Sample records for boundary layer plasma

  1. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  2. Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wei, C. Q.

    1993-01-01

    The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.

  3. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  4. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  5. Structure of the low-latitude boundary layer. [in magnetopause

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. OE.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1981-01-01

    High temporal resolution observations of the frontside magnetopause and plasma boundary layer made with the fast plasma analyzer aboard the ISEE 1 and 2 spacecraft are reported. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Periods are included when the thickness is essentially zero and others when it is of the order of 1 earth radius. The duration of these periods is highly variable but is typically in the range of 2-5 min corresponding to a distance along the magnetopuase of approximately 3-8 earth radii. The observed boundary layer features include a steep density gradient at the magnetopause with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer.

  6. Modeling Electrothermal Plasma with Boundary Layer Effects

    NASA Astrophysics Data System (ADS)

    AlMousa, Nouf Mousa A.

    Electrothermal plasma sources produce high-density (1023-10 28 /m3) and high temperature (1-5 eV) plasmas that are of interest for a variety of applications such as hypervelocity launch devices, fusion reactor pellet injectors, and pulsed thrusters for small satellites. Also, the high heat flux (up to 100 GW/m2) and high pressure (100s MPa) of electrothermal (ET) plasmas allow for the use of such facilities as a source of high heat flux to simulate off-normal events in Tokamak fusion reactors. Off-normal events like disruptions, thermal and current quenches, are the perfect recipes for damage of plasma facing components (PFC). Successful operation of a fusion reactor requires comprehensive understanding of material erosion behavior. The extremely high heat fluxes deposited in PFCs melt and evaporate or directly sublime the exposed surfaces, which results in a thick vapor/melt boundary layer adjacent to the solid wall structure. The accumulating boundary layers provide a self-protecting nature by attenuating the radiant energy transport to the PFCs. The ultimate goal of this study is to develop a reliable tool to adequately simulate the effect of the boundary layers on the formation and flow of the energetic ET plasma and its impact on exposed surfaces erosion under disruption like conditions. This dissertation is a series of published journals/conferences papers. The first paper verified the existence of the vapor shield that evolved at the boundary layer under the typical operational conditions of the NC State University ET plasma facilities PIPE and SIRENS. Upon the verification of the vapor shield, the second paper proposed novel model to simulate the evolution of the boundary layer and its effectiveness in providing a self-protecting nature for the exposed plasma facing surfaces. The developed models simulate the radiant heat flux attenuation through an optically thick boundary layer. The models were validated by comparing the simulation results to experimental data taken from the ET plasma facilities. Upon validation of the boundary layer models, computational experiments were conducted with the purpose of evaluation the PFCs' erosion during plasma disruption in Tokamak fusion reactors. Erosion of a set of selected low-Z and high-Z materials were analyzed and discussed. For metallic plasma facing materials under the impact of hard and long time-scale disruption events, melting and melt-layer splashing become dominate erosion mechanisms during plasma-material interaction. In order to realistically assess the erosion of the metallic fusion reactor components, the fourth paper accounts for the various mechanisms by which material evolved from PFCs due to melting and vaporization, with a developed melting and splattering/splashing model incorporated in the ET plasma code. Also, the shielding effect associated with melt-layer and vapor-layer is investigated. The quantitative results of material erosion with the boundary layer effects including a vapor layer, melt layer and splashing effects is a new model and an important step towards achieving a better understanding of plasma-material interactions under exposure to such high heat flux conditions.

  7. Properties of the Equatorial Magnetotail Flanks ˜50-200 RE Downtail

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Wang, C.-P.; Zelenyi, L. M.

    2017-12-01

    In space, thin boundaries separating plasmas with different properties serve as a free energy source for various plasma instabilities and determine the global dynamics of large-scale systems. In planetary magnetopauses and shock waves, classical examples of such boundaries, the magnetic field makes a significant contribution to the pressure balance and plasma dynamics. The configuration and properties of such boundaries have been well investigated and modeled. However, much less is known about boundaries that form between demagnetized plasmas where the magnetic field is not important for pressure balance. The most accessible example of such a plasma boundary is the equatorial boundary layer of the Earth's distant magnetotail. Rather, limited measurements since its first encounter in the late 1970s by the International Sun-Earth Explorer-3 spacecraft revealed the basic properties of this boundary, but its statistical properties and structure have not been studied to date. In this study, we use Geotail and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) missions to investigate the equatorial boundary layer from lunar orbit (˜55 Earth radii, RE, downtail) to as far downtail as ˜200 RE. Although the magnetic field has almost no effect on the structure of the boundary layer, the layer separates well the hot, rarefied plasma sheet from dense cold magnetosheath plasmas. We suggest that the most important role in plasma separation is played by polarization electric fields, which modify the efficiency of magnetosheath ion penetration into the plasma sheet. We also show that the total energies (bulk flow plus thermal) of plasma sheet ions and magnetosheath ions are very similar; that is, magnetosheath ion thermalization (e.g., via ion scattering by magnetic field fluctuations) is sufficient to produce hot plasma sheet ions without any additional acceleration.

  8. Measurement of corner separation zone response on a compression ramp to plasma actuation within the hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Hedlund, Brock E.; Houpt, Alec W.; Gordeyev, Stanislav V.; Leonov, Sergey B.

    2017-10-01

    This study was performed to characterize the dominant frequencies present in the boundary layer uptsream of and in the corner separation zone of a compression surface in Mach 4.5 flow and to determine a control effect of transient plasma actuation on the boundary layer. Schlieren imaging was used to distinguish the corner separation zone for 20°, 25°, and 30° compression ramps mounted on flat plates. Spectra of the natural disturbances present in the boundary layer and separation zone were gathered using a high-speed Shack-Hartmann wavefront sensor and surface mounted PCBTM pressure sensors while varying flow parameters by adjusting total pressure, temperature, and ramp angle. Shallow cavity discharge plasma actuators were used as a high-frequency localized thermal forcing mechanism of the boundary layer. The plasma effect was negligible for forcing frequencies (50 kHz) below the natural dominant frequency (~55-80 kHz). High frequency perturbations that can promote the transition to turbulence were amplified when the plasma forcing frequency (100 kHz) was higher than the natural dominant frequency (~55-80 kHz). This technique can potentially be used for active control of hypersonic boundary layer transition and the supersonic flow structure on the compression surface.

  9. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  10. Coupling of magnetopause-boundary layer to the polar ionosphere

    NASA Technical Reports Server (NTRS)

    Wei, C. Q.; Lee, L. C.

    1993-01-01

    The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.

  11. Electron distributions in the plasma sheet boundary layer - Time-of-flight effects

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.; Gosling, J. T.; Bame, S. J.

    1990-01-01

    The electron edge of the plasma sheet boundary layer lies lobeward of the ion edge. Measurements obtained near the electron edge of the boundary layer reveal low-speed cutoffs for earthward and tailward-flowing electrons. These cutoffs progress to lower speeds with deeper penetration into the boundary layer, and are consistently lower for the earthward-directed electrons than for the tailward-direction electrons. The cutoffs and their variation with distance from the edge of the boundary layer can be consistently interpreted in terms of a time-of-flight effect on recently reconnected magnetic field lines. The observed cutoff speeds are used to estimate the downtail location of the reconnection site.

  12. ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Kelly, T. J.; Russell, C. T.

    1985-01-01

    Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.

  13. Inner Plasma Structure of the Low-Latitude Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.; hide

    2012-01-01

    We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

  14. Transition from single to multiple double layers. [of plasma

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.

    1982-01-01

    Laboratory results are presented to define parameters which allow the boundary conditions to control the characteristics of double layers of plasma. It is shown that multiple double layers arise when the ratio of Debye length to system length decreases, a result which is in line with boundary layer theory. The significance of inclusion of the system length is noted to render BGK treatments of double layers, wherein the length is neglected, invalid.

  15. Polar Plasma Wave Investigation Data Analysis in the Extended Mission

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.; Menietti, J. D.

    2003-01-01

    The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to l0(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross- diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.

  16. Polar Plasma Wave Investigation Data Analysis in the Extended Mission

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    2004-01-01

    The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to 10(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross-diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.

  17. A magnetic boundary layer at the magnetopause

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Simeonov, G.

    A new approach in the boundary layer description of the magnetopause is proposed. The magnetopause is considered as a mixing region of two streams of plasma with different parameters. The assumption is made that wave-particle interactions cause the plasma to be resistive. Thus only the magnetic viscosity is supposed to be essential. Other dissipation effects are neglected. The plasma and magnetic field conditions at the outer boundary of the layer can be obtained from the solution of the nondissipative problem for the magnetosheath. The magnetic field is assumed to be known at the inner boundary. No further conditions are needed in our formulation of the problem. The variation of the flow parameters and the magnetic field can be obtained numerically.

  18. Experimental characterization of broadband electrostatic noise due to plasma compression

    NASA Astrophysics Data System (ADS)

    Dubois, Ami M.; Thomas, Edward, Jr.; Amatucci, William E.; Ganguli, Gurudas

    2015-11-01

    For a wide variety of laboratory and space plasma environments, theory states that plasmas are unstable to transverse shear flows over a very broad frequency range, where the shear scale length (LE) compared to the ion gyro-radius (ρi) determines the character of the shear-driven instability that may prevail. During active periods in the Earth's magnetosphere, such sheared flows are intensified and broadband electrostatic noise (BEN) is often observed by satellites traversing natural boundary layers. An interpenetrating magnetized plasma configuration is used to create a transverse velocity shear profile similar to that found at natural space plasma boundary layers. The continuous variation and the associated transition of the instability regimes driven by the shear flow mechanism are demonstrated in a single laboratory experiment. For the first time, broadband wave emission, which is correlated to increasing/decreasing stress (i.e., ρi/LE) on a plasma boundary layer, is found under controlled and repeatable conditions. This result provides evidence that the compression/relaxation of a plasma boundary layer leads to a BEN signature and holds out the promise for understanding the cause and effect of the in situ observation of BEN by satellites. This project was supported with funding from the U.S. Department of Energy, the Defense Threat Reduction Agency, and NRL Base Funds.

  19. Edge plasma boundary layer generated by kink modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2011-06-01

    This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  20. Anomalous plasma diffusion and the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond

    1992-01-01

    An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.

  1. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Venkateswaran; Raja, Laxminarayan L.; Clemens, Noel T.

    2012-07-01

    A pulsed-plasma jet actuator is used to control the unsteady motion of the separation shock of a shock wave/boundary layer interaction formed by a compression ramp in a Mach 3 flow. The actuator is based on a plasma-generated synthetic jet and is configured as an array of three jets that can be injected normal to the cross-flow, pitched, or pitched and skewed. The typical peak jet exit velocity of the actuators is about 300 m/s and the pulsing frequencies are a few kilohertz. A study of the interaction between the pulsed-plasma jets and the shock/boundary layer interaction was performed in a time-resolved manner using 10 kHz schlieren imaging. When the actuator, pulsed at StL ≈ 0.04 (f = 2 kHz), was injected into the upstream boundary layer, the separation shock responded to the plasma jet by executing a rapid upstream motion followed by a gradual downstream recovery motion. Schlieren movies of the interaction showed that the separation shock unsteadiness was locked to the pulsing frequency of the actuator, with amplitude of about one boundary layer thickness. Wall-pressure measurements made under the intermittent region showed about a 30% decrease in the overall magnitude of the pressure fluctuations in the low-frequency band associated with unsteady large-scale motion of the separated flow. Furthermore, by increasing the pulsing frequency to 3.3 kHz, the amplitude of the separation shock oscillation was reduced to less than half the boundary layer thickness. Investigation into the effect of the actuator location on the shock wave/boundary layer interaction (SWBLI) showed qualitatively and quantitatively that the actuator placed upstream of the separation shock caused significant modification to the SWBLI unsteadiness, whereas injection from inside the separation bubble did not cause a noticeable effect.

  2. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions.

    PubMed

    Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong

    2016-09-01

    In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.

  3. The enhancement mechanism of thin plasma layer on antenna radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai

    A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.

  4. Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results

    NASA Technical Reports Server (NTRS)

    Ober, Daniel M.; Horwitz, J. L.

    1998-01-01

    We present initial results on the modeling of the circulation of plasmaspheric-origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X= -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes.

  5. Equilibrium structure of the plasma sheet boundary layer-lobe interface

    NASA Technical Reports Server (NTRS)

    Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.

    1990-01-01

    Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.

  6. Electric fields in the plasma sheet and plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Pedersen, A.; Cattell, C. A.; Faelthammar, C. G.; Knott, K.; Lindqvist, P. A.; Manka, R. H.; Mozer, F. S.

    1984-01-01

    Data from the spherical double probe electric-field experiment on ISEE-1 were used to study plasmasheet/lobe boundary crossings during substorms, identified by plasma measurements and by using the electric field probes as a reference for measurements of the spacecraft potential. There are strong electric fields, with a dominant dawn-to-dusk component, throughout the boundary layer outside the plasmasheet for contracting and expanding motions of the plasmasheet and for different magnetic field directions. Characteristic amplitudes and durations are 5 to 10 mV/m and 5 to 15 min. The corresponding E x B vectors are always towards the plasmasheet.

  7. Plasma-based actuators for turbulent boundary layer control in transonic flow

    NASA Astrophysics Data System (ADS)

    Budovsky, A. D.; Polivanov, P. A.; Vishnyakov, O. I.; Sidorenko, A. A.

    2017-10-01

    The study is devoted to development of methods for active control of flow structure typical for the aircraft wings in transonic flow with turbulent boundary layer. The control strategy accepted in the study was based on using of the effects of plasma discharges interaction with miniature geometrical obstacles of various shapes. The conceptions were studied computationally using 3D RANS, URANS approaches. The results of the computations have shown that energy deposition can significantly change the flow pattern over the obstacles increasing their influence on the flow in boundary layer region. Namely, one of the most interesting and promising data were obtained for actuators basing on combination of vertical wedge with asymmetrical plasma discharge. The wedge considered is aligned with the local streamlines and protruding in the flow by 0.4-0.8 of local boundary layer thickness. The actuator produces negligible distortion of the flow at the absence of energy deposition. Energy deposition along the one side of the wedge results in longitudinal vortex formation in the wake of the actuator providing momentum exchange in the boundary layer. The actuator was manufactured and tested in wind tunnel experiments at Mach number 1.5 using the model of flat plate. The experimental data obtained by PIV proved the availability of the actuator.

  8. The double layers in the plasma sheet boundary layer during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, J.; Yu, B.

    2014-11-01

    We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.

  9. Viscous Forces in Velocity Boundary Layers around Planetary Ionospheres.

    PubMed

    Pérez-De-Tejada

    1999-11-01

    A discussion is presented to examine the role of viscous forces in the transport of solar wind momentum to the ionospheric plasma of weakly magnetized planets (Venus and Mars). Observational data are used to make a comparison of the Reynolds and Maxwell stresses that are operative in the interaction of the solar wind with local plasma (planetary ionospheres). Measurements show the presence of a velocity boundary layer formed around the flanks of the ionosphere where the shocked solar wind has reached super-Alfvénic speeds. It is found that the Reynolds stresses in the solar wind at that region can be larger than the Maxwell stresses and thus are necessary in the local acceleration of the ionospheric plasma. From an order-of-magnitude calculation of the Reynolds stresses, it is possible to derive values of the kinematic viscosity and the Reynolds number that are suitable to the gyrotropic motion of the solar wind particles across the boundary layer. The value of the kinematic viscosity is comparable to those inferred from studies of the transport of solar wind momentum to the earth's magnetosphere and thus suggest a common property of the solar wind around planetary obstacles. Similar conditions could also be applicable to velocity boundary layers formed in other plasma interaction problems in astrophysics.

  10. Observation of the magnetospheric ``sash'' and its implications relative to solar-wind/magnetospheric coupling: A multisatellite event analysis

    NASA Astrophysics Data System (ADS)

    Maynard, N. C.; Savin, S.; Erickson, G. M.; Kawano, H.; Němeček, Z.; Peterson, W. K.; Šafránoková, J.; Sandahl, I.; Scudder, J. D.; Siscoe, G. L.; Sonnerup, B. U. Ö.; Weimer, D. R.; White, W. W.; Wilson, G. R.

    2001-04-01

    Using a unique data set from the Wind, Polar, Interball 1, Magion 4, and Defense Meteorological Satellite Program (DMSP) F11 satellites, comparisons with the Integrated Space Weather Model (ISM) have provided validation of the global structure predicted by the ISM model, which in turn has allowed us to use the model to interpret the data to further understand boundary layers and magnetospheric processes. The comparisons have shown that the magnetospheric ``sash'' [White et al., 1998], a region of low magnetic field discovered by the MHD modeling which extends along the high-latitude flank of the magnetopause, is related to the turbulent boundary layer on the high-latitude magnetopause, recently mapped by Interball 1. The sash in the data and in the model has rotational discontinuity properties, expected for a reconnection site. At some point near or behind the terminator, the sash becomes a site for reconnection of open field lines, which were previously opened by merging on the dayside. This indicates that significant reconnection in the magnetotail occurs on the flanks. Polar mapped to the high-density extension of the sash into the tilted plasma sheet. The source of the magnetosheath plasma observed by Polar on closed field lines behind the terminator was plasma entry through the low field connection of the sash to the central plasma sheet. The Polar magnetic field line footprints in each hemisphere are moving in different directions. Above and below the tilted plasma sheet the flows in the model are consistent with the corresponding flows in the ionosphere. The turbulence in the plasma sheet allows the convection patterns from each hemisphere to adjust. The boundary layer in the equatorial plane on the flank for this interplanetary magnetic field BY condition, which is below the tilted central plasma sheet, is several RE thick and is on tailward flowing open field lines. This thick boundary layer shields the magnetopause from viscous forces and must be driven by magnetic tension. Above the plasma sheet the boundary layer is dominated by the sash, and the model indicates that the open region inside the sash is considerably thinner.

  11. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    DTIC Science & Technology

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  12. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.

    1998-01-01

    Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.

  13. Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerstorfer, U. V.; Erkaev, N. V.; Institute of Computational Modelling, 660036 Krasnoyarsk

    2010-07-15

    Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices aremore » about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus.« less

  14. Particle and field characteristics of the high-latitude plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Mccarthy, M.; Fitzenreiter, R. J.; Ogilvie, K. W.; Etcheto, J.; Anderson, K. A.; Lin, R. P.; Anderson, R. R.; Eastman, T. E.; Frank, L. A.

    1984-01-01

    Particle and field data obtained by eight ISEE spacecraft experiments are used to define more precisely the characteristics of the high-latitude boundary region of the plasma sheet. A region immediately adjacent to the high-latitude plasma sheet boundary has particle and field characteristics distinctly different from those observed in the lobe and deeper in the central plasma sheet. Electrons over a broad energy interval are 'field-aligned' and bidirectional, whereas in the plasma sheet the distributions are more isotropic. The region supports intense ion flows, large-amplitude electric fields, and enhanced broad-band electrostatic noise.

  15. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  16. Plasma regimes in the deep geomagnetic tail - ISEE 3

    NASA Astrophysics Data System (ADS)

    Bame, S. J.; Anderson, R. C.; Asbridge, J. R.; Baker, D. N.; Feldman, W. C.; Gosling, J. T.; Hones, E. W., Jr.; McComas, D. J.; Zwickl, R. D.

    1983-09-01

    The spacecraft remained close to or within a previously unexplored part of the distant (60-220 earth radii) geomagnetic tail nearly continuously from January 1 to March 30, 1983. Analysis of the data reveals that all of the plasma regimes identified previously with near-earth measurements (plasma sheet, low-latitude boundary layer, plasma mantle, lobe, and magnetosheath) remain recognizable in the distant tail. These regimes, however, are found to be intermingled in a more chaotic fashion than near the earth. Within the plasma sheet at approximately 200 earth radii, typical flow velocities are about 500 km/s tailward, considerably higher than in the near-earth plasma sheet. Earthward flow within the plasma sheet is observed occasionally, indicating the temporary presence of a neutral line beyond 220 earth radii. Also found are strong bidirectional electron anisotropies throughout much of the distant plasma sheet, boundary layer, and magnetosheath.

  17. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  18. Dependence of the source performance on plasma parameters at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Fantz, U.

    2015-04-01

    The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).

  19. The Kelvin-Helmholtz instability of boundary-layer plasmas in the kinetic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinbusch, Benedikt, E-mail: b.steinbusch@fz-juelich.de; Gibbon, Paul, E-mail: p.gibbon@fz-juelich.de; Department of Mathematics, Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven

    2016-05-15

    The dynamics of the Kelvin-Helmholtz instability are investigated in the kinetic, high-frequency regime with a novel, two-dimensional, mesh-free tree code. In contrast to earlier studies which focused on specially prepared equilibrium configurations in order to compare with fluid theory, a more naturally occurring plasma-vacuum boundary layer is considered here with relevance to both space plasma and linear plasma devices. Quantitative comparisons of the linear phase are made between the fluid and kinetic models. After establishing the validity of this technique via comparison to linear theory and conventional particle-in-cell simulation for classical benchmark problems, a quantitative analysis of the more complexmore » magnetized plasma-vacuum layer is presented and discussed. It is found that in this scenario, the finite Larmor orbits of the ions result in significant departures from the effective shear velocity and width underlying the instability growth, leading to generally slower development and stronger nonlinear coupling between fast growing short-wavelength modes and longer wavelengths.« less

  20. Plasma layers near the electrodes of a cesium diode - Anode layer

    NASA Astrophysics Data System (ADS)

    Oganezov, Z. A.; Timoshenko, L. S.; Tskhakaya, V. K.

    1982-08-01

    A planar electron beam probe is used to study the plasma layer in contact with a nonemitting electrode. It is found that the field distribution in the space-charge region of the layer adjacent to a nonemitting electrode is linear and obeys a specific empirical relation over a large range of variation in the plasma parameters, while the potential distribution has a corresponding parabolic form. In order for these values to be consistent, it is necessary to assume that the potential at the boundary between the quasi-neutral plasma and the space-charge is equal to a value which is substantially larger than the theoretically permitted potential drop in a quasi-neutral plasma.

  1. The electromagnetic field for an open magnetosphere

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.

  2. Electromagnetic fluctuations generated in the boundary layer of laboratory-created ionospheric depletions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Lei, Jiuhou, E-mail: leijh@ustc.edu.cn; Collaborative Innovation Center of Astronautical Science and Technology, Harbin 150001

    Ionospheric depletions, produced by release of attachment chemicals into the ionosphere, were widely investigated and taken as a potential technique for the artificial modification of space weather. In this work, we reported the experimental evidence of spontaneously generated electromagnetic fluctuations in the boundary layer of laboratory-created ionospheric depletions. These depletions were produced by releasing attachment chemicals into the ambient plasmas. Electron density gradients and sheared flows arose in the boundary layer between the ambient and the negative ions plasmas. These generated electromagnetic fluctuations with fundamental frequency f{sub 0} = 70 kHz lie in the lower hybrid frequency range, and the mode propagates withmore » angles smaller than 90° (0.3π–0.4π) relative to the magnetic field. Our results revealed that these observed structures were most likely due to electromagnetic components of the electron-ion hybrid instability. This research demonstrates that electromagnetic fluctuations also can be excited during active release experiments, which should be considered as an essential ingredient in the boundary layer processes of ionospheric depletions.« less

  3. Advanced laser diagnostics for diamond deposition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, C.H.; Owano, T.G.; Wahl, E.H.

    Chemical Vapor Deposition (CVD) using thermal plasmas is attractive for diamond synthesis applications due to the inherently high reactant densities and throughput, but the associated high gas-phase collision rates in the boundary layer above the substrate produce steep thermal and species gradients which can drive the complex plasma chemistry away from optimal conditions. To understand and control these environments, accurate measurements of temperature and species concentrations within the reacting boundary layer are needed. This is challenging in atmospheric pressure reactors due to the highly luminous environment, steep thermal and species gradients, and small spatial scales. The applicability of degenerate four-wavemore » mixing (DFWM) as a spectroscopic probe of atmospheric pressure reacting plasmas has been investigated. This powerful, nonlinear technique has been applied to the measurement of temperature and radical species concentrations in the boundary layer of a diamond growth substrate immersed in a flowing atmospheric pressure plasma. In-situ measurements of CH and C{sub 2} radicals have been performed to determine spatially resolved profiles of vibrational temperature, rotational temperature, and species concentration. Results of these measurements are compared with the predictions of a detailed numerical simulation.« less

  4. EIDOSCOPE: particle acceleration at plasma boundaries

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely separated satellites that provides the unique capability to measure the 3D electric field with high accuracy and sensitivity. All EIDO instrumentation are state-of-the-art technology with heritage from many recent missions. The EIDOSCOPE orbit will be close to equatorial with apogee 25-30 RE and perigee 8-10 RE. In the course of one year the orbit will cross all the major plasma boundaries in the outer magnetosphere; bow shock, magnetopause and magnetotail current sheets, jet fronts and turbulent boundary layers. EIDO offers excellent cost/benefits for ESA, as for only a fraction of an M-class mission cost ESA can become an integral part of a major multi-agency L-class level mission that addresses outstanding science questions for the benefit of the European science community.

  5. A New Kinetic Simulation Model with Self-Consistent Calculation of Regolith Layer Charging for Moon-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Han, D.; Wang, J.

    2015-12-01

    The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.

  6. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  7. Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.

    2003-01-01

    An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.

  8. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, R.T.; Yamashina, T.

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  9. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  10. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.

    2009-01-01

    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  11. Plasma convection and ion beam generation in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.

    1991-01-01

    Because of the dawn-dusk electric field E(dd), plasma in the magnetotail convects from the lobe toward the central plasma sheet (CPS). In the absence of space or velocity diffusion due to plasma turbulence, convection would yield a steady state distribution function f = V exp (-2/3) g(v exp 2 V exp 2/3), where V is the flux tube volume. Starting with such a distribution function and a plasma beta which varies from beta greater than 1 in the CPS to beta much smaller than 1 in the lobe, the evolution of the ion distribution function was studied considering the combined effects of ion diffusion by kinetic Alfven waves (KAW) in the ULF frequency range (1-10 mHz) and convection due to E(dd) x B drift in the plasma sheet boundary layer (PSBL) and outer central plasma sheet (OCPS). The results show that, during the early stages after launching the KAWs, a beamlike ion distribution forms in the PSBL and at the same time the plasma density and temperature decrease in the OCPS. Following this stage, ions in the beams convect toward the CPS resulting in an increase of the plasma temperature in the OCPS.

  12. A scenario for solar wind penetration of earth's magnetic tail based on ion composition data from the ISEE 1 spacecraft

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1992-01-01

    Based on He(2+) and H(-) ion composition data from the Plasma Composition Experiment on ISEE 1, a scenario is proposed for the solar wind penetration of the earth's magnetic tail, which does not require that the solar wind plasma be magnetized. While this study does not take issue with the notion that earth's magnetic field merges with the solar wind magnetic field on a regular basis, it focuses on certain aspects of interaction between the solar wind particles and the earth's field, e.g, the fact that the geomagnetic tail always has a plasma sheet, even during times when the physical signs of magnetic merging are weak or absent. It is argued that the solar plasma enters along slots between the tail lobes and the plasma sheet, even quite close to earth, convected inward along the plasma sheet boundary layer or adjacent to it, by the electric fringe field of the ever present low-latitude magnetopause boundary layer (LLBL). The required E x B drifts are produced by closing LLBL equipotential surfaces through the plasma sheet.

  13. Three-dimensional Features of the Outer Heliosphere Due to Coupling between the Interstellar and Heliospheric Magnetic Field. V. The Bow Wave, Heliospheric Boundary Layer, Instabilities, and Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogorelov, N. V.; Heerikhuisen, J.; Roytershteyn, V.

    The heliosphere is formed due to interaction between the solar wind (SW) and local interstellar medium (LISM). The shape and position of the heliospheric boundary, the heliopause, in space depend on the parameters of interacting plasma flows. The interplay between the asymmetrizing effect of the interstellar magnetic field and charge exchange between ions and neutral atoms plays an important role in the SW–LISM interaction. By performing three-dimensional, MHD plasma/kinetic neutral atom simulations, we determine the width of the outer heliosheath—the LISM plasma region affected by the presence of the heliosphere—and analyze quantitatively the distributions in front of the heliopause. Itmore » is shown that charge exchange modifies the LISM plasma to such extent that the contribution of a shock transition to the total variation of plasma parameters becomes small even if the LISM velocity exceeds the fast magnetosonic speed in the unperturbed medium. By performing adaptive mesh refinement simulations, we show that a distinct boundary layer of decreased plasma density and enhanced magnetic field should be observed on the interstellar side of the heliopause. We show that this behavior is in agreement with the plasma oscillations of increasing frequency observed by the plasma wave instrument onboard Voyager 1. We also demonstrate that Voyager observations in the inner heliosheath between the heliospheric termination shock and the heliopause are consistent with dissipation of the heliospheric magnetic field. The choice of LISM parameters in this analysis is based on the simulations that fit observations of energetic neutral atoms performed by Interstellar Boundary Explorer .« less

  14. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, K.; Frank, L.A.; Huang, C.Y.

    Plasma data from ISEE 1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electronmore » beam and the ion beam excite ion acoustic waves with the Doppler-shifted real frequency ..omega..approx. = +- k/sub parallel/(c/sub s/-V/sub i//sub //sub parallel/). However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion beam is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points for simulations show turbulence generated by growing waves. The frequency of these spectra ranges from ..cap omega../sub i/ to ..omega../sub p//sub e/, which is in qualitative agreement with the satellite data. copyright American Geophysical Union 1988« less

  15. Depletion of solar wind plasma near a planetary boundary

    NASA Technical Reports Server (NTRS)

    Zwan, B. J.; Wolf, R. A.

    1976-01-01

    A mathematical model is presented that describes the squeezing of solar wind plasma out along interplanetary magnetic field lines in the region between the bow shock and the effective planetary boundary (in the case of the earth, the magnetopause). In the absence of local magnetic merging the squeezing process should create a 'depletion layer', a region of very low plasma density just outside the magnetopause. Numerical solutions are obtained for the dimensionless magnetohydrodynamic equations describing this depletion process for the case where the solar wind magnetic field is perpendicular to the solar wind flow direction. For the case of the earth, the theory predicts that the density should be reduced by a factor exceeding 2 in a layer about 700-1300 km thick if the Alfven Mach number in the solar wind, is equal to 8. Scaling of the model calculations to Venus and Mars suggests layer thicknesses about 1/10 and 1/15 those of the earth, respectively, neglecting diffusion and ionospheric effects.

  16. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin/separation line). Streamwise PIV measurements did not show that the boundary layer or separation region were energized by the actuation. The primary effect of the LAFPAs was the displacement of the reflected shock upstream. Jaunet et al. (2012) observed a similar shift in the reflected shock when they heated the wall beneath the boundary layer. A significantly greater power deposition was used in that work, and significantly larger shock displacements were observed. Although the LAFPAs output significantly less power (albeit in an unsteady, highly localized fashion), a parametric sweep strongly pointed to heating as the primary control mechanism. Further investigation and analysis showed that the near-wall heating of the flow by the plasma was the primary control mechanism of the LAFPAs, despite the small power input. The reflected shock was displaced by an increase in the separation region size, which was caused by the degradation of the upstream boundary layer. The LAFPAs degrade the upstream boundary layer through a variety of heating associated mechanisms: 1) Decreasing the density increases the mass flow deficit, 2) The altered skin-friction coefficient acts to retard the flow and make the velocity profile less full, and 3) The heating moves the sonic line further from the wall. Other mechanisms may also play a role.

  17. Investigation of the boundary layer during the transition from volume to surface dominated H- production at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Schiesko, L.; Fantz, U.

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.

  18. Investigation of the boundary layer during the transition from volume to surface dominated H⁻ production at the BATMAN test facility.

    PubMed

    Wimmer, C; Schiesko, L; Fantz, U

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (j(H(-)), j(e)) exists with the Cs emission.

  19. Multiscale Currents Observed by MMS in the Flow Braking Region

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  20. Electromagnetic tornadoes in space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, T.; Crew, G.B.; Retterer, J.M.

    1988-01-01

    The exotic phenomenon of energetic-ion conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail; lower-hybrid energization of ions in the boundary layer of the plasma sheet and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations and analytical treatments of the heating processes are described.

  1. Relation Between the Arc-Root Fluctuations, the Cold Boundary Layer Thickness and the Particle Thermal Treatment

    NASA Astrophysics Data System (ADS)

    Noguès, E.; Fauchais, P.; Vardelle, M.; Granger, P.

    2007-12-01

    In plasma spraying, the arc-root fluctuations, modifying the length and characteristics of the plasma jet, have an important influence on particle thermal treatment. These voltage fluctuations are strongly linked to the thickness of the cold boundary layer (CBL), surrounding the arc column. This thickness depends on the plasma spray parameters (composition and plasma forming gas mass flow rate, arc current, etc.) and the plasma torch design (anode-nozzle internal diameter and shape, etc.). In order to determine the influence of these different spray parameters on the CBL properties and voltage fluctuations, experiments were performed with two different plasma torches from Sulzer Metco. The first one is a PTF4 torch with a cylindrical anode-nozzle, working with Ar-H2 plasma gas mixtures and the second one is a 3MB torch with either a conical or a cylindrical anode-nozzle, working with N2-H2 plasma gas mixtures. Moreover, arc voltage fluctuations influence on particle thermal treatment was studied through the measurements of transient temperature and velocity of particles, issued from an yttria partially stabilized zirconia powder with a size distribution between 5 and 25 μm.

  2. ISEE observations of low frequency waves and ion distribution function evolution in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Gary, S. P.

    1990-01-01

    This paper describes ISEE plasma and magnetic fluctuation observations during two crossings of the plasma sheet boundary layer (PSBL) in the earth's magnetotail. Distribution function observations show that the counterstreaming ion components undergo pitch-angle scattering and evolve into a shell distribution in velocity space. This evolution is correlated with the development of low frequency, low amplitude magnetic fluctuations. However, the measured wave amplitudes are insufficient to accomplish the observed degree of ion pitch-angle scatttering locally; the near-earth distributions may be the result of processes occurring much farther down the magnetotail. Results show a clear correlation between the ion component beta and the relative streaming speed of the two components, suggesting that electromagnetic ion/ion instabilities do play an important role in the scattering of PSBL ions.

  3. The behavior of plasma with an arbitrary degree of degeneracy of electron gas in the conductive layer

    NASA Astrophysics Data System (ADS)

    Latyshev, A. V.; Gordeeva, N. M.

    2017-09-01

    We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.

  4. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  5. Electric fields in the plasma sheet and plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Pedersen, A.; Knott, K.; Cattell, C. A.; Mozer, F. S.; Falthammar, C.-G.; Lindqvist, P.-A.; Manka, R. H.

    1985-01-01

    Results obtained by Forbes et al. (1981) on the basis of time delay measurements between ISEE 1 and ISEE 2 imply that the plasma flow and the boundary contracting velocity were nearly the same, whereas the expanding boundary velocity was not accompanied by any significant plasma sheet plasma motion. In the present study, this observation is discussed in conjunction with electric field data. The study is based on electric field data from the spherical double probe experiment on ISEE 1. Electric field data from GEOS 2 are used to some extent to monitor the electric fields near the geostationary orbit during the considered eve nts. Electric field data during CDAW 6 events are discussed, taking into account positions of ISEE 1/ISEE 2 and GEOS 2; March 22, 0600-1300 UT; and March 22, UT; and March 31, 1400-2400 UT.

  6. Plasma diffusion at the magnetopause - The case of lower hybrid drift waves

    NASA Technical Reports Server (NTRS)

    Treumann, R. A.; Labelle, J.; Pottelette, R.

    1991-01-01

    The diffusion expected from the quasi-linear theory of the lower hybrid drift instability at the earth's magnetopause is recalculated. The resulting diffusion coefficient is marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various loss processes.

  7. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  8. Shock Generation and Control Using DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance.

  9. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  10. A study of field-aligned currents observed at high and low altitudes in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Craven, J. D.; Frank, L. A.; Sugiura, M.

    1988-01-01

    Field-aligned current structures on auroral field lines observed at low and high altitudes using DE 1 and ISEE 2 magnetometer, and particle data observed when the spacecraft are in magnetic conjunction in the near-midnight magnetosphere, are investigated. To minimize latitudinal ambiguity, the plasma-sheet boundary layer observed with ISEE 2 and the discrete aurora at the poleward edge of the auroral oval with DE 1 are studied. The overall current observed at highest latitudes is flowing into the ionosphere, and is likely to be carried by ionospheric electrons flowing upward. There are, however, smaller-scale current structures within this region. The sense and magnitude of the field-aligned currents agree at the two sites. The ISEE 2 data suggests that the high-latitude downward current corresponds to the high-latitude boundary of the plasma-sheet boundary layer, and may be associated with the ion beams observed there.

  11. Transition Control with Dielectric Barrier Discharge Plasmas

    DTIC Science & Technology

    2010-10-01

    AFRL-AFOSR-UK-TR-2011-0007 Transition Control with Dielectric Barrier Discharge Plasmas Cameron Tropea Technische...Discharge Plasmas 5a. CONTRACT NUMBER FA8655-08-1-3032 5b. GRANT NUMBER Grant 08-3032 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...is to control natural boundary-layer transition through the use of plasma actuators. Transition delay or even suppression has its merits not only in

  12. A PML-FDTD ALGORITHM FOR SIMULATING PLASMA-COVERED CAVITY-BACKED SLOT ANTENNAS. (R825225)

    EPA Science Inventory

    A three-dimensional frequency-dependent finite-difference time-domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) and recursive convolution approaches is developed to model plasma-covered open-ended waveguide or cavity-backed slot antenn...

  13. Wave mode identification of electrostatic noise observed with ISEE 3 in the deep tail boundary layer

    NASA Technical Reports Server (NTRS)

    Tsutsui, M.; Matsumoto, H.; Strangeway, R. J.; Tsurutani, B. T.; Phillips, J. L.

    1991-01-01

    The characteristics of the VLF electrostatic noise observed with ISEE 3 in the low-latitude boundary layer of distant geomagnetic tail are examined using a display format for the wave dynamic spectra different from that used by Scarf et al. (1984). It is shown that the observed noise is composed of impulsive bursts. The results of the detailed analysis of the noise parameters are used to develop a model of plasma wave behavior in the plasma rest frame. A hypothesis is proposed that the wide frequency extent of the noise spectra is composed of Doppler effects of waves propagating nearly omnidirectionally within the plasma rest frame, which is moving with the electron bulk speed. On the basis of this hypothesis, the wavelength of the observed waves were determined from the width of the frequency extent and the measured electron bulk speed. It is shown that the wavelength ranges from 2 to 8 times the plasma Debye length.

  14. Nonlinear electric field structures in the inner magnetosphere

    DOE PAGES

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; ...

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less

  15. On a nonlinear state of the electromagnetic ion/ion cyclotron instability

    NASA Astrophysics Data System (ADS)

    Cremer, M.; Scholer, M.

    We have investigated the nonlinear properties of the electromagnetic ion/ion cyclotron instability (EMIIC) by means of hybrid simulations (macroparticle ions, massless electron fluid). The instability is driven by the relative (super-Alfvénic) streaming of two field-aligned ion beams in a low beta plasma (ion thermal pressure to magnetic field pressure) and may be of importance in the plasma sheet boundary layer. As shown in previously reported simulations the waves propagate obliquely to the magnetic field and heat the ions in the perpendicular direction as the relative beam velocity decreases. By running the simulation to large times it can be shown that the large temperature anisotropy leads to the ion cyclotron instability (IC) with parallel propagating Alfvén ion cyclotron waves. This is confirmed by numerically solving the electromagnetic dispersion relation. An application of this property to the plasma sheet boundary layer is discussed.

  16. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    NASA Technical Reports Server (NTRS)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  17. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms.

    PubMed

    Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y

    2016-05-28

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  18. Mass and energy transfer across the Earth's magnetopause caused by vortex-induced reconnection: Mass and energy transfer by K-H vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.

    When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less

  19. Mass and energy transfer across the Earth's magnetopause caused by vortex-induced reconnection: Mass and energy transfer by K-H vortex

    DOE PAGES

    Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.; ...

    2017-10-23

    When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less

  20. Collisionless slow shocks in magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Cremer, Michael; Scholer, Manfred

    The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.

  1. Multiscale Currents Observed by MMS in the Flow Braking Region.

    PubMed

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A; Apatenkov, Sergey; Ergun, Robert E; Fuselier, Stephen A; Gershman, Daniel J; Giles, Barbara J; Khotyaintsev, Yuri V; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T; Stawarz, Julia; Strangeway, Robert J; Anderson, Brian; Burch, James L; Bromund, Ken R; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J; Slavin, James A; Torbert, Roy B; Turner, Drew L

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  2. Suppressed ion-scale turbulence in a hot high-β plasma

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-12-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  3. Suppressed ion-scale turbulence in a hot high-β plasma

    PubMed Central

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-01-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675

  4. Plasma waves near the magnetopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.R.; Haravey, C.C.; Hoppe, M.M.

    1982-04-01

    Plasma waves associated with the magnetopause, from the magnetosheath to the outer magnetosphere, are examined with an emphasis on high time resolution data and the comparison between measurements by using different antenna systems. An early ISEE crossing of the magnetopause region, including passage through two well-defined flux transfer events, the magentopause current layer, and boundary plasma, is studied in detail. The waves in these regions are compared and contrasted with the waves in the adjoining magnetosheath and outer magnetosphere. Four types of plamsa wave emissions are characteristic of the nominal magnetosheat: (1) a very low frequency continuum, (2) short wavelengthmore » spikes, (3) 'festoon-shaped' emissions below about 2 kHz, and (4) 'lion roars'. The latter two emissions are well correlated with ultra-low frequency magnetic field fluctuations. The dominant plasma wave features during flux transfer events are (1) an intense low-frequency continuum, which includes a substantial electromagnetic component, (2) a dramatic increase in the frequency of occurrence of the spikes, (3) quasi-periodic electron cyclotron harmonics correlated with approx.1-Hz magnetic field fluctuations, and (4) enhanced electron plasma oscillations. The plasma wave characteristics in the current layer and in the boundary layer are quite similar to the features in the flux transfer events. Upon entry into the outer magnetosphere, the plasma wave spectra are dominated by intense electromagnetic chorus bursts and electrosatic (n+1/2)f/sup -//sub g/ emissions. Wavelength determinations made by comparing the various antenna responses and polarization measurements for the different waves are also presented.« less

  5. Magnetic field line draping in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Lepping, R. P.; Lazarus, A. J.

    1990-01-01

    Simultaneous IMP 8 solar wind and ISEE 1/2 observations for a northern dawn ISEE 1/2 magnetopause crossing on November 6, 1977. During this crossing, ISEE 1/2 observed quasi-periodic pulses of magnetosheathlike plasma on northward magnetic field lines. The ISEE 1/2 observations were originally interpreted as evidence for strong diffusion of magnetosheath plasma across the magnetopause and the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. An alternate explanation, in terms of magnetic field merging and flux transfer events, has also been advocated. In this paper, a third interpretation is proposed in terms of quasi-periodic magnetopause motion which causes the satellites to repeatedly exit the magnetosphere and observe draped northward magnetosheath magnetic field lines in the plasma depletion layer.

  6. Toroidal Alfvén eigenmode triggered by trapped anisotropic energetic particles in a toroidal resistive plasma with free boundary

    NASA Astrophysics Data System (ADS)

    Yang, S. X.; Hao, G. Z.; Liu, Y. Q.; Wang, Z. X.; Hu, Y. J.; Zhu, J. X.; He, H. D.; Wang, A. K.

    2018-04-01

    The toroidal Alfvén eigenmode (TAE), excited by trapped energetic particles (EPs), is numerically investigated in a tokamak plasma, using the non-perturbative magnetohydrodynamic-kinetic hybrid formulation based MARS-K code (Liu et al 2008 Phys. Plasmas 15 112503). Compared with the fixed boundary condition at the plasma edge, a free boundary enhances the critical value of the EPs kinetic contribution for driving the TAE. Free boundary also induces finite perturbations at the plasma edge as expected. An anisotropic distribution of EPs, in the particle pitch angle space, strongly enhances the instability and results in a more global mode structure, compared with the isotropic case. The plasma resistivity is also found to play a role in the EPs-destabilized TAE. In particular, the mode stability domain is mapped out, in the 2D parameter space of the plasma resistivity and a quantity defining the width of the particle distribution in pitch angle (for anisotropic distribution). A resonance layer in the poloidal mode structure, with the layer width increasing with the plasma resistivity, appears at the large width of the particle distribution in pitch angle space. A mode conversion, from the modified ideal kink by the EPs kinetic effect to the TAE, is also observed while increasing the birth energy of EPs. Computational results suggest that the TAE mode structure can be modified by certain key plasma parameters, such as the EPs kinetic contribution, the equilibrium pressure, the plasma resistivity, the distribution of EPs, as well as the birth energy of EPs. Such modification of the eigenmode structure can only be obtained following the non-perturbative hybrid approach (Wang et al 2013 Phys. Rev. Lett. 111 145003, Wang et al 2015 Phys. Plasmas 22 022509), as adopted in this study. More importantly, numerical results show that near the marginal stability point, the dominant poloidal harmonics of the TAE overlap with each other, and are localized at the tip positions of the Alfvén continua. This kind of TAE structure in high beta plasma with unstable ideal kink is substantially different from that of the conventional TAE.

  7. Structure of the reconnection layer and the associated slow shocks: Two-dimensional simulations of a Riemann problem

    NASA Astrophysics Data System (ADS)

    Cremer, Michael; Scholer, Manfred

    2000-12-01

    The kinetic structure of the reconnection layer in the magnetotail is investigated by two-dimensional hybrid simulations. As a proxy, the solution of the Riemann problem of the collapse of a current sheet with a normal magnetic field component is considered for two cases of the plasma beta (particle to magnetic field pressure): β=0.02 and β=0.002. The collapse results in an expanding layer of compressed and heated plasma, which is accelerated up to the Alfvén speed vA. The boundary layer separating this hot reconnection like layer from the cold lobe plasma is characterized by a beam of back-streaming ions with a field-aligned bulk speed of ~=2vA relative to the cold lobe ion population at rest. As a consequence, obliquely propagating waves are excited via the electromagnetic ion/ion cyclotron instability, which led to perpendicular heating of the ions in the boundary layer as well as further outside the layer in the lobe. In both regions, waves are found which propagate almost parallel to the magnetic field and which are identified as Alfvén ion cyclotron (AIC) waves. These waves are excited by the temperature anisotropy instability. The temperature anisotropy increases with decreasing plasma beta. Thus the anisotropy threshold of the instability is exceeded even in the case of a rather small beta value. The AIC waves, when convected downstream of what can be defined as the the slow shock, make an important contribution to the ion thermalization process. More detailed information on the dissipation process in the slow shocks is gained by analyzing individual ion trajectories.

  8. Ring current dynamics and plasma sheet sources. [magnetic storms

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1984-01-01

    The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.

  9. Ion heating and magnetic flux pile-up in a magnetic reconnection experiment with super-Alfvénic plasma inflows

    NASA Astrophysics Data System (ADS)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.

    2018-04-01

    This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.

  10. Transport in a field aligned magnetized plasma/neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher Michael

    The objective of this dissertation is to characterize the physics of a boundary layer between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. A series of experiments are performed at the Enormous Toroidal Plasma Device (ETPD) at UCLA to study this field aligned Neutral Boundary Layer (NBL) at the end of the plasma. A Lanthanum Hexaboride (LaB6) cathode and semi-transparent anode creates a magnetized, current-free helium plasma which terminates on a neutral helium gas without touching any walls. Probes are inserted into the plasma to measure the basic plasma parameters and study the transport in the NBL. The experiment is performed in the weakly ionized limit where the plasma density (ne) is much less than the neutral density (nn) such that ne/nn < 5%. The NBL is characterized by a field-aligned electric field which begins at the point where the plasma pressure equilibrates with the neutral gas pressure. Beyond the pressure equilibration point the electrons and ions lose their momentum by collisions with the neutral gas and come to rest. An electric field is established self consistently to maintain a current-free termination through equilibration of the different species' stopping rates in the neutral gas. The electric field resembles a collisional quasineutral sheath with a length 10 times the electron-ion collision length, 100 times the neutral collision length, and 10,000 times the Debye length. Collisions with the neutral gas dominate the losses in the system. The measured plasma density loss rates are above the classical cross-field current-free ambipolar rate, but below the anomalous Bohm diffusion rate. The electron temperature is below the ionization threshold of the gas, 2.2 eV in helium. The ions are in thermal equilibrium with the neutral gas. A generalized theory of plasma termination in a Neutral Boundary Layer is applied to this case using a two-fluid, current-free, weakly ionized transport model. The electron and ion momentum equations along the field are combined in a generalized Ohm's law which predicts the axial electric field required to maintain a current-free termination. The pressure balance criteria for termination and the predicted electric field are confirmed over a scaling of plasma parameters. The experiment and the model are relevant for studying NBLs in other systems, such as the atmospheric termination of the aurora or detached gaseous divertors. A steady state modified ambipolar system is measured in the ETPD NBL. The drift speeds associated with these currents are a small fraction of the plasma flow speeds and the problem is treated as a perturbation to the termination model. The current-free condition on the model is relaxed to explain the presence of the divergence free current.

  11. Lunar particle shadows and boundary layer experiment: Plasma and energetic particles on the Apollo 15 and 16 subsatellites

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Chase, L. M.; Lin, R. P.; Mccoy, J. E.; Mcguire, R. E.

    1974-01-01

    The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance.

  12. Large Alfvén wave power in the plasma sheet boundary layer during the expansion phase of substorms

    NASA Astrophysics Data System (ADS)

    Keiling, A.; Wygant, J. R.; Cattell, C.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J.; Russell, C. T.; Lotko, W.; Streltsov, A. V.

    2000-10-01

    Observations by the Polar satellite of large Poynting flux in the plasma sheet boundary layer at geocentric distances of 4 to 6 RE and between 22 and 3 hrs magnetic local time were correlated with H-bay signatures from ground magnetometer records. We provide evidence that large Poynting fluxes occur during the substorm expansion phase. The Poynting fluxes exceeded 1 ergs/cm²s (125 ergs/cm²s when mapped to 100 km), were dominantly directed toward the ionosphere, and were associated with Alfvén waves. These observations demonstrate the importance of Alfvén wave power as a means of energy transport from the distant magnetotail to the ionosphere during the most dynamic phase of substorms.

  13. On the boundary flow using pulsed nanosecond DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Jie; Cui, Y. D.; Li, Jiun-Ming; Zheng, Jian-Guo; Khoo, B. C.

    2018-05-01

    Our previous studies in quiescent air environment [Z. J. Zhao et al., AIAA J. 53(5) (2015) 1336; J. G. Zheng et al., Phys. Fluids 26(3) (2014) 036102] reveal experimentally and numerically that the shock wave generated by the nanosecond pulsed plasma is fundamentally a microblast wave. The shock-induced burst perturbations (overpressure and induced velocity) are found to be restricted to a very narrow region (about 1 mm) behind the shock front and last only for a few microseconds. These results indicate that the pulsed nanosecond dielectric barrier discharge (DBD) plasma actuator has stronger local effects in time and spatial domain. In this paper, we further investigate the effects of pulsed plasma on the boundary layer flow over a flat plate. The present investigation reveals that the nanosecond pulsed plasma actuator generates intense perturbations and tends to promote the laminar boundary over a flat plate to turbulent flow. The heat effect after the pulsed plasma discharge was observed in the external flow, lasting a few milliseconds for a single pulse and reaching a quasi-stable state for multi-pulses.

  14. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++

    NASA Astrophysics Data System (ADS)

    Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.

    2018-07-01

    The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.

  15. The Use of Kruskal-Newton Diagrams for Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Fishaleck and R.B. White

    2008-02-19

    The method of Kruskal-Newton diagrams for the solution of differential equations with boundary layers is shown to provide rapid intuitive understanding of layer scaling and can result in the conceptual simplification of some problems. The method is illustrated using equations arising in the theory of pattern formation and in plasma physics.

  16. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model ofmore » a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.« less

  17. Control of electromagnetic edge effects in electrically-small rectangular plasma reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trampel, Christopher P.; Stieler, Daniel S.; PowerFilm, Inc., 2337 230th Street, Ames, Iowa 50014

    Electromagnetic fields supported by rectangular reactors for plasma enhanced chemical vapor deposition are studied theoretically. Expressions for the fields in an electrically-small rectangular reactor with plasma in the chamber are derived. Modal field decompositions are employed under the homogeneous plasma slab approximation. The amplitude of each mode is determined analytically. It is shown that the field can be represented by the standing wave, evanescent waves tied to the edges, and an evanescent wave tied to the corners of the reactor. The impact of boundary conditions at the plasma edge on nonuniformity is quantified. Uniformity may be improved by placing amore » lossy magnetic layer on the reactor sidewalls. It is demonstrated that nonuniformity is a decreasing function of layer thickness.« less

  18. Sensitivity of the Boundary Plasma to the Plasma-Material Interface

    DOE PAGES

    Canik, John M.; Tang, X. -Z.

    2017-01-01

    While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimedmore » at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.« less

  19. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  20. Plasma Waves Observed in the Cusp Turbulent Boundary Layer: An Analysis of High Time Resolution Wave and Particle Measurements from the Polar Spacecraft

    NASA Technical Reports Server (NTRS)

    Pickett, J. S.; Franz, J. R.; Scudder, J. D.; Menietti, J. D.; Gurnett, D. A.; Hospodarsky, G. B.; Braunger, R. M.; Kintner, P. M.; Kurth, W. S.

    2001-01-01

    The boundary layer located in the cusp and adjacent to the magnetopause is a region that is quite turbulent and abundant with waves. The Polar spacecraft's orbit and sophisticated instrumentation are ideal for studying this region of space. Our analysis of the waveform data obtained in this turbulent boundary layer shows broadband magnetic noise extending up to a few kilohertz (but less than the electron cyclotron frequency); sinusoidal bursts (a few tenths of a second) of whistler mode waves at around a few tens of hertz, a few hundreds of hertz, and just below the electron cyclotron frequency; and bipolar pulses, interpreted as electron phase-space holes. In addition, bursts of electron cyclotron harmonic waves are occasionally observed with magnetic components. We show evidence of broadband electrostatic bursts covering a range of approx. 3 to approx. 25 kHz (near but less than the plasma frequency) occurring in packets modulated at the frequency of some of the whistler mode waves. On the basis of high time resolution particle data from the Polar HYDRA instrument, we show that these bursts are consistent with generation by the resistive medium instability. The most likely source of the whistler mode waves is the magnetic reconnection site closest to the spacecraft, since the waves are observed propagating both toward and away from the Earth, are bursty, which is often the case with reconnection, and do not fit on the theoretical cold plasma dispersion relation curve.

  1. The dependence of the strength and thickness of field-aligned currents on solar wind and ionospheric parameters

    PubMed Central

    Johnson, Jay R.; Wing, Simon

    2017-01-01

    Sheared plasma flows at the low-latitude boundary layer (LLBL) correlate well with early afternoon auroral arcs and upward field-aligned currents. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents (Λ) in a region of sheared velocity, such as the LLBL. We compare the predictions of the model with DMSP observations and find remarkably good scaling of the upward region 1 currents with solar wind and ionospheric parameters in region located at the boundary layer or open field lines at 1100–1700 magnetic local time. We demonstrate that Λ~nsw−0.5 and Λ ~ L when Λ/L < 5 where L is the auroral electrostatic scale length. The sheared boundary layer thickness (Δm) is inferred to be around 3000 km, which appears to have weak dependence on Vsw. J‖ has dependencies on Δm, Σp, nsw, and Vsw. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data. PMID:29057194

  2. Electromagnetic tornadoes in space. Ion conics along auroral field lines generated by lower hybrid waves and electromagnetic turbulence in the ion-cyclotron range of frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, T.; Crew, G.B.; Retterer, J.M.

    1988-01-01

    The exotic phenomenon of energetic ion-conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail: lower-hybrid energization of ions in the boundary layer of the plasma sheet, and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations, and analytical treatments of the heating processes are described.

  3. Keyhole and weld shapes for plasma arc welding under normal and zero gravity

    NASA Technical Reports Server (NTRS)

    Keanini, R. G.; Rubinsky, B.

    1990-01-01

    A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.

  4. PIC Modeling of Argon Plasma Flow in MNX

    NASA Astrophysics Data System (ADS)

    Cohen, Samuel; Sefkow, Adam

    2007-11-01

    A linear helicon-heated plasma device - the Magnetic Nozzle Experiment (MNX) at the Princeton Plasma Physics Laboratory - is used for studies of the formation of strong electrostatic double layers near mechanical and magnetic apertures and the acceleration of plasma ions into supersonic directed beams. In order to characterize the role of the aperture and its involvement with ion acceleration, detailed particle-in-cell simulations are employed to study the effects of the surrounding boundary geometry on the plasma dynamics near the aperture region, within which the transition from a collisional to collisionless regime occurs. The presence of a small superthermal electron population is examined, and the model includes a background neutral population which can be ionized by energetic electrons. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the formation mechanism of the double layer is investigated.

  5. Parallel inhomogeneity and the Alfven resonance. 1: Open field lines

    NASA Technical Reports Server (NTRS)

    Hansen, P. J.; Harrold, B. G.

    1994-01-01

    In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.

  6. Structure of conducting channel of lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alanakyan, Yu. R.

    2013-08-15

    The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case,more » the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior.« less

  7. Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Anderson, B. J.; Onsager, T. G.

    1995-01-01

    Electron distributions at energies above 50 eV have been found to be a sensitive indicator of magnetic topology for magnetopause crossings of the AMPTE/CCE spacecraft. Progressing from the magnetosheath to the magnetosphere two abrupt transitions occur. First, the magnetosheath electron population directed either parallel or antiparallel to the magnetic field is replaced by a streaming, heated magnetosheath electron population. The other half of the distribution is unchanged. The region with unidirectional, heated magnetosheath electrons is identified as the magnetosheath boundary layer (MSBL). Second, the unheated magnetosheath electron population is replaced by a heated population nearly identical to the population encountered in the MSBL, resulting in a symmetric counterstreaming distribution. The region populated by the bidirectional heated magnetosheath electrons is identified as the low-latitude boundary layer (LLBL). The MSBL and LLBL identified by the electron transitions are the same as the regions identified using ion composition measurements. The magnetosheath-MSBL transition reflects a change in magnetic topology from a solar wind field line to one that threads the magnetopause, and the existence of a magnetosheath-MSBL transition implies that the magnetopause is open. When the current layer is easily identified, the MSBL-LLBL transition coincides with the magnetopause current layer, indicating that the magnetosheath electrons are heated in the current layer. Both magnetosheath-MSBL and MSBL-LLBL transitions are observed for low as well as high magnetic shears. Moreover, the transitions are particularly clear for low shear implying that magnetic topology boundaries are sharp even when abrupt changes in the field and other plasma parameters are absent. Furthermore, for low magnetic shear, solar wind ions with low parallel drift speeds make up the majority of the LLBL population indicating that the magnetosheath plasma has convected directly across the magnetosheath plasma has converted directly across the magnetopause. These observations are consistent with quasi-steady, high-latitude reconnection and indicate that the signatures of this reconnection geometry are commonly present in the subpolar region.

  8. Sawtooth events and O+ in the plasma sheet and boundary layer: CME- and SIR-driven events

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Liao, J.

    2017-12-01

    The role of ionospheric ions in sawtooth events is an open question. Simulations[1,2,3] suggest that O+ from the ionosphere produces a feedback mechanism for driving sawtooth events. However, observational evidence[4,5] suggest that the presence of O+ in the plasma sheet is neither necessary nor sufficient. In this study we investigate whether the solar wind driver of the geomagnetic storm has an effect on the result. Building on an earlier study[4] that used events for which Cluster data is available in the plasma sheet and boundary layer, we perform a superposed epoch analysis for coronal mass ejection (CME) driven storms and streaming interaction region (SIR) driven storms separately, to investigate the hypothesis that ionospheric O+ is an important contributor for CME-driven storms but not SIR-driven storms[2]. [1]O. J. Brambles et al. (2011), Science 332, 1183.[2]O. J. Brambles et al. (2013), JGR 118, 6026.[3]R. H. Varney et al. (2016), JGR 121, 9688.[4]J. Liao et al. (2014), JGR 119, 1572.[5]E. J. Lund et al. (2017), JGR, submitted.

  9. Two encounters with the flank low-latitude boundary layer - Further evidence for closed field topology and investigation of the internal structure

    NASA Technical Reports Server (NTRS)

    Traver, D. P.; Mitchell, D. G.; Williams, D. J.; Frank, L. A.; Huang, C. Y.

    1991-01-01

    The structure of the flank low-latitude boundary layer (LLBL) is examined through differential energy spectra and particle angular anisotropies for traversals of the dawn flank (December 19, 1977) and dusk flank (July 7, 1978) during periods of predominantly northward magnetosheath field orientation. Spectra are presented that were obtained from combined ISEE 1 low-energy-proton and electron-differential-energy-analyzer and medium-energy-particle-instrument data extending over the 200-eV/q to 2-MeV energy range for the plasma sheet, stagnation region, outer LLBL, and magnetosheath regions. The stagnation region and the outer LLBL are each a mixture of plasma-sheet and magnetosheath populations, but the stagnation region contains a relatively higher fraction of plasma sheet particles, consistent with its placement earthward of the outer LLBL. Evidence for energization of thermal electrons appears during the dusk flank crossing. Bidirectional field-aligned ion distributions are observed with typically 5-to-1 enhancement of the flux along the magnetic field during certain portions of the dusk flank crossing.

  10. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, N.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Yan, N., E-mail: yanning@ipp.ac.cn

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentummore » transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.« less

  11. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ exhibits a prominent spatiotemporal behaviour. The residence time of the CVP is estimated as the jet duration time, while the maximum extent of the affected flow in the three coordinate directions (x, y, and z) is approximately 32D, 8.5D, and 10D, respectively. An extremely high level of turbulent kinetic energy production is shown in the jet shear-layer, front vortex ring, and CVP, of which the contribution of the streamwise Reynolds normal stress is dominant. Finally, a conceptual model of the interaction between the PSJ and the TBL is proposed.

  12. A Vortical Dawn Flank Boundary Layer for Near-Radial IMF: Wind Observations on 24 October 2001

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Gratton, F. T.; Gnavi, G.; Torbert, R. B.; Wilson, Lynn B., III

    2014-01-01

    We present an example of a boundary layer tailward of the dawn terminator which is entirely populated by rolled-up flow vortices. Observations were made by Wind on 24 October 2001 as the spacecraft moved across the region at the X plane approximately equal to -13 Earth radii. Interplanetary conditions were steady with a near-radial interplanetary magnetic field (IMF). Approximately 15 vortices were observed over the 1.5 hours duration of Wind's crossing, each lasting approximately 5 min. The rolling up is inferred from the presence of a hot tenuous plasma being accelerated to speeds higher than in the adjoining magnetosheath, a circumstance which has been shown to be a reliable signature of this in single-spacecraft observations. A blob of cold dense plasma was entrained in each vortex, at whose leading edge abrupt polarity changes of field and velocity components at current sheets were regularly observed. In the frame of the average boundary layer velocity, the dense blobs were moving predominantly sunward and their scale size along the X plane was approximately 7.4 Earth radii. Inquiring into the generation mechanism of the vortices, we analyze the stability of the boundary layer to sheared flows using compressible magnetohydrodynamic Kelvin-Helmholtz theory with continuous profiles for the physical quantities. We input parameters from (i) the exact theory of magnetosheath flow under aligned solar wind field and flow vectors near the terminator and (ii) the Wind data. It is shown that the configuration is indeed Kelvin-Helmholtz (KH) unstable. This is the first reported example of KH-unstable waves at the magnetopause under a radial IMF.

  13. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma

    DOE PAGES

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; ...

    2015-05-15

    The most important feature of magnetic reconnection is that it energizes plasma particles by converting magnetic energy to particle energy, the exact mechanisms by which this happens are yet to be determined despite a long history of reconnection research. Recently, we have reported our results on the energy conversion and partitioning in a laboratory reconnection layer in a short communication [Yamada et al., Nat. Commun. 5, 4474 (2014)]. The present paper is a detailed elaboration of this report together with an additional dataset with different boundary sizes. Our experimental study of the reconnection layer is carried out in the two-fluidmore » physics regime where ions and electrons move quite differently. We have observed that the conversion of magnetic energy occurs across a region significantly larger than the narrow electron diffusion region. A saddle shaped electrostatic potential profile exists in the reconnection plane, and ions are accelerated by the resulting electric field at the separatrices. These accelerated ions are then thermalized by re-magnetization in the downstream region. A quantitative inventory of the converted energy is presented in a reconnection layer with a well-defined, variable boundary. We also carried out a systematic study of the effects of boundary conditions on the energy inventory. This study concludes that about 50% of the inflowing magnetic energy is converted to particle energy, 2/3 of which is ultimately transferred to ions and 1/3 to electrons. When assisted by another set of magnetic reconnection experiment data and numerical simulations with different sizes of monitoring box, it is also observed that the observed features of energy conversion and partitioning do not depend on the size of monitoring boundary across the range of sizes tested from 1.5 to 4 ion skin depths.« less

  14. The Physical Elements of Onset of the Magnetospheric Substorm

    NASA Technical Reports Server (NTRS)

    Erickson, Gary M.

    1997-01-01

    During this reporting period effort continued in the areas: (1) understanding the mechanisms responsible for substorm onset, and (2) application of a fundamental description of field-aligned currents and parallel electric fields to the plasma-sheet boundary layer.

  15. Investigations into the structure of PEO-layers for understanding of layer formation

    NASA Astrophysics Data System (ADS)

    Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.

    2018-06-01

    Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.

  16. Advanced Method of Boundary-Layer Control Based on Localized Plasma Generation

    DTIC Science & Technology

    2009-05-01

    measurements, validation of experiments, wind-tunnel testing of the microwave / plasma generation system , preliminary assessment of energy required...and design of a microwave generator , electrodynamic and multivibrator systems for experiments in the IHM-NAU wind tunnel: MW generator and its high...equipped with the microwave - generation and protection systems to study advanced methods of flow control (Kiev) Fig. 2.1,a. The blade

  17. Evidence for magnetic field reconnection at the Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Sonnerup, B. U. O.; Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.

    1981-01-01

    Eleven passes of the ISEE satellites through the frontside terrestrial magnetopause were identified, where the plasma velocity in the magnetopause and boundary layer was substantially larger than in the magnetosheath. The nature of the plasma flow, magnetic field, and energetic particle fluxes in these regions were examined, with a view to determining whether the velocity enhancements can be explained by magnetic field reconnection.

  18. Observations of nonadiabatic acceleration of ions in Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Paterson, W. R.; Kivelson, M. G.

    1994-01-01

    We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity distributions are the result of fractional or few gyromotions before ejection out of the current sheet, but this speculation must be further investigated with appropriate kinetic simulation of trajectories.

  19. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, R.; Bell, R. E.; Boyle, D. P.

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  20. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE PAGES

    Majeski, R.; Bell, R. E.; Boyle, D. P.; ...

    2017-03-20

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  1. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Bell, R. E.; Boyle, D. P.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Merino, E.; Raitses, Y.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Bialek, J.; Biewer, T. M.; Canik, J. M.; Buzi, L.; Koel, B. E.; Patino, M. I.; Capece, A. M.; Hansen, C.; Jarboe, T.; Kubota, S.; Peebles, W. A.; Tritz, K.

    2017-05-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 × 1017 m-3, consistent with a low recycling metallic lithium boundary. Despite the high edge temperature, the core impurity content is low. Zeff is estimated to be ˜1.2, with a very modest contribution (<0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-β, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-β is briefly described.

  2. Composition Measurements at the Magnetopause and in the Plasma Mantle

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1998-01-01

    This final report describes activities under NASA grant NAGW-4049 to Lockheed Missiles and Space Company. The report covers the entire period of the grant from 15 August 1994 to 31 January 1998. The original grant was for 3 years ending in August 1997; however the grant was extended 6 months to accomodate additional data analysis that added significantly to the scientific results. This is a grant under the NASA Supporting Research and Technology Program for the analysis and interpretation of the combined scientific data from the ISEE-1 Plasma Composition Experiment and the AMPTE/CCE Hot Plasma Composition Experiment. These combined data sets were used in a study of the Earth's magnetopause to develop a fundamental understanding of plasma entry and dynamics at the boundary and formation and maintenance of the low latitude boundary layer under a variety of solar wind and magnetospheric conditions and at a wide range of local times.

  3. Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma

    DOE PAGES

    Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.; ...

    2017-05-29

    Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less

  4. Effects of discharge parameters on deposition rate of hydrogenated amorphous silicon for solar cells from pure SiH/sub 4/ plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, S.; Kitagawa, M.; Hirao, T.

    1987-07-15

    A systematic deposition of hydrogenated amorphous silicon films from pureSiH/sub 4/ plasma was made in a capacitively coupled RF glow-discharge system by changing anode--cathode spacing d and chamber pressure p simultaneously. The data of the deposition rate in the p-vs-d space had two boundaries. One was pd = const. The other seems to be pd/sup 2/ = const. The RF plasma can stably sustain between the boundaries. The boundaries are discussed with RF power per SiH/sub 4/ molecule and with overlapping Paschen's lines of various fragments, especially H/sub 2/ due to the SiH/sub 4/ dissociation. We found the optimum conditionsmore » in which the deposition rate was more than 10 A/s without large photo-induced degradation. 10% efficient p-i-n solar cells were achieved with the intrinsic layer deposition rate of 3.9 A/s and more than 6% efficiency with 10 A/s.« less

  5. Models, assumptions, and experimental tests of flows near boundaries in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. Umair; Thompson, Derek S.; Jackson, Cory D.; Kim, Justin F.; Hershkowitz, Noah; Scime, Earl E.

    2016-05-01

    We present the first measurements of ion flows in three dimensions (3Ds) using laser-induced fluorescence in the plasma boundary region. Measurements are performed upstream from a grounded stainless steel limiter plate at various angles ( ψ=16 ° to 80 ° ) to the background magnetic field in two argon helicon experiments (MARIA at the University of Wisconsin-Madison and HELIX at West Virginia University). The Chodura magnetic presheath model for collisionless plasmas [R. Chodura, Phys. Fluids 25, 1628 (1982)] is shown to be inaccurate for systems with sufficient ion-neutral collisions and ionization such as tokamak scrape off layers. A 3D ion fluid model that accounts for ionization and charge-exchange collisions is found to accurately describe the measured ion flows in regions where the ion flux tubes do not intersect the boundary. Ion acceleration in the E →×B → direction is observed within a few ion Larmor radii of the grounded plate for ψ=80 ° . We argue that fully 3D ion and neutral acceleration in the plasma boundary are uniquely caused by the long-range presheath electric fields, and that models that omit presheath effects under-predict observed wall erosion in tokamak divertors and Hall thruster channel walls.

  6. On the Geometrical Optics Approach in the Theory of Freely-Localized Microwave Gas Breakdown

    NASA Astrophysics Data System (ADS)

    Shapiro, Michael; Schaub, Samuel; Hummelt, Jason; Temkin, Richard; Semenov, Vladimir

    2015-11-01

    Large filamentary arrays of high pressure gas microwave breakdown have been experimentally studied at MIT using a 110 GHz, 1.5 MW pulsed gyrotron. The experiments have been modeled by other groups using numerical codes. The plasma density distribution in the filaments can be as well analytically calculated using the geometrical optics approach neglecting plasma diffusion. The field outside the filament is a solution of an inverse electromagnetic problem. The solutions are found for the cylindrical and spherical filaments and for the multi-layered planar filaments with a finite plasma density at the boundaries. We present new results of this theory showing a variety of filaments with complex shapes. The solutions for plasma density distribution are found with a zero plasma density at the boundary of the filament. Therefore, to solve the inverse problem within the geometrical optics approximation, it can be assumed that there is no reflection from the filament. The results of this research are useful for modeling future MIT experiments.

  7. Shear strength of a three-dimensional capillary-porous titanium coating for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu; Alpatov, A. V.; Komlev, V. S.; Mamonov, V. I.; Sevostyanov, M. A.; Baikin, A. S.

    2018-04-01

    The effect of pretreatment and plasma preheating of Ti-substrate on shear strength of three-dimensional capillary porous Ti-coating was studied. After sandblasting the shear strength of the plasma sprayed coating was 200 ± 2 MPa, and after additional matting it was 68 ± 4 MPa. The use of plasma preheating of the substrates for 9 seconds decreased difference between values of the shear strength to 249 ± 17 MPa and 229 ± 16 MPa, respectively. After plasma spraying the microhardness of the surface layer of the substrate was 4.34 ± 0.35 GPa, the microhardness of the boundary between the coating and the substrate was 8.08 ± 0.45 GPa, and the microhardness of the coating was 3.48 ± 0.25 GPa. High shear strength of the coating was attributed to the activation of the substrate by means of plasma preheating and hardening of the boundary between the coating and the substrate by oxides and nitrides.

  8. Investigation of the Flow Structure on a Flat Plate Induced by Unsteady Plasma Actuation with DNS Methods

    NASA Astrophysics Data System (ADS)

    Yu, Jianyang; Chen, Fu; Liu, Huaping; Song, Yanping

    2015-12-01

    An investigation into the flow characteristic on a flat plate induced by an unsteady plasma was conducted with the methods of direct numerical simulations (DNS). A simplified model of dielectric barrier discharge (DBD) plasma was applied and its parameters were calibrated with the experimental results. In the simulations, effects of the actuation frequency on the flow were examined. The instantaneous flow parameters were also drawn to serve as a detailed study on the behavior when the plasma actuator was applied to the flow. The result shows that induced by the unsteady actuation, a series of vortex pairs which showed dipole formation and periodicity distribution were formed in the boundary layer. The production of these vortex pairs indicated a strong energy exchange between the main flow and the boundary layer. They moved downstream under the action of the free stream and decayed under the influence of the fluid viscosity. The distance of the neighboring vortices was found to be determined by the actuation frequency. Interaction of the neighboring vortices would be ignored when the actuation frequency was too small to make a difference. supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51121004) and National Natural Science Foundation of China (No. 50976026)

  9. Characteristics of Plasma Synthetic Jet Actuators in Crossflow

    NASA Astrophysics Data System (ADS)

    Santhanakrishnan, Arvind; Jacob, Jamey

    2006-11-01

    The plasma synthetic jet actuator (PSJA) consists of two annular electrodes separated by dielectric material that results in a circular region of dielectric barrier discharge plasma. In quiescent conditions, this plasma ring produces a synthetic jet which can be used for active flow control applications. Unsteady pulsing of the actuator results in the formation of multiple primary and secondary vortex rings, the latter remaining fixed or trapped in space. The jet is observed to be formed by the advection and interaction of the primary vortices, resembling a conventional synthetic jet. This presentation examines the operation of the PSJA in a crossflow at three different jet to freestream velocity ratios. PIV measurements in the streamwise and cross-stream planes are used to illustrate the three dimensionality of the jet and associated vortical structures. The strength of the vortex ring is found to vary along its circumference due to interaction with the freestream. The boundary layer characteristics obtained from these experiments suggest that the mechanism of the PSJA in crossflow is similar to an active boundary layer trip. Both the penetration of the jet and effectiveness of the trip action are found to decrease with increase in freestream velocity. The effects of unsteady pulsing and increasing input power on actuator created crossflow vortices will also be presented.

  10. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    NASA Astrophysics Data System (ADS)

    Nawaz, M.; Zubair, T.

    In this article, we developed a computer code of Galerikan Finite Element method (GFEM) for three dimensional flow equations of nano-plasma fluid (blood) in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm's law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8 . Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood) are influenced significantly by the inclusion of nano-particles of Copper (Cu) and Silver (Ag). Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid). Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field.

  11. Giant dielectric constant in CaCu3Ti4O12 nanoceramics

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.

    2013-06-01

    Nanoceramics of CaCu3Ti4O12 (CCTO) were synthesized by mechanosynthesis and spark plasma sintering with grain size of 150-200 nm. Giant dielectric constant properties are observed in the CCTO nanoceramics due to internal barrier layer capacitance (IBLC) effects. Impedance spectroscopy data suggest that the presence of resistive grain boundaries in addition to resistive domain boundaries is the origin of the IBLCs in CCTO nanoceramics.

  12. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  13. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  14. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  15. Microphysics of Magnetic Reconnection: Experiments on RSX and Simulation

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Furno, I. G.; Hsu, S. C.; Lapenta, G.; Ricci, P.

    2003-12-01

    Using a unique LANL laboratory facility, the Reconnection Scaling Experiment (RSX), and a state-of-the-art LANL numerical code, CELESTE3D, we are beginning an experimental and numerical study of the microphysics of 2D and 3D "fast magnetic reconnection". RSX at Los Alamos National Laboratory is already operational and producing research plasmas. In RSX, the radial boundaries and thus the reconnection geometry are not constrained to two dimensions. It is capable of investigating 3D magnetic reconnection occurring in a free-boundary 3D linear geometry during the coalescence of two parallel current plasma channels, which are produced by using plasma gun technology. RSX can also scale the guide field (ion gyroradius) independently of other reconnection parameters. Frontier reconnection research invokes (1) `anomalous' microinstability-induced resistivity, which enhances dissipation rates inside the reconnection layer and (2) terms of the two-fluid generalized Ohm's law which introduce whistler and kinetic Alfvén wave dynamics. The two-fluid approach predicts (a) a two-spatial-scale spatial structure of the reconnection layer, with outer (inner) thickness equal to the ion (electron) skin depth and (b) Hall currents in the reconnection plane and out-of-plane magnetic field on the electron scale. We will show spatially resolved RSX experimental measurements of the dynamics of the reconnection layer, and take advantage of our scaling capabilities to address the applicability of the two-fluid approach.

  16. Experimental plasma studies

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.

    1972-01-01

    The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.

    Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less

  18. Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi

    2018-02-01

    Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.

  19. Formation of the Dayside Magnetopause and Its Boundary Layers Under the Radial IMF

    NASA Astrophysics Data System (ADS)

    Pi, Gilbert; Němeček, Zdeněk.; Å afránková, Jana; Grygorov, Kostiantyn; Shue, Jih-Hong

    2018-05-01

    The global structure of magnetopause boundary layers under the radial interplanetary magnetic field (IMF) conditions is studied by a comparison of experimental and simulation results. In magnetohydrodynamic simulations, the hemispherical asymmetry of the reconnection locations was found. The draped field adjacent to the magnetopause points northward in the Northern Hemisphere, but it is oriented southward in the Southern Hemisphere at the beginning of the simulation for negative IMF Bx. The magnetopause region affected by the positive IMF Bz component enlarges over time, and the density profile exhibit a north-south asymmetry near the magnetopause. The experimental part of the study uses the Time History of Events and Macroscale Interactions during Substorm data. We analyze profiles of the plasma parameters and magnetic field as well as the ion pitch-angle distributions. The nonsimultaneous appearance of parallel and antiparallel aligned flows suggests two spatially separated sources of these flows. We have identified (1) the inner part of the low-latitude boundary layer (LLBL) on closed magnetic field lines; (2) the outer LLBL on open field lines; (3) the inner part of the magnetosheath boundary layer (MSBL) formed by dayside reconnection in the Southern Hemisphere; and (4) the outer MSBL resulting from lobe reconnection in the Northern Hemisphere.

  20. Plasmapause Boundary Dynamics and the Interplanetary Magnetic Field Effect

    NASA Astrophysics Data System (ADS)

    Goldstein, J.

    2006-05-01

    The plasmapause is the outer boundary of the plasmasphere, the roughly toroidal region of cold, dense, corotating plasma that encircles the Earth and can extend several Earth radii (RE) out into space. The source of plasma in this region is ionospheric outflow (or upflow), which fills plasmaspheric field lines with a mixture of protons, helium ions, and oxygen ions on a timescale of several days. A distinct outer plasmapause boundary forms when plasmaspheric plasma is removed, a process known as erosion. Plasmaspheric erosion occurs most strongly during times of southward interplanetary magnetic field (IMF), when magnetospheric convection is greatly enhanced. Decades of theory and observation support the idea that enhanced sunward convection (during southward IMF) forms large plumes of dense plasma that stretch sunward from the main plasmasphere during erosion. The plasmapause during erosion events is distorted: reduced on the nightside, elongated on the dayside, and in general, overlapping the boundaries of regions of warmer plasmas (such as the ring current and radiation belts) that experience increased loss rates from wave-particle interactions in the overlap regions. Thus, the plasmapause boundary is of critical importance to the global dynamics of these warmer particles. In recent years, the southward IMF (i.e., convection) effect on the plasmapause has been fairly well characterized, but what has received less attention is the northward IMF effect. What happens at the plasmapause boundary following disturbances, when convection is reduced but ionospheric outflow has not yet had enough time to refill the plasmaspheric flux tubes? Observations by CRRES, Polar, IMAGE, Cluster, and other spacecraft have shown a bewildering variety of fine-scale plasmapause density structure during recovery and deep quiet phases. Many plasmapause features have been classified, sorted and named, but nonetheless, remain unexplained. This paper will present our current understanding of IMF effects on the plasmapause, and present the many remaining challenges to a comprehensive model of this critical boundary layer.

  1. Stability of plasma cylinder with current in a helical plasma flow

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  2. Flow characteristics of bounded self-organized dust vortex in a complex plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, D.; Chattopdhyay, P. K.; Kaw, P. K.

    2018-01-01

    Dust clouds are often formed in many dusty plasma experiments, when micron size dust particles introduced in the plasma are confined by spatial non-uniformities of the potential. These formations show self-organized patterns like vortex or circulation flows. Steady-state equilibrium dynamics of such dust clouds is analyzed by 2D hydrodynamics for varying Reynolds number, Re, when the cloud is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in a dynamic equilibrium with an unbounded sheared plasma flow. The nonconservative forcing due to ion flow shear generates finite vorticity in the confined dust clouds. In the linear limit (Re ≪ 1), the collective flow is characterized by a single symmetric and elongated vortex with scales correlating with the driving field and those generated by friction with the boundaries. However in the high Re limit, (Re ≥ 1), the nonlinear inertial transport (u . ∇u) is effective and the vortex structure is characterized by an asymmetric equilibrium and emergence of a circular core region with uniform vorticity, over which the viscous stress is negligible. The core domain is surrounded by a virtual boundary of highly convective flow followed by thin shear layers filled with low-velocity co- and counter-rotating vortices, enabling the smooth matching with external boundary conditions. In linear regime, the effective boundary layer thickness is recovered to scale with the dust kinematic viscosity as Δr ≈ μ1/3 and is modified as Δr ≈ (μL∥/u)1/2 in the nonlinear regime through a critical kinematic viscosity μ∗ that signifies a structural bifurcation of the flow field solutions. The flow characteristics recovered are relevant to many microscopic biological processes at lower Re, as well as gigantic vortex flows such as Jovian great red spot and white ovals at higher Re.

  3. Thermal Mechanisms for High Amplitude Aerodynamic Flow Control (YIP 2012)

    DTIC Science & Technology

    2016-04-15

    memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during which the work...boundary layer ahead of the plasma. Since the ns-DBD flow control mechanism is primarily thermal, or least symmetric if associated with a quasi ...conditions with minimal experimental effort. The validity of probing a single location on the low speed side of the mixing layer to test for control

  4. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    NASA Technical Reports Server (NTRS)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  5. Amelioration de l'aerodynamisme des ailes d'avion par actionnement plasma

    NASA Astrophysics Data System (ADS)

    Demers, Francis

    The paper will present experimental and numerical investigation of improved aerodynamics performance of a 2D extruded airfoil by plasma actuation. The aim of the research is to develop three promising flow control concepts using solid-state electro-fluidic (plasma) actuators to achieve reduced drag as well as lift control at take-off/landing. Aerodynamic plasma actuators are solid-state devices that convert electricity directly into flow acceleration through partial air ionization. The most common plasma actuator, the dielectric barrier discharge (DBD) actuator, essentially consists of two offset electrodes separated by a dielectric across which a high-voltage low-amperage AC input is applied. The ions in the air created by the high electric field between the two electrodes are accelerated by this field and transfer their momentum to the inert air particles through collisions, resulting in an acceleration of a very thin layer of air adjacent to the surface. This thin, simple, high bandwidth actuator is easy to integrate and thus offer the most practical yet solution for widespread use of flow control to revolutionize aircraft aerodynamics. The three flow control concepts studied involve placing the actuator on the suction surface of a wing to delay boundary layer transition and thus reduced viscous drag and to control boundary layer separation to control lift at take-off and landing without the need for slats, flaps and spoilers. While these concepts had been previously explored, they were only tested empirically at small-scale and very low-speed due to limitations in plasma actuator strength. The current research aimed to test these concepts at higher speeds (up to 30 m/s) using more recent DBD actuators with higher actuator strength and perform more detailed measurements so that these data can be used to validate CFD codes that can be used for assessing the concept at realistic aircraft scales and flight conditions. Wind tunnel experiments were carried out on a 11.67 inch-chord Aerospatiale-A airfoil with a DBD actuator placed on the suction side at a 15, 20 and 30 m/s incoming flow velocity for a Reynolds number of 2,8 x 10 5, 3,8 x 105 and 5,7 x 105, respectively, and an angle of attack (AOA) of 3º for concept one and 13.3° for concept two and three. The experiments were performed in a closed-loop wind tunnel with a square 24 inch x 24 inch test section. The 2D extruded wing was mounted vertically wall to wall at one chord downstream the entrance of the 96 inch long test section. Lift was calculated by pressure integration from 48 static pressure holes placed on the wing surface. Drag was obtained by wake survey with two Pitot-static tubes mounted on 2-D traverse systems placed half a chord upstream and one chord downstream of the wing. All the pressures were acquired simultaneously by four 16-channel piezo electric pressure scanners. The pressure side of the wing is made of aluminium while the suction side consist of 5 mm thick photopolymer panels made by stereolithography. The photopolymer panels also served as the dielectric material for the plasma actuator making the actuator non-intrusive to the flow. Prior 2-D simulations using the commercial RANS CFD code FLUENT solver had been carried out to design the test wing and determine the best placement of the DBD actuator. The plasma actuator was modeled as a time-averaged spatial body force distribution obtained from the DBD actuator model of Lemire and Vo (2011) and implemented in the CFD solver as a source term in the momentum equations. From the results of these simulations the DBD actuator was placed on the test wing at 26 % chord for concept 1, which is inside the laminar separation bubble responsible for bypass transition of the test wing at 3° AOA at nominal upstream flow velocity of 30 m/s without actuation. For the second and third concept, the optimum locations was found to be at 65 % and 54 % chord, which is near the separation of the boundary layer of the wing located at 70 % at 13.3° AOA at nominal upstream flow velocity of 30 m/s without plasma. The characterization of the DBD actuator was performed by thrust measurements on a flat plate with a high precision scale. From these characterization measurements, the plasma actuator used in the experiments were operated with the two electrodes under tension at a frequency of 2.5 kHz, peak-to-peak voltage of 35 kV and a positive ramp saw-tooth shaped signal providing an actuator strength of 100 mN/m. The surface pressure distributions and the measurements in the wake without and with plasma actuation indicate that plasma actuation successfully delays bypass boundary layer transition by changing the location and length of the laminar separation bubble at 3° of AOA. Furthermore, Enhancement of the aerodynamics properties by delaying the separation point of the boundary layer was obtained numerically and experimentally at AOA of 13.3° by plasma actuation. Deterioration of the aerodynamics properties was achieved by using a plasma actuator acting against the flow near the nominal separation point of the boundary layer but only for the upcoming flow velocity of 15 and 20 m/s. Overall, the wind tunnel experiments confirm the effectiveness of the three concepts of delaying bypass transition and separation controle with suction side plasma actuation and the trends predicred in term of decreasing actuation effectiveness versus flow velocity and Reynolds number. However, the results also show that the CFD simulations tend to over predict this effectiveness for all cases.

  6. Modeling Magnetospheric Sources

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ashour-Abdalla, Maha; Ogino, Tatsuki; Peroomian, Vahe; Richard, Robert L.

    2001-01-01

    We have used global magnetohydrodynamic, simulations of the interaction between the solar wind and magnetosphere together with single particle trajectory calculations to investigate the sources of plasma entering the magnetosphere. In all of our calculations solar wind plasma primarily enters the magnetosphere when the field line on which it is convecting reconnects. When the interplanetary magnetic field has a northward component the reconnection is in the polar cusp region. In the simulations plasma in the low latitude boundary layer (LLBL) can be on either open or closed field lines. Open field lines occur when the high latitude reconnection occurs in only one cusp. In the MHD calculations the ionosphere does not contribute significantly to the LLBL for northward IMF. The particle trajectory calculations show that ions preferentially enter in the cusp region where they can be accelerated by non-adiabatic motion across the high latitude electric field. For southward IMF in the MHD simulations the plasma in the middle and inner magnetosphere comes from the inner (ionospheric) boundary of the simulation. Solar wind plasma on open field lines is confined to high latitudes and exits the tailward boundary of the simulation without reaching the plasma sheet. The LLBL is populated by both ionospheric and solar wind plasma. When the particle trajectories are included solar wind ions can enter the middle magnetosphere. We have used both the MHD simulations and the particle calculations to estimate source rates for the magnetosphere which are consistent with those inferred from observations.

  7. Nanotexturing of High-Performance Woven Fabrics for Novel Composite Applications

    DTIC Science & Technology

    2006-11-29

    biocompatibility , and adhesion of dyes. At the same time the glow discharge assists in the removal of a weak boundary layer (WBL) residing on the... polyimides , polyetherimides, carbon fibers, silk, cellulose, wool, cotton, linen, etc… PLASMA ON Average process speed: 15 ft/min web width: >20 inches

  8. Physics and Chemistry of MW Laser-induced Discharge in Gas Flows and Plasma Jets

    DTIC Science & Technology

    2007-12-01

    with the large scaled flow pulsations . In 3.3 the results of numerical modeling of a thin low-density heated channel of limited length – shock layer...in Fig. 3.2.13. The red points correspond to the values of time moments for Fig. 3.2.11, 12. Mechanism of heated area boundary pulsations ...Mechanism of heated area boundary pulsations is analogical to described above mechanism of the bow shock position pulsations and is connected with

  9. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties

    PubMed Central

    Molnárová, Orsolya; Málek, Přemysl; Lukáč, František; Chráska, Tomáš

    2016-01-01

    The powder of an Al7075 alloy was prepared by gas atomization. A combination of cellular, columnar, and equiaxed dendritic-like morphology was observed in individual powder particles with continuous layers of intermetallic phases along boundaries. The cells are separated predominantly by high-angle boundaries, the areas with dendritic-like morphology usually have a similar crystallographic orientation. Spark plasma sintering resulted in a fully dense material with a microstructure similar to that of the powder material. The continuous layers of intermetallic phases are replaced by individual particles located along internal boundaries, coarse particles are formed at the surface of original powder particles. Microhardness measurements revealed both artificial and natural ageing behavior similar to that observed in ingot metallurgy material. The minimum microhardness of 81 HV, observed in the sample annealed at 300 °C, reflects the presence of coarse particles. The peak microhardness of 160 HV was observed in the sample annealed at 500 °C and then aged at room temperature. Compression tests confirmed high strength combined with sufficient plasticity. Annealing even at 500 °C does not significantly influence the distribution of grain sizes—about 45% of the area is occupied by grains with the size below 10 µm. PMID:28774126

  10. Performance and heat transfer characteristics of the laser-heated rocket - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.; Larson, V. R.

    1976-01-01

    The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.

  11. Plasma diffusion at the magnetopause? The case of lower hybrid drift waves

    NASA Technical Reports Server (NTRS)

    Treumann, R. A.; Labelle, J.; Pottelette, R.; Gary, S. P.

    1990-01-01

    The diffusion expected from the quasilinear theory of the lower hybrid drift instability at the Earth's magnetopause is recalculated. The resulting diffusion coefficient is in principle just marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various low processes. However, some recent data and simulations seems to indicate that the magnetopause is not consistent with such a soft diffusive equilibrium model. Furthermore, investigation of the nonlinear equations for the lower hybrid waves for magnetopause parameters indicates that the quasilinear state may never arise because coalescence to large wavelengths, followed by collapse once a critical wavelengths is reached, occur on a time scale faster than the quasilinear diffusion. In this case, an inhomogeneous boundary layer is to be expected. More simulations are required over longer time periods to explore whether this nonlinear evolution really takes place at the magnetopause.

  12. Geotail MCA Plasma Wave Investigation Data Analysis

    NASA Technical Reports Server (NTRS)

    Anderson, Roger R.

    1997-01-01

    The primary goals of the International Solar Terrestrial Physics/Global Geospace Science (ISTP/GGS) program are identifying, studying, and understanding the source, movement, and dissipation of plasma mass, momentum, and energy between the Sun and the Earth. The GEOTAIL spacecraft was built by the Japanese Institute of Space and Astronautical Science and has provided extensive measurements of entry, storage, acceleration, and transport in the geomagnetic tail and throughout the Earth's outer magnetosphere. GEOTAIL was launched on July 24, 1992, and began its scientific mission with eighteen extensions into the deep-tail region with apogees ranging from around 60 R(sub e) to more than 208 R(sub e) in the period up to late 1994. Due to the nature of the GEOTAIL trajectory which kept the spacecraft passing into the deep tail, GEOTAIL also made 'magnetopause skimming passes' which allowed measurements in the outer magnetosphere, magnetopause, magnetosheath, bow shock, and upstream solar wind regions as well as in the lobe, magnetosheath, boundary layers, and central plasma sheet regions of the tail. In late 1994, after spending nearly 30 months primarily traversing the deep tail region, GEOTAIL began its near-Earth phase. Perigee was reduced to 10 R(sub e) and apogee first to 50 R(sub e) and finally to 30 R(sub e) in early 1995. This orbit provides many more opportunities for GEOTAIL to explore the upstream solar wind, bow shock, magnetosheath, magnetopause, and outer magnetosphere as well as the near-Earth tail regions. The WIND spacecraft was launched on November 1, 1994 and the POLAR spacecraft was launched on February 24, 1996. These successful launches have dramatically increased the opportunities for GEOTAIL and the GGS spacecraft to be used to conduct the global research for which the ISTP program was designed. The measurement and study of plasma waves have made and will continue to make important contributions to reaching the ISTP/GGS goals and solving the significant problems of sun-earth connections. Plasma waves are involved in the energization and de-energization of plasma and energetic particles via numerous wave-particle interaction processes. Plasma waves in many instances are the source for the heating or cooling of the particles. They can cause particle precipitation by scattering particles into the loss cone. They move particles across boundaries in mass and energy dependent ways. Identifying the waves and the instabilities which produce them are thus crucial for understanding the plasma processes. Wave-particle interaction processes are especially important at various boundaries between the different regions of geospace including the bow shock, magnetopause, and interfaces in the geomagnetic tail between the magnetosheath, lobe, plasmasheet, boundary layers, and neutral sheet. In addition to identifying the characteristics of the instabilities and generation mechanisms encountered, plasma wave measurement are used in conjunction with other fields and particle measurements to identify the region of space the spacecraft is in or the boundary that is being crosed.

  13. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early transition. Gad-el-Hak provides a review of various techniques for flow control in general and Volino discusses recent studies on separation control under low-pressure-turbine conditions utilizing passive as well as active devices. As pointed out by Volino, passive devices optimized for separation control at low Reynolds numbers tend to increase losses at high Reynolds numbers, Active devices have the attractive feature that they can be utilized only in operational regimes where they are needed and when turned off would not affect the flow. The focus in the present paper is an experimental Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil ('Pak-B'). The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) Gee-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface- flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control. of active separation control using glow discharge plasma actuators.

  14. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  15. New Predictions of the Jovian Aurora: Location, Latitudinal Width, and Intensity

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Arballo, J. K.; Ho, C. M.; Lin, N. G.; Kellogg, P. J.; Cornileau-Wehrlin, N.; Krupp, N.

    1995-01-01

    A model/theory for the Jovian aurora is formed based on a similar model for the dayside aurora at Earth and recent Ulysses field and particle measurements at Jupiter. Items discussed are plasma boundary layer, wave-particle resonant interactions, and the model's prediction of the aurora's location, latitudinal width, and intensity.

  16. Consequences of wave-particle interactions on chaotic acceleration

    NASA Technical Reports Server (NTRS)

    Schriver, David; Ashour-Abdalla, Maha

    1991-01-01

    The recent model of Ashour-Abdalla et al. (1991) has proposed that the earth's plasma sheet can be formed by chaotic acceleration in a magnetotail-like field configuration. The ion velocity distributions created by chaotic acceleration have unstable features and represent robust free energy sources for kinetic plasma waves that can modify the original distributions. In the plasma sheet boundary layer, field-aligned ion beamlets are formed which drive a host of instabilities creating a broadbanded noise spectrum and cause thermal spreading of the beamlets. In addition, there is strong heating of any cold background plasma that may be present. In the central plasma sheet, ion antiloss cone distributions are created which are unstable to very low frequency waves that saturate by filling the antiloss cone.

  17. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  18. Turbulent mixing layers in the interstellar medium of galaxies

    NASA Technical Reports Server (NTRS)

    Slavin, J. D.; Shull, J. M.; Begelman, M. C.

    1993-01-01

    We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.

  19. Effect of plasma proteins on the sieving spectra of hemofilters.

    PubMed

    Feldhoff, P; Turnham, T; Klein, E

    1984-05-01

    qoffxture of neutral maltodextrins with a continuous molecular weight distribution from 340 to 120,000 daltons has been used alone or in the presence of plasma to determine solute rejection by four hemofilters and the effect of plasma on such rejection. High pressure liquid chromatographic analyses were utilized to establish concentration ratios of feed and filtrate solutions over a wide molecular weight range. At equal transmembrane velocities, the boundary layer-corrected rejection of each hemofilter was determined as a function of molecular weight. The presence of plasma increased rejection by the Amicon Diafilter 30, the Hospal RP-6, and the Gambro FH202 hemofilters , but the Fresenius D-6 was virtually unaffected.

  20. New Results From Galileo's First Flyby of Ganymede: Reconnection-Driven Flows at the Low-Latitude Magnetopause Boundary, Crossing the Cusp, and Icy Ionospheric Escape

    NASA Astrophysics Data System (ADS)

    Collinson, Glyn; Paterson, William R.; Bard, Christopher; Dorelli, John; Glocer, Alex; Sarantos, Menelaos; Wilson, Rob

    2018-04-01

    On 27 June 1996, the NASA Galileo spacecraft made humanity's first flyby of Jupiter's largest moon, Ganymede, discovering that it is the only moon known to possess an internally generated magnetic field. Resurrecting the original Galileo Plasma Subsystem (PLS) data analysis software, we processed the raw PLS data from G01 and for the first time present the properties of plasmas encountered. Entry into the magnetosphere of Ganymede occurred near the confluence of the magnetopause and plasma sheet. Reconnection-driven plasma flows were observed (consistent with an Earth-like Dungey cycle), which may be a result of reconnection in the plasma sheet, magnetopause, or might be Ganymede's equivalent of a Low-Latitude Boundary Layer. Dropouts in plasma density combined with velocity perturbations afterward suggest that Galileo briefly crossed the cusps into closed magnetic field lines. Galileo then crossed the cusps, where field-aligned precipitating ions were observed flowing down into the surface, at a location consistent with observations by the Hubble Space Telescope. The density of plasma outflowing from Ganymede jumped an order of magnitude around closest approach over the north polar cap. The abrupt increase may be a result of crossing the cusp or may represent an altitude-dependent boundary such as an ionopause. More diffuse, warmer field-aligned outflows were observed in the lobes. Fluxes of particles near the moon on the nightside were significantly lower than on the dayside, possibly resulting from a diurnal cycle of the ionosphere and/or neutral atmosphere.

  1. Saturn's magnetosheath transition layer

    NASA Astrophysics Data System (ADS)

    Masters, A.; Hasegawa, H.; Phan, T. D.; Badman, S. V.; Fujimoto, M.; Coates, A. J.; Dougherty, M. K.

    2012-09-01

    The interaction between the solar wind and a magnetised planet produces a cavity around the planet known as a magnetosphere. Although this cavity effectively shields near-planet space from the solar wind, the occurrence of magnetic reconnection at the manetopause boundary of the magnetosphere allows solar wind energy to enter the system. In the case of Earth's magnetosphere a region of reduced plasma pressure and enhanced magnetic pressure can form in the solar wind immediately adjacent to the magnetopause (which also can form around other planetary magnetospheres). This layer is often referred to as the Magnetosheath Transition Layer (MTL), and Earth's MTL responds strongly to magnetopause reconnection. The nature of magnetopause reconnection at Saturn is unclear. We study Saturn's MTL using data taken by the Cassini spacecraft. We examine the reponse of the layer to local magnetised plasma conditions, compare this response to that of Earth's MTL, and assess whether our results are in agreement with current, limited understanding of magnetopause reconnection at Saturn.

  2. Isotope effect on blob-statistics in gyrofluid simulations of scrape-off layer turbulence

    NASA Astrophysics Data System (ADS)

    Meyer, O. H. H.; Kendl, A.

    2017-12-01

    In this contribution we apply a recently established stochastic model for scrape-off layer fluctuations to long time series obtained from gyrofluid simulations of fusion edge plasma turbulence. Characteristic parameters are estimated for different fusion relevant isotopic compositions (protium, deuterium, tritium and singly charged helium) by means of conditional averaging. It is shown that large amplitude fluctuations associated with radially propagating filaments in the scrape-off layer feature double-exponential wave-forms. We find increased pulse duration and longer waiting times between peaks for heavier ions, while the amplitudes are similar. The associated radial blob velocity is shown to be reduced for heavier ions. A parabolic relation between skewness and kurtosis of density fluctuations seems to be present. Improved particle confinement in terms of reduced mean value close to the outermost radial boundary and blob characteristics for heavier plasmas is presented.

  3. Generation of region 1 current by magnetospheric pressure gradients

    NASA Technical Reports Server (NTRS)

    Yang, Y. S.; Spiro, R. W.; Wolf, R. A.

    1994-01-01

    The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.

  4. Dependence of Subsolar Magnetopause on Solar Wind Properties using the Magnetosphere Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Zhao, C.; Qi, Y.; Lai, H.; Strangeway, R. J.; Paterson, W. R.; Giles, B. L.; Baumjohann, W.; Torbert, R. B.; Burch, J.

    2017-12-01

    The nature of the solar wind interaction with the Earth's magnetic field depends on the balance between magnetic and plasma forces at the magnetopause. This balance is controlled by the magnetosonic Mach number of the bow shock standing in front of the magnetosphere. We have used measurements of the solar wind obtained in the near Earth solar wind to calculate this Mach number whenever MMS was near the magnetopause and in the subsolar region. In particular, we examine two intervals of magnetopause encounters when the solar wind Mach number was close to 2.0, one when the IMF was nearly due southward and one when it was due northward. The due southward magnetic field produced a rapidly oscillating boundary. The northward magnetic field produced a much more stable boundary but with a hot low density boundary layer between the magnetospheric and magnetosheath plasmas. These magnetopause crossings are quite different than those studied earlier under high solar wind Mach number conditions.

  5. Mercury's magnetosphere after MESSENGER's first flyby.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H

    2008-07-04

    Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.

  6. Phase portrait analysis of super solitary waves and flat top solutions

    NASA Astrophysics Data System (ADS)

    Steffy, S. V.; Ghosh, S. S.

    2018-06-01

    The phase portrait analysis of super solitary waves has revealed a new kind of intermediate solution which defines the boundary between the two types of super solitary waves, viz., Type I and Type II. A Type I super solitary wave is known to be associated with an intermediate double layer while a Type II solution has no such association. The intermediate solution at the boundary has a flat top structure and is called a flat top solitary wave. Its characteristics resemble an amalgamation of a solitary wave and a double layer. It was found that, mathematically, such kinds of structures may emerge due to the presence of an extra nonlinearity. Although they are relatively unfamiliar in the realm of plasma physics, they have much wider applications in other physical systems.

  7. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment (LTX)

    NASA Astrophysics Data System (ADS)

    Majeski, Dick

    2016-10-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (<0.1) from lithium. So far experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  8. Microstructural Characteristics of Plasma Nitrided Layer on Hot-Rolled 304 Stainless Steel with a Small Amount of α-Ferrite

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolei; Yu, Zhiwei; Cui, Liying; Niu, Xinjun; Cai, Tao

    2016-02-01

    The hot-rolled 304 stainless steel with γ-austenite and approximately 5 pct α-ferrite elongated along the rolling direction was plasma-nitrided at a low temperature of 693 K (420 °C). X-ray diffraction results revealed that the nitrided layer was mainly composed of the supersaturated solid solution of nitrogen in austenite ( γ N). Transmission electron microscopy (TEM) observations showed that the microstructure of the γ N phase exhibited "fracture factor contrast" reflective of the occurrence of fine pre-precipitations in γ N by the continuous precipitation. The occurrence of a diffuse scattering effect on the electron diffraction spots of γ N indicated that the pre-precipitation took place in γ N in the form of strongly bonded Cr-N clusters or pairs due to a strong attractive interaction of nitrogen with chromium. Scanning electron microscopy and TEM observations indicated that the discontinuous precipitation initiated from the γ/ α interfaces and grew from the austenite boundaries into austenite grains to form a lamellar structure consisting of CrN and ferrite. The orientation relationship between CrN and ferrite corresponded to a Baker-Nutting relationship: (100)CrN//(100) α ; [011]CrN//[001] α . A zigzag boundary line following the banded structure of alternating γ-austenite and elongated α-ferrite was presented between the nitrided layer and the substrate to form a continuous varying layer thickness, which resulted from the difference in diffusivities of nitrogen in α-ferrite and γ-austenite, along the γ/ α interfaces and through the lattice. Microstructural features similar to the γ N were also revealed in the ferrite of the nitrided layer by TEM. It was not excluded that a supersaturated solid solution of nitrogen in ferrite ( α N) formed in the nitrided layer.

  9. AFRL Research in Plasma-Assisted Combustion

    DTIC Science & Technology

    2013-10-23

    Scramjet propulsion Non-equilibrium flows Diagnostics for scramjet controls  Boundary-layer transition  Structural sciences for...hypersonic vehicles Computational sciences for hypersonic flight 3 DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Overview Research...within My Division HIFiRE-5 Vehicle Launched 23 April 2012 can payload transition section Orion S-30 Focus on hypersonic flight: scalability

  10. External excitation of a short-wavelength fluctuation in the Alcator C-Mod edge plasma and its relationship to the quasi-coherent mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golfinopoulos, T.; LaBombard, B.; Parker, R. R.

    2014-05-15

    A novel “Shoelace” antenna has been used to inductively excite a short-wavelength edge fluctuation in a tokamak boundary layer for the first time. The principal design parameters, k{sub ⊥}=1.5±0.1 cm{sup −1} and 45

  11. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    NASA Technical Reports Server (NTRS)

    Newell, Patrick T.; Meng, CHING-I.; Huffman, Robert E.

    1992-01-01

    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. Particle observations from the DMSP F7 satellite during dayside auroral oval crossings are compared with approximately simultaneous Polar BEAR 1356-A images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the DMSP particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1000 MLT. Instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle were found. It was determined that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.

  12. Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher; Gekelman, Walter

    2012-10-01

    A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.

  13. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

    NASA Astrophysics Data System (ADS)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.

    2018-05-01

    The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.

  14. Complementary study of the internal porous silicon layers formed under high-dose implantation of helium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Chesnokov, Yu. M.

    The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpestmore » boundaries at a lower energy of implantable ions.« less

  15. Multi-channel retarding field analyzer for EAST

    NASA Astrophysics Data System (ADS)

    M, HENKEL; D, HÖSCHEN; Y, LIANG; Y, LI; S, C. LIU; D, NICOLAI; N, SANDRI; G, SATHEESWARAN; N, YAN; H, X. ZHANG; the EAST, team2

    2018-05-01

    A multi-channel retarding field analyzer (MC-RFA) including two RFA modules and two Langmuir probes to measure the ion and electron temperature profiles within the scrape-off layer was developed for investigations of the interplay between magnetic topology and plasma transport at the plasma boundary. The MC-RFA probe for the stellarator W7-X and first measurements at the tokamak EAST was designed. The probe head allows simultaneous multi-channel ion temperature as well as for electron temperature measurements. The usability for radial correlation measurements of the measured ion currents is also given.

  16. Frequency Upconversion and Parametric Surface Instabilities in Microwave Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Rappaport, Harold Lee

    In this thesis the interaction of radiation with plasmas whose density profiles are nearly step functions of space and/or time are studied. The wavelengths of radiation discussed are large compared with plasma density gradient scale lengths. The frequency spectra are evaluated and the energy balance investigated for the transmitted and reflected transient electromagnetic waves that are generated when a monochromatic source drives a finite width plasma in which a temporal step increase in density occurs. Transmission resonances associated with the abrupt boundaries manifest themselves as previously unreported multiple frequency peaks in the transmitted electromagnetic spectrum. A tunneling effect is described in which a burst of energy is transmitted from the plasma immediately following a temporal density transition. Stability of an abruptly bounded plasma, one for which the incident radiation wavelength is large compared with the plasma density gradient scale length, is investigated for both s and p polarized radiation types. For s-polarized radiation a new formalism is introduced in which pump induced perturbations are expressed as an explicit superposition of linear and non-linear plasma half-space modes. Results for a particular regime and a summary of relevant literature is presented. We conclude that when s-polarized radiation acts alone on an abrupt diffusely bounded underdense plasma stimulated excitation of electron surface modes is suppressed. For p-polarized radiation the recently proposed Lagrangian Frame Two-Plasmon Decay mode (LFTPD) ^dag is investigated in the regime in which the instability is not resonantly coupled to surface waves propagating along the boundary region. In this case, spatially dependent growth rate profiles and spatially dependent transit layer magnetic fields are reported. The regime is of interest because we have found that when the perturbation wavenumber parallel to the boundary is less than the pump frequency divided by twice the speed of light, energy radiates from the boundary region and these emissions can serve as an experimental signature for this mode. The theory of surface wave linear mode conversion is reviewed with special attention paid to power flow and energy conservation in this system. ftn^ dagYu. M. Aliev and G. Brodin, Phys. Rev. A 42, 2374 (1990).

  17. Soft repulsive mixtures under gravity: Brazil-nut effect, depletion bubbles, boundary layering, nonequilibrium shaking

    NASA Astrophysics Data System (ADS)

    Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut

    2012-04-01

    A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.

  18. Soft repulsive mixtures under gravity: brazil-nut effect, depletion bubbles, boundary layering, nonequilibrium shaking.

    PubMed

    Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut

    2012-04-07

    A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.

  19. Flush-mounted probe diagnostics for argon glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liang, E-mail: xld02345@mail.ustc.edu.cn; Cao, Jinxiang; Liu, Yu

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges.more » These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.« less

  20. Broadband high-frequency waves and intermittent energy conversion at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cao, J.; Fu, H.; Wang, T.; Liu, W.; Yao, Z., Sr.

    2017-12-01

    Dipolarization front (DF) is a sharp boundary most probably separating the reconnection jet from the background plasma sheet. So far at this boundary, the observed waves are mainly in low-frequency range (e.g., magnetosonic waves and lower hybrid waves). Few high-frequency waves are observed in this region. In this paper, we report the broadband high-frequency wave emissions at the DF. These waves, having frequencies extending from the electron cyclotron frequency fce, up to the electron plasma frequency fpe, could contribute 10% to the in situ measurement of intermittent energy conversion at the DF layer. Their generation may be attributed to electron beams, which are simultaneously observed at the DF as well. Furthermore, we find intermittent energy conversion is primarily to the broadband fluctuations in the lower hybrid frequency range although the net energy conversion is small.

  1. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  2. ICPP: Beltrami fields in plasmas -- H-mode boundary layers and high beta equilibria

    NASA Astrophysics Data System (ADS)

    Yoshida, Zensho

    2000-10-01

    The Beltrami fields, eigenfunctions of the curl operator, represent essential characteristics of twisted, spiral, chiral or helical structures in various vector fields. Amongst diverse applications of the theory of Beltrami fields, the present paper focuses on the self-organized states of plasmas. The Taylor relaxed state is the principal example of self-organized Beltrami fields. Suppose that a plasma is produced in an external magnetic field (harmonic field). If we do not apply any drive, the plasma will disappear and the system will relax into the harmonic magnetic field. When we drive a current and sustain the total helicity, the plasma relaxes into the Taylor state and achieves the Beltrami magnetic field. When a strong flow is implemented to a plasma, self-organized states becomes qualitatively different from the conventional relaxed stats. The two-fluid effect induces a coupling among the flow, magnetic field, electric field and the pressure, resulting in a "singular perturbation" to the MHD system. To invoke this effect, one must supply a driving force to sustain a strong flow. It is equivalent to giving an internal electric field or applying a steep gradient in pressure, because these fields are tightly coupled. In the two-fluid model, the Beltrami condition demands that the vorticity parallels the flow in both electron and ion fluids. We find that a superposition of two Beltrami magnetic fields (and also two Beltrami flows) solves the simultaneous two-fluid Beltrami conditions [1]. Despite this simple mathematical structure, the set of solutions contains field configurations that are far richer than the conventional theory. The hydrodynamic pressure of a shear flow yields a diamagnetic state that is suitable for confining a high-beta plasma. The H-mode boundary layer is an example, which is spontaneously generated by the core plasma pressure [2]. Active control of shear flow will significantly extend the scope of such self-organized states [3]. [1] S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. 81, 4863 (1998). [2] S. M. Mahajan and Z. Yoshida, Phys. Plasmas 7, 635 (2000). [3] Z. Yoshida et al., in Non-Neutral Plasma Physics III (ed. J.J. Bollinger, AIP, 1999), 397.

  3. Self-consistent electrostatic simulations of reforming double layers in the downward current region of the aurora

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Andersson, L.; De Keyser, J.; Mann, I.

    2015-10-01

    The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam-plasma interaction. The double layer is disrupted when reaching altitudes of 1-2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.

  4. Wave properties near the subsolar magnetopause - Pc 3-4 energy coupling for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.

    1993-01-01

    Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.

  5. Cold Ionospheric Ions in the Magnetic Reconnection Outflow Region

    NASA Astrophysics Data System (ADS)

    Li, W. Y.; André, M.; Khotyaintsev, Yu. V.; Vaivads, A.; Fuselier, S. A.; Graham, D. B.; Toledo-Redondo, S.; Lavraud, B.; Turner, D. L.; Norgren, C.; Tang, B. B.; Wang, C.; Lindqvist, P.-A.; Young, D. T.; Chandler, M.; Giles, B.; Pollock, C.; Ergun, R.; Russell, C. T.; Torbert, R.; Moore, T.; Burch, J.

    2017-10-01

    Magnetosheath plasma usually determines properties of asymmetric magnetic reconnection at the subsolar region of Earth's magnetopause. However, cold plasma that originated from the ionosphere can also reach the magnetopause and modify the kinetic physics of asymmetric reconnection. We present a magnetopause crossing with high-density (10-60 cm-3) cold ions and ongoing reconnection from the observation of the Magnetospheric Multiscale (MMS) spacecraft. The magnetopause crossing is estimated to be 300 ion inertial lengths south of the X line. Two distinct ion populations are observed on the magnetosheath edge of the ion jet. One population with high parallel velocities (200-300 km/s) is identified to be cold ion beams, and the other population is the magnetosheath ions. In the deHoffman-Teller frame, the field-aligned magnetosheath ions are Alfvénic and move toward the jet region, while the field-aligned cold ion beams move toward the magnetosheath boundary layer, with much lower speeds. These cold ion beams are suggested to be from the cold ions entering the jet close to the X line. This is the first observation of the cold ionospheric ions in the reconnection outflow region, including the reconnection jet and the magnetosheath boundary layer.

  6. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm

    PubMed Central

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Owen, C. J.; Petrukovich, A. A.; Yao, Z.; Nakamura, T. K. M.; Kubyshkina, M. V.; Sotirelis, T.; Burch, J. L.; Genestreti, K. J.; Vörös, Z.; Andriopoulou, M.; Gershman, D. J.; Avanov, L. A.; Magnes, W.; Russell, C. T.; Plaschke, F.; Khotyaintsev, Y. V.; Giles, B. L.; Coffey, V. N.; Dorelli, J. C.; Strangeway, R. J.; Torbert, R. B.; Lindqvist, P.‐A.; Ergun, R.

    2017-01-01

    Abstract During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high‐energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X‐line was located relatively close to the Earth, approximately at 16–18 RE. PMID:29399431

  7. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm

    NASA Astrophysics Data System (ADS)

    Varsani, A.; Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Owen, C. J.; Petrukovich, A. A.; Yao, Z.; Nakamura, T. K. M.; Kubyshkina, M. V.; Sotirelis, T.; Burch, J. L.; Genestreti, K. J.; Vörös, Z.; Andriopoulou, M.; Gershman, D. J.; Avanov, L. A.; Magnes, W.; Russell, C. T.; Plaschke, F.; Khotyaintsev, Y. V.; Giles, B. L.; Coffey, V. N.; Dorelli, J. C.; Strangeway, R. J.; Torbert, R. B.; Lindqvist, P.-A.; Ergun, R.

    2017-11-01

    During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 RE.

  8. Model of formation of droplets during electric arc surfacing of functional coatings

    NASA Astrophysics Data System (ADS)

    Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.

    2016-01-01

    The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.

  9. Surface characterization and adhesion of oxygen plasma-modified LARC-TPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, J.W.; Wightman, J.P.

    1992-01-01

    LARC-TPI, an aromatic thermoplastic polyimide, was exposed to an oxygen plasma as a surface pretreatment of adhesive bonding. Chemical and physical changes which occurred in the polyimide surface as a result of the plasma treatment were investigated using X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IR-RAS), contact angle analysis, ellipsometry and high resolution scanning electron microscopy (HR-SEM). A 180{degree} peel test with an acrylate-based pressure sensitive adhesive as a flexible adherend was utilized to study the interactions of the plasma-treated polyimide surface with other polymeric materials. The surface characterization and adhesion testing results showed that the oxygen plasma treatment, whilemore » creating a more hydrophilic, polar surface, also caused chain scission resulting in the formation of a weak boundary layer which inhibited adhesion.« less

  10. Analysis of plasma particle and energy fluxes to material surfaces from tokamak edge turbulence simulations

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; Cohen, B. I.; Rognlien, T. D.; Boedo, J. A.; Rudakov, D. L.

    2012-10-01

    Recent BOUT simulations of edge plasma turbulence in L-mode regime in the boundary region of DIII-D tokamak have demonstrated reasonable match with key edge diagnostics [1]. Order-of-magnitude level agreement has been found in the characteristic amplitude, wavenumber, and frequency of turbulent fluctuations, as compared with experimental data from reciprocating edge Langmuir probe and Beam Emission Spectroscopy systems. Owing to this encouraging agreement, output data from these simulations are analyzed to get insights on physical mechanisms and properties of plasma particle and energy fluxes to material surfaces. Of particular interest is plasma turbulence propagating into, or generated in, the far scrape-off layer region where plasma interacts with material walls. Results of statistical analyses of simulated turbulence plasma transport will be presented and physical implications will be discussed. [4pt] [1] B.I. Cohen et al., APS-DPP 2012

  11. Survey of EBW Mode-Conversion Characteristics for Various Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Maekawa, T.; Igami, H.

    2005-09-26

    A survey of linear mode-conversion characteristics between external transverse electromagnetic (TEM) waves and electron Bernstein waves (EBW) for various plasma and wave parameters has been presented. It is shown that if the wave propagation angle and polarization are adjusted appropriately for each individual case of the plasma parameters, efficient mode conversion occur for wide range of plasma parameters where the conventional 'XB' and 'OXB' scheme cannot cover. It is confirmed that the plasma parameters just at the upper hybrid resonance (UHR) layer strongly affect the mode conversion process and the influence of the plasma profiles distant from the UHR layermore » is not so much. The results of this survey is useful enough to examine wave injection/detection condition for efficient ECH/ECCD or measurement of emissive TEM waves for each individual experimental condition of overdense plasmas.« less

  12. E and F region study of the evening sector auroral oval - A Chatanika/Dynamics Explorer 2/NOAA 6 comparison

    NASA Technical Reports Server (NTRS)

    Senior, C.; Sharber, J. R.; Winningham, J. D.; De La Beaujardiere, O.; Heelis, R. A.; Evans, D. S.; Sugiura, M.; Hoegy, W. R.

    1987-01-01

    Simultaneous data from the Chatanika radar and the DE 2 and NOAA 6 satellites are used to study the typical behavior of the winter evening-sector auroral plasma during moderate and steady magnetic activity. The equatorward edge of the auroral E layer, of the region 2 field-aligned currents, and of the region of intense convection are colocated. The auroral E layer extends several degrees south of the equatorward edge of the keV electron precipitation from the CPS. Although the main trough and ionization channel are embedded in a region of intense electric field where the plasma flows sunward at high speed, the flux tubes associated with these two features have different time histories. The midlatitude trough is located south of the region of electron precipitation, above a proton aurora. The ionization channel marks the poleward edge of the main trough and is colocated with the equatorward boundary of the electron precipitation from the central plasma sheet.

  13. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  14. Ion Acceleration by Double Layers with Multi-Component Ion Species

    NASA Astrophysics Data System (ADS)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  15. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX [VUV/XUV measurements of low recycling plasmas with liquid lithium surfaces on LTX

    DOE PAGES

    Tritz, Kevin; Bell, Ronald E.; Beiersdorfer, Peter; ...

    2014-11-12

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in themore » form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. In conclusion, these new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments.« less

  16. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  17. Analysis of plasma-controlled laser evaporation of Al target in vacuum

    NASA Astrophysics Data System (ADS)

    Mazhukin, Vladimir I.; Nossov, Vadim V.; Smurov, Igor Y.

    2004-04-01

    The plasma-controlled evaporation of the Al target induced by the laser pulse with intensity of 8 x 108 W/cm2 and wavelength of 1.06 μm is analyzed with account for the two-dimensional effects. The self consistent model is applied, consisting of the heat transfer equation in condensed medium, the system of radiation gas dynamics in evaporated substance, and the Knudsen layer model at the two media boundary. It is established that the phase transition of the target surface is controlled by the two factors: the surface temperature that depends on the transmitted radiation intensity and the plasma pressure, governed by the expansion regime. The process comes through three characteristics stages -- the sonic evaporation at the beginning, the condensation during the period of plasma formation and initial expansion and, finally, the recommence of evaporation in subsonic regime after the partial brightening of the plasma. During the subsonic evaporation stage the vapor flow and the mass removal rate is much higher near the beam boundaries than in the center due to smaller plasma counter-pressure. The vapor plasma pattern is characterized by the dense hot zone near the surface where the deposition of laser energy occurs, and rapid decrease of density outside the zone due to three-dimensional expansion. The application of the laser beam of smaller radius at the same intensity leads to the formation of more rarefied and more transparent plasma, that allows to improve the mass removal efficiency.

  18. The Geopause

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Delcourt, D. C.

    1995-01-01

    Coupled to the Earth and protected by the geomagnetic field, terrestrial matter in the plasma state dominates a larger region of space than was suspected when the 'space age' began, a region we refer to as the geosphere. Accelerated and heated by solar wind energy, this matter expands in size and increases in mass density in response to the Sun's ultraviolet spectrum, heliospheric conditions, and the occurrence of severe space storms. Such storms regularly damage spacecraft, interfere with communications, and trigger power grid interruptions or failures. They occur within the geopause region, that is, the volume defined by the limits of the instantaneous boundary between plasmas that are primarily heliospheric and geospheric. The geopause is analogous in some ways to the heliopause but also resembles the terrestrial air-sea interface. It is the boundary layer across which the supersonically expanding solar plasma delivers momentum and energy to the terrestrial plasma and gas, exciting them into motion, 'evaporating' them into space, and dissipating considerable amounts of power in thermal forms, while generating energetic particles through repeated storage and explosive release of electromagnetic energy. The intensity of the solar wind and the orientation of its magnetic field jointly control the strength of the coupling between solar and terrestrial plasmas and hence the occurrence of severe storms in the geopause region.

  19. Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry

    NASA Astrophysics Data System (ADS)

    Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.

    2018-02-01

    The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.

  20. Letter: Transient interaction between plasma jet and supersonic compression ramp flow

    NASA Astrophysics Data System (ADS)

    Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Zhang, Yu-Chao; Cheng, Lin

    2018-04-01

    The rapid flow evolution between a plasma jet and a 20° compression ramp flow is captured by a high-speed schlieren system at Mach 2.0. Several interesting flow phenomena are observed for the first time. The pulsed jet, which generates strong perturbations, forces the crossflow boundary layer to separate and forms a forward moving shock. A typical shock-on-shock interaction occurs when the precursor shock intersects with the original shock. The interaction is initially regular, and then it transforms into an irregular one with a Mach stem connecting the precursor shock and original ramp shock.

  1. Applying MHD Results to a Scramjet Vehicle

    DTIC Science & Technology

    2007-02-12

    flow, arc formation and extinction, high temperature materials, and non-intrusive gas diagnostics. In this report, results from the DOE Program, and...3) Use of demonstrated non-intrusive diagnostics for plasma and boundary layer measurements, and (4) Testing of high - temperature materials for an MHD...cycle systems with researchers in Eindhoven, The Netherlands, and open-cycle systems with personnel at the High Temperature Institute, Moscow, Russia

  2. A current disruption mechanism in the neutral sheet for triggering substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1989-01-01

    Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to the ionosphere to form the substorm current wedge. Furthermore, a number of features associated with substorm expansion onset can be understood based on this substorm onset scenario.

  3. Photoluminescence-excitation spectroscopy as a highly sensitive probe for carrier transport processes affected by surface damages in AlxGa1-xN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideo; Yamamoto, Yoshitsugu; Kamo, Yoshitaka; Kunii, Tetsuo; Oku, Tomoki; Shirahama, Takeo; Tanaka, Hiroyasu; Nakayama, Masaaki

    2007-08-01

    We demonstrate that photoluminescence-excitation (PLE) spectroscopy can probe with high sensitivity the effects of plasma-induced surface damages on photogenerated-carrier-transport processes in AlxGa1-xN/GaN heterostructures, on the basis of systematic optical and structural characterization results for the as-grown reference sample and the plasma-exposed sample. It is found from the structural characterizations with atomic force microscopy that the plasma exposure remarkably modifies the atomic step boundaries and the pits on the AlxGa1-xN surface, which leads to a remarkable difference between the PLE spectra of the bound exciton photoluminescence from the underlying GaN layer in the two samples. The PLE spectrum of the reference sample shows a step rising from the AlxGa1-xN fundamental transition energy toward the high energy side, whereas the rising step disappears in the PLE spectrum of the plasma-exposed sample. In contrast, the reflectance characteristics are the same in the two samples; i.e., the excitonic transition itself is not influenced by the plasma exposure. The present findings indicate that the PLE spectral profile is sensitive to the change in efficiency of the photogenerated carrier injection from the AlxGa1-xN layer to the GaN layer. Thus, it is concluded that the PLE characterization is effective to probe the photogenerated-carrier transport in heterostructures.

  4. Full-f version of GENE for turbulence in open-field-line systems

    NASA Astrophysics Data System (ADS)

    Pan, Q.; Told, D.; Shi, E. L.; Hammett, G. W.; Jenko, F.

    2018-06-01

    Unique properties of plasmas in the tokamak edge, such as large amplitude fluctuations and plasma-wall interactions in the open-field-line regions, require major modifications of existing gyrokinetic codes originally designed for simulating core turbulence. To this end, the global version of the 3D2V gyrokinetic code GENE, so far employing a δf-splitting technique, is extended to simulate electrostatic turbulence in straight open-field-line systems. The major extensions are the inclusion of the velocity-space nonlinearity, the development of a conducting-sheath boundary, and the implementation of the Lenard-Bernstein collision operator. With these developments, the code can be run as a full-f code and can handle particle loss to and reflection from the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-off layer, LAPD turbulence involves collisions, parallel streaming, cross-field turbulent transport with steep profiles, and particle loss at the parallel boundary.

  5. A linear helicon plasma device with controllable magnetic field gradient.

    PubMed

    Barada, Kshitish K; Chattopadhyay, P K; Ghosh, J; Kumar, Sunil; Saxena, Y C

    2012-06-01

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

  6. Comparison of a simulated velocity profile of a turbulent boundary layer with measurements obtained by Femtosecond Laser Electronic Excitation Tagging (FLEET)

    NASA Astrophysics Data System (ADS)

    New-Tolley, Matthew; Zhang, Yibin; Shneider, Mikhail; Miles, Richard

    2017-11-01

    Accurate velocimetry measurements of turbulent flows are essential for improving our understanding of turbulent phenomena and validating numerical approaches. Femtosecond Laser Electronic Excitation Tagging (FLEET) is an unseeded molecular tagging method for velocimetry measurements in flows which contain nitrogen. A femtosecond laser pulse is used to ionize and dissociate nitrogen molecules within its focal zone. The decaying plasma fluoresces in the visible and infrared spectrum over a period of microseconds which allows the displacement of the tagged region to be photographed to determine velocity. This study compares the experimental and numerical advection of the tagged region in a turbulent boundary layer generated by a supersonic flow over a flat plate. The tagged region in the simulation is approximated as an infinitely thin cylinder while the flow field is generated using the steady state boundary layer equations with an algebraic turbulence model. This approximation is justified by previous computational analyses, using an unsteady three-dimensional Navier-Stokes solver, which indicate that the radial perturbations of the tagged region are negligible compared to its translation. This research was conducted with government support from the Air Force Office of Scientific Research under Dr. Ivett Leyva and the Army Research Office under Dr. Matthew Munson.

  7. Termination of a Magnetized Plasma on a Neutral Gas: The End of the Plasma

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Gekelman, W.

    2013-06-01

    Experiments are performed at the Enormous Toroidal Plasma Device at UCLA to study the neutral boundary layer (NBL) between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. This is the first experiment to measure plasma termination within a neutral gas without the presence of a wall or obstacle. A magnetized, current-free helium plasma created by a lanthanum hexaboride (LaB6) cathode terminates entirely within a neutral helium gas. The plasma is weakly ionized (ne/nn˜1%) and collisional λn≪Lplasma. The NBL occurs where the plasma pressure equilibrates with the neutral gas pressure, consistent with a pressure balance model. It is characterized by a field-aligned ambipolar electric field, developing self-consistently to maintain a current-free termination of the plasma on the neutral gas. Probes are inserted into the plasma to measure the plasma density, flow, temperature, current, and potential. These measurements confirm the presence of the ambipolar field and the pressure equilibration model of the NBL.

  8. Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond

    DOE PAGES

    Hemawan, Kadek W.; Hemley, Russell J.

    2015-08-03

    Here, a key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma-substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C 2, and H (Balmer series) important for diamond growth were found to be more depndent on operating pressure than on microwave power. Plasma gas temperatures were calculatedmore » from measurements of the C 2 Swan band (d 3Π → a 3Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH 4 + H 2 plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.« less

  9. Poloidal velocity of impurity ions in neoclassical theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S. K.; Chan, V. S.; Solomon, W. M.

    A formula for the poloidal velocity of impurity ions in a two-species plasma is derived from neoclassical theory in the banana regime, with corrections from the boundary layer separating the trapped and transiting ions. The formula is applicable to plasmas with toroidal rotations that can approach the thermal speeds of the ions. Using the formula to determine the poloidal velocity of C{sup +6} ions in a recently reported experiment [W. M. Solomon et al., Phys. Plasmas 13, 056116 (2006)] leads to agreement in the direction of the central region when it is otherwise from theories without strong toroidal rotations. Comparisonsmore » among these theories are made, demonstrating the degree of uncertainty of theoretical predictions.« less

  10. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  11. Unloading oxygen in a capillary vessel under a pathological condition.

    PubMed

    Escobar, C; Méndez, F

    2008-10-01

    In this work, we study theoretically the unloading of oxygen from a hemoglobin molecule to the wall of a typical capillary vessel, considering that the hemoglobin under pathological conditions, obeys the rheological Maxwell model. Based on recent experimental evidences in hypertension, we consider that the red blood cells (RBCs) are composed by a single continuous medium in contrast with the classical particulate or discrete RBC models, which are only valid under normal physiological conditions. The analysis considers the hemodynamic interactions between the plasma and the hemoglobin, both circulating in a long horizontal capillary. We apply numerical and analytical methods to obtain the main fluid-dynamic characteristics for both fluids in the limit of low Reynolds and Womersley numbers. A diffusion boundary layer formulation for the oxygen transport in the combined plasma-hemoglobin core region is presented. The main aspects derived are the time and spatial evolution of the membrane. The hemoglobin and plasma velocities and the pressure distributions are shown. For the oxygen unloading the results are the oxy-hemoglobin saturation, the oxygen flux and the oxygen concentration in the cell-free plasma layer. The volume fraction of red blood cells and the Strouhal number have a great influence on the hemodynamic interactions.

  12. Anti-alias filter in AORSA for modeling ICRF heating of DT plasmas in ITER

    NASA Astrophysics Data System (ADS)

    Berry, L. A.; Batchelor, D. B.; Jaeger, E. F.; RF SciDAC Team

    2011-10-01

    The spectral wave solver AORSA has been used extensively to model full-field, ICRF heating scenarios for DT plasmas in ITER. In these scenarios, the tritium (T) second harmonic cyclotron resonance is positioned near the magnetic axis, where fast magnetosonic waves are efficiently absorbed by tritium ions. In some cases, a fundamental deuterium (D) cyclotron layer can also be located within the plasma, but close to the high field boundary. In this case, the existence of multiple ion cyclotron resonances presents a serious challenge for numerical simulation because short-wavelength, mode-converted waves can be excited close to the plasma edge at the ion-ion hybrid layer. Although the left hand circularly polarized component of the wave field is partially shielded from the fundamental D resonance, some power penetrates, and a small fraction (typically <10%) can be absorbed by the D ions. We find that an anti-aliasing filter is required in AORSA to calculate this fraction correctly while including up-shift and down-shift in the parallel wave spectrum. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  13. Behavior of deuterium retention and surface morphology for VPS–W/F82H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuhisa Oya; Masashi Shimada; Tomonori Tokunaga

    The deuterium (D) retention for Vacuum Plasma Spray (VPS)–tungsten (W)/F82H was studied using two different implantation methods, namely D plasma exposure and View the MathML source implantation. The D retention for polished VPS–W/F82H after plasma exposure was found to be reduced compared to that for polycrystalline tungsten. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that porous structures around grain boundaries and the interface between VPS–W layers would be potential D diffusion paths, leading to low D retention. In the case of View the MathML source implantation, the shape of D2 TDS spectrum was almost the samemore » as that for D plasma-exposed VPS–W/F82H; however, the D retention was quite high for unpolished VPS–W/F82H, indicating that most of D was trapped by the oxide layer, which was produced by the VPS process. The reduction of surface area due to the polishing process also reduces D retention for VPS–W/F82H. These results indicate that controlling the surface chemical states is important for the reduction of tritium retention for future fusion reactors.« less

  14. Developing a global model of magnetospheric substorms

    NASA Astrophysics Data System (ADS)

    Kan, J. R.

    1990-09-01

    Competing models of magnetospheric substorms are discussed. The definitions of the three substorm phases are presented, and the advantages and drawbacks of the near-earth X-line model, magnetosphere-ionosphere coupling model, low-latitude boundary layer model, and thermal catastrophe model are examined. It is shown that the main challenge to achieving a quantitative understanding of the magnetospheric signatures of substorms is to understand the anomalous dissipation processes in collisionless plasmas.

  15. Field-Aligned Current at Plasma Sheet Boundary Layers During Storm Time: Cluster Observation

    NASA Astrophysics Data System (ADS)

    Shi, J.; Cheng, Z.; Zhang, T.; Dunlop, M.; Liu, Z.

    2007-05-01

    The magnetic field data from the FGM instruments on board the four Cluster spacecrafts were used to study Field Aligned Current (FAC) at the Plasma Sheet Boundary Layers (PSBLs) with the so called "curlometer technique". We analyzed the date obtained in 2001 in the magnetotail and only two cases were found in the storm time. One (August 17, 2001) occurred from sudden commencement to main phase, and the other (October 1, 2001) lay in the main phase and recovery phase. The relationship between the FAC density and the AE index was studied and the results are shown as follows. (1) In the sudden commencement and the main phase the density of the FAC increases obviously, in the recovery phase the density of the FAC increases slightly. (2) From the sudden commencement to the initial stage of the main phase the FAC increases with decreasing AE index and decreases with increasing AE index. From the late stage of the main phase to initial stage of the recovery phase, the FAC increases with increasing AE index and decreases with decreasing AE index. In the late stage of the recovery phase the disturbance of the FAC is not so violent, so that the FAC varying with the AE index is not very obvious.

  16. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering

    PubMed Central

    Málek, Přemysl; Minárik, Peter; Chráska, Tomáš; Novák, Pavel; Průša, Filip

    2017-01-01

    The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder’s microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder. PMID:28930192

  17. Modeling of erosion and deposition patterns on C-W and W-Ta twin limiters exposed to the TEXTOR edge plasmas

    NASA Astrophysics Data System (ADS)

    Ohya, K.; Tanabe, T.; Rubel, M.; Wada, M.; Ohgo, T.; Hirai, T.; Philipps, V.; Kirschner, A.; Pospieszczyk, A.; Huber, A.; Sergienko, G.; Brezinsek, S.; Noda, N.

    2004-08-01

    The erosion and deposition patterns on tungsten and tantalum test limiters exposed to the TEXTOR deuterium plasma containing a small amount of C impurity are simulated with the modified EDDY code. At the very top of the W and Ta limiters, there occurs neither erosion nor deposition, but the erosion proceeds slowly along the surface. When approaching the edge, the surface is covered by a thick C layer, which shows a very sharp boundary similar to the observation in surface measurements. In the erosion zone, the re-deposited carbon forms a W (Ta)-C mixed layer with small C concentration. Assumptions for chemical erosion yields of ˜0.01 for W and <0.005 for Ta fit the calculated widths of the deposition zone to the experimentally determined values. Possible reasons for the difference between W and Ta are discussed.

  18. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1994-01-01

    Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

  19. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  20. Performance modelling of plasma microthruster nozzles in vacuum

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.

  1. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  2. Motion of negative ion plasma near the boundary with electron−ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Yu. V., E-mail: medve@mail.ru

    2017-01-15

    Processes occurring near the boundary between three-component plasma with negative ions and two-component electron−ion plasma are considered. The excited waves and instability are described. Stability condition at the boundary is determined.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, C.; Abbasi Davani, F., E-mail: fabbasidavani@gmail.com

    A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of requiredmore » fields to obtain elongated plasma in the Damavand tokamak.« less

  4. OFF-Stagnation point testing in plasma facility

    NASA Astrophysics Data System (ADS)

    Viladegut, A.; Chazot, O.

    2015-06-01

    Reentry space vehicles face extreme conditions of heat flux when interacting with the atmosphere at hypersonic velocities. Stagnation point heat flux is normally used as a reference for Thermal Protection Material (TPS) design; however, many critical phenomena also occur at off-stagnation point. This paper adresses the implementation of an offstagnation point methodology able to duplicate in ground facility the hypersonic boundary layer over a flat plate model. The first analysis using two-dimensional (2D) computational fluid dynamics (CFD) simulations is carried out to understand the limitations of this methodology when applying it in plasma wind tunnel. The results from the testing campaign at VKI Plasmatron are also presented.

  5. Source Distributions of Substorm Ions Observed in the Near-Earth Magnetotail

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    This study employs Geotail plasma observations and numerical modeling to determine sources of the ions observed in the near-Earth magnetotail near midnight during a substorm. The growth phase has the low-latitude boundary layer as its most important source of ions at Geotail, but during the expansion phase the plasma mantle is dominant. The mantle distribution shows evidence of two distinct entry mechanisms: entry through a high latitude reconnection region resulting in an accelerated component, and entry through open field lines traditionally identified with the mantle source. The two entry mechanisms are separated in time, with the high-latitude reconnection region disappearing prior to substorm onset.

  6. Analysis of the ceramic layer microstructure influence on plasma spray thermal barrier coating performance

    NASA Astrophysics Data System (ADS)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2017-12-01

    This paper outlines the results of analysis and describes the structure of the thermal protection coatings formed by atomic ion stream deposition in vacuum, and plasma thermal spraying method. Crystallite structure features are considered along with the crystallite dimensions, spatial orientation, and position of the boundaries between separate crystallites. Discontinuity, volume, and morphology of the pores has been evaluated. Experimental studies have been accomplished using various fractions of the powder-like material ZrO2 - 8%Y2O3. The influence of the coating microstructure on the coating performance has been analyzed, such as adhesive strength, thermal stability, and thermal conductivity.

  7. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  8. Nonadiabatic heating of the central plasma sheet at substorm onset

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Frank, L. A.; Rostoker, G.; Fennell, J.; Mitchell, D. G.

    1992-01-01

    Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 RE, the apogee of the ISEE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 RE but may be adiabatic closer to earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of a substorm. Lobe magnetic pressures during these events are estimated. Change in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity.

  9. Eulerian and Lagrangian Plasma Jet Modeling for the Plasma Liner Experiment

    NASA Astrophysics Data System (ADS)

    Hatcher, Richard; Cassibry, Jason; Stanic, Milos; Loverich, John; Hakim, Ammar

    2011-10-01

    The Plasma Liner Experiment (PLX) aims to demonstrate the feasibility of using spherically-convergent plasma jets to from an imploding plasma liner. Our group has modified two hydrodynamic simulation codes to include radiative loss, tabular equations of state (EOS), and thermal transport. Nautilus, created by TechX Corporation, is a finite-difference Eulerian code which solves the MHD equations formulated as systems of hyperbolic conservation laws. The other is SPHC, a smoothed particle hydrodynamics code produced by Stellingwerf Consulting. Use of the Lagrangian fluid particle approach of SPH is motivated by the ability to accurately track jet interfaces, the plasma vacuum boundary, and mixing of various layers, but Eulerian codes have been in development for much longer and have better shock capturing. We validate these codes against experimental measurements of jet propagation, expansion, and merging of two jets. Precursor jets are observed to form at the jet interface. Conditions that govern evolution of two and more merging jets are explored.

  10. Plasma characterization studies for materials processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfender, E.; Heberlein, J.

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torchmore » model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.« less

  11. Dayside Magnetopause Transients Correlated with Changes of the Magnetosheath Magnetic Field Orientation

    NASA Technical Reports Server (NTRS)

    Tkachenko, O.; Safrankova, J.; Nemecek, Z.; Sibeck, D. G.

    2011-01-01

    The paper analyses one long-term pass (26 August 2007) of the THEMIS spacecraft across the dayside low-latitude magnetopause. THEMIS B, serving partly as a magnetosheath monitor, observed several changes of the magnetic field that were accompanied by dynamic changes of the magnetopause location and/or the structure of magnetopause layers observed by THEMIS C, D, and E, whereas THEMIS A scanned the inner magnetosphere. We discuss the plasma and the magnetic field data with motivation to identify sources of observed quasiperiodic plasma transients. Such events at the magnetopause are usually attributed to pressure pulses coming from the solar wind, foreshock fluctuations, flux transfer events or surface waves. The presented transient events differ in nature (the magnetopause surface deformation, the low-latitude boundary layer thickening, the crossing of the reconnection site), but we found that all of them are associated with changes of the magnetosheath magnetic field orientation and with enhancements or depressions of the plasma density. Since these features are not observed in the data of upstream monitors, the study emphasizes the role of magnetosheath fluctuations in the solar wind-magnetosphere coupling.

  12. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  13. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  14. Ion-Scale Wave Properties and Enhanced Ion Heating Across the Low-Latitude Boundary Layer During Kelvin-Helmholtz Instability

    NASA Astrophysics Data System (ADS)

    Moore, T. W.; Nykyri, K.; Dimmock, A. P.

    2017-11-01

    In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn sector, the cold-component ions are more abundant and hotter by 30-40% when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contributes to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to Kelvin-Helmholtz instability (KHI): hot and tenuous magnetospheric, cold and dense magnetosheath, and mixed (Hasegawa et al., 2004). These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz (KH) vortex centered ion heating (Moore et al., 2016). The statistical analysis shows that during KH events there is enhanced nonadiabatic heating calculated during ion scale wave intervals when compared to non-KH events. This suggests that during KH events there is more free energy for ion-scale wave generation, which in turn can heat ions more effectively when compared to cases when KH waves are absent. This may contribute to the dawn favored temperature asymmetry of the plasma sheet; recent studies suggest KH waves favor the dawn flank during Parker-Spiral interplanetary magnetic field.

  15. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-01

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  16. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  17. Relationship between frequency power spectra and intermittent, large-amplitude bursts in the Alcator C-Mod scrape-off layer

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; Garcia, O. E.; Kube, R.; LaBombard, B.; Terry, J. L.

    2017-11-01

    Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data from a set of Ohmically heated plasma density scan experiments. It is found that the relative fluctuation amplitudes are modest and close to normally distributed at the separatrix but become increasingly larger and skewed towards the main chamber wall. The frequency power spectra are nevertheless similar for all radial positions and line-averaged densities. Predictions of a stochastic model, describing the plasma fluctuations as a super-position of uncorrelated pulses, are shown to be in excellent agreement with the measurements. This implies that the pulse duration is the same, while the degree of pulse overlap decreases radially outwards in the scrape-off layer. The universal frequency power spectral density is thus determined by the shape and duration of the large-amplitude bursts associated with blob-like structures. The model also describes the rate of threshold level crossings, for which the exponential tails underline the intermittency of the fluctuations in the far scarpe-off layer.

  18. Effect of Pulse Detonation-Plasma Technology Treatment on T8 Steel Microstructures

    NASA Astrophysics Data System (ADS)

    Yu, Jiuming; Zhang, Linwei; Liu, Keming; Lu, Lei; Lu, Deping; Zhou, Haitao

    2017-12-01

    T8 steel surfaces were treated by pulse detonation-plasma technology (PDT) at capacitance values of 600, 800, and 1000 μF, and the effects of PDT were analyzed using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron back-scattered diffraction, and micro-hardness tester and friction wear tester. The surface of T8 steel is first smoothed out, and then, craters are formed due to the inhomogeneity of the PDT energy and targeting during PDT treatment. The initial martensite in the T8 steel surface layer changes to austenite, and Fe3N is formed due to nitriding. The thickness of the modified layer, which is composed of columnar and fine grain structures, increases with the increasing capacity. Preferential orientation occurred in the {110} 〈 001 〉 direction in the modified layer, and the number of low-angle grain boundaries increased significantly after PDT treatment. The micro-hardness and wear resistance of the T8 steel was improved by PDT treatment, even doubled after the treatment with the capacitance of 1000 μF.

  19. A linear helicon plasma device with controllable magnetic field gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2012-06-15

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well asmore » its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.« less

  20. Control of Stationary Cross-Flow Modes in a Mach 3.5 Boundary Layer Using Patterned Passive and Active Roughness

    NASA Technical Reports Server (NTRS)

    Schuele, Chan Yong

    2011-01-01

    Spanwise-periodic roughness designed to excite selected wavelengths of stationary cross- ow modes was investigated in a 3-D boundary layer at Mach 3.5. The test model was a sharp-tipped 14deg right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 Supersonic Low Disturbance Tunnel (SLDT) equipped with a "quiet design" nozzle at the NASA Langley Research Center. The model was oriented at a 4:2deg angle of attack to produce a mean cross-fl ow velocity component in the boundary layer over the cone. Five removable cone tips have been investigated. One has a smooth surface that is used to document the baseline ("natural") conditions. Two had minute (20 - 40 micron) "dimples" that are equally spaced around the circumference, at a streamwise location that is just upstream of the linear stability neutral growth branch for cross- ow modes. The azimuthal mode numbers of the dimpled tips were selected to either enhance the most amplified wave numbers, or to suppress the growth of the most amplified wave numbers. Two of the cone tips had an array of plasma streamwise vortex generators that were designed to simulate the disturbances produced by the passive patterned roughness. The results indicate that the stationary cross-fl ow modes were highly receptive to the patterned roughness of both passive and active types. The patterned passive roughness that was designed to suppress the growth of the most amplified modes had an azimuthal wavelength that was 66% smaller that that of the most amplified stationary cross- ow mode. This had the effect to increase the transition Reynolds number from 25% to 50% depending on the measurement technique. The application of the research is on turbulent transition control on swept wings of supersonic aircraft. The plasma-based roughness has the advantage over the passive roughness of being able to be adaptable to different conditions that would occur during a flight mission.

  1. Plasmasphere Response: Tutorial and Review of Recent Imaging Results

    NASA Astrophysics Data System (ADS)

    Goldstein, J.

    2006-06-01

    The plasmasphere is the cold, dense innermost region of the magnetosphere that is populated by upflow of ionospheric plasma along geomagnetic field lines. Driven directly by dayside magnetopause reconnection, enhanced sunward convection erodes the outer layers of the plasmasphere. Erosion causes the plasmasphere outer boundary, the plasmapause, to move inward on the nightside and outward on the dayside to form plumes of dense plasma extending sunward into the outer magnetosphere. Coupling between the inner magnetosphere and ionosphere can significantly modify the convection field, either enhancing sunward flows near dusk or shielding them on the night side. The plasmaspheric configuration plays a crucial role in the inner magnetosphere; wave-particle interactions inside the plasmasphere can cause scattering and loss of warmer space plasmas such as the ring current and radiation belts.

  2. Dynamic Processes at the Outer Boundary of the Magnetosphere, Including Coupling to the Ionosphere

    DTIC Science & Technology

    1994-04-15

    numerical simulation, of the stability of laminar flow in the equatorial LLBL in the presence of coupling to the ionosphere and associated nonuniform ...L.C. Laec Theory of inaperfcs eto lhreio s1w dependenceors dependenceon theelecio precpittion associated coupling. GeV*li. Res. Lair ... nonuniform magnetic field, the nonuniformity being created by electic currents that connect the plasma in the layer to two conducting plates which

  3. Surface Microwave and Surface Transversal Pulsed-Periodic Discharges in Supersonic Flow

    DTIC Science & Technology

    2004-03-01

    plasmas of different types of gas discharges near the surface of Aerodynamic models and in the boundary layers. Also, the contractor will develop modes...regions near the surface. The following experimental work will be done in supersonic air flow (Mɚ) at pressures between 1 and 200 Torr: a...198 CHAPTER IX NUMERICAL CALCULATION OF CHARACTERISTICS OF SUPERSONIC FLOW NEAR A FLAT PLATE WITH MICROWAVE DISCHARGE ON ITS SURFACE

  4. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  5. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  6. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  7. Turbulent Combustion Study of Scramjet Problem

    DTIC Science & Technology

    2015-08-01

    boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and

  8. Large-aspect-ratio limit of neoclassical transport theory.

    PubMed

    Wong, S K; Chan, V S

    2003-06-01

    This paper presents a comprehensive description of neoclassical transport theory in the banana regime for large-aspect-ratio flux surfaces of arbitrary shapes. The method of matched-asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates the discussion of the treatment of dynamical constraints. It is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.

  9. The source of the electric field in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.

  10. Numerical simulation of electromagnetic wave attenuation in a nonequilibrium chemically reacting hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Nusca, Michael Joseph, Jr.

    The effects of various gasdynamic phenomena on the attenuation of an electromagnetic wave propagating through the nonequilibrium chemically reacting air flow field generated by an aerodynamic body travelling at high velocity is investigated. The nonequilibrium flow field is assumed to consist of seven species including nitric oxide ions and free electrons. The ionization of oxygen and nitrogen atoms is ignored. The aerodynamic body considered is a blunt wedge. The nonequilibrium chemically reacting flow field around this body is numerically simulated using a computer code based on computational fluid dynamics. The computer code solves the Navier-Stokes equations including mass diffusion and heat transfer, using a time-marching, explicit Runge-Kutta scheme. A nonequilibrium air kinetics model consisting of seven species and twenty-eight reactions as well as an equilibrium air model consisting of the same seven species are used. The body surface boundaries are considered as adiabatic or isothermal walls, as well as fully-catalytic and non-catalytic surfaces. Both laminar and turbulent flows are considered; wall generated flow turbulence is simulated using an algebraic mixing length model. An electromagnetic wave is considered as originating from an antenna within the body and is effected by the free electrons in the chemically reacting flow. Analysis of the electromagnetics is performed separately from the fluid dynamic analysis using a series solution of Maxwell's equations valid for the propagation of a long-wavelength plane electromagnetic wave through a thin (i.e., in comparison to wavelength) inhomogeneous plasma layer. The plasma layer is the chemically reacting shock layer around the body. The Navier-Stokes equations are uncoupled from Maxwell's equations. The results of this computational study demonstrate for the first time and in a systematic fashion, the importance of several parameters including equilibrium chemistry, nonequilibrium chemical kinetics, the reaction mechanism, flow viscosity, mass diffusion, and wall boundary conditions on modeling wave attenuation resulting from the interaction of an electromagnetic wave with an aerodynamic plasma. Comparison is made with experimental data.

  11. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  12. THE EFFECT OF RECONNECTION ON THE STRUCTURE OF THE SUN’S OPEN–CLOSED FLUX BOUNDARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontin, D. I.; Wyper, P. F., E-mail: dpontin@maths.dundee.ac.uk, E-mail: peter.f.wyper@nasa.gov

    2015-05-20

    Global magnetic field extrapolations are now revealing the huge complexity of the Sun's corona, and in particular the structure of the boundary between open and closed magnetic flux. Moreover, recent developments indicate that magnetic reconnection in the corona likely occurs in highly fragmented current layers, and that this typically leads to a dramatic increase in the topological complexity beyond that of the equilibrium field. In this paper we use static models to investigate the consequences of reconnection at the open–closed flux boundary (“interchange reconnection”) in a fragmented current layer. We demonstrate that it leads to efficient mixing of magnetic fluxmore » (and therefore plasma) from open and closed field regions. This corresponds to an increase in the length and complexity of the open–closed boundary. Thus, whenever reconnection occurs at a null point or separator of this open–closed boundary, the associated separatrix arc of the so-called S-web in the high corona becomes not a single line but a band of finite thickness within which the open–closed boundary is highly structured. This has significant implications for the acceleration of the slow solar wind, for which the interaction of open and closed field is thought to be important, and may also explain the coronal origins of certain solar energetic particles. The topological structures examined contain magnetic null points, separatrices and separators, and include a model for a pseudo-streamer. The potential for understanding both the large scale morphology and fine structure observed in flare ribbons associated with coronal nulls is also discussed.« less

  13. Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.

    PubMed

    Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  14. Disturbance Source Separation in Shear Flows Using Blind Source Separation Methods

    NASA Astrophysics Data System (ADS)

    Gluzman, Igal; Cohen, Jacob; Oshman, Yaakov

    2017-11-01

    A novel approach is presented for identifying disturbance sources in wall-bounded shear flows. The method can prove useful for active control of boundary layer transition from laminar to turbulent flow. The underlying idea is to consider the flow state, as measured in sensors, to be a mixture of sources, and to use Blind Source Separation (BSS) techniques to recover the separate sources and their unknown mixing process. We present a BSS method based on the Degenerate Unmixing Estimation Technique. This method can be used to identify any (a priori unknown) number of sources by using the data acquired by only two sensors. The power of the new method is demonstrated via numerical and experimental proofs of concept. Wind tunnel experiments involving boundary layer flow over a flat plate were carried out, in which two hot-wire anemometers were used to separate disturbances generated by disturbance generators such as a single dielectric barrier discharge plasma actuator and a loudspeaker.

  15. Two types of energy-dispersed ion structures at the plasma sheet boundary

    NASA Astrophysics Data System (ADS)

    Sauvaud, J.-A.; Kovrazhkin, R. A.

    2004-12-01

    We study two main types of ion energy dispersions observed in the energy range ˜1 to 14 keV on board the Interball-Auroral (IA) satellite at altitudes 2-3 RE at the poleward boundary of the plasma sheet. The first type of structure is named velocity dispersed ion structures (VDIS). It is known that VDIS represent a global proton structure with a latitudinal width of ˜0.7-2.5°, where the ion overall energy increases with latitude. IA data allow to show that VDIS are made of substructures lasting for ˜1-3 min. Inside each substructure, high-energy protons arrive first, regardless of the direction of the plasma sheet boundary crossing. A near-continuous rise of the maximal and minimal energies of consecutive substructures with invariant latitude characterizes VDIS. The second type of dispersed structure is named time-of-flight dispersed ion structures (TDIS). TDIS are recurrent sporadic structures in H+ (and also O+) with a quasi-period of ˜3 min and a duration of ˜1-3 min. The maximal energy of TDIS is rather constant and reaches ≥14 keV. During both poleward and equatorward crossings of the plasma sheet boundary, inside each TDIS, high-energy ions arrive first. These structures are accompanied by large fluxes of upflowing H+ and O+ ions with maximal energies up to 5-10 keV. In association with TDIS, bouncing H+ clusters are observed in quasi-dipolar magnetic field tubes, i.e., equatorward from TDIS. The electron populations generally have different properties during observations of VDIS and TDIS. The electron flux accompanying VDIS first increases smoothly and then decreases after Interball-Auroral has passed through the proton structure. The average electron energy in the range ˜0.5-2 keV is typical for electrons from the plasma sheet boundary layer (PSBL). The electron fluxes associated with TDIS increases suddenly at the polar boundary of the auroral zone. Their average energy, reaching ˜5-8 keV, is typical for CPS. A statistical analysis shows that VDIS are observed mainly during magnetically quiet times and during the recovery phase of substorms, while sporadic and recurrent TDIS are observed during the onset and main phases of substorms and magnetic storms and, although less frequently, during substorm recovery phases. From the slope of the (velocity)-1 versus time dispersions of TDIS, we conclude that they have a sporadic source located at the outer boundary of the central plasma sheet, at distances from 8 to 40 RE in the equatorial plane. The disappearance of the PSBL associated with TDIS can be tentatively linked to a reconfiguration of the magnetotail, which disconnects from the Earth the field lines forming the "quiet" PSBL. We show that VDIS consist of ion beams ejected from an extended current sheet at different distances. These ion beams could be formed in the neutral sheet at distance ranging from ˜30 RE to ˜100 RE from the Earth. Inside each substructure the time-of-flight dispersion of ions generally dominate over any latitudinal dispersion induced by a dawn-dusk electric field. These two main types of energy-dispersed ion structures reflect probably two main states of the magnetotail, quiet and active. Finally, it must be stressed that only ˜49% (246 over 501) of the Interball-Auroral auroral zone-polar cap boundary crossings can be described as VDIS or TDIS. On the other 51% of the crossings of the plasma sheet boundary, no well-defined ion dispersed structures were observed.

  16. Solid charged-core model of ball lightning

    NASA Astrophysics Data System (ADS)

    Muldrew, D. B.

    2010-01-01

    In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon - a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  17. Probability distribution functions for intermittent scrape-off layer plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; Garcia, O. E.

    2018-03-01

    A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas has been constructed based on a super-position of uncorrelated pulses arriving according to a Poisson process. In the most common applications of the model, the pulse amplitudes are assumed exponentially distributed, supported by conditional averaging of large-amplitude fluctuations in experimental measurement data. This basic assumption has two potential limitations. First, statistical analysis of measurement data using conditional averaging only reveals the tail of the amplitude distribution to be exponentially distributed. Second, exponentially distributed amplitudes leads to a positive definite signal which cannot capture fluctuations in for example electric potential and radial velocity. Assuming pulse amplitudes which are not positive definite often make finding a closed form for the probability density function (PDF) difficult, even if the characteristic function remains relatively simple. Thus estimating model parameters requires an approach based on the characteristic function, not the PDF. In this contribution, the effect of changing the amplitude distribution on the moments, PDF and characteristic function of the process is investigated and a parameter estimation method using the empirical characteristic function is presented and tested on synthetically generated data. This proves valuable for describing intermittent fluctuations of all plasma parameters in the boundary region of magnetized plasmas.

  18. Deuterium charge exchange recombination spectroscopy from the top of the pedestal to the scrape off layer in H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Stagner, L.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Ashourvan, A.; Pablant, N. A.

    2017-10-01

    Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D [J.L. Luxon, Nucl. Fusion 42 (2002) 614] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the Dα spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (C6+) and main-ion (D+) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D+ temperature can be half the value of the C6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. These measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.

  19. Deuterium charge exchange recombination spectroscopy from the top of the pedestal to the scrape off layer in H-mode plasmas

    DOE PAGES

    Haskey, S. R.; Grierson, B. A.; Stagner, L.; ...

    2017-10-25

    Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the D α spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (Cmore » 6+) and main-ion (D +) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D + temperature can be half the value of the C 6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. Furthermore, these measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.« less

  20. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  1. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-09-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequatemore » to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.« less

  2. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 6, 1976

    DTIC Science & Technology

    1976-06-01

    6 Laser- Powered Rocket Model 1 High- Power CO2 Laser Radiation Effect in SF6 1 Tests With 9-Beam Laser Fusion Systems 1 Focusing Optics For...Boundary Layer 6 Deformation Theory of Artif.cial Muscles . 6 Dolphin Swimming Stereophotogrammetry 7 Stable Spark Gap for High- Power Pulsers 7...8 Resume of Soviet Tokamak Program .............. 9 First Measurements of Tokamak-10 Plasma , . . 10 Electrochemical Power Generation 11

  3. Grain size effect on the giant dielectric constant of CaCu3Ti4O12 nanoceramics prepared by mechanosynthesis and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Yamada, Koji

    2014-04-01

    In the present work, CaCu3Ti4O12 (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ˜200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2-3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 103, 2.4 × 104, and 3.2 × 104 for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 104. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.

  4. Phase composition and fine structure of 0.18C-1Cr-3Ni-1Mo-Fe steel after plasma-electrolytic treatment

    NASA Astrophysics Data System (ADS)

    Popova, Natalya; Bayatanova, Lyayla; Nikonenko, Elena; Skakov, Mazhyn; Kozlov, Eduard

    2017-01-01

    The paper presents the transmission electron microscopy (TEM) investigation of 0.18C-1Cr-3Mn-1Mo- Fe steel specimens to study phase transitions and modification of fine structure after plasma-electrolytic treatment (carbonitriding at 850°C during 5 min). TEM investigations involve two points: on the specimen surface and at ˜40 µm distance from it. The experiments show that the structure in the original state is a mixture consisting of ferrite and perlite grains. Carbonitriding results in a considerable modification of the quality and quantity of steel structure. Thus, on the surface, α-phase is represented by lamellar martensite, while at ˜40 µm depth - by massive and lamellar martensite tempered at low and high temperatures. Moreover, on the subsurface of the martensite plates' boundaries retained austenite layers are observed, while inside plates the particles of alloyed cementite, carbonitrides of M23(C,N)6, M2C0.61N0.39, M6,2C3,5N0,3, M(C,N)2, Cr12Fe32Mo7Ni7 types, and β-graphite are present. In the specimen at the depth of ˜40 µm, retained austenite layers are observed on the boundaries of martensite laths and plates, while inside plates only the particles of alloyed cementite and M23(C,N)6 carbonitride are formed.

  5. Recent Plasma Observations Related to Magnetic Merging and the Low-Latitude Boundary Layer. Case Study by Polar, March 18, 2006

    NASA Technical Reports Server (NTRS)

    Chandler, M.; Avanov, L.; Craven, P.; Mozer, F.; Moore, T. E.

    2007-01-01

    We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. Magnetosheath-like plasma is frequently observed deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a long period of northward interplanetary magnetic field (IMP) on March 18, 2006, shows injected magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. Our results support the idea of double reconnection under northward IMP on the same group of field lines can provide a source for the LLBL. However, the flow direction of the accelerated magnetosheath ions antiparallel to the local magnetic field and given location of the spacecraft suggest that these two injection sites are located northward of the spacecraft position. Observed convection velocities of the magnetic field lines are inconsistent with those expected for double post-cusp reconnection in both hemispheres. These observations favor a scenario in which a group of newly closed field lines was created by a combination of high shear merging at high latitudes in the northern hemisphere and low shear merging at lower latitudes at the dayside magnetopause.

  6. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  7. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  8. Free boundary resistive modes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W.

    1993-05-01

    There exist a number of observations of magnetohydrodynamic (MHD) activity that can be related to resistive MHD modes localized near the plasma boundary. To study the stability of these modes, a free boundary description of the plasma is essential. The resistive plasma--vacuum boundary conditions have been implemented in the fully toroidal resistive spectral code CASTOR (Complex Alfven Spectrum in Toroidal Geometry) [[ital Proceedings] [ital of] [ital the] 18[ital th] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics], Berlin, edited by P. Bachmann and D. C. Robinson (European Physical Society, Petit-Lancy, Switzerland, 1991), p. 89].more » The influence of a free boundary, as compared to a fixed boundary on the stability of low-[ital m] tearing modes, is studied. It is found that the stabilizing (toroidal) effect of a finite pressure due the plasma compression is lost in the free boundary case for modes localized near the boundary. Since the stabilization due to the favorable average curvature in combination with a pressure gradient near the boundary is small, the influence of the pressure on the stability is much less important for free boundary modes than for fixed boundary modes.« less

  9. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  10. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  11. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  12. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  13. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  14. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  15. Ion-pressure equations derived from measurements in space.

    PubMed

    Stasiewicz, K

    2005-07-01

    Cluster measurements at the bow shock, the magnetosheath, and the magnetospheric boundary layer are used to derive ion-pressure equations for hot anisotropic plasmas. It is demonstrated that both perpendicular and parallel ion pressures are well approximated by polybaric expressions is proportional to N(gamma)B(kappa), where N is the plasma density, B is the magnetic field, gamma is in the range 0.5 to 2, and kappa is between -2 and 0. The parameters derived from observations are distinctively different from those predicted by double-adiabatic theory and are shown to hold for pressure variations over 4 orders of magnitude and for a range of plasma beta (ratio of kinetic/magnetic pressures) between 10(-4) and 10. The results are relevant for simulations and theories of astrophysical, solar, interplanetary, and magnetospheric processes based on MHD equations.

  16. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  17. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  18. Plasma and electric field boundaries at high and low altitudes on July 29, 1977

    NASA Technical Reports Server (NTRS)

    Fennell, J. F.; Johnson, R. G.; Young, D. T.; Torbert, R. B.; Moore, T. E.

    1982-01-01

    Hot plasma observations at high and low altitudes were compared. The plasma ion composition at high altitudes outside the plasmasphere was 0+. Heavy ions were also observed at low altitudes outside the plasmasphere. It is shown that at times these ions are found well below the plasmapause inside the plasmasphere. Comparisons of the low altitude plasma and dc electric fields show that the outer limits of the plasmasphere is not always corotating at the low L-shells. The corotation boundary, the estimated plasmapause boundary at the boundary of the inner edge of plasma sheet ions were at the same position. The inner edge of plasma sheet electrons is observed at higher latitudes than the plasmasphere boundary during disturbed times. The inner edge of the plasma sheaths shows a strong dawn to dusk asymmetry. At the same time the inner edge of the ring current and plasma sheath also moves to high latitudes reflecting an apparent inflation of the magnetosphere.

  19. Deposition of single and layered amorphous fluorocarbon films by C8F18 PECVD

    NASA Astrophysics Data System (ADS)

    Yamauchi, Tatsuya; Mizuno, Kouichiro; Sugawara, Hirotake

    2008-10-01

    Amorphous fluorocarbon films were deposited by plasma-enhanced chemical vapor deposition (PECVD) using C8F18 in closed system at C8F18 pressures 0.1--0.3 Torr, deposition times 1--30 min and plasma powers 20--200 W@. The layered films were composed by repeated PECVD processes. We compared `two-layered' and `intermittently deposited' films, which were made by the PECVD, respectively, with and without renewal of the gas after the deposition of the first layer. The interlayer boundary was observed in the layered films, and that of the intermittently deposited films showed a tendency to be clearer when the deposition time until the interruption of the PECVD was shorter. The film thickness increased linearly in the beginning of the PECVD and it turned down after 10--15 min, that was similar between the single and intermittently deposited films. It was considered that large precursors made at a low decomposition degree of C8F18 contributed to the film deposition in the early phase and that the downturn was due to the development of the C8F18 decomposition. This explanation on the deposition mechanism agrees qualitatively with our experimental data of pressure change and optical emission spectra during the deposition. This work is supported by Grant-in-Aid from Japan Society for the Promotion of Science.

  20. Remote Sensing of the Reconnection Electric Field From In Situ Multipoint Observations of the Separatrix Boundary

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.

    2018-05-01

    A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.

  1. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  2. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  3. The simulation of electromagnetically driven strong Langmuir turbulence effect on the backscatter radiation from ionosphere

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey

    2016-07-01

    Numerical simulations of the dynamics of electromagnetic fields in a smoothly inhomogeneous nonlinear plasma layer in frameworks of the nonlinear Schrödinger equation with boundary conditions responsible for the pumping of the field in the layer by an incident wave and the inverse radiation losses supplemented the volume field dissipation due to the electromagnetic excitation of Langmuir turbulence are carried out. The effects of the threshold of non-linearity and it's evolution, of the threshold and saturation levels of dissipation in the vicinity of the wave reflection point on the features of the dynamics of reflection and absorption indexes are investigated. We consider the hard drive damping depending on the local field amplitude and hysteresis losses with different in several times "on" and "off" absorption thresholds as well. The dependence of the thresholds of the steady-state, periodic and chaotic regimes of plasma-wave interaction on the scenario of turbulence evolution is demonstrated. The results are compared with the experimental observations of Langmuir stage ionospheric modification.

  4. Practical calculation of laminar and turbulent bled-off boundary layers

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1978-01-01

    Bleed-off of boundary layer material is shown to be an effective means for reducing drag by conserving the laminar boundary layer and preventing separation of the turbulent boundary layer. The case in which the two effects of bleed-off overlap is examined. Empirical methods are extended to the case of bleed-off. Laminar and turbulent boundary layers are treated simultaneously and the approximation differential equations are solved without an uncertain error. The case without bleed-off is also treated.

  5. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  6. Specific features of implosion of metallized fiber arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    2017-02-15

    Implosion of metallized fiber arrays was studied experimentally at the Angara-5-1 facility. The use of such arrays makes it possible to investigate the production and implosion dynamics of plasmas of various metals (such as tin, indium, and bismuth) that were previously unavailable for such studies. The plasma production rates m-dot (in μg/(cm{sup 2} ns)) for different metals were determined and quantitatively compared. Varying the thickness of the metal layer deposited on kapron fibers (the total linear mass of the metal coating being maintained at the level of 220 μg/cm), the current and velocity of the plasma precursor were studied asmore » functions of the thickness of the metal coating. The strong difference in the rates of plasma production from the metal coating and kapron fibers results in the redistribution of the discharge current between the Z-pinch and the trailing fiber plasma. The outer boundary of the plasma produced from the metal coating is found to be stable against instabilities typical of the final stage of implosion of conventional wire arrays.« less

  7. Modelling of Field-Reversed Configuration Experiment with Large Safety Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhauer, L; Guo, H; Hoffman, A

    2005-11-28

    The Translation-Confinement-Sustainment facility has been operated in the 'translation-formation' mode in which a plasma is ejected at high-speed from a {theta}-pinch-like source into a confinement chamber where it settles into a field-reversed-configuration state. Measurements of the poloidal and toroidal field have been the basis of modeling to infer the safety factor. It is found that the edge safety factor exceeds two, and that there is strong forward magnetic shear. The high-q arises because the large elongation compensates for the modest ratio of toroidal-to-poloidal field in the plasma. This is the first known instance of a very high-{beta} plasma with amore » safety factor greater than unity. Two-fluid modeling of the measurements also indicate several other significant features: a broad 'transition layer' at the plasma boundary with probable line-tying effects, complex high-speed flows, and the appearance of a two-fluid minimum-energy state in the plasma core. All these features may contribute to both the stability and good confinement of the plasma.« less

  8. Numerical study of the flow structures in flat plate and the wall-mounted hump induced by the unsteady DBD plasma

    NASA Astrophysics Data System (ADS)

    Yu, Jianyang; Liu, Huaping; Wang, Ruoyu; Chen, Fu

    2017-01-01

    In this work, the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump. A phenomenological dielectric-barrier-discharge plasma model which regarded the plasma effect as the body force was implemented into the Navier-Stokes equations solved by the method of large eddy simulations. The results show that a series of vortex pairs, which indicated dipole formation and periodicity distribution were generated in the boundary layer when the plasma was applied to the flow over a flat plane. They would enhance the energy exchanged between the near wall region and the free stream. Besides, their spatial trajectories are deeply affected by the actuation strength. When the actuator was engaged in the flow over a wall-mounted hump, the vortex pairs were also produced, which was able to delay flow separation as well as to promote flow reattachment and reduce the generation of a vortex, achieving the goal of reducing dissipation and decreasing flow resistance.

  9. Validation of theoretical models of intrinsic torque in DIII-D

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Wang, W. X.; Battaglia, D. J.; Chrystal, C.; Solomon, W. M.; Degrassie, J. S.; Staebler, G. M.; Boedo, J. A.

    2016-10-01

    Plasma rotation experiments in DIII-D are validating models of main-ion intrinsic rotation by testing Reynolds stress induced toroidal flow in the plasma core and intrinsic rotation induced by ion orbit losses in the plasma edge. In the core of dominantly electron heated plasmas with Te=Ti, the main-ion intrinsic toroidal rotation undergoes a reversal that correlates with the critical gradient for ITG turbulence. Residual stress arising from zonal-flow ExB shear and turbulence intensity gradient produce residual stress and counter-current intrinsic torque, which is balanced by momentum diffusion, creating the hollow profile. Quantitative agreement is obtained for the first time between the measured main-ion toroidal rotation and the rotation profile predicted by nonlinear GTS gyrokinetic simulations. At the plasma boundary, new main-ion CER measurements show a co-current rotation layer and this is tested against ion orbit loss models as the source of bulk plasma rotation. Work supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  10. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  11. Prediction of turbulent shear layers in turbomachines

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1974-01-01

    The characteristics of turbulent shear layers in turbomachines are compared with the turbulent boundary layers on airfoils. Seven different aspects are examined. The limits of boundary layer theory are investigated. Boundary layer prediction methods are applied to analysis of the flow in turbomachines.

  12. Plasma jets and FTE Dayside Generation for Northward IMF on 8 June 2007: THEMIS Observations

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Cully, C. M.; Ergun, R. E.; Gosling, J. T.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Roux, A.; Auster, H.; Le Contel, O.

    2007-12-01

    Five-spacecraft THEMIS (TH) observations are presented for a 15.5 MLT equatorial magnetopause crossing on 8 June 2007 when the upstream IMF was predominantly northward with a negative IMF By component at Wind. During the 0650-0855 UT period on this day TH-B was the most tailward probe while TH-A was the most sunward probe. TH-E was closest to TH-A with a maximum separation of only 0.71 RE. The maximum TH-A to TH-B GSM separation was 1.85 RE. TH-B showed a clean magnetopause crossing into the magnetosphere as the magnetopause expanded over the probes while TH-A spent this 2-hour period within a boundary layer inside the magnetopause with frequent transitions between a magnetosheath-like and a magnetosphere-like plasma as previously seen by Cluster at high-latitudes for southward IMF [Wild et al., 2003]. TH-E observed similar activity for a shorter period of time. Many of the sheath-like transitions showed evidence of plasma jets at TH-A with enhanced speed in the tailward and/or duskward direction suggesting a subsolar component merging region. Some jets were related to frequent bipolar FTE signatures in the normal BN component with enhanced total pressure observed at their centers. The more common ±BN sequence suggests that TH-A observed tailward propagating FTEs on the sheath side of the magnetopause. We compare TH-E ExB velocities with the enhanced jet velocities observed by TH-A and discuss whether the jets observed within this boundary layer were caused by subsolar magnetopause reconnection. We also compare these low-latitude northward IMF observations with prior Cluster FTE observations at high-latitude for southward IMF.

  13. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  14. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  15. Assessment Of Surface-Catalyzed Reaction Products From High Temperature Materials In Plasmas

    NASA Astrophysics Data System (ADS)

    Allen, Luke Daniel

    Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production in air plasmas. A series of spectral models for the A-X and B-X systems of nitric oxide (NO), and the B-X system of boron monoxide (BO) have been developed. These models aim to predict line positions and strengths for the respective molecules in a way that is best suited for the diagnostic needs of the UVM facility. From the NO models, laser induced fluorescence strategies have been adapted with the intent of characterizing the relative quantity and thermodynamic state of NO produced bysurface-catalyzed recombination, while the BO model adds a diagnostic tool for the testing of diboride-based TPS materials. Boundary layer surveys of atomic nitrogen and NO have been carried out over water-cooled copper and nickel surfaces in air/argon plasmas. Translation temperatures and relative number densities throughout the boundary layer are reported. Additional tests were also conducted over a water-cooled copper surface to detect evidence of highly non-equilibrium effects in the form of excess population in elevated vibrational levels of the A-X system of NO. The tests showed that near the sample surface there is a much greater population in the upsilon'' = 1ground state than is predicted by a Boltzmann distribution.

  16. Particle Detectors and Data Analysis for Cusp Transient Features Campaign

    NASA Technical Reports Server (NTRS)

    Sharber, James R.

    1999-01-01

    On December 3, 1997, a rocket payload (36.152) was launched from N(sub y) Alesund into the dark cusp at 0906:00 U (1206:00 LT) during an interval of southward B(sub z) and positive B(sub y). Launch occurred during a time interval of northeastward moving auroral forms observed between 0845 and 0945 UT by ground-based meridian scanning photometers. Ground photometric measurements during the flight show that the payload passed over the poleward portion of the most intense 6300 A emissions of the dayside cusp/cleft region. Electrons of energy up to a few hundred eV were detected immediately upon instrument turn-on at an altitude of 205 km and throughout the flight until the payload reached an altitude of -197 km on the downleg. Electron spectra were either quasithermal with peak energies -100 eV or showed evidence of acceleration along the magnetic field line by potentials of 100-200 V. Precipitating ions were observed throughout much of the flight. Their spectra were broadly peaked in energy with the peak energy decreasing from -500 eV to -250 eV as the payload flew approximately westward over the dayside precipitation region. Structure (spatial or temporal intensity variation) was observed between T + 180 s and T + -400 s. At the rocket altitudes (<450 km) the ions were observed to be precipitating. During the flight, the DMSP F-13 satellite passed through the all-sky imager field-of-view just poleward of the brightest dayside emissions enabling the identification of plasma sheet and boundary layer regions along the orbit. We thus conclude that particle fluxes detected by the rocket flight were either cusp plasma or boundary layer/mantle plasma just poleward of the dayside cusp/cleft. A paper describing the fields and plasmas observed during the flight is now being prepared for publication.

  17. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  18. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  19. Boundary layer polarization and voltage in the 14 MLT region

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Yamauchi, M.; Woch, J.; Marklund, G.

    1995-05-01

    Viking midlatitude observations of ions and electrons in the postnoon auroral region show that field-aligned acceleration of electrons and ions with energies up to a few kiloelectron volts takes place. The characteristics of the upgoing ion beams and the local transverse electric field observed by Viking indicate that parallel ion acceleration is primarily due to a quasi-electrostatic field-aligned acceleration process below Viking altitudes, i.e., below 10,000-13,500 km. A good correlation is found between the maximum upgoing ion beam energy and the depth of the local potential well determined by the Viking electric field experiment within dayside 'ion inverted Vs.' The total transverse potential throughout the entire region near the ion inverted Vs. is generally much higher than the field-aligned potential and may reach well above 10 kV. However, the detailed mapping of the transverse potential out to the boundary layer, a fundamental issue which remains controversial, was not attempted here. An important finding in this study is the strong correlation between the maximum up going ion beam energy of dayside ion inverted Vs and the solar wind velocity. This suggests a direct coupling of the solar wind plasma dynamo/voltage generator to the region of field-aligned particle acceleration. The fact that the center of dayside ion inverted Vs coincide with convection reversals/flow stagnation and upward Birkeland currents on what appears to be closed field lines (Woch et al., 1993), suggests that field-aligned potential structures connect to the inner part of an MHD dyanmo in the low-latitude boundary layer. Thus the Viking observations substantiate the idea of a solar wind induced boundary layer polarization where negatively charged perturbations in the postnoon sector persistently develops along the magnetic field lines, establishing accelerating potential drops along the geomagnetic field lines in the 0.5-10 kV range.

  20. Ion Velocity Distributions in Dipolarization Events: Beams in the Vicinity of the Plasma Sheet Boundary

    NASA Technical Reports Server (NTRS)

    Birn, J.; Chandler, M.; Moore, T.; Runov, A.

    2017-01-01

    Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in relation to magnetotail reconnection and dipolarization events, focusing on distributions at and near the plasma sheet boundary layer (PSBL). Simulated distributions right at the boundary are characterized by a single earthward beam, as discussed earlier. However, farther inside, the distributions consist of multiple beams parallel and antiparallel to the magnetic field, remarkably similar to recent Magnetospheric Multiscale observations. The simulations provide insight into the mechanisms: the lowest earthward beam results from direct acceleration at an earthward propagating dipolarization front (DF), with a return beam at somewhat higher energy. A higher-energy earthward beam results from dual acceleration, first near the reconnection site and then at the DF, again with a corresponding return beam resulting from mirroring closer to Earth. Multiple acceleration at the X line or the propagating DF with intermediate bounces may produce even higher-energy beams. Particles contributing to the lower energy beams are found to originate from the PSBL with thermal source energies, increasing with increasing beam energy. In contrast, the highest-energy beams consist mostly of particles that have entered the acceleration region via cross-tail drift with source energies in the suprathermal range.

  1. Ion velocity distributions in dipolarization events: Beams in the vicinity of the plasma sheet boundary

    NASA Astrophysics Data System (ADS)

    Birn, J.; Chandler, M.; Moore, T.; Runov, A.

    2017-08-01

    Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in relation to magnetotail reconnection and dipolarization events, focusing on distributions at and near the plasma sheet boundary layer (PSBL). Simulated distributions right at the boundary are characterized by a single earthward beam, as discussed earlier. However, farther inside, the distributions consist of multiple beams parallel and antiparallel to the magnetic field, remarkably similar to recent Magnetospheric Multiscale observations. The simulations provide insight into the mechanisms: the lowest earthward beam results from direct acceleration at an earthward propagating dipolarization front (DF), with a return beam at somewhat higher energy. A higher-energy earthward beam results from dual acceleration, first near the reconnection site and then at the DF, again with a corresponding return beam resulting from mirroring closer to Earth. Multiple acceleration at the X line or the propagating DF with intermediate bounces may produce even higher-energy beams. Particles contributing to the lower energy beams are found to originate from the PSBL with thermal source energies, increasing with increasing beam energy. In contrast, the highest-energy beams consist mostly of particles that have entered the acceleration region via cross-tail drift with source energies in the suprathermal range.

  2. Development of a new clot formation protocol for standardized in vitro investigations of sonothrombolysis.

    PubMed

    Roessler, Florian C; Teichert, Andrea; Ohlrich, Marcus; Marxsen, Jan H; Stellmacher, Florian; Tanislav, Christian; Seidel, Günter

    2014-11-30

    Agreement about the most suitable clot formation protocol for sonothrombolysis investigations is lacking. Lysis rates vary strongly owing to different test conditions and, thus, cannot be compared. We aim to establish a simple but physiologically grounded protocol for in vitro coagulation to enable standardized sonothrombolysis investigations. Clots were generated from platelet-rich plasma (PRP) obtained by centrifugation (10 min, 180 × g) of human venous blood (VB). PRP was mixed with the boundary layer formed between the supernatant and the erythrocyte layer. To achieve clots with different platelet counts, PRP was gradually substituted with platelet-free plasma (PFP), harvested from the supernatant of VB after centrifugation (10 min, 2570 × g). Clot types were examined for histological appearance, hydrodynamic resistance under physiological flows, and lysis rate measured by weight loss after a 2-h treatment with recombinant tissue plasminogen activator (rt-PA) (60 kU/ml). Lysis rates of the most suitable clot were measured after a 1-h treatment with rt-PA (60 kU/ml), and combined treatment with rt-PA and 2-MHz transcranial color-coded sonography (TCCS) (0.179 W/cm(2)) or 2-MHz transcranial Doppler (TCD) (0.457 W/cm(2)). With increased platelet count, the hydrodynamic resistance of the artificial clots increased, their histological appearance became more physiological, and lysis rates decreased. The most suitable clots consisted of 1.5-ml PRP, 2.0-ml PFP, and 0.5-ml boundary layer. Their lysis rates were 36.7 ± 7.8% (rt-PA), 40.8 ± 8.6% (rt-PA+TCCS), and 40.4 ± 8.3% (rt-PA+TCD). These systemic investigations were conducted for the first time. This protocol should be used for standardized sonothrombolysis investigations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  4. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  5. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  6. Spheromak Merging Experiments on SSX

    NASA Astrophysics Data System (ADS)

    Brown, M. R.; Kornack, T. W.; Sollins, P. K.; Luh, W. J.

    1997-11-01

    Spheromak merging experiments are underway at the Swarthmore Spheromak Experiment (SSX) at Swarthmore College. The spheromaks are formed by identical magnetized plasma guns and equilibrium is established in close fitting 0.5 m diameter copper flux conservers. Partial merging is achieved through openings in the back wall. We observe the formation of a reconnection boundary layer at the interface of the two spheromaks using a linear probe array. The characteristic scale of the flux reversal is about 1 cm (consistent with the diffusion scale δ_diff, the ion Larmor radius ρi and the ion inertial length c/ω_pi). Movies of the formation and evolution of the layer will be presented. Correlations between reconnection events and pulses of soft x-rays and energetic particles will be presented if available. Plans for 2D and 3D imaging of the layer will also be discussed.

  7. Skin-Friction Measurements at Subsonic and Transonic Mach Numbers with Embedded-Wire Gages

    DTIC Science & Technology

    1981-01-01

    Model ................................... 17 9. Boundary-Layer Rake Installation on EBOR Model...boundary-layer total pressure rake eliminates this bulky mechanism and the long data acquisition time, but it introduces interferences which affect the...its construction. Further, boundary-layer rakes are restricted to measurements in thick boundary layers. Surface pressure probes such as Stanton tubes

  8. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  9. Three dimensional flow field inside compressor rotor, including blade boundary layers

    NASA Technical Reports Server (NTRS)

    Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.

    1982-01-01

    The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.

  10. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  11. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  12. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  13. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  14. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  15. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  16. Counterstreaming beams and flat-top electron distributions observed with Langmuir, Whistler, and compressional Alfvén waves in earth's magnetic tail.

    PubMed

    Teste, Alexandra; Parks, George K

    2009-02-20

    Relevant new clues to wave-particle interactions have been obtained in Earth's plasma sheet (PS). The plasma measurements made on Cluster spacecraft show that broadband (approximately 2-6 kHz) electrostatic emissions, in the PS boundary layer, are associated with cold counterstreaming electrons flowing at 5-12x10(3) km s(-1) through hot Maxwellian plasma. In the current sheet (CS), electromagnetic whistler mode waves (approximately 10-80 Hz) and compressional Alfvén waves (<2 Hz) are detected with flat-topped electron distributions whose cutoff speeds are approximately 15-17x10(3) km s(-1). These waves are damped in the central CS where |B|

  17. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less

  18. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  19. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  20. Spontaneous formation of electric current sheets and the origin of solar flares

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Wolfson, R.

    1988-01-01

    It is demonstrated that the continuous boundary motion of a sheared magnetic field in a tenuous plasma with an infinite electrical conductivity can induce the formation of multiple electric current sheets in the interior plasma. In response to specific footpoint displacements, the quadrupolar magnetic field considered is shown to require the formation of multiple electric current sheets as it achieves a force-free state. Some of the current sheets are found to be of finite length, running along separatrix lines of force which separate lobes of magnetic flux. It is suggested that current sheets in the form of infinitely thin magnetic shear layers may be unstable to resistive tearing, a process which may have application to solar flares.

  1. Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Todd, C. A.

    1974-01-01

    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region.

  2. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  3. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  4. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  5. Investigations Of Surface-Catalyzed Reactions In A Mars Mixture

    NASA Astrophysics Data System (ADS)

    Dougherty, Max; Owens, W.; Meyers, J.; Fletcher, D. G.

    2011-05-01

    In the design of a thermal protection system (TPS) for a planetary entry vehicle, accurate modeling of the trajectory aero-heating poses a significant challenge owing to large uncertainties in chemical processes taking place at the surface. Even for surface-catalyzed reactions, which have been investigated extensively, there is no consensus on how they should be modeled; or, in some cases, on which reactions are likely to occur. Current TPS designs for Mars missions rely on a super-catalytic boundary condition, which assumes that all dissociated species recombine to the free stream composition.While this is recognized to be the the most conservative approach, discrepancies in aero-heating measurements in ground test facilities preclude less conservative design options, resulting in an increased TPS mass at the expense of scientific pay- load.Using two-photon absorption laser induced fluorescence in a 30 kW inductively coupled plasma torch facility, preliminary studies have been performed to obtain spatially-resolved measurements of the dominant species in a plasma boundary layer for a Martian atmosphere mixture over catalytic and non-catalytic surfaces.

  6. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  7. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  8. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  9. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  10. A nonperturbing boundary-layer transition detector

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-11-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels. The boundary-layer transition detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Data which depict boundary-layer transition from laminar to turbulent flow are presented to provide comparisons of the BLTD with other measurement methods. Spectra from the BLTD reveals the presence of a high-frequency peak during transition which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  11. Nanographene synthesized in triple-phase plasmas as a highly durable support of catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographene was synthesized in triple-phase plasmas comprising a gaseous phase, a gas-liquid boundary layer, and an in-liquid phase using a setup in which one electrode was placed in the gaseous phase while the other was immersed in the liquid phase. The triple-phase plasmas were generated using a pure alcohol, such as ethanol, 1-propanol, or 1-butanol, by applying a high voltage to a pair of electrodes made of copper or graphite. The nanographene synthesized using ethanol had high durability and thus could serve as a catalyst support in polymer electrolyte fuel cells (PEFCs). The PEFCs exhibited low degradation rates in the high-potential cycle test of a half-cell, as a result of which, a loss of only 10% was observed in the effective electrochemical surface area of Pt, even after 10,000 cycles.

  12. Retarding field energy analyzer for the Saskatchewan Torus-Modified plasma boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreval, M.; Rohraff, D.; Xiao, C.

    2009-10-15

    The retarding field energy analyzer (RFA) is a simple and reliable diagnostic technique to measure the ion temperature in the scrape-off layer and edge of magnetic fusion devices. Design and operation features of a single-sided (facing the ion flow) RFA for ion temperature measurements in the Saskatchewan Torus-Modified (STOR-M) tokamak are described. Its compact size (21x15x20 mm{sup 3}) allows RFA measurements without perturbing plasma significantly. Both ion and electron temperature have been measured by RFA in the STOR-M tokamak. A method is proposed to correct the effects of ion flow on the ion temperature using the simultaneously measured Mach number.more » The measured electron temperature is consistent with the previously reported Langmuir probe data. Abnormal behavior of the RFA has been observed in both ion and electron modes when RFA is inserted deep into the plasma.« less

  13. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  14. Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.

    2005-02-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.

  15. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  16. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  17. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  18. Acceleration of O+ from the cusp to the plasma sheet

    NASA Astrophysics Data System (ADS)

    Liao, J.; Kistler, L. M.; Mouikis, C. G.; Klecker, B.; Dandouras, I.

    2015-02-01

    Heavy ions from the ionosphere that are accelerated in the cusp/cleft have been identified as a direct source for the hot plasma in the plasma sheet. However, the details of the acceleration and transport that transforms the originally cold ions into the hot plasma sheet population are not fully understood. The polar orbit of the Cluster satellites covers the main transport path of the O+ from the cusp to the plasma sheet, so Cluster is ideal for tracking its velocity changes. However, because the cusp outflow is dispersed according to its velocity as it is transported to the tail, due to the velocity filter effect, the observed changes in beam velocity over the Cluster orbit may simply be the result of the spacecraft accessing different spatial regions and not necessarily evidence of acceleration. Using the Cluster Ion Spectrometry/Composition Distribution Function instrument onboard Cluster, we compare the distribution function of streaming O+ in the tail lobes with the initial distribution function observed over the cusp and reveal that the observations of energetic streaming O+ in the lobes around -20 RE are predominantly due to the velocity filter effect during nonstorm times. During storm times, the cusp distribution is further accelerated. In the plasma sheet boundary layer, however, the average O+ distribution function is above the upper range of the outflow distributions at the same velocity during both storm and nonstorm times, indicating that acceleration has taken place. Some of the velocity increase is in the direction perpendicular to the magnetic field, indicating that the E × B velocity is enhanced. However, there is also an increase in the parallel direction, which could be due to nonadiabatic acceleration at the boundary or wave heating.

  19. The spatial structure of magnetospheric plasma disturbance estimated by using magnetic data obtained by SWARM satellites.

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Iyemori, T.; Aoyama, T.

    2017-12-01

    Field-aligned currents with various spatial scales flow into and out from high-latitude ionosphere. The magnetic fluctuations observed by LEO satellites along their orbits having period longer than a few seconds can be regarded as the manifestations of spatial structure of field aligned currents.This has been confirmed by using the initial orbital characteristics of 3 SWARM-satellites. From spectral analysis, we evaluated the spectral indices of these magnetic fluctuations and investigated their dependence on regions, such as magnetic latitude and MLT and so on. We found that the spectral indices take quite different values between the regions lower than the equatorward boundary of the auroral oval (around 63 degrees' in magnetic latitude) and the regions higher than that. On the other hands, we could not find the clear MLT dependence. In general, the FACs are believed to be generated in the magnetiospheric plasma sheet and boundary layer, and they flow along the field lines conserving their currents.The theory of FAC generation [e.g., Hasegawa and Sato ,1978] indicates that the FACs are strongly connected with magnetospheric plasma disturbances. Although the spectral indices above are these of spatial structures of the FACs over the ionosphere, by using the theoretical equation of FAC generation, we evaluate the spectral indices of magnetospheric plasma disturbance in FAC's generation regions. Furthermore, by projecting the area of fluctuations on the equatorial plane of magnetosphere (i.e. plasma sheet), we can estimate the spatial structure of magnetospheric plasma disturbance. In this presentation, we focus on the characteristics of disturbance in midnight region and discuss the relations to the substorm.

  20. Distribution of Region 1 and 2 currents in the quietand substorm time plasma sheetfrom THEMIS observations

    NASA Astrophysics Data System (ADS)

    Liu, J.; Angelopoulos, V.; Chu, X.; McPherron, R. L.

    2016-12-01

    Although Earth's Region 1 and 2 currents are related to activities such as substorm initiation, their magnetospheric origin remains unclear. Utilizing the triangular configuration of THEMIS probes at 8-12 RE downtail, we seek the origin of nightside Region 1 and 2 currents. The triangular configuration allows a curlometer-like technique which do not rely on active-time boundary crossings, so we can examine the current distribution in quiet times as well as active times. Our statistical study reveals that both Region 1 and 2 currents exist in the plasma sheet during quiet and active times. Especially, this is the first unequivocal, in-situ evidence of the existence of Region 2 currents in the plasma sheet. Farther away from the neutral sheet than the Region 2 currents lie the Region 1 currents which extend at least to the plasma sheet boundary layer. At geomagnetic quiet times, the separation between the two currents is located 2.5 RE from the neutral sheet. These findings suggest that the plasma sheet is a source of Region 1 and 2 currents regardless of geomagnetic activity level. During substorms, the separation between Region 1 and 2 currents migrates toward (away from) the neutral sheet as the plasma sheet thins (thickens). This migration indicates that the deformation of Region 1 and 2 currents is associated with redistribution of FAC sources in the magnetotail. In some substorms when the THEMIS probes encounter a dipolarization, a substorm current wedge (SCW) can be inferred from our technique, and it shows a distinctively larger current density than the pre-existing Region 1 currents. This difference suggests that the SCW is not just an enhancement of the pre-existing Region 1 current; the SCW and the Region 1 currents have different sources.

  1. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    AFRL-AFOSR-CL-TR-2016-0011 Towards natural transition in compressible boundary layers Marcello Faraco de Medeiros FUNDACAO PARA O INCREMENTO DA...to 29-03-2016 Towards natural transition in compressible boundary layers FA9550-11-1-0354 Marcello A. Faraco de Medeiros Germán Andrés Gaviria...unlimited. 109 Final report Towards natural transition in compressible boundary layers Principal Investigator: Marcello Augusto Faraco de Medeiros

  2. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  3. Retention and release of hydrogen isotopes in tungsten plasma-facing components: the role of grain boundaries and the native oxide layer from a joint experiment-simulation integrated approach

    NASA Astrophysics Data System (ADS)

    Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.

    2017-07-01

    Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion in the model of a thin defective oxide layer following the experimental observation of the presence of an oxygen layer on the surface even after annealing to 1300 K.

  4. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  5. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  6. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  7. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  8. Plasma Distribution in Mercury's Magnetosphere Derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer Observations

    NASA Technical Reports Server (NTRS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-01-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  9. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  10. Sound-turbulence interaction in transonic boundary layers

    NASA Astrophysics Data System (ADS)

    Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva

    2014-11-01

    Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.

  11. Pitot-probe displacement in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  12. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  13. Shock tube and shock wave research; Proceedings of the Eleventh International Symposium, University of Washington, Seattle, Wash., July 11-14, 1977

    NASA Technical Reports Server (NTRS)

    Ahlborn, B. (Editor); Hertzberg, A.; Russell, D.

    1978-01-01

    Papers are presented on the applications of shock-wave technology to the study of hydrodynamics, the use of the pressure-wave machine for charging diesel engines, and measurements of the heat-transfer rate in gas-turbine components. Consideration is given to shock propagation along 90-degree bends, the explosive dissemination of liquids, and rotational and vibrational relaxation behind weak shock waves in water vapor. Shock phenomena associated with expansion flows are described and stratospheric-related research using the shock tube is outlined. Attention is given to shock-wave ignition of magnesium powders, Mach reflection and boundary layers, and transition in the shock-induced unsteady boundary layer on a flat plate. Shock-tube measurements of induction and post-induction rates for low-Btu gas mixtures are presented and shock-initiated ignition in COS-N2O-Ar mixtures is described. Cluster growth rates in supersaturated lead vapor are presented and a study of laser-induced plasma motion in a solenoidal magnetic field is reviewed.

  14. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  15. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  16. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  17. Inventory of File gfs.t06z.smartguam15.tm00.grib2

    Science.gov Websites

    hour fcst Visibility [m] 014 planetary boundary layer WDIR 15 hour fcst Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND 15 hour fcst Wind Speed [m/s] 016 planetary boundary layer RH 15 hour fcst Relative Humidity [%] 017 planetary boundary layer DIST 15 hour fcst Geometric

  18. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  19. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  20. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  1. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  2. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  3. Studies on the influence on flexural wall deformations on the development of the flow boundary layer

    NASA Technical Reports Server (NTRS)

    Schilz, W.

    1978-01-01

    Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.

  4. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  5. Effect of aspect ratio on sidewall boundary-layer influence in two-dimensional airfoil testing

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1986-01-01

    The effect of sidewall boundary layers in airfoil testing in two-dimensional wind tunnels is investigated. The non-linear crossflow velocity variation induced because of the changes in the sidewall boundary-layer thickness is represented by the flow between a wavy wall and a straight wall. Using this flow model, a correction for the sidewall boundary-layer effects is derived in terms of the undisturbed sidewall boundary-layer properties, the test Mach number and the airfoil aspect ratio. Application of the proposed correction to available experimental data showed good correlation for the shock location and pressure distribution on airfoils.

  6. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  7. Numerical investigation of an internal layer in turbulent flow over a curved hill

    NASA Technical Reports Server (NTRS)

    Kim, S-W.

    1989-01-01

    The development of an internal layer in a turbulent boundary layer flow over a curved hill is investigated numerically. The turbulence field of the boundary layer flow over the curved hill is compared with that of a turbulent flow over a symmetric airfoil (which has the same geometry as the curved hill except that the leading and trailing edge plates were removed) to study the influence of the strongly curved surface on the turbulence field. The turbulent flow equations are solved by a control-volume based finite difference method. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. Computational results for the mean flow field (pressure distributions on the walls, wall shearing stresses and mean velocity profiles), the turbulence structure (Reynolds stress and turbulent kinetic energy profiles), and the integral parameters (displacement and momentum thicknesses) compared favorably with the measured data. Computational results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall-bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner of the hill, merges with the external boundary layer, and develops into a new fully turbulent boundary layer as the fluid flows in the downstream direction. For the flow over the symmetric airfoil, the boundary layer began to form from almost the same location as that of the curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow.

  8. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  9. Observing the Vertical Extent of the Urban Boundary Layer Over Jersey City, NJ: A Diurnal and Seasonal Analysis

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.

    2015-12-01

    The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).

  10. Probing the Structure of Our Solar System's Edge

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-02-01

    The boundary between the solar wind and the interstellar medium (ISM) at the distant edge of our solar system has been probed remotely and directly by spacecraft, but questions about its properties persist. What can models tell us about the structure of this region?The Heliopause: A Dynamic BoundarySchematic illustrating different boundaries of our solar system and the locations of the Voyager spacecraft. [Walt Feimer/NASA GSFCs Conceptual Image Lab]As our solar system travels through interstellar space, the magnetized solar wind flows outward and pushes back on the oncoming ISM, forming a bubble called the heliosphere. The clash of plasmas generates a boundary region called the heliopause, the shape of which depends strongly on the properties of the solar wind and the local ISM.Much of our understanding of the outer heliosphere and the local ISM comes from observations made by the International Boundary Explorer (IBEX) and the Voyager 1 and Voyager 2 spacecraft. IBEX makes global maps of the flux of neutral atoms, while Voyagers 1 and 2 record the plasma density and magnetic field parameters along their trajectories as they exit the solar system. In order to interpret the IBEX and Voyager observations, astronomers rely on complex models that must capture both global and local effects.Simulations of the plasma density in the meridional plane of the heliosphere due to the interaction of the solar wind with the ISM for the case of a relatively dense ISM with a weak magnetic field. [Adapted from Pogorelov et al. 2017]Modeling the Edge of the Solar SystemIn this study, Nikolai Pogorelov (University of Alabama in Huntsville) and collaborators use a hybrid magneto-hydrodynamical (MHD) and kinetic simulation to capture fully the physical processes happening in the outer heliosphere.MHD models have been used to understand many aspects of plasma flow in the heliosphere. However, they struggle to capture processes that are better described kinetically, like charge exchange or plasma instabilities. Fully kinetic models, on the other hand, are too computationally expensive to be used for global time-dependent simulations.In order to combine the strengths of MHD and kinetic models, the authors also use adaptive mesh refinement a technique in which the grid size is whittled down at key locations where small-scale physics can have a large effect to resolve the important kinetic processes taking place at the heliopause while lowering the overall computational cost.Physics of the BorderTop: Simulation results for the plasma density observed by Voyager 1 along its trajectory. Bottom: Voyager 1 observations of plasma waves. An increase in the plasma wave frequency corresponds to an increase in the ambient plasma density. Click for a closer look. [Adapted from Pogorelov et al. 2017]The authors varied the ISMs density and magnetic field, exploring how this changed the interaction between the ISM and the solar wind. Among their many results, the authors found:There exists a plasma density drop and magnetic field strength increase in the ISM, just beyond the heliopause. This narrow boundary region is similar to a plasma depletion layer formed upstream from the Earths magnetopause as the solar wind streams around it.The authors model for the plasma density along the trajectory of Voyager 1 is consistent with the actual plasma density inferred from Voyager 1s measurements.The heliospheric magnetic field likely dissipates in the region between the termination shock the point at which the solar wind speed drops below the speed of sound and the heliopause.While this work by Pogorelov and collaborators has brought to light new aspects of the boundary between the solar wind and the ISM, the challenge of linking data and models continues. Future simulations will help us further interpret observations by IBEX and the Voyager spacecraft and advance our understanding of how our solar system interacts with the surrounding ISM.CitationN. V. Pogorelov et al 2017ApJ8459. doi:10.3847/1538-4357/aa7d4f

  11. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    PubMed

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  12. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less

  13. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  14. A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.

    2017-12-01

    The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

  15. The structure of the plasma sheet-lobe boundary in the Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Orsini, S.; Candidi, M.; Formisano, V.; Balsiger, H.; Ghielmetti, A.; Ogilvie, K. W.

    1982-01-01

    The structure of the magnetotail plasma sheet-plasma lobe boundary was studied by observing the properties of tailward flowing O+ ion beams, detected by the ISEE 2 plasma experiment inside the boundary during three time periods. The computed value of the north-south electric field component as well as the O+ parameters are shown to change at the boundary. The results are related to other observations made in this region. The O+ parameters and the Ez component behavior are shown to be consistent with that expected from the topology of the electric field lines in the tail as mapped from the ionosphere.

  16. Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1983-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.

  17. Turbulent boundary layers with secondary flow

    NASA Technical Reports Server (NTRS)

    Grushwitz, E.

    1984-01-01

    An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.

  18. Investigation of blown boundary layers with an improved wall jet system. Ph.D. Thesis. Final Technical Report, 1 Jul. 1978 - Dec. 1979; [to prevent turbulent boundary layer separation

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1979-01-01

    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.

  19. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  20. Inventory of File gfs.t06z.smartguam24.tm00.grib2

    Science.gov Websites

    boundary layer WDIR 24 hour fcst Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND 24 hour fcst Wind Speed [m/s] 017 planetary boundary layer RH 24 hour fcst Relative Humidity [%] 018 planetary boundary layer DIST 24 hour fcst Geometric Height [m] 019 surface 4LFTX 24 hour fcst

  1. On optical imaging through aircraft turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Sutton, G. W.

    1980-01-01

    Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.

  2. Application of the E - Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Duynkerke, P. G.

    1988-03-01

    In the E - turbulence model an eddy-exchange coefficient is evaluated from the turbulent kinetic energy E and viscous dissipation . In this study we will apply the E - model to the stable and neutral atmospheric boundary layer. A discussion is given on the equation for , which terms should be included and how we have evaluated the constants. Constant cooling rate results for the stable atmospheric boundary layer are compared with a second-order closure study. For the neutral atmospheric boundary layer a comparison is made with observations, large-eddy simulations and a second-order closure study. It is shown that a small stability effect can change the neutral atmospheric boundary layer quite drastically, and therefore, it will be difficult to observe a neutral boundary layer in the atmosphere.

  3. a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu

    A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.

  4. A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983

    NASA Technical Reports Server (NTRS)

    Moffat, R. J.; Kays, W. M.

    1984-01-01

    For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.

  5. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  6. Plasma Boundary Collisionless Absorption Effects in the Loading of RF Conductors,

    DTIC Science & Technology

    1979-10-01

    a quasi-thermodynamic equilibrium between the charged particles and the applied RF potential. It is clear that the effect of external magnetic fields...AO-AOBI 115 CALIFORNIA UNIV LOS ANBELES PLASMA PHYSICS BROUP F/6O 20/9 PLASMA BOUNDARY COLLISIONLESS ABSORPTION EFFECTS IN THE LbADINGS-E*IC(U) OCT...79 B J MORALES N00OOIATB-C-0NA NLASIED PPB-435 NL mii-hiiiii PLASMA BOUNDARY COLLISIONLESS ABSORPTION EFFECTS IN THE LOADING OF ONDUCTOR) (𔃻.J. Oral

  7. Boundary-Layer Characteristics Over a Coastal Megacity

    NASA Astrophysics Data System (ADS)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  8. On a theory of surface waves in a smoothly inhomogeneous plasma in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzelev, M. V., E-mail: kuzelev@mail.ru; Orlikovskaya, N. G.

    2016-12-15

    A theory of surface waves in a magnetoactive plasma with smooth boundaries has been developed. A dispersion equation for surface waves has been derived for a linear law of density change at the plasma boundary. The frequencies of surface waves and their collisionless damping rates have been determined. A generalization to an arbitrary density profile at the plasma boundary is given. The collisions have been taken into account, and the application of the Landau rule in the theory of surface wave damping in a spatially inhomogeneous magnetoactive collisional plasma has been clarified.

  9. Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Wilcox, D. C.

    1977-01-01

    Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.

  10. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  11. Internal and external 2-d boundary layer flows

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.

    1978-01-01

    Computer program computes general two dimensional turbulent boundary-layer flow using finite-difference techniques. Structure allows for user modification to accommodate unique problems. Program should prove useful in many applications where accurate boundary-layer flow calculations are required.

  12. Energy Conversion in High Enthalpy Flows and Non-equilibrium Plasmas

    DTIC Science & Technology

    2014-01-01

    walls of the supersonic test section after the nozzle exit diverge at a 1.5 degree angle each to provide boundary- layer relief. The static pressure in...the supersonic section is measured using a wall pressure tap in the side wall at the end of the nozzle . A 4 cm long, 5 mm diameter quartz cylinder...model is mounted in the center of the 7 cm long supersonic test section, i.e., 3.5 cm downstream of the end of the nozzle . The model extends wall-to

  13. Comparison of Theoretical and Experimental Heat-Transfer Characteristics of Bodies of Revolution at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Scherrer, Richard

    1951-01-01

    An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.

  14. Study of the Effect of Free-Stream Turbulence upon Disturbances in the Pre-Transitional Laminar Boundary Layer. Part I. Laminar Boundary Layer Distortion by Surface Roughness; Effect upon Stability. Part II.

    DTIC Science & Technology

    1982-04-01

    Boundary Layer Near a Plate." NACA Rept. 562, 1936. 5) A. A. Hall and G. S. Hislop , "Experiments on the Transition of the Laminar Boundary Layer on a...Cylinder." Proc. 5th Inter. Congr. Appl. Math, 1938. 7) G. S. Hislop , "The Transition of a Laminar Boundary Layer in a Wind Tunnel." Ph.D. Thesis...Small Vertical Cylinder Attached to a Flat Plate", h Fa- Elul"s, Vol. 23, Part 1, pp. 221-223, Jan. 1980 . 9. A. Von Doenhoff and E. A. Horton, "A Low

  15. Goertler instability in compressible boundary layers along curved surfaces with suction and cooling

    NASA Technical Reports Server (NTRS)

    El-Hady, N.; Verma, A. K.

    1982-01-01

    The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.

  16. A review of quasi-coherent structures in a numerically simulated turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.; Kline, S. J.; Spalart, P. R.

    1989-01-01

    Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.

  17. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  18. Sublayer of Prandtl Boundary Layers

    NASA Astrophysics Data System (ADS)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  19. Teaching an Old Dog an Old Trick: FREE-FIX and Free-Boundary Axisymmetric MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca

    2015-11-01

    A common task in plasma physics research is the calculation of an axisymmetric equilibrium for tokamak modeling. The main unknown of the problem is the magnetic poloidal flux ψ. The easiest approach is to assign the shape of the plasma and only solve the equilibrium problem in the plasma / closed-field-lines region (the ``fixed-boundary approach''). Often, one may also need the vacuum fields, i.e. the equilibrium in the open-field-lines region, requiring either coil currents or ψ on some closed curve outside the plasma to be assigned (the ``free-boundary approach''). Going from one approach to the other is a textbook problem, involving the calculation of Green's functions and surface integrals in the plasma. However, no tools are readily available to perform this task. Here we present a code (FREE-FIX) to compute a boundary condition for a free-boundary equilibrium given only the corresponding fixed-boundary equilibrium. An improvement to the standard solution method, allowing for much faster calculations, is presented. Applications are discussed. PPPL fund 245139 and DOE grant G00009102.

  20. Methods and results of boundary layer measurements on a glider

    NASA Technical Reports Server (NTRS)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  1. A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona

    1992-01-01

    A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.

  2. Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Mader, Charles A.; Kenway, Gaetan K. W.; Martins, Joaquim R. R. A.

    2017-01-01

    Airframe-propulsion integration concepts that use boundary layer ingestion have the potential to reduce aircraft fuel burn. One concept that has been recently explored is NASA's Starc-ABL aircraft configuration, which offers the potential for 12% mission fuel burn reduction by using a turbo-electric propulsion system with an aft-mounted electrically driven boundary layer ingestion propulsor. This large potential for improved performance motivates a more detailed study of the boundary layer ingestion propulsor design, but to date, analyses of boundary layer ingestion have used uncoupled methods. These methods account for only aerodynamic effects on the propulsion system or propulsion system effects on the aerodynamics, but not both simultaneously. This work presents a new approach for building fully coupled propulsive-aerodynamic models of boundary layer ingestion propulsion systems. A 1D thermodynamic cycle analysis is coupled to a RANS simulation to model the Starc-ABL aft propulsor at a cruise condition and the effects variation in propulsor design on performance are examined. The results indicates that both propulsion and aerodynamic effects contribute equally toward the overall performance and that the fully coupled model yields substantially different results compared to uncoupled. The most significant finding is that boundary layer ingestion, while offering substantial fuel burn savings, introduces throttle dependent aerodynamics effects that need to be accounted for. This work represents a first step toward the multidisciplinary design optimization of boundary layer ingestion propulsion systems.

  3. Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    King, RUdolph A.; Berry, Scott A.; Kegerise, Michael A.

    2008-01-01

    This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent.

  4. Nonlinear stability of Halley comethosheath with transverse plasma motion

    NASA Technical Reports Server (NTRS)

    Srivastava, Krishna M.; Tsurutani, Bruce T.

    1994-01-01

    Weakly nonlinear Magneto Hydrodynamic (MHD) stability of the Halley cometosheath determined by the balance between the outward ion-neutral drag force and the inward Lorentz force is investigated including the transverse plasma motion as observed in the flanks with the help of the method of multiple scales. The eigenvalues and the eigenfunctions are obtained for the linear problem and the time evolution of the amplitude is obtained using the solvability condition for the solution of the second order problem. The diamagnetic cavity boundary and the adjacent layer of about 100 km thickness is found unstable for the travelling waves of certain wave numbers. Halley ionopause has been observed to have strong ripples with a wavelength of several hundred kilometers. It is found that nonlinear effects have stabilizing effect.

  5. Plasma dynamics on current-carrying magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.

  6. Plasma Streamwise Vortex Generators in an Adverse Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; Corke, Thomas; Thomas, Flint

    2013-11-01

    A wind tunnel experiment was conducted to compare plasma streamwise vortex generators (PSVGs) and passive vortex generators (VGs). These devices were installed on a wing section by which the angle of attack could be used to vary the streamwise pressure gradient. The experiment was performed for freestream Mach numbers 0.1-0.2. Three-dimensional velocity components were measured using a 5-hole Pitot probe in the boundary layer. These measurements were used to quantify the production of streamwise vorticity and the magnitude of the reorientation term from the vorticity transport equation. The effect of Mach number, pressure gradient, operating voltage, and electrode length was then investigated for the PSVGs. The results indicate that the PSVGs could easily outperform the passive VGs and provide a suitable alternative for flow control.

  7. Boundary-layer exchange by bubble: A novel method for generating transient nanofluidic layers

    NASA Astrophysics Data System (ADS)

    Jennissen, Herbert P.

    2005-10-01

    Unstirred layers (i.e., Nernst boundary layers) occur on every dynamic solid-liquid interface, constituting a diffusion barrier, since the velocity of a moving liquid approaches zero at the surface (no slip). If a macromolecule-surface reaction rate is higher than the diffusion rate, the Nernst layer is solute depleted and the reaction rate becomes mass-transport limited. The thickness of a Nernst boundary layer (δN) generally lies between 5 and 50μm. In an evanescent wave rheometer, measuring fibrinogen adsorption to fused silica, we made the fundamental observation that an air bubble preceding the sample through the flow cell abolishes the mass-transport limitation of the Nernst diffusion layer. Instead exponential kinetics are found. Experimental and simulation studies strongly indicate that these results are due to the elimination of the Nernst diffusion layer and its replacement by a dynamic nanofluidic layer (δν) maximally 200-300nm thick. It is suggested that the air bubble leads to a transient boundary-layer separation into a novel nanoboundary layer on the surface and the bulk fluid velocity profile separated by a vortex sheet with an estimated lifetime of 30-60s. A bubble-induced boundary-layer exchange from the Nernst to the nanoboundary layer and back is obtained, giving sufficient time for the measurement of unbiased exponential surface kinetics. Noteworthy is that the nanolayer can exist at all and displays properties such as (i) a long persistence and resistance to dissipation by the bulk liquid (boundary-layer-exchange-hysteresis) and (ii) a lack of solute depletion in spite of boundary-layer separation. The boundary-layer-exchange by bubble (BLEB) method therefore appears ideal for enhancing the rates of all types of diffusion-limited macromolecular reactions on surfaces with contact angles between 0° and 90° and only appears limited by slippage due to nanobubbles or an air gap beneath the nanofluidic layer on very hydrophobic surfaces. The possibility of producing nanoboundary layers without any nanostructuring or nanomachining should also be useful for fundamental physical studies in nanofluidics.

  8. Colliding Magnetic Flux Ropes and Quasi-Separatrix Layers in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Lawrence, Eric Eugene

    An experimental study of the dynamics of colliding magnetic flux ropes and the magnetic reconnection that occurs during these collisions is presented. A magnetic flux rope is a bundle of twisted magnetic field lines that is ubiquitous in space and solar plasmas. The flux ropes are created in the Large Plasma Device (LAPD) using two heated lanthanum hexaboride (LaB6) cathodes that inject currents into the background plasma. The currents are initially parallel to the background magnetic field. The azimuthal field of each current together with the background axial field create helical twisted flux ropes. It is found that the flux ropes rotate in time (corkscrew) and collide with each other. During a collision, antiparallel magnetic fields can undergo magnetic reconnection. When these collisions occur, we observe current layers flowing in the opposite direction of the injected current, a signatuare of reconnection. Analysis of the three-dimensional magnetic field lines shows the existence of quasi-separatrix layers (QSLs). These are regions in the magnetic configuration where there are large spatial gradients in the connectivity of field line footpoints in the boundary surfaces. QSLs are thought to be favorable sites for magnetic reconnection. It is shown that the location and shape of the QSL is similar to what is seen in simulations of merging flux ropes. Furthermore, the field line structure of the QSL is similar to that of a twisted hyperbolic flux tube (HFT). An HFT is a type of QSL that has been shown to be a preferred site for current sheet formation in simulations of interacting coronal loops. The HFT in this experiment is found to be generally near the reverse current layers, although the agreement is not perfect. Looking at the time evolution of the QSL, we find that the QSL cross-sectional area grows and contracts at the same time that the flux ropes collide and that the reverse current layers appear. Analysis of the field line motion shows that, during reconnection, bundles of field lines rapidly flip across the QSLs. This is analagous to the way that field lines are pushed across a separatrix in 2D reconnection.

  9. Theory of Electromagnetic Surface Waves in Plasma with Smooth Boundaries

    NASA Astrophysics Data System (ADS)

    Kuzelev, M. V.

    2018-05-01

    A theory of nonpotential surface waves in plasma with smooth boundaries is developed. The complex frequencies of surface waves for plasma systems of different geometries and different profiles of the plasma density are calculated. Expressions for the rates of collisionless damping of surface waves due to their resonance interaction with local plasma waves of continuous spectrum are obtained. The influence of collisions in plasma is also considered.

  10. Computation of the shock-wave boundary layer interaction with flow separation

    NASA Technical Reports Server (NTRS)

    Ardonceau, P.; Alziary, T.; Aymer, D.

    1980-01-01

    The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.

  11. Controlling the opto-electronic properties of nc-SiOx:H films by promotion of 〈220〉 orientation in the growth of ultra-nanocrystallites at the grain boundary

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Samanta, Subhashis

    2018-01-01

    A systematic development of undoped nc-SiOx:H thin films from (SiH4 + CO2) plasma diluted by a combination of H2 and He has been investigated through structural, optical and electrical characterization and correlation. Gradual inclusion of O into a highly crystalline silicon network progressively produces a two-phase structure where Si-nanocrystals (Si-nc) are embedded into the a-SiOx:H matrix. However, at the intermediate grain boundary region the growth of ultra-nanocrystallites controls the effectiveness of the material. The ultra-nanocrystallites are the part and portion of crystallinity accommodating the dominant fraction of thermodynamically preferred 〈220〉 crystallographic orientation, most favourable for stacked layer device performance. Atomic H plays a dominant role in maintaining an improved nanocrystalliny in the network even during O inclusion, while He in its excited state (He*) maintains a good energy balance at the grain boundary and produces a significant fraction of ultra-nanocrystalline component which has been demonstrated to organize the energetically favourable 〈220〉 crystallographic orientation in the network. The nc-SiOx:H films, maintaining proportionally good electrical conductivity over an wide range of optical band gap, remarkably low microstructure factor and simultaneous high crystalline volume fraction dominantly populated by ultra-nanocrystallites of 〈220〉 crystallographic orientation mostly at the grain boundary, have been obtained in technologically most popular 13.56 MHz PECVD SiH4 plasma even at a low substrate temperature ∼250 °C, convenient for device fabrication.

  12. The behavior of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient. Ph.D. Thesis - Washington Univ., Seattle, Aug. 1972

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1973-01-01

    The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.

  13. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  14. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  15. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  16. Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas

    2016-09-01

    Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

  17. Inventory of File nam.t00z.smartpr00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  18. Inventory of File nam.t00z.smartak00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  19. Inventory of File nam.t00z.smarthi00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  20. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  1. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  2. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions

    DTIC Science & Technology

    2008-02-07

    micro-ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier... Supersonic boundary layer flow with micro-ramp and no shock wave 3.2 SBLI with no micro-ramp 3.3 SBLI with micro-ramp 3.4 Micro-ramp size and location IV . C...ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier

  3. The Effects of Rotation on Boundary Layers in Turbomachine Rotors

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.

    1974-01-01

    The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.

  4. Boundary layers in cataclysmic variables - The HEAO 1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1984-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated. Previously announced in STAR as N84-13046

  5. Some Features of Artificially Thickened Fully Developed Turbulent Boundary Layers with Zero Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S; Diehl, Z W

    1952-01-01

    Report gives an account of an investigation conducted to determine the feasibility of artificially thickening a turbulent boundary layer on a flat plate. A description is given of several methods used to thicken artificially the boundary layer. It is shown that it is possible to do substantial thickening and obtain a fully developed turbulent boundary layer, which is free from any distortions introduced by the thickening process, and, as such, is a suitable medium for fundamental research.

  6. Measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, J. H.; Coles, D. E.

    Some measurements in a synthetic turbulent boundary layer (SBL) are reported. The main diagnostic tool is an X-wire probe. The velocity of the large eddies is determined to be 0.842 times the freestream velocity. The mean properties of the SBL are reasonably close to those of a natural turbulent boundary layer. The large eddy in the SBL appears to be a pair of counterrotating eddies in the stream direction, inclined at a shallow angle and occupying much of the boundary-layer thickness.

  7. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    NASA Astrophysics Data System (ADS)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  8. Re-Innovating Recycling for Turbulent Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Joseph; Blanquart, Guillaume

    2017-11-01

    Historically, turbulent boundary layers along a flat plate have been expensive to simulate numerically, in part due to the difficulty of initializing the inflow with ``realistic'' turbulence, but also due to boundary layer growth. The former has been resolved in several ways, primarily dedicating a region of at least 10 boundary layer thicknesses in width to rescale and recycle flow or by extending the region far enough downstream to allow a laminar flow to develop into turbulence. Both of these methods are relatively costly. We propose a new method to remove the need for an inflow region, thus reducing computational costs significantly. Leveraging the scale similarity of the mean flow profiles, we introduce a coordinate transformation so that the boundary layer problem can be solved as a parallel flow problem with additional source terms. The solutions in the new coordinate system are statistically homogeneous in the downstream direction and so the problem can be solved with periodic boundary conditions. The present study shows the stability of this method, its implementation and its validation for a few laminar and turbulent boundary layer cases.

  9. High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering.

    PubMed

    Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Grasso, Salvatore; Sakka, Yoshio; Tok, Alfred; Su, Liap Tat; Bosman, Michael; Ma, Jan

    2012-02-01

    Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties.

  10. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  11. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    NASA Astrophysics Data System (ADS)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  12. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  13. Bristled shark skin: a microgeometry for boundary layer control?

    PubMed

    Lang, A W; Motta, P; Hidalgo, P; Westcott, M

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  14. Double layer field shaping systems for toroidal plasmas

    DOEpatents

    Ohyabu, Nobuyoshi

    1982-01-01

    Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.

  15. Experimental study of the separating confluent boundary-layer. Volume 2: Experimental data

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Whipkey, R. R.; Jones, G. S.; Lilley, D. E.

    1983-01-01

    An experimental low speed study of the separating confluent boundary layer on a NASA GAW-1 high lift airfoil is described. The airfoil was tested in a variety of high lift configurations comprised of leading edge slat and trailing edge flap combinations. The primary test instrumentation was a two dimensional laser velocimeter (LV) system operating in a backscatter mode. Surface pressures and corresponding LV derived boundary layer profiles are given in terms of velocity components, turbulence intensities and Reynolds shear stresses as characterizing confluent boundary layer behavior up to and beyond stall. LV derived profiles and associated boundary layer parameters and those obtained from more conventional instrumentation such as pitot static transverse, Preston tube measurements and hot-wire surveys are compared.

  16. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  17. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  18. Spatial nonlinear absorption of Alfven waves by dissipative plasma taking account bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Taiurskii, A. A.; Gavrikov, M. B.

    2016-10-01

    We study numerically the nonlinear absorption of a plane Alfven wave falling on the stationary boundary of dissipative plasma. This absorption is caused by such factors as the magnetic viscosity, hydrodynamic viscosity, and thermal conductivity of electrons and ions, bremsstrahlung and energy exchange between plasma components. The relevance of this investigation is due to some works, published in 2011, with regard to the heating mechanism of the solar corona and solar wind generation as a result of the absorption of plasma Alfven waves generated in the lower significantly colder layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case the classical MHD equations are inapplicable. Therefore, our research is based on equations of two-fluid magnetohydrodynamics that take into account the inertia of the electrons. The implicit difference scheme proposed here for calculating plane-parallel flows of two-fluid plasma reveals a number of important patterns of absorption and thus allows us to study the dependence of the absorption on the Alfven wave frequency and the electron thermal conductivity and viscosity, as well as to evaluate the depth and the velocity of plasma heating during the penetration of Alfven waves interacting with dissipative plasma.

  19. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.

  20. A perspective on coherent structures and conceptual models for turbulent boundary layer physics

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1990-01-01

    Direct numerical simulations of turbulent boundary layers have been analyzed to develop a unified conceptual model for the kinematics of coherent motions in low Reynolds number canonical turbulent boundary layers. All classes of coherent motions are considered in the model, including low-speed streaks, ejections and sweeps, vortical structures, near-wall and outer-region shear layers, sublayer pockets, and large-scale outer-region eddies. The model reflects the conclusions from the study of the simulated boundary layer that vortical structures are directly associated with the production of turbulent shear stresses, entrainment, dissipation of turbulence kinetic energy, and the fluctuating pressure field. These results, when viewed from the perspective of the large body of published work on the subject of coherent motions, confirm that vortical structures may be considered the central dynamic element in the maintenance of turbulence in the canonical boundary layer. Vortical structures serve as a framework on which to construct a unified picture of boundary layer structure, providing a means to relate the many known structural elements in a consistent way.

  1. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  2. Turbulent boundary layer heat transfer experiments: Convex curvature effects, including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1980-01-01

    Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.

  3. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  4. Exact Calculation of Laminar Boundary Layer in Longitudinal Flow over a Flat Plate with Homogeneous Suction

    NASA Technical Reports Server (NTRS)

    Iglisch, Rudolf

    1949-01-01

    Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.

  5. Dynamic behavior of an unsteady trubulent boundary layer

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Reynolds, W. C.; Jayaramen, R.; Carr, L. W.

    1981-01-01

    Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle.

  6. The Western North American Cretaceous-Tertiary (K-T) boundary interval and its content of shock-metamorphosed minerals: Implications concerning the K-T boundary impact-extinction theory

    NASA Technical Reports Server (NTRS)

    Izett, G. A.

    1988-01-01

    At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.

  7. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    PubMed

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  8. Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.

    2003-01-01

    The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.

  9. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  10. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  11. The Interactions of a Flame and Its Self-Induced Boundary Layer

    NASA Technical Reports Server (NTRS)

    Ott, James D.; Oran, Elaine S.; Anderson, John D.

    1999-01-01

    The interaction of a laminar flame with its self-generated boundary layer in a rectangular channel was numerically simulated using the two-dimensional, reacting, Navier-Stokes equations. A two species chemistry model was implemented which simulates the stoichiometric reaction of acetylene and air. Calculations were performed to investigate the effects of altering the boundary condition of the wall temperature, the Lewis number, the dynamic viscosity, and the ignition method. The purpose of this study was to examine the fundamental physics of the formation of the boundary layer and the interaction of the flame as it propagates into the boundary layer that its own motion has created.

  12. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In the observations, several strong temperature inversion layers are also found in the surface layer and the middle part of the boundary layer, which lead to the suppression of the vertical mixing of the air pollutants. The jet stream occurring in the boundary layer also contributes to the prevention of the vertical dissipation of the air pollutants. It is also observed that the temporal and spatial evolution of the air pollutants and the hygroscopic growth of the aerosols in the boundary layer are heavily dependent on the humidity of the air.

  13. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  14. Periodic substorm activity in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.

    1983-01-01

    On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.

  15. Preparation of Caco-2 cell sheets using plasma polymerised acrylic acid as a weak boundary layer.

    PubMed

    Majani, Ruby; Zelzer, Mischa; Gadegaard, Nikolaj; Rose, Felicity R; Alexander, Morgan R

    2010-09-01

    The use of cell sheets for tissue engineering applications has considerable advantages over single cell seeding techniques. So far, only thermoresponsive surfaces have been used to manufacture cell sheets without chemically disrupting the cell-surface interactions. Here, we present a new and facile technique to prepare sheets of epithelial cells using plasma polymerised acrylic acid films. The cell sheets are harvested by gentle agitation of the media without the need of any additional external stimulus. We demonstrate that the plasma polymer deposition conditions affect the viability and metabolic activity of the cells in the sheet and relate these effects to the different surface properties of the plasma polymerised acrylic acid films. Based on surface analysis data, a first attempt is made to explain the mechanism behind the cell sheet formation. The advantage of the epithelial cell sheets generated here over single cell suspensions to seed a PLGA scaffold is presented. The scaffold itself, prepared using a mould fabricated via photolithography, exhibits a unique architecture that mimics closely the dimensions of the native tissue (mouse intestine). Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Simulations of a beam-driven plasma antenna in the regime of plasma transparency

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Berendeev, E. A.; Dudnikova, G. I.

    2017-09-01

    In this paper, the theoretically predicted possibility to increase the efficiency of electromagnetic radiation generated by a thin beam-plasma system in the regime of oblique emission, when a plasma column becomes transparent to radiation near the plasma frequency, is investigated using particle-in-cell simulations. If a finite-size plasma column has a longitudinal density modulation, such a system is able to radiate electromagnetic waves as a dipole antenna. This radiation mechanism is based on the conversion of an electron beam-driven potential plasma wave on the periodic perturbation of plasma density. In this case, the frequency of radiated waves appears to be slightly lower than the plasma frequency. That is why their fields enable the penetration into the plasma only to the skin-depth. This case is realized when the period of density modulation coincides with the wavelength of the most unstable beam-driven mode, and the produced radiation escapes from the plasma in the purely transverse direction. In the recent theoretical paper [I. V. Timofeev et al. Phys. Plasmas 23, 083119 (2016)], however, it has been found that the magnetized plasma can be transparent to this radiation at certain emission angles. It means that the beam-to-radiation power conversion can be highly efficient even in a relatively thick plasma since not only boundary layers but also the whole plasma volume can be involved in the generation of electromagnetic waves. Simulations of steady-state beam injection into a pre-modulated plasma channel confirm the existence of this effect and show limits of validity for the simplified theoretical model.

  17. 3-D plasma boundary and plasma wall interaction research at UW-Madison

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Akerson, Adrian; Bader, Aaron; Barbui, Tullio; Effenberg, Florian; Flesch, Kurt; Frerichs, Heinke; Green, Jonathan; Hinson, Edward; Kremeyer, Thierry; Norval, Ryan; Stephey, Laurie; Waters, Ian; Winters, Victoria

    2016-10-01

    The necessity of considering 3-D effects on the plasma boundary and plasma wall interaction (PWI) in tokamaks, stellarators and reversed field pinches has been highlighted by abundant experimental and numerical results in the recent past. Prominent examples with 3-D boundary situations are numerous: ELM controlled H-modes by RMP fields in tokamaks, research on boundary plasmas and PWI in stellarators in general, quasi-helical states in RFPs, asymmetric fueling situations, and structural and wall elements which are not aligned with the magnetic guiding fields. A systematic approach is being taken at UW-Madison to establish a targeted experimental basis for identifying the most significant effects for plasma edge transport and resulting PWI in such 3-D plasma boundary situations. We deploy advanced 3-D modeling using the EMC3-EIRENE, ERO and MCI codes in combination with laboratory experiments at UW-Madison to investigate the relevance of 3-D effects in large scale devices with a concerted approach on DIII-D, NSTX-U, and Wendelstein 7-X. Highlights of experimental results from the on-site laboratory activities at UW-Madison and the large scale facilities are presented and interlinks will be discussed. This work was supported by US DOE DE-SC0013911, DE-SC00012315 and DE-SC00014210.

  18. An experimental investigation of the effect of boundary layer refraction on the noise from a high-speed propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Burns, R. J.; Leciejewski, D. J.

    1984-01-01

    Models of supersonic propellers were previously tested for acoustics in the Lewis 8- by 6-Foot Wind Tunnel using pressure transducers mounted in the tunnel ceiling. The boundary layer on the tunnel ceiling is believed to refract some of the propeller noise away from the measurement transducers. Measurements were made on a plate installed in the wind tunnel which had a thinner boundary layer than the ceiling boundary layer. The plate was installed in two locations for comparison with tunnel ceiling noise data and with fuselage data taken on the NASA Dryden Jetstar airplane. Analysis of the data indicates that the refraction increases with: increasing boundary layer thickness; increasing free stream Mach number; increasing frequency; and decreasing sound radiation angle (toward the inlet axis). At aft radiation angles greater than about 100 deg there was little or no refraction. Comparisons with the airplane data indicated that not only is the boundary layer thickness important but also the shape of the velocity profile. Comparisons with an existing two-dimensional theory, using an idealized shear layer to approximate the boundary layer, showed that the theory and data had the same trends. Analysis of the data taken in the tunnel at two different distances from the propeller indicates a decay with distance in the wind tunnel at high Mach numbers but the decay at low Mach numbers is not as clear.

  19. F-16XL ship #1 wing close-up showing boundary layer detection Preston tubes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows the boundary layer Preston tubes mounted on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  20. On the Existence of the Logarithmic Surface Layer in the Inner Core of Hurricanes

    DTIC Science & Technology

    2012-01-01

    characteristics of eyewall boundary layer of Hurricane Hugo (1989). Mon. Wea. Rev., 139, 1447-1462. Zhang, JA, Montgomery MT. 2012 Observational...the inner core of hurricanes Roger K. Smitha ∗and Michael T. Montgomeryb a Meteorological Institute, University of Munich, Munich, Germany b Dept. of...logarithmic surface layer”, or log layer, in the boundary layer of the rapidly-rotating core of a hurricane . One such study argues that boundary-layer

  1. The boundary layer as a means of controlling the flow of liquids and gases

    NASA Technical Reports Server (NTRS)

    Schrenk, Oskar

    1930-01-01

    According to one of the main propositions of the boundary layer theory the scarcely noticeable boundary layer may, under certain conditions, have a decisive influence on the form of the external flow by causing it to separate from the wing surface. These phenomena are known to be caused by a kind of stagnation of the boundary layer at the point of separation. The present report deals with similar phenomena. It is important to note that usually the cause (external interference) directly affects only the layer close to the wall, while its indirect effect extends to a large portion of the external flow.

  2. Application of a transonic similarity rule to correct the effects of sidewall boundary layers in two-dimensional transonic wind tunnels. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Sewall, W. G.

    1982-01-01

    A transonic similarity rule which accounts for the effects of attached sidewall boundary layers is presented and evaluated by comparison with the characteristics of airfoils tested in a two dimensional transonic tunnel with different sidewall boundary layer thicknesses. The rule appears valid provided the sidewall boundary layer both remains attached in the vicinity of the model and occupies a small enough fraction of the tunnel width to preserve sufficient two dimensionality in the tunnel.

  3. Comparative Measurements of Total Temperature in a Supersonic Turbulent Boundary Layer Using a Conical Equilibrium and Combined Temperature-Pressure Probe

    DTIC Science & Technology

    1974-07-01

    AD/A-002 982 COMPARATIVE MEASUREMENTS CF TOTAL TEMPERATURE IN A SUPERSONIC TURBULENT BOUNDARY LAYER USING A CONICAL EQUILIB- RIUM AND COMBINED...SUPERSONIC TURBULENT BOUNDARY LAYER USING A CONICAL EQUILIORIUM AND COMBINED TEMPERATURE-PRESSURE PROBE H.L.P. Vowt R.E. L" 0H.U. M.i July 1974 NAVAL...1 ~~o iotaPRO eig ature In A Supersonic Turbulent Boundary ____________ Layer Using A Conical Equilibrium and 6. 111111ORWING OR. 0111001117,~t

  4. Vortex/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1989-01-01

    Detailed and high quality measurements with hot-wires and pressure probes are presented for two different interactions between a vortex pair with common flow down and a turbulent boundary layer. The interactions studied have larger values of the vortex circulation parameter than those studied previously. The results indicate that the boundary layer under the vortex pair is thinned by lateral divergence and that boundary layer fluid is entrained into the vortex. The effect of the interaction on the vortex core (other than the inviscid effect of the image vortices behind the surface) is small.

  5. An eddy-viscosity treatment of the unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.

  6. Notes on the Prediction of Shock-induced Boundary-layer Separation

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  7. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  8. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  9. A novel concept for subsonic inlet boundary-layer control

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1977-01-01

    A self-bleeding method for boundary layer control is described and tested for a subsonic inlet designed to operate in the flowfield generated by high angles of attack. Naturally occurring surface static pressure gradients are used to remove the boundary layer from a separation-prone region of the inlet and to reinject it at a less critical location with a net performance gain. The results suggest that this self-bleeding method for boundary-layer control might be successfully applied to other inlets operating at extreme aerodynamic conditions.

  10. The atmospheric boundary layer — advances in knowledge and application

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.

    1996-02-01

    We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.

  11. Boundary-layer cumulus over land: Some observations and conceptual models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, R.B.

    1993-09-01

    Starting in 1980, the Boundary Layer Research Team at the University of Wisconsin has been systematically studying the formation and evolution of nonprecipitating boundary-layer cumulus clouds (BLCu) in regions of fair weather (anticyclones) over land (Stull, 1980). Our approach is to quantify the average statistical characteristics of the surface, thermals, boundary layer, and clouds over horizontal regions of roughly 20 km in diameter. Within such a region over land, there is typically quite a variation in land use, and associated variations in surface albedo and moisture.

  12. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    NASA Technical Reports Server (NTRS)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  13. Calculations of unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.; Patel, V. C.

    1975-01-01

    The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.

  14. Energy efficient engine, low-pressure turbine boundary layer program

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1981-01-01

    A study was conducted to investigate development of boundary layers under the influence of velocity distributions simulating the suction side of two state-of-the-art turbine airfoils: a forward loaded airfoil (squared-off design) and an aft loaded airfoil (aft-loaded design). These velocity distributions were simulated in a boundary layer wind tunnel. Detailed measurements of boundary layer mean velocity and turbulence intensity profiles were obtained for an inlet turbulence level of 2.4 percent and an exit Reynolds number of 800,000. Flush-mounted hot film probes identified the boundary layer transition regimes in the adverse pressure gradient regions for both velocity distributions. Wall intermittency data showed good agreement with the correlations of Dhawan and Narasimha for the intermittency factor distribution in transitional flow regimes.

  15. Experimental measurements of unsteady turbulent boundary layers near separation

    NASA Technical Reports Server (NTRS)

    Simpson, R. L.

    1982-01-01

    Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.

  16. Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    An accurate method was developed for predicting effects of streamline curvature and coordinate system rotation on turbulent boundary layers. A new two-equation model of turbulence was developed which serves as the basis of the study. In developing the new model, physical reasoning is combined with singular perturbation methods to develop a rational, physically-based set of equations which are, on the one hand, as accurate as mixing-length theory for equilibrium boundary layers and, on the other hand, suitable for computing effects of curvature and rotation. The equations are solved numerically for several boundary layer flows over plane and curved surfaces. For incompressible boundary layers, results of the computations are generally within 10% of corresponding experimental data. Somewhat larger discrepancies are noted for compressible applications.

  17. Effect of Sub-Boundary Layer Vortex Generations on Incident Turbulence

    NASA Technical Reports Server (NTRS)

    Casper, J.; Lin, J. C.; Yao, C. S.

    2003-01-01

    Sub-boundary layer vortex generators were tested in a wind tunnel to assess their effect on the velocity field within the wake region of a turbulent boundary layer. Both mean flow quantities and turbulence statistics were measured. Although very small relative to the boundary layer thickness, these so-called micro vortex generators were found to have a measurable effect on the power spectra and integral length scales of the turbulence at a distance many times the height of the devices themselves. In addition, the potential acoustic impact of these devices is also discussed. Measured turbulence spectra are used as input to an acoustic formulation in a manner that compares predicted sound pressure levels that result from the incident boundary-layer turbulence, with and without the vortex generators in the flow.

  18. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  19. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  20. Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate. Part 3

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; Radke, R. E.

    1996-01-01

    Boundary layer transition and development on a turbomachinery blade is subjected to highly periodic unsteady turbulent flow, pressure gradient in longitudinal as well as lateral direction, and surface curvature. To study the effects of periodic unsteady wakes on the concave surface of a turbine blade, a curved plate was utilized. On the concave surface of this plate, detailed experimental investigations were carried out under zero and negative pressure gradient. The measurements were performed in an unsteady flow research facility using a rotating cascade of rods positioned upstream of the curved plate. Boundary layer measurements using a hot-wire probe were analyzed by the ensemble-averaging technique. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity. As the results show, the turbulent patches generated by the wakes have different leading and trailing edge velocities and merge with the boundary layer resulting in a strong deformation and generation of a high turbulence intensity core. After the turbulent patch has totally penetrated into the boundary layer, pronounced becalmed regions were formed behind the turbulent patch and were extended far beyond the point they would occur in the corresponding undisturbed steady boundary layer.

  1. An experimental study of the turbulent boundary layer on a transport wing in subsonic and transonic flow

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Roos, Frederick W.; Hicks, Raymond M.

    1990-01-01

    The upper surface boundary layer on a transport wing model was extensively surveyed with miniature yaw probes at a subsonic and a transonic cruise condition. Additional data were obtained at a second transonic test condition, for which a separated region was present at mid-semispan, aft of mid-chord. Significant variation in flow direction with distance from the surface was observed near the trailing edge except at the wing root and tip. The data collected at the transonic cruise condition show boundary layer growth associated with shock wave/boundary layer interaction, followed by recovery of the boundary layer downstream of the shock. Measurements of fluctuating surface pressure and wingtip acceleration were also obtained. The influence of flow field unsteadiness on the boundary layer data is discussed. Comparisons among the data and predictions from a variety of computational methods are presented. The computed predictions are in reasonable agreement with the experimental data in the outboard regions where 3-D effects are moderate and adverse pressure gradients are mild. In the more highly loaded mid-span region near the trailing edge, displacement thickness growth was significantly underpredicted, except when unrealistically severe adverse pressure gradients associated with inviscid calculations were used to perform boundary layer calculations.

  2. Measurements of tropospheric nitric acid over the Western United States and Northeastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Huebert, B. J.; Schiff, H. I.; Vay, S. A.; Vanbramer, S. E.; Hastie, D. R.

    1990-01-01

    Over 240 measurements of nitric acid (HNO3) were made in the free troposphere as well as in the boundary layer. Marine HNO3 measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO3 average, 62 parts-per-trillion by volume (pptv), was 1/3 lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric 5-flight average of 61 pptv. However, the nighttime results may be influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. The continental boundary layer HNO3 average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO3. The distribution of continental boundary layer HNO3 data, from averages of 123 over rural Nevada and Utah to 1057 pptv in the polluted San Joaquin Valley of California suggest a close tie between boundary layer HNO3 and anthropogenic activity.

  3. Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew

    2017-11-01

    Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.

  4. PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.

    2008-01-01

    Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.

  5. The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Leck, Caroline; Persson, P. Ola G.; Jensen, Michael L.; Oncley, Steven P.; Targino, Admir

    2004-09-01

    An atmospheric boundary layer experiment into the high Arctic was carried out on the Swedish ice-breaker Oden during the summer of 2001, with the primary boundary layer observations obtained while the icebreaker drifted with the ice near 89°N during 3 weeks in August. The purposes of the experiment were to gain an understanding of atmospheric boundary layer structure and transient mixing mechanisms, in addition to their relationships to boundary layer clouds and aerosol production. Using a combination of in situ and remote sensing instruments, with temporal and spatial resolutions previously not deployed in the Arctic, continuous measurements of the lower-troposphere structure and boundary layer turbulence were taken concurrently with atmospheric gas and particulate chemistry, and marine biology measurements.The boundary layer was strongly controlled by ice thermodynamics and local turbulent mixing. Near-surface temperatures mostly remained between near the melting points of the sea- and freshwater, and near-surface relative humidity was high. Low clouds prevailed and fog appeared frequently. Visibility outside of fog was surprisingly good even with very low clouds, probably due to a lack of aerosol particles preventing the formation of haze. The boundary layer was shallow but remained well mixed, capped by an occasionally very strong inversion. Specific humidity often increased with height across the capping inversion.In contrast to the boundary layer, the free troposphere often retained its characteristics from well beyond the Arctic. Elevated intrusions of warm, moist air from open seas to the south were frequent. The picture that the Arctic atmosphere is less affected by transport from lower latitudes in summer than the winter may, thus, be an artifact of analyzing only surface measurements. The transport of air from lower latitudes at heights above the boundary layer has a major impact on the Arctic boundary layer, even very close to the North Pole. During a few week-long periods synoptic-scale weather systems appeared, while weaker and shallower mesoscale fronts were frequent. While frontal passages changed the properties of the free troposphere, changes in the boundary layer were more determined by local effects that often led to changes contrary to those aloft. For example, increasing winds associated with a cold front often led to a warming of the near-surface air by mixing and entrainment.

  6. Particle acceleration during magnetic reconnection in a low-beta pair plasma

    DOE PAGES

    Guo, Fan; Li, Hui; Daughton, William; ...

    2016-04-29

    Plasma energization through magnetic reconnection in the magnetically dominated regime featured by low plasma beta (β=8πnkT0/B 2 <<1) and/or high magnetization (σ=B 2/(4πnmc 2)>>1) is important in a series of astrophysical systems such as solar flares, pulsar wind nebula, and relativistic jets from black holes. In this paper, we review the recent progress on kinetic simulations of this process and further discuss plasma dynamics and particle acceleration in a low-β reconnection layer that consists of electron–positron pairs. We also examine the effect of different initial thermal temperatures on the resulting particle energy spectra. While earlier papers have concluded that themore » spectral index is smaller for higher σ, our simulations show that the spectral index approaches p = 1 for sufficiently low plasma β, even if σ~1. Since this predicted spectral index in the idealized limit is harder than most observations, it is important to consider effects that can lead to a softer spectrum such as open boundary simulations. Here, we also remark that the effects of three-dimensional reconnection physics and turbulence on reconnection need to be addressed in the future.« less

  7. Continuum Gyrokinetic Simulations of Turbulence in a Helical Model SOL with NSTX-type parameters

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Shi, E. L.; Hakim, A.; Stoltzfus-Dueck, T.

    2017-10-01

    We have developed the Gkeyll code to carry out 3D2V full- F gyrokinetic simulations of electrostatic plasma turbulence in open-field-line geometries, using special versions of discontinuous-Galerkin algorithms to help with the computational challenges of the edge region. (Higher-order algorithms can also be helpful for exascale computing as they reduce the ratio of communications to computations.) Our first simulations with straight field lines were done for LAPD-type cases. Here we extend this to a helical model of an SOL plasma and show results for NSTX-type parameters. These simulations include the basic elements of a scrape-off layer: bad-curvature/interchange drive of instabilities, narrow sources to model plasma leaking from the core, and parallel losses with model sheath boundary conditions (our model allows currents to flow in and out of the walls). The formation of blobs is observed. By reducing the strength of the poloidal magnetic field, the heat flux at the divertor plate is observed to broaden. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  8. Development of a real-time system for ITER first wall heat load control

    NASA Astrophysics Data System (ADS)

    Anand, Himank; de Vries, Peter; Gribov, Yuri; Pitts, Richard; Snipes, Joseph; Zabeo, Luca

    2017-10-01

    The steady state heat flux on the ITER first wall (FW) panels are limited by the heat removal capacity of the water cooling system. In case of off-normal events (e.g. plasma displacement during H-L transitions), the heat loads are predicted to exceed the design limits (2-4.7 MW/m2). Intense heat loads are predicted on the FW, even well before the burning plasma phase. Thus, a real-time (RT) FW heat load control system is mandatory from early plasma operation of the ITER tokamak. A heat load estimator based on the RT equilibrium reconstruction has been developed for the plasma control system (PCS). A scheme, estimating the energy state for prescribed gaps defined as the distance between the last closed flux surface (LCFS)/separatrix and the FW is presented. The RT energy state is determined by the product of a weighted function of gap distance and the power crossing the plasma boundary. In addition, a heat load estimator assuming a simplified FW geometry and parallel heat transport model in the scrape-off layer (SOL), benchmarked against a full 3-D magnetic field line tracer is also presented.

  9. Particle acceleration during magnetic reconnection in a low-beta pair plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fan; Li, Hui; Daughton, William

    Plasma energization through magnetic reconnection in the magnetically dominated regime featured by low plasma beta (β=8πnkT0/B 2 <<1) and/or high magnetization (σ=B 2/(4πnmc 2)>>1) is important in a series of astrophysical systems such as solar flares, pulsar wind nebula, and relativistic jets from black holes. In this paper, we review the recent progress on kinetic simulations of this process and further discuss plasma dynamics and particle acceleration in a low-β reconnection layer that consists of electron–positron pairs. We also examine the effect of different initial thermal temperatures on the resulting particle energy spectra. While earlier papers have concluded that themore » spectral index is smaller for higher σ, our simulations show that the spectral index approaches p = 1 for sufficiently low plasma β, even if σ~1. Since this predicted spectral index in the idealized limit is harder than most observations, it is important to consider effects that can lead to a softer spectrum such as open boundary simulations. Here, we also remark that the effects of three-dimensional reconnection physics and turbulence on reconnection need to be addressed in the future.« less

  10. Dispersive O+ conics observed in the plasma-sheet boundary layer with CRRES/LOMICS during a magnetic storm

    NASA Astrophysics Data System (ADS)

    Wüest, M.; Young, D. T.; Thomsen, M. F.; Barraclough, B. L.; Singer, H. J.; Anderson, R. R.

    1996-06-01

    We present initial results from the Low-energy magnetospheric ion composition sensor (LOMICS) on the Combined release and radiation effects satellite (CRRES) together with electron, magnetic field, and electric field wave data. LOMICS measures all important magnetospheric ion species (H+, He++, He+, O++, O+) simultaneously in the energy range 60 eV to 45 keV, as well as their pitch-angle distributions, within the time resolution afforded by the spacecraft spin period of 30 s. During the geomagnetic storm of 9 July 1991, over a period of 42 min (0734 UT to 0816 UT) the LOMICS ion mass spectrometer observed an apparent O+ conic flowing away from the southern hemisphere with a bulk velocity that decreased exponentially with time from 300 km/s to 50 km/s, while its temperature also decreased exponentially from 700 to 5 eV. At the onset of the O+ conic, intense low-frequency electromagnetic wave activity and strong pitch-angle scattering were also observed. At the time of the observations the CRRES spacecraft was inbound at Lapprox7.5 near dusk, magnetic local time (MLT), and at a magnetic latitude of -23°. Our analysis using several CRRES instruments suggests that the spacecraft was skimming along the plasma sheet boundary layer (PSBL) when the upward-flowing ion conic arrived. The conic appears to have evolved in time, both slowing and cooling, due to wave-particle interactions. We are unable to conclude whether the conic was causally associated with spatial structures of the PSBL or the central plasma sheet. Acknowledgements. This study is supported in part by the Ministry of Education, Science, Sports, and Culture in Japan, under a Grant-in-Aid for Scientific Research (Category B). Topical Editor D. Alcaydé thanks M. Lockwood and N. J. Fox for their help in evaluating this paper.->

  11. On-line Model Structure Selection for Estimation of Plasma Boundary in a Tokamak

    NASA Astrophysics Data System (ADS)

    Škvára, Vít; Šmídl, Václav; Urban, Jakub

    2015-11-01

    Control of the plasma field in the tokamak requires reliable estimation of the plasma boundary. The plasma boundary is given by a complex mathematical model and the only available measurements are responses of induction coils around the plasma. For the purpose of boundary estimation the model can be reduced to simple linear regression with potentially infinitely many elements. The number of elements must be selected manually and this choice significantly influences the resulting shape. In this paper, we investigate the use of formal model structure estimation techniques for the problem. Specifically, we formulate a sparse least squares estimator using the automatic relevance principle. The resulting algorithm is a repetitive evaluation of the least squares problem which could be computed in real time. Performance of the resulting algorithm is illustrated on simulated data and evaluated with respect to a more detailed and computationally costly model FREEBIE.

  12. Linking Dynamics of the Near-surface Flow to Deeper Boundary Layer Forcing in the Nocturnal Boundary Layer

    DTIC Science & Technology

    2012-06-01

    Kaimal and Finnigan (1994), modified) Figure 2.2 illustrates the evolution from unstable CBL to a nocturnal Stable Bound- ary Layer ( SBL ) in the absence...mixed layer acts as a cap for the SBL . The SBL persists through the night until sunrise when surface heating resumes and a new unstable layer begins...to form at the surface, gradually returning to a CBL. 7 2.2.1 Dynamics of the stable boundary layer Because the SBL is stably stratified, buoyancy

  13. ISEE-1 data reduction and analysis plasma composition experiment

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Sharp, R. D.

    1985-01-01

    The plasma composition experiment covers energies from OeV to 17 keV/e and has a mass-per-charge range from less than 1 to about 150 amu. Measurements were made from the inner ring current region to the plasma sheet, magnetotail lobes, and the magnetopause boundary layers and beyond. Possibly the most significant results from the experiment are those related to energetic (0+) ions of terrestrial origin. These ions are found in every region of the magnetosphere reached by the spacecraft and can have energy and pitch-angle distributions that are similar to those traditionally associated with protons of solar wind origin. The (0+) ions are commonly the most numerous ions in the 0.1 - 17 keV/e energy range and are often a substantial part of the ion population at large distances as well, especially during geomagnetically disturbed conditions. An overview of results obtained for the (0+) and other ions with energies in the 0.1 - 17 keV/e range in the magnetosphere is given.

  14. Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2005-10-01

    We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.

  15. ``Illuminating'' electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy

    NASA Astrophysics Data System (ADS)

    Scudder, Jack; Daughton, William

    2008-06-01

    Agyrotropy is a scalar measure of the departure of the pressure tensor from cylindrical symmetry about the local magnetic field direction. Ordinarily electrons are well modeled as gyrotropic with very small agyrotropy. Intensified layers of electron agyrotropy are demonstrated to highlight the thin electron gyroradius scale boundary regions adjoining separatrices, X and O lines of full particle simulations of collisionless magnetic reconnection. Examples are presented to show these effects in antiparallel and guide field geometries, pair plasmas, and simulations at a variety of mass ratios, including a hydrogen plasma. Agyrotropy has been determined from the PIC pressure tensor using a new, fast algorithm developed to correct discreteness contributions to the apparent agyrotropy. As a local scalar diagnostic, agyrotropy is shown to be potentially useful with single spacecraft data to identify the crossing or proximity of electron scale current layers, thus providing a kinetic level diagnosis of a given layer's ability to be a possible site of the collisionless reconnection process. Such kinetic tools are certainly complimentary to the other macroscopic signatures of reconnection. Because of the extreme circumstances required for electron agyrotropy, detection of these signatures with framing macroscopic signatures might prove useful for the discovery of new reconnection sites in nature and 3-D codes of collisionless reconnection. The agyrotropy in the 2-D PIC codes reflect long-lived bulges on the distribution function that appear to be organized by the direction and size of slowly evolving perpendicular electric fields in these layers and are not consistent with gyrophase bunching.

  16. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering: Volume I, Principles. Institute of Physics Publishing, Bristol and Philadelphia 1995, ISBN 0-7503-0318-2. [2] Roth, J. R. Industrial Plasma Engineering: Volume II Applications to Nonthermal Plasma Processing Institute of Physics Publishing, Bristol and Philadelphia. 2001, ISBN 0-7503-0545-2.

  17. Boundary-layer effects in droplet splashing

    NASA Astrophysics Data System (ADS)

    Riboux, Guillaume; Gordillo, Jose Manuel

    2017-11-01

    A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity exceeds the so called critical velocity for splashing. Under these circumstances, the very thin liquid sheet ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it and finally breaks into smaller droplets, violently ejected radially outwards, provoking the splash. Here, the tangential deceleration experienced by the fluid entering the thin liquid sheet is investigated making use of boundary layer theory. The velocity component tangent to the solid, computed using potential flow theory provides the far field boundary condition as well as the pressure gradient for the boundary layer equations. The structure of the flow permits to find a self similar solution of the boundary layer equations. This solution is then used to calculate the boundary layer thickness at the root of the lamella as well as the shear stress at the wall. The splash model presented in, which is slightly modified to account for the results obtained from the boundary layer analysis, provides a very good agreement between the measurements and the predicted values of the critical velocity for the splash.

  18. Boundary layer and fundamental problems of hydrodynamics (compatibility of a logarithmic velocity profile in a turbulent boundary layer with the experience values)

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.

    2017-11-01

    The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.

  19. Semi-discrete Galerkin solution of the compressible boundary-layer equations with viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Day, Brad A.; Meade, Andrew J., Jr.

    1993-01-01

    A semi-discrete Galerkin (SDG) method is under development to model attached, turbulent, and compressible boundary layers for transonic airfoil analysis problems. For the boundary-layer formulation the method models the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby providing high resolution near the wall and permitting the use of a uniform finite element grid which automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past RAE 2822 and NACA 0012 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack.

  20. Sediment transport under wave groups: Relative importance between nonlinear waveshape and nonlinear boundary layer streaming

    USGS Publications Warehouse

    Yu, X.; Hsu, T.-J.; Hanes, D.M.

    2010-01-01

    Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.

Top