the remote marine boundary layer, particularly over the Southern Ocean. (Burrows et al., ACP, 2013a) Second, we present a novel framework for parameterizing the fractionation of marine organic matter into sea spray. The framework models aerosol organic enrichment as resulting from Langmuir adsorption of surface-active macromolecules at the surface of bursting bubbles. Distributions of macromolecular classes are estimated using output from a global marine biogeochemistry model (Burrows et al., in prep, 2013b; Elliott et al., submitted, 2013). The proposed parameterization independently produces relationships between chlorophyll-a and the sea spray organic mass fraction that are similar to existing empirical parameterizations in highly productive bloom regions, but which differ between seasons and ocean regions as a function of ocean biogeochemical variables. Future work should focus on further evaluating and improving the parameterization based on laboratory and field experiments, as well as on further investigation of the atmospheric implications of the predicted sea spray aerosol chemistry. Field experiments in the Southern Ocean and other remote ocean locations would be especially valuable in evaluating and improving these parameterizations. Burrows, S. M., Hoose, C., Pöschl, U., and Lawrence, M. G.: Ice nuclei in marine air: biogenic particles or dust?, Atmos. Chem. Phys., 13, 245-267, doi:10.5194/acp-13-245-2013, 2013a. Burrows, S. M., Elliott, S., Ogunro, O. and Rasch, P.: A framework for modeling the organic fractionation of the sea spray aerosol, in prep., 2013b. Elliott, S., S. Burrows, C. Deal, X. Liu, M. Long, O. Oluwaseun, L. Russell, and O. Wingenter, Prospects for the simulation of macromolecular surfactant chemistry in the ocean-atmosphere, submitted, 2013b.

  20. High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2): Large Eddy Simulation Study Over Germany

    NASA Astrophysics Data System (ADS)

    Dipankar, A.; Stevens, B. B.; Zängl, G.; Pondkule, M.; Brdar, S.

    2014-12-01

    The effect of clouds on large scale dynamics is represented in climate models through parameterization of various processes, of which the parameterization of shallow and deep convection are particularly uncertain. The atmospheric boundary layer, which controls the coupling to the surface, and which defines the scale of shallow convection, is typically 1 km in depth. Thus, simulations on a O(100 m) grid largely obviate the need for such parameterizations. By crossing this threshold of O(100m) grid resolution one can begin thinking of large-eddy simulation (LES), wherein the sub-grid scale parameterization have a sounder theoretical foundation. Substantial initiatives have been taken internationally to approach this threshold. For example, Miura et al., 2007 and Mirakawa et al., 2014 approach this threshold by doing global simulations, with (gradually) decreasing grid resolution, to understand the effect of cloud-resolving scales on the general circulation. Our strategy, on the other hand, is to take a big leap forward by fixing the resolution at O(100 m), and gradually increasing the domain size. We believe that breaking this threshold would greatly help in improving the parameterization schemes and reducing the uncertainty in climate predictions. To take this forward, the German Federal Ministry of Education and Research has initiated a project on HD(CP)2 that aims for a limited area LES at resolution O(100 m) using the new unified modeling system ICON (Zängl et al., 2014). In the talk, results from the HD(CP)2 evaluation simulation will be shown that targets high resolution simulation over a small domain around Jülich, Germany. This site is chosen because high resolution HD(CP)2 Observational Prototype Experiment took place in this region from 1.04.2013 to 31.05.2013, in order to critically evaluate the model. Nesting capabilities of ICON is used to gradually increase the resolution from the outermost domain, which is forced from the COSMO-DE data, to the innermost and finest resolution domain centered around Jülich (see Fig. 1 top panel). Furthermore, detailed analyses of the simulation results against the observation data will be presented. A reprsentative figure showing time series of column integrated water vapor (IWV) for both model and observation on 24.04.2013 is shown in bottom panel of Fig. 1.

  1. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  2. Design-Optimization Of Cylindrical, Layered Composite Structures Using Efficient Laminate Parameterization

    NASA Astrophysics Data System (ADS)

    Monicke, A.; Katajisto, H.; Leroy, M.; Petermann, N.; Kere, P.; Perillo, M.

    2012-07-01

    For many years, layered composites have proven essential for the successful design of high-performance space structures, such as launchers or satellites. A generic cylindrical composite structure for a launcher application was optimized with respect to objectives and constraints typical for space applications. The studies included the structural stability, laminate load response and failure analyses. Several types of cylinders (with and without stiffeners) were considered and optimized using different lay-up parameterizations. Results for the best designs are presented and discussed. The simulation tools, ESAComp [1] and modeFRONTIER [2], employed in the optimization loop are elucidated and their value for the optimization process is explained.

  3. New Layer Thickness Parameterization of Diffusive Convection

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Lu, Yuan-Zheng; Guo, Shuang-Xi; Song, Xue-Long; Qu, Ling; Cen, Xian-Rong; Fer, Ilker

    2017-11-01

    Double-diffusion convection is one of the most important non-mechanically driven mixing processes. Its importance has been particular recognized in oceanography, material science, geology, and planetary physics. Double-diffusion occurs in a fluid in which there are gradients of two (or more) properties with different molecular diffusivities and of opposing effects on the vertical density distribution. It has two primary modes: salt finger and diffusive convection. Recently, the importance of diffusive convection has aroused more interest due to its impact to the diapycnal mixing in the interior ocean and the ice and the ice-melting in the Arctic and Antarctic Oceans. In our recent work, we constructed a length scale of energy-containing eddy and proposed a new layer thickness parameterization of diffusive convection by using the laboratory experiment and in situ observations in the lakes and oceans. The new parameterization can well describe the laboratory convecting layer thicknesses (0.01 0.1 m) and those observed in oceans and lakes (0.1 1000 m). This work was supported by China NSF Grants (41476167,41406035 and 41176027), NSF of Guangdong Province, China (2016A030311042) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030302).

  4. Turbulent Combustion Study of Scramjet Problem

    DTIC Science & Technology

    2015-08-01

    boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and

  5. Development and evaluation of an ammonia bidirectional flux parameterization for air quality models

    NASA Astrophysics Data System (ADS)

    Pleim, Jonathan E.; Bash, Jesse O.; Walker, John T.; Cooter, Ellen J.

    2013-05-01

    is an important contributor to particulate matter in the atmosphere and can significantly impact terrestrial and aquatic ecosystems. Surface exchange between the atmosphere and biosphere is a key part of the ammonia cycle. New modeling techniques are being developed for use in air quality models that replace current ammonia emissions from fertilized crops and ammonia dry deposition with a bidirectional surface flux model including linkage to a detailed biogeochemical and farm management model. Recent field studies involving surface flux measurements over crops that predominate in North America have been crucial for extending earlier bidirectional flux models toward more realistic treatment of NH3 fluxes for croplands. Comparisons of the ammonia bidirection flux algorithm to both lightly fertilized soybeans and heavily fertilized corn demonstrate that the model can capture the magnitude and dynamics of observed ammonia fluxes, both net deposition and evasion, over a range of conditions with overall biases on the order of the uncertainty of the measurements. However, successful application to the field experiment in heavily fertilized corn required substantial modification of the model to include new parameterizations for in-soil diffusion resistance, ground quasi-laminar boundary layer resistance, and revised cuticular resistance that is dependent on in-canopy NH3 concentration and RH at the leaf surface. This new bidirectional flux algorithm has been incorporated in an air quality modeling system, which also includes an implementation of a soil nitrification model.

  6. Aerosol optical properties in the southeastern United States in summer - Part 1: Hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N. L.; Anderson, B. E.; Attwood, A. R.; Beyersdorf, A.; Campuzano-Jost, P.; Carlton, A. G.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Ng, N. L.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Washenfelder, R. A.; Welti, A.; Xu, L.; Ziemba, L. D.; Murphy, D. M.

    2015-09-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made during May-September 2013 in the southeastern United States (US) under fair-weather, afternoon conditions with well-defined planetary boundary layer structure. Optical extinction at 532 nm was directly measured at three relative humidities and compared with extinction calculated from measurements of aerosol composition and size distribution using the κ-Köhler approximation for hygroscopic growth. Using this approach, the hygroscopicity parameter κ for the organic fraction of the aerosol must have been < 0.10 to be consistent with 75 % of the observations within uncertainties. This subsaturated κ value for the organic aerosol in the southeastern US is consistent with several field studies in rural environments. We present a new parameterization of the change in aerosol extinction as a function of relative humidity that better describes the observations than does the widely used power-law (gamma, γ) parameterization. This new single-parameter κext formulation is based upon κ-Köhler and Mie theories and relies upon the well-known approximately linear relationship between particle volume (or mass) and optical extinction (Charlson et al., 1967). The fitted parameter, κext, is nonlinearly related to the chemically derived κ parameter used in κ-Köhler theory. The values of κext we determined from airborne measurements are consistent with independent observations at a nearby ground site.

  7. Structure of the Madden-Julian oscillation in coupled and uncoupled versions of the superparameterized community atmosphere model

    NASA Astrophysics Data System (ADS)

    Benedict, James J.

    The Madden-Julian Oscillation (MJO), an eastward-propagating atmospheric disturbance resembling a transient Walker cell, dominates intraseasonal (20--100 days) variability in the tropical Indian and West Pacific Ocean regions. The phenomenon is most active during the Northern Hemisphere winter and is characterized by cyclic periods of suppressed (dry phase) and active (wet phase) cloudiness and precipitation. Numerous complexities---multi-scale interactions of moist convection and large-scale wave dynamics, air-sea fluxes and feedbacks, topographical impacts, and tropical-extratropical interactions---challenge our ability to fully understand the MJO and result in its poor representation in most current general circulation models (GCMs). This study examines the representation of the MJO in a modified version of the NCAR Community Atmosphere Model (CAM). The modifications involve substituting conventional boundary layer, turbulence, and cloud parameterizations with a configuration of cloud-resolving models (CRMs) embedded into each GCM grid cell in a technique termed "superparameterization" (SP). Unlike many GCMs including the standard CAM, the SP-CAM displays robust intraseasonal convective variability. Two SP-CAM simulations are utilized in this study: one forced by observed sea-surface temperatures (SSTs; "uncoupled") and a second identical to the first except for a new treatment of tropical SSTs in which a simplified mixed-layer ocean model is used to predict SST anomalies that are coupled to the atmosphere ("coupled"). Key physical features of the MJO are captured in the uncoupled SP-CAM. Ahead (east) of the disturbance there is meridional boundary layer moisture convergence and a vertical progression of warmth, moisture, and convective heating from the lower to upper troposphere. The space-time dynamical response to convective heating is also reproduced, especially the vertical structure of anomalous westerly wind and its migration into the region of heavy rainfall as the disturbance propagates eastward. Advective drying processes in the MJO wake are also represented well. The coupled SP-CAM shows more realistic MJO eastward propagation, signal coherence and spatial structure relative to the uncoupled SP-CAM. The improvement varies with longitude but generally stems from better space-time relationships among MJO convective heating, its dynamical response, SSTs, surface fluxes, boundary layer properties, and vertical moisture structure. Coupled MJO events in the Indian Ocean display more realistic intensity; in the West Pacific, the coupled SP-CAM overestimates convective strength but shows an improved vertical structure relative to the uncoupled SP-CAM. Biases related to MJO convection are also examined. Overestimated convective intensity in the West Pacific appears to be linked to basic state biases, Maritime Continent topographical impacts, unrealistic convection-wind-evaporation feedbacks, and the neglect of convective momentum transport in the model. Phase errors between observed and simulated boundary layer moisture appear to stem from an unrealistic representation of shallow cumuli.

  8. Sensitivity of the forecast skill to the combination of physical parameterizations in the WRF/Chem model: A study in the Metropolitan Region of São Paulo (MRSP)

    NASA Astrophysics Data System (ADS)

    Silva Junior, R. S.; Rocha, R. P.; Andrade, M. F.

    2007-05-01

    The Planetary Boundary Layer (PBL) is the region of the atmosphere that suffers the direct influence of surface processes and the evolution of their characteristics during the day is of great importance for the pollutants dispersion. The aim of the present work is to analyze the most efficient combination of PBL, cumulus convection and cloud microphysics parameterizations for the forecast of the vertical profile of wind speed over Metropolitan Region of São Paulo (MRSP) that presents serious problems of atmospheric pollution. The model used was the WRF/Chem that was integrated for 48 h forecasts during one week of observational experiment that take place in the MRSP during October-November of 2006. The model domain has 72 x 48 grid points, with 18 km of resolution, centered in the MRSP. Considering a mixed-physics ensemble approach the forecasts used a combination of the parameterizations: (a) PBL the schemes of Mellor-Yamada-Janjic (MYJ) and Yonsei University Scheme (YSU); (b) cumulus convections schemes of Grell-Devenyi ensemble (GDE) and Betts-Miller-Janjic (BMJ); (c) cloud microphysics schemes of Purdue Lin (MPL) and NCEP 5-class (MPN). The combinations tested were the following: MYJ-BMJ-MPL, MYJ-BMJ-MPN, MYJ-GDE-MPL, MYJ-GDE-MPN, YSU-BMJ-MPL, YSU-BMJ-MPN, YSU-GDE-MPL, YSU-GDE-MPN, i.e., a set of 8 previsions for day. The model initial and boundary conditions was obtained of the AVN-NCEP model. Besides this data set, the MRSP observed soundings were used to verify the WRF results. The statistical analysis considered the correlation coefficient, root mean square error, mean error between forecasts and observed wind profiles. The results showed that the most suitable combination is the YSU-GDE-MPL. This can be associated to the GDE cumulus convection scheme, which takes into consideration the entrainment process in the clouds, and also the MPL scheme that considers a larger number of classes of water phase, including the ice and mixed phases. For PBL the YSU presents the better approaches to represent the wind speed, where the atmospheric gradients are stronger and the atmosphere is less mixed.

  9. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  10. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  11. A Minimal Three-Dimensional Tropical Cyclone Model.

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyan; Smith, Roger K.; Ulrich, Wolfgang

    2001-07-01

    A minimal 3D numerical model designed for basic studies of tropical cyclone behavior is described. The model is formulated in coordinates on an f or plane and has three vertical levels, one characterizing a shallow boundary layer and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale. The subgrid-scale schemes are based on the mass-flux models suggested by Arakawa and Ooyama in the late 1960s, but modified to include the effects of precipitation-cooled downdrafts. They differ from one another in the closure that determines the cloud-base mass flux. One closure is based on the assumption of boundary layer quasi-equilibrium proposed by Raymond and Emanuel.It is shown that a realistic hurricane-like vortex develops from a moderate strength initial vortex, even when the initial environment is slightly stable to deep convection. This is true for all three cumulus schemes as well as in the case where only the explicit release of latent heat is included. In all cases there is a period of gestation during which the boundary layer moisture in the inner core region increases on account of surface moisture fluxes, followed by a period of rapid deepening. Precipitation from the convection scheme dominates the explicit precipitation in the early stages of development, but this situation is reversed as the vortex matures. These findings are similar to those of Baik et al., who used the Betts-Miller parameterization scheme in an axisymmetric model with 11 levels in the vertical. The most striking difference between the model results using different convection schemes is the length of the gestation period, whereas the maximum intensity attained is similar for the three schemes. The calculations suggest the hypothesis that the period of rapid development in tropical cyclones is accompanied by a change in the character of deep convection in the inner core region from buoyantly driven, predominantly upright convection to slantwise forced moist ascent.

  12. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    NASA Astrophysics Data System (ADS)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2017-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.

  13. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    NASA Astrophysics Data System (ADS)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2016-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.

  14. Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region

    NASA Astrophysics Data System (ADS)

    Tateo, Andrea; Marcello Miglietta, Mario; Fedele, Francesca; Menegotto, Micaela; Monaco, Alfonso; Bellotti, Roberto

    2017-04-01

    The Weather Research and Forecasting mesoscale model (WRF) was used to simulate hourly 10 m wind speed and direction over the city of Taranto, Apulia region (south-eastern Italy). This area is characterized by a large industrial complex including the largest European steel plant and is subject to a Regional Air Quality Recovery Plan. This plan constrains industries in the area to reduce by 10 % the mean daily emissions by diffuse and point sources during specific meteorological conditions named wind days. According to the Recovery Plan, the Regional Environmental Agency ARPA-PUGLIA is responsible for forecasting these specific meteorological conditions with 72 h in advance and possibly issue the early warning. In particular, an accurate wind simulation is required. Unfortunately, numerical weather prediction models suffer from errors, especially for what concerns near-surface fields. These errors depend primarily on uncertainties in the initial and boundary conditions provided by global models and secondly on the model formulation, in particular the physical parametrizations used to represent processes such as turbulence, radiation exchange, cumulus and microphysics. In our work, we tried to compensate for the latter limitation by using different Planetary Boundary Layer (PBL) parameterization schemes. Five combinations of PBL and Surface Layer (SL) schemes were considered. Simulations are implemented in a real-time configuration since our intention is to analyze the same configuration implemented by ARPA-PUGLIA for operational runs; the validation is focused over a time range extending from 49 to 72 h with hourly time resolution. The assessment of the performance was computed by comparing the WRF model output with ground data measured at a weather monitoring station in Taranto, near the steel plant. After the analysis of the simulations performed with different PBL schemes, both simple (e.g. average) and more complex post-processing methods (e.g. weighted average, linear and nonlinear regression, and artificial neural network) are adopted to improve the performances with respect to the output of each single setup. The neural network approach comes out as the most promising method.

  15. Icehouse Effect: A Selective Arctic Cooling Trend Current Models are Missing

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The icehouse effect is a hypothesized climate feedback mechanism which could result in human-caused surface cooling trends in polar regions. Once understood in detail, it becomes apparent that these trends, which are discernable in the literature, but have been largely dismissed, do not conflict with the consensus assessment of the evidence, which infers century-scale Arctic warming. In fact, confirmation of the hypothesis would substantially strengthen the argument that there is a detectable human influence on today's climate. This apparent enigma is resolved only through careful attention to the detail of the hypothesis and the data supporting it. The posited surface cooling is entirely dependent on the existence of climate warming in layers capping the stable boundary layer. Also, the cooling is not pandemic, but is selective. It is readily revealed in properly sorted data by making use of the principles of micrometeorological similarity. Specifically, the cooling is manifest under a range of favorable turbulence conditions which can develop and disappear locally on time scales of minutes to hours because of the intrinsically intermittent nature of stable boundary layer turbulence. Because of the fine-scale nature of the processes which produce the cooling, modeling it is a difficult proposition. Vertical resolution on the order of 1 meter is required. Adequate models of intermittent surface fluxes coupled with radiation exchange do not currently exist, not as parameterizations for aggregated systems, nor in large eddy simulation (LES) models. This presentation will introduce the theory. An important testable null hypothesis emerges: the icehouse effect produces a unique signature or "fingerprint" which could not be produced by any other known process. The presence of this signature will be demonstrated using nearly all available Arctic temperature observations. Its aggregate effect is clearly found in Arctic monthly surface temperature trends when sorted by climatological stability. Using all available Arctic rawinsonde ascents - about 1.1 million profiles, "frozen moments" of the icehouse processes are captured in various states. Because turbulent time scales are so short in the stable boundary layer. each of these snapshots can be treated as independent -- their chronology is irrelevant. Micrometeorological similarity is invoked to reassemble the soundings into bins of similar stability and it is in a wide, coherent range of these stability bins where the cooling effect is revealed.

  16. Evaluation of surface layer flux parameterizations using in-situ observations

    NASA Astrophysics Data System (ADS)

    Katz, Jeremy; Zhu, Ping

    2017-09-01

    Appropriate calculation of surface turbulent fluxes between the atmosphere and the underlying ocean/land surface is one of the major challenges in geosciences. In practice, the surface turbulent fluxes are estimated from the mean surface meteorological variables based on the bulk transfer model combined with the Monnin-Obukhov Similarity (MOS) theory. Few studies have been done to examine the extent to which such a flux parameterization can be applied to different weather and surface conditions. A novel validation method is developed in this study to evaluate the surface flux parameterization using in-situ observations collected at a station off the coast of Gulf of Mexico. The main findings are: (a) the theoretical prediction that uses MOS theory does not match well with those directly computed from the observations. (b) The largest spread in exchange coefficients is shown in strong stable conditions with calm winds. (c) Large turbulent eddies, which depend strongly on the mean flow pattern and surface conditions, tend to break the constant flux assumption in the surface layer.

  17. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  18. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  19. CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region.

    PubMed

    Deng, Min; Mace, Gerald G; Wang, Zhien; Berry, Elizabeth

    2015-12-16

    The CloudSat 2C-ICE data product is derived from a synergetic ice cloud retrieval algorithm that takes as input a combination of CloudSat radar reflectivity ( Z e ) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation lidar attenuated backscatter profiles. The algorithm uses a variational method for retrieving profiles of visible extinction coefficient, ice water content, and ice particle effective radius in ice or mixed-phase clouds. Because of the nature of the measurements and to maintain consistency in the algorithm numerics, we choose to parameterize (with appropriately large specification of uncertainty) Z e and lidar attenuated backscatter in the regions of a cirrus layer where only the lidar provides data and where only the radar provides data, respectively. To improve the Z e parameterization in the lidar-only region, the relations among Z e , extinction, and temperature have been more thoroughly investigated using Atmospheric Radiation Measurement long-term millimeter cloud radar and Raman lidar measurements. This Z e parameterization provides a first-order estimation of Z e as a function extinction and temperature in the lidar-only regions of cirrus layers. The effects of this new parameterization have been evaluated for consistency using radiation closure methods where the radiative fluxes derived from retrieved cirrus profiles compare favorably with Clouds and the Earth's Radiant Energy System measurements. Results will be made publicly available for the entire CloudSat record (since 2006) in the most recent product release known as R05.

  20. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.

    NASA Astrophysics Data System (ADS)

    Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.

    2017-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF demonstrated that CF is improved if SHOC is provided with correct variances of total water and MSE. Consequently, SHOC was modified to include two new prognostic equations for variances of total water and MSE, and coupled with the Chikira-Sugiyama parameterization of deep convection to include effects of detrainment on the prognostic variances.

  1. Bias Reduction as Guidance for Developing Convection and Cloud Parameterization in GFDL AM4/CM4

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Held, I.; Golaz, C.

    2016-12-01

    The representations of moist convection and clouds are challenging in global climate models and they are known to be important to climate simulations at all spatial and temporal scales. Many climate simulation biases can be traced to deficiencies in convection and cloud parameterizations. I will present some key biases that we are concerned about and the efforts that we have made to reduce the biases during the development of NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) new generation global climate model AM4/CM4. In particular, I will present a modified version of the moist convection scheme that is based on the University of Washington Shallow Cumulus scheme (UWShCu, Bretherton et. al 2004). The new scheme produces marked improvement in simulation of the Madden-Julian Oscillation (MJO) and the El Niño-Southern Oscillation (ENSO) compared to that used in AM3 and HIRAM. AM4/CM4 also produces high quality simulation of global distribution of cloud radiative effects and the precipitation with realistic mean climate state. This differs from models of improved MJO but with a much deteriorated mean state. The modifications to the UWShCu include an additional bulk plume for representing deep convection. The entrainment rate in the deep plume is parameterized to be a function of column-integrated relative humidity. The deep convective closure is based on relaxation of the convective available potential energy (CAPE) or cloud work function. The plumes' precipitation efficiency is optimized for better simulations of the cloud radiative effects. Precipitation re-evaporation is included in both shallow and deep plumes. In addition, a parameterization of convective gustiness is included with an energy source driven by cold pool derived from precipitation re-evaporation within the boundary layer and energy sink due to dissipation. I will present the motivations of these changes which are driven by reducing some aspects of the AM4/CM4 biases. Finally, I will also present the biases in current AM4/CM4 and challenges to further reduce them.

  2. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  3. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  4. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  5. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  6. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  7. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  8. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  9. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  10. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well-constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (N a). These terms are further parameterized, and by assuming that on seasonal timescales N a is in steady state, the budget equation is rearranged to form a diagnostic equation for Nmore » a based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter N a concentrations are made using the simplified steady-state model and seasonal mean observed variables, and are found to match well with the observed N a. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g. precipitation rate, free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in N a, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.« less

  11. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    DOE PAGES

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; ...

    2018-01-21

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well-constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (N a). These terms are further parameterized, and by assuming that on seasonal timescales N a is in steady state, the budget equation is rearranged to form a diagnostic equation for Nmore » a based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter N a concentrations are made using the simplified steady-state model and seasonal mean observed variables, and are found to match well with the observed N a. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g. precipitation rate, free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in N a, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.« less

  12. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    NASA Astrophysics Data System (ADS)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward

    2018-01-01

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.

  13. Integrated Modelling in CRUCIAL Science Education

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and discussed.

  14. Modeling the diurnal cycle of carbon monoxide: Sensitivity to physics, chemistry, biology, and optics

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand

    1996-05-01

    As carbon monoxide within the oceanic surface layer is produced by solar radiation, diluted by mixing, consumed by biota, and outgassed to the atmosphere, it exhibits a diurnal cycle. The effect of dilution and mixing on this cycle is examined using a simple model for production and consumption, coupled to three different mixed layer models. The magnitude and timing of the peak concentration, the magnitude of the average concentration, and the air-sea flux are considered. The models are run through a range of heating and wind stress and compared to experimental data reported by Kettle [1994]. The key to the dynamics is the relative size of four length scales; Dmix, the depth to which mixing occurs over the consumption time; L, the length scale over which production occurs; Lout, the depth to which the mixed layer is ventilated over the consumption time; and Lcomp, the depth to which the diurnal production can maintain a concentration in equilibrium with the atmosphere. If Dmix ≫ L, the actual model parameterization can be important. If the mixed layer is maintained by turbulent diffusion, Dmix can be substantially less than the mixed layer depth. If the mixed layer is parameterized as a homogeneous slab, Dmix is equivalent to the mixed layer depth. If Dmix > Lout, production is balanced by consumption rather than outgassing. The ratio between Dmix and Lcomp determines whether the ocean is a source or a sink for CO. The main thermocline depth H sets an upper limit for Dmix and hence Dmix/L, Dmix/Lout, and Dmix/Lcomp. The models are run to simulate a single day of observations. The mixing parameterization is shown to be very important, with a model which mixes using small-scale diffusion, producing markedly larger surface concentrations than models which homogenize the mixed layer completely and instantaneously.

  15. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  16. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  17. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

  18. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  19. A Comprehensive Analysis of Clouds, Radiation, and Precipitation in the North Pacific ITCZ in the NASA GISS ModelE GCM and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Stanfield, Ryan Evan

    Global circulation/climate models (GCMs) remain as an invaluable tool to predict future potential climate change. To best advise policy makers, assessing and increasing the accuracy of climate models is paramount. The treatment of clouds, radiation and precipitation in climate models and their associated feedbacks have long been one of the largest sources of uncertainty in predicting any potential future climate changes. Three versions of the NASA GISS ModelE GCM (the frozen CMIP5 version [C5], a post-CMIP5 version with modifications to cumulus and boundary layer turbulence parameterizations [P5], and the most recent version of the GCM which builds on the post-CMIP5 version with further modifications to convective cloud ice and cold pool parameterizations [E5]) have been compared with various satellite observations to analyze how recent modifications to the GCM has impacted cloud, radiation, and precipitation properties. In addition to global comparisons, two areas are showcased in regional analyses: the Eastern Pacific Northern ITCZ (EP-ITCZ), and Indonesia and the Western Pacific (INDO-WP). Changes to the cumulus and boundary layer turbulence parameterizations in the P5 version of the GCM have improved cloud and radiation estimations in areas of descending motion, such as the Southern Mid-Latitudes. Ice particle size and fall speed modifications in the E5 version of the GCM have decreased ice cloud water contents and cloud fractions globally while increasing precipitable water vapor in the model. Comparisons of IWC profiles show that the GCM simulated IWCs increase with height and peak in the upper portions of the atmosphere, while 2C-ICE observations peak in the lower levels of the atmosphere and decrease with height, effectively opposite of each other. Profiles of CF peak at lower heights in the E5 simulation, which will potentially increase outgoing longwave radiation due to higher cloud top temperatures, which will counterbalance the decrease in reflected shortwave associated with lower CFs and the thinner optical depths associated with decreased IWC and LWC in the E5 simulation. Vertical motion within the newest E5 simulation is greatly weakened over the EP-ITCZ region, potentially due to atmospheric loading from enhanced ice particle fall speeds. Comparatively, E5 simulated upward motion in the INDO-WP is stronger than its predecessors. Changes in the E5 simulation have resulted in stronger/weaker upward motion over the ocean/land in the INDO-WP region in comparison with both the C5 and P5 predecessors. Multimodel precipitation analysis shows that most of the GCMs tend to produce a wider ITCZ with stronger precipitation compared to GPCP and TRMM precipitation products. E5-simulated precipitation decreases and shifts Southward over the Easter Pacific ITCZ, which warrants further investigation into meridional heat transport and radiation fields.

  20. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  1. Practical calculation of laminar and turbulent bled-off boundary layers

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1978-01-01

    Bleed-off of boundary layer material is shown to be an effective means for reducing drag by conserving the laminar boundary layer and preventing separation of the turbulent boundary layer. The case in which the two effects of bleed-off overlap is examined. Empirical methods are extended to the case of bleed-off. Laminar and turbulent boundary layers are treated simultaneously and the approximation differential equations are solved without an uncertain error. The case without bleed-off is also treated.

  2. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  3. Parameterization of Shortwave Cloud Optical Properties for a Mixture of Ice Particle Habits for use in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Based on the single-scattering optical properties pre-computed with an improved geometric optics method, the bulk absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the effective particle size of a mixture of ice habits, the ice water amount, and spectral band. The parameterization has been applied to computing fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. It is found that flux calculations are not overly sensitive to the assumed particle habits if the definition of the effective particle size is consistent with the particle habits that the parameterization is based. Otherwise, the error in the flux calculations could reach a magnitude unacceptable for climate studies. Different from many previous studies, the parameterization requires only an effective particle size representing all ice habits in a cloud layer, but not the effective size of individual ice habits.

  4. Anisotropic shear dispersion parameterization for ocean eddy transport

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor

    2015-11-01

    The effects of mesoscale eddies are universally treated isotropically in global ocean general circulation models. However, observations and simulations demonstrate that the mesoscale processes that the parameterization is intended to represent, such as shear dispersion, are typified by strong anisotropy. We extend the Gent-McWilliams/Redi mesoscale eddy parameterization to include anisotropy and test the effects of varying levels of anisotropy in 1-degree Community Earth System Model (CESM) simulations. Anisotropy has many effects on the simulated climate, including a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, impacts on the meridional overturning circulation and ocean energy and tracer uptake, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. A process-based parameterization to approximate the effects of unresolved shear dispersion is also used to set the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.

  5. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  6. Wind Shear Effects on the Structure and Dynamics of the Daytime Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Haghshenas, Armin; Mellado, Juan Pedro

    2017-04-01

    The daytime atmospheric boundary layer (ABL), in which the positive buoyancy flux at the surface creates convective instability and generates turbulence, has been a subject of extensive research during the last century. However, fewer studies have considered wind shear in detail and most of them are single-case studies. So most of the available theories and parameterizations have not been sufficiently tested over a wide range of atmospheric conditions. Moreover, since previous numerical studies were mostly carried out by large eddy simulation, a complete understanding of the physics of the problem is still missing due to the lack of information about the small-scale dynamics. Specifically, despite the consensus in the community that wind shear enhances the entrainment process, the amount of enhancement is still matter of contention. In order to investigate the effects of wind shear on the structure and dynamics of the ABL in detail, direct numerical simulations are used in this study. Shear is prescribed by a height-constant velocity in the troposphere and the simulation runs until a fully turbulent, quasi-equilibrium regime is observed. Despite the simplification of neglecting the Coriolis force, our configuration reproduces the main features observed in the previous studies, which had taken the Coriolis force into account. As a novelty compared to previous single-case studies, we introduce a dimensionless parameter that allows us to study systematically any combination of surface buoyancy flux, buoyancy stratification, and wind shear; We refer to this dimensionless number as shear number. Seven simulations with shear numbers ranging from 0 (no wind) to 20 (moderate wind) are conducted; this range of shear numbers corresponds to wind strength from 0 to 15 m/s in the free troposphere for typical midday atmospheric conditions. In general, we find that shear effects are negligibly small when the shear number is below 10, and for larger values the effects remain constrained inside the entrainment zone and surface layer. This critical shear number is justified by scrutinizing the turbulence regimes (convective and mechanical) within the entrainment zone in the sense that, for this shear number, the turbulence transport of turbulence kinetic energy inside the entrainment zone equals the shear-production rate. Following this analysis a critical flux Richardson number of 0.6 inside the entrainment zone is found. In particular, we observe the following: First, the mean buoyancy and total buoyancy flux inside the mixed layer remain invariant under a change of shear number and they follow the free-convection scaling laws. Second, the height of minimum buoyancy flux increases due to shear effects, but just moderately (less than 5%). Nevertheless, this increment represents a growth of entrainment zone's thickness by 50% for shear numbers of the order of 20. Third, we observe that for shear numbers larger than 10, the entrainment flux ratio grows by up to 50% in an early state of ABL development. We provide explicit parameterizations of all these shear effects.

  7. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    NASA Astrophysics Data System (ADS)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm. Considering the different relationships between T2m and LST for different land types enable us to improve better parameterization for determination of the best non-linear relation between LST and T2m over Berlin during day and nighttime. The results of the study will be presented and discussed.

  8. Prediction of turbulent shear layers in turbomachines

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1974-01-01

    The characteristics of turbulent shear layers in turbomachines are compared with the turbulent boundary layers on airfoils. Seven different aspects are examined. The limits of boundary layer theory are investigated. Boundary layer prediction methods are applied to analysis of the flow in turbomachines.

  9. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    NASA Astrophysics Data System (ADS)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  10. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  11. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  12. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  13. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  14. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  15. Characterization of unsaturated zone hydrogeologic units using matrix properties and depositional history in a complex volcanic environment

    USGS Publications Warehouse

    Flint, Lorraine E.; Buesch, David C.; Flint, Alan L.

    2006-01-01

    Characterization of the physical and unsaturated hydrologic properties of subsurface materials is necessary to calculate flow and transport for land use practices and to evaluate subsurface processes such as perched water or lateral diversion of water, which are influenced by features such as faults, fractures, and abrupt changes in lithology. Input for numerical flow models typically includes parameters that describe hydrologic properties and the initial and boundary conditions for all materials in the unsaturated zone, such as bulk density, porosity, and particle density, saturated hydraulic conductivity, moisture-retention characteristics, and field water content. We describe an approach for systematically evaluating the site features that contribute to water flow, using physical and hydraulic data collected at the laboratory scale, to provide a representative set of physical and hydraulic parameters for numerically calculating flow of water through the materials at a site. An example case study from analyses done for the heterogeneous, layered, volcanic rocks at Yucca Mountain is presented, but the general approach for parameterization could be applied at any site where depositional processes follow deterministic patterns. Hydrogeologic units at this site were defined using (i) a database developed from 5320 rock samples collected from the coring of 23 shallow (<100 m) and 10 deep (500–1000 m) boreholes, (ii) lithostratigraphic boundaries and corresponding relations to porosity, (iii) transition zones with pronounced changes in properties over short vertical distances, (iv) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (v) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. Model parameters developed in this study, and the relation of flow properties to porosity, can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.

  16. Evaluation of snow and frozen soil parameterization in a cryosphere land surface modeling framework in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, J.

    2017-12-01

    Snow and frozen soil are important components in the Tibetan Plateau, and influence the water cycle and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new cryosphere land surface model (LSM) with coupled snow and frozen soil parameterization was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  17. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  18. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  19. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  20. Skin-Friction Measurements at Subsonic and Transonic Mach Numbers with Embedded-Wire Gages

    DTIC Science & Technology

    1981-01-01

    Model ................................... 17 9. Boundary-Layer Rake Installation on EBOR Model...boundary-layer total pressure rake eliminates this bulky mechanism and the long data acquisition time, but it introduces interferences which affect the...its construction. Further, boundary-layer rakes are restricted to measurements in thick boundary layers. Surface pressure probes such as Stanton tubes

  1. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  2. Three dimensional flow field inside compressor rotor, including blade boundary layers

    NASA Technical Reports Server (NTRS)

    Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.

    1982-01-01

    The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.

  3. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  4. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  5. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  6. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  7. An Evaluation of Marine Boundary Layer Cloud Property Simulations in the Community Atmosphere Model Using Satellite Observations: Conventional Subgrid Parameterization versus CLUBB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hua; Zhang, Zhibo; Ma, Po-Lun

    This paper presents a two-step evaluation of the marine boundary layer (MBL) cloud properties from two Community Atmospheric Model (version 5.3, CAM5) simulations, one based on the CAM5 standard parameterization schemes (CAM5-Base), and the other on the Cloud Layers Unified By Binormals (CLUBB) scheme (CAM5-CLUBB). In the first step, we compare the cloud properties directly from model outputs between the two simulations. We find that the CAM5-CLUBB run produces more MBL clouds in the tropical and subtropical large-scale descending regions. Moreover, the stratocumulus (Sc) to cumulus (Cu) cloud regime transition is much smoother in CAM5-CLUBB than in CAM5-Base. In addition,more » in CAM5-Base we find some grid cells with very small low cloud fraction (<20%) to have very high in-cloud water content (mixing ratio up to 400mg/kg). We find no such grid cells in the CAM5-CLUBB run. However, we also note that both simulations, especially CAM5-CLUBB, produce a significant amount of “empty” low cloud cells with significant cloud fraction (up to 70%) and near-zero in-cloud water content. In the second step, we use satellite observations from CERES, MODIS and CloudSat to evaluate the simulated MBL cloud properties by employing the COSP satellite simulators. We note that a feature of the COSP-MODIS simulator to mimic the minimum detection threshold of MODIS cloud masking removes much more low clouds from CAM5-CLUBB than it does from CAM5-Base. This leads to a surprising result — in the large-scale descending regions CAM5-CLUBB has a smaller COSP-MODIS cloud fraction and weaker shortwave cloud radiative forcing than CAM5-Base. A sensitivity study suggests that this is because CAM5-CLUBB suffers more from the above-mentioned “empty” clouds issue than CAM5-Base. The COSP-MODIS cloud droplet effective radius in CAM5-CLUBB shows a spatial increase from coastal St toward Cu, which is in qualitative agreement with MODIS observations. In contrast, COSP-MODIS cloud droplet effective radius in CAM5-Base almost remains a constant. In comparison with CloudSat observations, the histogram of the radar reflectivity from modeled MBL clouds is too narrow without a distinct separation between cloud and drizzle modes. Moreover, the probability of drizzle in both simulations is almost twice as high as the observation. Future studies are needed to understand the causes of these differences and their potential connection with the “empty” cloud issues in the model.« less

  8. INTRODUCTION OF URBAN CANOPY PARAMETERIZATION INTO MM5 TO SIMULATE URBAN METEOROLOGY AT NEIGHBORHOOD SCALE

    EPA Science Inventory

    Since most of the primary atmospheric pollutants are emitted inside the roughness sub-layer (RSL) and consequently the first chemical reactions and dispersion occur in this layer, it is necessary to generate detailed meteorological fields inside the RSL to perform air quality m...

  9. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  10. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  11. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less

  12. Computation at a coordinate singularity

    NASA Astrophysics Data System (ADS)

    Prusa, Joseph M.

    2018-05-01

    Coordinate singularities are sometimes encountered in computational problems. An important example involves global atmospheric models used for climate and weather prediction. Classical spherical coordinates can be used to parameterize the manifold - that is, generate a grid for the computational spherical shell domain. This particular parameterization offers significant benefits such as orthogonality and exact representation of curvature and connection (Christoffel) coefficients. But it also exhibits two polar singularities and at or near these points typical continuity/integral constraints on dependent fields and their derivatives are generally inadequate and lead to poor model performance and erroneous results. Other parameterizations have been developed that eliminate polar singularities, but problems of weaker singularities and enhanced grid noise compared to spherical coordinates (away from the poles) persist. In this study reparameterization invariance of geometric objects (scalars, vectors and the forms generated by their covariant derivatives) is utilized to generate asymptotic forms for dependent fields of interest valid in the neighborhood of a pole. The central concept is that such objects cannot be altered by the metric structure of a parameterization. The new boundary conditions enforce symmetries that are required for transformations of geometric objects. They are implemented in an implicit polar filter of a structured grid, nonhydrostatic global atmospheric model that is simulating idealized Held-Suarez flows. A series of test simulations using different configurations of the asymptotic boundary conditions are made, along with control simulations that use the default model numerics with no absorber, at three different grid sizes. Typically the test simulations are ∼ 20% faster in wall clock time than the control-resulting from a decrease in noise at the poles in all cases. In the control simulations adverse numerical effects from the polar singularity are observed to increase with grid resolution. In contrast, test simulations demonstrate robust polar behavior independent of grid resolution.

  13. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  14. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  15. Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Todd, C. A.

    1974-01-01

    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region.

  16. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  17. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  18. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  19. A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.

    2016-12-01

    Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.

  20. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales.

    PubMed

    Schiro, Kathleen A; Ahmed, Fiaz; Giangrande, Scott E; Neelin, J David

    2018-05-01

    A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014-2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation-buoyancy relation across the tropics. Deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.

  1. Implementation and calibration of a stochastic multicloud convective parameterization in the NCEP Climate Forecast System (CFSv2)

    NASA Astrophysics Data System (ADS)

    Goswami, B. B.; Khouider, B.; Phani, R.; Mukhopadhyay, P.; Majda, A. J.

    2017-07-01

    A comparative analysis of fourteen 5 year long climate simulations produced by the National Centers for Environmental Predictions (NCEP) Climate Forecast System version 2 (CFSv2), in which a stochastic multicloud (SMCM) cumulus parameterization is implemented, is presented here. These 5 year runs are made with different sets of parameters in order to figure out the best model configuration based on a suite of state-of-the-art metrics. This analysis is also a systematic attempt to understand the model sensitivity to the SMCM parameters. The model is found to be resilient to minor changes in the parameters used implying robustness of the SMCM formulation. The model is found to be most sensitive to the midtropospheric dryness parameter (MTD) and to the stratiform cloud decay timescale (τ30). MTD is more effective in controlling the global mean precipitation and its distribution while τ30 has more effect on the organization of convection as noticed in the simulation of the Madden-Julian oscillation (MJO). This is consistent with the fact that in the SMCM formulation, midtropospheric humidity controls the deepening of convection and stratiform clouds control the backward tilt of tropospheric heating and the strength of unsaturated downdrafts which cool and dry the boundary layer and trigger the propagation of organized convection. Many other studies have also found midtropospheric humidity to be a key factor in the capacity of a global climate model to simulate organized convection on the synoptic and intraseasonal scales.

  2. ModObs: Atmospheric modelling for wind energy, climate and environment applications: exploring added value from new observation technique. Work in progress within a FP6 Marie Curie Research Training Network

    NASA Astrophysics Data System (ADS)

    Sempreviva, A. M.

    2009-09-01

    The EC FP6 Marie Curie Training Network "ModObs” http://www.modobs.windeng.net addresses the improvement of atmospheric boundary layer (ABL) models to investigate the interplay of processes at different temporal and spatial scales, and to explore the added value from new observation techniques. The overall goal is to bring young scientists to work ogether with experienced researchers in developing a better interaction amongst scientific communities of modelers and experimentalists, using a comprehensive approach to "Climate Change”, "Clean Energy assessment” and "Environmental Policies”, issues. This poster describes the work in progress of ten students, funded by the network, under the supervision of a team of scientists within atmospheric physics, engineering and satellite remote sensing and end-users such as companies in the private sector, all with the appropriate expertise to integrate the most advanced research methods and techniques in the following topics. MODELING: GLOBAL-TO-MESO SCALE: Analytical and process oriented numerical models will be used to study the interaction between the atmosphere and the ocean on a regional scale. Initial results indicate an interaction between the intensity of polar lows and the subsurface warm core often present in the Nordic Seas (11). The presence of waves, mainly swell, influence the MABL fluxes and turbulence structure. The regional and global wave effect on the atmosphere will be also studied and quantified (7) MESO-SCALE: Applicability of the planetary boundary layer (PBL) parametrizations in the meso-scale WRF model to marine atmospheric boundary layer (MABL) over the North Sea is investigated. The most suitable existing PBL parametrization will be additionally improved and used for downscaling North Sea past and future climates (2). Application of the meso-scale model (MM5 and WRF) for the wind energy in off-shore and coastal area. Set-up of the meso-scale model, post-processing and verification of the data from the long simulation. Research of meso-scale phenomena for meteorological case study in Gulf of Finland (3). MICRO-SCALE: Large eddy simulation (LES) is used to study the planetary boundary layer under different complex effects: (a) Forcing from general circulation model (GCM): Comparison between GCM outputs and GCM-forced LES for maritime boundary layer (MBL) cases, namely the LASIE campaign (5). (b) Heterogeneity of the Marine Surface Layer (MSL ): Investigation of the air-sea turbulent exchange mechanisms under the effects of coastal discontinuity and horizontal gradient of temperature (1)(6). (c) Heterogeneity of land surface: Turbulence self-organization and its interaction with complex earth topography is studied (8). (d) Wind farm complexity: Wind site assessment as well as turbulent effects for terrains with different complexity are studied (2). OBSERVATIONS: CONTRIBUTION OF SATELLITE OBSERVATIONS FOR THE STUDY AND PARAMETRIZATION OF MARINE BOUNDARY LAYER: Evaluate the added-value of observations from the current generation of satellite with emphasis on the potential of remote sensing data in describing temporal and spatial structures. Foreseen applications include: improvement of MBL description on coastal areas, identification of areas of interest for wind energy applications, gain of information of temporal and spatial scales of variability useful for numerical model parameterizations (6). LIDAR, SODAR: REMOTE SENSING TECHNIQUES APPLIED FOR WIND ENERGY. According to aeroelastic simulations, the production of the power curve of a large wind turbine (rotor diameter larger than 100m) requires wind speed measurements at several heights within the rotor disc. Suitable wind profiles can be measured by LiDARs and SoDARs (1). EVOLUTION OF THE VERTICAL STRUCTURE OF THE ATMOSPHERIC MARINE BOUNDARY LAYER:The evolution of the vertical structure of the MABL following the change of surface conditions in a sequence of onshore - offshore - onshore flow, was observed by both ceilometer and radiosoundings during the LASIE (Ligurian Air-Sea Interaction Experiment) campaign sponsored by NATO in the Mediterranean Sea. In-situ and remote-sensing measurements were performed from two measuring platforms, A buoy ODAS, Italia1 and a ship N/O URANIA from the Italian National Council of Research CNR (1), (6) and (7).

  3. ModObs: Atmospheric modelling for wind energy, climate and environment applications : exploring added value from new observation technique

    NASA Astrophysics Data System (ADS)

    Sempreviva, A. M.

    2009-04-01

    The EC FP6 Marie Curie Training Network "ModObs" http://www.modobs.windeng.net addresses the improvement of atmospheric boundary layer (ABL) models to investigate the interplay of processes at different temporal and spatial scales, and to explore the added value from new observation techniques. The overall goal is to bring young scientists to work together with experienced researchers in developing a better interaction amongst scientific communities of modelers and experimentalists, using a comprehensive approach to "Climate Change", "Clean Energy assessment" and "Environmental Policies", issues. This poster describes the work in progress of ten students, funded by the network, under the supervision of a team of scientists within atmospheric physics, engineering and satellite remote sensing and end-users such as companies in the private sector, all with the appropriate expertise to integrate the most advanced research methods and techniques in the following topics. MODELING: GLOBAL-TO-MESO SCALE: Analytical and process oriented numerical models will be used to study the interaction between the atmosphere and the ocean on a regional scale. Initial results indicate an interaction between the intensity of polar lows and the subsurface warm core often present in the Nordic Seas (11). The presence of waves, mainly swell, influence the MABL fluxes and turbulence structure. The regional and global wave effect on the atmosphere will be also studied and quantified (7) MESO-SCALE: Applicability of the planetary boundary layer (PBL) parametrizations in the meso-scale WRF model to marine atmospheric boundary layer (MABL) over the North Sea is investigated. The most suitable existing PBL parametrization will be additionally improved and used for downscaling North Sea past and future climates (2). Application of the meso-scale model (MM5 and WRF) for the wind energy in off-shore and coastal area. Set-up of the meso-scale model, post-processing and verification of the data from the long simulation. Research of meso-scale phenomena for meteorological case study in Gulf of Finland (3). MICRO-SCALE: Large eddy simulation (LES) is used to study the planetary boundary layer under different complex effects: (a) Forcing from general circulation model (GCM): Comparison between GCM outputs and GCM-forced LES for maritime boundary layer (MBL) cases, namely the LASIE campaign (5). (b) Heterogeneity of the Marine Surface Layer (MSL ): Investigation of the air-sea turbulent exchange mechanisms under the effects of coastal discontinuity and horizontal gradient of temperature (1)(6). (c) Heterogeneity of land surface: Turbulence self-organization and its interaction with complex earth topography is studied (8). (d) Wind farm complexity: Wind site assessment as well as turbulent effects for terrains with different complexity are studied (2). OBSERVATIONS: CONTRIBUTION OF SATELLITE OBSERVATIONS FOR THE STUDY AND PARAMETRIZATION OF MARINE BOUNDARY LAYER: Evaluate the added-value of observations from the current generation of satellite with emphasis on the potential of remote sensing data in describing temporal and spatial structures. Foreseen applications include: improvement of MBL description on coastal areas, identification of areas of interest for wind energy applications, gain of information of temporal and spatial scales of variability useful for numerical model parameterizations (6). LIDAR, SODAR: REMOTE SENSING TECHNIQUES APPLIED FOR WIND ENERGY. According to aeroelastic simulations, the production of the power curve of a large wind turbine (rotor diameter larger than 100m) requires wind speed measurements at several heights within the rotor disc. Suitable wind profiles can be measured by LiDARs and SoDARs (1). EVOLUTION OF THE VERTICAL STRUCTURE OF THE ATMOSPHERIC MARINE BOUNDARY LAYER:The evolution of the vertical structure of the MABL following the change of surface conditions in a sequence of onshore - offshore - onshore flow, was observed by both ceilometer and radiosoundings during the LASIE (Ligurian Air-Sea Interaction Experiment) campaign sponsored by NATO in the Mediterranean Sea. In-situ and remote-sensing measurements were performed from two measuring platforms, A buoy ODAS, Italia1 and a ship N/O URANIA from the Italian National Council of Research CNR (1), (6) and (7).

  4. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  5. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  6. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  7. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  8. A nonperturbing boundary-layer transition detector

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-11-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels. The boundary-layer transition detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Data which depict boundary-layer transition from laminar to turbulent flow are presented to provide comparisons of the BLTD with other measurement methods. Spectra from the BLTD reveals the presence of a high-frequency peak during transition which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  9. Shape design sensitivity analysis and optimization of three dimensional elastic solids using geometric modeling and automatic regridding. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yao, Tse-Min; Choi, Kyung K.

    1987-01-01

    An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.

  10. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  11. Turbulence sources, character, and effects in the stable boundary layer: Insights from multi-scale direct numerical simulations and new, high-resolution measurements

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Wang, Ling; Balsley, Ben; Lawrence, Dale

    2013-04-01

    A number of sources contribute to intermittent small-scale turbulence in the stable boundary layer (SBL). These include Kelvin-Helmholtz instability (KHI), gravity wave (GW) breaking, and fluid intrusions, among others. Indeed, such sources arise naturally in response to even very simple "multi-scale" superpositions of larger-scale GWs and smaller-scale GWs, mean flows, or fine structure (FS) throughout the atmosphere and the oceans. We describe here results of two direct numerical simulations (DNS) of these GW-FS interactions performed at high resolution and high Reynolds number that allow exploration of these turbulence sources and the character and effects of the turbulence that arises in these flows. Results include episodic turbulence generation, a broad range of turbulence scales and intensities, PDFs of dissipation fields exhibiting quasi-log-normal and more complex behavior, local turbulent mixing, and "sheet and layer" structures in potential temperature that closely resemble high-resolution measurements. Importantly, such multi-scale dynamics differ from their larger-scale, quasi-monochromatic gravity wave or quasi-horizontally homogeneous shear flow instabilities in significant ways. The ability to quantify such multi-scale dynamics with new, very high-resolution measurements is also advancing rapidly. New in-situ sensors on small, unmanned aerial vehicles (UAVs), balloons, or tethered systems are enabling definition of SBL (and deeper) environments and turbulence structure and dissipation fields with high spatial and temporal resolution and precision. These new measurement and modeling capabilities promise significant advances in understanding small-scale instability and turbulence dynamics, in quantifying their roles in mixing, transport, and evolution of the SBL environment, and in contributing to improved parameterizations of these dynamics in mesoscale, numerical weather prediction, climate, and general circulation models. We expect such measurement and modeling capabilities to also aid in the design of new and more comprehensive future SBL measurement programs.

  12. Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.

    2005-02-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.

  13. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  14. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  15. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  16. Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical cyclones over North Atlantic

    NASA Astrophysics Data System (ADS)

    Pradhan, P. K.; Liberato, Margarida L. R.; Ferreira, Juan A.; Dasamsetti, S.; Vijaya Bhaskara Rao, S.

    2018-01-01

    The role of the convective parameterization schemes (CPSs) in the ARW-WRF (WRF) mesoscale model is examined for extratropical cyclones (ETCs) over the North Atlantic Ocean. The simulation of very severe winter storms such as Xynthia (2010) and Gong (2013) are considered in this study. Most popular CPSs within WRF model, along with Yonsei University (YSU) planetary boundary layer (PBL) and WSM6 microphysical parameterization schemes are incorporated for the model experiments. For each storm, four numerical experiments were carried out using New Kain Fritsch (NKF), Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (Gr3D) and no convection scheme (NCS) respectively. The prime objectives of these experiments were to recognize the best CPS that can forecast the intensity, track, and landfall over the Iberian Peninsula in advance of two days. The WRF model results such as central sea level pressure (CSLP), wind field, moisture flux convergence, geopotential height, jet stream, track and precipitation have shown sensitivity CPSs. The 48-hour lead simulations with BMJ schemes produce the best simulations both regarding ETCs intensity and track than Gr3D and NKF schemes. The average MAE and RMSE of intensities are least that (6.5 hPa in CSLP and 3.4 ms- 1 in the 10-m wind) found in BMJ scheme. The MAE and RMSE for and intensity and track error have revealed that NCS produces large errors than other CPSs experiments. However, for track simulation of these ETCs, at 72-, 48- and 24-hour means track errors were 440, 390 and 158 km respectively. In brevity, BMJ and Gr3D schemes can be used for short and medium range predictions of the ETCs over North Atlantic. For the evaluation of precipitation distributions using Gr3D scheme are good agreement with TRMM satellite than other CPSs.

  17. A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thatcher, Diana R.; Jablonowski, Christiane

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less

  18. A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores

    DOE PAGES

    Thatcher, Diana R.; Jablonowski, Christiane

    2016-04-04

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less

  19. Comparisons of Cloud Properties over the Southern Ocean between In situ Observations and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Wu, C.; Liu, X.

    2017-12-01

    Numerical weather models often struggle at representing clouds since small scale cloud processes must be parameterized. For example, models often utilize simple parameterizations for transitioning from liquid to ice, usually set as a function of temperature. However, supercooled liquid water (SLW) often persists at temperatures much lower than threshold values used in microphysics parameterizations. Previous observational studies of clouds over the Southern Ocean have found high frequencies of SLW (e.g., Morrison et al., 2011). Many of these studies have relied on satellite retrievals, which provide relatively low resolution observations and are often associated with large uncertainties due to assumptions of microphysical properties (e.g., particle size distributions). Recently, the NSF/NCAR O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) campaign took observations via the NSF/NCAR HIAPER research aircraft during January and February of 2016, providing in situ observations over the Southern Ocean (50°W to 92°W). We compare simulated results from the Weather Research and Forecasting (WRF) model with in situ observations from ORCAS. Differences between observations and simulations are evaluated via statistical analyses. Initial results from ORCAS reveal a high frequency of SLW at temperatures as low as -15°C, and the existence of SLW around -30°C. Recent studies have found that boundary layer clouds are underestimated by WRF in regions unaffected by cyclonic activity (Huang et al., 2014), suggesting a lack of low-level moisture due to local processes. To explore this, relative humidity distributions are examined and controlled by cloud microphysical characteristics (e.g., total water content) and relevant ambient properties (e.g., vertical velocity). A relatively low frequency of simulated SLW may in part explain the discrepancies in WRF, as cloud-top SLW results in stronger radiative cooling and turbulent motions conducive for long-lived cloud regimes. Results presented in this study will help improve our understanding of Southern Ocean clouds and the observed discrepancies seen in WRF simulations.

  20. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe - Part 1: Model description and evaluation of meteorological predictions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.

    2013-02-01

    Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e. the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID) are conducted over western Europe. Part 1 describes the background information for the model comparison and simulation design, as well as the application of WRF for January and July 2001 over triple-nested domains in western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°. Six simulated meteorological variables (i.e. temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients of major meteorological variables. While the domainwide performance of T2, Q2, RH2, and WD10 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in WS10 and Precip even at 0.025°. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g. lack of soil temperature and moisture nudging), limitations in the physical parameterizations of the planetary boundary layer (e.g. cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g. snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvement for WS10, Precip, and some mesoscale events (e.g. strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. These results indicate a need to further improve the model representations of the above parameterizations at all scales.

  1. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.

  2. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    NASA Astrophysics Data System (ADS)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.

  3. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    AFRL-AFOSR-CL-TR-2016-0011 Towards natural transition in compressible boundary layers Marcello Faraco de Medeiros FUNDACAO PARA O INCREMENTO DA...to 29-03-2016 Towards natural transition in compressible boundary layers FA9550-11-1-0354 Marcello A. Faraco de Medeiros Germán Andrés Gaviria...unlimited. 109 Final report Towards natural transition in compressible boundary layers Principal Investigator: Marcello Augusto Faraco de Medeiros

  4. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  5. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  6. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  7. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  8. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  9. Solid T-spline Construction from Boundary Representations for Genus-Zero Geometry

    DTIC Science & Technology

    2011-11-14

    Engineering, accepted, 2011. [6] M. S. Floater . Parametrization and smooth approximation of surface triangulations. Com- puter Aided Geometric Design...14(3):231 – 250, 1997. [7] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Advances in Multiresolution for Geometric

  10. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the physics package choices. The design of the experiments thus allows for more direct interpretation of the sensitivities to each possible physics combination. The results should assist forecasters in their efforts to anticipate and correct for possible biases in simulated WRF convection patterns, and help the modeling community refine their model parameterizations.

  11. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  12. Sound-turbulence interaction in transonic boundary layers

    NASA Astrophysics Data System (ADS)

    Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva

    2014-11-01

    Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.

  13. Pitot-probe displacement in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  14. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  15. Mesoscale acid deposition modeling studies

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.

    1989-01-01

    The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.

  16. Aircraft to aircraft intercomparison during SEMAPHORE

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  17. An LES study of vertical-axis wind turbine wakes aerodynamics

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  18. Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2017-11-01

    Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.

  19. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations.

    PubMed

    Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian

    2010-09-01

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  1. Subgrid-Scale Parameterization in 3-D Models: The Role of Turbulent Mixing

    DTIC Science & Technology

    2006-09-30

    Prandke, J. Chiggiato , and M. Sclavo (2006) Turbulence in the Upper Layers of the Southern Adriatic Sea Under Various Meteorological Conditions During... Chiggiato , and M. Sclavo (2006) Turbulence in the Upper Layers of the Southern Adriatic Sea Under Various Meteorological Conditions During Summer 2006. J. Geophys. Res. (submitted).

  2. Subgrid-Scale Parameterization in 3-D Models: The Role of Turbulent Mixing

    DTIC Science & Technology

    2007-09-30

    layer, 2, Modeling, J. Geophys. Res., 98, 22,657-22,666. Carniel, S., L. Kantha, H. Prandke, J. Chiggiato , and M. Sclavo (2007) Turbulence in the...Kantha, H. Prandke, J. Chiggiato , and M. Sclavo (2007) Turbulence in the Upper Layers of the Southern Adriatic Sea Under Various Meteorological

  3. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  4. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  5. Thin Sheet Modeling for the Seismogenic Crust of Western North America: How Strong is the top Slice of "Sandwich Bread" Above the "Jelly"?

    NASA Astrophysics Data System (ADS)

    Klein, E. C.; Holt, W. E.; Flesch, L. M.; Haines, A. J.

    2006-12-01

    The "jelly sandwich" and "crème brûlée" models divides continental lithosphere into distinct rheological layers. Dynamic models from thin sheet approximations provide estimates of the total strength of the lithosphere, but only to a thickness governed by the degree of mechanical coupling between rheological layers. If either the "jelly sandwich" or the "crème brûlée" model of the lithosphere is appropriate for the diffuse plate boundary zone setting of western North America, we expect a sharp contrast or decoupling between the strong upper crust ("bread") layer overlying the weak lower crustal ("jelly") layer. We examine the strength of the upper crust with and without strength contribution from the lower crust using thin sheet modeling methodologies. We use seismically defined densities to constrain vertical integrals of vertical stress (GPE) within the crust. Neglecting stresses due to flexure as well as shear stresses at the base of the crustal layer, lateral differences in GPE within the layer, are balanced solely by gradients in horizontal deviatoric stress [Flesch et al., 2001, 2006]. We solve the force-balance equations for the minimum deviatoric stress field associated with gradients of GPE. This deviatoric stress field calibrates the magnitude of deviatoric stresses within the seismogenic layer. We then solve for stress field boundary conditions associated with the stress field contributions from sources outside the modeled region that together with the minimum solution from GPE differences provide a best match with stress field indicators within western North America. In order to infer appropriate stress field indicators we develop a long-term kinematic strain rate and velocity field model. Where we use this strain rate field we assume that the relationship between deviatoric stress directions and kinematic strain rate directions is isotropic. In our calculations the seismogenic layer extends from the surface to either a uniform depth below sea level or to a variable depth below sea level constrained by heat flow. For the case of a long-term seismogenic layer with a uniform base 20 km below sea level, the long-term vertically integrated deviatoric stress magnitudes range between 0.05-0.75x10^{12} N/m, while the long-term vertically integrated strength magnitudes of the layer are of the order of 0.05-1.5x10^{12} N/m. These strength values constrain low long-term friction coefficients of 0.02-0.30 under hydrostatic to wet conditions in the Basin and Range region. We test the sensitivity of our solutions to different assumed brittle-ductile transition depths and find that coefficients of friction on faults, along with magnitudes of vertically integrated strength, are relatively insensitive to these assumed layer thicknesses. Moreover, through this sensitivity modeling we find evidence that our assumption of decoupling is valid for most of the Basin and Range region in that we find evidence for diminishing contributions to crustal strength with depth. We model the interface between the upper and lower crust by parameterization of a variable seismogenic thickness in the thin sheet equations. This allows us to estimate the strength of the top slice of "bread" without the incorporation of any "jelly". We find that most of the long-term strength of the crust within the diffuse plate boundary zone of western North America resides in the seismogenic layer of the upper crust.

  6. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  7. Toward finding a universally applicable parameterization of the β factor for Relaxed Eddy Accumulation applications

    NASA Astrophysics Data System (ADS)

    Vogl, Teresa; Hrdina, Amy; Thomas, Christoph

    2016-04-01

    The traditional eddy covariance (EC) technique requires the use of fast responding sensors (≥ 10 Hz) that do not exist for many chemical species found in the atmosphere. In this case, the Relaxed Eddy Accumulation (REA) method offers a means to calculate fluxes of trace gases and other scalar quantities (Businger and Oncley, 1990) and was originally derived from the eddy accumulation method (EA) first proposed by Desjardins (1972). While REA lessens the requirements for sensors and sampling and thus offers practical appeal, it introduces a dependence of the computed flux from a proportionality factor β. The accuracy of the REA fluxes hinges upon the correct determination of β, which was found to vary between 0.40 and 0.63 (Milne et al., 1999, Ammann and Meixner, 2002, Ruppert et al., 2006). However, formulating a universally valid parameterization for β instead of empirical evaluation has remained a conundrum and has been a main limitation for REA. In this study we take a fresh look at the dependencies and mathematical models of β by analyzing eddy covariance (EC) data and REA simulations for two field experiments in drastically contrasting environments: an exclusively physically driven environment in the Dry Valleys of Antarctica, and a biologically active system in a grassland in Germany. The main objective is to work toward a model parameterization for β that can be applied over wide range of surface conditions and forcings without the need for empirical evaluation, which is not possible for most REA applications. Our study discusses two different models to define β: (i) based upon scalar-scalar similarity, in which a different scalar is measured with fast-response sensors as a proxy for the scalar of interest, here referred to as β0; and (ii) computed solely from the vertical wind statistics, assuming a linear relationship between the scalar of interest and the vertical wind speed, referred to as βw. Results are presented for the carbon-dioxide, latent and sensible heat fluxes across the contrasting environments. First, the choice of an appropriate scalar to calculate β0 is discussed considering the sources and sinks of each scalar with an emphasis on the carbon dioxide flux, which shows strongly dissimilar dynamics between the Antarctic ecosystem and the grassland. Secondly, the impact of atmospheric stability on both β models is investigated. In a next step, we attempt to find a physically meaningful explanation for the overestimation of the REA scalar fluxes compared to those from EC for using βw. We do so by analyzing the probability density function (pdf) and its statistical moments for the vertical wind speed. We found its pdf to be non-Gaussian for the majority of cases, and detected a close to linear relationship of its kurtosis with βw. Finally, in an attempt to provide practical guidance for field measurements, we integrate our findings and propose an enhanced model parameterization, and evaluate the differences between our new model and a constant β. Ammann, C. and Meixner, F.X. (2002) Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities. J. Geophys. Res. 107. ACL7.1-ACL7.9 doi:10.1029/2001JD000649 Businger, J.A., Oncley, S.P. (1990) Flux measurement with conditional sampling. J. Atmos. Ocean. Tech. 7:349-352. Desjardins, R. L. (1972) A study of carbon-dioxide and sensible heat fluxes using the eddy correlation technique, Ph.D. dissertation, Cornell University, 189 pp. Desjardins, R.L. (1977) Description and evaluation of sensible heat flux detector. Boundary-Layer Meteorol. 11:147-154. Katul, G., Finkelstein, P. L., Clarke, J. F., and Ellestad, T. G. (1996) An Investigation of the Conditional Sampling Methods Used to Estimate Fluxes of Active, Reactive and Passive Scalars. J. Appl. Meteorol. 35: 1835-1845. Milne, R., Beverland, I. J., Hargreaves, K., and Moncrieff, J. B. (1999) Variation of the beta coefficient in the relaxed eddy accumulation method. Boundary-Layer Meteorol. 93: 211-225. Ruppert, J. ATEM software for atmospheric turbulent exchange measurements using eddy covariance and relaxed eddy accumulation systems: Bayreuth whole-air REA system setup, Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614-8916, Arbeitsergebnisse 28, 29 S, 2005 Ruppert, J., Thomas, C., and Foken, T. (2006) scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol. 120: 39-63.

  8. Inventory of File gfs.t06z.smartguam15.tm00.grib2

    Science.gov Websites

    hour fcst Visibility [m] 014 planetary boundary layer WDIR 15 hour fcst Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND 15 hour fcst Wind Speed [m/s] 016 planetary boundary layer RH 15 hour fcst Relative Humidity [%] 017 planetary boundary layer DIST 15 hour fcst Geometric

  9. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  10. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  11. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.

    2008-01-01

    We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. 

  12. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  13. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  14. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  15. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  16. Studies on the influence on flexural wall deformations on the development of the flow boundary layer

    NASA Technical Reports Server (NTRS)

    Schilz, W.

    1978-01-01

    Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.

  17. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  18. Effect of aspect ratio on sidewall boundary-layer influence in two-dimensional airfoil testing

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1986-01-01

    The effect of sidewall boundary layers in airfoil testing in two-dimensional wind tunnels is investigated. The non-linear crossflow velocity variation induced because of the changes in the sidewall boundary-layer thickness is represented by the flow between a wavy wall and a straight wall. Using this flow model, a correction for the sidewall boundary-layer effects is derived in terms of the undisturbed sidewall boundary-layer properties, the test Mach number and the airfoil aspect ratio. Application of the proposed correction to available experimental data showed good correlation for the shock location and pressure distribution on airfoils.

  19. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  20. Surface atmosphere exchange in dry and a wet regime over the Ganges valley: a comprehensive investigation with direct observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabhakaran, Thara; Karipot, Anandakumar

    2017-04-01

    Land atmosphere interactions in the Ganges Valley basin is a topic of significant importance as it is most vulnerable region due to extreme weather, air pollution, etc. The complete energy balance observations over this region was conducted as part of the CAIPEEX-IGOC (Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign) experiment for an entire year. These observations give first insight into the partitioning of energy in this vulnerable environment during the dry and wet regimes, which are typically part of the intraseasonal oscillations during the Indian monsoon season. These transitions wet-dry and dry-wet are poorly represented in GCMs and is the motivation for the detailed investigation here. Observations conducted with micrometeorological tower instrumented with eddy covariance sensors, radiation balance, soil heat flux measurements, microwave radiometer, sodar, radiosonde data are used in the present study. A set of numerical investigations of different Planetary Boundary Layer (PBL) schemes is also carried out to investigate features of the diurnal cycle during the wet and dry regimes. General behaviour of both local and nonlocal PBL schemes found from the investigation is to accomplish enhanced mixing, leading to a deeper PBL in the valley. However, observations give clear evidence of residual boundary layer characterised by a weak stratification, playing a key role in the exchange of PBL air mass with that of free atmosphere. Impact of changes in parameterization and controlling factors on the PBL height are investigated. Case studies for a dry phase during the incidence of a heat wave and a wet phase during a land depression are presented. Observed diurnal features of the surface meteorological parameters including the surface energy budget components were well captured by local and nonlocal PBL schemes during both the cases. Vertical profiles of temperature, mixing ratio and winds from microwave radiometer, radiosonde sounding and SODAR measurements compared well with the model vertical profiles. All the schemes are able to capture the development of a drying phase, its persistence and revival after the drying, similar to observation. The characteristic features of the drying such as decrease in mixing ratio, PBL warming, enhanced PBL growth, variations in wind speed, etc were reproduced by the model simulations. Results indicate that model is simulating a drier and deeper surface and mixed layer, compared to the observations, which is assisted by enhanced mixing through deep updrafts rooted from the surface layer and downdrafts associated with the subsiding air reaching down to the surface. Two issues are identified with model as a) relating to enhanced mixing also assisted by the subsiding air at top of the boundary layer and b) the energy partitioning at the surface with significantly excess energy partitioned in to sensible heat flux, thus warming the model surface layer. A few aircraft observations are used to investigate entrainment issue and results from these analysis and inferences will be presented. The surface layer eddy covariance measurements of sensible and latent heat fluxes and surface layer relationships are used to tune the surface layer exchanges.

Top