Science.gov

Sample records for boundary mass extinction

  1. Biogeochemical modeling at mass extinction boundaries

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Caldeira, K. G.

    1991-01-01

    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations.

  2. Chicxulub impact predates the K-T boundary mass extinction

    PubMed Central

    Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; Rebolledo-Vieyra, Mario; Urrutia Fucugauchi, Jaime; Kramar, Utz; Stüben, Doris

    2004-01-01

    Since the early l990s the Chicxulub crater on Yucatan, Mexico, has been hailed as the smoking gun that proves the hypothesis that an asteroid killed the dinosaurs and caused the mass extinction of many other organisms at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Here, we report evidence from a previously uninvestigated core, Yaxcopoil-1, drilled within the Chicxulub crater, indicating that this impact predated the K-T boundary by ≈300,000 years and thus did not cause the end-Cretaceous mass extinction as commonly believed. The evidence supporting a pre-K-T age was obtained from Yaxcopoil-1 based on five independent proxies, each with characteristic signals across the K-T transition: sedimentology, biostratigraphy, magnetostratigraphy, stable isotopes, and iridium. These data are consistent with earlier evidence for a late Maastrichtian age of the microtektite deposits in northeastern Mexico. PMID:15004276

  3. Chicxulub impact predates the K-T boundary mass extinction.

    PubMed

    Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; Rebolledo-Vieyra, Mario; Fucugauchi, Jaime Urrutia; Kramar, Utz; Stüben, Doris

    2004-03-16

    Since the early l990s the Chicxulub crater on Yucatan, Mexico, has been hailed as the smoking gun that proves the hypothesis that an asteroid killed the dinosaurs and caused the mass extinction of many other organisms at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Here, we report evidence from a previously uninvestigated core, Yaxcopoil-1, drilled within the Chicxulub crater, indicating that this impact predated the K-T boundary by approximately 300,000 years and thus did not cause the end-Cretaceous mass extinction as commonly believed. The evidence supporting a pre-K-T age was obtained from Yaxcopoil-1 based on five independent proxies, each with characteristic signals across the K-T transition: sedimentology, biostratigraphy, magnetostratigraphy, stable isotopes, and iridium. These data are consistent with earlier evidence for a late Maastrichtian age of the microtektite deposits in northeastern Mexico.

  4. The Permian-Triassic boundary & mass extinction in China

    USGS Publications Warehouse

    Metcalfe, I.; Nicoll, R.S.; Mundil, R.; Foster, C.; Glen, J.; Lyons, J.; Xiaofeng, W.; Cheng-Yuan, W.; Renne, P.R.; Black, L.; Xun, Q.; Xiaodong, M.

    2001-01-01

    The first appearance of Hindeodus parvus (Kozur & Pjatakova) at the Permian-Triassic (P-T) GSSP level (base of Bed 27c) at Meishan is here confirmed. Hindeodus changxingensis Wang occurs from Beds 26 to 29 at Meishan and appears to be restricted to the narrow boundary interval immediately above the main mass extinction level in Bed 25. It is suggested that this species is therefore a valuable P-T boundary interval index taxon. Our collections from the Shangsi section confirm that the first occurrence of Hindeodus parvus in that section is about 5 in above the highest level from which a typical Permian fauna is recovered. This may suggest that that some section may be missing at Meishan. The age of the currently defined Permian-Triassic Boundary is estimated by our own studies and a reassessment of previous worker's data at c. 253 Ma, slightly older than our IDTIMS 206Pb/238U age of 252.5 ??0.3 Ma for Bed 28, just 8 cm above the GSSP boundary (Mundil et al., 2001). The age of the main mass extinction, at the base of Bed 25 at Meishan, is estimated at slightly older than 254 Ma based on an age of >254 Ma for the Bed 25 ash. Regardless of the absolute age of the boundary, it is evident that the claimed <165,000 y short duration for the negative carbon isotope excursion at the P-T boundary (Bowring et al., 1998) cannot be confirmed. Purportedly extraterrestrial fullerenes at the boundary (Hecker et al., 2001) have equivocal significance due to their chronostratigraphic non-uniqueness and their occurrence in a volcanic ash.

  5. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary.

    PubMed

    Schulte, Peter; Alegret, Laia; Arenillas, Ignacio; Arz, José A; Barton, Penny J; Bown, Paul R; Bralower, Timothy J; Christeson, Gail L; Claeys, Philippe; Cockell, Charles S; Collins, Gareth S; Deutsch, Alexander; Goldin, Tamara J; Goto, Kazuhisa; Grajales-Nishimura, José M; Grieve, Richard A F; Gulick, Sean P S; Johnson, Kirk R; Kiessling, Wolfgang; Koeberl, Christian; Kring, David A; MacLeod, Kenneth G; Matsui, Takafumi; Melosh, Jay; Montanari, Alessandro; Morgan, Joanna V; Neal, Clive R; Nichols, Douglas J; Norris, Richard D; Pierazzo, Elisabetta; Ravizza, Greg; Rebolledo-Vieyra, Mario; Reimold, Wolf Uwe; Robin, Eric; Salge, Tobias; Speijer, Robert P; Sweet, Arthur R; Urrutia-Fucugauchi, Jaime; Vajda, Vivi; Whalen, Michael T; Willumsen, Pi S

    2010-03-05

    The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.

  6. Relationship between mass extinction and iridium across the Cretaceous-Paleogene boundary in New Jersey

    USGS Publications Warehouse

    Miller, K.G.; Sherrell, Robert M.; Browning, J.V.; Field, M.P.; Gallagher, W.; Olsson, R.K.; Sugarman, P.J.; Tuorto, S.; Wahyudi, H.

    2010-01-01

    We directly link iridium (Ir) anomalies in New Jersey to the mass extinction of marine plankton marking the Cretaceous-Paleogene (K-Pg) boundary. We confirm previous reports of an Ir anomaly 20 cm below the extinction of Cretaceous macrofauna (the "Pinna" bed) with new results from a muddy sand section from Tighe Park, Freehold, New Jersey (United States), but we also show that Ir anomalies correlate with marine mass extinctions at three other clay-rich New Jersey sections. Thus, we attribute the anomaly at Freehold to the downward movement of Ir and reaffirm the link between impact and mass extinction. ?? 2010 Geological Society of America.

  7. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary.

    PubMed

    Longrich, Nicholas R; Bhullar, Bhart-Anjan S; Gauthier, Jacques A

    2012-12-26

    The Cretaceous-Paleogene (K-Pg) boundary is marked by a major mass extinction, yet this event is thought to have had little effect on the diversity of lizards and snakes (Squamata). A revision of fossil squamates from the Maastrichtian and Paleocene of North America shows that lizards and snakes suffered a devastating mass extinction coinciding with the Chicxulub asteroid impact. Species-level extinction was 83%, and the K-Pg event resulted in the elimination of many lizard groups and a dramatic decrease in morphological disparity. Survival was associated with small body size and perhaps large geographic range. The recovery was prolonged; diversity did not approach Cretaceous levels until 10 My after the extinction, and resulted in a dramatic change in faunal composition. The squamate fossil record shows that the end-Cretaceous mass extinction was far more severe than previously believed, and underscores the role played by mass extinctions in driving diversification.

  8. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary

    NASA Astrophysics Data System (ADS)

    Longrich, Nicholas R.; Bhullar, Bhart-Anjan S.; Gauthier, Jacques A.

    2012-12-01

    The Cretaceous-Paleogene (K-Pg) boundary is marked by a major mass extinction, yet this event is thought to have had little effect on the diversity of lizards and snakes (Squamata). A revision of fossil squamates from the Maastrichtian and Paleocene of North America shows that lizards and snakes suffered a devastating mass extinction coinciding with the Chicxulub asteroid impact. Species-level extinction was 83%, and the K-Pg event resulted in the elimination of many lizard groups and a dramatic decrease in morphological disparity. Survival was associated with small body size and perhaps large geographic range. The recovery was prolonged; diversity did not approach Cretaceous levels until 10 My after the extinction, and resulted in a dramatic change in faunal composition. The squamate fossil record shows that the end-Cretaceous mass extinction was far more severe than previously believed, and underscores the role played by mass extinctions in driving diversification.

  9. Extended period of K/T boundary mass extinction in the marine realm

    NASA Technical Reports Server (NTRS)

    Keller, G.

    1988-01-01

    The Cretaceous/Tertiary (K/T) boundary mass extinction has been widely recognized as a nearly instantaneous catastrophy among marine plankton such as foraminifera. However, the suddenness of this extinction event may have been overemphasized because most pelagic K/T boundary sequences are stratigraphically incomplete and generally lack the earliest Tertiary (Zones P0 and P1a) either due to carbonate dissolution and/or non-deposition. Stratigraphically complete sections appear to be restricted to continental shelf regions with high sedimentation rates and deposition well above the CCD. Such sections have been recovered from El Kef, Tunisia (1) and Brazos River, Texas. Quantitative foraminiferal analysis of these sections indicate an extinction pattern beginning below the K/T boundary and ending above the boundary. These data imply that the mass extinction event was not geologically instantaneous, but occurred over an extended period of time. Evidence supporting this conclusion is discussed.

  10. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction.

    PubMed

    Ward, P D; Haggart, J W; Carter, E S; Wilbur, D; Tipper, H W; Evans, T

    2001-05-11

    The end-Triassic mass extinction is one of the five most catastrophic in Phanerozoic Earth history. Here we report carbon isotope evidence of a pronounced productivity collapse at the boundary, coincident with a sudden extinction among marine plankton, from stratigraphic sections on the Queen Charlotte Islands, British Columbia, Canada. This signal is similar to (though smaller than) the carbon isotope excursions associated with the Permian-Triassic and Cretaceous-Tertiary events.

  11. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA

    USGS Publications Warehouse

    Bratton, John F.; Berry, William B.N.; Morrow, Jared R.

    1999-01-01

    Major and trace metal results from three Great Basin stratigraphic sections with strong conodont biostratigraphy identify a distinct anoxic interval that precedes, but ends approximately 100 kyr before, the Frasnian–Famennian (F–F, mid-Late Devonian) boundary mass extinction horizon. This horizon corresponds to the final and most severe step of a more protracted extinction period. These results are inconsistent with data reported by others from the upper Kellwasser horizon in Europe, which show anoxia persisting up to the F–F boundary in most sections. Conditions returned to fully oxygenated prior to the F–F boundary in the study area. These data indicate that the worst part of the F–F extinction was not related directly to oceanic anoxia in this region and potentially globally.

  12. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary.

    PubMed

    Longrich, Nicholas R; Tokaryk, Tim; Field, Daniel J

    2011-09-13

    The effect of the Cretaceous-Paleogene (K-Pg) (formerly Cretaceous-Tertiary, K-T) mass extinction on avian evolution is debated, primarily because of the poor fossil record of Late Cretaceous birds. In particular, it remains unclear whether archaic birds became extinct gradually over the course of the Cretaceous or whether they remained diverse up to the end of the Cretaceous and perished in the K-Pg mass extinction. Here, we describe a diverse avifauna from the latest Maastrichtian of western North America, which provides definitive evidence for the persistence of a range of archaic birds to within 300,000 y of the K-Pg boundary. A total of 17 species are identified, including 7 species of archaic bird, representing Enantiornithes, Ichthyornithes, Hesperornithes, and an Apsaravis-like bird. None of these groups are known to survive into the Paleogene, and their persistence into the latest Maastrichtian therefore provides strong evidence for a mass extinction of archaic birds coinciding with the Chicxulub asteroid impact. Most of the birds described here represent advanced ornithurines, showing that a major radiation of Ornithurae preceded the end of the Cretaceous, but none can be definitively referred to the Neornithes. This avifauna is the most diverse known from the Late Cretaceous, and although size disparity is lower than in modern birds, the assemblage includes both smaller forms and some of the largest volant birds known from the Mesozoic, emphasizing the degree to which avian diversification had proceeded by the end of the age of dinosaurs.

  13. Global iridium anomaly, mass extinction, and redox change at the Devonian-Carboniferous boundary

    SciTech Connect

    Wang, K. Univ. of Calgary, Alberta ); Attrep, M. Jr.; Orth, C.J. )

    1993-12-01

    Iridium abundance anomalies have been found on a global scale in the Devonian-Carboniferous (D-C) boundary interval, which records one of the largest Phanerozoic mass-extinction events, an event that devastated many groups of living organisms, such as plants, ammonoids, trilobites, conodonts, fish, foraminiferans, brachiopods, and ostracodes. At or very close to the D-C boundary, there exists a geographically widespread black-shale interval, and Ir abundances reach anomalous maxima of 0.148 ppb (Montagne Noire, France), 0.138 ppb (Alberta, Canada) 0.140 ppb (Carnic Alps, Austria), 0.156 ppb (Guangxi, China), 0.258 ppb (Guizhou, China), and 0.250 ppb (Oklahoma). The discovery of global D-C Ir anomalies argues for an impact-extinction model. However, nonchondritic ratios of Ir to other important elements and a lack of physical evidence (shocked quartz, microtektites) do not support such a scenario. The fact that all Ir abundance maxima are at sharp redox boundaries in these sections leads us to conclude that the Ir anomalies likely resulted from a sudden change in paleo-redox conditions during deposition and/or early diagenesis. 36 refs., 2 figs., 1 tab.

  14. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries

    NASA Astrophysics Data System (ADS)

    Xie, Shucheng; Algeo, Thomas J.; Zhou, Wenfeng; Ruan, Xiaoyan; Luo, Genming; Huang, Junhua; Yan, Jiaxin

    2017-02-01

    Microbial communities are known to expand as a result of environmental deterioration during mass extinctions, but differences in microbial community changes between extinction events and their underlying causes have received little study to date. Here, we present a systematic investigation of microbial lipid biomarkers spanning ∼20 Myr (Middle Permian to Early Triassic) at Shangsi, South China, to contrast microbial changes associated with the Guadalupian-Lopingian boundary (GLB) and Permian-Triassic boundary (PTB) mass extinctions. High-resolution analysis of the PTB crisis interval reveals a distinct succession of microbial communities based on secular variation in moretanes, 2-methylhopanes, aryl isoprenoids, steranes, n-alkyl cyclohexanes, and other biomarkers. The first episode of the PTB mass extinction (ME1) was associated with increases in red algae and nitrogen-fixing bacteria along with evidence for enhanced wildfires and elevated soil erosion, whereas the second episode was associated with expansions of green sulfur bacteria, nitrogen-fixing bacteria, and acritarchs coinciding with climatic hyperwarming, ocean stratification, and seawater acidification. This pattern of microbial community change suggests that marine environmental deterioration was greater during the second extinction episode (ME2). The GLB shows more limited changes in microbial community composition and more limited environmental deterioration than the PTB, consistent with differences in species-level extinction rates (∼71% vs. 90%, respectively). Microbial biomarker records have the potential to refine our understanding of the nature of these crises and to provide insights concerning possible outcomes of present-day anthropogenic stresses on Earth's ecosystems.

  15. Pattern of marine mass extinction near the Permian-Triassic boundary in South China.

    PubMed

    Jin, Y G; Wang, Y; Wang, W; Shang, Q H; Cao, C Q; Erwin, D H

    2000-07-21

    The Meishan section across the Permian-Triassic boundary in South China is the most thoroughly investigated in the world. A statistical analysis of the occurrences of 162 genera and 333 species confirms a sudden extinction event at 251.4 million years ago, coincident with a dramatic depletion of delta13C(carbonate) and an increase in microspherules.

  16. Climatic changes resulting from mass extinctions at the K-T boundary (and other bio-events)

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The mass extinctions at the Cretaceous-Tertiary (K-T) boundary include about 90 percent of marine calcareous nannoplankton (coccoliths), and carbon-isotope data show that marine primary productivity was drastically reduced for about 500,000 years after the boundary event, the so-called Strangelove Ocean effect. One result of the elimination of most marine phytoplankton would have been a severe reduction in production of dimethyl sulfide (DMS), a biogenic gas that is believed to be the major precursor of cloud condensation nuclei (CCN) over the oceans. A drastic reduction in marine CCN should lead to a cloud canopy with significantly lower reflectivity, and hence cause a significant warming at the earth's surface. Calculations suggest that, all other things being held constant, a reduction in CCN of more than 80 percent (a reasonable value for the K-T extinctions) could have produced a rapid global warming of 6 C or more. Oxygen-isotope analyses of marine sediments, and other kinds of paleoclimatic data, have provided for a marked warming, and a general instability of climate coincident with the killoff of marine plankton at the K-T boundary. Similar reductions in phytoplankton abundance at other boundaries, as indicated by marked shifts in carbon-isotope curves, suggest that severe temperature changes may have accompanied other mass extinctions, and raises the intriguing possibility that the extinction events themselves could have contributed to the climatic instabilities at critical bio-events in the geologic record.

  17. Changes in environmental conditions as the cause of the marine biota Great Mass Extinction at the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2016-02-01

    In the interval of the Triassic-Jurassic boundary, 80% of the marine species became extinct. Four main hypotheses about the causes of this mass extinction are considered: volcanism, climatic oscillations, sea level variations accompanied by anoxia, and asteroid impact events. The extinction was triggered by an extensive flooding of basalts in the Central Atlantic Magmatic Province. Furthermore, a number of meteoritic craters have been found. Under the effect of cosmic causes, two main sequences of events developed on the Earth: terrestrial ones, leading to intensive volcanism, and cosmic ones (asteroid impacts). Their aftermaths, however, were similar in terms of the chemical compounds and aerosols released. As a consequence, the greenhouse effect, dimming of the atmosphere (impeding photosynthesis), ocean stagnation, and anoxia emerged. Then, biological productivity decreased and food chains were destroyed. Thus, the entire ecosystem was disturbed and a considerable part of the biota became extinct.

  18. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke

    2016-07-01

    The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid–high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.

  19. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction

    PubMed Central

    Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke

    2016-01-01

    The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid–high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years. PMID:27414998

  20. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction.

    PubMed

    Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke

    2016-07-14

    The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid-high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.

  1. Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous-Paleogene boundary

    NASA Astrophysics Data System (ADS)

    Vellekoop, Johan; Woelders, Lineke; Açikalin, Sanem; Smit, Jan; van de Schootbrugge, Bas; Yilmaz, Ismail Ö.; Brinkhuis, Henk; Speijer, Robert P.

    2017-02-01

    It is commonly accepted that the mass extinction associated with the Cretaceous-Paleogene (K-Pg) boundary (˜ 66 Ma) is related to the environmental effects of a large extraterrestrial impact. The biological and oceanographic consequences of the mass extinction are, however, still poorly understood. According to the Living Ocean model, the biological crisis at the K-Pg boundary resulted in a long-term reduction of export productivity in the early Paleocene. Here, we combine organic-walled dinoflagellate cyst (dinocyst) and benthic foraminiferal analyses to provide new insights into changes in the coupling of pelagic and benthic ecosystems. To this end, we perform dinocyst and benthic foraminiferal analyses on the recently discovered Tethyan K-Pg boundary section at Okçular, Turkey, and compare the results with other K-Pg boundary sites in the Tethys. The post-impact dominance of epibenthic morphotypes and an increase of inferred heterotrophic dinocysts in the early Paleocene at Okçular are consistent with published records from other western Tethyan sites. Together, these records indicate that during the early Paleocene more nutrients remained available for the Tethyan planktonic community, whereas benthic communities were deprived of food. Hence, in the post-impact phase the reduction of export productivity likely resulted in enhanced recycling of nutrients in the upper part of the water column, all along the western Tethyan margins.

  2. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The possible climatic effects of a drastic decrease in cloud condensation nuclei (CCN) associated with a severe reduction in the global marine phytoplankton abundance are investigated. Calculations suggest that a reduction in CCN of more than 80 percent and the resulting decrease in marine cloud albedo could have produced a rapid global warming of 6 C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

  3. High precision dating of mass extinction events: a combined zircon geochronology, apatite tephrochronology, and Bayesian age modelling approach of the Permian-Triassic boundary extinction

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2016-04-01

    Chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb dating of single-zircon crystals is preferably applied to tephra beds intercalated in sedimentary sequences. By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and ash deposition, U-Pb zircon geochronology is the preferred approach for dating mass extinction events (such as the Permian-Triassic boundary mass extinction) in the sedimentary record. As tephra from large volcanic eruptions is often transported over long distances, it additionally provide an invaluable tool for stratigraphic correlation across distant geologic sections. Therefore, the combination of high-precision zircon geochronology with apatite chemistry of the same tephra bed (so called apatite tephrochronology) provides a robust fingerprint of one particular volcanic eruption. In addition we provide coherent Bayesian model ages for the Permian-Triassic boundary (PTB) mass extinction, then compare it with PTB model ages at Meishan after Burgess et al. (2014). We will present new high-precision U-Pb zircon dates for a series of volcanic ash beds in deep- and shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. In addition, apatite crystals out of the same ash beds were analysed focusing on their halogen (F, Cl) and trace-element (e.g. Fe, Mg, REE) chemistry. We also show that Bayesian age models produce reproducible results from different geologic sections. On the basis of these data, including litho- and biostratigraphic correlations, we can precisely and accurately constrain the Permian-Triassic boundary in an equatorial marine setting, and correlate tephra beds over different sections and facies in the Nanpanjiang Basin independently from litho-, bio- or chemostratigraphic criteria. The results evidence that data produced in laboratories associated to the global EARTHTIME consortium can provide age information at the 0.05% level of 206

  4. Mass extinction: a commentary.

    PubMed

    Raup, D M

    1987-01-01

    Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.

  5. Mass extinction: a commentary

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1987-01-01

    Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.

  6. Abrupt ocean anoxia and mass extinction at the Hangenberg crisis, Devonian-Carboniferous boundary

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Davydov, V. I.

    2012-12-01

    The late Devonian period hosts a set of profound biotic crises accompanying episodes of tropical ocean anoxia, positive carbon isotope excursions, relative sea level rise and fall, and apparent global climatic cooling. The Hangenberg event, at the close of the Devonian, is the last of these crises which ushered in a new and long-lived icehouse climate regime spanning the Carboniferous and early Permian. New high-precision U-Pb zircon ages for bracketing volcanic tuffs constrain the timing and tempo of the Hangenberg biotic crisis. When combined with quantitative biostratigraphic analysis, these data constrain the duration of tropical ocean anoxia, mass extinction and carbon cycle perturbation to less than 100 thousand years. This rapidity and duration is consistent with a model of orbitally-forced cooling resulting in enhancement of oceanic circulation, in turn promoting catastrophic overturn, upwelling of anoxic bottom waters onto the tropical continental shelves, and consequent biotic reorganization. Enhanced organic carbon burial evidenced by a positive carbon isotope spike is also revealed as rapid and short-lived, but sufficient to draw down atmospheric CO2 and initiate a glacial pulse restricted to a single short period eccentricity cycle at the end-Devonian.

  7. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms.

    PubMed

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-03-06

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone.

  8. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    PubMed Central

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-01-01

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone. PMID:28262815

  9. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-03-01

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone.

  10. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary.

    PubMed

    Wilf, Peter; Johnson, Kirk R; Huber, Brian T

    2003-01-21

    Terrestrial climates near the time of the end-Cretaceous mass extinction are poorly known, limiting understanding of environmentally driven changes in biodiversity that occurred before bolide impact. We estimate paleotemperatures for the last approximately 1.1 million years of the Cretaceous ( approximately 66.6-65.5 million years ago, Ma) by using fossil plants from North Dakota and employ paleomagnetic stratigraphy to correlate the results to foraminiferal paleoclimatic data from four middle- and high-latitude sites. Both plants and foraminifera indicate warming near 66.0 Ma, a warming peak from approximately 65.8 to 65.6 Ma, and cooling near 65.6 Ma, suggesting that these were global climate shifts. The warming peak coincides with the immigration of a thermophilic flora, maximum plant diversity, and the poleward range expansion of thermophilic foraminifera. Plant data indicate the continuation of relatively cool temperatures across the Cretaceous-Paleogene boundary; there is no indication of a major warming immediately after the boundary as previously reported. Our temperature proxies correspond well with recent pCO(2) data from paleosol carbonate, suggesting a coupling of pCO(2) and temperature. To the extent that biodiversity is correlated with temperature, estimates of the severity of end-Cretaceous extinctions that are based on occurrence data from the warming peak are probably inflated, as we illustrate for North Dakota plants. However, our analysis of climate and facies considerations shows that the effects of bolide impact should be regarded as the most significant contributor to these plant extinctions.

  11. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous–Paleogene boundary

    PubMed Central

    Wilf, Peter; Johnson, Kirk R.; Huber, Brian T.

    2003-01-01

    Terrestrial climates near the time of the end-Cretaceous mass extinction are poorly known, limiting understanding of environmentally driven changes in biodiversity that occurred before bolide impact. We estimate paleotemperatures for the last ≈1.1 million years of the Cretaceous (≈66.6–65.5 million years ago, Ma) by using fossil plants from North Dakota and employ paleomagnetic stratigraphy to correlate the results to foraminiferal paleoclimatic data from four middle- and high-latitude sites. Both plants and foraminifera indicate warming near 66.0 Ma, a warming peak from ≈65.8 to 65.6 Ma, and cooling near 65.6 Ma, suggesting that these were global climate shifts. The warming peak coincides with the immigration of a thermophilic flora, maximum plant diversity, and the poleward range expansion of thermophilic foraminifera. Plant data indicate the continuation of relatively cool temperatures across the Cretaceous–Paleogene boundary; there is no indication of a major warming immediately after the boundary as previously reported. Our temperature proxies correspond well with recent pCO2 data from paleosol carbonate, suggesting a coupling of pCO2 and temperature. To the extent that biodiversity is correlated with temperature, estimates of the severity of end-Cretaceous extinctions that are based on occurrence data from the warming peak are probably inflated, as we illustrate for North Dakota plants. However, our analysis of climate and facies considerations shows that the effects of bolide impact should be regarded as the most significant contributor to these plant extinctions. PMID:12524455

  12. Flood basalts and mass extinctions

    NASA Technical Reports Server (NTRS)

    Morgan, W. Jason

    1988-01-01

    There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.

  13. Mass Extinctions Past and Present.

    ERIC Educational Resources Information Center

    Allmon, Warren Douglas

    1987-01-01

    Discusses some parallels that seem to exist between mass extinction recognizable in the geologic record and the impending extinction of a significant proportion of the earth's species due largely to tropical deforestation. Describes some recent theories of causal factors and periodicities in mass extinction. (Author/TW)

  14. Triggers of Permo-Triassic boundary mass extinction in South China: The Siberian Traps or Paleo-Tethys ignimbrite flare-up?

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhong, Yu-Ting; Xu, Yi-Gang; Li, Xian-Hua

    2014-09-01

    Assessment of the synchroneity between the Siberian Traps and the Permo-Triassic boundary (PTB) mass extinction has led to the proposition that the Siberian flood volcanism was responsible for the severest biotic crisis in the Phanerozoic. However, recent studies suggest that the Siberian Traps may have postdated the main extinction horizon. In this paper, we demonstrate, using stratigraphy, a time and intensity coincidence between PTB volcanic ash and the main extinction horizon. Geochemistry of the PTB volcanic ashes in five sections in South China indicates that they were derived from continental magmatic arc. Zircons extracted from the PTB volcanic ashes have negative εHf(t) (- 12.9 to - 2.0) and δ18O (6.8 to 10.9‰), consistent with an acidic volcanism and a crustal-derived origin, and therefore exclude a genetic link between the PTB mass extinction and the Siberian Traps. On the basis of spatial variation in the number of the PTB volcanic ash layers and the thickness of the ash layers in South China, we propose that the PTB volcanic ash may be related to Paleo-Tethys continental arc magmatism in the Kunlun area. Ignimbrite flare-up related to rapid plate subduction during the final assemblage of the Pangea super-continent may have generated a volcanic winter, which eventually triggered the collapse of ecosystem and ultimately mass extinction at the end of the Permian. The Siberian Traps may have been responsible for a greenhouse effect and so have been responsible for both a second pulse of the extinction event and Early Triassic ecological evolution.

  15. Mass Extinctions in Earth's History

    NASA Astrophysics Data System (ADS)

    Ward, P. D.

    2002-12-01

    Mass extinctions are short intervals of elevated species death. Possible causes of Earth's mass extinctions are both external (astronomical) and internal (tectonic and biotic changes from planetary mechanisms). Paleontologists have identified five "major" mass extinctions (>50 die-off in less than a million years) and more than 20 other minor events over the past 550 million years. Earlier major extinction events undoubtedly also occurred, but we have no fossil record; these were probably associated with, for example, the early heavy bombardment that cleared out the solar system, the advent of oxygen in the atmosphere, and various "snowball Earth" events. Mass extinctions are viewed as both destructive (species death ) and constructive, in that they allow evolutionary innovation in the wake of species disappearances. From an astrobiological perspective, mass extinctions must be considered as able both to reduce biodiversity and even potentially end life on any planet. Of the five major mass extinctions identified on Earth, only one (the Cretaceous/Tertiary event 65 million years ago that famously killed off the dinosaurs ) is unambiguously related to the impact of an asteroid or comet ( 10-km diameter). The Permian/Triassic (250 Myr ago) and Triassic/Jurassic (202 Myr ago) events are now the center of debate between those favoring impact and those suggesting large volume flooding by basaltic lavas. The final two events, Ordovician (440 Myr ago) and Devonian (370 Myr ago) have no accepted causal mechanisms.

  16. The impact of mass extinctions

    NASA Technical Reports Server (NTRS)

    Flessa, Karl W.

    1988-01-01

    In the years since Snowbird an explosive growth of research on the patterns, causes, and consequences of extinction was seen. The fossil record of extinction is better known, stratigraphic sections were scrutinized in great detail, and additional markers of environmental change were discovered in the rock record. However flawed, the fossil record is the only record that exists of natural extinction. Compilations from the primary literature contain a faint periodic signal: the extinctions of the past 250 my may be regulary spaced. The reality of the periodicity remains a subject for debate. The implications of periodicity are so profound that the debate is sure to continue. The greater precision from stratigraphic sections spanning extinction events has yet to resolve controversies concerning the rates at which extinctions occurred. Some sections seem to record sudden terminations, while others suggest gradual or steplike environmental deterioration. Unfortunately, the manner in which the strata record extinctions and compile stratigraphic ranges makes a strictly literal reading of the fossil record inadvisable. Much progress was made in the study of mass extinctions. The issues are more sharply defined but they are not fully resolved. Scenarios should look back to the phenomena they purport to explain - not just an iridium-rich layer, but the complex fabric of a mass extinction.

  17. What Caused the Mass Extinction?

    ERIC Educational Resources Information Center

    Alvarez, Walter; And Others

    1990-01-01

    Presented are the arguments of two different points of view on the mass extinction of the dinosaurs. Evidence of extraterrestrial impact theory and massive volcanic eruption theory are discussed. (CW)

  18. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  19. The Sixth Great Mass Extinction

    ERIC Educational Resources Information Center

    Wagler, Ron

    2012-01-01

    Five past great mass extinctions have occurred during Earth's history. Humanity is currently in the midst of a sixth, human-induced great mass extinction of plant and animal life (e.g., Alroy 2008; Jackson 2008; Lewis 2006; McDaniel and Borton 2002; Rockstrom et al. 2009; Rohr et al. 2008; Steffen, Crutzen, and McNeill 2007; Thomas et al. 2004;…

  20. Life in the Aftermath of Mass Extinctions.

    PubMed

    Hull, Pincelli

    2015-10-05

    The vast majority of species that have ever lived went extinct sometime other than during one of the great mass extinction events. In spite of this, mass extinctions are thought to have outsized effects on the evolutionary history of life. While part of this effect is certainly due to the extinction itself, I here consider how the aftermaths of mass extinctions might contribute to the evolutionary importance of such events. Following the mass loss of taxa from the fossil record are prolonged intervals of ecological upheaval that create a selective regime unique to those times. The pacing and duration of ecosystem change during extinction aftermaths suggests strong ties between the biosphere and geosphere, and a previously undescribed macroevolutionary driver - earth system succession. Earth system succession occurs when global environmental or biotic change, as occurs across extinction boundaries, pushes the biosphere and geosphere out of equilibrium. As species and ecosystems re-evolve in the aftermath, they change global biogeochemical cycles - and in turn, species and ecosystems - over timescales typical of the geosphere, often many thousands to millions of years. Earth system succession provides a general explanation for the pattern and timing of ecological and evolutionary change in the fossil record. Importantly, it also suggests that a speed limit might exist for the pace of global biotic change after massive disturbance - a limit set by geosphere-biosphere interactions. For mass extinctions, earth system succession may drive the ever-changing ecological stage on which species evolve, restructuring ecosystems and setting long-term evolutionary trajectories as they do.

  1. Mass extinctions in the deep sea

    NASA Technical Reports Server (NTRS)

    Thomas, E.

    1988-01-01

    The character of mass extinctions can be assessed by studying extinction patterns of organisms, the fabric of the extinction, and assessing the environmental niche and mode of life of survivors. Deep-sea benthic foraminifera have been listed as little affected by the Cretaceous-Tertiary (K-T) mass extinction, but very few quantitative data are available. New data on deep-sea Late Maestrichtian-Eocene benthic foraminifera from Maud Rise (Antractica) indicate that about 10 percent of the species living at depths of 2000 to 2500 m had last appearances within 1 my of the Cretaceous-Tertiary (K-T) boundary, versus about 25 percent of species at 1000 to 1500 m. Many survivors from the Cretaceous became extinct in a period of global deep-sea benthic foraminiferal extinction at the end of the Paleocene, a time otherwise marked by very few extinctions. Preliminary conclusions suggest that the deep oceanic environment is essentially decoupled from the shallow marine and terrestrial environment, and that even major disturbances of one of these will not greatly affect the other. This gives deep-sea benthic faunas a good opportunity to recolonize shallow environments from greater depths and vice versa after massive extinctions. The decoupling means that data on deep-sea benthic boundary was caused by the environmental effects of asteriod impact or excessive volcanism. The benthic foraminiferal data strongly suggest, however, that the environmental results were strongest at the Earth's surface, and that there was no major disturbance of the deep ocean; this pattern might result both from excessive volcanism and from an impact on land.

  2. Mass extinctions: Persistent problems and new directions

    NASA Technical Reports Server (NTRS)

    Jablonski, D.

    1994-01-01

    Few contest that mass extinctions have punctuated the history of life, or that those events were so pervasive environmentally, taxonomically, and geographically that physical forcing factors were probably involved. However, consensus remains elusive on the nature of those factors, and on how a given perturbation - impact, volcanism, sea-level change, or ocean anoxic event - could actually generate the observed intensity and selectivity of biotic losses. At least two basic problems underlie these long-standing disagreements: difficulties in resolving the fine details of taxon ranges and abundances immediately prior to and after an extinction boundary and the scarcity of simple, unitary cause-and-effect relations in complex biological systems.

  3. Global fires after asteroid impact probably caused mass extinction

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    About 66 million years ago, a mountain-sized asteroid hit what is now the Yucatan in Mexico at exactly the time of the Cretaceous-Paleogene (K-Pg) mass extinction. Evidence for the asteroid impact comes from sediments in the K-Pg boundary layer, but the details of the event, including what precisely caused the mass extinction, are still being debated.

  4. Mass Extinctions and Biosphere-Geosphere Stability

    NASA Astrophysics Data System (ADS)

    Rothman, Daniel; Bowring, Samuel

    2015-04-01

    Five times in the past 500 million years, mass extinctions have resulted in the loss of greater than three-fourths of living species. Each of these events is associated with significant environmental change recorded in the carbon-isotopic composition of sedimentary rocks. There are also many such environmental events in the geologic record that are not associated with mass extinctions. What makes them different? Two factors appear important: the size of the environmental perturbation, and the time scale over which it occurs. We show that the natural perturbations of Earth's carbon cycle during the past 500 million years exhibit a characteristic rate of change over two orders of magnitude in time scale. This characteristic rate is consistent with the maximum rate that limits quasistatic (i.e., near steady-state) evolution of the carbon cycle. We identify this rate with marginal stability, and show that mass extinctions occur on the fast, unstable side of the stability boundary. These results suggest that the great extinction events of the geologic past, and potentially a "sixth extinction" associated with modern environmental change, are characterized by common mechanisms of instability.

  5. Magnetostratigraphy of a Marine Triassic-Jurassic Boundary Section, Kennecott Point, Queen Charlotte Islands: Implications for the Temporal Correlation of a 'Big Five' Mass Extinction Event.

    NASA Astrophysics Data System (ADS)

    Hilburn, I. A.; Kirschvink, J. L.; Ward, P. D.; Haggart, J. W.; Raub, T. D.

    2008-12-01

    Several causes have been proposed for Triassic-Jurassic (T-J) boundary extinctions, including global ocean anoxia/euxinia, an impact event, and/or eruption of the massive Central Atlantic Magmatic Province (CAMP), but poor intercontinental correlation makes testing these difficult. Sections at Kennecott Point, Queen Charlotte Islands, British Columbia span the late Norian through Rhaetian (Triassic) and into the earliest Hettangian (Jurassic) and provide the best integrated magneto- and chemostratigraphic framework for placing necessary temporal constraints upon the T-J mass extinctions. At Kennecott Point, turnover of radiolaria and ammonoids define the T-J boundary marine extinction and are coincident with a 2 ‰ negative excursion in δ13Corg similar in magnitude to that observed at Ferguson Hill (Muller Canyon), Nevada (1, 2). With Conodont Alteration Index values in the 1-2 range, Kennecott Point provides the ideal setting for use of magnetostratigraphy to tie the marine isotope excursion into the chronostratigraphic framework of the Newark, Hartford, and Fundy Basins. In the summer of 2005, we collected a ~1m resolution magnetostratigraphic section from 105 m of deep marine, silt- and sandstone turbidites and interbedded mudstones, spanning the T-J boundary at Kennecott Point. Hybrid progressive demagnetization - including zero-field, low-temperature cycling; low-field AF cleaning; and thermal demagnetization in ~25°C steps to 445°C under flowing N2 gas (3) - first removed a Northerly, steeply inclined component interpreted to be a Tertiary overprint, revealing an underlying dual-polarity component of moderate inclination. Five major polarity zones extend through our section, with several short, one-sample reversals interspersed amongst them. Comparison of this pattern with other T-J boundary sections (4-6) argues for a Northern hemisphere origin of our site, albeit with large vertical-axis rotations. A long normal chron bounds the T-J boundary punctuated

  6. Comparison of experimental and fossil leaf morphospace occupation suggests a role for atmospheric composition in driving morphospace change across a mass extinction boundary

    NASA Astrophysics Data System (ADS)

    Bacon, Karen; McElwain, Jennifer

    2016-04-01

    The Triassic-Jurassic boundary (~201 mya) marks a period of intense climate change associated with a mass extinction event and major volcanism. The impact of these environmental stresses has been well-documented; however, a detailed analysis of the morphospace response of plants across the boundary has not been conducted. In order to determine the impact of changing atmospheric composition on leaf morphospace occupation, we compared a fossil flora to controlled environment experiments. We analysed morphometric data for over 2,000 well-preserved leaf fossils from nine plant beds across the TJ of Astartekløft, East Greenland. Data including leaf length, width, area, and shape were used to determine morphospace occupation for each bed at the site. In the lower Triassic beds, morphospace occupation is high compared to a severe reduction at and across the boundary, contemporaneous with peak reconstructed CO2 and hypothesised elevated SO2 and other volcanic gases. These findings were compared to controlled environment experiments, where the same measurements were made on leaves from nearest living equivalent taxa grown in simulated palaeoatmospheric conditions. These experiments revealed that exposure to SO2, but not to variations in either CO2 or O2, produced a similar sever reduction in morphospace occupation. These findings together suggest that atmospheric composition change across the TJ, and particularly an elevation in SO2, had a role in heavily disrupting the plant community morphospace of East Greenland.

  7. The end-triassic mass extinction event

    NASA Technical Reports Server (NTRS)

    Hallam, A.

    1988-01-01

    The end-Triassic is the least studied of the five major episodes of mass extinction recognized in the Phanerozoic, and the Triassic-Jurassic boundary is not precisely defined in most parts of the world, with a paucity of good marine sections and an insufficiency of biostratigraphically valuable fossils. Despite these limitations it is clear that there was a significant episode of mass extinction, affecting many groups, in the Late Norian and the existing facts are consistent with it having taken place at the very end of the period. The best record globally comes from marine strata. There was an almost complete turnover of ammonites across the T-J boundary, with perhaps no more than one genus surviving. About half the bivalve genera and most of the species went extinct, as did many archaeogastropods. Many Paleozoic-dominant brachiopods also disappeared, as did the last of the conodonts. There was a major collapse and disappearance of the Alpine calcareous sponge. Among terrestrial biota, a significant extinction event involving tetrapods was recognized. With regard to possible environmental events that may be postulated to account for the extinctions, there is no evidence of any significant global change of climate at this time. The existence of the large Manicouagan crater in Quebec, dated as about late or end-Triassic, has led to the suggestion that an impact event might be implicated, but so far despite intensive search no unequivocal iridium anomaly or shocked quartz was discovered. On the other hand there is strong evidence for significant marine regression in many parts of the world. It is proposed therefore that the likeliest cause of the marine extinctions is severe reduction in habitat area caused either by regression of epicontinental seas, subsequent widespread anoxia during the succeeding transgression, or a combination of the two.

  8. The stratigraphy of mass extinction

    NASA Astrophysics Data System (ADS)

    Holland, Steven

    2015-04-01

    The discovery of the end-Cretaceous bolide impact and the recognition of mass extinctions through taxonomic compendia triggered keen interest in the stratigraphic pattern of species extinctions. A principal question has been whether patterns of fossil occurrence indicate gradual, stepwise, pulsed, or instantaneous extinction. Based on principles of sequence stratigraphy, marine ecology, and evolution, numerical models of fossil occurrences in stratigraphic sections indicate that the last occurrence of fossils does not generally indicate the time of extinction but is instead controlled by stratigraphic architecture. These models have been confirmed in multiple field studies from different sedimentary basins of different ages. These models identify several distinct processes controlling the last occurrence of fossils. Anything that lowers the probability of collection of a species, such as peak abundance or environmental tolerance, causes the last occurrence to be shifted backward in time relative to the time of extinction. Sequence-bounding subaerial unconformities generally also force the last occurrence backward in time, except in the case of reworking, which may place fossil remains in rocks younger than the time of extinction. Unconformities also cause last occurrences of multiple species to be clustered as a result of the hiatus. Surfaces of abrupt facies change, such as flooding surfaces and surfaces of forced regression, also cause last occurrences to be clustered, with such clustering reflecting the environmental preferences of species. Stratigraphic condensation can also cause clustering of last occurrences. All of these surfaces - subaerial unconformities, flooding surfaces, surfaces of forced regression, and condensed horizons - have highly predictable positions with depositional sequences. Thus, it is the normal expectation that last occurrences should be clustered in the fossil record, that these clusters should occur in stratigraphically predictable

  9. High precision time calibration of the Permian-Triassic boundary mass extinction event in a deep marine context

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2015-04-01

    To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (1) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash layers interbedded with deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (2) accurate quantitative biochronology based on ammonoids, conodonts, radiolarians, and foraminifera and (3) tracers of marine bioproductivity (carbon isotopes) across the PTB. The unprecedented precision of the single grain chemical abrasion isotope-dilution thermal ionization mass spectrometry (CA-ID-TIMS) dating technique at sub-per mil level (radio-isotopic calibration of the PTB at the <100 ka level) now allows calibrating magmatic and biological timescales at resolution adequate for both groups of processes. Using these alignments allows (1) positioning the PTB in different depositional setting and (2) solving the age contradictions generated by the misleading use of the first occurrence (FO) of the conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Here, we present new single grain U-Pb zircon data of volcanic ash layers from two deep marine sections (Dongpan and Penglaitan) revealing stratigraphic consistent dates over several volcanic ash layers bracketing the PTB. These analyses define weighted mean 206Pb/238U ages of 251.956±0.033 Ma (Dongpan) and 252.062±0.043 Ma (Penglaitan) for the last Permian ash bed. By calibration with detailed litho- and biostratigraphy new U-Pb ages of 251.953±0.038 Ma (Dongpan) and 251.907±0.033 Ma (Penglaitan) are established for the onset of the Triassic.

  10. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    PubMed Central

    Gunter, Nicole L.; Weir, Tom A.; Cameron, Stephen L.

    2016-01-01

    The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed “out of Africa” hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of

  11. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    PubMed

    Gunter, Nicole L; Weir, Tom A; Slipinksi, Adam; Bocak, Ladislav; Cameron, Stephen L

    2016-01-01

    The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of

  12. Deev Jahi Model of the Permian Triassic boundary mass extinction: a case for gas hydrates as the main cause of biological crisis on Earth

    NASA Astrophysics Data System (ADS)

    Heydari, E.; Hassanzadeh, J.

    2003-12-01

    The smoking gun revealing the secrets of the end-Permian mass mortality is a unique 1-2-m-thick layer consisting of 5-20-cm-long crystals of calcite that occurs precisely at the Permian-Triassic boundary (PTB) in Iran, Armenia, Turkey, and China. This layer is interpreted as synsedimentary, abiotic, seafloor cement indicative of precipitation from a highly carbonate supersaturated seawater. Its δ13C composition ( δ13C=0‰ PDB) is 4‰ to 5‰ PDB lower than the typical Upper Permian values (4‰ to 5‰ PDB), suggesting the involvement of massive amounts of gas hydrate CH 4 ( δ13C=-60‰ PDB). The temporal coincidence of the cement layer with the PTB suggests that the process that promoted seafloor cementation was also responsible for the biological crisis. A cementation model is developed based on accumulation-dissociation cycle of gas hydrates which also explains the mass extinction at the PTB. The Upper Permian accumulation period of gas hydrates ended abruptly adjacent to the PTB and the dissociation event began releasing 3.2 to 4.7×10 18 g CH 4 into the ocean. Oxidation of CH 4 in the water column created a seawater that was charged with CO 2 (an oceanic acid bath) and had lower than normal O 2 content (but not anoxic). This oceanic acid bath first dissolved suspended fine-grained carbonate particles and small calcareous organisms, followed by extensive dissolution of platform carbonates raising Ca 2+ and HCO 3- concentrations of seawater. When the release of CH 4 declined, the acid-bath ocean became a soda ocean precipitating massive amount of seafloor cements observed globally at the PTB. The study suggests that prior to cement precipitation, the PTB ocean was charged with CO 2, warm, had low oxygen, high Ca 2+, and high HCO 3- concentrations. These conditions collectively created stressful conditions causing the marine mass mortality. The leakage of CH 4 to the atmosphere produced a super-hot climate resulting in the biological devastation on land. The

  13. Mass extinctions and missing matter

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1984-01-01

    The possible influence of 'invisible matter' on the solar system's comet halo, and therefore on quasi-periodic cometary bombardment of the earth and consequent mass extinctions, is briefly addressed. Invisible matter consisting of small or cold interstellar molecular clouds could significantly modulate the comet background flux, while invisible matter consisting of a large population of old, dead stars with a relatively small galactic concentration probably could not. It is also shown that the downward force exerted by the Galaxy will perturb the halo, but will not produce any periodicity.

  14. The end-Permian mass extinction: A complex, multicausal extinction

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.

    1994-01-01

    The end-Permian mass extinction was the most extensive in the history of life and remains one of the most complex. Understanding its causes is particularly important because it anchors the putative 26-m.y. pattern of periodic extinction. However, there is no good evidence for an impact and this extinction appears to be more complex than others, involving at least three phases. The first began with the onset of a marine regression during the Late Permian and resulting elimination of most marine basins, reduction in habitat area, and increased climatic instability; the first pulse of tetrapod extinctions occurred in South Africa at this time. The second phase involved increased regression in many areas (although apparently not in South China) and heightened climatic instability and environmental degradation. Release of gas hydrates, oxidation of marine carbon, and the eruption of the Siberian flood basalts occurred during this phase. The final phase of the extinction episode began with the earliest Triassic marine regression and destruction of nearshore continental habitats. Some evidence suggests oceanic anoxia may have developed during the final phase of the extinction, although it appears to have been insufficient to the sole cause of the extinction.

  15. Mass extinctions vs. uniformitarianism in biological evolution

    SciTech Connect

    Bak, P.; Paczuski, M.

    1995-12-31

    It is usually believed that Darwin`s theory leads to a smooth gradual evolution, so that mass extinctions must be caused by external shocks. However, it has recently been argued that mass extinctions arise from the intrinsic dynamics of Darwinian evolution. Species become extinct when swept by intermittent avalanches propagating through the global ecology. These ideas are made concrete through studies of simple mathematical models of co-evolving species. The models exhibit self-organized criticality and describe some general features of the extinction pattern in the fossil record.

  16. Survival without recovery after mass extinctions.

    PubMed

    Jablonski, David

    2002-06-11

    Because many survivors of mass extinctions do not participate in postrecovery diversifications, and therefore fall into a pattern that can be termed "Dead Clade Walking" (DCW), the effects of mass extinctions extend beyond the losses observed during the event itself. Analyses at two taxonomic levels provide a first-order test of the prevalence of DCWs by using simple and very conservative operational criteria. For four of the Big Five mass extinctions of the Phanerozoic, the marine genera that survived the extinction suffered approximately 10-20% attrition in the immediately following geologic stage that was significantly greater than the losses sustained in preextinction stages. The stages immediately following the three Paleozoic mass extinctions also account for 17% of all order-level losses in marine invertebrates over that interval, which is, again, significantly greater than that seen for the other stratigraphic stages (no orders are lost immediately after the end-Triassic or end-Cretaceous mass extinctions). DCWs are not evenly distributed among four regional molluscan time-series following the end-Cretaceous extinction, demonstrating the importance of spatial patterns in recovery dynamics. Although biotic interactions have been invoked to explain the differential postextinction success of clades, such hypotheses must be tested against alternatives that include stochastic processes in low-diversity lineages-which is evidently not a general explanation for the ordinal DCW patterns, because postextinction fates are not related to the size of extinction bottlenecks in Paleozoic orders-and ongoing physical environmental changes.

  17. Magnetic reversals and mass extinctions

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1985-01-01

    The results of a study of reversals of the earth's magnetic field over the past 165 Myr are presented. A stationary periodicity of 30 Myr emerges which predicts pulses of increased reversal activity centered at 10, 40, 70, . . . Myr before the present. The correlation between the reversal intensity and biological extinctions is examined, and a nontrivial discrepancy is found between the magnetic and extinction periodicity.

  18. Biomarker Records Associated with Mass Extinction Events

    NASA Astrophysics Data System (ADS)

    Whiteside, Jessica H.; Grice, Kliti

    2016-06-01

    The history of life on Earth is punctuated by a series of mass extinction episodes that vary widely in their magnitude, duration, and cause. Biomarkers are a powerful tool for the reconstruction of historical environmental conditions and can therefore provide insights into the cause and responses to ancient extinction events. In examining the five largest mass extinctions in the geological record, investigators have used biomarkers to elucidate key processes such as eutrophy, euxinia, ocean acidification, changes in hydrological balance, and changes in atmospheric CO2. By using these molecular fossils to understand how Earth and its ecosystems have responded to unusual environmental activity during these extinctions, models can be made to predict how Earth will respond to future changes in its climate.

  19. Mass extinctions and supernova explosions.

    PubMed Central

    Crutzen, P J; Brühl, C

    1996-01-01

    In a recent contribution to this journal Ellis and Schramm [Ellis, J. & Schramm, D. N. (1995) Proc. Natl. Acad. Sci. USA 92, 235-238] claim that supernova explosions can cause massive biological extinctions as a result of strongly enhanced stratospheric NOx (NO + NO2) production by accompanying galactic cosmic rays. They suggested that these NOx productions which would last over several centuries and occur once every few hundred million years would result in ozone depletions of about 95%, leading to vastly increased levels of biologically damaging solar ultraviolet radiation. Our detailed model calculations show, however, substantially smaller ozone depletions ranging from at most 60% at high latitudes to below 20% at the equator. PMID:11607631

  20. Giant comets and mass extinctions of life

    NASA Astrophysics Data System (ADS)

    Napier, W. M.

    2015-03-01

    I find evidence for clustering in age of well-dated impact craters over the last 500 Myr. At least nine impact episodes are identified, with durations whose upper limits are set by the dating accuracy of the craters. Their amplitudes and frequency are inconsistent with an origin in asteroid breakups or Oort cloud disturbances, but are consistent with the arrival and disintegration in near-Earth orbits of rare, giant comets, mainly in transit from the Centaur population into the Jupiter family and Encke regions. About 1 in 10 Centaurs in Chiron-like orbits enter Earth-crossing epochs, usually repeatedly, each such epoch being generally of a few thousand years' duration. On time-scales of geological interest, debris from their breakup may increase the mass of the near-Earth interplanetary environment by two or three orders of magnitude, yielding repeated episodes of bombardment and stratospheric dusting. I find a strong correlation between these bombardment episodes and major biostratigraphic and geological boundaries, and propose that episodes of extinction are most effectively driven by prolonged encounters with meteoroid streams during bombardment episodes. Possible mechanisms are discussed.

  1. Triassic-Jurassic Mass Extinction: Evidence for Bolide Impact?

    NASA Astrophysics Data System (ADS)

    Perry, R.; Becker, L.; Haggart, J.; Poreda, R.

    2003-04-01

    The Triassic-Jurassic (TJ) mass extinction event is one of the most severe in geologic history and is one of the five largest in the Phanerozoic with as many as 80% of the species lost. It is also one of the most poorly understood. Only a few geologic sections have been identified for the TJ extinction and most of those are not well preserved. Previously, the paucity of suitable stratigraphic sections has prevented corroborative geochemical studies. Recently a well-preserved stratigraphic section spanning the Triassic-Jurassic boundary (˜200 mya) was identified at Kennecott Point, Queen Charlotte, Islands, British Columbia. Initial studies have shown that the Kennecott Point sequence is one of the best preserved and contains one of the most complete radiolarian microfossil turnovers known. Analyses of stable isotopes have shown that a 13C perturbation exits within the sequence and suggests a decline in organic productivity (Ward et al., 2001). Preliminary results of laser desorption mass spectrometry (LDMS) of selected Queen Charlotte samples suggest that fullerenes (C60 to C200) may be present in the Kennecott Point stratigraphic sequence. Previous studies have shown that fullerenes are present in the mass extinction boundary of the Permian-Triassic (˜251 mya) as well as the well-known "dinosaur" extinction event of the Cretaceous-Tertiary (˜65 mya). Therefore, three of the big five extinction events appear to have associated fullerenes. The possible presence of fullerenes along with the productivity collapse (rapid environmental change) suggests that a cometary or asteroidal impact may have occurred. Although no known impact crater exists, we hope to present chemical evidence that an impact or multiple impacts may have been responsible for the TJ mass extinction.

  2. Calibrating the end-Permian mass extinction.

    PubMed

    Shen, Shu-zhong; Crowley, James L; Wang, Yue; Bowring, Samuel A; Erwin, Douglas H; Sadler, Peter M; Cao, Chang-qun; Rothman, Daniel H; Henderson, Charles M; Ramezani, Jahandar; Zhang, Hua; Shen, Yanan; Wang, Xiang-dong; Wang, Wei; Mu, Lin; Li, Wen-zhong; Tang, Yue-gang; Liu, Xiao-lei; Liu, Lu-jun; Zeng, Yong; Jiang, Yao-fa; Jin, Yu-gan

    2011-12-09

    The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 ± 0.08 million years ago, after a decline of 2 per mil (‰) in δ(13)C over 90,000 years, and coincided with a δ(13)C excursion of -5‰ that is estimated to have lasted ≤20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction.

  3. Impact Crises, Mass Extinctions, and Galactic Dynamics: A Unified Theory

    NASA Technical Reports Server (NTRS)

    Rampino, M.R.

    1997-01-01

    A general hypothesis linking mass extinctions of life with impacts of large asteroids and comets is based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth, derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters predict that impacts of objects (sup 3)5 km in diameter ((sup 3)10(exp 7) Mt TNT equivalent) could be sufficient to explain the record of about 25 extinction pulses in the last 540 m.y., with the five recorded major mass extinctions related to the impacts of the largest objects of (sup 3)10 km in diameter ( (sup 3)10(exp 8) Mt events). Smaller impacts (about 10(exp 6)-10(exp 7) Mt), with significant regional and even global environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities and several well-dated large impact craters suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of -100 km diameter, with smaller impacts capable of only relatively weak extinction pulses. Single impact craters < about 60 km in diameter should not be associated with global extinction pulses detectable in the Sepkoski database (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological

  4. A sudden end-Permian mass extinction (Invited)

    NASA Astrophysics Data System (ADS)

    Shen, S.

    2013-12-01

    The end-Permian mass extinction is the largest of the Phanerozoic. In the immediate aftermath the marine ecosystem was dominated by microbial and communities with disaster taxa. Plausible kill mechanism includes an extremely rapid, explosive release of gases such as carbon dioxide, methane and hydrogen sulfide. Siberian flood volcanism has been suggested as the most possible mechanism to trigger the massive release of greenhouse gases from volcanic eruptions and interaction of magmas with carbon from thick organic-rich deposits or rapid venting of coal-derived methane or massive combustion of coal. A sharp δ13C isotopic excursion, rapid disappearance of carbonate benthic communities and δ18O data from conodont apatite suggest rapid global warming. The end-Permian mass extinction occurred in less than 200,000 years. This extinction interval is constrained by two ash beds (Beds 25 and 28) at the Meishan section. However, the extinction patterns remain controversial largely due to the condensed nature of the Meishan sections. Geochemical signals and their interpretations are also contentious. Thus, the level of achievable stratigraphic resolution becomes crucial to determine the nature of the event and a detailed study of the extinction interval is essential to unravel the extinction pattern, chemostratigraphy, and the causes. However, the extinction interval at Meishan is only 26 cm thick and contains distinct gaps at the Permian-Triassic boundary (PTB) and possibly the base of Bed 25. Thus, it is impossible to resolve a detailed extinction pattern. Studying expanded sections is crucial to understand the detailed events before, during and after the main extinction. In this report, we show a highly-expanded Permian-Triassic boundary section in Guangxi Province, South China. The last 4.5 m between beds 22 and 28 of the Meishan sections is represented by a sequence of ~560 m at the section and the extinction interval between beds 24e and 28 at Meishan is represented

  5. Mass extinction caused by large bolide impacts

    NASA Technical Reports Server (NTRS)

    Alvarez, Luis W.

    1987-01-01

    A history and development status assessment is presented for the hypothesis that the great extinction of living species 65 million years ago, at the boundary between the Tertiary and Cretaceous geological ages, was due to the collision of a meteoroid, asteroid, or comet with the earth. The initial, deeply suggestive indication of the extraterrestial origin of the extinction-initiating mechanism was the detection of an exceptionally high concentration of iridium at the stratigraphic position of the extinction. Detailed computer modeling of the atmospheric effect of such a bolide impact has shown that the earth would have first grown intensely cold during a period of darkness due to particulate debris clouds in the upper atmosphere, followed by an enormous increase in global temperatures as the debris cleared, created by the persistence of greenhouse-effect gases; this heating would have been especially lethal to numerous forms of life.

  6. Calcium isotope constraints on the end-Permian mass extinction

    PubMed Central

    Payne, Jonathan L.; Turchyn, Alexandra V.; Paytan, Adina; DePaolo, Donald J.; Lehrmann, Daniel J.; Yu, Meiyi; Wei, Jiayong

    2010-01-01

    The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (δ13C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (δ44/40Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report δ44/40Ca across the Permian-Triassic boundary from marine limestone in south China. The δ44/40Ca exhibits a transient negative excursion of ∼0.3‰ over a few hundred thousand years or less, which we interpret to reflect a change in the global δ44/40Ca composition of seawater. CO2-driven ocean acidification best explains the coincidence of the δ44/40Ca excursion with negative excursions in the δ13C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average δ13C of CO2 released was heavier than -28‰ and more likely near -15‰; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction. PMID:20421502

  7. Calcium isotope constraints on the end-Permian mass extinction.

    PubMed

    Payne, Jonathan L; Turchyn, Alexandra V; Paytan, Adina; Depaolo, Donald J; Lehrmann, Daniel J; Yu, Meiyi; Wei, Jiayong

    2010-05-11

    The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (delta(13)C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (delta(44/40)Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report delta(44/40)Ca across the Permian-Triassic boundary from marine limestone in south China. The delta(44/40)Ca exhibits a transient negative excursion of approximately 0.3 per thousand over a few hundred thousand years or less, which we interpret to reflect a change in the global delta(44/40)Ca composition of seawater. CO(2)-driven ocean acidification best explains the coincidence of the delta(44/40)Ca excursion with negative excursions in the delta(13)C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average delta(13)C of CO(2) released was heavier than -28 per thousand and more likely near -15 per thousand; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction.

  8. Ocean acidification and the Permo-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Clarkson, M. O.; Kasemann, S. A.; Wood, R. A.; Lenton, T. M.; Daines, S. J.; Richoz, S.; Ohnemueller, F.; Meixner, A.; Poulton, S. W.; Tipper, E. T.

    2015-04-01

    Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.

  9. Ocean acidification and the Permo-Triassic mass extinction.

    PubMed

    Clarkson, M O; Kasemann, S A; Wood, R A; Lenton, T M; Daines, S J; Richoz, S; Ohnemueller, F; Meixner, A; Poulton, S W; Tipper, E T

    2015-04-10

    Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.

  10. Mass extinctions: Sensitivity of marine larval types.

    PubMed

    Valentine, J W; Jablonski, D

    1986-09-01

    Developmental types of marine invertebrates may be divided into planktotrophs, which feed on suspended food items, and nonplanktotrophs, which do not feed but are supplied with nutrients (yolk) parentally; these may represent high mortality-fecundity and low mortality-fecundity strategies, respectively. Most versions of the bolide impact hypothesis of mass extinction propose occlusion of the sun by dust or smoke and severance of planktonic food chains for months or a few years, and this should select preferentially against planktotrophs. Yet among fossil prosobranch gastropods, planktotrophs survived the end-Cretaceous extinction equally as well as nonplanktotrophs. Indirect evidence suggests that end-Permian extinctions may have selected against planktotrophs but that the effect was prolonged over millions of years.

  11. Vertebrate extinctions and survival across the Cretaceous-Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Buffetaut, Eric

    1990-01-01

    A critical analysis of the fossil vertebrate record across the Cretaceous-Tertiary boundary shows that the available evidence is far less accurate than that concerning invertebrates and microfossils. Far-reaching conclusions have been drawn from generalisations about vertebrate extinctions in the continental realm based on the local record from western North America, but little is known about patterns of terminal Cretaceous vertebrate extinctions in other parts of the world, and even the western North American record is ambiguous. Despite this unsatisfactory record, it clearly appears that terminal Cretaceous vertebrate extinctions were highly selective, with some groups (e.g. dinosaurs) becoming completely extinct, whereas others seem to be virtually unaffected. This argues against devastating catastrophes of the kind postulated by some recent impact scenarios. However, the survival of groups known to be sensitive to climatic deterioration (such as crocodilians and other non-dinosaurian reptiles) indicates that alternative hypotheses involving gradual but fairly important climatic changes on a world-wide scale are not convincing either. The pattern of extinction and survival among vertebrates across the Cretaceous-Tertiary boundary may be explained as a consequence of the disruption of some food chains following a crisis in the plant kingdom, which itself may have been the result of the atmospheric consequences of unusual extraterrestrial or internal events.

  12. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary

    NASA Astrophysics Data System (ADS)

    Jiang, Shijun; Bralower, Timothy J.; Patzkowsky, Mark E.; Kump, Lee R.; Schueth, Jonathan D.

    2010-04-01

    Calcareous nannoplankton, a large group of marine autotrophs that produce carbonate skeletons, were decimated to less than 10% of species during the Cretaceous/Palaeogene boundary mass extinction, 65million years ago. Although the mass extinction followed an impact event, the exact cause of the nannoplankton mortality is not well understood. Here we assess the timing and spatial variability of nannoplankton extinction by analysing nannofossil counts in Cretaceous/Palaeogene boundary sections from all of the main ocean basins. We find that extinction rates were higher in the Northern Hemisphere oceans, and diversity remained low for 310,000years. In contrast, Southern Hemisphere oceans showed lower extinction rates, and a nearly immediate recovery of normal nannoplankton populations. We propose that the oblique, northward impact concentrated ejected particulates into the Northern Hemisphere, blocking sunlight and suppressing photosynthesis. Increased rates of extinction and a prolonged recovery would then be associated with the greatest concentration of particulates. We speculate that metal poisoning from fallout of the particulates may have exacerbated and extended the nannoplankton crisis in the Northern Hemisphere, and thereby slowed the recovery of the Northern Hemisphere marine food web.

  13. Phylogenetic Clustering of Origination and Extinction across the Late Ordovician Mass Extinction

    PubMed Central

    Krug, Andrew Z.; Patzkowsky, Mark E.

    2015-01-01

    Mass extinctions can have dramatic effects on the trajectory of life, but in some cases the effects can be relatively small even when extinction rates are high. For example, the Late Ordovician mass extinction is the second most severe in terms of the proportion of genera eliminated, yet is noted for the lack of ecological consequences and shifts in clade dominance. By comparison, the end-Cretaceous mass extinction was less severe but eliminated several major clades while some rare surviving clades diversified in the Paleogene. This disconnect may be better understood by incorporating the phylogenetic relatedness of taxa into studies of mass extinctions, as the factors driving extinction and recovery are thought to be phylogenetically conserved and should therefore promote both origination and extinction of closely related taxa. Here, we test whether there was phylogenetic selectivity in extinction and origination using brachiopod genera from the Middle Ordovician through the Devonian. Using an index of taxonomic clustering (RCL) as a proxy for phylogenetic clustering, we find that A) both extinctions and originations shift from taxonomically random or weakly clustered within families in the Ordovician to strongly clustered in the Silurian and Devonian, beginning with the recovery following the Late Ordovician mass extinction, and B) the Late Ordovician mass extinction was itself only weakly clustered. Both results stand in stark contrast to Cretaceous-Cenozoic bivalves, which showed significant levels of taxonomic clustering of extinctions in the Cretaceous, including strong clustering in the mass extinction, but taxonomically random extinctions in the Cenozoic. The contrasting patterns between the Late Ordovician and end-Cretaceous events suggest a complex relationship between the phylogenetic selectivity of mass extinctions and the long-term phylogenetic signal in origination and extinction patterns. PMID:26658946

  14. Phylogenetic Clustering of Origination and Extinction across the Late Ordovician Mass Extinction.

    PubMed

    Krug, Andrew Z; Patzkowsky, Mark E

    2015-01-01

    Mass extinctions can have dramatic effects on the trajectory of life, but in some cases the effects can be relatively small even when extinction rates are high. For example, the Late Ordovician mass extinction is the second most severe in terms of the proportion of genera eliminated, yet is noted for the lack of ecological consequences and shifts in clade dominance. By comparison, the end-Cretaceous mass extinction was less severe but eliminated several major clades while some rare surviving clades diversified in the Paleogene. This disconnect may be better understood by incorporating the phylogenetic relatedness of taxa into studies of mass extinctions, as the factors driving extinction and recovery are thought to be phylogenetically conserved and should therefore promote both origination and extinction of closely related taxa. Here, we test whether there was phylogenetic selectivity in extinction and origination using brachiopod genera from the Middle Ordovician through the Devonian. Using an index of taxonomic clustering (RCL) as a proxy for phylogenetic clustering, we find that A) both extinctions and originations shift from taxonomically random or weakly clustered within families in the Ordovician to strongly clustered in the Silurian and Devonian, beginning with the recovery following the Late Ordovician mass extinction, and B) the Late Ordovician mass extinction was itself only weakly clustered. Both results stand in stark contrast to Cretaceous-Cenozoic bivalves, which showed significant levels of taxonomic clustering of extinctions in the Cretaceous, including strong clustering in the mass extinction, but taxonomically random extinctions in the Cenozoic. The contrasting patterns between the Late Ordovician and end-Cretaceous events suggest a complex relationship between the phylogenetic selectivity of mass extinctions and the long-term phylogenetic signal in origination and extinction patterns.

  15. The biology of mass extinction: a palaeontological view.

    PubMed

    Jablonski, D

    1989-01-01

    Extinctions are not biologically random: certain taxa or functional/ecological groups are more extinction-prone than others. Analysis of molluscan survivorship patterns for the end-Cretaceous mass extinctions suggests that some traits that tend to confer extinction resistance during times of normal ('background') levels of extinction are ineffectual during mass extinction. For genera, high species-richness and possession of widespread individual species imparted extinction-resistance during background times but not during the mass extinction, when overall distribution of the genus was an important factor. Reanalysis of Hoffman's (1986) data (Neues Jb. Geol. Palaont. Abh. 172, 219) on European bivalves, and preliminary analysis of a new northern European data set, reveals a similar change in survivorship rules, as do data scattered among other taxa and extinction events. Thus taxa and adaptations can be lost not because they were poorly adapted by the standards of the background processes that constitute the bulk of geological time, but because they lacked--or were not linked to--the organismic, species-level or clade-level traits favoured under mass-extinction conditions. Mass extinctions can break the hegemony of species-rich, well-adapted clades and thereby permit radiation of taxa that had previously been minor faunal elements; no net increase in the adaptation of the biota need ensue. Although some large-scale evolutionary trends transcend mass extinctions, post extinction evolutionary pathways are often channelled in directions not predictable from evolutionary patters during background times.

  16. The biology of mass extinction: a palaeontological view

    NASA Technical Reports Server (NTRS)

    Jablonski, D.; Raup, D. M. (Principal Investigator)

    1989-01-01

    Extinctions are not biologically random: certain taxa or functional/ecological groups are more extinction-prone than others. Analysis of molluscan survivorship patterns for the end-Cretaceous mass extinctions suggests that some traits that tend to confer extinction resistance during times of normal ('background') levels of extinction are ineffectual during mass extinction. For genera, high species-richness and possession of widespread individual species imparted extinction-resistance during background times but not during the mass extinction, when overall distribution of the genus was an important factor. Reanalysis of Hoffman's (1986) data (Neues Jb. Geol. Palaont. Abh. 172, 219) on European bivalves, and preliminary analysis of a new northern European data set, reveals a similar change in survivorship rules, as do data scattered among other taxa and extinction events. Thus taxa and adaptations can be lost not because they were poorly adapted by the standards of the background processes that constitute the bulk of geological time, but because they lacked--or were not linked to--the organismic, species-level or clade-level traits favoured under mass-extinction conditions. Mass extinctions can break the hegemony of species-rich, well-adapted clades and thereby permit radiation of taxa that had previously been minor faunal elements; no net increase in the adaptation of the biota need ensue. Although some large-scale evolutionary trends transcend mass extinctions, post extinction evolutionary pathways are often channelled in directions not predictable from evolutionary patters during background times.

  17. Flourishing ocean drives the end-Permian marine mass extinction.

    PubMed

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2015-08-18

    The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian-Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness.

  18. Deccan Volcanism likely cause for K-T Mass Extinction

    NASA Astrophysics Data System (ADS)

    Keller, G.; Reddy, A. N.; Jaiprakash, B. C.; Adatte, T.; Gertsch, B.; Bajpai, S.; Garg, R.; Prasad, V.; Upadhyay, H.; Bhowmick, P. K.

    2009-04-01

    Recent advances in Deccan volcanic studies suggest that the main phase of eruptions occurred rapidly over tens of thousands of years near the end of the Maastrichtian (Chenet et al. 2007, 2008) and may have caused the mass extinction as initially discovered in intertrappean sediments exposed in quarries of Rajahmundry, SE India. In these shallow marine sediments early Danian zone P1a planktic foraminifera were deposited in C29r immediately above the last mega eruption of the main volcanic phase (Keller et al. (2008). At Jhilmili in central India (Madhya Pradesh), early Danian zone P1a assemblages were also discovered in intertrappean sediments, which mark a marine incursion in a predominantly terrestrial sequence which signals a major seaway existed at K-T time. In Meghalaya, NE India, about 600 km from the Deccan volcanic province the K-T boundary and mass extinction identified from planktic foraminifera, calcareous nannofossils and palynomorphs is marked by very large Ir (11.8 ppb), Ru, Rh and Pd anomalies. High biotic stress conditions precede the KTB. Critical new data linking Deccan volcanism to the K-T mass extinction comes also from investigations of subsurface cores drilled in the Krishna-Godavari Basin, eastern India, by the Oil and Natural Gas Corporation of India (ONGC). In eight subsurface cores examined, a total of 4 volcanic megaflows have been identified as occurring in very rapid succession near the end of the Maastrichtian. These megaflows span a 1000 km across India and out to the Gulf of Bengal. They are the longest lava flows known in Earth's history. Preliminary evaluation of the biotic effects of these megaflows on planktic foraminifera indicate that after the first megaflow up to 50% of the species disappeared and with each new megaflow more species died out culminating in near total mass extinction coincident with the last megaflow by K-T boundary time. After the mass extinction, no megaflows reached the Krishna-Godavari Basin for about 250

  19. A Cretaceous-Tertiary mass extinction? Were most of Earth's species killed off?

    NASA Technical Reports Server (NTRS)

    Briggs, J. C.

    1991-01-01

    For the past decade, the scientific and popular press have carried frequent articles about a catastrophic mass extinction that supposedly destroyed the majority of the earth's species, including the dinosaurs, approximately 65 million years ago. Since 1980, more than 2000 papers and books have dealt with some aspect of a mass extinction at the Cretaceous-Tertiary (K/T) boundary. One authoritative estimate of the severity of the extinctions is that 60-80% of all the living species became extinct at this boundary (Raup 1988). There appears to be a general acceptance of the fact that such a great catastrophe did occur. Most of the argument among scientists now is devoted to the determination of the cause. In this article, I argue that the species changes at the K/T boundary were neither sudden nor catastrophic. They were most likely caused by a regression of sea level that led to a decrease in primary production.

  20. Press/Pulse: Explaining selective terrestrial extinctions at the Cretaceous/Palaeogene boundary

    NASA Astrophysics Data System (ADS)

    Arens, Nan Crystal

    2010-05-01

    Single-cause mass extinction scenarios require extreme conditions to generate sufficiently strong kill mechanisms. Such dire effects are commonly at odds with the taxonomic selectivity that characterizes most extinction events. In response, some researchers have proposed that the interaction of a variety of factors typify episodes of elevated extinction. Previous work (Arens & West 2008 Paleobiology 34:456-471) has shown that a combination of press and pulse disturbances increases the probability of elevated extinction. The press/pulse contrast is borrowed from community ecology, where researchers have long recognized that the ecological response to long-term stress differs from that of an instantaneous catastrophe. Scaled to the macroevolutionary level, press disturbances alter community composition by placing multigenerational stress on populations. Press disturbances do not necessarily cause mortality, but reduce population size by a variety of mechanisms such as curtailed reproduction. Pulse disturbances are sudden catastrophic events that cause extensive mortality. Either press or pulse disturbances of sufficient magnitude can cause extinction, however elevated extinction occurs more commonly during the coincidence of lower-magnitude press and pulse events. The Cretaceous/Palaeogene (K/P) extinction is one of the best examples of a press/pulse extinction. Deccan Trap volcanism, which straddled the K/P boundary, altered atmospheric composition and climate. This episodic volcanism likely contributed to the climate instability observed in terrestrial ecosystems and exerted press stress. Pulse disturbance was produced by bolide impact, which punctuated the end of the Cretaceous. The press/pulse mechanism also more effectively explains selectivity in terrestrial vertebrate and plant extinctions at the K/P boundary than do single-mechanisms scenarios. For example, why do environmentally sensitive vertebrates such as amphibians experience no extinction? And why do

  1. Heterogeneous volcanism across the Permian-Triassic Boundary in South China and implications for the Latest Permian Mass Extinction: New evidence from volcanic ash layers in the Lower Yangtze Region

    NASA Astrophysics Data System (ADS)

    Liao, Zhiwei; Hu, Wenxuan; Cao, Jian; Wang, Xiaolin; Yao, Suping; Wu, Haiguang; Wan, Ye

    2016-09-01

    Volcanism has been suggested to have occurred widely in South China across the Permian-Triassic boundary (PTB); this has important implications for understanding the cause of the Latest Permian Mass Extinction (LMPE). However, few volcanic deposits have been reported in the Lower Yangtze Region and the extent of volcanism is uncertain. Herein we report new discoveries of intensive volcanism in this region for the first time, as evidenced by multiple (n > 20) and thick (3-5 cm) claystones (volcanic ash layers, K-bentonite) found in three deep-water outcrops in Xuancheng city, southern Anhui Province. Detailed petrographic and geochemical analyses of the ash layers were conducted to understand their origin and implications for the cause of the LPME, including X-ray diffraction, scanning electronic microscopy, energy dispersive spectroscopy, and whole-rock geochemistry. The petrological and mineralogical results show that the claystones contain clastic minerals indicative of a volcanic origin, such as zircon, analcites, pentagonal dodecahedral pyrite, and micro-spherules. The whole-rock geochemical data of the claystones suggest that the source rock of the ash layers was intermediate-acidic rhyodacite. The claystones are different from previously known claystones in the Middle-Upper Yangtze regions, indicating the occurrence of chemically heterogeneous volcanism in South China at the PTB.

  2. CO2 and the end-Triassic mass extinction.

    PubMed

    Beerling, David

    2002-01-24

    The end of the Triassic period was marked by one of the largest and most enigmatic mass-extinction events in Earth's history and, with few reliable marine geochemical records, terrestrial sediments offer an important means of deciphering environmental changes at this time. Tanner et al. describe an isotopic study of Mesozoic fossil soils which suggests that the atmospheric concentration of carbon dioxide (pCO2) across the Triassic-Jurassic boundary was relatively constant (within 250 p.p.m.v.), but this is inconsistent with high-resolution evidence from the stomatal characters of fossil leaves. Here I show that the temporal resolution of the fossil-soil samples may have been inadequate for detecting a transient rise in pCO2. I also show that the fossil-soil data are consistent with a large increase in pCO2 across the Triassic-Jurassic boundary when variations in the stable carbon isotope (denoted as delta13C) in terrestrial plant leaves are taken into account. These factors suggest that the linkage between pCO2, global warming and the end-Triassic mass extinction remains intact.

  3. Origination, diversity, and extinction metrics essential for analysis of mass biotic crisis events: An example from cretaceous ammonoidea

    NASA Technical Reports Server (NTRS)

    Collom, Christopher J.

    1988-01-01

    Traditional mass extinction research has predominently concentrated on statistically demonstrating that mass extinction intervals are significantly above background levels of familial and generic extinction in terms of extinction percentage, extinction rate, and per-taxon extinction rate; mass extinction intervals occur on a set periodicity throughout geologic time, which is estimated to be some 30 MYR in duration. The published literature has given little emphasis to equally important considerations and metrics such as origination rate, standing diversity, and rate of generation of new taxa DURING mass extinction intervals. The extent to which a mass extinction affects the regional or global biota, must ultimately be gauged by taking into consideration both the number of taxa which become extinct at or near the event (stage) boundary, and the number of taxa which are either not affected at all by the extinction or actually evolved during or shortly before/after the extinction interval. These effects can be seen in Cretaceous Ammonoidea (at the genus level), and their combined usage allow better insight into paleobiological dynamics and responses to mass extinction and its affect on this dominant Molluscan organism.

  4. The end-cretaceous mass extinction in the marine realm: year 2000 assessment

    NASA Astrophysics Data System (ADS)

    Keller, Gerta

    2001-07-01

    The current database indicates that the terminal decline and extinction, or near extinction, of many groups commonly attributed to an asteroid or comet impact at the Cretaceous-Tertiary (K-T) boundary (e.g., ammonites, bivalves, planktic foraminifera) began during the last 500 k.y. of the Maastrichtian. By the time of the K-T boundary, extinction-prone tropical and subtropical marine faunas and floras were almost gone, or had severely reduced species populations struggling to survive. The K-T boundary kill-effect was largely restricted to these struggling tropical and subtropical populations that accounted for 2/3 of the species among planktic foraminifera, but less than 10% of the total foraminiferal population. No significant extinctions occurred among ecological generalists that dominated across latitudes. No single kill mechanism can account for this mass extinction pattern. The last 500 k.y. of the Maastrichtian were characterized by a series of rapid and extreme climate changes characterized by 3-4°C warming between 65.4 and 65.2 Ma, major volcanic activity between 65.4 and 65.2 Ma, a spherule-producing event between 65.3 and 65.2 Ma, and an impact at the K-T boundary ( 65.0 Ma). All of these events caused major environmental perturbations and biotic stresses that resulted in severe reductions in species populations and extinctions that culminated at the K-T boundary. The mass extinction pattern, and the parallel environmental changes during the last 500 k.y. of the Maastrichtian, suggest that both long-term (climate, sea-level) and short-term (impact, volcanism) events contributed to the K-T boundary mass extinction.

  5. Science observed: The mass-extinction debates

    NASA Astrophysics Data System (ADS)

    Glen, W.

    The upheaval triggered in 1980 by the Alvarez-Berkeley group impact hypothesis transformed the literature of mass extinctions from an unfocused, sporadic collection of papers that virtually ignored extraterrestrial causes and treated endogenous ones only sparingly better to an integrated, diverse body of literature. Research programs organized seemingly overnight spawned collaborative teams whose members, often from distant, isolated disciplines, redirected their careers in order to address the captivating, high-stakes issues. The initial, generally skeptical, cool reception of the impact hypothesis might have been predicted for any of a number of reasons: such an instantaneous catastrophe contravened earth science's reigning philosophy of uniformitarianism; it was formulated from a form of evidence - siderophile element anomalies - alien to the community charged with its appraisal; it advanced a causal mechanism that was improbable in terms of canonical knowledge; and it was proffered mainly by specialists alien to earth and biological science, especially paleobiology. Early on it became clear that irrespective of which causal hypothesis was chosen, the chosen one would be the strongest predictor of how the chooser would select and apply standards in assessing evidence bearing on all such hypothesis. Less strong correlation also appeared between disciplinary speciality and the assessment of evidence. Such correlations varied with the level of specialization; the most robust correlations appeared in the broadest areas of science practice. The gestalt (mindset) seemingly engendered by the embrace of an extinction hypothesis overrode, or was stronger than, the intellectual predispositions attributable to disciplinary specialty.

  6. Science observed: The mass-extinction debates

    NASA Technical Reports Server (NTRS)

    Glen, W.

    1994-01-01

    The upheaval triggered in 1980 by the Alvarez-Berkeley group impact hypothesis transformed the literature of mass extinctions from an unfocused, sporadic collection of papers that virtually ignored extraterrestrial causes and treated endogenous ones only sparingly better to an integrated, diverse body of literature. Research programs organized seemingly overnight spawned collaborative teams whose members, often from distant, isolated disciplines, redirected their careers in order to address the captivating, high-stakes issues. The initial, generally skeptical, cool reception of the impact hypothesis might have been predicted for any of a number of reasons: such an instantaneous catastrophe contravened earth science's reigning philosophy of uniformitarianism; it was formulated from a form of evidence - siderophile element anomalies - alien to the community charged with its appraisal; it advanced a causal mechanism that was improbable in terms of canonical knowledge; and it was proffered mainly by specialists alien to earth and biological science, especially paleobiology. Early on it became clear that irrespective of which causal hypothesis was chosen, the chosen one would be the strongest predictor of how the chooser would select and apply standards in assessing evidence bearing on all such hypothesis. Less strong correlation also appeared between disciplinary speciality and the assessment of evidence. Such correlations varied with the level of specialization; the most robust correlations appeared in the broadest areas of science practice. The gestalt (mindset) seemingly engendered by the embrace of an extinction hypothesis overrode, or was stronger than, the intellectual predispositions attributable to disciplinary specialty.

  7. Severe extinction and rapid recovery of mammals across the Cretaceous-Palaeogene boundary, and the effects of rarity on patterns of extinction and recovery.

    PubMed

    Longrich, N R; Scriberas, J; Wills, M A

    2016-08-01

    The end-Cretaceous mass extinction ranks among the most severe extinctions of all time; however, patterns of extinction and recovery remain incompletely understood. In particular, it is unclear how severe the extinction was, how rapid the recovery was and how sampling biases might affect our understanding of these processes. To better understand terrestrial extinction and recovery and how sampling influences these patterns, we collected data on the occurrence and abundance of fossil mammals to examine mammalian diversity across the K-Pg boundary in North America. Our data show that the extinction was more severe and the recovery more rapid than previously thought. Extinction rates are markedly higher than previously estimated: of 59 species, four survived (93% species extinction, 86% of genera). Survival is correlated with geographic range size and abundance, with widespread, common species tending to survive. This creates a sampling artefact in which rare species are both more vulnerable to extinction and less likely to be recovered, such that the fossil record is inherently biased towards the survivors. The recovery was remarkably rapid. Within 300 000 years, local diversity recovered and regional diversity rose to twice Cretaceous levels, driven by increased endemicity; morphological disparity increased above levels observed in the Cretaceous. The speed of the recovery tends to be obscured by sampling effects; faunas show increased endemicity, such that a rapid, regional increase in diversity and disparity is not seen in geographically restricted studies. Sampling biases that operate against rare taxa appear to obscure the severity of extinction and the pace of recovery across the K-Pg boundary, and similar biases may operate during other extinction events.

  8. The global vegetation pattern across the Cretaceous-Paleogene mass extinction interval: A template for other extinction events

    NASA Astrophysics Data System (ADS)

    Vajda, Vivi; Bercovici, Antoine

    2014-11-01

    Changes in pollen and spore assemblages across the Cretaceous-Paleogene (K-Pg) boundary elucidate the vegetation response to a global environmental crisis triggered by an asteroid impact in Mexico 66 Ma. The Cretaceous-Paleogene boundary clay, associated with the Chicxulub asteroid impact event, constitutes a unique, global marker bed enabling comparison of the world-wide palynological signal spanning the mass extinction event. The data from both hemispheres are consistent, revealing diverse latest Cretaceous assemblages of pollen and spores that were affected by a major diversity loss as a consequence of the K-Pg event. Here we combine new results with past studies to provide an integrated global perspective of the terrestrial vegetation record across the K-Pg boundary. We further apply the K-Pg event as a template to asses the causal mechanism behind other major events in Earths history. The end-Permian, end-Triassic, and the K-Pg mass-extinctions were responses to different causal processes that resulted in essentially similar succession of decline and recovery phases, although expressed at different temporal scales. The events share a characteristic pattern of a bloom of opportunistic "crisis" tax followed by a pulse in pioneer communities, and finally a recovery in diversity including evolution of new taxa. Based on their similar extinction and recovery patterns and the fact that the Last and First Appearance Datums associated with the extinctions are separated in time, we recommend using the K-Pg event as a model and to use relative abundance data for the stratigraphic definition of mass-extinction events and the placement of associated chronostratigraphic boundaries.

  9. The Cometary Hypothesis of the K/t Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.; Wallis, M. K.

    1994-09-01

    The correlation of the extended period of biological mass extinctions around the KIT boundary with extraterrestrial amino acids in the sediment record constitutes strong evidence of a cometary cause. While the fact that the dinosaurs' extinction coincided with the Chixculub cratering event and iridium-rich sediments suggests a chance asteroidal or cometary impact, the enhanced input of extraterrestrial matter over 1 0 yr supports the hypothesis of a Jupiter-associated giant comet, fragmented into a multitude of pieces, as demonstrated by comet Shoemaker-Levy 9, and perturbed into Earth-crossing orbits. Copious amounts of dust were released also, enhancing the dust abundance in the Solar system by several orders of magnitude. By studying the radiative properties of the submicron dust fraction of organic composition, we find that it is retained in the inner Solar system and is available for planetary accretion, uniike the IR-containing metallic and mineral dust. The shroud of dust accreted in the Earth's upper atmosphere can be sufficient to impose climatic stresses and cause extinctions of species over a protracted period of 10 yr. Dynamical arguments imply that the impacting comet most probably came directly from Jupiter's family. Details of the iridium record are compatible with re-accretion of some of the material ejected into space from the Chixculub impact. Key words: gravitation - comets: general - Earth - interplanetary medium - planets and satellites: individual: Jupiter - Solar system: general.

  10. Lognormals for SETI, Evolution and Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2014-12-01

    In a series of recent papers (Refs. [1-5,7,8]) and in a book (Ref. [6]), this author suggested a new mathematical theory capable of merging Darwinian Evolution and SETI into a unified statistical framework. In this new vision, Darwinian Evolution, as it unfolded on Earth over the last 3.5 billion years, is defined as just one particular realization of a certain lognormal stochastic process in the number of living species on Earth, whose mean value increased in time exponentially. SETI also may be brought into this vision since the number of communicating civilizations in the Galaxy is given by a lognormal distribution (Statistical Drake Equation). Now, in this paper we further elaborate on all that particularly with regard to two important topics: The introduction of the general lognormal stochastic process L(t) whose mean value may be an arbitrary continuous function of the time, m(t), rather than just the exponential mGBM (t) =N0eμt typical of the Geometric Brownian Motion (GBM). This is a considerable generalization of the GBM-based theory used in Refs. [1-8]. The particular application of the general stochastic process L(t) to the understanding of Mass Extinctions like the K-Pg one that marked the dinosaurs' end 65 million years ago. We first model this Mass Extinction as a decreasing Geometric Brownian Motion (GBM) extending from the asteroid's impact time all through the ensuing 'nuclear winter'. However, this model has a flaw: the 'final value' of the GBM cannot have a horizontal tangent, as requested to enable the recovery of life again after this 'final extinction value'. That flaw, however, is removed if the rapidly decreasing mean value function of L(t) is the left branch of a parabola extending from the asteroid's impact time all through the ensuing 'nuclear winter' and up to the time when the number of living species on Earth started growing up again, as we show mathematically in Section 3. In conclusion, we have uncovered an important generalization

  11. The effect of geographic range on extinction risk during background and mass extinction.

    PubMed

    Payne, Jonathan L; Finnegan, Seth

    2007-06-19

    Wide geographic range is generally thought to buffer taxa against extinction, but the strength of this effect has not been investigated for the great majority of the fossil record. Although the majority of genus extinctions have occurred between major mass extinctions, little is known about extinction selectivity regimes during these "background" intervals. Consequently, the question of whether selectivity regimes differ between background and mass extinctions is largely unresolved. Using logistic regression, we evaluated the selectivity of genus survivorship with respect to geographic range by using a global database of fossil benthic marine invertebrates spanning the Cambrian through the Neogene periods, an interval of approximately 500 My. Our results show that wide geographic range has been significantly and positively associated with survivorship for the great majority of Phanerozoic time. Moreover, the significant association between geographic range and survivorship remains after controlling for differences in species richness and abundance among genera. However, mass extinctions and several second-order extinction events exhibit less geographic range selectivity than predicted by range alone. Widespread environmental disturbance can explain the reduced association between geographic range and extinction risk by simultaneously affecting genera with similar ecological and physiological characteristics on global scales. Although factors other than geographic range have certainly affected extinction risk during many intervals, geographic range is likely the most consistently significant predictor of extinction risk in the marine fossil record.

  12. Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction

    NASA Astrophysics Data System (ADS)

    Sibert, Elizabeth C.; Hull, Pincelli M.; Norris, Richard D.

    2014-09-01

    Open-ocean ecosystems experienced profound disruptions to biodiversity and ecological structure during the Cretaceous/Palaeogene mass extinction about 66 million years ago. It has been suggested that during this mass extinction, a collapse of phytoplankton production rippled up the food chain, causing the wholesale loss of consumers and top predators. Pelagic fish represent a key trophic link between primary producers and top predators, and changes in their abundance provide a means to examine trophic relationships during extinctions. Here we analyse accumulation rates of microscopic fish teeth and shark dermal scales (ichthyoliths) in sediments from the Pacific Ocean and Tethys Sea across the Cretaceous/Palaeogene extinction to reconstruct fish abundance. We find geographic differences in post-disaster ecosystems. In the Tethys Sea, fish abundance fell abruptly at the Cretaceous/Palaeogene boundary and remained depressed for at least 3 million years. In contrast, fish abundance in the Pacific Ocean remained at or above pre-boundary levels for at least four million years following the mass extinction, despite marked extinctions in primary producers and other zooplankton consumers in this region. We suggest that the mass extinction did not produce a uniformly dead ocean or microbially dominated system. Instead, primary production, at least regionally, supported ecosystems with mid-trophic-level abundances similar to or above those of the Late Cretaceous.

  13. Flourishing ocean drives the end-Permian marine mass extinction

    PubMed Central

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2015-01-01

    The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian−Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth’s history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness. PMID:26240323

  14. Late Cretaceous stepwise mass extinction of planktonic foraminifera

    SciTech Connect

    D'Hondt, S.L.; Keller, G.

    1985-01-01

    Quantitative populations analysis of planktonic foraminifera from DSDP sites 10, 21, 528, 577 and the El Kef section of Tunisia indicates that the terminal Cretaceous mass extinction did not occur as a simple catastrophic event. Rather, the final Cretaceous extinction was heralded by a series of earlier extinction events, indicating a changing paleoenvironment during the late Cretaceous. Extinction events appear stepwise marked by periods of rapid faunal turnover during which dominant faunal elements decline in abundance. Generally, weakened surviving populations are subsequently annihilated during the next stepwise ecologic perturbation. Little or no faunal change appears between these stepwise events. Significantly, extinctions generally affect species which are numerically low in abundance (<3% of the total population). This indicates that the number of taxa going extinct is in itself a poor measure of the extent of ecologic perturbations. Thus, species extinctions and changes in populations dynamics must be viewed together in order to gain an understanding of the complex nature of mass extinctions. The observed stepwise extinction events can potentially be explained by geotectonically induced changes in ocean circulation accompanied by temperature and salinity fluctuations. However, it cannot be ruled out at this time that at least some of the extinction events maybe related to impact events. Further studies will be necessary to find evidence of between extinction events and impacts.

  15. Could a nearby supernova explosion have caused a mass extinction?

    SciTech Connect

    Ellis, J.; Schramm, D.N. |

    1995-01-03

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of {gamma}-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth`s ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the {open_quotes}KT boundary.{close_quotes} The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events. 24 refs.

  16. Could a nearby supernova explosion have caused a mass extinction?

    PubMed

    Ellis, J; Schramm, D N

    1995-01-03

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of gamma-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the "KT boundary." The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events.

  17. Could a nearby supernova explosion have caused a mass extinction?

    PubMed Central

    Ellis, J; Schramm, D N

    1995-01-01

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of gamma-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the "KT boundary." The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events. PMID:11607506

  18. Has the Earth's sixth mass extinction already arrived?

    PubMed

    Barnosky, Anthony D; Matzke, Nicholas; Tomiya, Susumu; Wogan, Guinevere O U; Swartz, Brian; Quental, Tiago B; Marshall, Charles; McGuire, Jenny L; Lindsey, Emily L; Maguire, Kaitlin C; Mersey, Ben; Ferrer, Elizabeth A

    2011-03-03

    Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.

  19. Flood basalt eruptions, comet showers, and mass extinction events

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Stothers, Richard B.

    1988-01-01

    A chronology of initiation dates of the major continental flood basalt episodes has been established from compilation of published K-Ar and Ar-Ar ages of basaltic flows and related basic intrusions. The dating is therefore independent of the biostratigraphic and paleomagnetic time scales, and the estimated errors of the inititation dates are approximately + or - 4 pct. There are 11 distinct episodes of continental flood basalts known during the past 250 Myr. The data show that flood basalt episodes are generally relatively brief geologic events, with intermittent eruptions during peak output periods lasting ony 2 to 3 Myr or less. Statistical analyses suggest that these episodes may have occurred quasi-periodically with a mean cycle time of 32 + or - 1 Myr. The initiation dates of the flood basalts are close to the estimated dates of marine mass extinctions and impact-crater clusters. Although a purely internal forcing might be argued for the flood basalt volcanism, quasi-periodic comet impacts may be the trigger for both the flood basalts and the extinctions. Impact cratering models suggest that large-body impactors lead to deep initial cratering, and therefore may cause mantle disturbances and initiate mantle plume activity. The flood basalt episodes commonly mark the initiation or jump of a mantle hotspot, and are often followed by continental rifting and separation. Evidence from dynamical studies of impacts, occurrences of craters and hotspots, and the geochemistry of boundary layers is synthesized to provide a possible model of impact-generated volcanism. Flood basalt eruptions may themselves have severe effects on climate, and possibly on life. Impacts might, as a result, have led to mass extinctions through direct atmospheric disturbances, and/or indirectly through prolonged flood basalt volcanism.

  20. Mass extinction in poorly known taxa

    PubMed Central

    Régnier, Claire; Achaz, Guillaume; Lambert, Amaury; Cowie, Robert H.; Bouchet, Philippe; Fontaine, Benoît

    2015-01-01

    Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis. PMID:26056308

  1. Mass extinction in poorly known taxa.

    PubMed

    Régnier, Claire; Achaz, Guillaume; Lambert, Amaury; Cowie, Robert H; Bouchet, Philippe; Fontaine, Benoît

    2015-06-23

    Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis.

  2. Preventing the Next Mass Extinction: Ethical Obligations

    SciTech Connect

    Tonn, Bruce Edward

    2009-11-01

    This paper presents a framework to judge whether we are meeting our ethical responsibilities for preventing massive species extinction. The framework is a generalization from another framework, one that addresses ethical responsibilities related to preventing premature, involuntary human deaths from environmental risks and the extinction of the human race. The resulting ethical risk standards are quite stringent and it is argued that we are nowhere close to meeting any standards, except in the cases of human extinction and extinction of all life on earth, which are met by chance, not by design. Much work is needed to build the 'technology' needed to estimate probabilities associated with massive losses of human life and species extinction over the suggested 1000 year planning horizon.

  3. Ecological selectivity of the emerging mass extinction in the oceans.

    PubMed

    Payne, Jonathan L; Bush, Andrew M; Heim, Noel A; Knope, Matthew L; McCauley, Douglas J

    2016-09-16

    To better predict the ecological and evolutionary effects of the emerging biodiversity crisis in the modern oceans, we compared the association between extinction threat and ecological traits in modern marine animals to associations observed during past extinction events using a database of 2497 marine vertebrate and mollusc genera. We find that extinction threat in the modern oceans is strongly associated with large body size, whereas past extinction events were either nonselective or preferentially removed smaller-bodied taxa. Pelagic animals were victimized more than benthic animals during previous mass extinctions but are not preferentially threatened in the modern ocean. The differential importance of large-bodied animals to ecosystem function portends greater future ecological disruption than that caused by similar levels of taxonomic loss in past mass extinction events.

  4. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    SciTech Connect

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may have persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.

  5. Mass extinctions and cosmic collisions - A lunar test

    NASA Technical Reports Server (NTRS)

    Horz, F.

    1985-01-01

    The possibility has been considered that some or all major mass extinctions in the geologic record of earth are caused by the collision of massive, cosmic objects. Thus, it has been proposed that the unusual concentration of siderophile elements in strata at which the boundary between the Cretaceous (K) and Tertiary (T) geologic time periods has been placed must represent the remnants of a gigantic meteorite. However, a large 65-m.y.-old crater which could have been the result of the impact of this meteorite is not presently known on earth. One approach to evaluate the merits of the collisional hypothesis considered is based on the study of the probability of collision between a cosmic object of a suitable size and the earth. As moon and earth were subject to the same bombardment history and the preservation of craters on the moon is much better than on earth, a consideration of the lunar cratering record may provide crucial information.

  6. Lessons from the past: Biotic recoveries from mass extinctions

    PubMed Central

    Erwin, Douglas H.

    2001-01-01

    Although mass extinctions probably account for the disappearance of less than 5% of all extinct species, the evolutionary opportunities they have created have had a disproportionate effect on the history of life. Theoretical considerations and simulations have suggested that the empty niches created by a mass extinction should refill rapidly after extinction ameliorates. Under logistic models, this biotic rebound should be exponential, slowing as the environmental carrying capacity is approached. Empirical studies reveal a more complex dynamic, including positive feedback and an exponential growth phase during recoveries. Far from a model of refilling ecospace, mass extinctions appear to cause a collapse of ecospace, which must be rebuilt during recovery. Other generalities include the absence of a clear correlation between the magnitude of extinction and the pace of recovery or the resulting ecological and evolutionary disruption the presence of a survival interval, with few originations, immediately after an extinction and preceding the recovery phase, and the presence of many lineages that persist through an extinction event only to disappear during the subsequent recovery. Several recoveries include numerous missing lineages, groups that are found before the extinction, then latter in the recovery, but are missing during the initial survival–recovery phase. The limited biogeographic studies of recoveries suggest considerable variability between regions. PMID:11344285

  7. Conodont index fossil Hindeodus changxingensis Wang fingers greatest mass extinction event

    USGS Publications Warehouse

    Metcalfe, I.; Nicoll, R.S.; Wardlaw, B.R.

    2007-01-01

    The marine conodont fossil species, Hindeodus changxingensis Wang, that has a distinctive morphology, is restricted to a very narrow stratigraphic interval essentially from the Permian-Triassic extinction event through the internationally recognized boundary and into the very earliest Triassic. The species is geographically widespread in the Tethyan Region, from Italy to South China, and serves as a characteristic index fossil to reliably identify this short but critical interval that encompasses the greatest mass extinction of life on earth and the boundary between the Paleozoic and Mesozoic Eras. ?? 2007 Nanjing Institute of Geology and Palaeontology, CAS.

  8. What caused the mass extinction A volcanic eruption

    SciTech Connect

    Courtillot, V.E. )

    1990-10-01

    The authors proposes that dust, carbon dioxide and other emissions from an episode of enormous volcanism that formed the basaltic Deccan Traps in India produced the climate changes that led to the mass extinction at the end of the Cretaceous period. The iridium could, he says, just as easily have risen from the earth's mantle. The sheer size of the Deccan Traps suggests that their formation must have been an important event in the earth's history. An important, unresolved question was whether the data and duration of Deccan volcanism are compatible with the age and thickness of the KT boundary. Until recently the lava samples from the Deccan Traps were thought to range in age from 80 to 30 million years (estimated by measuring the decay of the radioactive isotope potassium 40 in rocks). The author presents data suggesting volcanism could not have lasted much more than one million years and was roughly simultaneous with the extinction at the end of the Cretaceous period.

  9. U/Pb zircon geochronology and tempo of the end-permian mass extinction

    PubMed

    Bowring; Erwin; Jin M W Martin YG; Davidek; Wang

    1998-05-15

    The mass extinction at the end of the Permian was the most profound in the history of life. Fundamental to understanding its cause is determining the tempo and duration of the extinction. Uranium/lead zircon data from Late Permian and Early Triassic rocks from south China place the Permian-Triassic boundary at 251.4 +/- 0.3 million years ago. Biostratigraphic controls from strata intercalated with ash beds below the boundary indicate that the Changhsingian pulse of the end-Permian extinction, corresponding to the disappearance of about 85 percent of marine species, lasted less than 1 million years. At Meishan, a negative excursion in delta13C at the boundary had a duration of 165,000 years or less, suggesting a catastrophic addition of light carbon.

  10. Triassic-Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs.

    PubMed

    Toljagic, Olja; Butler, Richard J

    2013-06-23

    Pseudosuchia, one of the two main clades of Archosauria (Reptilia: Diapsida), suffered a major decline in lineage diversity during the Triassic-Jurassic (TJ) mass extinction (approx. 201 Ma). Crocodylomorpha, including living crocodilians and their extinct relatives, is the only group of pseudosuchians that survived into the Jurassic. We reassess changes in pseudosuchian morphological diversity (disparity) across this time interval, using considerably larger sample sizes than in previous analyses. Our results show that metrics of pseudosuchian disparity did not change significantly across the TJ boundary, contrasting with previous work suggesting low pseudosuchian disparity in the Early Jurassic following the TJ mass extinction. However, a significant shift in morphospace occupation between Late Triassic and Early Jurassic taxa is recognized, suggesting that the TJ extinction of many pseudosuchian lineages was followed by a major and geologically rapid adaptive radiation of crocodylomorphs. This marks the onset of the spectacularly successful evolutionary history of crocodylomorphs in Jurassic and Cretaceous ecosystems.

  11. Signature of the end-Cretaceous mass extinction in the modern biota.

    PubMed

    Krug, Andrew Z; Jablonski, David; Valentine, James W

    2009-02-06

    The long-term effects of mass extinctions on spatial and evolutionary dynamics have been poorly studied. Here we show that the evolutionary consequences of the end-Cretaceous [Cretaceous/Paleogene (K/Pg)] mass extinction persist in present-day biogeography. The geologic ages of genera of living marine bivalves show a significant break from a smooth exponential distribution, corresponding to the K/Pg boundary. The break reflects a permanent increase in origination rates, intermediate between the Mesozoic rate and the post-extinction recovery pulse. This global rate shift is most clearly seen today in tropical bioprovinces and weakens toward the poles. Coupled with the modern geographic distributions of taxa originating before and after the K/Pg boundary, this spatial pattern indicates that tropical origination rates after the K/Pg event have left a permanent mark on the taxonomic and biogeographic structure of the modern biota, despite the complex Cenozoic history of marine environments.

  12. Volcanism, impact and mass extinctions: incredible or credible coincidences?

    NASA Astrophysics Data System (ADS)

    White, Rosalind V.; Saunders, Andrew D.

    2005-02-01

    Massive continental volcanism and/or bolide impacts are considered by many authors to have caused three major mass extinction events during the last 300 million years: the end-Permian, end-Cretaceous and end-Triassic extinctions. However, re-evaluation of the frequency of bolide impacts and plume-related flood basalt provinces indicates that both types of event occur much more frequently than mass extinctions, and so, in isolation, may not be responsible for the largest extinctions. Furthermore, the kill mechanisms associated with either flood basalts or impacts do not appear to be sufficiently powerful to cause worldwide collapse of ecosystems leading to the largest mass extinctions. Contemporaneous flood basalts and bolide impact may be prerequisites for the largest mass extinctions. We present a statistical analysis of the probability of coincidence between volcanism and impact, and show that three random coincidences of these events in the last 300 m.y. are likely. No causal relationship between impact and volcanism is necessary. The lesser mass extinctions, on the other hand, may not require juxtaposition of two such catastrophic events; such coincidences occurring on more than three occasions during the last 300 m.y. become increasingly unlikely.

  13. Cretaceous stem chondrichthyans survived the end-Permian mass extinction.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cavin, Lionel; Cappetta, Henri

    2013-01-01

    Cladodontomorph sharks are Palaeozoic stem chondrichthyans thought to go extinct at the end-Permian mass extinction. This extinction preceded the diversification of euselachians, including modern sharks. Here we describe an outer-platform cladodontomorph shark tooth assemblage from the Early Cretaceous of southern France, increasing the fossil record of this group by circa 120 million years. Identification of this material rests on new histological observations and morphological evidence. Our finding shows that this lineage survived mass extinctions most likely by habitat contraction, using deep-sea refuge environments during catastrophic events. The recorded gap in the cladodontomorph lineage represents the longest gap in the fossil record for an extinct marine vertebrate group. This discovery demonstrates that the deep-sea marine diversity, poorly known during most of the fish evolutionary history, contains essential data for a complete understanding of the long-term evolution of marine fish paleobiodiversity.

  14. Catastrophic Events and Mass Extinctions: Impacts and Beyond

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This volume contains extended abstracts that have been accepted for presentation at the conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, July 9-12, 2000, in Vienna, Austria.

  15. Primate extinction risk and historical patterns of speciation and extinction in relation to body mass.

    PubMed

    Matthews, Luke J; Arnold, Christian; Machanda, Zarin; Nunn, Charles L

    2011-04-22

    Body mass is thought to influence diversification rates, but previous studies have produced ambiguous results. We investigated patterns of diversification across 100 trees obtained from a new Bayesian inference of primate phylogeny that sampled trees in proportion to their posterior probabilities. First, we used simulations to assess the validity of previous studies that used linear models to investigate the links between IUCN Red List status and body mass. These analyses support the use of linear models for ordinal ranked data on threat status, and phylogenetic generalized linear models revealed a significant positive correlation between current extinction risk and body mass across our tree block. We then investigated historical patterns of speciation and extinction rates using a recently developed maximum-likelihood method. Specifically, we predicted that body mass correlates positively with extinction rate because larger bodied organisms reproduce more slowly, and body mass correlates negatively with speciation rate because smaller bodied organisms are better able to partition niche space. We failed to find evidence that extinction rates covary with body mass across primate phylogeny. Similarly, the speciation rate was generally unrelated to body mass, except in some tests that indicated an increase in the speciation rate with increasing body mass. Importantly, we discovered that our data violated a key assumption of sample randomness with respect to body mass. After correcting for this bias, we found no association between diversification rates and mass.

  16. Deccan Volcanism, Chicxulub Impact, Climate Change and the end-Cretaceous Mass Extinction

    NASA Astrophysics Data System (ADS)

    Keller, Gerta; Punekar, Jahnavi; Mateo, Paula; Adatte, Thierry; Spangenberg, Jorge

    2015-04-01

    Age control for Deccan volcanism, associated global climate changes, high-stress conditions and the KTB mass extinction is excellent based on biostratigraphy and corroborated by new U-Pb dating providing new evidence for a complex mass extinction scenario. The massive Deccan eruptions of phase-2 began in the latest Maastrichtian C29r and ended at or near the Cretaceous-Tertiary boundary (KTB) depositing ~3000 m of stacked lava flows or 80% of the total Deccan eruptions over a period of just 250 ky. The onset of phase-2 eruptions coincided with rapid global warming on land (8°C) and oceans (4°C) and increasingly high-stress environments evident by dwarfed species and decreased diversity preceding the mass extinction in planktic foraminiferal zones CF2-CF1. Deep cores in the Krishna-Godavari Basin, SE India, document the rapid mass extinction of planktic foraminifera in intertrappean sediments between four major volcanic eruptions known as the longest lava flows on Earth. Maximum stress is observed globally approaching the end of the Maastrichtian with faunal assemblages dominated (~90%) by the disaster opportunist Guembelitria cretacea. This interval correlates with the massive eruptions of the world's longest lava flows, renewed rapid global warming and ocean acidification during the last ~50 ky of the Maastrichtian. The Chicxulub impact occurred during the global warming near the base of zone CF1 preceding the mass extinction by <100 ky (depending on the time scale used). This age estimate is based on the stratigraphically oldest impact spherule layer in NE Mexico, Texas, and Yucatan crater core Yaxcopoil-1. In all other regions (e.g., North Atlantic, Caribbean, Belize, Guatemala, southern Mexico) impact spherules are reworked in early Danian sediments (zone P1a) at least 100 ky after the KTB due to Gulf Stream erosion and increased tectonic activity in the region. No species extinctions are associated with the Chicxulub impact. Any KTB mass extinction scenario

  17. Chicxulub impact, climate changes and mass-extinctions

    NASA Astrophysics Data System (ADS)

    Smit, J.

    2010-03-01

    The mass-extinctions at the Cretaceous-Paleogene boundary (K/PgB) are probably caused by environmental changes induced by the Chicxulub impact on the Yucatan peninsula. Even so, at least three other impacts of similar size must have taken place in the Phanerozoic. Yet after 30 years of intensive search, the connection between impact and extinction has remained largely speculative. What is so special about the Chicxulub impact? Or are the mass-extinctions due to a fortuitous concurrence of Deccan traps volcanism, sealevel changes and multiple impacts? We explore the last, complex, scenario first. The exact stratigraphic succession across K/PgB must be known in detail before the role of each of the components can be assessed. The Deccan traps began to extrude about 0.6-0.7My before K/Pg, based on marine Os isotopes (Ravizza, 2003). The Deccan traps may have led to a temperature increase in the deep south Atlantic, but surface waters were unaffected. In the last 3.8myr of the Maastrichtian, planktic foraminiferal faunas remain extremely diverse (>70 species). Only one species disappears and two appear. If ocean surface temperatures in this period had changed as consequence of the Deccan trap extrusions, it should have been visible as a change in diversity of planktic species. None has been observed before the K/PgB. Sealevel changes have been invoked (Gale, 2008) as cause for mass-extinctions at K/Pg. The sedimentology of the late Maastrichtian in shallow marine sequences in the US Gulf coast, Denmark, Holland and Spain, provides conflicting sequence stratigraphic interpretations. In the Maastrichtian type section in the ENCI quarry and Denmark (Stevns) a pronounced shallowing is documented in the last 0.3ma of the Maastrichtian, while in the Zumaya section the temporary disappearance of ammonite shells suggests the opposite: a deepening at 0.25ma followed by shallowing at 40ky before K/PgB. A well defined Sequence Boundary occurs about 0.1 my after the K/PgB, in the

  18. Rapid recovery from the Late Ordovician mass extinction

    NASA Technical Reports Server (NTRS)

    Krug, A. Z.; Patzkowsky, M. E.

    2004-01-01

    Understanding the evolutionary role of mass extinctions requires detailed knowledge of postextinction recoveries. However, most models of recovery hinge on a direct reading of the fossil record, and several recent studies have suggested that the fossil record is especially incomplete for recovery intervals immediately after mass extinctions. Here, we analyze a database of genus occurrences for the paleocontinent of Laurentia to determine the effects of regional processes on recovery and the effects of variations in preservation and sampling intensity on perceived diversity trends and taxonomic rates during the Late Ordovician mass extinction and Early Silurian recovery. After accounting for variation in sampling intensity, we find that marine benthic diversity in Laurentia recovered to preextinction levels within 5 million years, which is nearly 15 million years sooner than suggested by global compilations. The rapid turnover in Laurentia suggests that processes such as immigration may have been particularly important in the recovery of regional ecosystems from environmental perturbations. However, additional regional studies and a global analysis of the Late Ordovician mass extinction that accounts for variations in sampling intensity are necessary to confirm this pattern. Because the record of Phanerozoic mass extinctions and postextinction recoveries may be compromised by variations in preservation and sampling intensity, all should be reevaluated with sampling-standardized analyses if the evolutionary role of mass extinctions is to be fully understood.

  19. Mass extinctions caused by large bolide impacts

    SciTech Connect

    Alvarez, L.W.

    1987-07-01

    Evidence indicates that the collision of Earth and a large piece of Solar System derbris such as a meteoroid, asteroid or comet caused the great extinctions of 65 million years ago, leading to the transition from the age of the dinosaurs to the age of the mammals.

  20. Background and mass extinctions: the alternation of macroevolutionary regimes.

    PubMed

    Jablonski, D

    1986-01-10

    Comparison of evolutionary patterns among Late Cretaceous marine bivalves and gastropods during times of normal, background levels of extinction and during the end-Cretaceous mass extinction indicates that mass extinctions are neither an intensification of background patterns nor an entirely random culling of the biota. During background times, traits such as planktotrophic larval development, broad geographic range of constituent species, and high species richness enhanced survivorship of species and genera. In contrast, during the, end-Cretaceous and other mass extinctions these factors were ineffectual, but broad geographic deployment of an entire lineage, regardless of the ranges of its constituent species, enhanced survivorship. Large-scale evolutionary patterns are evidently shaped by the alternation of these two macroevolutionary regimes, with rare but important mass extinctions driving shifts in the composition of the biota that have little relation to success during the background regime. Lineages or adaptations can be lost during mass extinctions for reasons unrelated to their survival values for organisms or species during background times, and long-term success would require the chance occurrence within a single lineage of sets of traits conducive to survivorship under both regimes.

  1. Mass extinctions and the sun's encounters with spiral arms

    NASA Astrophysics Data System (ADS)

    Leitch, Erik M.; Vasisht, Gautam

    1998-02-01

    The terrestrial fossil record shows that the exponential rise in biodiversity since the Precambrian period has been punctuated by large extinctions, at intervals of 40 to 140 Myr. These mass extinctions represent extremes over a background of smaller events and the natural process of species extinction. We point out that the non-terrestrial phenomena proposed to explain these events, such as boloidal impacts (a candidate for the end-Cretaceous extinction) and nearby supernovae, are collectively far more effective during the solar system's traversal of spiral arms. Using the best available data on the location and kinematics of the Galactic spiral structure (including distance scale and kinematic uncertainties), we present evidence that arm crossings provide a viable explanation for the timing of the large extinctions.

  2. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  3. Did Deccan Volcanism or the Chicxulub Impact Cause the K-T Mass Extinction?

    NASA Astrophysics Data System (ADS)

    Keller, G.; Reddy, A. N.; Jaiprakash, B. C.; Gertsch, B.; Adatte, T.; Upadhyay, H.; Bhowmick, P. K.; Pande, D. K.

    2008-12-01

    It is generally believed that the Chicxulub impact caused the Cretaceous-Tertiary (K-T) mass extinction. However, strong evidence from Mexico and Texas shows that this impact predates the K-T boundary and caused no species extinctions or any other significant environmental effects (Keller et al., 2003, 2007). The Chicxulub impact and K-T mass extinction are thus two separate and unrelated events and the biotic effects of this impact have been vastly overestimated. The real cause for the K-T mass extinction may now have been discovered in the Deccan volcanic eruptions of India. Recent discoveries reveal Deccan volcanism as the most likely cause for the K-T mass extinction for several reasons detailed in Chenet et al. (2007), Keller et al. (2008) and Self et al. (2008): (1) The main phase of Deccan Trap eruptions may have occurred over as little as 10,000 to 100,000 years. (2) The K-T mass extinction coincides with the end of this main phase of volcanism. (3) The longest lava flows (megaflows), spanning 1000 km across India and out to the Gulf of Bengal, mark this phase of Deccan volcanism and the mass extinction. (4) SO2 emissions associated with just one of these major volcanic pulses, or megaflows, are on the order of SO2 emissions estimated from the Chicxulub impact. (5) The total SO2 emissions during the main phase of Deccan volcanism are estimated at 30 to 100 times that of the Chicxulub impact. Thus, the short duration of volcanism and the repeated massive SO2 injections may have caused a deadly runaway effect that lead to the K-T mass extinction. Critical new data on the K-T mass extinction comes from investigations of Deccan Traps outcrops at Jhilmili, Madhya Pradesh, central India, quarry outcrops in Rajahmundry and subsurface cores drilled in the Krishna-Godavari Basin, eastern India, by the Oil and Natural Gas Corporation of India (ONGC). In eight subsurface cores examined, a total of 9 volcanic megaflows have been identified as occurring in very rapid

  4. Morphological disparity of ammonoids and the mark of Permian mass extinctions.

    PubMed

    Villier, Loïc; Korn, Dieter

    2004-10-08

    The taxonomic diversity of ammonoids, in terms of the number of taxa preserved, provides an incomplete picture of the extinction pattern during the Permian because of a strongly biased fossil record. The analysis of morphological disparity (the variety of shell shapes) is a powerful complementary tool for testing hypotheses about the selectivity of extinction and permits the recognition of three distinct patterns. First, a trend of decreasing disparity, ranging for about 30 million years, led to a minimum disparity immediately before the Permian-Triassic boundary. Second, the strongly selective Capitanian crisis fits a model of background extinction driven by standard environmental changes. Third, the end-Permian mass extinction operated as a random, nonselective sorting of morphologies, which is consistent with a catastrophic cause.

  5. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction.

    PubMed

    Finnegan, Seth; Rasmussen, Christian M Ø; Harper, David A T

    2016-04-27

    The Late Ordovician mass extinction (LOME) coincided with dramatic climate changes, but there are numerous ways in which these changes could have driven marine extinctions. We use a palaeobiogeographic database of rhynchonelliform brachiopods to examine the selectivity of Late Ordovician-Early Silurian genus extinctions and evaluate which extinction drivers are best supported by the data. The first (latest Katian) pulse of the LOME preferentially affected genera restricted to deeper waters or to relatively narrow (less than 35°) palaeolatitudinal ranges. This pattern is only observed in the latest Katian, suggesting that it reflects drivers unique to this interval. Extinction of exclusively deeper-water genera implies that changes in water mass properties such as dissolved oxygen content played an important role. Extinction of genera with narrow latitudinal ranges suggests that interactions between shifting climate zones and palaeobiogeography may also have been important. We test the latter hypothesis by estimating whether each genus would have been able to track habitats within its thermal tolerance range during the greenhouse-icehouse climate transition. Models including these estimates are favoured over alternative models. We argue that the LOME, long regarded as non-selective, is highly selective along biogeographic and bathymetric axes that are not closely correlated with taxonomic identity.

  6. Mass extinction events and the plant fossil record.

    PubMed

    McElwain, Jennifer C; Punyasena, Surangi W

    2007-10-01

    Five mass extinction events have punctuated the geological record of marine invertebrate life. They are characterized by faunal extinction rates and magnitudes that far exceed those observed elsewhere in the geological record. Despite compelling evidence that these extinction events were probably driven by dramatic global environmental change, they were originally thought to have little macroecological or evolutionary consequence for terrestrial plants. New high-resolution regional palaeoecological studies are beginning to challenge this orthodoxy, providing evidence for extensive ecological upheaval, high species-level turnover and recovery intervals lasting millions of years. The challenge ahead is to establish the geographical extent of the ecological upheaval, because reconstructing the vegetation dynamics associated with these events will elucidate the role of floral change in faunal mass extinction and provide a better understanding of how plants have historically responded to global environmental change similar to that anticipated for our future.

  7. Community stability and selective extinction during the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2015-10-01

    The fossil record contains exemplars of extreme biodiversity crises. Here, we examined the stability of terrestrial paleocommunities from South Africa during Earth's most severe mass extinction, the Permian-Triassic. We show that stability depended critically on functional diversity and patterns of guild interaction, regardless of species richness. Paleocommunities exhibited less transient instability—relative to model communities with alternative community organization—and significantly greater probabilities of being locally stable during the mass extinction. Functional patterns that have evolved during an ecosystem's history support significantly more stable communities than hypothetical alternatives.

  8. Community stability and selective extinction during the Permian-Triassic mass extinction.

    PubMed

    Roopnarine, Peter D; Angielczyk, Kenneth D

    2015-10-02

    The fossil record contains exemplars of extreme biodiversity crises. Here, we examined the stability of terrestrial paleocommunities from South Africa during Earth's most severe mass extinction, the Permian-Triassic. We show that stability depended critically on functional diversity and patterns of guild interaction, regardless of species richness. Paleocommunities exhibited less transient instability—relative to model communities with alternative community organization—and significantly greater probabilities of being locally stable during the mass extinction. Functional patterns that have evolved during an ecosystem's history support significantly more stable communities than hypothetical alternatives.

  9. Controls on body size during the Late Permian mass extinction event.

    PubMed

    He, W-H; Twitchett, R J; Zhang, Y; Shi, G R; Feng, Q-L; Yu, J-X; Wu, S-B; Peng, X-F

    2010-12-01

    This study examines the morphological responses of Late Permian brachiopods to environmental changes. Quantitative analysis of body size data from Permian-Triassic brachiopods has demonstrated significant, directional changes in body size before, during and after the Late Permian mass extinction event. Brachiopod size significantly reduced before and during the extinction interval, increased for a short time in more extinction-resistant taxa in the latter stages of extinction and then dramatically reduced again across the Permian/Triassic boundary. Relative abundances of trace elements and acritarchs demonstrate that the body size reductions which happened before, during and after extinction were driven by primary productivity collapse, whereas declining oxygen levels had less effect. An episode of size increase in two of the more extinction-resistant brachiopod species is unrelated to environmental change and possibly was the result of reduced interspecific competition for resources following the extinction of competitors. Based on the results of this study, predictions can be made for the possible responses of modern benthos to present-day environmental changes.

  10. A scale of greatness and causal classification of mass extinctions: Implications for mechanisms

    PubMed Central

    Şengör, A. M. Celâl; Atayman, Saniye; Özeren, Sinan

    2008-01-01

    A quantitative scale for measuring greatness, G, of mass extinctions is proposed on the basis of rate of biodiversity diminution expressed as the product of the loss of biodiversity, called magnitude (M), and the inverse of time in which that loss occurs, designated as intensity (I). On this scale, the catastrophic Cretaceous–Tertiary (K-T) extinction appears as the greatest since the Ordovician and the only one with a probable extraterrestrial cause. The end-Permian extinction was less great but with a large magnitude (M) and smaller intensity (I); only some of its individual episodes involved some semblance of catastrophe. Other extinctions during the Phanerozoic, with the possible exception of the end-Silurian diversity plunge, were parts of a forced oscillatory phenomenon and seem caused by marine- and land-habitat destruction during continental assemblies that led to elimination of shelves and (after the Devonian) rain forests and enlargement of deserts. Glaciations and orogenies that shortened and thickened the continental crust only exacerbated these effects. During the Mesozoic and Cainozoic, the evolution of life was linearly progressive, interrupted catastrophically only at the K-T boundary. The end-Triassic extinction was more like the Paleozoic extinctions in nature and probably also in its cause. By contrast, the current extinction resembles none of the earlier ones and may end up being the greatest of all. PMID:18779562

  11. Impact-driven ocean acidification as a mechanism of the Cretaceous-Palaeogene mass extinction

    NASA Astrophysics Data System (ADS)

    Ohno, S.; Kadono, T.; Kurosawa, K.; Hamura, T.; Sakaiya, T.; Shigemori, K.; Hironaka, Y.; Sano, T.; Watari, T.; Otani, K.; Matsui, T.; Sugita, S.

    2014-12-01

    The Cretaceous-Paleogene (K-Pg) mass extinction event at 66 Ma triggered by a meteorite impact is one of the most drastic events in the history of life on the Earth. Many hypotheses have been proposed as killing mechanisms induced by the impact, including global darkness due to high concentrations of atmospheric silicate dust particles, global wildfires, greenhouse warming due to CO2 release, and global acid rain. However, the actual mechanism of extinction remains highly controversial. One of the most important clues for understanding the extinction mechanism is the marine plankton record, which indicates that plankton foraminifera, living in the near-surface ocean, suffered very severe extinction in contrast to the high survival ratio of benthic foraminifera. No proposed extinction mechanism can account for this globally observed marine extinction pattern. Here, we show that SO3-rich impact vapor was released in the K-Pg impact and resulted in the occurrence of global acid rain and sudden severe ocean acidification at the end of the Cretaceous, based on the new results of impact experiments at velocities much higher than previous works (> 10 km/s) and theoretical calculations on aerosol coagulation processes. Sudden severe ocean acidification can account for many of the features of various geologic records at the K?Pg boundary, including severe extinction of plankton foraminifera. This extinction mechanism requires impact degassing of SO3-rich vapor, which is not necessarily found at impact sites other than Chicxulub, suggesting that the degree of mass extinction was controlled greatly by target lithology.

  12. Impact theory of mass extinctions and the invertebrate fossil record

    SciTech Connect

    Alvarez, W.; Kauffman, E.G.; Surlyk, F.; Alvarez, L.W.; Asaro, F.; Michel, H.V.

    1984-03-16

    There is much evidence that the Cretaceous-Tertiary boundary was marked by a massive meteorite impact. Theoretical consideration of the consequences of such an impact predicts sharp extinctions in many groups of animals precisely at the boundary. Paleontological data clearly show gradual declines in diversity over the last 1 to 10 million years in various invertebrate groups. Reexamination of data from careful studies of the best sections shows that, in addition to undergoing the decline, four groups (ammonites, cheilostomate bryozoans, brachiopods, and bivalves) were affected by sudden truncations precisely at the iridium anomaly that marks the boundary. The paleontological record thus bears witness to terminal-Cretaceous extinctions on two time scales: a slow decline unrelated to the impact and a sharp truncation synchronous with and probably caused by the impact. 50 references, 4 figures.

  13. Late Frasnian mass extinction: Conodont event stratigraphy, global changes, and possible causes

    NASA Technical Reports Server (NTRS)

    Sandberg, Charles A.; Ziegler, Willi; Dreesen, Roland; Butler, Jamie L.

    1988-01-01

    Several abrupt changes in conodont biofacies are documented to occur synchronously at six primary control sections across the Frasnian-Famennian boundary in Euramerica. These changes occurred within a time-span of only about 100,000 years near the end of the latest Frasnian linguiformis Zone, which is formally named to replace the Uppermost gigas Zone. The conodont-biofacies changes are interpreted to reflect a eustatic rise followed by an abrupt eustatic fall immediately preceding the late Frasnian mass extinction. Two new conodont species are named and described. Ancyrognathus ubiquitus n.sp. is recorded only just below and above the level of late Frasnian extinction and hence is a global marker for that event. Palmatolepispraetriangularis n.sp. is the long-sought Frasnian ancestor of the formerly cryptogenic species, Pa. triangularis, indicator of the earliest Famennian Lower triangularis Zone. The actual extinction event occurred entirely within the Frasnian and is interpreted to have been of brief duration-from as long as 20,000 years to as short as several days. The eustatic rise-and-fall couplet associated with the late Frasnian mass extinction is similar to eustatic couplets associated with the demise of most Frasnian (F2h) reefs worldwide about 1 m.y. earlier and with a latest Famennian mass extinction about 9.5 m.y. later. All these events may be directly or indirectly attributable to extraterrestrial triggering mechanisms. An impact of a small bolide or a near miss of a larger bolide may have caused the earlier demise of Frasnian reefs. An impact of possibly the same larger bolide in the Southern Hemisphere would explain the late Frasnian mass extinction. Global regression during the Famennian probably resulted from Southern-Hemisphere glaciation triggered by the latest Frasnian impact. Glaciation probably was the indirect cause of the latest Famennian mass extinction.

  14. Shallow marine ecosystem feedback to the Permian/Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Wang, Yongbiao; Meng, Zheng; Liao, Wei; Weng, Zeting; Yang, Hao

    2011-03-01

    Late Permian reefs developed widely on shallow marine carbonate platforms in South China but disappeared far below the main mass extinction level of the latest Permian. The collapse of reef ecosystem may be related to the enhanced volcanism at the end of Late Permian. Notably, some colony corals and reef-building sponges were found to occur near the mass extinction boundary, inferring the eclipse of reef ecosystem is ahead of the disappearance of reef-building organisms, and the triggers would be present long before the main mass extinction. As the primary producers, the calcareous algae are rich in platform limestones of Late Permian and played a very important role in maintaining the shallow benthic ecosystems. The calcareous algae were found to disappear synchronously with the great reduction of foraminifers, which were ecologically associated with these algae. The extinction of Late Permian calcareous algae greatly reduced the biodiversity of primary producers in the shallow marine environment and destroyed in part the structure and the base of the shallow marine ecosystems, which in turn cause the extinction of ecologically associated metazoan. Microbialites developed on carbonate platforms immediately after the end-Permian mass extinction, representing a simple and unique microbial ecosystem. Widespread occurrence of microbialites symbolized the deterioration of marine environmental conditions and the dramatic revolution of marine ecosystems. As the new primary producers instead of the extinguished calcareous algae, cyanobacteria in the microbialites were an important base of this peculiar ecosystem and contributed greatly to the survival of the remnant faunas after the mass extinction. Widespread occurrence of microbialites in shallow marine environment is suggested to be related to the elevated level of volcanism-induced greenhouse gases and enhanced evaporation and hypersaline condition in addition to the decrease of metazoan grazing pressure. The change

  15. Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy.

    PubMed

    Foster, William J; Danise, Silvia; Price, Gregory D; Twitchett, Richard J

    2017-01-01

    The late Permian mass extinction event was the largest biotic crisis of the Phanerozoic and has the longest recovery interval of any extinction event. It has been hypothesised that subsequent carbon isotope perturbations during the Early Triassic are associated with biotic crises that impeded benthic recovery. We test this hypothesis by undertaking the highest-resolution study yet made of the rock and fossil records of the entire Werfen Formation, Italy. Here, we show that elevated extinction rates were recorded not only in the Dienerian, as previously recognised, but also around the Smithian/Spathian boundary. Functional richness increases across the Smithian/Spathian boundary associated with elevated origination rates in the lower Spathian. The taxonomic and functional composition of benthic faunas only recorded two significant changes: (1) reduced heterogeneity in the Dienerian, and (2) and a faunal turnover across the Smithian/Spathian boundary. The elevated extinctions and compositional shifts in the Dienerian and across the Smithian/Spathian boundary are associated with a negative and positive isotope excursion, respectively, which supports the hypothesis that subsequent biotic crises are associated with carbon isotope shifts. The Spathian fauna represents a more advanced ecological state, not recognised in the previous members of the Werfen Formation, with increased habitat differentiation, a shift in the dominant modes of life, appearance of stenohaline taxa and the occupation of the erect and infaunal tiers. In addition to subsequent biotic crises delaying the recovery, therefore, persistent environmental stress limited the ecological complexity of benthic recovery prior to the Spathian.

  16. Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy

    PubMed Central

    Danise, Silvia; Price, Gregory D.; Twitchett, Richard J.

    2017-01-01

    The late Permian mass extinction event was the largest biotic crisis of the Phanerozoic and has the longest recovery interval of any extinction event. It has been hypothesised that subsequent carbon isotope perturbations during the Early Triassic are associated with biotic crises that impeded benthic recovery. We test this hypothesis by undertaking the highest-resolution study yet made of the rock and fossil records of the entire Werfen Formation, Italy. Here, we show that elevated extinction rates were recorded not only in the Dienerian, as previously recognised, but also around the Smithian/Spathian boundary. Functional richness increases across the Smithian/Spathian boundary associated with elevated origination rates in the lower Spathian. The taxonomic and functional composition of benthic faunas only recorded two significant changes: (1) reduced heterogeneity in the Dienerian, and (2) and a faunal turnover across the Smithian/Spathian boundary. The elevated extinctions and compositional shifts in the Dienerian and across the Smithian/Spathian boundary are associated with a negative and positive isotope excursion, respectively, which supports the hypothesis that subsequent biotic crises are associated with carbon isotope shifts. The Spathian fauna represents a more advanced ecological state, not recognised in the previous members of the Werfen Formation, with increased habitat differentiation, a shift in the dominant modes of life, appearance of stenohaline taxa and the occupation of the erect and infaunal tiers. In addition to subsequent biotic crises delaying the recovery, therefore, persistent environmental stress limited the ecological complexity of benthic recovery prior to the Spathian. PMID:28296886

  17. A unified theory of impact crises and mass extinctions: quantitative tests.

    PubMed

    Rampino, M R; Haggerty, B M; Pagano, T C

    1997-05-30

    Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing, large-scale environmental disasters, predict the impacts of objects > or = 5 km in diameter (> or = 10(7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of > or = 10 km in diameter (> or = 10(8) Mt events). Smaller impacts (approximately 10(6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities, and several well-dated large impact craters, also suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of approximately 100 km diameter, smaller impacts being capable of only relatively weak extinction pulses. Single impact craters less than approximately 60 km in diameter should not be associated with detectable global extinction pulses (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species

  18. Middle-Late Permian mass extinction on land

    SciTech Connect

    Retallack, G.J.; Metzger, C.A.; Greaver, T.; Jahren, A.H.; Smith, R.M.H.; Sheldon, N.D.

    2006-11-15

    The end-Permian mass extinction has been envisaged as the nadir of biodiversity decline due to increasing volcanic gas emissions over some 9 million years. We propose a different tempo and mechanism of extinction because we recognize two separate but geologically abrupt mass extinctions on land, one terminating the Middle Permian (Guadalupian) at 260.4 Ma and a later one ending the Permian Period at 251 Ma. Our evidence comes from new paleobotanical, paleopedological, and carbon isotopic studies of Portal Mountain, Antarctica, and comparable studies in the Karoo Basin, South Africa. Extinctions have long been apparent among marine invertebrates at both the end of the Guadalupian and end of the Permian, which were also times of warm-wet greenhouse climatic transients, marked soil erosion, transition from high- to low-sinuosity and braided streams, soil stagnation in wetlands, and profound negative carbon isotope anomalies. Both mass extinctions may have resulted from catastrophic methane outbursts to the atmosphere from coal intruded by feeder dikes to flood basalts, such as the end-Guadalupian Emeishan Basalt and end-Permian Siberian Traps.

  19. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling.

    PubMed

    Berner, Robert A

    2002-04-02

    The biological extinction that occurred at the Permian-Triassic boundary represents the most extensive loss of species of any known event of the past 550 million years. There have been a wide variety of explanations offered for this extinction. In the present paper, a number of the more popular recent hypotheses are evaluated in terms of predictions that they make, or that they imply, concerning the global carbon cycle. For this purpose, a mass balance model is used that calculates atmospheric CO2 and oceanic delta13C as a function of time. Hypotheses considered include: (i) the release of massive amounts of CO2 from the ocean to the atmosphere resulting in mass poisoning; (ii) the release of large amounts of CO2 from volcanic degassing; (iii) the release of methane stored in methane hydrates; (iv) the decomposition and oxidation of dead organisms to CO2 after sudden mass mortality; and (v) the long-term reorganization of the global carbon cycle. The modeling indicates that measured short-term changes in delta13C at the boundary are best explained by methane release with mass mortality and volcanic degassing contributing in secondary roles. None of the processes result in excessively high levels of atmospheric CO2 if they occurred on time scales of more than about 1,000 years. The idea of poisoning by high levels of atmospheric CO2 depends on the absence of subthermocline calcium carbonate deposition during the latest Permian. The most far-reaching effect was found to be reorganization of the carbon cycle with major sedimentary burial of organic matter shifting from the land to the sea, resulting in less burial overall, decreased atmospheric O2, and higher atmospheric CO2 for the entire Triassic Period.

  20. Timing and magnitude of tetrapod extinctions across the Permo-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Lucas, Spencer G.

    2009-11-01

    A review of the tetrapod (amphibian and amniote) record across the Permo-Triassic boundary (PTB) indicates a global evolutionary turnover of tetrapods close to the PTB. There is also a within-Guadalupian tetrapod extinction here called the dinocephalian extinction event, probably of global extent. The dinocephalian extinction event is a late Wordian or early Capitanian extinction based on biostratigraphic data and magnetostratigraphy (the extinction precedes the Illawara reversal), so it is not synchronous with the end-Guadalupian marine extinction. The Russian PTB section documents two tetrapod extinction events, one just before the dinocephalian extinction event and the other at the base of the Lystrosaurus assemblage. However, generic diversity across the latter extinction remains essentially the same despite a total evolutionary turnover of tetrapod genera. The Chinese and South African sections document the stratigraphic overlap of Dicynodon and Lystrosaurus. In the Karoo basin, the lowest occurrence of Lystrosaurus is in a stratigraphic interval of reversed magnetic polarity, which indicates it predates the marine-defined PTB, so, as previously suggested by some workers, the lowest occurrence of Lystrosaurus cannot be used to identify the PTB in nonmarine strata. Correlation of the marine PTB section at Meishan, southern China, to the Karoo basin based primarily on magnetostratigraphy indicates that the main marine extinction preceded the PTB tetrapod extinction event. The ecological severity of the PTB tetrapod extinction event has generally been overstated, and the major change in tetrapod assemblages that took place across the PTB was the prolonged and complex "replacement" of therapsids by archosaurs that began before the end of the Permian and was not complete until well into the Triassic. The tetrapod extinctions are not synchronous with the major marine extinctions at the end of the Guadalupian and just before the end of the Permian, so the idea of

  1. Effect of environmental variables on body size evolution of crinoids between periods of mass extinctions

    NASA Astrophysics Data System (ADS)

    Jani, T.; Heim, N. A.; Payne, J.

    2013-12-01

    Body size plays a major role in determining whether or not an organism can sustain in its local environment. The ecosystem of an animal has a major effect on the fitness of organisms, and it would be interesting to note the degree to which various environmental factors alter body size. In my project, I identify three environmental factors that seem to affect body size of crinoids, marine invertebrates from phylum Echinodermata, and explore how these variables play out in the intervals between the five mass extinctions. The particular factors I study include atmospheric CO2 concentration (proxy for temperature), O2 concentration, and sea level. Although the r and p values for all of these factors were statistically insignificant to definitively make any correlation, there was a visual correlation. For O2, I noted a generally positive correlation with body size over time. CO2 trends suggested a negative correlation until the K-T boundary, but a positive correlation afterwards. Correlation with sea level was a little more complicated: correlation was positive from the start of the Phanerozoic to the Permian extinction; it turned negative until the Cretaceous-Tertiary boundary; afterwards, it again became positive. However, for all three variables, statistical values are too low to say definitively mark any correlation. Out of all three factors, CO2 levels had the highest correlation and lowest p-values in the most time intervals: from the start of the Phanerozoic to Ordovician-Silurian Extinction, from the Late Devonian to the Permian Extinction, and from the Cretaceous-Tertiary boundary to the present. When considering first differences, CO2 levels also had the highest correlation from the Permian Extinction to Triassic-Jurassic Extinction and from the Triassic-Jurassic Extinction to Cretaceous-Tertiary Extinction. Using PaleoTS, I found that body size evolution patterns either seemed to follow either an unbiased random walk (URW) or stasis in the intervals between

  2. A multi-proxy approach to decode the end-Cretaceous mass extinction

    NASA Astrophysics Data System (ADS)

    Punekar, Jahnavi; Keller, Gerta; Khozyem, Hassan; Adatte, Thierry; Font, Eric; Spangenberg, Jorge

    2015-04-01

    The Cretaceous-Tertiary boundary (KTB) mass extinction may have involved a complex array of interrelated causes that are best evaluated by a multi-proxy approach. This study evaluates the environmental changes during the Plummerita hantkeninoides zone CF1 leading up to the extinction using planktic foraminifera, carbonate dissolution effects, stable isotopes, and magnetic susceptibility for sedimentary sequences in France (Bidart), Austria (Gamsbach) and Tunisia (Elles). Results show higher abundance (20-30%) and diversity (~15 species) of globotruncanids in planktic foraminiferal assemblages at Bidart and Gamsbach (deep water deposits) than at Elles (abundance <10%, diversity <10%, middle shelf deposits). Oxygen isotopes in zone CF1 of Elles record rapid climate warming followed by cooling and a return to rapid warming during the last 10 kyr prior to the mass extinction. The onset of the mass extinction crisis is observed in the top 50-60 cm below the KTB at Bidart and Gamsbach, and in the top ~4.5 m at Elles due to much higher sediment accumulation rates. These intervals record low magnetic susceptibility and high foraminiferal test fragmentation index (FI) and increased abundance of species with dissolution-resistant morphologies. The correlative interval in India records significantly stronger carbonate dissolution effects in intertrappean sediments between the longest lava flows, ending with the mass extinction. Based on current evidence, carbonate dissolution follows the first warming event and may be linked to ocean acidification as a result of massive Deccan volcanism. The estimated 12,000-28,000 Gigatons (Gt) of CO2 and 5200-13,600 Gt of SO2 introduced into the atmosphere likely triggered the carbonate crisis in the oceans. This could have resulted in severe stress for marine calcifiers and led to the mass extinction.

  3. Early Triassic stromatolites as post-mass extinction disaster forms

    SciTech Connect

    Schubert, J.K.; Bottjer, D.J. )

    1992-10-01

    Aftermaths of mass extinctions have been thought to be characterized by relaxation of ecological constraints accompanied by increased prominence of opportunistic generalists. Such taxa, termed 'disaster forms,' have been shown to increase dramatically in range and abundance after several mass extinction events. The Cambrian-Ordovician stromatolite decline in normal-marine level-bottom environments has been explained as a direct or indirect consequence of increases in ecological constraints, such as greater levels of predation and/or bioturbation of microbial communities, caused by early Paleozoic benthic invertebrate evolution and diversification. Thus, one would predict that in post-Ordovician strata, stromatolites might appear in normal-marine level-bottom environments as disaster forms in the aftermaths of mass extinction particularly devastating to the benthic biota, such as during Early Triassic time. Mounded stromatolites are present in two beds (up to 1.5 m thick) of the Lower Triassic (Spathian) Virgin Limestone Member (Moenkopi Formation) in the southwestern Spring Mountains of Nevada. Stromatolites from level-bottom normal-marine subtidal environments have also been described from other Lower Triassic strata in North America, Europe, and Asia. These stromatolites, unusual in level-bottom normal-marine settings, may have developed locally during the long aftermath (4-5 m.y.) of the Permian-Triassic mass extinction because of partial relaxation of the ecological constraints that typically restricted them from unstressed subtidal, normal-marine, level-bottom environments.

  4. Oceanic Anoxia and the End Permian Mass Extinction

    PubMed

    Wignall; Twitchett

    1996-05-24

    Data on rocks from Spitsbergen and the equatorial sections of Italy and Slovenia indicate that the world's oceans became anoxic at both low and high paleolatitudes in the Late Permian. Such conditions may have been responsible for the mass extinction at this time. This event affected a wide range of shelf depths and extended into shallow water well above the storm wave base.

  5. Volcanism and related Environmental changes linked to Late Maastrichtian High Stress and KT Mass Extinction

    NASA Astrophysics Data System (ADS)

    Keller, Gerta; Adatte, Thierry

    2010-05-01

    Near the end of the Maastrichtian Earth was hit by a confluence of catastrophes ranging from impacts to some of the most devastating volcanic eruptions coupled with major changes in climate, sea level and ocean chemistry that ultimately led to the Cretaceous-Tertiary boundary (KTB) mass extinction. For three decades this mass extinction has been commonly attributed to the sole kill-effect of the Chicxulub impact on Yucatan. Multi-disciplinary evidence (paleontologic, stratigraphic, sedimentologic geochemical) from the Yucatan impact crater to sections in Mexico and Texas revealed that this impact predates the KTB and caused no mass extinction. Recent studies reveal that the most devastating Deccan volcanic eruptions in India occurred near the end of the Maastrichtian and ended coincident with the KT mass extinction (Keller et al., 2008). Examination of biotic stress in the marine realm leading up to the KT mass extinction reveals times of environmental stresses associated with volcanism, greenhouse warming, mesotrophic basins and shallow marginal settings from the Tethys Ocean to the South Atlantic and Indian Oceans (Keller and Abramovich, 2009). Biotic stress conditions vary with the degree of environmental change and range from intraspecies size reduction, to loss of diversity and ultimately mass extinction. No significant biotic stress was observed in assemblages before and after the Chicxulub impact identified by a layer of impact spherules in late Maastrichtian sediments of zone CF1 predating the KTB in Mexico and Texas (Keller et al., 2009b,c). Maximum biotic stress leading to the KT mass extinction is associated with Deccan volcanism in India near the end of the Maastrichtian. This suggests that the mass extinction was likely a direct cause of Deccan volcanism, although the presence of a major Ir anomaly at the KTB does not rule out the possibility of a second major bolide impact exacerbating already catastrophic conditions. Keller, G., Adatte, T., Gardin, S

  6. The role of Deccan volcanism during the K-T mass extinction

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Gertsch, B.

    2012-12-01

    The potential role of major volcanic provinces has long been neglected as potential cause for major mass extinctions in Earth's history. This is despite the fact that volcanic activity is implicated in four of the five Phanerozoic mass extinctions, whereas a large asteroid impact is only associated with the K-T mass extinction. After 28 years of nearly unchallenged perception that a large impact (Chicxulub) on Yucatan caused the end-Cretaceous mass extinction, this theory is facing its most serious challenge from Deccan volcanism in India. Recent advances in Deccan volcanic studies show that Deccan Trap volcanism began with a relatively minor eruption phase (~6% of total volume) during the late Maastrichtian magnetic polarity C30n. The main eruption phase (~80%) occurred over a short period in C29r just below the Cretaceous-Tertiary boundary (KTB) and the last Deccan phase (~14%) erupted in the early Danian C29n. Multiproxy studies from sections in Meghalaya (NE India), Jhilmili in central India (Madhya Pradesh), 6 quarry outcrops from Rajahmundry (SE India), 10 deep wells from the Krishna-Godavari Basin (K-G) (Andhra Pradesh) place the KTB mass extinction near the end of the main Deccan phase coincident with the mass extinction. These studies show that the second and third phase of eruptions each produced the world's largest and longest lava megaflows ~1500 km across India through the K-G Basin into the Bay of Bengal. These megaflows are separated by sand, silt and shale which record the mass extinction across an interval that spans zones CF1-CF2 and most of the nannofossil Micula prinsii zone and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began preceding the first of the four mega-flows in C29r. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between

  7. End-Cretaceous mass extinction event - Argument for terrestrial causation

    NASA Astrophysics Data System (ADS)

    Hallam, Anthony

    1987-11-01

    The end-Cretaceous mass extinctions were not a geologically instantaneous event and were selective in character. These features are incompatible with the original Alvarez hypothesis of their being caused by a single asteroid impact that produced a world-embracing dust cloud with devastating environmental consequences. By analysis of physical and chemical evidence from the stratigraphic record it is shown that a modified extraterrestrial model in which stepwise extinctions resulted from encounter with a comet shower is less plausible than one intrinsic to the earth, involving significant disturbance in the mantle.

  8. End-cretaceous mass extinction event: argument for terrestrial causation.

    PubMed

    Hallam, A

    1987-11-27

    The end-Cretaceous mass extinctions were not a geologically instantaneous event and were selective in character. These features are incompatible with the original Alvarez hypothesis of their being caused by a single asteroid impact that produced a world-embracing dust cloud with devastating environmental consequences. By analysis of physical and chemical evidence from the stratigraphic record it is shown that a modified extraterrestrial model in which stepwise extinctions resulted from encounter with a comet shower is less plausible than one intrinsic to the earth, involving significant disturbance in the mantle.

  9. Operation of the breeze tunnel to determine mass extinction coefficients

    SciTech Connect

    Sehmel, G.A.; Bonfante, R.; Catalano, E.; Rouse, W.G.; Banks, D.R.

    1993-06-01

    The breeze tunnel at the Edgewood Research, Development and Engineering Center (ERDEC) at Aberdeen Proving Ground, Maryland, is a unique facility for determining the efficacy of released smoke/obscurants in flowing air as a function of controlling variables. Optimum material feed characteristics and generator operating conditions can be determined. The facility allows investigation of the effects of different generator operating variables, airborne concentrations, and airborne particle sizes on mass extinction coefficients. The breeze tunnel is now available for Department of Defense (DoD) trials. During trials in the breeze tunnel, obscurants have been released from the compact-disc-generator, the IR-Log generator, and the XM56 generator. Obscurant release rates have ranged from an instantaneous puff to a continuous release of 10 lb/min. Extinction can be measured in the visual, infrared, and millimeter ranges of the electromagnetic spectrum. Experimental conditions allow calculation of mass extinction coefficients as a function of generator variables, including material release rates. Average mass extinction coefficients address attenuation from obscurants, both single primary particles and aggregates.

  10. Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution

    NASA Astrophysics Data System (ADS)

    Kender, Sev; McClymont, Erin L.; Elmore, Aurora C.; Emanuele, Dario; Leng, Melanie J.; Elderfield, Henry

    2016-06-01

    Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal `bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ~0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity.

  11. Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution.

    PubMed

    Kender, Sev; McClymont, Erin L; Elmore, Aurora C; Emanuele, Dario; Leng, Melanie J; Elderfield, Henry

    2016-06-17

    Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal 'bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity.

  12. Mass extinctions and ocean acidification: biological constraints on geological dilemmas

    NASA Astrophysics Data System (ADS)

    Veron, J. E. N.

    2008-09-01

    The five mass extinction events that the earth has so far experienced have impacted coral reefs as much or more than any other major ecosystem. Each has left the Earth without living reefs for at least four million years, intervals so great that they are commonly referred to as ‘reef gaps’ (geological intervals where there are no remnants of what might have been living reefs). The causes attributed to each mass extinction are reviewed and summarised. When these causes and the reef gaps that follow them are examined in the light of the biology of extant corals and their Pleistocene history, most can be discarded. Causes are divided into (1) those which are independent of the carbon cycle: direct physical destruction from bolides, ‘nuclear winters’ induced by dust clouds, sea-level changes, loss of area during sea-level regressions, loss of biodiversity, low and high temperatures, salinity, diseases and toxins and extraterrestrial events and (2) those linked to the carbon cycle: acid rain, hydrogen sulphide, oxygen and anoxia, methane, carbon dioxide, changes in ocean chemistry and pH. By process of elimination, primary causes of mass extinctions are linked in various ways to the carbon cycle in general and ocean chemistry in particular with clear association with atmospheric carbon dioxide levels. The prospect of ocean acidification is potentially the most serious of all predicted outcomes of anthropogenic carbon dioxide increase. This study concludes that acidification has the potential to trigger a sixth mass extinction event and to do so independently of anthropogenic extinctions that are currently taking place.

  13. Mass extinctions show selective patterns in crinoid body size

    NASA Astrophysics Data System (ADS)

    Soto, A.; Tang, C.; Pelagio, M.; Heim, N. A.; Payne, J.

    2013-12-01

    There have been five major extinctions on planet Earth: the end of the Ordovician, late Devonian, late Permian, late Triassic and the late Cretaceous and through all of these, Crinoids have still managed to prosper. Our project attempts to find a correlation between these five mass extinctions and the body size of Crinoids. Past research has shown that bigger animals are more prone to extinction compared to smaller sized ones because of their complex environmental niches. We hypothesized that small-sized Crinoids would have a higher possibility of survival compared to the larger-sized Crinoids. We first graphed Crinoids' maximum body size and the five major extinctions throughout time for any visual correlation between them. We then used t-tests as our statistical analyses to find any differences between the size of survivors and. There was no mean difference between the mean size of victims and survivors with the exception of the end of the Triassic extinction. There are many possible explanations for this difference in the end of the Triassic such as 1) a rise in atmospheric CO2, 2) a combination was volcanic CO2 and catastrophic dissociation of gas hydrate, and/or 3) a cooling in temperature and oceanic changes occurred.

  14. A Galactic Plane relative extinction map from 2MASS

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Ray, T. P.; Murphy, G. C.; Scholz, A.

    2005-03-01

    We present three 14 400 square degree relative extinction maps of the Galactic Plane (|b| < 20°) obtained from 2MASS using accumulative star counts (Wolf diagrams). This method is independent of the colour of the stars and the variation of extinction with wavelength. Stars were counted in 3.5 × 3.5 boxes, every 20.1° × 1° surrounding fields were chosen for reference, hence the maps represent local extinction enhancements and ignore any contribution from the ISM or very large clouds. Data reduction was performed on a Beowulf-type cluster (in approximately 120 hours). Such a cluster is ideal for this type of work as areas of the sky can be independently processed in parallel. We studied how extinction depends on wavelength in all of the high extinction regions detected and within selected dark clouds. On average a power law opacity index (β) of 1.0 to 1.8 in the NIR was deduced. The index however differed significantly from region to region and even within individual dark clouds. That said, generally it was found to be constant, or to increase, with wavelength within a particular region.

  15. Molluscan extinction patterns across the Cenomanian-Turonian stage boundary in the western interior of the United States

    USGS Publications Warehouse

    Elder, W.P.

    1989-01-01

    High-resolution stratigraphic analysis of 18 sections spanning the Cenomanian-Turonian Stage boundary in the western interior of the United States has allowed determination of the magnitude and pattern of molluscan extinction and disruption. Composite range data from all sections show that the faunal turnover across the stage boundary occurs in a series of narrow stratigraphic zones, defined by multiple first and last occurrences, separated by intervals displaying little or no taxonomic turnover. Two of the apparent extinction steps (bottom and top of the Neocardioceras juddii Zone) may be intercontinentally developed. The additional steps apparently reflect cyclic changes in water mass and substrate characteristics in the western interior basin produced in response to orbital forcing of climate. The most affected mollusks were those having intercontinental distributions. -Author

  16. Eutrophication, microbial-sulfate reduction and mass extinctions

    PubMed Central

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2016-01-01

    ABSTRACT In post-Cambrian time, life on Earth experienced 5 major extinction events, likely instigated by adverse environmental conditions. Biodiversity loss among marine taxa, for at least 3 of these mass extinction events (Late Devonian, end-Permian and end-Triassic), has been connected with widespread oxygen-depleted and sulfide-bearing marine water. Furthermore, geochemical and sedimentary evidence suggest that these events correlate with rather abrupt climate warming and possibly increased terrestrial weathering. This suggests that biodiversity loss may be triggered by mechanisms intrinsic to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate reduction due to increased availability of organic matter. A plankton community turnover from a high-diversity eukaryote to high-biomass bacterial dominated food web is the catalyst proposed in this anoxia-extinction scenario and stands in stark contrast to the postulated productivity collapse suggested for the end-Cretaceous mass extinction. This cascade of events is relevant for the future ocean under predicted greenhouse driven climate change. The exacerbation of anoxic “dead” zones is already progressing in modern oceanic environments, and this is likely to increase due to climate induced continental weathering and resulting eutrophication of the oceans. PMID:27066181

  17. Eutrophication, microbial-sulfate reduction and mass extinctions.

    PubMed

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2016-01-01

    In post-Cambrian time, life on Earth experienced 5 major extinction events, likely instigated by adverse environmental conditions. Biodiversity loss among marine taxa, for at least 3 of these mass extinction events (Late Devonian, end-Permian and end-Triassic), has been connected with widespread oxygen-depleted and sulfide-bearing marine water. Furthermore, geochemical and sedimentary evidence suggest that these events correlate with rather abrupt climate warming and possibly increased terrestrial weathering. This suggests that biodiversity loss may be triggered by mechanisms intrinsic to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate reduction due to increased availability of organic matter. A plankton community turnover from a high-diversity eukaryote to high-biomass bacterial dominated food web is the catalyst proposed in this anoxia-extinction scenario and stands in stark contrast to the postulated productivity collapse suggested for the end-Cretaceous mass extinction. This cascade of events is relevant for the future ocean under predicted greenhouse driven climate change. The exacerbation of anoxic "dead" zones is already progressing in modern oceanic environments, and this is likely to increase due to climate induced continental weathering and resulting eutrophication of the oceans.

  18. Synchrony between the Chicxulub impact and the Cretaceous-Paleogene boundary extinctions: What does it mean?

    NASA Astrophysics Data System (ADS)

    Renne, P. R.

    2013-05-01

    Recent 40Ar/39Ar work demonstrates coincidence to within 33 ka of tektites from Beloc (Haiti) and the Cretaceous-Paleogene boundary (KPB) recorded in terrestrial sediments in northeastern Montana. Here the KPB coincides with impact signals such as an iridium anomaly and shocked quartz. The tektites, which occur with other impact signals, have been linked by various criteria to a single impact at the Chicxulub crater, although some interpretations suggest that there were multiple impacts and/or the Chicxulub impact predated the KPB by ca. 300 ka. The terrestrial and marine KPB are defined by different taxa, and it is conceivable that they were diachronous. This however would require two distinct impacts, only one of which is ever manifest in low energy depositional settings- which seems highly improbable. Speculation along these lines is a distraction from the critical issue of whether or not the pre-KPB record of rapid climate change and extinctions, especially evident in terrestrial environments, implicates the impact as merely the coup de grace in an already critically stressed biosphere. Early eruptions of the Deccan Traps remain a viable mechanism for pre-impact environmental stress, particularly in view of the well established relationship between other continental flood basalts and mass extinctions.

  19. Reassessing The Recovery of Marine Primary Production After the Cretaceous-Paleogene Mass Extinction

    NASA Astrophysics Data System (ADS)

    Sepúlveda, J.; Alegret, L.; Wooton, E.; Summons, R. E.

    2010-12-01

    The hypothesized post-extinction (“Strangelove” and “Living Ocean”; Hsü et al., 1982; D’Hondt et al., 1998; D’Hondt, 2005) models for the status of marine primary productivity and the global carbon cycle following the Cretaceous-Paleogene (K-Pg) mass extinction remain controversial. Recently, we provided provoking geochemical and micropaleontological evidence suggestive of an early resurgence in marine primary production and food supply reaching the seafloor after the K-Pg (Alegret and Thomas, 2009; Sepúlveda et al., 2009). Here, we present a more comprehensive investigation of the post-impact ecosystem recovery based on investigations of a broader sampling of sedimentary sections. Our study examines the lipid biomarker record of marine organisms in combination with stable N- and C-isotopes in eight remarkably expanded K-Pg sections representative of different bathymetric zones along a latitudinal gradient (Denmark, France, Spain, and Tunisia). We discuss secular variations in lipid biomarkers and stable isotopes in relation to environmental conditions and paleoecology during the aftermath of the K-Pg event and provide a new view of the ecological recovery in marine ecosystems that challenges previously postulated scenarios. Alegret, L., Thomas. E., 2009. Food supply to the seafloor in the Pacific Ocean after the Cretaceous/Paleogene boundary event. Marine Micropaleontology 73, 105-116. D’Hondt, S., et al., 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282, 276-79. D’Hondt, S., 2005. Consequences of the Cretaceous/Paleogene Mass Extinction for marine ecosystems. Annual Review of Ecology, Evolution, and Systematics 36, 295-317. Hsü, KJ., et al., 1982. Mass mortality and its environmental and evolutionary conse- quences. Science 216, 249-56. Sepúlveda, J., et al., 2009. Rapid Resurgence of Marine Productivity After the Cretaceous-Paleogene Mass Extinction. Science 326, 129-132.

  20. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates.

    PubMed

    Benson, Roger B J; Butler, Richard J; Lindgren, Johan; Smith, Adam S

    2010-03-22

    The fossil record is our only direct means for evaluating shifts in biodiversity through Earth's history. However, analyses of fossil marine invertebrates have demonstrated that geological megabiases profoundly influence fossil preservation and discovery, obscuring true diversity signals. Comparable studies of vertebrate palaeodiversity patterns remain in their infancy. A new species-level dataset of Mesozoic marine tetrapod occurrences was compared with a proxy for temporal variation in the volume and facies diversity of fossiliferous rock (number of marine fossiliferous formations: FMF). A strong correlation between taxic diversity and FMF is present during the Cretaceous. Weak or no correlation of Jurassic data suggests a qualitatively different sampling regime resulting from five apparent peaks in Triassic-Jurassic diversity. These correspond to a small number of European formations that have been the subject of intensive collecting, and represent 'Lagerstätten effects'. Consideration of sampling biases allows re-evaluation of proposed mass extinction events. Marine tetrapod diversity declined during the Carnian or Norian. However, the proposed end-Triassic extinction event cannot be recognized with confidence. Some evidence supports an extinction event near the Jurassic/Cretaceous boundary, but the proposed end-Cenomanian extinction is probably an artefact of poor sampling. Marine tetrapod diversity underwent a long-term decline prior to the Cretaceous-Palaeogene extinction.

  1. Comet showers as a cause of mass extinction

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Alvarez, Walter; Elder, William P.; Kauffman, Erle G.; Hansen, Thor; Keller, Gerta; Shoemaker, Eugene M.; Weissman, Paul R.

    1987-01-01

    Three independent pieces of evidence supporting a connection between comet showers and clustering in terrestrial cratering and mass extinctions are presented. The temporal profile of a comet shower triggered by a star passing through the Oort cloud is calculated. Four weak peaks are found in the age of distribution of impact craters over the past 100 Myr, as well as two compact clusters of ages of impact glass broadly coincident with crater-age peaks. Recent paleontological observations are reviewed that indicate a stepwise character for some well-documented mass extinctions in the past 100 Myr which roughly coincide with three of the four peaks in crater ages and which have a duration compatible with comet shower predictions.

  2. Modeling and Minimization of Extinction in Volterra-Lotka Type Equations with Free Boundaries

    NASA Astrophysics Data System (ADS)

    Stojanovic, Srdjan

    1997-03-01

    An equation of the distributed Volterra-Lotka type, with free boundary of the obstacle type, with possible applications in ecology, when extinction of the biological species is of particular concern, is introduced and solved. An optimal control problem for such an equation, and in particular the problem of minimization of the area of extinction of the species, is introduced and to some extent solved.

  3. Periodic Comet Showers, Mass Extinctions, and the Galaxy

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Stothers, R. B.

    2000-01-01

    Geologic data on mass extinctions of life and evidence of large impacts on the Earth are thus far consistent with a quasi-periodic modulation of the flux of Oort cloud comets. Impacts of large comets and asteroids are capable of causing mass extinction of species, and the records of large impact craters and mass show a correlation. Impacts and extinctions display periods in the range of approximately 31 +/- 5 m.y., depending on dating methods, published time scales, length of record, and number of events analyzed. Statistical studies show that observed differences in the formal periodicity of extinctions and craters are to be expected, taking into consideration problems in dating and the likelihood that both records would be mixtures of periodic and random events. These results could be explained by quasi-periodic showers of Oort Cloud comets with a similar cycle. The best candidate for a pacemaker for comet showers is the Sun's vertical oscillation through the plane of the Galaxy, with a half-period over the last 250 million years in the same range. We originally suggested that the probability of encounters with molecular clouds that could perturb the Oort comet cloud and cause comet showers is modulated by the Sun's vertical motion through the galactic disk. Tidal forces produced by the overall gravitational field of the Galaxy can also cause perturbations of cometary orbits. Since these forces vary with the changing position of the solar system in the Galaxy, they provide a mechanism for the periodic variation in the flux of Oort cloud comets into the inner solar system. The cycle time and degree of modulation depend critically on the mass distribution in the galactic disk. Additional information is contained in the original extended abstract.

  4. Mass Extinction and the Structure of the Milky Way

    NASA Astrophysics Data System (ADS)

    Filipovic, M. D.; Horner, J.; Crawford, E. J.; Tothill, N. F. H.; White, G. L.

    2013-12-01

    We use the most up-to-date Milky Way model and solar orbit data in order to test the hypothesis that the Sun's galactic spiral arm crossings cause mass extinction events on Earth. To do this, we created a new model of the Milky Way's spiral arms by combining a large quantity of data from several surveys. We then combined this model with a recently derived solution for the solar orbit to determine the timing of the Sun's historical passages through the Galaxy's spiral arms. Our new model was designed with a symmetrical appearance, with the major alteration being the addition of a spur at the far side of the Galaxy. A correlation was found between the times at which the Sun crosses the spiral arms and six known mass extinction events. Furthermore, we identify five additional historical mass extinction events that might be explained by the motion of the Sun around our Galaxy. These five additional significant drops in marine genera that we find include significant reductions in diversity at 415, 322, 300, 145 and 33~Myr ago. Our simulations indicate that the Sun has spent ˜60 per cent of its time passing through our Galaxy's various spiral arms. Also, we briefly discuss and combine previous work on the Galactic Habitable Zone with the new Milky Way model.

  5. Causes of the great mass extinction of marine organisms in the Late Devonian

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2016-11-01

    The second of the five great mass extinctions of the Phanerozoic occurred in the Late Devonian. The number of species decreased by 70-82%. Major crises occurred at the Frasnian-Famennian and Devonian-Carboniferous boundary. The lithological and geochemical compositions of sediments, volcanic deposits, impactites, carbon and oxygen isotope ratios, evidence of climate variability, and sea level changes reflect the processes that led the critical conditions. Critical intervals are marked by layers of black shales, which were deposited in euxinic or anoxic environments. These conditions were the main direct causes of the extinctions. The Late Devonian mass extinction was determined by a combination of impact events and extensive volcanism. They produced similar effects: emissions of harmful chemical compounds and aerosols to cause greenhouse warming; darkening of the atmosphere, which prevented photosynthesis; and stagnation of oceans and development of anoxia. Food chains collapsed and biological productivity decreased. As a result, all vital processes were disturbed and a large portion of the biota became extinct.

  6. Geochemical Consequences of Mass Extinction: The K/Pg Compensation Depth Excursion

    NASA Astrophysics Data System (ADS)

    Norris, R. D.; Hull, P. M.

    2012-12-01

    The Cretaceous-Paleogene mass extinction triggered a major depression of the lysocline in the global ocean. A global compilation of carbonate preservation indices—% carbonate and foraminifer preservation— shows that carbonate sediments are found in deeper waters and with better foraminifer preservation in the ~300-400 kyr following the K/Pg mass extinction than in the late Cretaceous or during the rest of the early Danian. Indeed, foraminifer preservation commonly is very good to glassy in the earliest Danian, with translucent foraminifer shells even in very deep water deposits. For example, DSDP Site 356 in the South Atlantic has glassy preservation at 2.2 km paleodeth only during this time interval. Other very deep water sites, such as DSDP 398D offshore Portugal and IODP U1370 in the central South Pacific, are close to, or below, the carbonate compensation depth, but experience a brief taphonomic window of foraminifer preservation in the earliest Danian. We consider the three potential causes for this post-extinction transient depression of the lysocline: 1) increased carbonate ion availability due to >50% loss of calcareous nannofossil production (the major producers of late Cretaceous deep sea carbonate) and coastal reefs, 2) increased silica weathering associated with major disruption to terrestrial ecosystems at the K-Pg boundary, and 3) decreased organic matter flux to the deep sea following the extinction. An increase in planktic foraminifer production coincident with the lowest fluxes of calcareous nannoplankton and excellent preservation of calcareous microfossils suggests that the first mechanism is at least partly responsible for the preservation spike. The earliest Danian preservation spike of foraminifera, therefore in part reflects the transient alteration of plankton communities in the aftermath of the extinction—a phenomenon that ended with the reappearance of more biologically diverse pelagic communities several hundred thousand years after

  7. Using Ichthyoliths to Determine the Fish Response to the End-Cretaceous Mass Extinction

    NASA Astrophysics Data System (ADS)

    Sibert, E. C.; Norris, R. D.; Hull, P. M.

    2012-12-01

    Ichthyoliths are the small calcium phosphate fossil teeth, scales, and bone shards of fish and sharks. While it is extremely rare to find full body-fossils of fish, ichthyoliths are relatively abundant in oceanic sediments, with 10s to 100s of identifiable ichthyoliths in a few grams of sediment, most in the <100 μm size fraction. Ichthyolith accumulation rates and morphology, alone or in conjunction with more traditional microfossil and geochemical proxies, can be used to study the response of pelagic consumers and ecosystems to major events in Earth's history. As the only available high-resolution, continuous fossil record of vertebrates, ichthyoliths can be extremely valuable in understanding how higher order organisms respond to environmental forcing. Here we use this novel proxy to show that export flux of ichthyoliths to the deep North Pacific was stable across the K-Pg boundary despite major changes in flux of calcareous phytoplankton and foraminifera. Total consumer-level export production in the North Pacific remained at or above Cretaceous levels for at least 4 million years post-extinction. Similar studies across the extinction from the South Pacific and the Atlantic suggest that there is considerable regional geographic variation in the accumulation of ichthyoliths spanning the boundary, with the Pacific small fish seeming to fare better than their Atlantic counterparts in the post-extinction ecosystem. The regional differences in productivity of these post-disaster ecosystems suggest that the mass extinction did not produce a uniformly dead or microbially dominated surface ocean. Rather, despite widespread extinction and upheaval in lower trophic levels, the earliest Paleocene ocean, in some regions of the planet, appears to have had ecosystems capable of supporting levels of fish comparable to or even above those of the Late Cretaceous.

  8. Rebuilding biodiversity of Patagonian marine molluscs after the end-Cretaceous mass extinction.

    PubMed

    Aberhan, Martin; Kiessling, Wolfgang

    2014-01-01

    We analysed field-collected quantitative data of benthic marine molluscs across the Cretaceous-Palaeogene boundary in Patagonia to identify patterns and processes of biodiversity reconstruction after the end-Cretaceous mass extinction. We contrast diversity dynamics from nearshore environments with those from offshore environments. In both settings, Early Palaeogene (Danian) assemblages are strongly dominated by surviving lineages, many of which changed their relative abundance from being rare before the extinction event to becoming the new dominant forms. Only a few of the species in the Danian assemblages were newly evolved. In offshore environments, however, two newly evolved Danian bivalve species attained ecological dominance by replacing two ecologically equivalent species that disappeared at the end of the Cretaceous. In both settings, the total number of Danian genera at a locality remained below the total number of late Cretaceous (Maastrichtian) genera at that locality. We suggest that biotic interactions, in particular incumbency effects, suppressed post-extinction diversity and prevented the compensation of diversity loss by originating and invading taxa. Contrary to the total number of genera at localities, diversity at the level of individual fossiliferous horizons before and after the boundary is indistinguishable in offshore environments. This indicates an evolutionary rapid rebound to pre-extinction values within less than ca 0.5 million years. In nearshore environments, by contrast, diversity of fossiliferous horizons was reduced in the Danian, and this lowered diversity lasted for the entire studied post-extinction interval. In this heterogeneous environment, low connectivity among populations may have retarded the recolonisation of nearshore habitats by survivors.

  9. Rebuilding Biodiversity of Patagonian Marine Molluscs after the End-Cretaceous Mass Extinction

    PubMed Central

    Aberhan, Martin; Kiessling, Wolfgang

    2014-01-01

    We analysed field-collected quantitative data of benthic marine molluscs across the Cretaceous–Palaeogene boundary in Patagonia to identify patterns and processes of biodiversity reconstruction after the end-Cretaceous mass extinction. We contrast diversity dynamics from nearshore environments with those from offshore environments. In both settings, Early Palaeogene (Danian) assemblages are strongly dominated by surviving lineages, many of which changed their relative abundance from being rare before the extinction event to becoming the new dominant forms. Only a few of the species in the Danian assemblages were newly evolved. In offshore environments, however, two newly evolved Danian bivalve species attained ecological dominance by replacing two ecologically equivalent species that disappeared at the end of the Cretaceous. In both settings, the total number of Danian genera at a locality remained below the total number of late Cretaceous (Maastrichtian) genera at that locality. We suggest that biotic interactions, in particular incumbency effects, suppressed post-extinction diversity and prevented the compensation of diversity loss by originating and invading taxa. Contrary to the total number of genera at localities, diversity at the level of individual fossiliferous horizons before and after the boundary is indistinguishable in offshore environments. This indicates an evolutionary rapid rebound to pre-extinction values within less than ca 0.5 million years. In nearshore environments, by contrast, diversity of fossiliferous horizons was reduced in the Danian, and this lowered diversity lasted for the entire studied post-extinction interval. In this heterogeneous environment, low connectivity among populations may have retarded the recolonisation of nearshore habitats by survivors. PMID:25028930

  10. Can we avoid the Sixth Mass Extinction? Setting today's extinction crisis in the context of the Big Five

    NASA Astrophysics Data System (ADS)

    Barnosky, A. D.

    2012-12-01

    While the ultimate extinction driver now—Homo sapiens—is unique with respect to the drivers of past extinctions, comparison of parallel neontological and paleontological information helps calibrate how far the so-called Sixth Mass Extinction has progressed and whether it is inevitable. Such comparisons document that rates of extinction today are approaching or exceeding those that characterized the Big Five Mass Extinctions. Continuation of present extinction rates for vertebrates, for example, would result in 75% species loss—the minimum benchmark exhibited in the Big Five extinctions—within 3 to 22 centuries, assuming constant rates of loss and no threshold effects. Preceding and during each of the Big Five, the global ecosystem experienced major changes in climate, atmospheric chemisty, and ocean chemistry—not unlike what is being observed presently. Nevertheless, only 1-2% of well-assessed modern species have been lost over the past five centuries, still far below what characterized past mass extinctions in the strict paleontological sense. For mammals, adding in the end-Pleistocene species that died out would increase the species-loss percentage by some 5%. If threatened vertebrate species were to actually go extinct, losses would rise to between 14 and 40%, depending on the group. Such observations highlight that, although many species have already had their populations drastically reduced to near-critical levels, the Sixth Mass Extinction has not yet progressed to the point where it is unavoidable. Put another way, the vast majority of species that have occupied the world in concert with Homo sapiens are still alive and are possible to save. That task, however, will require slowing the abnormally high extinction rates that are now in progress, which in turn requires unified efforts to cap human population growth, decrease the average human footprint, reduce fossil fuel use while simultaneously increasing clean energy technologies, integrate

  11. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction

    PubMed Central

    Upchurch, Paul; Goswami, Anjali

    2016-01-01

    The effect of the Cretaceous–Palaeogene (K–Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K–Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K–Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K–Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene. PMID:27358361

  12. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous-Palaeogene mass extinction.

    PubMed

    Halliday, Thomas John Dixon; Upchurch, Paul; Goswami, Anjali

    2016-06-29

    The effect of the Cretaceous-Palaeogene (K-Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K-Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K-Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K-Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene.

  13. Recovery from the most profound mass extinction of all time.

    PubMed

    Sahney, Sarda; Benton, Michael J

    2008-04-07

    The end-Permian mass extinction, 251 million years (Myr) ago, was the most devastating ecological event of all time, and it was exacerbated by two earlier events at the beginning and end of the Guadalupian, 270 and 260 Myr ago. Ecosystems were destroyed worldwide, communities were restructured and organisms were left struggling to recover. Disaster taxa, such as Lystrosaurus, insinuated themselves into almost every corner of the sparsely populated landscape in the earliest Triassic, and a quick taxonomic recovery apparently occurred on a global scale. However, close study of ecosystem evolution shows that true ecological recovery was slower. After the end-Guadalupian event, faunas began rebuilding complex trophic structures and refilling guilds, but were hit again by the end-Permian event. Taxonomic diversity at the alpha (community) level did not recover to pre-extinction levels; it reached only a low plateau after each pulse and continued low into the Late Triassic. Our data showed that though there was an initial rise in cosmopolitanism after the extinction pulses, large drops subsequently occurred and, counter-intuitively, a surprisingly low level of cosmopolitanism was sustained through the Early and Middle Triassic.

  14. Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution

    PubMed Central

    Kender, Sev; McClymont, Erin L.; Elmore, Aurora C.; Emanuele, Dario; Leng, Melanie J.; Elderfield, Henry

    2016-01-01

    Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal ‘bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity. PMID:27311937

  15. Assessing the Role of Anhydrite in the KT Mass Extinction: Hints from Shock-loading Experiments

    NASA Technical Reports Server (NTRS)

    Skala, R.; Lnagenhorst, F.; Hoerz, F.

    2004-01-01

    Various killing mechanisms have been suggested to contribute to the mass extinctions at the KT boundary, including severe, global deterioration of the atmosphere and hydrosphere due to SO(x) released from heavily shocked, sulfate-bearing target rocks. The devolatilization of anhydrite is predominantly inferred from thermodynamic considerations and lacks experimental confirmation. To date, the experimentally determined shock behavior of anhydrite is limited to solid-state effects employing X-ray diffraction methods. The present report employs additional methods to characterize experimentally shocked anhydrite.

  16. Mass Extinctions' Selectivity on the Diversity of Marine Modes of Life

    NASA Astrophysics Data System (ADS)

    Park, C.; Saux, J.; Heim, N.; Payne, J.

    2015-12-01

    A mass extinction is defined by a substantial increase in extinction rates, resulting in a loss of biological and ecological diversity. However, a mass extinction's taxonomic severity does not always correlate with its ecological severity (Droser et al. 2009). Using the fossil record, one can reconstruct the relationships between extinct biota and past environments through extrapolating evidence of an organism's feeding, tiering, and motility based on its functional morphology and analogies with its extant relatives. We used Bush, Bambach, and Daly's conceptual model of marine ecospace to study marine modes of life. We looked at the number of different ecological modes over time, and observed that this curve roughly parallels Sepkoski's generic diversity over time in that the number of ecological modes generally increases over time. Then we measured the selectivity of each mass extinction in log-odds using logistic regression. Here we compiled a "heat map" of the selectivity of 5 major mass extinctions based on the life mode of each marine genus in our dataset. Additionally, we looked at the standard deviation of the log-odds of extinction, which shows how uniform the selectivity of the mass extinction is across all life modes (i.e. a small standard deviation points to a more uniform selectivity among life modes). Ecological diversity was impacted by the mass extinctions: the end-Permian (Changhsingian) mass extinction had less variation in log-odds of extinction, whereas the other mass extinctions had a greater range of standard deviation of the log-odds of extinction. Three of the five mass extinctions (Famennian, Rhaetian, and Maastrichtian) were more ecologically selective than the others (Hirnantian and Changhsingian), which indicate that these two had factors that affected most marine life modes equally. In conclusion, not all mass extinctions had the same ecological effect.

  17. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction

    NASA Astrophysics Data System (ADS)

    Schoene, Blair; Samperton, Kyle M.; Eddy, Michael P.; Keller, Gerta; Adatte, Thierry; Bowring, Samuel A.; Khadri, Syed F. R.; Gertsch, Brian

    2015-01-01

    The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions.

  18. Earth history. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction.

    PubMed

    Schoene, Blair; Samperton, Kyle M; Eddy, Michael P; Keller, Gerta; Adatte, Thierry; Bowring, Samuel A; Khadri, Syed F R; Gertsch, Brian

    2015-01-09

    The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions.

  19. Impacts and mass extinctions: To whom the laurel falls?

    NASA Astrophysics Data System (ADS)

    Steel, D.

    1994-12-01

    Few readers of this journal can be unaware of the well-developed hypothesis advanced by Alvarez et al., and since built upon in publications too numerous and varied to mention, that the end-Cretaceous mass extinction event was due to an impact by a large asteroid. Indeed personal discussions with astronomers interested only in extra-solar system phenomena suggest that they regard this as being a bane rather than a boon, since acquaintances expect them to be conversant with, and intrigued by, whatever happened 65 Myr ago. This communication is designed to elucidate the history behind the idea.

  20. Comparative Earth history and Late Permian mass extinction.

    PubMed

    Knoll, A H; Bambach, R K; Canfield, D E; Grotzinger, J P

    1996-07-26

    The repeated association during the late Neoproterozoic Era of large carbon-isotopic excursions, continental glaciation, and stratigraphically anomalous carbonate precipitation provides a framework for interpreting the reprise of these conditions on the Late Permian Earth. A paleoceanographic model that was developed to explain these stratigraphically linked phenomena suggests that the overturn of anoxic deep oceans during the Late Permian introduced high concentrations of carbon dioxide into surficial environments. The predicted physiological and climatic consequences for marine and terrestrial organisms are in good accord with the observed timing and selectivity of Late Permian mass extinction.

  1. Comparative Earth History and Late Permian Mass Extinction

    PubMed

    Knoll; Bambach; Canfield; Grotzinger

    1996-07-26

    The repeated association during the late Neoproterozoic Era of large carbon-isotopic excursions, continental glaciation, and stratigraphically anomalous carbonate precipitation provides a framework for interpreting the reprise of these conditions on the Late Permian Earth. A paleoceanographic model that was developed to explain these stratigraphically linked phenomena suggests that the overturn of anoxic deep oceans during the Late Permian introduced high concentrations of carbon dioxide into surficial environments. The predicted physiological and climatic consequences for marine and terrestrial organisms are in good accord with the observed timing and selectivity of Late Permian mass extinction.

  2. Comparative earth history and late Premian mass extinction

    SciTech Connect

    Knoll, A.H.; Bambach, R.K.; Canfield, D.E.; Grotzinger, J.P.

    1996-07-26

    The repeated association during the late Neoproterozoic Era of large carbon-isotopic excursions, continental glaciation, and stratigraphically anomalous carbonate precipitation provides a framework for interpreting the reprise of these conditions on the Late Permian Earth. A paleoceanographic model that was developed to explain these stratigraphically linked phenomena suggests that the overturn of anoxic deep oceans during the Late Permian introduced high concentrations of carbon dioxide into surficial environments. The predicted physiological and climatic consequences for marine and terrestrial organisms are in good accord with the observed timing and selectivity of Late Permian mass extinction. 65 refs., 3 figs., 1 tab.

  3. Comparative Earth history and Late Permian mass extinction

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Bambach, R. K.; Canfield, D. E.; Grotzinger, J. P.

    1996-01-01

    The repeated association during the late Neoproterozoic Era of large carbon-isotopic excursions, continental glaciation, and stratigraphically anomalous carbonate precipitation provides a framework for interpreting the reprise of these conditions on the Late Permian Earth. A paleoceanographic model that was developed to explain these stratigraphically linked phenomena suggests that the overturn of anoxic deep oceans during the Late Permian introduced high concentrations of carbon dioxide into surficial environments. The predicted physiological and climatic consequences for marine and terrestrial organisms are in good accord with the observed timing and selectivity of Late Permian mass extinction.

  4. Evaluating the temporal link between Siberian Traps magmatism and the end-Permian mass extinction (Invited)

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Bowring, S. A.

    2013-12-01

    Interest in Large Igneous Provinces as agents for massive climatic and biological change is steadily increasing, though the temporal constraints on both are seldom precise enough to allow detailed testing of a causal relationship. The end-Permian mass extinction is one of the most biologically important and intensely studied events in Earth history and has been linked to many possible trigger mechanisms, from voluminous volcanism to bolide impact. Proposed kill mechanisms range from acidic and/or anoxic oceans to a cocktail of toxic gases, although the link between trigger and kill mechanisms is unconstrained due to the lack of a high-precision timeline. Critical to assessing the plausibility of different trigger and kill mechanisms is an accurate age model for the biotic crisis and the perturbations to the global carbon cycle and ocean chemistry. Recent work using the EARTHTIME U/Pb tracer solution has refined the timing of the onset and duration of the marine mass extinction event and the earliest Triassic recovery at the GSSP for the Permian-Triassic boundary in Meishan, China. This work constrains the mass extinction duration to less than 100 kyr and provides an accurate and precise time point for the onset of extinction, against which the timing of potential trigger mechanisms may be compared. For more than two decades, eruption and emplacement of the Siberian traps has been implicated as a potential trigger of the end-Permian extinction. In this scenario, magmatism drives the biotic crisis through mobilization of volatiles from the sedimentary rock with which intruding and erupting magmas interact. Massive volatile release is believed to trigger major changes in atmospheric chemistry and temperature, both of which have been proposed as kill mechanisms. Current temporal constrains on the timing and duration of the Siberian magmatism are an order of magnitude less precise than those for the mass extinction event and associated environmental perturbations

  5. A Unified Theory of Impact Crises and Mass Extinctions: Quantitative Tests

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Haggerty, Bruce M.; Pagano, Thomas C.

    1997-01-01

    Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting of large-body impacts on the Earth derive from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters, predict that impacts of objects greater than or equal to 5 km in diameter (greater than or equal to 10 (exp 7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of greater than or equal to 10 km in diameter (greater than or equal to 10(exp 8) Mt Events). Smaller impacts (approximately 10 (exp 6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record.

  6. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction

    USGS Publications Warehouse

    Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.

    2004-01-01

    Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.

  7. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction

    NASA Astrophysics Data System (ADS)

    Ward, Peter D.; Garrison, Geoffrey H.; Haggart, James W.; Kring, David A.; Beattie, Michael J.

    2004-08-01

    Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction.

  8. Extinction, ejecta masses, and radial velocities of novae

    NASA Technical Reports Server (NTRS)

    Williams, Robert E.

    1994-01-01

    Interstellar reddening is determined for a number of recent novae based upon emission-line ratios which are generally observable using CCDs. Large values of extinction are found for most systems, possibly indicative of an intrinsic component of reddening in postoutburst novae. The unusual characteristics of the (O I) lines in novae, which are strong and optically thick, require a large population of very dense globules which are the likely sites of dust formation. These pyroclasts must be ejected from the white dwarf. The total mass of the neutral gas in the globules in some of the objects is substantially larger than the masses normally derived for the ionized ejecta of novae. The distribution of radial velocities of Galactic novae in the Tololo sample, although uncertain, shows an asymmetry in having predominantly negative values. Either high internal absorption in the expanding ejecta skews the emission lines to bluer wavelengths, or most of the novae are moving out from the center of the Galaxy.

  9. Volcanism, Impacts and Mass Extinctions: A case study of the Deccan Traps and its global effects

    NASA Astrophysics Data System (ADS)

    Keller, G.

    2012-12-01

    The nature and causes of mass extinctions in the geological past have remained topics of intense scientific debate for the past three decades. Central to this debate is the question of whether one, or several large bolide impacts, the eruption of large igneous provinces (LIP) or a combination of the two were the primary mechanisms driving the environmental changes that are universally regarded as the proximate causes for four of the five major Phanerozoic extinction events. Recent years have seen a revolution in our understanding of interplanetary environments, LIP eruptions and their environmental effects such that the simple impact-kill scenario no longer seems an adequate explanation for the Cretaceous-Tertiary boundary (KTB) or any other mass extinction. The KTB is the only mass extinction associated with both impact (Chixculub) and flood basalts (Deccan Traps) and therefore an excellent case study to evaluate the potential causes and effects. Deccan eruptions likely occurred as "pulses", with some gigantic megaflows 1500 km across India and with estimated volumes >10,000 km3 that may have erupted over very short time intervals. For comparison, the largest historical basalt eruption in 1783 in Iceland (Laki) ejected some 15 km3 of lava in about a year. A single Deccan megaflow would have been equivalent to 667 Laki. The vast amount of carbon and sulphur dioxides injected into the atmosphere from just one Deccan megaflow would have been on the same order of magnitude as those estimated for the Chicxulub impact. Deccan Traps erupted in three main phases with 6% total Deccan volume in phase-1 (base C30n), 80% in phase-2 (C29r) and 14% in phase-3 (C29n). Phase-2 and phase-3 each produced four giant megaflows leading to the KTB mass extinction and the long delayed biotic recovery, respectively. Data from infra- and intertrappean sediments of these megaflows drilled in the Krishna-Godavari Basin by India's Oil and Natural Gas Corporation reveal swift and devastating

  10. Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions.

    PubMed

    Alvarez, Walter

    2003-01-01

    The five major mass extinctions identified in 1982 by Raup and Sepkoski have expanded to six, with the suggestion that the Permian-Triassic extinction was a double event. Is there a general explanation for great mass extinctions, or can they result from different triggers, or even from internal system instabilities? The two most-discussed candidates for a general extinction mechanism are impacts and flood-basalt eruptions. A compilation of evidence for impact at the times of mass extinctions shows that this cause is abundantly confirmed in the case of the Cretaceous-Tertiary extinction and the late Eocene, which is a time of minor and gradual extinction, but little or no evidence connects other major extinctions to impact. On the other hand, there is a remarkable time correlation between flood basalts and four major extinctions, but no other evidence that flood basalts cause mass extinctions. The evidence for an impact-extinction linkage is strikingly different from that for a connection between flood basalts and extinctions. Flood basalts cover larger areas than craters and their associated thick ejecta blankets, which are thus less likely to be found. Impacts distribute proxies globally at instantaneous time horizons, whereas flood-basalt events are extended in time, and no remote proxies have been recognized. Many global killing mechanisms have been proposed in the case of impacts, but few have been suggested for flood basalts. It is possible that flood basalts are triggered by impact, but it is not obvious how impacts could result from anything other than chance. The hypothesis that impacts are the general cause of mass extinctions has not received supporting evidence, but has not been falsified. The hypothesis that flood basalts are the general cause of mass extinctions is supported by evidence from timing, but is not susceptible to falsification. Other candidates for general extinction causes, especially sea-level changes and system instabilities, would

  11. Biospheric Effects of the Chicxulub Impact and Their Role in the Cretaceous/Tertiary Mass Extinction

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(exp 31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact.

  12. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction.

    PubMed

    Sepúlveda, Julio; Wendler, Jens E; Summons, Roger E; Hinrichs, Kai-Uwe

    2009-10-02

    The course of the biotic recovery after the impact-related disruption of photosynthesis and mass extinction event at the Cretaceous-Paleogene boundary has been intensely debated. The resurgence of marine primary production in the aftermath remains poorly constrained because of the paucity of fossil records tracing primary producers that lack skeletons. Here we present a high-resolution record of geochemical variation in the remarkably thick Fiskeler (also known as the Fish Clay) boundary layer at Kulstirenden, Denmark. Converging evidence from the stable isotopes of carbon and nitrogen and abundances of algal steranes and bacterial hopanes indicates that algal primary productivity was strongly reduced for only a brief period of possibly less than a century after the impact, followed by a rapid resurgence of carbon fixation and ecological reorganization.

  13. Some implications of mass extinction for the evolution of complex life

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J., Jr.

    1985-01-01

    Extinction has the destructive effect of eliminating established lineages from an evolutionary system, and the constructive effect of vacating ecospace into which new lineages can evolve. Mass extinctions, which are times of unusually intense extinction, have been consistently followed by major radiations of new lineages. Extraterrestrial impacts associated with extinction events and a periodic recurrence of these events implicates an extraterrestrial forcing mechanism as the ultimate cause of mass extinction. This suggests that the extraplanetary environment has played an important, active role in the development of complex life on earth.

  14. Periodic mass extinctions and the Planet X model reconsidered

    NASA Astrophysics Data System (ADS)

    Whitmire, Daniel P.

    2016-01-01

    The 27 Myr period in the fossil extinction record has been confirmed in modern data bases dating back 500 Myr, which is twice the time interval of the original analysis from 30 years ago. The surprising regularity of this period has been used to reject the Nemesis model. A second model based on the Sun's vertical Galactic oscillations has been challenged on the basis of an inconsistency in period and phasing. The third astronomical model originally proposed to explain the periodicity is the Planet X model in which the period is associated with the perihelion precession of the inclined orbit of a trans-Neptunian planet. Recently, and unrelated to mass extinctions, a trans-Neptunian super-Earth planet has been proposed to explain the observation that the inner Oort cloud objects Sedna and 2012VP113 have perihelia that lie near the ecliptic plane. In this Letter, we reconsider the Planet X model in light of the confluence of the modern palaeontological and outer Solar system dynamical evidence.

  15. Biotic replacement and mass extinction of the Ediacara biota.

    PubMed

    Darroch, Simon A F; Sperling, Erik A; Boag, Thomas H; Racicot, Rachel A; Mason, Sara J; Morgan, Alex S; Tweedt, Sarah; Myrow, Paul; Johnston, David T; Erwin, Douglas H; Laflamme, Marc

    2015-09-07

    The latest Neoproterozoic extinction of the Ediacara biota has been variously attributed to catastrophic removal by perturbations to global geochemical cycles, 'biotic replacement' by Cambrian-type ecosystem engineers, and a taphonomic artefact. We perform the first critical test of the 'biotic replacement' hypothesis using combined palaeoecological and geochemical data collected from the youngest Ediacaran strata in southern Namibia. We find that, even after accounting for a variety of potential sampling and taphonomic biases, the Ediacaran assemblage preserved at Farm Swartpunt has significantly lower genus richness than older assemblages. Geochemical and sedimentological analyses confirm an oxygenated and non-restricted palaeoenvironment for fossil-bearing sediments, thus suggesting that oxygen stress and/or hypersalinity are unlikely to be responsible for the low diversity of communities preserved at Swartpunt. These combined analyses suggest depauperate communities characterized the latest Ediacaran and provide the first quantitative support for the biotic replacement model for the end of the Ediacara biota. Although more sites (especially those recording different palaeoenvironments) are undoubtedly needed, this study provides the first quantitative palaeoecological evidence to suggest that evolutionary innovation, ecosystem engineering and biological interactions may have ultimately caused the first mass extinction of complex life.

  16. Biotic replacement and mass extinction of the Ediacara biota

    PubMed Central

    Darroch, Simon A. F.; Sperling, Erik A.; Boag, Thomas H.; Racicot, Rachel A.; Mason, Sara J.; Morgan, Alex S.; Tweedt, Sarah; Myrow, Paul; Johnston, David T.; Erwin, Douglas H.; Laflamme, Marc

    2015-01-01

    The latest Neoproterozoic extinction of the Ediacara biota has been variously attributed to catastrophic removal by perturbations to global geochemical cycles, ‘biotic replacement’ by Cambrian-type ecosystem engineers, and a taphonomic artefact. We perform the first critical test of the ‘biotic replacement’ hypothesis using combined palaeoecological and geochemical data collected from the youngest Ediacaran strata in southern Namibia. We find that, even after accounting for a variety of potential sampling and taphonomic biases, the Ediacaran assemblage preserved at Farm Swartpunt has significantly lower genus richness than older assemblages. Geochemical and sedimentological analyses confirm an oxygenated and non-restricted palaeoenvironment for fossil-bearing sediments, thus suggesting that oxygen stress and/or hypersalinity are unlikely to be responsible for the low diversity of communities preserved at Swartpunt. These combined analyses suggest depauperate communities characterized the latest Ediacaran and provide the first quantitative support for the biotic replacement model for the end of the Ediacara biota. Although more sites (especially those recording different palaeoenvironments) are undoubtedly needed, this study provides the first quantitative palaeoecological evidence to suggest that evolutionary innovation, ecosystem engineering and biological interactions may have ultimately caused the first mass extinction of complex life. PMID:26336166

  17. The Lilliput Effect in Colonial Organisms: Cheilostome Bryozoans at the Cretaceous–Paleogene Mass Extinction

    PubMed Central

    Sogot, Caroline E.; Harper, Elizabeth M.; Taylor, Paul D.

    2014-01-01

    Consistent trends towards decreasing body size in the aftermath of mass extinctions – Lilliput effects – imply a predictable response among unitary animals to these events. The occurrence of Lilliput effects has yet to be widely tested in colonial organisms, which are of particular interest as size change may potentially occur at the two hierarchical levels of the colony and the individual zooids. Bryozoans are particularly useful organisms in which to study colonial size response as they have well-defined zooids. Additionally, a number of analyses of present-day bryozoans have shown that zooid size reflects local environmental conditions, most notably seawater temperature and possibly also food supply. Following the hypothesised decline in primary productivity at the Cretaceous–Paleogene (K–Pg) mass extinction, it is predicted that bryozoan zooid size should decline in the early Paleogene, resulting in a Lilliput effect. To test this prediction, zooid size was compared across the K–Pg boundary at the assemblage level and also within 4 surviving genera. Analysis of 59 bryozoan species from assemblages on either side of the K–Pg boundary showed no significant change in zooid length. Zooid size was also measured in 98 Maastrichtian colonies and 162 Danian colonies belonging to four congeneric species. Only one of these genera showed a significant size decrease across the K–Pg boundary, the other three maintaining constant zooidal lengths, widths and areas. Additionally, the sizes of 210 Maastrichtian colonies and 163 Danian colonies did not show consistent size decrease across the K–Pg boundary in these same species, although maximum colony size did decline in three out of four genera. Furthermore, this lack of consistent size change is uniform between two distinct biogeographical regions, Denmark and the southeastern USA. PMID:24505275

  18. The Lilliput effect in colonial organisms: cheilostome bryozoans at the Cretaceous-Paleogene mass extinction.

    PubMed

    Sogot, Caroline E; Harper, Elizabeth M; Taylor, Paul D

    2014-01-01

    Consistent trends towards decreasing body size in the aftermath of mass extinctions--Lilliput effects--imply a predictable response among unitary animals to these events. The occurrence of Lilliput effects has yet to be widely tested in colonial organisms, which are of particular interest as size change may potentially occur at the two hierarchical levels of the colony and the individual zooids. Bryozoans are particularly useful organisms in which to study colonial size response as they have well-defined zooids. Additionally, a number of analyses of present-day bryozoans have shown that zooid size reflects local environmental conditions, most notably seawater temperature and possibly also food supply. Following the hypothesised decline in primary productivity at the Cretaceous-Paleogene (K-Pg) mass extinction, it is predicted that bryozoan zooid size should decline in the early Paleogene, resulting in a Lilliput effect. To test this prediction, zooid size was compared across the K-Pg boundary at the assemblage level and also within 4 surviving genera. Analysis of 59 bryozoan species from assemblages on either side of the K-Pg boundary showed no significant change in zooid length. Zooid size was also measured in 98 Maastrichtian colonies and 162 Danian colonies belonging to four congeneric species. Only one of these genera showed a significant size decrease across the K-Pg boundary, the other three maintaining constant zooidal lengths, widths and areas. Additionally, the sizes of 210 Maastrichtian colonies and 163 Danian colonies did not show consistent size decrease across the K-Pg boundary in these same species, although maximum colony size did decline in three out of four genera. Furthermore, this lack of consistent size change is uniform between two distinct biogeographical regions, Denmark and the southeastern USA.

  19. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event

    NASA Astrophysics Data System (ADS)

    Cao, Changqun; Love, Gordon D.; Hays, Lindsay E.; Wang, Wei; Shen, Shuzhong; Summons, Roger E.

    2009-05-01

    The Permian-Triassic Boundary event at 252.2 Ma marks the largest extinction of marine fauna in the Phanerozoic and there is a wide consensus that the extinction coincided with an intense oceanic anoxic event. The stratotype of the Changhsingian Stage, precisely constrained by the PTB Global Stratotype Section and Point (GSSP) and the GSSP for the Wuchiapingian-Changhsingian Boundary, both at Meishan in southern China, is well-documented in respect to geochronology and the pattern of extinction. Here we report secular trends in bulk isotopic parameters and lipid biomarkers in a core spanning 214 m of stratigraphic section across the PTB and through the entire Changhsingian interval. Our analysis of these data, viewed in the context of relative sea level change and strontium isotopes, reveals distinct shifts in paleoenvironmental conditions and profound changes in plankton ecology well before and following the biological extinction event. Specifically, patterns of steroids and triterpenoids indicate a marine plankton community that was heavily dominated by bacteria during the late Wuchiapingian, middle Changhsingian and early Griesbachian stages. Secular trends in aromatic hydrocarbons diagnostic for anoxygenic green sulphur bacteria (Chlorobiaceae) identify periods when euxinic conditions extended into the photic zone during the entire Changhsingian stage. Here also, the δ15N of organic nitrogen progressively shifted from positive values around + 2 or + 3‰ to - 1‰ coincident with a sharp negative excursion in δ13C org and slightly postdating the sharp minimum in δ13C values of inorganic carbon that occurs at the top of Bed 24. These results, together the published chronology indicate that conditions unfavourable for aerobiosis existed in the marine photic zone at Meishan for 1.5 million years prior to the main phase of the biological extinction. The induction of marine euxinic conditions, worldwide, at the end of the Permian was likely a consequence of the

  20. First evidence for a massive extinction event affecting bees close to the K-T boundary.

    PubMed

    Rehan, Sandra M; Leys, Remko; Schwarz, Michael P

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators.

  1. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction.

    PubMed

    Long, Virginia A; Fanselow, Michael S

    2012-11-01

    Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning "erased" learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial's procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments.

  2. New Age of Fishes initiated by the Cretaceous−Paleogene mass extinction

    PubMed Central

    Sibert, Elizabeth C.; Norris, Richard D.

    2015-01-01

    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous−Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern “age of fishes.” PMID:26124114

  3. New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction

    NASA Astrophysics Data System (ADS)

    Sibert, Elizabeth C.; Norris, Richard D.

    2015-07-01

    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes."

  4. New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction.

    PubMed

    Sibert, Elizabeth C; Norris, Richard D

    2015-07-14

    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes."

  5. A microbial carbonate response in synchrony with the end-Triassic mass extinction across the SW UK

    PubMed Central

    Ibarra, Yadira; Corsetti, Frank A.; Greene, Sarah E.; Bottjer, David J.

    2016-01-01

    The eruption of the Central Atlantic Magmatic Province (CAMP)—the largest igneous province known—has been linked to the end-Triassic mass extinction event, however reconciling the response of the biosphere (at local and nonlocal scales) to potential CAMP-induced geochemical excursions has remained challenging. Here we present a combined sedimentary and biological response to an ecosystem collapse in Triassic-Jurassic strata of the southwest United Kingdom (SW UK) expressed as widely distributed carbonate microbialites and associated biogeochemical facies. The microbialites (1) occur at the same stratigraphic level as the mass extinction extinction, (2) host a negative isotope excursion in δ13Corg found in other successions around the world, and (3) co-occur with an acme of prasinophyte algae ‘disaster taxa’ also dominant in Triassic-Jurassic boundary strata of other European sections. Although the duration of microbialite deposition is uncertain, it is likely that they formed rapidly (perhaps fewer than ten thousand years), thus providing a high-resolution glimpse into the initial carbon isotopic perturbation coincident with the end-Triassic mass extinction. These findings indicate microbialites from the SW UK capture a nonlocal biosedimentary response to the cascading effects of massive volcanism and add to the current understanding of paleoecology in the aftermath of the end-Triassic extinction. PMID:26813244

  6. A microbial carbonate response in synchrony with the end-Triassic mass extinction across the SW UK.

    PubMed

    Ibarra, Yadira; Corsetti, Frank A; Greene, Sarah E; Bottjer, David J

    2016-01-27

    The eruption of the Central Atlantic Magmatic Province (CAMP)-the largest igneous province known-has been linked to the end-Triassic mass extinction event, however reconciling the response of the biosphere (at local and nonlocal scales) to potential CAMP-induced geochemical excursions has remained challenging. Here we present a combined sedimentary and biological response to an ecosystem collapse in Triassic-Jurassic strata of the southwest United Kingdom (SW UK) expressed as widely distributed carbonate microbialites and associated biogeochemical facies. The microbialites (1) occur at the same stratigraphic level as the mass extinction extinction, (2) host a negative isotope excursion in δ(13)Corg found in other successions around the world, and (3) co-occur with an acme of prasinophyte algae 'disaster taxa' also dominant in Triassic-Jurassic boundary strata of other European sections. Although the duration of microbialite deposition is uncertain, it is likely that they formed rapidly (perhaps fewer than ten thousand years), thus providing a high-resolution glimpse into the initial carbon isotopic perturbation coincident with the end-Triassic mass extinction. These findings indicate microbialites from the SW UK capture a nonlocal biosedimentary response to the cascading effects of massive volcanism and add to the current understanding of paleoecology in the aftermath of the end-Triassic extinction.

  7. Extinction space--a method for the quantification and classification of changes in morphospace across extinction boundaries.

    PubMed

    Korn, Dieter; Hopkins, Melanie J; Walton, Sonny A

    2013-10-01

    Three main modes of extinction are responsible for reductions in morphological disparity: (1) random (caused by a nonselective extinction event); (2) marginal (a symmetric, selective extinction event trimming the margin of morphospace); and (3) lateral (an asymmetric, selective extinction event eliminating one side of the morphospace). These three types of extinction event can be distinguished from one another by comparing changes in three measures of morphospace occupation: (1) the sum of range along the main axes; (2) the sum of variance; and (3) the position of the centroid. Computer simulations of various extinction events demonstrate that the pre-extinction distribution of taxa (random or normal) in the morphospace has little influence on the quantification of disparity changes, whereas the modes of the extinction events play the major role. Together, the three disparity metrics define an "extinction-space" in which different extinction events can be directly compared with one another. Application of this method to selected extinction events (Frasnian-Famennian, Devonian-Carboniferous, and Permian-Triassic) of the Ammonoidea demonstrate the similarity of the Devonian events (selective extinctions) but the striking difference from the end-Permian event (nonselective extinction). These events differ in their mode of extinction despite decreases in taxonomic diversity of similar magnitude.

  8. Macrofossil extinction patterns at Bay of Biscay Cretaceous-Tertiary boundary sections

    NASA Technical Reports Server (NTRS)

    Ward, Peter D.; Macleod, Kenneth

    1988-01-01

    Researchers examined several K-T boundary cores at Deep Sea Drilling Project (DSDP) core repositories to document biostratigraphic ranges of inoceramid shell fragments and prisms. As in land-based sections, prisms in the deep sea cores disappear well before the K-T boundary. Ammonites show a very different extinction pattern than do the inoceramids. A minimum of seven ammonite species have been collected from the last meter of Cretaceous strata in the Bay of Biscay basin. In three of the sections there is no marked drop in either species numbers or abundance prior to the K-T boundary Cretaceous strata; at the Zumaya section, however, both species richness and abundance drop in the last 20 m of the Cretaceous, with only a single ammonite specimen recovered to date from the uppermost 12 m of Cretaceous strata in this section. Researchers conclude that inoceramid bivalves and ammonites showed two different times and patterns of extinction, at least in the Bay of Biscay region. The inoceramids disappeared gradually during the Early Maestrichtian, and survived only into the earliest Late Maestrichtian. Ammonites, on the other hand, maintained relatively high species richness throughout the Maestrichtian, and then disappeared suddenly, either coincident with, or immediately before the microfossil extinction event marking the very end of the Cretaceous.

  9. Dental Disparity and Ecological Stability in Bird-like Dinosaurs prior to the End-Cretaceous Mass Extinction.

    PubMed

    Larson, Derek W; Brown, Caleb M; Evans, David C

    2016-05-23

    The causes, rate, and selectivity of the end-Cretaceous mass extinction continue to be highly debated [1-5]. Extinction patterns in small, feathered maniraptoran dinosaurs (including birds) are important for understanding extant biodiversity and present an enigma considering the survival of crown group birds (Neornithes) and the extinction of their close kin across the end-Cretaceous boundary [6]. Because of the patchy Cretaceous fossil record of small maniraptorans [7-12], this important transition has not been closely examined in this group. Here, we test the hypothesis that morphological disparity in bird-like dinosaurs was decreasing leading up to the end-Cretaceous mass extinction, as has been hypothesized in some dinosaurs [13, 14]. To test this, we examined tooth morphology, an ecological indicator in fossil reptiles [15-19], from over 3,100 maniraptoran teeth from four groups (Troodontidae, Dromaeosauridae, Richardoestesia, and cf. Aves) across the last 18 million years of the Cretaceous. We demonstrate that tooth disparity, a proxy for variation in feeding ecology, shows no significant decline leading up to the extinction event within any of the groups. Tooth morphospace occupation also remains static over this time interval except for increased size during the early Maastrichtian. Our data provide strong support that extinction within this group occurred suddenly after a prolonged period of ecological stability. To explain this sudden extinction of toothed maniraptorans and the survival of Neornithes, we propose that diet may have been an extinction filter and suggest that granivory associated with an edentulous beak was a key ecological trait in the survival of some lineages.

  10. An evaluation of criteria that may be used to identify species surviving a mass extinction

    NASA Technical Reports Server (NTRS)

    Macleod, N.

    1994-01-01

    One of the most difficult obstacles to establishing a causal connection between mass extinctions and large body impacts is the existence of what appear to be many more KT survivor species than previously suspected. Though interpretations of 'Cretaceous' faunal elements in lowermost Danian sediments differ, this enigmatic fauna has not been recovered from every biozone-complete boundary section, including the El Kef stratotype. In terms of their potential for providing constraints on scenarios seeking to account for the KT extinction event, the significance of such observations cannot be overstated. Owing to the consistency with which these observations have been made over the last several years, the possibility of widespread trans-KT biotic survivorship can no longer be dismissed. Rather, the survivorship hypothesis must be tested alongside its alternative (the reworking hypothesis) to determine which explains the available data in the most complete yet parsimonious manner. Moreover, valid tests for survivorship cannot be based on negative evidence or on the assumption that only a small cohort of species could have survived the KT boundary event. Several authors have recently proposed various criteria that might be used to test alternative interpretations for this aspect lowermost Danian biotic record.

  11. Evidence for reduced export productivity following the Cretaceous/Paleogene mass extinction

    NASA Astrophysics Data System (ADS)

    Esmeray-Senlet, Selen; Wright, James D.; Olsson, Richard K.; Miller, Kenneth G.; Browning, James V.; Quan, Tracy M.

    2015-06-01

    The Cretaceous/Paleogene (K/Pg) mass extinction was associated with a collapse in the carbon isotopic (δ13C) gradient between planktonic and benthic foraminifera and a decrease in bulk carbonate δ13C values. These perturbations have been explained by several hypotheses: global collapse of primary productivity (Strangelove Ocean), greatly reduced export but not primary productivity (Living Ocean), little or no reduction in export productivity (Resilient Ocean), and geographic heterogeneity in the change of export productivity (Heterogeneous Ocean). We tested primary versus export productivity changes in the paleoshelf of New Jersey, where δ13C values and organic carbon accumulation rates can distinguish among different ocean responses. On the shelf, the K/Pg boundary is associated with a ~2.5‰ δ13C decrease in bulk carbonate, a ~0.8‰ δ13C decrease in organic carbon, a collapse of the surface to bottom δ13C gradient, and a drop in organic carbon accumulation rates. We interpret an early Danian ~1.0‰ planktonic foraminiferal δ13C gradient, a ~0.75‰ cross-shelf benthic foraminiferal δ13C gradient, and a drop in carbon accumulation rates to reflect the presence of active primary but limited export productivity, consistent with the Living Ocean hypothesis. We evaluated interbasinal deep-sea benthic foraminiferal δ13C gradients between the Pacific (Site 1210) and Atlantic (Site 1262) oceans as a proxy for changes in export productivity. The interbasinal δ13C gradient was reduced after the mass extinction, suggesting a reduction in global export productivity. Although our data support the Living Ocean hypothesis, evidence from paleoupwelling zones shows significant export productivity, indicating spatial heterogeneity in the wake of the K/Pg mass extinction (Heterogeneous Ocean).

  12. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    SciTech Connect

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  13. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle

    PubMed Central

    Irmis, Randall B.; Whiteside, Jessica H.

    2012-01-01

    During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom–bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle. PMID:22031757

  14. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle.

    PubMed

    Irmis, Randall B; Whiteside, Jessica H

    2012-04-07

    During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom-bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle.

  15. Dinosaur bone beds and mass mortality: Implications for the K-T extinction

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    1988-01-01

    Mass accumulations of fossilized large terrestrial vertebrate skeletons (bone beds: BB) provide a test for K-T catastrophic extinction hypotheses. The two major factors contributing to BB formation are mode of death and sedimentation rate. Catastrophic mass mortality (CMM) is the sudden death of numerous individuals where species, age, health, gender, or social ranking offer no survivorship advantage. Noncatastrophic mass mortality (NCMM) occurs over time and is strongly influenced by species, age, or gender. In addition to cause of death, sedimentation rate is also important in BB formation. Models of BBs can be made. The CMM drops all individuals in their tracks, therefore, the BB should reflect the living population with respect to species, age, or gender. The NCMM results in monospecific BBs skewed in the direction of the less fit, usually the very young or very old, or towards a specific gender. The NCMM and AM BBs may become more similar the more spread out over time NCMM deaths occur because carcasses are widely scattered requiring hydraulic accumulation, and the greater time allows for more disarticulation and weathering. The CMM and NCMM BB appear to be dominated by social animals. Applying this and the characteristics of mortality patterns to the uppermost Cretaceous Hell Creek Formation indicates that only NCMM and AM BB occur. Furthermore, NCMM BB are rare in the upper third of the Hell Creek. Near the K-T boundary, only AM BB are known. The absence of CMM and NCMM BB appears to be real reflecting a decrease in population levels of some dinosaurs prior to the K-T event. The absence of CMM suggests that the K-T event did not lead to an instantaneous extinction of dinosaurs. Nor was there a protracted die-off due to an asteroid impact winter, because no NCMM BB are known at or near the K-T boundary.

  16. Mass extinction in a dynamical system of evolution with variable dimension.

    PubMed

    Tokita, K; Yasutomi, A

    1999-07-01

    Introducing the effect of extinction into the so-called replicator equations in mathematical biology, we construct a general model where the diversity of species, i.e., the dimension of the equation, is a time-dependent variable. The system shows very different behavior from the original replicator equation, and leads to mass extinction when the system initially has high diversity. The present theory can serve as a mathematical foundation for the paleontologic theory for mass extinction. This extinction dynamics is a prototype of dynamical systems where the variable dimension is inevitable.

  17. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoshi; Yamasaki, Shin-ichi; Ogawa, Yasumasa; Kimura, Kazuhiko; Kaiho, Kunio; Yoshida, Takeyoshi; Tsuchiya, Noriyoshi

    2014-05-01

    We describe variations in trace element compositions that occurred on the deep seafloor of palaeo-superocean Panthalassa during the end-Permian mass extinction based on samples of sedimentary rock from one of the most continuous Permian-Triassic boundary sections of the pelagic deep sea exposed in north-eastern Japan. Our measurements revealed low manganese (Mn) enrichment factor (normalised by the composition of the average upper continental crust) and high cerium anomaly values throughout the section, suggesting that a reducing condition already existed in the depositional environment in the Changhsingian (Late Permian). Other redox-sensitive trace-element (vanadium [V], chromium [Cr], molybdenum [Mo], and uranium [U]) enrichment factors provide a detailed redox history ranging from the upper Permian to the end of the Permian. A single V increase (representing the first reduction state of a two-step V reduction process) detected in uppermost Changhsingian chert beds suggests development into a mildly reducing deep-sea condition less than 1 million years before the end-Permian mass extinction. Subsequently, a more reducing condition, inferred from increases in Cr, V, and Mo, developed in overlying Changhsingian grey siliceous claystone beds. The most reducing sulphidic condition is recognised by the highest peaks of Mo and V (second reduction state) in the uppermost siliceous claystone and overlying lowermost black claystone beds, in accordance with the end-Permian mass extinction event. This significant increase in Mo in the upper Changhsingian led to a high Mo/U ratio, much larger than that of modern sulphidic ocean regions. This trend suggests that sulphidic water conditions developed both at the sediment-water interface and in the water column. Above the end-Permian mass extinction horizon, Mo, V and Cr decrease significantly. On this trend, we provide an interpretation of drawdown of these elements in seawater after the massive element precipitation event

  18. Accelerated modern human-induced species losses: Entering the sixth mass extinction.

    PubMed

    Ceballos, Gerardo; Ehrlich, Paul R; Barnosky, Anthony D; García, Andrés; Pringle, Robert M; Palmer, Todd M

    2015-06-01

    The oft-repeated claim that Earth's biota is entering a sixth "mass extinction" depends on clearly demonstrating that current extinction rates are far above the "background" rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing.

  19. Estimates of the magnitudes of major marine mass extinctions in earth history

    PubMed Central

    2016-01-01

    Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor–Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ∼81% of marine species died out in the great terminal Permian crisis, whereas levels of 90–96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed. PMID:27698119

  20. Estimates of the magnitudes of major marine mass extinctions in earth history.

    PubMed

    Stanley, Steven M

    2016-10-18

    Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor-Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ∼81% of marine species died out in the great terminal Permian crisis, whereas levels of 90-96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.

  1. Estimates of the magnitudes of major marine mass extinctions in earth history

    NASA Astrophysics Data System (ADS)

    Stanley, Steven M.

    2016-10-01

    Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor-Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ˜81% of marine species died out in the great terminal Permian crisis, whereas levels of 90-96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.

  2. The End-Permian mass extinction: What really happened and did it matter?

    PubMed

    Erwin, D H

    1989-08-01

    Marine communities of the Paleozoic differ markedly from those of the post-Paleozoic, a dichotomy long recognized as the most fundamental change between the Cambrian metazoan radiation and the present. The end-Permian mass extinction of about 54% of marine families eliminated many of the groups that dominated Paleozoic communities. Correlative changes occurred in terrestrial vertebrate and plant communities, but there is no clear evidence that these changes are related to the marine extinction. The marine extinction occurred during a period of physical change, and a variety of extinction mechanisms have been proposed, most related to a major Late Permian marine regression or to climatic changes. Unfortunately, the regression has made it difficult to gather data on the rate, timing and pattern of extinction, and the available data exclude only a few hypotheses. Thus the largest mass extinction, and the one with the greatest evolutionary importance, is also the most poorly understood.

  3. Redox conditions and marine microbial community changes during the end-Ordovician mass extinction event

    NASA Astrophysics Data System (ADS)

    Smolarek, Justyna; Marynowski, Leszek; Trela, Wiesław; Kujawski, Piotr; Simoneit, Bernd R. T.

    2017-02-01

    The end-Ordovician (Hirnantian) crisis is the first globally distinct extinction during the Phanerozoic, but its causes are still not fully known. Here, we present an integrated geochemical and petrographic analysis to understand the sedimentary conditions taking place before, during and after the Late Ordovician ice age. New data from the Zbrza (Holy Cross Mountains) and Gołdap (Baltic Depression) boreholes shows that, like in other worldwide sections, the total organic carbon (TOC) content is elevated in the upper Katian and uppermost Hirnantian to Rhudannian black shales, but depleted (below 1%) during most of the Hirnantian. Euxinic conditions occurred in the photic zone in both TOC-rich intervals. This is based on the maleimide distribution, occurrence of aryl isoprenoids and isorenieratane, as well as a dominance of tiny pyrite framboids. Euxinic conditions were interrupted by the Hirnantian regression caused by glaciation. Sedimentation on the deep shelf changed to aerobic probably due to intense thermohaline circulation. Euxinia in the water column occurred directly during the time associated with the second pulse of the mass extinction with a termination of the end-Ordovician glaciation and sea level rise just at the Ordovician/Silurian (O/S) boundary. In contrast, we suggest based on inorganic proxies that bottom water conditions were generally oxic to dysoxic due to upwelling in the Rheic Ocean. The only episode of seafloor anoxia in the Zbrza basin was found at the O/S boundary, where all inorganic indicators showed elevated values typical for anoxia (U/Th > 1.25; V/Cr > 4.25; V/(V + Ni): 0.54-0.82 and Mo > 10-25 ppm). Significant differences in hopanes to steranes ratio and in C27-C29 sterane distribution between the Katian, Rhudannian and Hirnantian deposits indicate changes in marine microbial communities triggered by sharp climate change and Gondwana glaciation. The increase from biomarkers of cyanobacteria (2α-methylhopanes) after the O

  4. Selective extinction and survival across the Cretaceous/Tertiary boundary in the northern Atlantic Coastal Plain

    SciTech Connect

    Gallagher, W.B. )

    1991-10-01

    The inner Atlantic Coastal Plain in New Jersey and the Delmarva Peninsula is underlain by an Upper Cretaceous-lower Tertiary sequence of marine and paralic sand, clay, and glauconitic beds. Campanian, Maastrichtian, Danian, and Thanetian deposits are especially fossiliferous and yield a succession of marine faunas that reveal a pattern of selective extinction and survival across the Cretaceous/Tertiary (K/T) boundary in this area. Cretaceous benthic invertebrate communities are dominated by oysters and other semi-infaunal and infaunal molluscs with planktotrophic larval stages. These are replaced in the Danian by brachiopod-dominated communities that are composed of epifaunal benthos with a variety of nonplanktotrophic reproductive strategies. A similar pattern is observable in the nektonic cephalopod populations in this sequence; the typical ammonites of the Cretaceous became extinct at the K/T boundary, whereas the nautilids survived. Ammonites are thought to have had a planktotrophic larval stage, whereas nautilids are known to lay large lecithotrophic eggs. This pattern of differential survival is attributed to the planktonic population crash at the K/T boundary which placed planktotrophically reproducing species at a disadvantage while favoring the varied groups that practiced alternative reproductive strategies.

  5. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction.

    PubMed

    Brayard, Arnaud; Escarguel, Gilles; Bucher, Hugo; Monnet, Claude; Brühwiler, Thomas; Goudemand, Nicolas; Galfetti, Thomas; Guex, Jean

    2009-08-28

    The end-Permian mass extinction removed more than 80% of marine genera. Ammonoid cephalopods were among the organisms most affected by this crisis. The analysis of a global diversity data set of ammonoid genera covering about 106 million years centered on the Permian-Triassic boundary (PTB) shows that Triassic ammonoids actually reached levels of diversity higher than in the Permian less than 2 million years after the PTB. The data favor a hierarchical rather than logistic model of diversification coupled with a niche incumbency hypothesis. This explosive and nondelayed diversification contrasts with the slow and delayed character of the Triassic biotic recovery as currently illustrated for other, mainly benthic groups such as bivalves and gastropods.

  6. Climate change and the selective signature of the Late Ordovician mass extinction.

    PubMed

    Finnegan, Seth; Heim, Noel A; Peters, Shanan E; Fischer, Woodward W

    2012-05-01

    Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia.

  7. Climate change and the selective signature of the Late Ordovician mass extinction

    PubMed Central

    Finnegan, Seth; Heim, Noel A.; Peters, Shanan E.; Fischer, Woodward W.

    2012-01-01

    Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia. PMID:22511717

  8. Accelerated modern human–induced species losses: Entering the sixth mass extinction

    PubMed Central

    Ceballos, Gerardo; Ehrlich, Paul R.; Barnosky, Anthony D.; García, Andrés; Pringle, Robert M.; Palmer, Todd M.

    2015-01-01

    The oft-repeated claim that Earth’s biota is entering a sixth “mass extinction” depends on clearly demonstrating that current extinction rates are far above the “background” rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing. PMID:26601195

  9. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions

    PubMed Central

    Stanley, Steven M.

    2009-01-01

    Ammonoids and conodonts, being characterized by exceptionally high background rates of origination and extinction, were vulnerable to global environmental crises, which characteristically intensified background rates of extinction. Thus, it is not surprising that these taxa suffered conspicuous mass extinctions at the times of three negative Early Triassic global carbon isotopic excursions that resembled those associated with the two preceding Permian mass extinctions. In keeping with their high rates of origination, both the ammonoids and conodonts rediversified dramatically between the Early Triassic crises. Other marine taxa, characterized by much lower intrinsic rates of origination, were held at low levels of diversity by the Early Triassic crises; because global mass extinctions affect all marine life, these taxa must have experienced relatively modest expansions and contractions that have yet to be discovered, because they do not stand out in the fossil record and because the stratigraphic ranges of these taxa, being of little value for temporal correlation, have not been thoroughly studied. PMID:19721005

  10. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions.

    PubMed

    Stanley, Steven M

    2009-09-08

    Ammonoids and conodonts, being characterized by exceptionally high background rates of origination and extinction, were vulnerable to global environmental crises, which characteristically intensified background rates of extinction. Thus, it is not surprising that these taxa suffered conspicuous mass extinctions at the times of three negative Early Triassic global carbon isotopic excursions that resembled those associated with the two preceding Permian mass extinctions. In keeping with their high rates of origination, both the ammonoids and conodonts rediversified dramatically between the Early Triassic crises. Other marine taxa, characterized by much lower intrinsic rates of origination, were held at low levels of diversity by the Early Triassic crises; because global mass extinctions affect all marine life, these taxa must have experienced relatively modest expansions and contractions that have yet to be discovered, because they do not stand out in the fossil record and because the stratigraphic ranges of these taxa, being of little value for temporal correlation, have not been thoroughly studied.

  11. Impact and extinction signatures in complete Cretaceous-Tertiary (K-T) boundary sections

    NASA Technical Reports Server (NTRS)

    Smit, J.; Groot, H.; Dejonge, R.; Smit, P.

    1988-01-01

    The Zumaya, Caravaca and Agost sections in Spain, the El Kef section in Tunisia and the Negev (Nahal Avdat) sections in Israel are among the most continuous, expanded and complete K-T boundary sections. The distribution patterns of the planktic faunas were quantitatively analyzed in closely spaced samples across the K-T boundary in these sections, in conjuction with the geochemistry, stable isotopes, mineralogy and magnetostratigraphy. Three hundred foraminiferal specimens were randomly selected and determined. Reliable estimates for the foraminiferal productivity changes across the K-T boundary and for the 1 to 2 Ma interval preceding the K-T boundary were made from the numbers of individuals/gram of sediment corrected for the sedimentation rates (calculated from magnetic reversals and lithology). No gradual or stepwise extinction is seen below the K-T boundary nor any productivity decrease. Stable isotope analyses show a warming just after deposition of the ejecta layer, not cooling as predicted by nuclear winter scenarios, although the duration of such cooling may be too short to be observed even in these complete sections. Low REE values and cpx spherules with quench textures idential to quench-textures in diagenetically altered spherules, strongly indicate an oceanic site of (one of) the impactor(s).

  12. Non-detection of C60 fullerene at two mass extinction horizons

    NASA Astrophysics Data System (ADS)

    Carrasquillo, Anthony J.; Cao, Changqun; Erwin, Douglas H.; Summons, Roger E.

    2016-03-01

    Fullerene (C60) have been reported in a number of geologic samples and, in some cases, attributed to carbonaceous materials delivered during bolide impact events. The extraction and detection of C60 poses significant analytical challenges, and some studies have been called into question due to the possibility of C60 forming in situ. Here, we extracted samples taken from the Permian-Triassic boundary section in Meishan, South China and the Cretaceous-Paleogene boundary exposed at Stevns Klint, Denmark, and analyzed the residues using a fast and reliable method for quantifying C60. Extraction of both whole rock and completely demineralized samples were completed under conditions that previously yielded C60 as well as using an optimized approach based on recent literature reports. These extracts were analyzed using mass spectrometry with the soft-ionization techniques, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), which have not been shown to form fullerenes in-situ. In no case were we able to detect C60, nor could we corroborate previous reports of its occurrence in these sediments, thereby challenging the utility of fullerene as a proxy for bolide impacts or mass extinction events.

  13. Graptolite community responses to global climate change and the Late Ordovician mass extinction.

    PubMed

    Sheets, H David; Mitchell, Charles E; Melchin, Michael J; Loxton, Jason; Štorch, Petr; Carlucci, Kristi L; Hawkins, Andrew D

    2016-07-26

    Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (∼447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.

  14. Graptolite community responses to global climate change and the Late Ordovician mass extinction

    PubMed Central

    Sheets, H. David; Mitchell, Charles E.; Melchin, Michael J.; Loxton, Jason; Štorch, Petr; Carlucci, Kristi L.; Hawkins, Andrew D.

    2016-01-01

    Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (∼447–444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction. PMID:27432981

  15. Graptolite community responses to global climate change and the Late Ordovician mass extinction

    NASA Astrophysics Data System (ADS)

    Sheets, H. David; Mitchell, Charles E.; Melchin, Michael J.; Loxton, Jason; Štorch, Petr; Carlucci, Kristi L.; Hawkins, Andrew D.

    2016-07-01

    Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (˜447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.

  16. Response of beta diversity to pulses of Ordovician-Silurian mass extinction.

    PubMed

    Darroch, Simon A F; Wagner, Peter J

    2015-02-01

    Ecologists are increasingly using the fossil record of mass extinction to build predictive models for the ongoing biodiversity crisis. During mass extinctions, major depletions in global (i.e., gamma) diversity may reflect decrease in alpha diversity (i.e., local assemblages support fewer taxa), and/or decrease in beta diversity (such that similar pools of taxa are common to a greater number of local areas). Contrasting the effects of extinction on alpha and beta diversity is therefore central to understanding how global richness becomes depleted over these critical events. Here we investigate the spatial effects of mass extinction by examining changes in alpha, beta, and gamma diversity in brachiopod communities over both pulses of Ordovician-Silurian extinction (-445.2 and -438.8 million years ago), which had dramatically different causal mechanisms. We furthermore reconstruct geographic range sizes for brachiopod genera to test competing models for drivers of beta diversity change. We find that: (1) alpha and beta diversity respond differently to extinction; (2) these responses differ between pulses of extinction; (3) changes in beta diversity associated with extinction are accompanied by changes in geographic range size; and (4) changes in global beta diversity were driven by the extinction of taxa with statistically small and large ranges, rather than range expansion/contraction in taxa that survive into the aftermath. A symptom of ongoing biotic crisis may therefore be the extinction of specific narrow- or wide-ranging taxa, rather than the global proliferation of opportunistic and "disaster" forms. In addition, our results illustrate that changes in beta diversity on these longer timescales may largely be dictated by emplacement and removal of barriers to dispersal. Lastly, this study reinforces the utility of the fossil record in addressing questions surrounding the role of global-scale processes (such as mass extinctions) in sculpting and assembling

  17. Could Ocean Acidification Have Caused the End-Permian Mass Extinction? - An Earth System Model Evaluation

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Kump, L. R.; Ridgwell, A.

    2013-12-01

    The end-Permian is associated with a 3-5‰ carbon isotope excursion in the ocean-atmosphere system within 20 kyr, most likely explained by a rapid and large amount of greenhouse gas emission. This has led to the hypothesis that it was ocean acidification that was the primary driver for the end-Permian marine mass extinction event. However, the total carbon emissions and degree of ocean acidification associated with the carbon isotope excursion are currently poorly constrained. To address this, we conduct a series of experiments varying initial and boundary conditions using an Earth system model (GENIE: http://cgenie.seao2.org/). We then invert the model by forcing the atmosphere δ13C to track our prescribed carbon isotopes on a reliable time scale derived from the recently published Meishan section in South China at each time step. The carbon isotope records are statistically treated to remove the noise that could result in unrealistic fluctuations in the derivatives of δ13C. The models are run for ~100 kyr from the initial sharp drop in δ13C (~60 kyr prior to the onset of the extinction event) to its initial recovery phase (~30 kyr after the onset of the extinction event). We test four isotopically distinctive sources, including mantle volcanic source (-9‰), organic matter (-25‰), thermogenic methane (-40‰) and biogenic methane (-60‰) and derive the corresponding carbon emissions consistent with the observed isotopic excursion for each. We also test the importance of the lack of pelagic carbonate production during the late Paleozoic and run the model configured both as a 'Neritan' (shallow carbonate production only) and 'Cretan' (both shallow benthic and open ocean pelagic) ocean scenarios.

  18. The extinct, giant giraffid Sivatherium giganteum: skeletal reconstruction and body mass estimation.

    PubMed

    Basu, Christopher; Falkingham, Peter L; Hutchinson, John R

    2016-01-01

    Sivatherium giganteum is an extinct giraffid from the Plio-Pleistocene boundary of the Himalayan foothills. To date, there has been no rigorous skeletal reconstruction of this unusual mammal. Historical and contemporary accounts anecdotally state that Sivatherium rivalled the African elephant in terms of its body mass, but this statement has never been tested. Here, we present a three-dimensional composite skeletal reconstruction and calculate a representative body mass estimate for this species using a volumetric method. We find that the estimated adult body mass of 1246 kg (857-1812 kg range) does not approach that of an African elephant, but confirms that Sivatherium was certainly a large giraffid, and may have been the largest ruminant mammal that has ever existed. We contrast this volumetric estimate with a bivariate scaling estimate derived from Sivatherium's humeral circumference and find that there is a discrepancy between the two. The difference implies that the humeral circumference of Sivatherium is greater than expected for an animal of this size, and we speculate this may be linked to a cranial shift in centre of mass.

  19. The extinct, giant giraffid Sivatherium giganteum: skeletal reconstruction and body mass estimation

    PubMed Central

    2016-01-01

    Sivatherium giganteum is an extinct giraffid from the Plio–Pleistocene boundary of the Himalayan foothills. To date, there has been no rigorous skeletal reconstruction of this unusual mammal. Historical and contemporary accounts anecdotally state that Sivatherium rivalled the African elephant in terms of its body mass, but this statement has never been tested. Here, we present a three-dimensional composite skeletal reconstruction and calculate a representative body mass estimate for this species using a volumetric method. We find that the estimated adult body mass of 1246 kg (857—1812 kg range) does not approach that of an African elephant, but confirms that Sivatherium was certainly a large giraffid, and may have been the largest ruminant mammal that has ever existed. We contrast this volumetric estimate with a bivariate scaling estimate derived from Sivatherium's humeral circumference and find that there is a discrepancy between the two. The difference implies that the humeral circumference of Sivatherium is greater than expected for an animal of this size, and we speculate this may be linked to a cranial shift in centre of mass. PMID:26763212

  20. Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica

    PubMed Central

    Witts, James D.; Whittle, Rowan J.; Wignall, Paul B.; Crame, J. Alistair; Francis, Jane E.; Newton, Robert J.; Bowman, Vanessa C.

    2016-01-01

    Debate continues about the nature of the Cretaceous–Paleogene (K–Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K–Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous–Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian. PMID:27226414

  1. Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica.

    PubMed

    Witts, James D; Whittle, Rowan J; Wignall, Paul B; Crame, J Alistair; Francis, Jane E; Newton, Robert J; Bowman, Vanessa C

    2016-05-26

    Debate continues about the nature of the Cretaceous-Paleogene (K-Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K-Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous-Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian.

  2. Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica

    NASA Astrophysics Data System (ADS)

    Witts, James D.; Whittle, Rowan J.; Wignall, Paul B.; Crame, J. Alistair; Francis, Jane E.; Newton, Robert J.; Bowman, Vanessa C.

    2016-05-01

    Debate continues about the nature of the Cretaceous-Paleogene (K-Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K-Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous-Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian.

  3. Evolution and mass extinctions as lognormal stochastic processes

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2014-10-01

    -terrestrial civilizations existing in the Galaxy (as a consequence of the central limit theorem of statistics). (5) But the most striking new result is that the well-known `Molecular Clock of Evolution', namely the `constant rate of Evolution at the molecular level' as shown by Kimura's Neutral Theory of Molecular Evolution, identifies with growth rate of the entropy of our Evo-SETI model, because they both grew linearly in time since the origin of life. (6) Furthermore, we apply our Evo-SETI model to lognormal stochastic processes other than GBMs. For instance, we provide two models for the mass extinctions that occurred in the past: (a) one based on GBMs and (b) the other based on a parabolic mean value capable of covering both the extinction and the subsequent recovery of life forms. (7) Finally, we show that the Markov & Korotayev (2007, 2008) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the underlying lognormal stochastic process is a cubic function of the time. In conclusion: we have provided a new mathematical model capable of embracing molecular evolution, SETI and entropy into a simple set of statistical equations based upon b-lognormals and lognormal stochastic processes with arbitrary mean, of which the GBMs are the particular case of exponential growth.

  4. Terminal Ordovician extinction: geochemical analysis of the Ordovician/Silurian boundary, Anticosti Island, Quebec

    SciTech Connect

    Orth, C.J.; Gilmore, J.S.; Quintana, L.R.; Sheehan, P.M.

    1986-05-01

    Elemental abundances (including Ir), carbon and oxygen ratios in carbonates, mineral content, and thin sections have been measured in samples collected across the conodont-defined Ordovician/Silurian (O/S) boundary exposed on Anticosti Island, Quebec. The Ir concentrations ranged from 5 to a maximum at the boundary of 58 parts per trillion (ppt). However, there is no evidence, on the basis of these Ir results, for the association of a large-body-Earth impact with the O/S extinction, because the Ir concentrations, like those of most other trace elements, are simply proportional to the clay (Al) content in the carbonate sequence. The /sup 13/C//sup 12/C and /sup 18/O//sup 16/O ratios decrease abruptly at the boundary, then just as abruptly increase to a long period of higher than preboundary ratios. These patterns are probably related to the salinity in the seaway, which was shallowing up to boundary time and then deepened and developed patch-reefs. Fresh-water input from rivers would have been most influential during the shallow-water conditions. 32 references, 4 figures.

  5. The silent mass extinction of insect herbivores in biodiversity hotspots.

    PubMed

    Fonseca, Carlos Roberto

    2009-12-01

    Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species-host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant-feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971-1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3-10.6 monophages per plant species. I calculated that 213,830-547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.

  6. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction

    PubMed Central

    Thibodeau, Alyson M.; Ritterbush, Kathleen; Yager, Joyce A.; West, A. Joshua; Ibarra, Yadira; Bottjer, David J.; Berelson, William M.; Bergquist, Bridget A.; Corsetti, Frank A.

    2016-01-01

    The end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and release of CO2 and other volcanic volatiles has been implicated in the extinction. However, the timing of marine biotic recovery versus CAMP eruptions remains uncertain. Here we use Hg concentrations and isotopes as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic–Jurassic strata, Muller Canyon, Nevada, Hg levels rise in the extinction interval, peak before the appearance of the first Jurassic ammonite, remain above background in association with a depauperate fauna, and fall to pre-extinction levels during significant pelagic and benthic faunal recovery. Hg isotopes display no significant mass independent fractionation within the extinction and depauperate intervals, consistent with a volcanic origin for the Hg. The Hg and palaeontological evidence from the same archive indicate that significant biotic recovery did not begin until CAMP eruptions ceased. PMID:27048776

  7. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Thibodeau, Alyson M.; Ritterbush, Kathleen; Yager, Joyce A.; West, A. Joshua; Ibarra, Yadira; Bottjer, David J.; Berelson, William M.; Bergquist, Bridget A.; Corsetti, Frank A.

    2016-04-01

    The end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and release of CO2 and other volcanic volatiles has been implicated in the extinction. However, the timing of marine biotic recovery versus CAMP eruptions remains uncertain. Here we use Hg concentrations and isotopes as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg levels rise in the extinction interval, peak before the appearance of the first Jurassic ammonite, remain above background in association with a depauperate fauna, and fall to pre-extinction levels during significant pelagic and benthic faunal recovery. Hg isotopes display no significant mass independent fractionation within the extinction and depauperate intervals, consistent with a volcanic origin for the Hg. The Hg and palaeontological evidence from the same archive indicate that significant biotic recovery did not begin until CAMP eruptions ceased.

  8. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction.

    PubMed

    Thibodeau, Alyson M; Ritterbush, Kathleen; Yager, Joyce A; West, A Joshua; Ibarra, Yadira; Bottjer, David J; Berelson, William M; Bergquist, Bridget A; Corsetti, Frank A

    2016-04-06

    The end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and release of CO2 and other volcanic volatiles has been implicated in the extinction. However, the timing of marine biotic recovery versus CAMP eruptions remains uncertain. Here we use Hg concentrations and isotopes as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg levels rise in the extinction interval, peak before the appearance of the first Jurassic ammonite, remain above background in association with a depauperate fauna, and fall to pre-extinction levels during significant pelagic and benthic faunal recovery. Hg isotopes display no significant mass independent fractionation within the extinction and depauperate intervals, consistent with a volcanic origin for the Hg. The Hg and palaeontological evidence from the same archive indicate that significant biotic recovery did not begin until CAMP eruptions ceased.

  9. Terrestrial ecosystem collapse associated to the K-Pg boundary and dinosaur extinction: palynological evidences

    NASA Astrophysics Data System (ADS)

    Bercovici, A.; Vajda, V.; Lyson, T. R.; Chester, S. G. B.; Sargis, E. J.; Pearson, D. A.; Joyce, W. G.

    2012-04-01

    We report here the discovery of the stratigraphically youngest in situ dinosaur specimen. This ceratopsian brow horn was found in southeastern Montana, in the Western Interior of the United States in a poorly rooted, silty mudstone floodplain deposit and only 13 centimeters below the palynologically defined K-Pg boundary. The boundary is identified using three criteria: 1) substantial decrease in diversity and abundance of Cretaceous pollen and spore taxa that completely disappear from the palynological record a few meters above the boundary, 2) the presence of a "fern spike", and 3) palynostratigraphical correlation to a nearby section where primary extraterrestrial impact markers are present (e.g., iridium anomaly, spherules and shocked quartz). The palynological record in the rock sequence immediately following the K-Pg boundary consistently indicates a sudden and major loss of the Cretaceous components across the North American record. During this rapid decline, the palynological assemblages are dominated by freshwater ferns (Azolla) and algae (usually Pediastrum sp. and Penetetrapites sp.) indicating generalized flooding in the area. The onset of the Paleocene sedimentation is subsequently announced by the presence of variegated beds, multiple lignite seams and small scale meandering river systems, starting with palynological associations that attest for reworking and erosion. The destabilization of terrestrial ecosystems is coincident with the markers of the K-Pg boundary, supporting a catastrophic event taking place over a very short duration. The in situ ceratopsian brow horn demonstrates that a gap devoid of non-avian dinosaur fossils in the last meters of the Cretaceous is artificial and thus inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K-Pg boundary asteroid impact event.

  10. Mercury anomaly, Deccan volcanism and the end-Cretaceous mass extinction

    NASA Astrophysics Data System (ADS)

    Font, Eric; Adatte, Thierry; Nobrega Sial, Alcides; Drude de Lacerda, Luiz; Keller, Gerta; Punekar, Jahnavi

    2016-04-01

    The contribution of the Deccan Traps volcanism in the Cretaceous-Palaeogene (KPg) crisis is still a matter of debate. Particularly, the global geochemical effects of Deccan volcanism in the marine sedimentary record are still poorly resolved. Here, we investigate the mercury (Hg) content of the Bidart (France) section, where an interval of low magnetic susceptibility (MS) located just below the KPg boundary was hypothesized to result from paleoenvironmental perturbations linked to paroxysmal Deccan phase-2. Results show mercury concentrations over two orders of magnitude higher from ~80 cm below up to ~50 cm above the KPg boundary (max. 46.6 ppb) and coincident with the low MS interval. Increase in Hg contents shows no correlation with clay or total organic carbon contents, suggesting that the mercury anomalies resulted from higher input of atmospheric Hg species into the marine realm, rather than organic matter scavenging and/or increased run-off. The Hg anomalies correlate with high shell fragmentation and dissolution effects in planktic foraminifera suggesting correlative changes in marine biodiversity. This discovery represents an unprecedented piece of evidence of the nature and importance of the Deccan-related environmental changes at the onset of the KPg mass extinction. Funded by IDL (FCT UID/GEO/50019/2013)

  11. Widespread habitat change through paludification as an interactive mechanism in mass extinction events

    NASA Technical Reports Server (NTRS)

    Klinger, L. F.

    1988-01-01

    The study of mass extinction events has largely focused on defining an environmental factor or factors that might account for specific patterns of faunal demise. Several hypotheses elaborate on how a given environmental factor might affect fauna directly, but differentially, causing extinction in certain taxa but not others. Yet few studies have considered specific habitat changes that might result from natural vegetation processes or from perturbations of vegetation. The role of large-scale habitat change induced by natural successional change from forest to bog (paludification) is examined and how large perturbations (e.g., volcanism, bolide impacts) might favor increased rates of paludification and consequent mass extinctions is considered. This hypothesis has an advantage over other hypotheses for mass extinctions in that modern day analogs of paludification are common throughout the world, thus allowing for considerable testing.

  12. Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.

    PubMed

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-05

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  13. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-01

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  14. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction

    PubMed Central

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-01-01

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China. PMID:26538179

  15. The Impact of the Impact: Signature of the End-Cretaceous Mass Extinction in the Modern Biota

    NASA Astrophysics Data System (ADS)

    Krug, A. Z.; Jablonski, D.; Valentine, J. W.

    2010-04-01

    The end-Cretaceous mass extinction caused a permanent increase in the origination rates of living marine bivalves. This increase is visible in the marine bioprovinces of modern oceans, making the extinction a prominent feature of modern biogeography.

  16. Step-wise extinctions at the Cretaceous-Tertiary boundary and their climatic implications

    NASA Technical Reports Server (NTRS)

    Maurrasse, Florentin J-M. R.

    1988-01-01

    A comparative study of planktonic foraminifera and radiolarian assemblages from the Cretaceous-Tertiary (K-T) boundary section of the Beloc Formation in the southern Peninsula of Haiti, and the lowermost Danian sequence of the Micara Formation in southern Cuba reveals a remarkable pattern of step-wise extinctions. This pattern is consistent in both places despite the widely different lithologies of the two formations. Because of a step-wise extinction and the delayed disappearance of taxa known to be more representative of cooler water realms, it is inferred that a cooling trend which characterized the close of the Maastrichtian and the onset of the Tertiary had the major adverse effect on the existing biota. Although repetitive lithologic and faunal fluctuations throughout the Maastrichtian sediments found at Deep Sea Drilling Project (DSDP) site 146/149 in the Caribbean Sea indicate variations reminiscent of known climatically induced cycles in the Cenozoic, rapid biotic succession appears to have taken place during a crisis period of a duration greater than 2 mission years. Widespread and abundant volcanic activities recorded in the Caribbean area during the crisis period gives further credence to earlier contention that intense volcanism may have played a major role in exhacerbating pre-existing climatic conditions during that time.

  17. Timing of mammal-like reptile extinctions across the Permian-Triassic boundary in South Africa

    NASA Astrophysics Data System (ADS)

    MacLeod, Kenneth G.; Smith, Roger M. H.; Koch, Paul L.; Ward, Peter D.

    2000-03-01

    The rate, timing, and pattern of change in different regions and paleoenvironments are critical for distinguishing among potential causes for the Permian-Triassic (P-T) extinction. Carbon isotopic stratigraphy can provide global chronostratigraphic control. We report a large δ13C excursion at the P-T boundary and no long-term Permian δ13C trends for samples from the interior of Pangea. Stratigraphic gaps between available samples limit the resolution of our δ13C curve, but the excursion is within a 15-m-thick zone of overlap between Permian and Triassic taxa. Sedimentological and taphonomic observations demonstrate that this 15 m interval does not represent geologically instantaneous deposition. Together these data support a rapid and globally synchronous P-T event, but suggest that it occurred over a geologically resolvable interval of time.

  18. What caused the mass extinction An extraterrestrial impact

    SciTech Connect

    Alvarez, W. ); Asaro, F. )

    1990-10-01

    The authors and other investigators discovered iridium in the clays that mark the sudden disappearance of dinosaurs from the fossil record. Because iridium is rare in the earth's crust but abundant in some meteorites, they concluded that a giant meteorite collided with the earth, hurling megatons of debris into the atmosphere. This paper describes and discusses the accumulating evidence that suggests an asteroid or comet caused the Cretaceous extinction.

  19. Biostratigraphic correlation and mass extinction during the Permian-Triassic transition in terrestrial-marine siliciclastic settings of South China

    NASA Astrophysics Data System (ADS)

    Chu, Daoliang; Yu, Jianxin; Tong, Jinnan; Benton, Michael J.; Song, Haijun; Huang, Yunfei; Song, Ting; Tian, Li

    2016-11-01

    The Permian-Triassic boundary marks the greatest mass extinction during the Phanerozoic, which was coupled with major global environmental changes, and is known especially from well-preserved marine fossil records and continuous carbonate deposits. However, the placement of the Permian-Triassic boundary in terrestrial sections and accurate correlation with the marine strata are difficult due to the absence of the key marine index fossils in terrestrial-marine siliciclastic settings. Here, we present detailed fossil data from four terrestrial sections, two paralic sections and one shallow marine section in South China. Our data show that the rapid mass disappearance of the Gigantopteris flora in various sections represents the end-Permian mass extinction and the base of the Permian-Triassic transitional beds in terrestrial-marine siliciclastic settings of South China. In particular, we find a mixed marine and terrestrial biota from the coastal transitional sections of the Permian-Triassic transitional Kayitou Formation, which provides a unique intermediate link for biostratigraphic correlation between terrestrial and marine sequences. Accordingly, the Euestheria gutta-bearing conchostracan fauna and the Pteria ussurica variabilis-Towapteria scythica-Eumorphotis venetiana bivalve assemblage are proposed as markers of the Permian-Triassic transitional beds in terrestrial-marine siliciclastic settings of South China.

  20. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction.

    PubMed

    Huttenlocker, Adam K

    2014-01-01

    The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the 'Lilliput effect,' a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns.

  1. Epicontinental seas versus open-ocean settings: the kinetics of mass extinction and origination.

    PubMed

    Miller, Arnold I; Foote, Michael

    2009-11-20

    Environmental perturbations during mass extinctions were likely manifested differently in epicontinental seas than in open-ocean-facing habitats of comparable depth. Here, we present a dissection of origination and extinction in epicontinental seas versus open-ocean-facing coastal regions in the Permian through Cretaceous periods, an interval through which both settings are well represented in the fossil record. Results demonstrate that extinction rates were significantly higher in open-ocean settings than in epicontinental seas during major mass extinctions but not at other times and that origination rates were significantly higher in open-ocean settings for a protracted interval from the Late Jurassic through the Late Cretaceous. These patterns are manifested even when other paleogeographic and environmental variables are held fixed, indicating that epicontinental seas and open-ocean-facing coastlines carry distinct macroevolutionary signatures.

  2. Changhsingian conodont succession and the end-Permian mass extinction event at the Daijiagou section in Chongqing, Southwest China

    NASA Astrophysics Data System (ADS)

    Yuan, Dong-xun; Chen, Jun; Zhang, Yi-chun; Zheng, Quan-feng; Shen, Shu-zhong

    2015-06-01

    Previous studies suggested rapid evolution of conodonts across the Permian-Triassic boundary (PTB), and the end-Permian mass extinction pattern varies in different sections in South China. Here we document a high-resolution conodont succession from a carbonate facies of the Changhsingian Stage and across the PTB at the Daijiagou section, about 35 km north to Chongqing City, Southwest China. Two genera and twelve species are identified. Seven conodont zones are recognized from the uppermost part of the Lungtan Formation to the lowest Feixianguan Formation. They are the Clarkina liangshanensis, C. wangi, C. subcarinata, C. changxingensis, C. yini, C. meishanensis, and Hindeodus parvus zones in ascending order. Based on the high-resolution biostratigraphical framework at Daijiagou, the end-Permian mass extinction was rapid and it began in the base of the Clarkina meishanensis Zone. Associated with the extinction, a negative excursion of δ13Ccarb started in the middle part of Clarkina yini Zone with a progressive shift of 1.6‰ to the middle part of the Clarkina meishanensis, followed by a sharp shift of 3.51‰ from the Clarkina meishanensis Zone to the Hindeodus parvus Zone. Our study also suggests that the Triassic index species Hindeodus parvus co-occurred with Hindeodus changxingensis and Clarkina zhejiangensis and directly overlies the Clarkina meishanensis Zone at the Daijiagou section. All these data from the Daijiagou section and some previous studies of other sections in Sichuan, Guizhou provinces and Chongqing City suggest that the first occurrences of Hindeodus parvus are slightly earlier than the sharp negative excursion of δ13Ccarb and the FAD at the Meishan GSSP section. We consider that the slight difference of the end-Permian mass extinction, chemostratigraphy and conodont biostratigraphy at Daijiagou and its adjacent areas is most likely subject to different lithofacies, fossil preservation, and the constraint on the stratigraphic resolution rather

  3. Environments and extinctions at the K-T boundary in eastern Montana are compatible with an asteroid impact

    SciTech Connect

    Fastovsky, D.E. ); Sheehan, P.M. )

    1992-01-01

    In the terrestrial latest Cretaceous Hell Creek (HC) Formation, both non-biotic events and patterns of extinction and survivorship are consistent with an asteroid impact causing the extinctions. Environments through the last 2--3 million-year interval represented by the HC remained relatively constant: an aggrading coastal lowland dissected by meandering rivers. The K-T boundary occurred during an abrupt change to impeded drainage represented by coals and pond deposits formed under low-energy conditions. Because of the close temporal proximity of the sediments of the Paleocene Cannonball Sea to the K-T boundary in South Dakota, impeded drainage in the earliest Paleocene in eastern Montana may be attributable to riverine base-level changes associated with a renewed transgression of the western interior sea during the K-T transition. Patterns within the biota mirror those of the paleoenvironments. The ecological diversity of HC dinosaurs remains statistically unchanged through HC time. Analyses of vertebrates at the species level indicate a differential extinction in which the terrestrial biota underwent far more extinction than its aquatic counterpart. There is no evidence for changing environments in the upper HC, and there is circumstantial evidence that the latest Cretaceous was a time of renewed transgression rather than regression. Likewise, biotic patterns do not accord with gradual, environmentally driven extinctions. While the paleoenvironmental change that marks the K-T transition in eastern Montana accounts for some of the extinctions, the pattern of differential extinction is concordant with an asteroid impact. In this scenario, aquatic ecosystems and some land-based food chains would be buffered by detritus-based feeding. Terrestrial systems, dependent upon primary productivity, would undergo a short-term loss of resources causing extinctions.

  4. The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    NASA Technical Reports Server (NTRS)

    Zachos, J. C.; Arthus, M. A.; Dean, W. E.

    1988-01-01

    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event.

  5. End-Cretaceous marine mass extinction not caused by productivity collapse.

    PubMed

    Alegret, Laia; Thomas, Ellen; Lohmann, Kyger C

    2012-01-17

    An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export productivity (Living Ocean), which caused mass extinction higher in the marine food chain. Phytoplankton-dependent benthic foraminifera on the deep-sea floor, however, did not suffer significant extinction, suggesting that export productivity persisted at a level sufficient to support their populations. We compare benthic foraminiferal records with benthic and bulk stable carbon isotope records from the Pacific, Southeast Atlantic, and Southern Oceans. We conclude that end-Cretaceous decrease in export productivity was moderate, regional, and insufficient to explain marine mass extinction. A transient episode of surface ocean acidification may have been the main cause of extinction of calcifying plankton and ammonites, and recovery of productivity may have been as fast in the oceans as on land.

  6. End-Cretaceous marine mass extinction not caused by productivity collapse

    PubMed Central

    Alegret, Laia; Thomas, Ellen; Lohmann, Kyger C

    2012-01-01

    An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export productivity (Living Ocean), which caused mass extinction higher in the marine food chain. Phytoplankton-dependent benthic foraminifera on the deep-sea floor, however, did not suffer significant extinction, suggesting that export productivity persisted at a level sufficient to support their populations. We compare benthic foraminiferal records with benthic and bulk stable carbon isotope records from the Pacific, Southeast Atlantic, and Southern Oceans. We conclude that end-Cretaceous decrease in export productivity was moderate, regional, and insufficient to explain marine mass extinction. A transient episode of surface ocean acidification may have been the main cause of extinction of calcifying plankton and ammonites, and recovery of productivity may have been as fast in the oceans as on land. PMID:22207626

  7. Periodicity of mass extinctions without an extraterrestrial cause.

    PubMed

    Lipowski, Adam

    2005-05-01

    We study a lattice model of a multispecies prey-predator system. Numerical results show that for a small mutation rate the model develops irregular long-period oscillatory behavior with sizeable changes in a number of species. The periodicity of extinctions on Earth was suggested by Raup and Sepkoski [Proc. Natl. Acad. Sci. 81, 801 (1984)], but thus far is lacking a satisfactory explanation. Our model indicates that this might be a natural consequence of the ecosystem dynamics and not the result of any extraterrestrial cause.

  8. Changes in depth-transect redox conditions spanning the end-Permian mass extinction and their impact on the marine extinction: Evidence from biomarkers and sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Oba, Masahiro; Fukuda, Yoshihiko; Ito, Kosuke; Ariyoshi, Shun; Gorjan, Paul; Riu, Yuqing; Takahashi, Satoshi; Chen, Zhong-Qiang; Tong, Jinnan; Yamakita, Satoshi

    2012-08-01

    Changes in redox conditions during the Changhsingian to Griesbachian spanning the end-Permian mass extinction were recently reported based on analyses of organic molecules. We provide more precise organic-molecular data, that detail redox conditions spanning the end-Permian mass extinction at different palaeowater depths in the neritic Palaeotethys (estimated water depths: 10, 40, 100, and 200 m; Bulla, Huangzhishan, Meishan, and Chaohu sections, respectively) during this period. Here we propose that a change from occasional euxinia to anoxia in the shallow Palaeotethys occurred at the time of the mass extinction intercalated with oxic pulses. The second extinction at 0.7 myr after the main extinction was also caused by anoxia. New and published sulfur-isotope ratios (34S/32S) measured in carbonate-associated sulfate from the neritic Palaeotethys and in sulfide from pelagic central Panthalassa sediments show high values during the Changhsingian, consistent with the development of euxinia. The mass extinction coincided with a global fall in δ34S values, as well as a shift in δ13C values, indicating a global oxidation of H2S. This organic and isotopic geochemistry implies that accumulation of hydrogen sulfide in intermediate and deep waters followed by oxidation of hydrogen sulfide led to dissolved oxygen consumption, surface-water anoxia, and acidification, resulting in the end-Permian mass extinction in the seas.

  9. Flourishing Sponge-Based Ecosystems after the End-Ordovician Mass Extinction.

    PubMed

    Botting, Joseph P; Muir, Lucy A; Zhang, Yuandong; Ma, Xuan; Ma, Junye; Wang, Longwu; Zhang, Jianfang; Song, Yanyan; Fang, Xiang

    2017-02-20

    The Late Ordovician (Hirnantian, approximately 445 million years ago) extinction event was among the largest known, with 85% species loss [1]. Post-extinction survival faunas are invariably low diversity, especially benthic communities [2], but ecological structure was restored relatively rapidly [1]. This pattern, however, reflects organisms with robust skeletons, as only one exceptionally preserved Hirnantian fossil biota was previously known [3, 4]; in particular, almost no Hirnantian sponges have been recorded. Our study reveals an extraordinarily diverse, sponge-dominated community thriving immediately after the Hirnantian extinction in Zhejiang, South China. Several contemporaneous sites preserve a total diversity of over 75 sponge species, many with preserved soft tissues, in pronounced contrast to normal survival and early recovery faunas. This diversity is unprecedented for any Hirnantian fossil group, and the fauna provides a unique window into a post-extinction ecosystem. The sponges are often large and structurally complex and represent numerous different lineages that survived the extinction. Layers with abundant sponge remains were deposited after other mass extinctions [5, 6], suggesting a general pattern of sponge abundance during collapse of Phanerozoic marine ecosystems. It is possible that the conditions of ecological collapse increase the particulate food sources for sponges, while they themselves are relatively unaffected by the crises. Furthermore, the abundance of sponges in the Hirnantian sequence of South China may have aided post-extinction ecosystem recovery by stabilizing the sediment surface, allowing sessile suspension feeders such as brachiopods, corals, and bryozoans to recover rapidly.

  10. Extinction and survival of plant life following the Cretaceous/Tertiary boundary event, Western Interior, North America ( USA).

    USGS Publications Warehouse

    Tschudy, R.H.; Tschudy, B.D.

    1986-01-01

    The palynological Cretaceous/Tertiary boundary is recognized in the northern part of the Western Interior by the abrupt disappearance of a few characteristic Cretaceous pollen genera. In the southern part, the boundary is recognized by the disappearance of a somewhat different group of pollen. The abrupt change in both regions takes place precisely at the stratigraphic horizon at which boundary clay layers containing anomalously high concentrations of iridium are found. All the principal Cretaceous pollen genera that disappear regionally have been reported from Tertiary rocks in other parts of North America. Differential apparent extinction and/or survival reflects a pronounced temporary disruption of plant life immediately after the impact event. Some Cretaceous plants must have persisted in refugia to have provided the propagules for the rapid recovery of the flora. No massive total extinction of plant genera at the end of the Cretaceous can be seen from the palynologic record. -from Authors

  11. Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction.

    PubMed

    Jia, C; Huang, J; Kershaw, S; Luo, G; Farabegoli, E; Perri, M C; Chen, L; Bai, X; Xie, S

    2012-01-01

    Previous work indicates that a variety of microbes bloomed in the oceans after the end-Permian faunal mass extinction, but evidence is sporadically documented. Thus, the nature and geographic distribution of such microbes and their associations are unclear, addressed in this study using a series of biomarker groups. On the basis of microbial biomarker records of the 2-methylhopane index, evidence is presented for cyanobacterial blooms in both the western and eastern Tethys Sea and in both shallow and deep waters, after the mass extinction. The enhanced relative abundance of C(28) (expressed by the C(28) /C(29) ratio of) regular steranes suggests a bloom of prasinophyte algae occurred immediately after the end-Permian faunal extinction, comparable with those observed in some other mass extinctions in Phanerozoic. Significantly, cyanobacteria and prasinophyte algae show a synchronized onset of bloom in the shallow water Bulla section, north Italy, inferring for the first time their coupled response to the biotic crisis and the associated environmental conditions. However, in Meishan of Zhejiang Province in south China, the bloom declined earlier than in Bulla. The association of increased 2-methylhopane index with a negative shift in the nitrogen isotope composition infers a scenario of enhanced nitrogen fixation by cyanobacteria immediately after the faunal mass extinction. N(2) fixation by cyanobacteria is here interpreted to have provided prasinophyte algae with ammonium in nutrient-limited shallow waters, and thus caused their associated blooms.

  12. Limits to biodiversity cycles from a unified model of mass-extinction events

    NASA Astrophysics Data System (ADS)

    Feulner, Georg

    2011-04-01

    Episodes of species mass extinction dramatically affected the evolution of life on Earth, but their causes remain a source of debate. Even more controversy surrounds the hypothesis of periodicity in the fossil record, with conflicting views still being published in the scientific literature, often even based on the same state-of-the-art datasets. From an empirical point of view, limitations of the currently available data on extinctions and possible causes remain an important issue. From a theoretical point of view, it is likely that a focus on single extinction causes and strong periodic forcings has strongly contributed to this controversy. Here I show that if there is a periodic extinction signal at all, it is much more likely to result from a combination of a comparatively weak periodic cause and various random factors. Tests of this unified model of mass extinctions on the available data show that the model is formally better than a model with random extinction causes only. However, the contribution of the periodic component is small compared to factors such as impacts or volcanic eruptions.

  13. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis.

    PubMed

    Mata, S A; Bottjer, D J

    2012-01-01

    Widespread development of microbialites characterizes the substrate and ecological response during the aftermath of two of the 'big five' mass extinctions of the Phanerozoic. This study reviews the microbial response recorded by macroscopic microbial structures to these events to examine how extinction mechanism may be linked to the style of microbialite development. Two main styles of response are recognized: (i) the expansion of microbialites into environments not previously occupied during the pre-extinction interval and (ii) increases in microbialite abundance and attainment of ecological dominance within environments occupied prior to the extinction. The Late Devonian biotic crisis contributed toward the decimation of platform margin reef taxa and was followed by increases in microbialite abundance in Famennian and earliest Carboniferous platform interior, margin, and slope settings. The end-Permian event records the suppression of infaunal activity and an elimination of metazoan-dominated reefs. The aftermath of this mass extinction is characterized by the expansion of microbialites into new environments including offshore and nearshore ramp, platform interior, and slope settings. The mass extinctions at the end of the Triassic and Cretaceous have not yet been associated with a macroscopic microbial response, although one has been suggested for the end-Ordovician event. The case for microbialites behaving as 'disaster forms' in the aftermath of mass extinctions accurately describes the response following the Late Devonian and end-Permian events, and this may be because each is marked by the reduction of reef communities in addition to a suppression of bioturbation related to the development of shallow-water anoxia.

  14. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    PubMed Central

    Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs

    2016-01-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere. PMID:27009463

  15. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    NASA Astrophysics Data System (ADS)

    Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs

    2016-03-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  16. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction.

    PubMed

    Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs

    2016-03-24

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  17. Evidence of constant diversification punctuated by a mass extinction in the African cycads.

    PubMed

    Yessoufou, Kowiyou; Bamigboye, Samuel O; Daru, Barnabas H; van der Bank, Michelle

    2014-01-01

    The recent evidence that extant cycads are not living fossils triggered a renewed search for a better understanding of their evolutionary history. In this study, we investigated the evolutionary diversification history of the genus Encephalartos, a monophyletic cycad endemic to Africa. We found an antisigmoidal pattern with a plateau and punctual explosive radiation. This pattern is typical of a constant radiation with mass extinction. The rate shift that we found may therefore be a result of a rapid recolonization of niches that have been emptied owing to mass extinction. Because the explosive radiation occurred during the transition Pliocene-Pleistocene, we argued that the processes might have been climatically mediated.

  18. Iridium abundance maxima at the latest Ordovician mass extinction horizon, Yangtze Basin, China: Terrestrial or extraterrestrial

    SciTech Connect

    Kun Wang; Chatterton, B.D.E. ); Attrep, M. Jr; Orth, C.J. )

    1992-01-01

    Neutron activation analyses of the Chinese Ordovician/Silurian (O/S) boundary sections at two distant localities in the Yangtze Basin, spanning the horizon of a major latest Ordovician global extinction event, show the maxima of iridium abundances to be coincident with the extinction horizon at the base of the graptolite Glyptograptus persculputs zone. The 0.23 ppb Ir maximum in the Yichang type section is almost as large as the late Eocene impact Ir anomaly. However, the authors have observed that the Ir abundances in the Chinese sections are closely correlated with the sedimentation rates, and therefore have concluded that Ir maxima do not indicate a cataclysmic extraterrestrial impact at this extinction level.

  19. Breeding Young as a Survival Strategy during Earth’s Greatest Mass Extinction

    PubMed Central

    Botha-Brink, Jennifer; Codron, Daryl; Huttenlocker, Adam K.; Angielczyk, Kenneth D.; Ruta, Marcello

    2016-01-01

    Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises. PMID:27044713

  20. Breeding Young as a Survival Strategy during Earth's Greatest Mass Extinction.

    PubMed

    Botha-Brink, Jennifer; Codron, Daryl; Huttenlocker, Adam K; Angielczyk, Kenneth D; Ruta, Marcello

    2016-04-05

    Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises.

  1. Breeding Young as a Survival Strategy during Earth’s Greatest Mass Extinction

    NASA Astrophysics Data System (ADS)

    Botha-Brink, Jennifer; Codron, Daryl; Huttenlocker, Adam K.; Angielczyk, Kenneth D.; Ruta, Marcello

    2016-04-01

    Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises.

  2. Long-term oceanic changes prior the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Clémence, Marie-Emilie; Mette, Wolfgang; Thibault, Nicolas; Korte, Christoph

    2014-05-01

    A number of potential causes and kill mechanisms have been proposed for the end-Triassic mass extinction such as palaeoclimatic and sea-level variations, massive volcanism and ocean acidification. Recent analysis of the stomatal index and density of fossil leaves and geochemical research on pedogenic carbonate nodules are suggestive of rising atmospheric CO2 concentration and fluctuating climate in the Rhaetian. It seems therefore probable that the end-Triassic event was preceded by large climatic fluctuations and environmental perturbations in the Rhaetian which might have partly affected the composition and diversity of the terrestrial and marine biota prior to the end-Triassic interval. The Northern Calcareous Alps (NCA) has long been favored for the study of the Rhaetian, since the GSSP of the Triassic/Jurassic (T/J) boundary and other important T/J sections are situated in this region. However, the most famous Rhaetian sections in the NCA are composed of carbonates from the Koessen Formation and were situated in a large isolated intraplatform Basin (the Eiberg Basin), bordered to the south-east by a well-developed coral reef in the NW of the Tethys border. Several Rhaetian sections composed of marls and shales of the Zlambach Formation were deposited at the same time on the other side of this reef, in the oceanic Halstatt Basin, which was in direct connection to the Tethys. Here, we present new results on sedimentology, stable isotope and trace element analysis of both intraplatform and oceanic basin deposits in the NCA. Intraplatform Rhaetian sections from the Koessen Formation bear a few minor intervals of shales with enrichments in organic matter, some of which are associated to carbon isotopic excursions. Oceanic sections from the Hallstatt Basin are characterized at the base by very cyclic marl-limestone alternations. Higher up in the section, sediments progressively turn into pure shale deposits and the top of the Formation is characterized by organic

  3. Extinction and survival of plant life following the Cretaceous/Tertiary boundary event, Western Interior, North America

    NASA Astrophysics Data System (ADS)

    Tschudy, Robert H.; Tschudy, Bernadine D.

    1986-08-01

    The palynological Cretaceous/Tertiary boundary is recognized in the northern part of the Western Interior by the abrupt disappearance of a few characteristic Cretaceous pollen genera, principally Proteacidites and Aquilapollenites. In the southern part, the boundary is recognized by the disappearance of a somewhat different group of pollen: Proteacidites, “Tilia” wodehousei, and Trisectoris. The abrupt change in both regions takes place precisely at the stratigraphic horizon at which boundary clay layers containing anomalously high concentrations of iridium (interpreted to be the result of an asteroid impact) are found. Although some characteristic Cretaceous taxa apparently became extinct, others were minimally affected by this boundary event and reappear in strata above. However, all the principal Cretaceous pollen genera (though not species) that disappear regionally have been reported from Tertiary rocks in other parts of North America. Differential apparent extinction and/or survival reflects a pronounced temporary disruption of plant life immediately after the event. Some Cretaceous plants must have persisted in refugia to have provided the propagules for the rapid recovery of the flora. No massive total extinction of plant genera at the end of the Cretaceous can be seen from the palynologic record.

  4. Extinctions of life

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1988-01-01

    This meeting presentation examines mass extinctions through earth's history. Extinctions are charted for marine families and marine genera. Timing of marine genera extinctions is discussed. Periodicity in extinctions during the Mesozoic and Cenozoic eras is plotted and compared with Paleozoic extinction peaks. The role of extinction in evolution and mankind's role in present extinctions are examined.

  5. Deccan Volcanism, Climate Change and the KT Mass Extinction across India

    NASA Astrophysics Data System (ADS)

    Thierry, A.; Gerta, K.; Silvia, G.; Annachiara, B.; Brian, G.; Sunil, B.

    2008-12-01

    Recent studies indicate that the bulk (80%) of the Deccan Trap eruptions occurred over a relatively short time period coinciding with the KT mass extinction. Here we present results based multiproxies data from intertrappean sediments located at Anjar, Kutch, western India, Jhilmili, Madhya Pradesh, central India, and Rajahmundry, SE India. We compare these results with a KT sequence in Meghalya, NE India, about 800 km from the Deccan volcanic province. Intertrappean sediments at Anjar consist mainly of lacustrine sediments and exhibit at least three PGE anomalies with high Pd contents but only one with a significant Ir enrichment. The presence of dinosaurs eggshells and bone fragments above the Ir anomaly implies an upper Maastrichtian age for these sediments. Thus, the PGE anomalies do not coincide with the KT boundary, nor are they of cosmic origin because normalized PGE values suggest a flood basalt origin. Clay minerals consist mainly of smectite and palygorskite and reflect semi-arid conditions, probably linked to higher surface temperatures on a young volcanic landscape subjected to effusive volcanic activity. In the Rajhamundry area, two Deccan basalt flows, known as the Rajahmundry traps, mark the most extensive lava flows extending 1000 km across the Indian continent. The sediments directly overlying the lower trap contain the earliest Danian planktic foraminifera of zones P0-P1a and mark the initial evolution in the aftermath of the KT mass extinction. The upper trap was deposited during zone P1b corresponding to the lower part of magnetic polarity C29n. Sedimentological, mineralogical data reveal that deposition occurred in a shallow estuarine to inner neritic environment with periods of subaerial deposition marked by paleosoils. Clay minerals consist exclusively of smectite, typical of vertisoil developed under semi-arid conditions. Outcrop correlation reveals an incised valley estuarine system. At Jhilmili, multidisciplinary analyses reveal the KT

  6. Body Size Reductions in Nonmammalian Eutheriodont Therapsids (Synapsida) during the End-Permian Mass Extinction

    PubMed Central

    Huttenlocker, Adam K.

    2014-01-01

    The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the ‘Lilliput effect,’ a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns. PMID:24498335

  7. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction.

    PubMed

    Bapst, David W; Bullock, Peter C; Melchin, Michael J; Sheets, H David; Mitchell, Charles E

    2012-02-28

    The morphological study of extinct taxa allows for analysis of a diverse set of macroevolutionary hypotheses, including testing for change in the magnitude of morphological divergence, extinction selectivity on form, and the ecological context of radiations. Late Ordovician graptoloids experienced a phylogenetic bottleneck at the Hirnantian mass extinction (∼445 Ma), when a major clade of graptoloids was driven to extinction while another clade simultaneously radiated. In this study, we developed a dataset of 49 ecologically relevant characters for 183 species with which we tested two main hypotheses: (i) could the biased survival of one graptoloid clade over another have resulted from morphological selectivity alone and (ii) are the temporal patterns of morphological disparity and innovation during the recovery consistent with an interpretation as an adaptive radiation resulting from ecological release? We find that a general model of morphological selectivity has a low probability of producing the observed pattern of taxonomic selectivity. Contrary to predictions from theory on adaptive radiations and ecological speciation, changes in disparity and species richness are uncoupled. We also find that the early recovery is unexpectedly characterized by relatively low morphological disparity and innovation, despite also being an interval of elevated speciation. Because it is necessary to invoke factors other than ecology to explain the graptoloid recovery, more complex models may be needed to explain recovery dynamics after mass extinctions.

  8. Direct evaluation of aerosol-mass loadings from multispectral extinction data

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Mckellar, B. H. J.

    1978-01-01

    A formula is derived for the evaluation of the total volume of aerosol in a column, and hence for the aerosol columnar mass loading, from multispectral extinction data. This formula is exact in the 'anomalous diffraction' approximation, and reasonably accurate for Mie scattering, over a fairly wide range of refractive indices typical of real aerosols.

  9. Ecosystem Resilience to Ocean Deoxygenation and Acidification: Lessons from Contrasting Mass Extinction Events

    NASA Astrophysics Data System (ADS)

    Sepulveda, J.; Alegret, L.; Kasprak, A. H.; Whiteside, J. H.; Haddad, E.; Cao, C.; Summons, R. E.

    2012-12-01

    Mass extinction events (MEEs) are among the few readily identifiable turning points in the evolution of life, and could serve as potential analogues for understanding ecosystem responses to projected trends in climate change. This study addresses marine ecosystem resilience by examining the biomarker signature of planktonic communities across two contrasting MEEs: (a) the end-Triassic, characterized by intense volcanism, high pCO2 and ocean anoxia; (b) the Cretaceous-Paleogene (K-Pg) boundary, characterized by a bolide impact, reduced photosynthesis and ocean acidification. Results from Kennecott Point in western Canada, provide the first evidence for the occurrence of reducing conditions and photic zone euxinia across the end-Triassic and early Jurassic in the Panthalassic Ocean. The latter was accompanied by abrupt turnovers in plankton ecology favoring prasinophytes, chrysophytes, cyanobacteria, and methanotrophs, which advocates for large perturbations in nutrient inventories. The length of our record suggests that such changes might have persisted for at least 500 ky into the early Jurassic. On the other hand, biomarker and isotopic results from the clay layer of the stratotype section of El Kef in northern Africa indicate that, in stark contrast to calcareous organisms, primary production by non-calcifying organisms was not significantly affected across the K-Pg boundary, whereas no important ecological turnovers were observed. Taking into account the short duration of the boundary clay layer (~10 ky), these results indicate that non-calcifying organisms might have been responsible for sustaining benthic communities in the immediate aftermath of the K-Pg, and probably longer until calcifying organisms resurged again. Our results suggest that environmental changes stemming from elevated CO2, oxygen-deficiency, acidification, and nutrient limitation (end-Triassic scenario) have more negative consequences on marine ecosystems (calcifying and non

  10. A detailed taxonomy of Upper Cretaceous and lower Tertiary Crassatellidae in the Eastern United States; an example of the nature of extinction at the boundary

    USGS Publications Warehouse

    Wingard, G. Lynn

    1993-01-01

    Current theories on the causes of extinction at the CretaceousTertiary boundary have been based on previously published data; however, few workers have stopped to ask the question, 'How good is the basic data set?' To test the accuracy of the published record, a quantitative and qualitative analysis of the Crassatellidae (Mollusca, Bivalvia) of the Gulf and Mid-Atlantic Coastal Plains of the United States for the Upper Cretaceous and lower Tertiary was conducted. Thirty-eight species names and four generic names are used in publications for the Crassatellidae within the geographic and stratigraphic constraints of this analysis. Fourteen of the 38 species names are represented by statistically valid numbers of specimens and were tested by using canonical discriminant analysis. All 38 names, with the exception of 1 invalid name and 4 names for which no representative specimen could be located, were evaluated qualitatively. The results show that the published fossil record is highly inaccurate. Only 8 valid, recognizable species exist in the Crassatellidae within the limits of this study, 14 names are synonymized, and 11 names are represented by indeterminate molds or poorly preserved specimens. Three of the four genera are well founded; the fourth is based on the juvenile of another genus and therefore synonymized. This detailed taxonomic analysis of the Crassatellidae illustrates that the published fossil record is not reliable. Calculations of evolutionary and paleobiologic significance based on poorly defined, overly split fossil groups, such as the Crassatellidae, are biased in the following ways: Rates of evolution and extinction are higher, Faunal turnover at mass extinctions appears more catastrophic, Species diversity is high, Average species durations are shortened, and Geographic ranges are restricted. The data on the taxonomically standardized Crassatellidae show evolutionary rates one-quarter to one-half that of the published fossil record; faunal change

  11. Diversification events and the effects of mass extinctions on Crocodyliformes evolutionary history

    PubMed Central

    Bronzati, Mario; Montefeltro, Felipe C.; Langer, Max C.

    2015-01-01

    The rich fossil record of Crocodyliformes shows a much greater diversity in the past than today in terms of morphological disparity and occupation of niches. We conducted topology-based analyses seeking diversification shifts along the evolutionary history of the group. Our results support previous studies, indicating an initial radiation of the group following the Triassic/Jurassic mass extinction, here assumed to be related to the diversification of terrestrial protosuchians, marine thalattosuchians and semi-aquatic lineages within Neosuchia. During the Cretaceous, notosuchians embodied a second diversification event in terrestrial habitats and eusuchian lineages started diversifying before the end of the Mesozoic. Our results also support previous arguments for a minor impact of the Cretaceous/Palaeogene mass extinction on the evolutionary history of the group. This argument is not only based on the information from the fossil record, which shows basal groups surviving the mass extinction and the decline of other Mesozoic lineages before the event, but also by the diversification event encompassing only the alligatoroids in the earliest period after the extinction. Our results also indicate that, instead of a continuous process through time, Crocodyliformes diversification was patchy, with events restricted to specific subgroups in particular environments and time intervals. PMID:26064649

  12. Did a Gamma-Ray Burst Initiate the Late Ordovician Mass Extinction?

    NASA Technical Reports Server (NTRS)

    Melott, A. L.; Lieberman, B. S.; Laird, C. M.; Martin, L. D.; Medvedov, M. V.; Thomas, B. C.; Cannizzo, J. K.; Gehrels, N.; Jackman, C. H.

    2004-01-01

    Gamma-ray bursts (hereafter GRB) produce a flux of radiation detectable across the observable Universe. A GRB within our own galaxy could do considerable damage to the Earth's biosphere; rate estimates suggest that a dangerously near GRB should occur on average several times per billion years. At leastfive times in the history of lfe, the Earth experienced mass extinctions that eliminated a large percentage of the biota. Many possible causes have been documented, and GRB may also have contributed. The late Ordovician mass extinction approximately 440 million years ago may be at least partly the result of a GRB. Due to severe depletion of the ozone layer, intense solar ultraviolet radiation is expected to result from a nearby GRB, and some of the patterns of extinction and survivorship at this time may be attributable to elevated levels of UV radiation reaching the Earth. In addition a GRB could trigger the global cooling which occurs at the end of the Ordovician period that follows an interval of relatively warm climate. Intense rapid cooling and glaciation at that time, previously identijied as the probable cause of this mass extinction, may have resultedfiom a GRB.

  13. Diversification events and the effects of mass extinctions on Crocodyliformes evolutionary history.

    PubMed

    Bronzati, Mario; Montefeltro, Felipe C; Langer, Max C

    2015-05-01

    The rich fossil record of Crocodyliformes shows a much greater diversity in the past than today in terms of morphological disparity and occupation of niches. We conducted topology-based analyses seeking diversification shifts along the evolutionary history of the group. Our results support previous studies, indicating an initial radiation of the group following the Triassic/Jurassic mass extinction, here assumed to be related to the diversification of terrestrial protosuchians, marine thalattosuchians and semi-aquatic lineages within Neosuchia. During the Cretaceous, notosuchians embodied a second diversification event in terrestrial habitats and eusuchian lineages started diversifying before the end of the Mesozoic. Our results also support previous arguments for a minor impact of the Cretaceous/Palaeogene mass extinction on the evolutionary history of the group. This argument is not only based on the information from the fossil record, which shows basal groups surviving the mass extinction and the decline of other Mesozoic lineages before the event, but also by the diversification event encompassing only the alligatoroids in the earliest period after the extinction. Our results also indicate that, instead of a continuous process through time, Crocodyliformes diversification was patchy, with events restricted to specific subgroups in particular environments and time intervals.

  14. Constraining mass accumulation rates across the Cretaceous-Paleogene boundary clay layer using extraterrestrial helium-3

    NASA Astrophysics Data System (ADS)

    Giron, M.; Sepulveda, J.; Mukhopadhyay, S.; Alegret, L.; Summons, R. E.

    2012-12-01

    The extended duration of the negative δ13C excursion observed in marine carbonates spanning the Cretaceous-Paleogene (K-Pg) mass extinction event has lead to two main hypothesized post-extinction models ("Strangelove" and "Living Ocean";[1, 2]) for the status of marine primary productivity and the global carbon cycle. However, these models are largely inconsistent with recent paleontological and geochemical evidence suggesting heterogeneous changes in marine productivity and carbon export [3, 4]. While the analysis of lipid biomarkers in the cosmopolitan boundary clay layer allows us to assess changes in primary production by non-calcifying organisms in the immediate aftermath of the mass extinction [4], our poor understanding of the deposition of the clay layer precludes a more detailed reconstruction of short-term variations in marine ecosystem resilience. Here, we present data on extraterrestrial 3He derived from interplanetary dust particles used as a constant flux proxy to constrain fluctuations in mass accumulation rates (MARs) [5] and the duration of the boundary clay deposition in three classic and expanded K-Pg boundary sections: El Kef (Tunisia), Caravaca (Spain), and Kulstirenden (Denmark). Our results from different depositional environments indicate average durations for the sedimentation of the clay layer that are comparable (~10 kyr) to other localities [5], thus confirming its globally brief deposition. Early Paleogene MARs vary among locations when compared to background Late Cretaceous values and do not strictly follow carbonate content as traditionally assumed, thus suggesting variable depositional conditions at different locations. Changes in sediment MARs across the K-Pg will be used to calculate MARs of algal- and bacterial-derived biomarkers, as well as benthic foraminifera, in order to assess the timing and global nature of the recovery of marine primary production and carbon export. 1. Hsu, K.J., He, Q., Mckenzie, J.A., Weissert, H

  15. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China.

    PubMed

    Wignall, Paul B; Sun, Yadong; Bond, David P G; Izon, Gareth; Newton, Robert J; Védrine, Stéphanie; Widdowson, Mike; Ali, Jason R; Lai, Xulong; Jiang, Haishui; Cope, Helen; Bottrell, Simon H

    2009-05-29

    The 260-million-year-old Emeishan volcanic province of southwest China overlies and is interbedded with Middle Permian carbonates that contain a record of the Guadalupian mass extinction. Sections in the region thus provide an opportunity to directly monitor the relative timing of extinction and volcanism within the same locations. These show that the onset of volcanism was marked by both large phreatomagmatic eruptions and extinctions amongst fusulinacean foraminifers and calcareous algae. The temporal coincidence of these two phenomena supports the idea of a cause-and-effect relationship. The crisis predates the onset of a major negative carbon isotope excursion that points to subsequent severe disturbance of the ocean-atmosphere carbon cycle.

  16. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    NASA Astrophysics Data System (ADS)

    Pilet, Sebastien; Guex, Jean; Muntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Schaltegger, Urs

    2016-04-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries combined with geochronological data in order to establish the sequence of events that initiate two of the major mass extinctions recorded in Earth's history. This synthesis demonstrates that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. The initial regressive events recorded at T-J and Pl-To boundaries seem difficult to reconcile either with large initial CO2 degassing associated with plume activity or by volatile-release (CO2, CH4, Cl2) from deep sedimentary reservoirs during contact metamorphism associated to dykes and sills intrusion because massive CO2 degassing is expected to produce super greenhouse conditions. We evaluate, here, an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Petrological constraints on primary magmas indicate that the mantle is hotter and melts more extensively to produce LIP lavas than for current oceanic islands basalts. However, available data suggest that the Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. The presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. This initial step of thermal erosion / thermal heating of the cratonic lithosphere is critical to understand the volatile budget associated with LIPs while

  17. Abundance not linked to survival across the end-Cretaceous mass extinction: patterns in North American bivalves.

    PubMed

    Lockwood, Rowan

    2003-03-04

    Ecological studies suggest that rare taxa are more likely to go extinct than abundant ones, but the influence of abundance on survivorship in the fossil record has received little attention. An analysis of Late Maastrichtian bivalve subgenera from the North American Coastal Plain found no evidence that survivorship is tied to abundance across the end-Cretaceous mass extinction (65 million years ago), regardless of abundance metric or spatial scale examined. The fact that abundance does not promote survivorship in end-Cretaceous bivalves suggests that the factors influencing survivorship during mass extinctions in the fossil record may differ from those operating during intervals of background extinction.

  18. Mass extinctions among tetrapods and the quality of the fossil record.

    PubMed

    Benton, M J

    1989-11-06

    The fossil record of tetrapods is very patchy because of the problems of preservation, in terrestrial sediments in particular, and because vertebrates are rarely very abundant. However, the fossil record of tetrapods has the advantages that it is easier to establish a phylogenetic taxonomy than for many invertebrate groups, and there is the potential for more detailed ecological analyses. The relative incompleteness of a fossil record may be assessed readily, and this can be used to test whether drops in overall diversity are related to mass extinctions or to gaps in our knowledge. Absolute incompleteness cannot be assessed directly, but a historical approach may offer clues to future improvements in our knowledge. One of the key problems facing palaeobiologists is paraphyly, the fact that many higher taxa in common use do not contain all of the descendants of the common ancestor. This may be overcome by cladistic analysis and the identification of monophyletic groups. The diversity of tetrapods increased from the Devonian to the Permian, remained roughly constant during the Mesozoic, and then began to increase in the late Cretaceous, and continued to do so during the Tertiary. The rapid radiation of 'modern' tetrapod groups--frogs, salamanders, lizards, snakes, turtles, crocodilians, birds and mammals--was hardly affected by the celebrated end-Cretaceous extinction event. Major mass extinctions among tetrapods took place in the early Permian, late Permian, early Triassic, late Triassic, late Cretaceous, early Oligocene and late Miocene. Many of these events appear to coincide with the major mass extinctions among marine invertebrates, but the tetrapod record is largely equivocal with regard to the theory of periodicity of mass extinctions.

  19. Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow marine water in the immediate aftermath of the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Collin, P. Y.; Kershaw, S.; Tribovillard, N.; Forel, M. B.; Crasquin, S.

    2015-06-01

    Rapid and profound changes in earth surface environments and biota across the Permian-Triassic boundary are well known and relate to the end-Permian mass extinction event. This major crisis is demonstrated by abrupt facies change and the development of microbialite carbonates on the shallow marine shelves around Palaeo-Tethys and western Panthalassa. Microbialites have been described from a range of sites in end-Permian and basal Triassic marine sedimentary rocks, immediately following the end-Permian mass extinction. Here, we present geochemical data primarily focused on microbialites. Our geochemical analysis shows that U, V, Mo and REE (Ce anomaly) may be used as robust redox proxies so that the microbialites record the chemistry of the ancient ambient sea water. Among the three trace metals reputed to be reliable redox proxies, one (V) is correlated here with terrigenous supply, the other two elements (U and Mo) do not show any significant authigenic enrichment, thereby indicating that oxic conditions prevailed during the growth of microbialites. REE profiles show a prominent negative Ce anomaly, also showing that the shallow marine waters were oxic. Our geochemical data are consistent with the presence of some benthic organisms (ostracods, scattered microgastropods, microbrachiopods and foraminifers) in shallow marine waters that survived the mass extinction event.

  20. Mesozoic mass extinctions and angiosperm radiation: does the molecular clock tell something new?

    NASA Astrophysics Data System (ADS)

    Ruban, Dmitry A.

    2012-03-01

    Angiosperms evolved rapidly in the late Mesozoic. Data from the genetic-based approach called ‘molecular clock’ permit an evaluation of the radiation of flowering plants through geological time and of the possible influences of Mesozoic mass extinctions. A total of 261 divergence ages of angiosperm families are considered. The radiation of flowering plants peaked in the Albian, early Campanian, and Maastrichtian. From the three late Mesozoic mass extinctions (Jurassic/Cretaceous, Cenomanian/Turonian, and Cretaceous/Palaeogene), only the Cretaceous/Palaeogene event coincided with a significant, abrupt, and long-term decline in angiosperm radiation. If their link will be further proven, this means that global-scale environmental perturbation precluded from many innovations in the development of plants. This decline was, however, not unprecedented in the history of the angiosperms. The implication of data from the molecular clock for evolutionary reconstructions is limited, primarily because this approach deals with only extant lineages.

  1. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors.

    PubMed

    Yao, Le; Aretz, Markus; Chen, Jitao; Webb, Gregory E; Wang, Xiangdong

    2016-12-23

    Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the 'Big Five' extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and 'Big Five' extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions.

  2. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors

    NASA Astrophysics Data System (ADS)

    Yao, Le; Aretz, Markus; Chen, Jitao; Webb, Gregory E.; Wang, Xiangdong

    2016-12-01

    Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the ‘Big Five’ extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and ‘Big Five’ extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions.

  3. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors

    PubMed Central

    Yao, Le; Aretz, Markus; Chen, Jitao; Webb, Gregory E.; Wang, Xiangdong

    2016-01-01

    Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the ‘Big Five’ extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and ‘Big Five’ extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions. PMID:28009013

  4. Provincialization of terrestrial faunas following the end-Permian mass extinction.

    PubMed

    Sidor, Christian A; Vilhena, Daril A; Angielczyk, Kenneth D; Huttenlocker, Adam K; Nesbitt, Sterling J; Peecook, Brandon R; Steyer, J Sébastien; Smith, Roger M H; Tsuji, Linda A

    2013-05-14

    In addition to their devastating effects on global biodiversity, mass extinctions have had a long-term influence on the history of life by eliminating dominant lineages that suppressed ecological change. Here, we test whether the end-Permian mass extinction (252.3 Ma) affected the distribution of tetrapod faunas within the southern hemisphere and apply quantitative methods to analyze four components of biogeographic structure: connectedness, clustering, range size, and endemism. For all four components, we detected increased provincialism between our Permian and Triassic datasets. In southern Pangea, a more homogeneous and broadly distributed fauna in the Late Permian (Wuchiapingian, ∼257 Ma) was replaced by a provincial and biogeographically fragmented fauna by Middle Triassic times (Anisian, ∼242 Ma). Importantly in the Triassic, lower latitude basins in Tanzania and Zambia included dinosaur predecessors and other archosaurs unknown elsewhere. The recognition of heterogeneous tetrapod communities in the Triassic implies that the end-Permian mass extinction afforded ecologically marginalized lineages the ecospace to diversify, and that biotic controls (i.e., evolutionary incumbency) were fundamentally reset. Archosaurs, which began diversifying in the Early Triassic, were likely beneficiaries of this ecological release and remained dominant for much of the later Mesozoic.

  5. Deep-sea record of impact apparently unrelated to mass extinction in the Late Triassic

    PubMed Central

    Onoue, Tetsuji; Sato, Honami; Nakamura, Tomoki; Noguchi, Takaaki; Hidaka, Yoshihiro; Shirai, Naoki; Ebihara, Mitsuru; Osawa, Takahito; Hatsukawa, Yuichi; Toh, Yosuke; Koizumi, Mitsuo; Harada, Hideo; Orchard, Michael J.; Nedachi, Munetomo

    2012-01-01

    The 34-million-year (My) interval of the Late Triassic is marked by the formation of several large impact structures on Earth. Late Triassic impact events have been considered a factor in biotic extinction events in the Late Triassic (e.g., end-Triassic extinction event), but this scenario remains controversial because of a lack of stratigraphic records of ejecta deposits. Here, we report evidence for an impact event (platinum group elements anomaly with nickel-rich magnetite and microspherules) from the middle Norian (Upper Triassic) deep-sea sediment in Japan. This includes anomalously high abundances of iridium, up to 41.5 parts per billion (ppb), in the ejecta deposit, which suggests that the iridium-enriched ejecta layers of the Late Triassic may be found on a global scale. The ejecta deposit is constrained by microfossils that suggest correlation with the 215.5-Mya, 100-km-wide Manicouagan impact crater in Canada. Our analysis of radiolarians shows no evidence of a mass extinction event across the impact event horizon, and no contemporaneous faunal turnover is seen in other marine planktons. However, such an event has been reported among marine faunas and terrestrial tetrapods and floras in North America. We, therefore, suggest that the Manicouagan impact triggered the extinction of terrestrial and marine organisms near the impact site but not within the pelagic marine realm. PMID:23129649

  6. Deep-sea record of impact apparently unrelated to mass extinction in the Late Triassic.

    PubMed

    Onoue, Tetsuji; Sato, Honami; Nakamura, Tomoki; Noguchi, Takaaki; Hidaka, Yoshihiro; Shirai, Naoki; Ebihara, Mitsuru; Osawa, Takahito; Hatsukawa, Yuichi; Toh, Yosuke; Koizumi, Mitsuo; Harada, Hideo; Orchard, Michael J; Nedachi, Munetomo

    2012-11-20

    The 34-million-year (My) interval of the Late Triassic is marked by the formation of several large impact structures on Earth. Late Triassic impact events have been considered a factor in biotic extinction events in the Late Triassic (e.g., end-Triassic extinction event), but this scenario remains controversial because of a lack of stratigraphic records of ejecta deposits. Here, we report evidence for an impact event (platinum group elements anomaly with nickel-rich magnetite and microspherules) from the middle Norian (Upper Triassic) deep-sea sediment in Japan. This includes anomalously high abundances of iridium, up to 41.5 parts per billion (ppb), in the ejecta deposit, which suggests that the iridium-enriched ejecta layers of the Late Triassic may be found on a global scale. The ejecta deposit is constrained by microfossils that suggest correlation with the 215.5-Mya, 100-km-wide Manicouagan impact crater in Canada. Our analysis of radiolarians shows no evidence of a mass extinction event across the impact event horizon, and no contemporaneous faunal turnover is seen in other marine planktons. However, such an event has been reported among marine faunas and terrestrial tetrapods and floras in North America. We, therefore, suggest that the Manicouagan impact triggered the extinction of terrestrial and marine organisms near the impact site but not within the pelagic marine realm.

  7. Functional diversity of marine ecosystems after the Late Permian mass extinction event

    NASA Astrophysics Data System (ADS)

    Foster, William J.; Twitchett, Richard J.

    2014-03-01

    The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62-74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.

  8. Mass extinctions.

    PubMed

    Morris, Simon Conway

    2005-09-20

    Factors influencing the evolution of complex traits such as body size are notoriously difficult to study but a new review of work on marine iguanas in the Galapagos islands suggests an answer may lie in the interplay of natural and sexual selection.

  9. A method based on iterative morphological filtering and multiple scattering for detecting layer boundaries and extinction coefficients with LIDAR

    NASA Astrophysics Data System (ADS)

    Li, Meng; Jiang, Li-Hui; Xiong, Xing-Long; Ma, Yu-Zhao; Liu, Jie-Sheng

    2016-08-01

    Layer boundaries detection with LIDAR is of great significance for the meteorological and environmental research. Apart from the background noise, multiple scattering can also seriously affect the detection results in LIDAR signal processing. To alleviate these issues, a novel approach was proposed based upon morphological filtering and multiple scattering correction with multiple iterations, which essentially acts as a weighted algorithm with multiple scattering factors in different filtering scales, and applies integral extinction coefficients as media to perform correction. Simulations on artificial signals and real LIDAR signals support this approach.

  10. Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo

    2016-06-01

    Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian–Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian–Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ13Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian–Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises.

  11. Severest crisis overlooked-Worst disruption of terrestrial environments postdates the Permian-Triassic mass extinction.

    PubMed

    Hochuli, Peter A; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo

    2016-06-24

    Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian-Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian-Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ(13)Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian-Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises.

  12. Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction

    PubMed Central

    Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo

    2016-01-01

    Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian–Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian–Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ13Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian–Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises. PMID:27340926

  13. Biomarker indicators of bacterial activity and organic fluxes during end Triassic mass extinction event

    NASA Astrophysics Data System (ADS)

    Jiao, Dan; Perry, Randall S.; Engel, Mike H.; Sephton, Mark A.

    2008-08-01

    Lipid biomarker analyses of sedimentary organic matter from a marine Triassic-Jurassic (T-J) section at Queen Charlotte Islands, British Columbia reveal significant bacterial activity and microbial community changes that coincide with faunal extinctions across the T-J boundary. Bacterial activity is indicated by the 25-norhopane biodegradation index (25-norhopanes / 25-norhopanes+regular hopanes). Microbial community changes is revealed by variations in relative abundance of 2-methylhopane which is mainly generated from cyanobacteria. The 2-methylhopane index (2-methyl hopane/ C30 hopane + C29 25-norhopane) increases above the radiolarian based T-J boundary, and coincides with changes in the 25-norhopane index. The data reveal a complex microbial event involving both autotrophic and heteorotrophic bacteria responding to variations in allochthonous organic matter and nutrient supply.

  14. Determining Paleoredox Conditions Across the Cretaceous-Paleogene Mass Extinction at Blake Nose: Evaluation of Carbon and Nitrogen Isotopes and Trace Metal Profiles

    NASA Astrophysics Data System (ADS)

    Quan, T. M.; Nelson, A.

    2012-12-01

    The Cretaceous-Paleogene (K-Pg) boundary (~65 Mya) is marked by a major mass extinction for a wide range of terrestrial and marine organisms. In addition, there is significant evidence for disruptions in the carbon and nutrient cycles, productivity, paleoclimate, and bottom water oxygen levels, but the exact temporal and spatial extent of the disruptions are still unknown. In order to assess changes in nitrogen cycling and post-extinction anoxia, we have been measuring sedimentary nitrogen isotopes (δ15N), carbon isotopes (δ13C), and redox-sensitive trace metal concentrations in several cores across the K-Pg boundary. Since the sedimentary δ15N record can provide information on bottom water oxygen levels as well as nitrogen cycling, we can also investigate the use of bulk sedimentary δ15N as a proxy for paleoredox conditions by comparing the isotope record with that of the redox-sensitive trace metals. We obtained samples from Blake Nose in the North Atlantic (ODP 171B), a site that is proximal to the Chicxulub impact location. The cores at this site have an excellent record through the K-Pg boundary and contain clear evidence of both the impact and subsequent mass extinction. We measured δ15Nbulk, δ13Corg, total organic carbon (TOC), total nitrogen (TN) and trace metal concentrations in samples dating from the Late Maastrichtian (R. fructicosa foraminiferal zone) through to the Early Paleogene (foraminiferal zone P1c). Unlike our previous findings at the more distal Bass River (ODP 174AX) and Demerara Rise (ODP 207) sites, there is no obvious increase in δ15N values through the mass extinction, although there is a slight enrichment in redox-sensitive trace metals after the boundary. As a result, there appears to be no evidence for increased denitrification/anammox activity (and therefore no significant change in deep water redox state) immediately after the K-Pg boundary at Blake Nose based on the δ15N profiles; however, the trace metal profiles suggest

  15. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction.

    PubMed

    Brennecka, Gregory A; Herrmann, Achim D; Algeo, Thomas J; Anbar, Ariel D

    2011-10-25

    Periods of oceanic anoxia have had a major influence on the evolutionary history of Earth and are often contemporaneous with mass extinction events. Changes in global (as opposed to local) redox conditions can be potentially evaluated using U system proxies. The intensity and timing of oceanic redox changes associated with the end-Permian extinction horizon (EH) were assessed from variations in (238)U/(235)U (δ(238)U) and Th/U ratios in a carbonate section at Dawen in southern China. The EH is characterized by shifts toward lower δ(238)U values (from -0.37‰ to -0.65‰), indicative of an expansion of oceanic anoxia, and higher Th/U ratios (from 0.06 to 0.42), indicative of drawdown of U concentrations in seawater. Using a mass balance model, we estimate that this isotopic shift represents a sixfold increase in the flux of U to anoxic facies, implying a corresponding increase in the extent of oceanic anoxia. The intensification of oceanic anoxia coincided with, or slightly preceded, the EH and persisted for an interval of at least 40,000 to 50,000 y following the EH. These findings challenge previous hypotheses of an extended period of whole-ocean anoxia prior to the end-Permian extinction.

  16. Mass extinction of the marine biota at the Ordovician-Silurian transition due to environmental changes

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2014-11-01

    The terminal Ordovician was marked by one of five great mass extinction events of the Phanerozoic (445.6-443.0 Ma ago), when up to 86% of the marine species became extinct. The rapid onset of the continental glaciation on Gondwana determined by its position in the South Pole area; the cooling; the hydrodynamic changes through the entire water column in the World Ocean; and the corresponding sea level fall, which was responsible for the reduction of shelf areas and shallow-water basins, i.e., the main ecological niche of the Ordovician marine biota, were main prerequisites of the stress conditions. Similar to other mass extinction events, these processes were accompanied by volcanism, impact events, a corresponding reduction of the photosynthesis and bioproductivity, the destruction of food chains, and anoxia. The appearance and development of terrestrial plants and microphytoplankton, which consumed atmospheric carbon dioxide, thus, diminishing the greenhouse effect and promoting the transition of the climatic system to the glacial mode, played a unique role in that period.

  17. Earth's biggest 'whodunnit': unravelling the clues in the case of the end-Permian mass extinction.

    PubMed

    White, Rosalind V

    2002-12-15

    The mass extinction that occurred at the end of the Permian period, 250 million years ago, was the most devastating loss of life that Earth has ever experienced. It is estimated that ca. 96% of marine species were wiped out and land plants, reptiles, amphibians and insects also suffered. The causes of this catastrophic event are currently a topic of intense debate. The geological record points to significant environmental disturbances, for example, global warming and stagnation of ocean water. A key issue is whether the Earth's feedback mechanisms can become unstable on their own, or whether some forcing is required to precipitate a catastrophe of this magnitude. A prime suspect for pushing Earth's systems into a critical condition is massive end-Permian Siberian volcanism, which would have pumped large quantities of carbon dioxide and toxic gases into the atmosphere. Recently, it has been postulated that Earth was also the victim of a bolide impact at this time. If further research substantiates this claim, it raises some intriguing questions. The Cretaceous-Tertiary mass extinction, 65 million years ago, was contemporaneous with both an impact and massive volcanism. Are both types of calamity necessary to drive Earth to the brink of faunal cataclysm? We do not presently have enough pieces of the jigsaw to solve the mystery of the end-Permian extinction, but the forensic work continues.

  18. Earth's biggest 'whodunnit': unravelling the clues in the case of the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    White, Rosalind V.

    2002-12-01

    The mass extinction that occurred at the end of the Permian period, 250 million years ago, was the most devastating loss of life that Earth has ever experienced. It is estimated that ca.96% of marine species were wiped out and land plants, reptiles, amphibians and insects also suffered. The causes of this catastrophic event are currently a topic of intense debate. The geological record points to significant environmental disturbances, for example, global warming and stagnation of ocean water. A key issue is whether the Earth's feedback mechanisms can become unstable on their own, or whether some forcing is required to precipitate a catastrophe of this magnitude. A prime suspect for pushing Earth's systems into a critical condition is massive end-Permian Siberian volcanism, which would have pumped large quantities of carbon dioxide and toxic gases into the atmosphere. Recently, it has been postulated that Earth was also the victim of a bolide impact at this time. If further research substantiates this claim, it raises some intriguing questions. The Cretaceous-Tertiary mass extinction, 65 million years ago, was contemporaneous with both an impact and massive volcanism. Are both types of calamity necessary to drive Earth to the brink of faunal cataclysm? We do not presently have enough pieces of the jigsaw to solve the mystery of the end-Permian extinction, but the forensic work continues.

  19. Body-size reduction in vertebrates following the end-Devonian mass extinction.

    PubMed

    Sallan, Lauren; Galimberti, Andrew K

    2015-11-13

    Following the end-Devonian mass extinction (359 million years ago), vertebrates experienced persistent reductions in body size for at least 36 million years. Global shrinkage was not related to oxygen or temperature, which suggests that ecological drivers played a key role in determining the length and direction of size trends. Small, fast-breeding ray-finned fishes, sharks, and tetrapods, most under 1 meter in length from snout to tail, radiated to dominate postextinction ecosystems and vertebrae biodiversity. The few large-bodied, slow-breeding survivors failed to diversify, facing extinction despite earlier evolutionary success. Thus, the recovery interval resembled modern ecological successions in terms of active selection on size and related life histories. Disruption of global vertebrate, and particularly fish, biotas may commonly lead to widespread, long-term reduction in body size, structuring future biodiversity.

  20. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction.

    PubMed

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A

    2011-02-22

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes ((32)S, (33)S, (34)S and (36)S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ(34)S with negative Δ(33)S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction.

  1. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction

    PubMed Central

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A.

    2011-01-01

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes (32S, 33S, 34S and 36S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ34S with negative Δ33S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction. PMID:21343928

  2. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event.

    PubMed Central

    Cracraft, J.

    2001-01-01

    The fossil record has been used to support the origin and radiation of modern birds (Neornithes) in Laurasia after the Cretaceous-Tertiary mass extinction event, whereas molecular clocks have suggested a Cretaceous origin for most avian orders. These alternative views of neornithine evolution are examined using an independent set of evidence, namely phylogenetic relationships and historical biogeography. Pylogenetic relationships of basal lineages of neornithines, including ratite birds and their allies (Palaleocognathae), galliforms and anseriforms (Galloanserae), as well as lineages of the more advanced Neoves (Gruiformes, (Capimulgiformes, Passeriformes and others) demonstrate pervasive trans-Antarctic distribution patterns. The temporal history of the neornithines can be inferred from fossil taxa and the ages of vicariance events, and along with their biogeographical patterns, leads to the conclusion that neornithines arose in Gondwana prior to the Cretaceous Tertiary extinction event. PMID:11296857

  3. A general theory of impacts and mass extinctions, and the consequences of large-body impact on the Earth

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1994-01-01

    The theory that large-body impacts are the primary cause of mass extinctions of life on the Earth now has a sound theoretical and observational foundation. A convergence of evidence suggests that the biosphere may be a sensitive detector of large impact events, which result in the recorded global mass extinction pulses. The astronomically observed flux of asteroids and comets in the neighborhood of the Earth, and the threshold impact size calculated to produce a global environment catastrophe, can be used to predict a time history of large impact events and related mass extinctions of life that agrees well with the record of approx. 24 extinction events in the last 540 m.y.

  4. A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction.

    PubMed

    Ni, Xijun; Li, Qiang; Stidham, Thomas A; Li, Lüzhou; Lu, Xiaoyu; Meng, Jin

    2016-12-07

    Deltatheroidans are primitive metatherian mammals (relatives of marsupials), previously thought to have become extinct during the Cretaceous mass extinction. Here, we report a tiny new deltatheroidan mammal (Gurbanodelta kara gen. et sp. nov.) discovered at the South Gobi locality in China (Xinjiang Province) that is the first Cenozoic record of this clade and renders Deltatheroida a Lazarus taxon (with a new record 10 million years younger than their supposed extinction). The vertebrate fauna associated with Gurbanodelta is most similar to that from the slightly older late Paleocene Subeng locality in Inner Mongolia. The upper molars of Gurbanodelta exhibit a broad stylar shelf with one prominent cusp (stylocone), and a paracone that is sharp and significantly taller than the metacone. The lower molar tentatively assigned to Gurbanodelta has a very small talonid without an entoconid. This combination of these features is known only in deltatheroidans. Phylogenetic analysis places Gurbanodelta as the sister taxon of the North American latest Cretaceous Nanocuris. Gurbanodelta is the smallest-known deltatheroidan, and roughly the same size as the smallest living marsupial. It is likely that the Gurbanodelta lineage dispersed between Asia and North America as part of known intercontinental mammalian dispersals in the late Paleocene, or possibly earlier.

  5. A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction

    PubMed Central

    Ni, Xijun; Li, Qiang; Stidham, Thomas A.; Li, Lüzhou; Lu, Xiaoyu; Meng, Jin

    2016-01-01

    Deltatheroidans are primitive metatherian mammals (relatives of marsupials), previously thought to have become extinct during the Cretaceous mass extinction. Here, we report a tiny new deltatheroidan mammal (Gurbanodelta kara gen. et sp. nov.) discovered at the South Gobi locality in China (Xinjiang Province) that is the first Cenozoic record of this clade and renders Deltatheroida a Lazarus taxon (with a new record 10 million years younger than their supposed extinction). The vertebrate fauna associated with Gurbanodelta is most similar to that from the slightly older late Paleocene Subeng locality in Inner Mongolia. The upper molars of Gurbanodelta exhibit a broad stylar shelf with one prominent cusp (stylocone), and a paracone that is sharp and significantly taller than the metacone. The lower molar tentatively assigned to Gurbanodelta has a very small talonid without an entoconid. This combination of these features is known only in deltatheroidans. Phylogenetic analysis places Gurbanodelta as the sister taxon of the North American latest Cretaceous Nanocuris. Gurbanodelta is the smallest-known deltatheroidan, and roughly the same size as the smallest living marsupial. It is likely that the Gurbanodelta lineage dispersed between Asia and North America as part of known intercontinental mammalian dispersals in the late Paleocene, or possibly earlier. PMID:27924847

  6. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Pu, Zuyin; Zong, Qiugang; Wan, Weixing; Ren, Zhipeng; Fraenz, Markus; Dubinin, Eduard; Tian, Feng; Shi, Quanqi; Fu, Suiyan; Hong, Minghua

    2014-05-01

    The evolution of life is affected by variations of atmospheric oxygen level and geomagnetic field intensity. Oxygen can escape into interplanetary space as ions after gaining momentum from solar wind, but Earth's strong dipole field reduces the momentum transfer efficiency and the ion outflow rate, except for the time of geomagnetic polarity reversals when the field is significantly weakened in strength and becomes Mars-like in morphology. The newest databases available for the Phanerozoic era illustrate that the reversal rate increased and the atmospheric oxygen level decreased when the marine diversity showed a gradual pattern of mass extinctions lasting millions of years. We propose that accumulated oxygen escape during an interval of increased reversal rate could have led to the catastrophic drop of oxygen level, which is known to be a cause of mass extinction. We simulated the oxygen ion escape rate for the Triassic-Jurassic event, using a modified Martian ion escape model with an input of quiet solar wind inferred from Sun-like stars. The results show that geomagnetic reversal could enhance the oxygen escape rate by 3-4 orders only if the magnetic field was extremely weak, even without consideration of space weather effects. This suggests that our hypothesis could be a possible explanation of a correlation between geomagnetic reversals and mass extinction. Therefore, if this causal relation indeed exists, it should be a "many-to-one" scenario rather the previously considered "one-to-one", and planetary magnetic field should be much more important than previously thought for planetary habitability.

  7. Anoxia Precedes the end-Triassic Mass Extinction: Evidence from the Kennecott Point Formation, British Columbia

    NASA Astrophysics Data System (ADS)

    Kasprak, A. H.; Sepúlveda, J.; Price-Waldman, R.; Williford, K. H.; Whiteside, J. H.; Summons, R. E.

    2011-12-01

    The end-Triassic mass extinction (ETE), at 201.4 million years ago, is one of the five largest ecologic disasters of the Phanerozoic eon. Few geologic sections offer the potential to reconstruct environmental and ecological changes at this time in the marine realm with global significance. The Kennecott Point Formation in Haida Gwaii (formerly the Queen Charlotte Islands), British Columbia, preserves a thick sequence of calcareous shales and siltstones deposited on late Triassic basaltic rocks interpreted to be an oceanic plateau resting within the Panthalassic basin, the largest ocean basin at the time of the Triassic-Jurassic transition. This section, which spans the late Norian to the mid-Hettangian, is plausibly the most representative of the global ocean system at this time; however, environmental reconstructions have been mostly based on bulk carbon and sulfur isotope records. Here, we present a record of molecular fossils (biomarkers) and indices indicative of ecological and redox changes (i.e., algal steranes and bacterial hopanes, gammacerane index, homohopane index, 2- and 3- methyl hopane indices) from the Kennecott Point Formation to argue for a period of low oxygen conditions associated with increased stratification, ecological changes, and disrupted nutrient cycling directly preceding the end-Triassic mass extinction. We couple these results with biomarkers indicative of terrestrial input and vegetation disturbance (tricyclic diterpanes and polycyclic aromatic hydrocarbons) to clarify the relationship between ocean biogeochemistry and environmental changes in the terrestrial realm. This record provides new evidence for changing marine conditions preceding and associated with the ETE and allows for a more rigorous investigation into the chronology of events hypothesized to be mechanistically linked to this mass extinction, including abrupt global warming, major alterations to marine primary productivity, and terrestrial vegetation die-off.

  8. Mass extinctions, galactic orbits in the solar neighborhood and the Sun: a connection?

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; Dias, W. S.; Lépine, J. R. D.; Lorenzo-Oliveira, D.; Siqueira, R. K.

    2014-10-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment; a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages; and the destruction of Earth's ozone layer posed by supernova explosions. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.

  9. Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-cretaceous mass extinction.

    PubMed

    Chin, Karen; Pearson, Dean; Ekdale, A A

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms.

  10. Fossil Worm Burrows Reveal Very Early Terrestrial Animal Activity and Shed Light on Trophic Resources after the End-Cretaceous Mass Extinction

    PubMed Central

    Chin, Karen; Pearson, Dean; Ekdale, A. A.

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  11. An Earth-system perspective on ocean deoxygenation during the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Cui, Y.

    2014-12-01

    Global ocean anoxia has been proposed to be the cause of the end-Permian (252 Ma) marine extinction event. Evidence for global-scale anoxia mainly comes from the study of organic geochemistry, framboidal pyrite, and redox-sensitive elements, although disagreement exists with respect to the interpretation of the observed patterns. Climate models with biogeochemical components often fail to generate global-scale anoxia induced by warming alone, unless increased phosphate level is invoked. Here, I use the carbon isotope inversion approach in an Earth system model of intermediate complexity (GENIE) with modern phosphate levels to investigate ocean deoxygenation due to global warming through continuous CO­2 emission. I evaluate the temporal and spatial extent of ocean deoxygenation for a best-fit scenario that represents contact metamorphism of organic-rich sediments (δ13C = -25‰) during Siberian Traps volcanism eruption. This scenario is characterized by total peak amount of ~30,000 Gt of carbon and global sea surface temperature increase of 5 oC (Cui et al., 2014). The global surface ocean oxygen concentration shows only a modest decrease (from 230 to 215 µmol kg-1) during peak C emission, whereas the global deep ocean oxygen concentration shows a 70% decrease (from 160 to 50 µmol kg-1). During peak C emission, the oxygen minimum zone (~800 m depth) expands vertically and horizontally, and vast regions in the deep northern Panthalassa becomes hypoxic (<50 µmol kg-1) while the deep southern Panthalassa remains oxygenated. The minimum oxygen concentration is coincident with the peak extinction and minimum surface saturation state, suggesting ocean deoxygenation and ocean acidification might go hand in hand causing the largest extinction of all time. Reference Cui, Y., L. Kump, et al. (2014 in press). Spatial and temporal patterns of ocean acidification during the end-Permian mass extinction - An Earth system model evaluation. Volcanism and Global Environmental

  12. Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs

    NASA Astrophysics Data System (ADS)

    Gleich, Otto; Dooling, Robert J.; Manley, Geoffrey A.

    2005-12-01

    The inner ear in the group of archosaurs (birds, crocodilians, and extinct dinosaurs) shows a high degree of structural similarity, enabling predictions of their function in extinct species based on relationships among similar variables in living birds. Behavioral audiograms and morphological data on the length of the auditory sensory epithelium (the basilar papilla) are available for many avian species. By bringing different data sets together, we show that body mass and the size of the basilar papilla are significantly correlated, and the most sensitive frequency in a given species is inversely related to the body mass and the length of the basilar papilla. We also demonstrate that the frequency of best hearing is correlated with the high-frequency limit of hearing. Small species with a short basilar papilla hear higher frequencies compared with larger species with a longer basilar papilla. Based on the regression analysis of two significant correlations in living archosaurs (best audiogram frequency vs body mass and best audiogram frequency vs papillar length), we suggest that hearing in large dinosaurs was restricted to low frequencies with a high-frequency limit below 3 kHz.

  13. Estimating How Often Mass Extinctions Due to Impacts Occur on the Earth

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.

    2013-01-01

    This hands-on, inquiry based activity has been taught at JPL's summer workshop "Teachers Touch the Sky" for the past two decades. Students act as mini-investigators as they gather and analyze data to estimate how often an impact large enough to cause a mass extinction occurs on the Earth. Large craters are counted on the Moon, and this number is extrapolated to the size of the Earth. Given the age of the Solar System, the students can then estimate how often large impacts occur on the Earth. This activity is based on an idea by Dr. David Morrison, NASA Ames Research Center.

  14. Living-fossil coccolithophore survivors of the Cretaceous-Paleogene mass extinction

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Young, J. R.; Bown, P. R.; Godrijan, J.; Kogame, K.; Kulhanek, D. K.; Horiguchi, T.

    2012-12-01

    Calcareous nannofossils (coccolithophores and other associated fossils), diversified greatly through the middle-late Mesozoic, but around 90% of these species became extinct at the K/Pg event. Although the specific cause of this mass extinction is still uncertain, the record of extinction and survivorship of nannoplankton has informed our understanding of the rates of extinction and recovery, and nature of survivorship in the plankton ecosystem. Recently we found living cells of a coccolithophore, which morphologically and structurally resembles the Mesozoic genus Cyclagelosphaera, from coastal-neritic waters of Tottori, Japan and of Rovinj, Croatia. Cyclagelosphaera is a characteristic Mesozoic genus that appeared in the middle Jurassic. It survived the K/Pg event, briefly flourished in post K/Pg oceans, with other K/Pg survivors, but disappeared from the fossil record in the Eocene. Bibliographic study has revealed that our specimens correspond to a living species Tergestiella adriatica, which was discovered from offshore Rovinji in 1934 but has never since been reported. Molecular phylogenetic studies of T. adriatica based on SSU rDNA sequences show that T. adriatica branched from the base of the clade of other living coccolithophores. This result suggests that T. adriatica diverged from the ancestor of other coccolithophores before the diversification of other taxa and supports the inference that T. adriatica is a direct descendent of Mesozoic Cyclagelosphaera rather than a homoeomorph. Floristic studies of living coccolithophores show that T. adriatica coexists with Braarudosphaera bigelowii, another K/Pg survivor, in the coastal area of Tottori, Japan. In both Mesozoic and Cenozoic oceans, calcareous nannoplankton are typically open-ocean dwellers, but a few taxa are confined to coastal waters. Curiously, all three extant coccolithophores with Mesozoic fossil records are coastal, meanwhile the other extant taxa with Cenozoic fossil records are oceanic. Our

  15. The role of igneous and metamorphic processes in triggering mass extinctions and Earth crises

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Planke, Sverre; Polozov, Alexander G.; Jerram, Dougal; Jones, Morgan T.

    2016-04-01

    Mass extinctions and transient climate events commonly coincide in time with the formation of Large igneous provinces (LIPs). The end-Permian event coincides with the Siberian Traps, the end-Triassic with the Central Atlantic Magmatic Event (CAMP), the Toarcian with the Karoo LIP, and the Paleocene-Eocene Thermal Maximum (PETM) with the North Atlantic Igneous Province. Although the temporal relationship between volcanism and the environmental crises has been known for decades, the geological processes linking LIPs to these environmental events are strongly debated: Explosive LIP volcanism should lead to short term cooling (not long term warming), mantle CO2 is too 13C-enriched to explain negative 13C carbon isotope excursions from sedimentary sequences, the LIP volcanism is poorly dated and apparently lasts much longer that the associated environmental events, large portions of the LIPs remain poorly explored, especially the sub-volcanic parts where sills and dikes are emplaced in sedimentary host rocks, and thus gas flux estimates from contact aureoles around sill intrusions are often poorly constrained. In this presentation, we discuss the status of LIP research with an emphasis on the sub volcanic processes. We show that potential for degassing of greenhouse gases, aerosols, and ozone destructive gases is substantial and can likely explain the triggering of both climatic events and mass extinctions.

  16. Late Paleozoic subulitacea (mollusca:gastropoda), mass extinctions and the replacement of evolutionary faunas

    SciTech Connect

    Erwin, D.H.

    1985-01-01

    Mesogastropod subulitaceans possess characteristics typical of active carnivores and occupied a trophic regime typical of the Mesozoic-Cenozoic evolutionary fauna. Despite occupying a vacant niche, subulitaceans are low in both diversity and abundance in late Paleozoic gastropod faunas. In addition, Paleozoic Archaeogastropoda and Mesogastropoda are taxonomically and functionally distinct from Mesozoic groups and display diversity dynamics typical of the Paleozoic evolutionary fauna, not the Mesozoic-Cenozoic fauna with which they were grouped by Sepkoski. Late Paleozoic gastropods are different from pre-Carboniferous taxa, but there is no preferential expansion of the major Mesozoic taxa, nor is there any pattern of exploitation of a major niche utilized by later groups but under-used by Paleozoic taxa. The high taxonomic level used Sepkoski's factor analysis neglects the finer scale of replacement and diversification. This distinct evolutionary behavior of Paleozoic gastropods may be typical of other taxa as well. It weakens the assertions of Kitchell and Carr and Sepkoksi and Miller that the replacement of evolutionary Fauna II by Fauna III began in the late Paleozoic and would have occurred even without the Guadelupian-Dzulfian mass extinction. Thus for gastropods at last, the Late Permian mass extinction did not merely speed up on ongoing process, but probably determined the evolutionary outcome.

  17. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction.

    PubMed

    Whiteside, Jessica H; Olsen, Paul E; Eglinton, Timothy; Brookfield, Michael E; Sambrotto, Raymond N

    2010-04-13

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO(2). The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie's Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO(2) super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date.

  18. Test the Ocean Acidification Hypothesis during the End-Permian Mass Extinction Using an Earth System Model

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Kump, L.; Ridgwell, A. J.; Meyer, K. M.

    2012-12-01

    The end-Permian is associated with a 3-5‰ carbon isotope excursion in the ocean-atmosphere system within 20 kyr, which could be explained by a rapid and large amount of greenhouse gas emission. This leads to the hypothesis of ocean acidification as a primary driver for the end-Permian mass extinction event. In order to test this hypothesis, we conducted a series of experiments varying initial and boundary conditions using an Earth system model of intermediate complexity (GENIE: http://www.genie.ac.uk/). The late Permian ocean has been proposed as a "Neritan" ocean due to lack of pelagic carbonate production. We test the ocean buffering capacity to rapid CO2 emission by turning on the pelagic carbonate factory to result in a "Cretan" ocean similar to today. Due to the uncertainties on reconstructed paleo-pCO2 records, we test the model sensitivity by varying the initial pCO2, ranging from 1× PAL (preindustrial atmospheric level), 5× PAL, 10× PAL to 20× PAL. Ocean saturation state with respect to calcite (aragonite) in the Late Permian is also a key uncertainty, estimates have been varying from Ωcalcite =2.5 to supersaturated state (Ωcalcite =10) (Ridgwell 2005; Montenegro et al. 2011). We test this key uncertainty in both the "Neritan" and "Cretan" ocean cases. GENIE was spun up for >200 kyr to allow sedimentary equilibrium to ensure the weathering input balance the sediment output. Temperature-dependent silicate weathering feedback is also turned on in the model as a driver of the long-term draw down of atmospheric pCO2. We then invert the model by forcing the atmosphere δ13C to track our prescribed carbon isotopes derived from Meishan section in South China and Gartnerkofel-1 core in Alps, Austria at each time step. The two carbon isotope records are statistically treated to remove the noise that could result in unrealistic fluctuations in the derivatives of δ13C. Due to the uncertainties in the age model applied on these two records and different

  19. Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys

    PubMed

    Marshall; Ward

    1996-11-22

    Incompleteness of the fossil record has confounded attempts to establish the role of the end-Cretaceous bolide impact in the Late Cretaceous mass extinctions. Statistical analysis of latest Cretaceous outer-shelf macrofossils from western European Tethys reveals (i) a major extinction at or near the Cretaceous-Tertiary (K-T) boundary, probably caused by the impact, (ii) either a faunal abundance change or an extinction of up to nine ammonite species associated with a regression event shortly before the boundary, (iii) gradual extinction of most inoceramid bivalves well before the K-T boundary, and (iv) background extinction of approximately six ammonites throughout the latest Cretaceous.

  20. Anatomy of an extinct magmatic system along a divergent plate boundary: Alftafjordur, Iceland

    NASA Astrophysics Data System (ADS)

    Urbani, S.; Trippanera, D.; Porreca, M.; Kissel, C.; Acocella, V.

    2015-08-01

    Recent rifting episodes highlight the role of magmatic systems with propagating dikes on crustal spreading. However, our knowledge of magmatic systems is usually limited to surface observations and geophysical data. Eastern Iceland allows direct access to extinct and eroded deeper magmatic systems. Here we collected field structural and AMS (anisotropy of magnetic susceptibility) data on 187 and 19 dikes, respectively, in the 10-12 Ma old Alftafjordur magmatic system. At a paleodepth of ~1.5 km, the extension due to diking is at least 1-2 orders of magnitude larger than that induced by regional tectonics, confirming magmatism as the key mechanism for crustal spreading. This magma-induced extension, inferred from the aspect ratio of the magmatic system, was of ~8 mm/yr, lower than the present one. AMS data suggest that most of dikes have geometrically normal fabric, at least at the margins, consistent with prevalent subvertical magma flow and propagation.

  1. End-Permian mass extinction and palaeoenvironmental changes in Neotethys: Evidence from an oceanic carbonate section in southwestern Tibet

    NASA Astrophysics Data System (ADS)

    Shen, Shu-zhong; Cao, Chang-qun; Zhang, Yi-chun; Li, Wen-zhong; Shi, G. R.; Wang, Yue; Wu, Ya-sheng; Ueno, K.; Henderson, C. M.; Wang, Xiang-dong; Zhang, Hua; Wang, Xiao-juan; Chen, Jun

    2010-08-01

    This paper documents a new Permian-Triassic carbonate sequence which recorded the end-Permian mass extinction in the isolated oceanic setting of Neotethys in southwestern Tibet, China. The sequence is over 350 m thick and consists of the Gyanyima and the Lower Lanchengquxia formations in ascending order. The Lopingian (Late Permian) Gyanyima Formation is composed of fossiliferous reddish carbonates dominated by Colaniella grainstone and reef facies including fenestrate/sponge/coral framestone and bafflestone. 156 species are recognized from the Lopingian Gyanyima Formation. Composite ranges of brachiopods, ostracods, rugose corals and foraminifers at the Gyanyima Section suggest that evolution and diversification of Permian marine organisms continued to the end-Permian preceding a major faunal extinction close to the Permian-Triassic boundary (PTB), coincident with a 2-3‰ negative shift of δ13C carb. The timing and accelerating extinction pattern and the negative δ13C carb excursion are largely comparable with those reported from many previously-documented sections on continental shelf environments. Based on a detailed lithofacies analysis, the latest Permian reefal facies is sharply replaced by ostracod/crinoid packstone/grainstone with abrupt abundant occurrences of Early Triassic conodonts at the Gyanyima Section. This is then followed by thrombolitic microbialite, stromatolite, packstone containing abundant spherical microbes, and bivalve/ammonoid packstone of tidal and intertidal facies. This distinct lithofacies and biofacies shift would, therefore, suggest a dramatic faunal community and environmental change across the PTB. Distinct palaeoclimate fluctuations through the P- T interval are also indicated by the alternation of warm- and cool-water faunas through the uppermost part of the succession. The lower part of the Gyanyima Formation is characterized by a warm condition as indicated by Cathaysian-dominated fossils. This was then followed by a mild

  2. Deccan Volcanism: a main trigger of environmental changes leading to the KTB mass extinction?

    NASA Astrophysics Data System (ADS)

    Adatte, Thierry; Fantasia, Alicia; Samant, Bandana; Mohabey, Dhananjay; Keller, Gerta; Gertsch, Brian

    2014-05-01

    The nature and causes of mass extinctions in the geological past have remained topics of intense scientific debate for the past three decades. Central to this debate is the question of whether the eruption of large igneous provinces (LIP) was the primary mechanism driving the environmental changes that are commonly regarded as the proximate causes for four of the five major Phanerozoic extinction events. Model results predict that Deccan Traps emplacement was responsible for a strong increase in atmospheric pCO2 accompanied by rapid warming of 4°C that was followed by global cooling. During the warming phase, increased continental weathering of silicates associated with consumption of atmospheric CO2 likely resulted in the drawdown of greenhouse gases that reversed the warming trend leading to global cooling at the end of the Maastrichtian. Massive CO2 input together with massive release of SO2 may thus have triggered the mass extinctions in the marine realm as a result of ocean acidification leading to a carbon crisis and in the terrestrial realms due to acid rains. Global stress conditions related to these climatic changes are well known and documented in planktic foraminifera by a diversity decrease, species dwarfing, dominance of opportunistic species and near disappearance of specialized species. Deccan Traps erupted in three main phases with 6% total Deccan volume in phase-1 (base C30n), 80% in phase-2 (C29r) and 14% in phase-3 (C29n). Recent studies indicate that the bulk (80%) of Deccan trap eruptions (Phase-2) occurred over a relatively short time interval in magnetic polarity C29r, whereas multiproxy studies from central and southeastern India place the Cretaceous-Tertiary (KT) mass extinction near the end of this main phase of Deccan volcanism suggesting a cause-and-effect relationship. In India a strong floral response is observed as a direct response to Deccan volcanic phase-2. In Lameta (infratrappean) sediments preceding the volcanic eruptions

  3. The 30th anniversary of the discovery of the iridium anomaly at the Cretaceous Paleogene boundary: The state of the Chicxulub impact-extinction theory

    NASA Astrophysics Data System (ADS)

    Smit, Jan

    2010-05-01

    Thirty years after the discovery of anomalous amounts of the element iridium exactly at the Cretaceous-Paleogene (formerly Tertiary) boundary (K-PgB), the impact-extinction hypothesis has reached adulthood and now ranks among the great geological paradigms such as plate tectonics. Incessant testing, successive new discoveries, competition of rival theories, all contributed to strengthen the theory through those 30 years.

  4. Role of degassing of the Noril'sk nickel deposits in the Permian-Triassic mass extinction event.

    PubMed

    Le Vaillant, Margaux; Barnes, Stephen J; Mungall, James E; Mungall, Emma L

    2017-03-07

    The largest mass extinction event in Earth's history marks the boundary between the Permian and Triassic Periods at circa 252 Ma and has been linked with the eruption of the basaltic Siberian Traps large igneous province (SLIP). One of the kill mechanisms that has been suggested is a biogenic methane burst triggered by the release of vast amounts of nickel into the atmosphere. A proposed Ni source lies within the huge Noril'sk nickel ore deposits, which formed in magmatic conduits widely believed to have fed the eruption of the SLIP basalts. However, nickel is a nonvolatile element, assumed to be largely sequestered at depth in dense sulfide liquids that formed the orebodies, preventing its release into the atmosphere and oceans. Flotation of sulfide liquid droplets by surface attachment to gas bubbles has been suggested as a mechanism to overcome this problem and allow introduction of Ni into the atmosphere during eruption of the SLIP lavas. Here we use 2D and 3D X-ray imagery on Noril'sk nickel sulfide, combined with simple thermodynamic models, to show that the Noril'sk ores were degassing while they were forming. Consequent "bubble riding" by sulfide droplets, followed by degassing of the shallow, sulfide-saturated, and exceptionally volatile and Cl-rich SLIP lavas, permitted a massive release of nickel-rich volcanic gas and subsequent global dispersal of nickel released from this gas as aerosol particles.

  5. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery

    PubMed Central

    Clarkson, M. O.; Wood, R. A.; Poulton, S. W.; Richoz, S.; Newton, R. J.; Kasemann, S. A.; Bowyer, F.; Krystyn, L.

    2016-01-01

    The end-Permian mass extinction, ∼252 million years ago, is notable for a complex recovery period of ∼5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe–S–C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota. PMID:27433855

  6. The timing and pattern of biotic recovery following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Chen, Zhong-Qiang; Benton, Michael J.

    2012-06-01

    The aftermath of the great end-Permian period mass extinction 252 Myr ago shows how life can recover from the loss of >90% species globally. The crisis was triggered by a number of physical environmental shocks (global warming, acid rain, ocean acidification and ocean anoxia), and some of these were repeated over the next 5-6 Myr. Ammonoids and some other groups diversified rapidly, within 1-3 Myr, but extinctions continued through the Early Triassic period. Triassic ecosystems were rebuilt stepwise from low to high trophic levels through the Early to Middle Triassic, and a stable, complex ecosystem did not re-emerge until the beginning of the Middle Triassic, 8-9 Myr after the crisis. A positive aspect of the recovery was the emergence of entirely new groups, such as marine reptiles and decapod crustaceans, as well as new tetrapods on land, including -- eventually -- dinosaurs. The stepwise recovery of life in the Triassic could have been delayed either by biotic drivers (complex multispecies interactions) or physical perturbations, or a combination of both. This is an example of the wider debate about the relative roles of intrinsic and extrinsic drivers of large-scale evolution.

  7. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery.

    PubMed

    Clarkson, M O; Wood, R A; Poulton, S W; Richoz, S; Newton, R J; Kasemann, S A; Bowyer, F; Krystyn, L

    2016-07-19

    The end-Permian mass extinction, ∼252 million years ago, is notable for a complex recovery period of ∼5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe-S-C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota.

  8. Multiple microtektite horizons in upper Eocene marine sediments: No evidence for mass extinctions

    USGS Publications Warehouse

    Keller, G.; D'Hondt, S.; Vallier, T.L.

    1983-01-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  9. Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction

    PubMed Central

    Longrich, Nicholas R.; Vinther, Jakob; Pyron, R. Alexander; Pisani, Davide; Gauthier, Jacques A.

    2015-01-01

    Worm lizards (Amphisbaenia) are burrowing squamates that live as subterranean predators. Their underground existence should limit dispersal, yet they are widespread throughout the Americas, Europe and Africa. This pattern was traditionally explained by continental drift, but molecular clocks suggest a Cenozoic diversification, long after the break-up of Pangaea, implying dispersal. Here, we describe primitive amphisbaenians from the North American Palaeocene, including the oldest known amphisbaenian, and provide new and older molecular divergence estimates for the clade, showing that worm lizards originated in North America, then radiated and dispersed in the Palaeogene following the Cretaceous-Palaeogene (K-Pg) extinction. This scenario implies at least three trans-oceanic dispersals: from North America to Europe, from North America to Africa and from Africa to South America. Amphisbaenians provide a striking case study in biogeography, suggesting that the role of continental drift in biogeography may be overstated. Instead, these patterns support Darwin and Wallace's hypothesis that the geographical ranges of modern clades result from dispersal, including oceanic rafting. Mass extinctions may facilitate dispersal events by eliminating competitors and predators that would otherwise hinder establishment of dispersing populations, removing biotic barriers to dispersal. PMID:25833855

  10. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery

    NASA Astrophysics Data System (ADS)

    Clarkson, M. O.; Wood, R. A.; Poulton, S. W.; Richoz, S.; Newton, R. J.; Kasemann, S. A.; Bowyer, F.; Krystyn, L.

    2016-07-01

    The end-Permian mass extinction, ~252 million years ago, is notable for a complex recovery period of ~5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe-S-C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota.

  11. Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction.

    PubMed

    Longrich, Nicholas R; Vinther, Jakob; Pyron, R Alexander; Pisani, Davide; Gauthier, Jacques A

    2015-05-07

    Worm lizards (Amphisbaenia) are burrowing squamates that live as subterranean predators. Their underground existence should limit dispersal, yet they are widespread throughout the Americas, Europe and Africa. This pattern was traditionally explained by continental drift, but molecular clocks suggest a Cenozoic diversification, long after the break-up of Pangaea, implying dispersal. Here, we describe primitive amphisbaenians from the North American Palaeocene, including the oldest known amphisbaenian, and provide new and older molecular divergence estimates for the clade, showing that worm lizards originated in North America, then radiated and dispersed in the Palaeogene following the Cretaceous-Palaeogene (K-Pg) extinction. This scenario implies at least three trans-oceanic dispersals: from North America to Europe, from North America to Africa and from Africa to South America. Amphisbaenians provide a striking case study in biogeography, suggesting that the role of continental drift in biogeography may be overstated. Instead, these patterns support Darwin and Wallace's hypothesis that the geographical ranges of modern clades result from dispersal, including oceanic rafting. Mass extinctions may facilitate dispersal events by eliminating competitors and predators that would otherwise hinder establishment of dispersing populations, removing biotic barriers to dispersal.

  12. Multiple microtektite horizons in upper eocene marine sediments: no evidence for mass extinctions.

    PubMed

    Keller, G; D'Hondt, S; Vallier, T L

    1983-07-08

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  13. Stellar orbits in the Galaxy and mass extinctions on the Earth: a connection?

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; Dias, W. S.; Lepine, J.; Lorenzo-Oliveira, D.; Kazu, R. S.

    2014-03-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms (Dias & Lepine 2005). Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions (Bailer-Jones 2009). Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment (Clube & Napier 1982); a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages (Gies & Helsel 2005); and the destruction of Earth's ozone layer posed by supernova explosions (Gehrels et al 2003). We present detailed calculations of the history of spiral arm passages for all 212 solartype stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 million years, when the spiral arm position can be traced with good accuracy. There is a very large diversity of stellar orbits amongst solar neighborhood solar-type stars, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 40% of its lifetime crossing the spiral arms, more than nearly all nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass

  14. How large are the extinct giant insular rodents? New body mass estimations from teeth and bones.

    PubMed

    Moncunill-Solé, Blanca; Jordana, Xavier; Marín-Moratalla, Nekane; Moyà-Solà, Salvador; Köhler, Meike

    2014-03-01

    The island rule entails a modification of the body size of insular mammals, a character related with numerous biological and ecological variables. From the Miocene to human colonization (Holocene), Mediterranean and Canary Islands were unaltered natural ecosystems, with paleofaunas formed with endemic giant rodents among other mammals. Our aim is to create methods to estimate the body masses of fossil island rodents and address the nature of ecological pressures driving the island rule. We created regression equations based on extant rodent data and used these to estimate the body masses of the extinct species. Our results show strong correlations between teeth, cranial and postcranial measurements and body mass, except for the length of the long bones, the transversal diameter of the distal tibia and the anteroposterior diameter of the proximal tibia, where the equations were less reliable. The use of equations obtained from a more homogeneous group (suborder and family) is preferable when analyzing the area of the first molar. The new regressions were applied to estimate the body masses of some Mediterranean and Canarian fossil rodents (Canariomys, C. bravoi 1.5 kg and C. tamarani 1 kg; Hypnomys, H. morpheus 230 g and H. onicensis 200 g; and Muscardinus cyclopeus 100 g). Our results indicate that under absence of predation, resource availability (island area) is the key factor that determines the size of the Canariomys sp. However, under presence of specialized predators (birds of prey), body size evolution is less pronounced (Hypnomys sp.).

  15. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.

    PubMed Central

    Solé, Ricard V; Montoya, José M; Erwin, Douglas H

    2002-01-01

    Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530

  16. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary

    PubMed Central

    2008-01-01

    Background Despite being one of the most studied families within the Carnivora, the phylogenetic relationships among the members of the bear family (Ursidae) have long remained unclear. Widely divergent topologies have been suggested based on various data sets and methods. Results We present a fully resolved phylogeny for ursids based on ten complete mitochondrial genome sequences from all eight living and two recently extinct bear species, the European cave bear (Ursus spelaeus) and the American giant short-faced bear (Arctodus simus). The mitogenomic data yield a well-resolved topology for ursids, with the sloth bear at the basal position within the genus Ursus. The sun bear is the sister taxon to both the American and Asian black bears, and this clade is the sister clade of cave bear, brown bear and polar bear confirming a recent study on bear mitochondrial genomes. Conclusion Sequences from extinct bears represent the third and fourth Pleistocene species for which complete mitochondrial genomes have been sequenced. Moreover, the cave bear specimen demonstrates that mitogenomic studies can be applied to Pleistocene fossils that have not been preserved in permafrost, and therefore have a broad application within ancient DNA research. Molecular dating of the mtDNA divergence times suggests a rapid radiation of bears in both the Old and New Worlds around 5 million years ago, at the Miocene-Pliocene boundary. This coincides with major global changes, such as the Messinian crisis and the first opening of the Bering Strait, and suggests a global influence of such events on species radiations. PMID:18662376

  17. Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kaku, K. C.; Reid, J. S.; O'Neill, N. T.; Quinn, P. K.; Coffman, D. J.; Eck, T. F.

    2014-10-01

    The spectral deconvolution algorithm (SDA) and SDA+ (extended SDA) methodologies can be employed to separate the fine and coarse mode extinction coefficients from measured total aerosol extinction coefficients, but their common use is currently limited to AERONET (AErosol RObotic NETwork) aerosol optical depth (AOD). Here we provide the verification of the SDA+ methodology on a non-AERONET aerosol product, by applying it to fine and coarse mode nephelometer and particle soot absorption photometer (PSAP) data sets collected in the marine boundary layer. Using data sets collected on research vessels by NOAA-PMEL(National Oceanic and Atmospheric Administration - Pacific Marine Environmental Laboratory), we demonstrate that with accurate input, SDA+ is able to predict the fine and coarse mode scattering and extinction coefficient partition in global data sets representing a range of aerosol regimes. However, in low-extinction regimes commonly found in the clean marine boundary layer, SDA+ output accuracy is sensitive to instrumental calibration errors. This work was extended to the calculation of coarse and fine mode scattering coefficients with similar success. This effort not only verifies the application of the SDA+ method to in situ data, but by inference verifies the method as a whole for a host of applications, including AERONET. Study results open the door to much more extensive use of nephelometers and PSAPs, with the ability to calculate fine and coarse mode scattering and extinction coefficients in field campaigns that do not have the resources to explicitly measure these values.

  18. Heavy metal toxicity as a kill mechanism in impact caused mass extinctions

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.; Davenport, S. A.; Jones, D. D.; Wdowiak, P.

    1988-01-01

    Heavy metals that are known to be toxic exist in carbonaceous chrondrites at abundances considerably in excess to that of the terrestrial crust. An impactor of relatively undifferentiated cosmic matter would inject into the terrestrial environment large quantities of toxic elements. The abundances of toxic metals found in the Allende CV carbonaceous chondrite and the ratio of meteoritic abundance to crustal abundance are: Cr, 3630 PPM, 30X; Co, 662 PPM, 23X; ni, 13300 PPm, 134X; se, 8.2 PPM, 164X; Os, 0.828 PPM, 166X. The resulting areal density for global dispersal of impactor derived heavy metals and their dilution with terrestrial ejecta are important factors in the determination of the significance of impactor heavy metal toxicity as a kill mechanism in impact caused mass extinctions. A 10 km-diameter asteroid having a density of 3 gram per cu cm would yield a global areal density of impact dispersed chondritic material of 3 kg per square meter. The present areal density of living matter on the terrestrial land surface is 1 kg per square meter. Dilution of impactor material with terrestrial ejecta is determined by energetics, with the mass of ejecta estimated to be in the range of 10 to 100 times that of the mass of the impactor. Because a pelagic impact would be the most likely case, the result would be a heavy metal rainout.

  19. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): orbital calibration of paleoenvironmental events before the mass extinction

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Galbrun, Bruno; Gardin, Silvia; Minoletti, Fabrice; Le Callonnec, Laurence

    2016-04-01

    An integrated study of magnetic mass susceptibility (MS), bulk stable isotopes and calcareous nannofossil paleoecological changes is undertaken on the late Maastrichtian of the Elles section, Tunisia, spanning the last ca. 1 Myr of the Cretaceous. A cyclostratigraphic analysis reveals the presence of Milankovitch frequencies and is used for proposal of two distinct orbital age models and to provide ages of important stratigraphic horizons, relative to the age of the Cretaceous-Paleogene boundary (K-PgB). Principal component analysis (PCA) performed on the nannofossil assemblage reveal two main factors, PCA1, mostly representing fluctuations of D. rotatorius, P. stoveri, Lithraphidites spp., Retecapsa spp., Staurolithites spp., Micula spp., and PCA2, mostly representing fluctuations of A. regularis, C. ehrenbergii, Micula spp., Rhagodiscus spp., W. barnesiae and Zeugrhabdotus spp. Variations in PCA1 and PCA2 match changes in bulk δ13C and δ18O, respectively, and suggest changes in surface-water fertility and temperatures and associated stress. The variations in abundances of high-latitude taxa and the warm-water species Micula murus and in bulk δ18O delineate fast changes in sea-surface paleotemperatures. As in many other sites, an end-Maastrichtian greenhouse warming is highlighted, followed by a short cooling and an additional warm pulse in the last 30 kyr of the Maastrichtian which has rarely been documented so far. Orbital tuning of the delineated climatic events is proposed following the two different age models. Calcareous nannofossil assemblages highlight a decrease in surface-water nutriency, but their species richness remains high through the latest Maastrichtian, indicating, in Tunisia, a weak impact of Deccan volcanism on calcareous nannoplankton diversity before the mass extinction.

  20. Are we in the midst of the sixth mass extinction? A view from the world of amphibians

    PubMed Central

    Wake, David B.; Vredenburg, Vance T.

    2008-01-01

    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction. PMID:18695221

  1. Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians.

    PubMed

    Wake, David B; Vredenburg, Vance T

    2008-08-12

    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians--frogs, salamanders, and caecilians--may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction.

  2. Global Warming and Mass Extinctions Caused by Sediment Degassing of Volcanic Basins: Status Review

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Svensen, Henrik

    2010-05-01

    We have for the past decade worked on a hypothesis linking major environmental changes in Earth History to the eruption of Large Igneous Provinces (LIPs). It is well known that there are temporal correlations between LIPs and periods of global warming and/or mass extinctions. However, there are several problems explaining the environmental changes by extrusive volcanism. In particular, (1) there is no correlation between the size of a LIP and the environmental impact, (2) it is not possible to explain observed increases in isotopically light carbon by degassing of mafic magma, and (3) it is not sufficient carbon in mafic magma to explain the mass of atmospheric carbon needed to trigger global warming. Our hypothesis, initially published in 2004, stresses the emplacement environment. Sedimentary basins contain large volumes of volatiles or rocks that can be devolatized by heating. Magma intruding sedimentary basins will heat the host rock, causing massive degassing of the contact metamorphic aureoles. The type volatiles that are formed in the aureoles are strongly dependent on the host rock lithologies. Greenhouse gases, such as CH4 and CO2, are formed when organic-rich rocks or carbonates are heated, whereas poisonous gases (SO2, halocarbons, etc.) are formed when evaporate-rich sequences are heated. In contrast, only boiling (or formation of supercritical water) is taking place when barren sandstones or shales are heated. The sediment degassing hypothesis has been tested by focused studies of (1) the Paleocene-Eocene Thermal Maximum (PETM) and the Northeast Atlantic Igneous Province, (2) the Toarcian Oceanic Anoxic Event and the Karoo LIP, and (3) the end-Permian extinction and the Siberian Traps LIP. Borehole studies of aureole rocks in all three igneous provinces reveal a very high production potential of greenhouse gases. Heating experiments of petroleum-bearing evaporates from the Tunguska Basin in Siberia document that ozone-destroying halocarbons may have

  3. Phreatomagmatic Pipes of the Tunguska basin (Siberia): Improvement of End-Permian Mass Extinction Model

    NASA Astrophysics Data System (ADS)

    Polozov, Alexander; Svensen, Henrik; Planke, Sverre; Jerram, Dougal

    2014-05-01

    Formation of the Siberian Traps Large Igneous Province is regarded as key phenomena responsible for the end-Permian mass extinction. Extinct event was accelerating due to release of enormous amount of gases throughout numerous basalt pipes, originated from contact aureoles of dolerite sills intruded into Tunguska Basin. Tunguska sedimentary basin consists of Precambrian and Paleozoic evaporites, carbonates and terrigenous rocks including Late Paleozoic coal-bearing strata. Precambrian and early Paleozoic oil source rocks contain numerous high potential oil and gas fields. Paleozoic evaporites contain rock and potassium salts deposits of commercial grade. Tunguska Basin evaporites are considered as a regional seal for the mineralizing brines. Permian-Triassic volcaniclastic rocks overlie this sequence and intrusive rocks have the numerous evidences of magma-sediment interaction result in basalt pipes formation. Compilation of available Russian literature gives us a chance to make a conclusion that hundreds of basalt pipes occur in the Tunguska Basin. The basalt pipes cross over all known dolerite intrusions and are filled with breccias of magmatic, volcaniclastic and sedimentary rocks altered to varying extents. Pipes from the Tunguska Basin south have a phreatomagmatic origin that is supported by ubiquitous occurrence of altered sedimentary clasts and volcaniclastic lapilli, corroded by brine during initial stages of magma-evaporite (brine) interaction. Corroded lapilli rimmed by diopside, chlorine-bearing hornblende, apatite and magnetite. Our recent study of magnetite-rich coarse lapilli tuffs revealed the garnet lapilli rimmed with magnetite cemented by altered clay groundmass enriched by native metals (Cu, Sn, Zn). This result corroborates our hypothesis about magnetite formation during initial stage of magma-sediment-brine interaction. We suggest that these observations could shed light on end-Permian aerosol flux originated from basalt pipes and could provide

  4. Smoking cue reactivity across massed extinction trials: negative affect and gender effects.

    PubMed

    Collins, Bradley N; Nair, Uma S; Komaroff, Eugene

    2011-04-01

    Designing and implementing cue exposure procedures to treat nicotine dependence remains a challenge. This study tested the hypothesis that gender and negative affect (NA) influence changes in smoking urge over time using data from a pilot project testing the feasibility of massed extinction procedures. Forty-three smokers and ex-smokers completed the behavioral laboratory procedures. All participants were over 17 years old, smoked at least 10 cigarettes daily over the last year (or the year prior to quitting) and had expired CO below 10 ppm at the beginning of the ~4-hour session. After informed consent, participants completed 45 min of baseline assessments, and then completed a series of 12 identical, 5-minute exposure trials with inter-trial breaks. Smoking cues included visual, tactile, and olfactory cues with a lit cigarette, in addition to smoking-related motor behaviors without smoking. After each trial, participants reported urge and negative affect (NA). Logistic growth curve models supported the hypothesis that across trials, participants would demonstrate an initial linear increase followed by a decrease in smoking urge (quadratic effect). Data supported hypothesized gender, NA, and gender×NA effects. Significant linear increases in urge were observed among high and low NA males, but not among females in either NA subgroup. A differential quadratic effect showed a significant decrease in urge for the low NA subgroup, but a non-significant decrease in urge in the high NA group. This is the first study to demonstrate gender differences and the effects of NA on the extinction process using a smoking cue exposure paradigm. Results could guide future cue reactivity research and exposure interventions for nicotine dependence.

  5. VizieR Online Data Catalog: Arches cluster: IR phot., extinction and masses (Habibi+, 2013)

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Stolte, A.; Brandner, W.; Hussmann, B.; Motohara, K.

    2013-05-01

    We observed the Arches cluster out to its tidal radius using Ks-band and H-band imaging obtained on June 6-10 2008 with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. The acquired Ks-band images cover four fields of 27.8*27.8(arcsec) each, provided by the medium resolution camera (S27) with a pixel scale of 0.027(arcsec). During the Ks-band observations, the natural visual seeing varied from 0.61" to 0.98". We achieved typical spatial resolutions of 0.081-0.135(arcsec) on individual frames using this AO setup. Seeing-limited J-band observations, on July 17, 2000, were performed with the CISCO spectrograph and camera which provided a pixel scale of 0.116(arcsec) and a field of view of 2*2(arcmin). An average seeing of 0.49(arcsec) resulted into a Full Width at Half Maximum (FWHM) of the point-spread function (PSF) of 0.39(arcsec) on the combined image. The catalogue includes derived infrared-photometry in J, H and Ks bands as well as derived individual extinction value and stellar masses. We used the NAOS-CONICA observations obtained in March 2002 in the central part of the Arches cluster to cover the whole cluster area. (1 data file).

  6. Particle mass loading estimation from extinction data: Application to satellite determination

    SciTech Connect

    Cachorro, V.E.; Tanre, D.

    1995-12-31

    Here the goal is to determine the existing correlation between aerosol mass loading M and extinction {tau}{sub a} ({lambda}) and in particular the possible improvement using the spectral dependence. The ratio M/{tau}{sub a} obviously depends on the aerosol size distribution model and so the authors first carried out a theoretical analysis to observe this dependence. Two functions were selected, the Junge and the lognormal function. Also, ground-based sun photometer measurements under variable atmospheric conditions were made during two campaigns in April and May in both 1986 and 1987 at M`bour, 80 Km south of Dakar, Senegal. The spectral dependence of the aerosol optical thickness is used to derive the columnar aerosol size distribution, its mass loading and hence the M-{tau}{sub a} relationship. Good correlations expressed by a power law have been established which can be used to estimate desert aerosol content within an acceptable margin of error. This associated error oscillates between {+-}8% and {+-}15%. However errors as high as 40% are reached in the estimation of M using the simple ratio formula. This improvement could be performed as well by satellite using the good spectral coverage of sensors like MODIS (EOS satellite) or MERIS (Envisat).

  7. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons.

    PubMed

    Mundil, Roland; Ludwig, Kenneth R; Metcalfe, Ian; Renne, Paul R

    2004-09-17

    The age and timing of the Permian-Triassic mass extinction have been difficult to determine because zircon populations from the type sections are typically affected by pervasive lead loss and contamination by indistinguishable older xenocrysts. Zircons from nine ash beds within the Shangsi and Meishan sections (China), pretreated by annealing followed by partial attack with hydrofluoric acid, result in suites of consistent and concordant uranium/lead (U/Pb) ages, eliminating the effects of lead loss. The U/Pb age of the main pulse of the extinction is 252.6 +/- 0.2 million years, synchronous with the Siberian flood volcanism, and it occurred within the quoted uncertainty.

  8. Mass-wasting triggered by the end-Triassic mass-extinction

    NASA Astrophysics Data System (ADS)

    van de Schootbrugge, Bas; Vecoli, Marco; Strother, Paul; Lindstrom, Sofie; Oschmann, Wolfgang

    2014-05-01

    The end-Triassic dieback of tree-forming vegetation across NW Europe and the proliferation of a low-growing herbaceous pioneer vegetation composed of ferns and fern allies, likely had a major impact on weathering and erosion of emerged land masses. In a recently drilled core from northern Germany (Schandelah), palynological analyses provide evidence for this scenario. The uppermost Rhaetian Triletes Beds show increasing amounts of reworked Palaeozoic acritarchs and prasinophytes of up to 30% of the palynomorph fraction. Most of the acritarchs are singletons and can be assigned to Ordovician and Silurian species, such as Ankyrotrochus crispum, Oppilatala eoplanktonica, and Evittia spp. The average age of the reworked acritarch assemblages is observed to increase during the latest Rhaetian, leading to an inverted stratigraphy among Palaeozoic species. Further North, in the Stenlille cores from the Danish Basin, reworked Palaeozoic palynomorphs appear to constitute mainly sphaeromorphic prasinophytes and other Palaeozoic microfossils such as chitinozoans and carboniferous spores. Further south, at Mingolsheim (S Germany) the Triletes Beds contain a clear sign of soil reworking, including mycorrhizal fungal remains and cysts from probable soil organisms. These peculiar changes in palynological assemblages go hand-in-hand with important changes in sedimentology. The reworking of soil and bedrock is occurring in an interval that also contains evidence for earthquake activity in the form of widespread seismites. All these observations may be attributed to a number of mutually non-exclusive mechanisms, including decreased plant cover, an intensified hydrological cycle due to greenhouse warming, and the doming of the Central Atlantic Magmatic Province leading to continental-scale tectonic steepening of basin margins.

  9. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction.

    PubMed

    Alroy, J

    2001-06-08

    A computer simulation of North American end-Pleistocene human and large herbivore population dynamics correctly predicts the extinction or survival of 32 out of 41 prey species. Slow human population growth rates, random hunting, and low maximum hunting effort are assumed; additional parameters are based on published values. Predictions are close to observed values for overall extinction rates, human population densities, game consumption rates, and the temporal overlap of humans and extinct species. Results are robust to variation in unconstrained parameters. This fully mechanistic model accounts for megafaunal extinction without invoking climate change and secondary ecological effects.

  10. The Arches Cluster Out to its Tidal Radius: Dynamical Mass Segregation and the Effect of the Extinction Law on the - Lar Mass Function

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam; Stolte, Andrea; Brandner, Wolfgang; Hussman, Benjamin

    2013-07-01

    The Galactic Center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic Center through the Galactic disk, knowledge of extinction is crucial to study this region. The Arches cluster is a young, massive starburst cluster near the Galactic Center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper-mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ∆AKs˜1 magnitude in acquired Ks-band extinction, while the present mass function slope changes by ˜0.17 dex. The present-day mass function slope derived assuming the Nishiyama et al. (2009) extinction law increases from a flat slope of α-Nishi = 1.50 ± 0.35 in the core (r<0.2 pc) to α-Nishi = 2.21±0.27 in the intermediate annulus (0.2

  11. Extinction and the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  12. Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction.

    PubMed

    Mander, Luke; Wesseln, Cassandra J; McElwain, Jennifer C; Punyasena, Surangi W

    2012-01-01

    The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as mass extinctions, are crucial. In this paper, we have used variations in the frequency of chemical and mechanical sporomorph (pollen and spore) damage as a guide to taphonomic regimes across the Triassic-Jurassic mass extinction (Tr-J; ∼201.3 Ma) at a boundary section at Astartekløft, East Greenland. We find that the frequency of sporomorph damage is extremely variable in samples from this locality. This likely reflects a combination of taxon-specific susceptibility to damage and the mixing of sporomorphs from a mosaic of environments and taphonomic regimes. The stratigraphic interval containing evidence of plant extinction and compositional change in the source vegetation at Astartekløft is not marked by a consistent rise or fall in the frequency of sporomorph damage. This indicates that natural taphonomic regimes did not shift radically during this critical interval. We find no evidence of a consistent relationship between the taxonomic richness of sporomorph assemblages and the frequency of damage among sporomorphs at Astartekløft. This indicates that previously reported patterns of sporomorph richness across the Tr-J at this locality are likely to be robust. Taken together, our results suggest that the patterns of vegetation change at Astartekløft represent a real biological response to environmental change at the Tr-J.

  13. Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events

    NASA Astrophysics Data System (ADS)

    Kravchinsky, Vadim A.

    2012-04-01

    This paper assesses data from recently described major Paleozoic large igneous provinces (LIPs), mostly in Northern Eurasia. The 10 LIPs reviewed form a unimodal distribution in terms of volume. Eight LIPs have an initial modal volume greater than 0.1 × 106 km3. The rift associated basalts of 2 LIPs from the end of the Late Cambrian Period and the end of the Late Ordovician Period do not occupy a large volume. Some of the provinces were discovered or rediscovered relatively recently and dating is still approximate, but most provinces fit a simple model in which volcanism persisted on the order of 10-20 Myr, often resulting in continental break-up. Correlation between LIP ages and the ages of geological events in the Paleozoic Era that reflect mass extinctions and oceanic anoxia agrees with correlations suggested by Courtillot (1994) and Courtillot and Renne (2003) for the Cenozoic and Mesozoic eras, considering that the absolute dating of some Paleozoic LIPs needs to be strengthened in the future.

  14. Fear-Potentiated Startle and Fear Extinction in a Sample of Undergraduate Women Exposed to a Campus Mass Shooting

    PubMed Central

    Orcutt, Holly K.; Hannan, Susan M.; Seligowski, Antonia V.; Jovanovic, Tanja; Norrholm, Seth D.; Ressler, Kerry J.; McCanne, Thomas

    2017-01-01

    Posttraumatic stress disorder (PTSD) is a common psychological disorder that affects a substantial minority of individuals. Previous research has suggested that PTSD can be partially explained as a disorder of impaired fear inhibition. The current study utilized a previously validated fear acquisition and extinction paradigm in a sample of 75 undergraduate women who were exposed to a campus mass shooting that occurred in 2008. We used a protocol in which conditioned fear was first acquired through the presentation of one colored shape (reinforced conditioned stimulus, CS+) that was paired with an aversive airblast to the larynx (unconditioned stimulus, US) and a different colored shape that was not paired with the airblast (non-reinforced conditioned stimulus, CS-). Fear was extinguished 10 min later through repeated presentations of the CSs without reinforcement. Number of clinically significant posttraumatic stress symptoms (PTSS) immediately following the mass shooting were positively associated with fear-potentiated startle (FPS) to the CS+ and CS- during late periods of acquisition. During early periods of fear extinction, PTSS was positively associated with FPS to the CS+. Results from the current study suggest that PTSS is related to altered fear inhibition and extinction during an FPS paradigm. In line with similar research, women with greater PTSS demonstrated a greater “fear load,” suggesting that these women experienced elevated fear to the CS+ during extinction after conditioned fear was acquired. PMID:28111559

  15. Fear-Potentiated Startle and Fear Extinction in a Sample of Undergraduate Women Exposed to a Campus Mass Shooting.

    PubMed

    Orcutt, Holly K; Hannan, Susan M; Seligowski, Antonia V; Jovanovic, Tanja; Norrholm, Seth D; Ressler, Kerry J; McCanne, Thomas

    2016-01-01

    Posttraumatic stress disorder (PTSD) is a common psychological disorder that affects a substantial minority of individuals. Previous research has suggested that PTSD can be partially explained as a disorder of impaired fear inhibition. The current study utilized a previously validated fear acquisition and extinction paradigm in a sample of 75 undergraduate women who were exposed to a campus mass shooting that occurred in 2008. We used a protocol in which conditioned fear was first acquired through the presentation of one colored shape (reinforced conditioned stimulus, CS+) that was paired with an aversive airblast to the larynx (unconditioned stimulus, US) and a different colored shape that was not paired with the airblast (non-reinforced conditioned stimulus, CS-). Fear was extinguished 10 min later through repeated presentations of the CSs without reinforcement. Number of clinically significant posttraumatic stress symptoms (PTSS) immediately following the mass shooting were positively associated with fear-potentiated startle (FPS) to the CS+ and CS- during late periods of acquisition. During early periods of fear extinction, PTSS was positively associated with FPS to the CS+. Results from the current study suggest that PTSS is related to altered fear inhibition and extinction during an FPS paradigm. In line with similar research, women with greater PTSS demonstrated a greater "fear load," suggesting that these women experienced elevated fear to the CS+ during extinction after conditioned fear was acquired.

  16. Impact ejecta layer from the mid-Devonian: possible connection to global mass extinctions.

    PubMed

    Ellwood, Brooks B; Benoist, Stephen L; El Hassani, Ahmed; Wheeler, Christopher; Crick, Rex E

    2003-06-13

    We have found evidence for a bolide impacting Earth in the mid-Devonian ( approximately 380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.

  17. Using the Theme of Mass Extinctions to Teach Science to Non-Science Major College and University Students

    NASA Astrophysics Data System (ADS)

    Boness, D. A.

    2013-12-01

    The general public is heavily exposed to "news" and commentary---and arts and entertainment---that either inadvertently misrepresents science or even acts to undermine it. Climate change denial and evolution denial is well funded and pervasive. Even university-educated people get little exposure to the aims, methods, debates, and results of scientific inquiry because unless they earn degrees in science they typically only take one or two introductory science courses at the university level. This presentation reports the development of a new, non-science major Seattle University course on mass extinctions throughout earth history. Seattle University is an urban, Jesuit Catholic university. The topic of mass extinctions was chosen for several reasons: (1) To expose the students to a part of current science that has rich historical roots yet by necessity uses methods and reasoning from geology, geophysics, oceanography, physics, chemistry, biology, and astronomy. This multidisciplinary course provides some coverage of sciences that the student would not typically ever see beyond secondary school. (2) To enable the students to learn enough to follow some of the recent and current debates within science (e.g., mass extinctions by asteroid impact versus massive volcanism, ocean anoxia, and ocean acidification), with the students reading some of the actual literature, such as articles in Science, Nature, or Nature Geoscience. (3) To emphasize the importance of "deep time" as evolutionary biological processes interact with massive environmental change over time scales from hundreds of millions of years down to the seconds and hours of an asteroid or comet strike. (4) To show the effects of climate change in the past, present, and future, due to both natural and anthropogenic causes. (5) To help the student critically evaluate the extent to which their future involves a human-caused mass extinction.

  18. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction

    NASA Astrophysics Data System (ADS)

    Schoene, Blair; Samperton, Kyle M.; Eddy, Michael P.; Keller, Gerta; Adatte, Thierry; Bowring, Samuel A.; Khadri, Syed F. R.; Gertsch, Brian

    2015-04-01

    Despite the growing number of mass extinction events correlated with large igneous provinces, the mechanisms by which volcanic eruptions can lead to ecosystem collapse and biologic turnover remain poorly understood. A better understanding of these events requires high-resolution timelines for volcanic outpourings, geochemical and isotopic proxy records, and biostratigraphic data that cover the extinction and recovery intervals. It has long been known that the Cretaceous-Paleogene mass extinction event broadly correlates with the eruption of the Deccan Traps, but high-precision geochronology from these basalts has remained elusive, despite the role the traps could have played in ecosystem decline and recovery and the importance of assessing their timing relative to the Chicxulub impact event. We have applied high-precision U-Pb CA-ID-TIMS geochronology to rocks from within the Deccan Traps that constrain the onset and termination of the main phase of volcanism. Because of the rarity of zircon in basalt, dated material includes both in situ zircon-bearing segregation veins within basalt flows and also volcanic ash beds found between individual basalt flows. The latter likely derive from distant, higher-Si explosive volcanic vents during periods of basaltic quiescence. We show that the duration of the main phase of the Deccan, which included >1.1 million cubic km of basalt, erupted in ~750 kyr and began ~250 kyr prior to recently published dates [1] for the Cretaceous-Paleogene mass extinction event. When combined with published paleomagnetic data from the Deccan traps [2,3], our data place the main phase of Deccan eruptions precisely within the geomagnetic polarity timescale and thus permit correlation of their onset with other stratigraphic records that lack geochronology. Our ages improve on the precision of existing geochronology for the Deccan Traps by 1-2 orders of magnitude and are a crucial starting point for more quantitative estimates of volcanic gas

  19. The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Stolte, A.; Brandner, W.; Hußmann, B.; Motohara, K.

    2013-08-01

    The Galactic center is the most active site of star formation in the Milky Way, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/CISCO J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ΔAKs ~ 1 magnitude in acquired Ks-band extinction, while the present-day mass function slope changes by ~ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law increases from a flat slope of αNishi = -1.50 ± 0.35 in the core (r < 0.2 pc) to αNishi = -2.21 ± 0.27 in the intermediate annulus (0.2 < r < 0.4 pc), where the Salpeter slope is -2.3. The mass function steepens to αNishi = -3.21 ± 0.30 in the outer annulus (0.4 < r < 1.5 pc), indicating that the outer cluster region is depleted of high-mass stars. This picture is consistent with mass segregation owing to the dynamical evolution of the cluster. Based on observations collected at the ESO/VLT under Program ID 081.D-0572(B) (PI: Brandner) and ID 71.C-0344(A) (PI: Eisenhauer, retrieved from the ESO archive). Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.Full Table 5 is

  20. Limitations on K-T mass extinction theories based upon the vertebrate record

    NASA Technical Reports Server (NTRS)

    Archibald, J. David; Bryant, Laurie J.

    1988-01-01

    Theories of extinction are only as good as the patterns of extinction that they purport to explain. Often such patterns are ignored. For the terminal Cretaceous events, different groups of organisms in different environments show different patterns of extinction that to date cannot be explained by a single causal mechanism. Several patterns of extinction (and/or preservational bias) can be observed for the various groups of vertebrates from the uppermost Cretaceous Hell Creek Formation and lower Paleocene Tullock Formation in eastern Montana. The taxonomic level at which the percentage of survivals (or extinctions) is calculated will have an effect upon the perception of faunal turnover. In addition to the better known mammals and better publicized dinosaurs, there are almost 60 additional species of reptiles, birds, amphibians, and fish in the HELL Creek Formation. Simple arithmetic suggests only 33 percent survival of these vertebrates from the Hell Creek Fm. into the Tullock Fm. A more critical examination of the data shows that almost all Hell Creek species not found in the Tullock are represented in one of the following categories; extremely rare forms, elasmobranch fish that underwent rapid speciation taxa that although not known or rare in the Tullock, are found elsewhere. Each of the categories is largely the result of the following biases: taphonomy, ecological differences, taxonomic artifact paleogeography. The two most important factors appear to be the possible taphonomic biases and the taxonomic artifacts. The extinction patterns among the vertebrates do not appear to be attributable to any single cause, catastrophic or otherwise.

  1. Position of the Triassic-Jurassic boundary and timing of the end-Triassic extinctions on land: Data from the Moenave Formation on the southern Colorado Plateau, USA

    USGS Publications Warehouse

    Lucas, S.G.; Tanner, L.H.; Donohoo-Hurley, L.; Geissman, J.W.; Kozur, H.W.; Heckert, A.B.; Weems, R.E.

    2011-01-01

    Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, U.S.A., represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present a synthesis of new biostratigraphic and magnetostratigraphic data collected from across the Moenave Formation outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These data include palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four overlapping magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracans) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation, stratigraphically well above the highest occurrence of crurotarsan body fossils or footprints. Correlation to marine sections based on this placement indicates that major terrestrial vertebrate extinctions preceded marine extinctions across the Triassic-Jurassic boundary and therefore were likely unrelated to the Central Atlantic Magmatic Province (CAMP) volcanism. ?? 2011 Elsevier B.V.

  2. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  3. Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction.

    PubMed

    Aberhan, Martin; Kiessling, Wolfgang

    2015-06-09

    Contemporary biodiversity loss and population declines threaten to push the biosphere toward a tipping point with irreversible effects on ecosystem composition and function. As a potential example of a global-scale regime shift in the geological past, we assessed ecological changes across the end-Cretaceous mass extinction based on molluscan assemblages at four well-studied sites. By contrasting preextinction and postextinction rank abundance and numerical abundance in 19 molluscan modes of life--each defined as a unique combination of mobility level, feeding mode, and position relative to the substrate--we find distinct shifts in ecospace utilization, which significantly exceed predictions from null models. The magnitude of change in functional traits relative to normal temporal fluctuations at far-flung sites indicates that molluscan assemblages shifted to differently structured systems and faunal response was global. The strengths of temporal ecological shifts, however, are mostly within the range of preextinction site-to-site variability, demonstrating that local ecological turnover was similar to geographic variation over a broad latitudinal range. In conjunction with varied site-specific temporal patterns of individual modes of life, these spatial and temporal heterogeneities argue against a concerted phase shift of molluscan assemblages from one well-defined regime to another. At a broader ecological level, by contrast, congruent tendencies emerge and suggest deterministic processes. These patterns comprise the well-known increase of deposit-feeding mollusks in postextinction assemblages and increases in predators and predator-resistant modes of life, i.e., those characterized by elevated mobility and infaunal life habits.

  4. The evidence for and against astronomical impacts on climate change and mass extinctions: a review

    NASA Astrophysics Data System (ADS)

    Bailer-Jones, C. A. L.

    2009-07-01

    Numerous studies over the past 30 years have suggested there is a causal connection between the motion of the Sun through the Galaxy and terrestrial mass extinctions or climate change. Proposed mechanisms include comet impacts (via perturbation of the Oort cloud), cosmic rays and supernovae, the effects of which are modulated by the passage of the Sun through the Galactic midplane or spiral arms. Supposed periodicities in the fossil record, impact cratering dates or climate proxies over the Phanerozoic (past 545 Myr) are frequently cited as evidence in support of these hypotheses. This remains a controversial subject, with many refutations and replies having been published. Here I review both the mechanisms and the evidence for and against the relevance of astronomical phenomena to climate change and evolution. This necessarily includes a critical assessment of time series analysis techniques and hypothesis testing. Some of the studies have suffered from flaws in methodology, in particular drawing incorrect conclusions based on ruling out a null hypothesis. I conclude that there is little evidence for intrinsic periodicities in biodiversity, impact cratering or climate on timescales of tens to hundreds of Myr. Although this does not rule out the mechanisms, the numerous assumptions and uncertainties involved in the interpretation of the geological data and in particular in the astronomical mechanisms suggest that Galactic midplane and spiral arm crossings have little impact on biological or climate variation above background level. Non-periodic impacts and terrestrial mechanisms (volcanism, plate tectonics, sea level changes), possibly occurring simultaneously, remain likely causes of many environmental catastrophes. Internal dynamics of the biosphere may also play a role. In contrast, there is little evidence supporting the idea that cosmic rays have a significant influence on climate through cloud formation. It seems likely that more than one mechanism has

  5. Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction

    NASA Astrophysics Data System (ADS)

    Aberhan, Martin; Kiessling, Wolfgang

    2015-06-01

    Contemporary biodiversity loss and population declines threaten to push the biosphere toward a tipping point with irreversible effects on ecosystem composition and function. As a potential example of a global-scale regime shift in the geological past, we assessed ecological changes across the end-Cretaceous mass extinction based on molluscan assemblages at four well-studied sites. By contrasting preextinction and postextinction rank abundance and numerical abundance in 19 molluscan modes of life-each defined as a unique combination of mobility level, feeding mode, and position relative to the substrate-we find distinct shifts in ecospace utilization, which significantly exceed predictions from null models. The magnitude of change in functional traits relative to normal temporal fluctuations at far-flung sites indicates that molluscan assemblages shifted to differently structured systems and faunal response was global. The strengths of temporal ecological shifts, however, are mostly within the range of preextinction site-to-site variability, demonstrating that local ecological turnover was similar to geographic variation over a broad latitudinal range. In conjunction with varied site-specific temporal patterns of individual modes of life, these spatial and temporal heterogeneities argue against a concerted phase shift of molluscan assemblages from one well-defined regime to another. At a broader ecological level, by contrast, congruent tendencies emerge and suggest deterministic processes. These patterns comprise the well-known increase of deposit-feeding mollusks in postextinction assemblages and increases in predators and predator-resistant modes of life, i.e., those characterized by elevated mobility and infaunal life habits.

  6. Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction

    PubMed Central

    Aberhan, Martin; Kiessling, Wolfgang

    2015-01-01

    Contemporary biodiversity loss and population declines threaten to push the biosphere toward a tipping point with irreversible effects on ecosystem composition and function. As a potential example of a global-scale regime shift in the geological past, we assessed ecological changes across the end-Cretaceous mass extinction based on molluscan assemblages at four well-studied sites. By contrasting preextinction and postextinction rank abundance and numerical abundance in 19 molluscan modes of life—each defined as a unique combination of mobility level, feeding mode, and position relative to the substrate—we find distinct shifts in ecospace utilization, which significantly exceed predictions from null models. The magnitude of change in functional traits relative to normal temporal fluctuations at far-flung sites indicates that molluscan assemblages shifted to differently structured systems and faunal response was global. The strengths of temporal ecological shifts, however, are mostly within the range of preextinction site-to-site variability, demonstrating that local ecological turnover was similar to geographic variation over a broad latitudinal range. In conjunction with varied site-specific temporal patterns of individual modes of life, these spatial and temporal heterogeneities argue against a concerted phase shift of molluscan assemblages from one well-defined regime to another. At a broader ecological level, by contrast, congruent tendencies emerge and suggest deterministic processes. These patterns comprise the well-known increase of deposit-feeding mollusks in postextinction assemblages and increases in predators and predator-resistant modes of life, i.e., those characterized by elevated mobility and infaunal life habits. PMID:25941366

  7. Was it the CO2 or the sulfur that did it? The mechanism of mass extinction of continental vertebrates at the end-Triassic extinction.

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Schaller, M. F.; Kent, D. V.; Et-Touhami, M.

    2012-04-01

    Eruption of the giant Central Atlantic Magmatic Province (CAMP) is temporally linked to the end-Triassic extinction (ETE) event (1,2,3,4,5). Proposed killing mechanisms for plants and marine biota have included both CO2 (4) and sulfur aerosols (3,6). Here we examine the kill mechanisms of the CAMP for land animals where we seek to explain the selectivity of the extinctions. One striking aspect of Late Triassic continental communities is the prominent latitudinal provinciality with diverse crurotarsians (crocodile-relatives) and other non-dinosaurs in the tropics and much higher dinosaur diversity in the higher latitudes (7). Only a very few crurotarsian lineages survived the ETE, and a near-homogenization of continental vertebrate assemblages ensued. Background high CO2 concentration in the Late Triassic resulted in lack of polar ice and probably very high-temperature tropical continental interiors. While a doubling of CO2 associated with CAMP eruptions produced a few degree increase in average temperatures (depending on the sensitivity), plausibly leading to some tropical lethality, how this produced a mass extinction in higher, cooler latitudes is harder to explain. While successive CAMP eruptions contributed to CO2 doublings over hundreds to thousands of years, taking two orders of magnitude longer to return to background, EACH major CAMP eruption produced an abrupt sulfur aerosol cooling lasting several years or decades, depending eruption duration. But there were many of these coolings as opposed to the few super-greenhouse warmings suggested by the CO2 proxy data (4,5). The scale of these sulfur injections would have been orders of magnitude larger than anything seen historically (8) possibly leading to freezing tropical temperatures. Both cruotarsians and dinosaurs as well as most other "reptiles", with their presumably uricotelic nitrogen waste systems (9) were been relatively resistant to heat induced water stress, but the former lack insolation, while the

  8. Restoration of marine ecosystems following the end-Permian mass extinction: pattern and dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Z.

    2013-12-01

    Life came closest to complete annihilation during the end-Permian mass extinction (EPME). Pattern and cause of this great dying have long been disputed. Similarly, there is also some debate on the recovery rate and pattern of marine organisms in the aftermath of the EPME. Some clades recovered rapidly, within the first 1-3 Myr of the Triassic. For instance, foraminiferal recovery began 1 Myr into the Triassic and was not much affected by Early Triassic crises. Further, some earliest Triassic body and trace fossil assemblages are also more diverse than predicted. Others, ie. Brachiopods, corals etc., however, did not rebound until the Middle Triassic. In addition, although ammonoids recovered fast, reaching a higher diversity by the Smithian than in the Late Permian, much of this Early Triassic radiation was within a single group, the Ceratitina, and their morphological disparity did not expand until the end-Spathian. Here, I like to broaden the modern ecologic network model to explore the complete trophic structure of fossilized ecosystems during the Permian-Triassic transition as a means of assessing the recovery. During the Late Permian and Early Triassic, primary producers, forming the lowest trophic level, were microbes. The middle part of the food web comprises primary and meso-consumer trophic levels, the former dominated by microorganisms such as foraminifers, the latter by opportunistic communities (i.e. disaster taxa), benthic shelly communities, and reef-builders. They were often consumed by invertebrate and vertebrate predators, the top trophic level. Fossil record from South China shows that the post-extinction ecosystems were degraded to a low level and typified by primary producers or opportunistic consumers, which are represented by widespread microbialites or high-abundance, low-diversity communities. Except for some opportunists, primary consumers, namely foraminifers, rebounded in Smithian. Trace-makers recovered in Spathian, which also saw

  9. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction.

    PubMed

    Hu, Shi-xue; Zhang, Qi-yue; Chen, Zhong-Qiang; Zhou, Chang-yong; Lü, Tao; Xie, Tao; Wen, Wen; Huang, Jin-yuan; Benton, Michael J

    2011-08-07

    The timing and nature of biotic recovery from the devastating end-Permian mass extinction (252 Ma) are much debated. New studies in South China suggest that complex marine ecosystems did not become re-established until the middle-late Anisian (Middle Triassic), much later than had been proposed by some. The recently discovered exceptionally preserved Luoping biota from the Anisian Stage of the Middle Triassic, Yunnan Province and southwest China shows this final stage of community assembly on the continental shelf. The fossil assemblage is a mixture of marine animals, including abundant lightly sclerotized arthropods, associated with fishes, marine reptiles, bivalves, gastropods, belemnoids, ammonoids, echinoderms, brachiopods, conodonts and foraminifers, as well as plants and rare arthropods from nearby land. In some ways, the Luoping biota rebuilt the framework of the pre-extinction latest Permian marine ecosystem, but it differed too in profound ways. New trophic levels were introduced, most notably among top predators in the form of the diverse marine reptiles that had no evident analogues in the Late Permian. The Luoping biota is one of the most diverse Triassic marine fossil Lagerstätten in the world, providing a new and early window on recovery and radiation of Triassic marine ecosystems some 10 Myr after the end-Permian mass extinction.

  10. Measuring changes in articulate brachiopod morphology before and after the Permian mass extinction event: do developmental constraints limit morphological innovation?

    PubMed

    Ciampaglio, Charles N

    2004-01-01

    The pattern of decreasing disparity has been observed in both the metazoans and metaphytes throughout the Phanerozoic. The pattern is manifest as a decreasing trend in the origination of higher taxa. Currently, two competing evolutionary hypotheses have been proposed to explain this phenomenon: the empty ecospace hypothesis and the developmental constraint hypothesis. To empirically distinguish between these hypotheses, the change in disparity before and after the end-Permian mass extinction event was measured in the articulated brachiopods. The assumption is that ecospace-limiting constraints are removed after mass extinctions revealing the effect of developmental constraints. For each taxon within the group, both continuous and discrete character sets were analyzed. Four different measures of disparity were used to analyze each character suite. Additionally, a separate analysis was performed on a subset of the articulated brachiopods, the rhynchonellids and terebratulids. In most cases investigated, disparity rebounded to comparable levels, with the rhynchonellids and terebratulids showing the largest increase in disparity after the end-Permian extinction, a clear example of an increase in disparity without a significant increase in taxonomic diversity. The results indicate that developmental constraints may not be responsible for the decreasing disparity in this group. The more likely scenario is that increasingly structured ecological guilds have made it much more difficult for large increases in disparity to occur.

  11. Relationships between ocean anoxia, the biological pump, and marine animal life during the Permian-Triassic mass extinction (Invited)

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Schaal, E. K.; Payne, J.

    2013-12-01

    Ocean anoxia/euxinia and carbon cycle instability have long been linked to the end-Permian mass extinction and the Early Triassic interval of delayed or interrupted biotic recovery. Many hypotheses to explain this extinction event invoke the release of greenhouse gases during the emplacement of the Siberian Traps, which likely triggered abrupt changes in marine biogeochemical cycling, atmospheric chemistry, and biodiversity. However, the precise ways in which volcanism and these perturbations are linked and how they governed the tempo and mode of biotic recovery remain poorly understood. Here we highlight new C, Ca, and Sr isotopic data that serve to link volcanic CO2 inputs to changes in marine biogeochemistry and environmental change. We then examine the relationship between ocean biogeochemistry, the biological pump, and marine animal ecosystems during the end-Permian mass extinction and Early Triassic recovery. Finally, we use numerical simulations to probe whether these relationships also explain broad Phanerozoic trends in ocean nutrient status, anoxia, and productivity of marine ecosystems.

  12. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction

    PubMed Central

    Hu, Shi-xue; Zhang, Qi-yue; Chen, Zhong-Qiang; Zhou, Chang-yong; Lü, Tao; Xie, Tao; Wen, Wen; Huang, Jin-yuan; Benton, Michael J.

    2011-01-01

    The timing and nature of biotic recovery from the devastating end-Permian mass extinction (252 Ma) are much debated. New studies in South China suggest that complex marine ecosystems did not become re-established until the middle–late Anisian (Middle Triassic), much later than had been proposed by some. The recently discovered exceptionally preserved Luoping biota from the Anisian Stage of the Middle Triassic, Yunnan Province and southwest China shows this final stage of community assembly on the continental shelf. The fossil assemblage is a mixture of marine animals, including abundant lightly sclerotized arthropods, associated with fishes, marine reptiles, bivalves, gastropods, belemnoids, ammonoids, echinoderms, brachiopods, conodonts and foraminifers, as well as plants and rare arthropods from nearby land. In some ways, the Luoping biota rebuilt the framework of the pre-extinction latest Permian marine ecosystem, but it differed too in profound ways. New trophic levels were introduced, most notably among top predators in the form of the diverse marine reptiles that had no evident analogues in the Late Permian. The Luoping biota is one of the most diverse Triassic marine fossil Lagerstätten in the world, providing a new and early window on recovery and radiation of Triassic marine ecosystems some 10 Myr after the end-Permian mass extinction. PMID:21183583

  13. THE INITIAL MASS FUNCTION AND DISK FREQUENCY OF THE {rho} OPHIUCHI CLOUD: AN EXTINCTION-LIMITED SAMPLE

    SciTech Connect

    Erickson, Kristen L.; Wilking, Bruce A.; Robinson, John G.; Stephenson, Lauren N.; Meyer, Michael R. E-mail: bwilking@umsl.edu E-mail: lnafff@mail.umsl.edu

    2011-10-15

    We have completed an optical spectroscopic survey of an unbiased, extinction-limited sample of candidate young stars covering 1.3 deg{sup 2} of the {rho} Ophiuchi star-forming region. While infrared, X-ray, and optical surveys of the cloud have identified many young stellar objects (YSOs), these surveys are biased toward particular stages of stellar evolution and are not optimal for studies of the disk frequency and initial mass function. We have obtained over 300 optical spectra to help identify 135 association members based on the presence of H{alpha} in emission, lithium absorption, X-ray emission, a mid-infrared excess, a common proper motion, reflection nebulosity, and/or extinction considerations. Spectral types along with R- and I-band photometry were used to derive effective temperatures and bolometric luminosities for association members to compare with theoretical tracks and isochrones for pre-main-sequence stars. An average age of 3.1 Myr is derived for this population which is intermediate between that of objects embedded in the cloud core of {rho} Ophiuchi and low-mass stars in the Upper Scorpius subgroup. Consistent with this age we find a circumstellar disk frequency of 27% {+-} 5%. We also constructed an initial mass function for an extinction-limited sample of 123 YSOs (A{sub v} {<=} 8 mag), which is consistent with the field star initial mass function for YSOs with masses >0.2 M{sub sun}. There may be a deficit of brown dwarfs but this result relies on completeness corrections and requires confirmation.

  14. New Early Triassic trace fossil records from South China: implications for biotic recovery following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, M.; George, A. D.; Chen, Z.; Zhang, Y.

    2013-12-01

    New Early Triassic trace fossil assemblages are documented from the Susong and Tianshengqiao areas in South China to evaluate the mode and tempo of biotic recovery of epifaunal and infaunal organisms following the end-Permian mass extinction. The Susong succession is exposed in Anhui area of the Lower Yangtze region and comprises mudstone and carbonate facies that record overall shallowing from offshore to supratidal settings. The Tianshengqiao succession crops out in the Luoping area, Yuannan Province of the Upper Yangtze region, and consists of mixed carbonate and siliciclastic facies which were deposited in shallow marine to offshore settings. Bivalve and conodont biostratigraphy helps constrain the chronostratigraphic framework of the Lower Triassic successions in these two sections. Griesbachian to Dieneria ichnological records in both successions are characterized by low ichnodiversity, low ichnofabric indices (ii=1-2) and low bedding plane bioturbation indices (bpbi=1-2). Higher ii (ii= 3 and 4) corresponding to densely populated diminutive Skolithos in the Tianshengqiao succession suggest an opportunistic strategy during earliest Triassic deposition. Ichnological data from the Susong succession show an increase in ichnodiversity during the Smithian. A total of 12 ichnogenera including Arenicolites, Chondrites, Gyrochorte, Laevicyclus, Monocraterion, Palaeophycus, Phycodes, Plaolites, Thalassinoides, Treptichnus, Trichichnus and one problematic trace are identified. Ichnofabric indices (ii) and bpbi increase to moderate to high levels (ii = 4-5, bpbi= 3-5). Although complex traces such as Rhizocorallium are in Spathian strata in this section, the low levels of ichnodiversity, ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao succession, ichnofabric indices exhibit a moderate to high value (ii= 3 to 5), however, only six ichnogenera are found and Planolites burrows are consistently small (average diameter at 3

  15. A comparison of the effects of random and selective mass extinctions on erosion of evolutionary history in communities of digital organisms.

    PubMed

    Yedid, Gabriel; Stredwick, Jason; Ofria, Charles A; Agapow, Paul-Michael

    2012-01-01

    The effect of mass extinctions on phylogenetic diversity and branching history of clades remains poorly understood in paleobiology. We examined the phylogenies of communities of digital organisms undergoing open-ended evolution as we subjected them to instantaneous "pulse" extinctions, choosing survivors at random, and to prolonged "press" extinctions involving a period of low resource availability. We measured age of the phylogenetic root and tree stemminess, and evaluated how branching history of the phylogenetic trees was affected by the extinction treatments. We found that strong random (pulse) and strong selective extinction (press) both left clear long-term signatures in root age distribution and tree stemminess, and eroded deep branching history to a greater degree than did weak extinction and control treatments. The widely-used Pybus-Harvey gamma statistic showed a clear short-term response to extinction and recovery, but differences between treatments diminished over time and did not show a long-term signature. The characteristics of post-extinction phylogenies were often affected as much by the recovery interval as by the extinction episode itself.

  16. A Comparison of the Effects of Random and Selective Mass Extinctions on Erosion of Evolutionary History in Communities of Digital Organisms

    PubMed Central

    Yedid, Gabriel; Stredwick, Jason; Ofria, Charles A.; Agapow, Paul-Michael

    2012-01-01

    The effect of mass extinctions on phylogenetic diversity and branching history of clades remains poorly understood in paleobiology. We examined the phylogenies of communities of digital organisms undergoing open-ended evolution as we subjected them to instantaneous “pulse” extinctions, choosing survivors at random, and to prolonged “press” extinctions involving a period of low resource availability. We measured age of the phylogenetic root and tree stemminess, and evaluated how branching history of the phylogenetic trees was affected by the extinction treatments. We found that strong random (pulse) and strong selective extinction (press) both left clear long-term signatures in root age distribution and tree stemminess, and eroded deep branching history to a greater degree than did weak extinction and control treatments. The widely-used Pybus-Harvey gamma statistic showed a clear short-term response to extinction and recovery, but differences between treatments diminished over time and did not show a long-term signature. The characteristics of post-extinction phylogenies were often affected as much by the recovery interval as by the extinction episode itself. PMID:22693570

  17. Rare Earth Elements of the Permian-Triassic Conodonts from Shelf Basin to Shallow Platform: Implications for Oceanic Redox Conditions immediately After the End-Permian Mass Extinction

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhao, L.; Chen, Z.; Chen, J.; Chen, Y.

    2013-12-01

    Rare-earth elements (REEs) can provide information regarding the influence of weathering fluxes and hydrothermal inputs on seawater chemistry as well as processes that fractionate REEs between solid and aqueous phases. Of these, cerium (Ce) distributions may provide information about variations in dissolved oxygen in seawater, and thus assess the redox conditions. The short residence times of REEs in seawater (~300-1,000 yr) can result in unique REE signatures in local watermasses. REE patterns preserved in biogenic apatite such as conodonts are ideal proxies for revealing original seawater chemistry. Here, we measured the REE content of in-situ, single albid crowns using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in combination with an ArF (λ=193 nm) excimer laser (Lambda Physiks GeoLas 2005) and quadrupole ICP-MS (Agilent 7500a). LA-ICP-MS is ideally suited for analyzing conodonts due to its ability to measure compositional variation within single conodont elements. It has the capability to determine, with high spatial resolution, continuous compositional depth profiles through the concentric layered structure of component histologies. To evaluate paleoceanographic conditions immediately after the Permian-Triassic (P-Tr) mass extinction in various depositional settings, we sampled a nearly contemporaneous strata unit, the P-Tr boundary bed, just above the extinction horizon from six sections in South China. They represent various depositional settings from shelf basin (Chaohu and Daxiakou sections), lower part of ramp (Meishan section), normal shallow platform (Yangou section), and platform microbialite (Chongyang and Xiushui sections). The sampled unit is constrained by conodonts Hindeodus changxingensis, H. parvus, and H. staeschei Zones in Meishan. REE results obtained from conodont albid crowns show that the seawater in lower ramp and shelf basin settings contains much higher REE concentrations than that in shallow platform. Ce

  18. Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction

    PubMed Central

    Vandenbroucke, Thijs R. A.; Emsbo, Poul; Munnecke, Axel; Nuns, Nicolas; Duponchel, Ludovic; Lepot, Kevin; Quijada, Melesio; Paris, Florentin; Servais, Thomas; Kiessling, Wolfgang

    2015-01-01

    Glacial episodes have been linked to Ordovician–Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging ‘oceanic anoxic event' models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician–Silurian palaeobiological events. PMID:26305681

  19. Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction.

    PubMed

    Vandenbroucke, Thijs R A; Emsbo, Poul; Munnecke, Axel; Nuns, Nicolas; Duponchel, Ludovic; Lepot, Kevin; Quijada, Melesio; Paris, Florentin; Servais, Thomas; Kiessling, Wolfgang

    2015-08-25

    Glacial episodes have been linked to Ordovician-Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging 'oceanic anoxic event' models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician-Silurian palaeobiological events.

  20. Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Thijs R. A.; Emsbo, Poul; Munnecke, Axel; Nuns, Nicolas; Duponchel, Ludovic; Lepot, Kevin; Quijada, Melesio; Paris, Florentin; Servais, Thomas; Kiessling, Wolfgang

    2015-08-01

    Glacial episodes have been linked to Ordovician-Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging `oceanic anoxic event' models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician-Silurian palaeobiological events.

  1. A Search for Soot from Global Wildfires in Central Pacific Cretaceous-Tertiary Boundary and Other Extinction and Impact Horizon Sediments

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Widicus, Susanna; Kyte, Frank T.

    2003-01-01

    Hypotheses of global wildfires following the Cretaceous-Tertiary (KT) boundary impact are supported by high concentrations of elemental carbon (3.6 mg cm-3) and soot (1.8 mg cm-2) in DSDP Site 465, which was located several thousand kilometers from potential continental sources at 65 Ma. Soot is not preserved at four other central Pacific KT localities, but this is attributed to loss during oxic diagenesis. We find no evidence for wildfires related to major impacts in the late Eocene or to Ir anomalies and extinctions in the late Cenomanian.

  2. Excursions in Stable Carbon Isotopes at the End-Triassic Mass Extinction: Eastern North America and Morocco

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Et-Touhami, M.

    2012-04-01

    The end-Triassic mass extinction (ETE) at 201.4 million years ago is one of the five largest ecological disasters of the last 600 million years. Its cause is thought to be related to flood basalt eruptions of the Central Atlantic Magmatic Province (CAMP). In eastern North America, non-marine deposits recording this extinction occur below the oldest basalts (1), whereas in Morocco the extinction appears to be synchronous or possibly above the oldest basalt flow (2). In marine and paralic strata of Europe, the extinction is marked by a distinct negative carbon isotopic (δ13C) excursion (CIE) (3). This CIE is also apparent in organic carbon records from eastern North America (4,5). Here we present new δ13C data from organic carbon and terrestrial plant derived n-alkanes from the Central High Atlas and Argana basins [6] of Morocco). These data also suggest that the CIE is coincident with the ETE. In the Passaic Formation of the Newark basin, the negative excursion is associated with the palynofloral extinction level and a fern spore abundance anomaly (fern spike) (7). In the Silver Ridge core (B-2) from the Hartford basin (Connecticut), the negative excursion is also associated with an equisetalian spore spike. In the Fundy basin, at Partridge Island, Nova Scotia, the negative excursion occurs at the palynofloral extinction level, below the oldest basalts [here and (5)], and in Morocco it occurs just below the oldest basalts where Triassic pollen taxa are still present [here and 6)]. One interpretation is that the CIE is synchronous globally and reflects a major anomaly in the Earth's carbon cycle (e.g., 8). However, it is also possible that this pattern is a coincidence of artifactual enrichments of 12C in depositional and early diagenetic environments cut off from the exchangeable global reservoirs, such as in eastern North American lakes (4) and possibly in the canonical shallow marine sections from the UK. Distinguishing between these two classes of hypotheses is

  3. The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction.

    PubMed

    Fröbisch, Jörg; Angielczyk, Kenneth D; Sidor, Christian A

    2010-02-01

    Fossils from the central Transantarctic Mountains in Antarctica are referred to a new species of the Triassic genus Kombuisia, one of four dicynodont lineages known to survive the end-Permian mass extinction. The specimens show a unique combination of characters only present in this genus, but the new species can be distinguished from the type species of the genus, Kombuisia frerensis, by the presence of a reduced but slit-like pineal foramen and the lack of contact between the postorbitals. Although incomplete, the Antarctic specimens are significant because Kombuisia was previously known only from the South African Karoo Basin and the new specimens extend the taxon's biogeographic range to a wider portion of southern Pangaea. In addition, the new finds extend the known stratigraphic range of Kombuisia from the Middle Triassic subzone B of the Cynognathus Assemblage Zone into rocks that are equivalent in age to the Lower Triassic Lystrosaurus Assemblage Zone, shortening the proposed ghost lineage of this taxon. Most importantly, the occurrence of Kombuisia and Lystrosaurus mccaigi in the Lower Triassic of Antarctica suggests that this area served as a refuge from some of the effects of the end-Permian extinction. The composition of the lower Fremouw Formation fauna implies a community structure similar to that of the ecologically anomalous Lystrosaurus Assemblage Zone of South Africa, providing additional evidence for widespread ecological disturbance in the extinction's aftermath.

  4. The time-dependent reconstructed evolutionary process with a key-role for mass-extinction events.

    PubMed

    Höhna, Sebastian

    2015-09-07

    The homogeneous reconstructed evolutionary process is a birth-death process without observed extinct lineages. Each species evolves independently with the same diversification rate-speciation rate, λ(t), and extinction rate, μ(t)-that may change over time. The process is commonly applied to model species diversification where the data are reconstructed phylogenies, e.g. trees estimated from present-day molecular data, and used to infer diversification rates. In the present paper I develop the general probability density of a reconstructed tree under any homogeneous, time-dependent birth-death process. I demonstrate how to adapt this probability density when conditioning on the survival of one or two initial lineages, or on the process realizing n species, and also how to transform between the probability density of a reconstructed tree and the probability density of the speciation times. I demonstrate the use of the general time-dependent probability density functions by deriving the probability density of a reconstructed tree under a birth-death-shift model with explicit mass-extinction events. I extend these functions to several special cases, including the pure-birth process, the pure-death process, the birth-death process, and the critical-branching process. Thus, I specify equations for the most commonly used birth-death models in a unified framework (e.g. same condition and same data) using a common notation.

  5. Early Triassic alternative ecological states driven by anoxia, hyperthermals, and erosional pulses following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Pietsch, C.; Petsios, E.; Bottjer, D. J.

    2015-12-01

    The end-Permian mass extinction, 252 million years ago, was the most devastating loss of biodiversity in Earth's history. Massive volcanic eruptions of the Siberian Traps and the concurrent burning of coal, carbonate, and evaporite deposits emplaced greenhouse and toxic gasses. Hyperthermal events of the surface ocean, up to 40°C, led to reduced gradient-driven ocean circulation which yielded extensive equatorial oxygen minimum zones. Today, anthropogenic greenhouse gas production is outpacing carbon input modeled for the end-Permian mass extinction, which suggests that modern ecosystems may yet experience a severe biotic crisis. The Early Triassic records the 5 million year aftermath of the end-Permian mass extinction and is often perceived as an interval of delayed recovery. We combined a new, high resolution carbon isotope record, sedimentological analysis, and paleoecological collections from the Italian Werfen Formation to fully integrate paleoenvironmental change with the benthic ecological response. We find that the marine ecosystem experienced additional community restructuring events due to subsequent hyperthermal events and pulses of erosion. The benthic microfauna and macrofauna both contributed to disaster communities that initially rebounded in the earliest Triassic. 'Disaster fauna' including microbialites, microconchids, foraminifera, and "flat clams" took advantage of anoxic conditions in the first ~500,000 years, dominating the benthic fauna. Later, in the re-oxygenated water column, opportunistic disaster groups were supplanted by a more diverse, mollusc-dominated benthic fauna and a complex ichnofauna. An extreme temperature run-up beginning in the Late Dienerian led to an additional hyperthermal event in the Late-Smithian which co-occurred with increased humidity and terrestrial run-off. Massive siliciclastic deposits replaced carbonate deposition which corresponds to the infaunalization of the benthic fauna. The disaster taxa dominated

  6. The Dynamic Response of Marine Life to Extreme Temperature and Low Oxygen Events Following the End-Permian Mass Extinction.

    NASA Astrophysics Data System (ADS)

    Pietsch, C.; Bottjer, D. J.

    2014-12-01

    The end-Permian mass extinction was the most devastating taxonomic and ecological crisis in the history of life on Earth. The recovery lasted 5 My making it the longest in geologic history, although the cause of the delay is still heavily debated. We find that additional environmental changes during the recovery interval reset the attempts that marine communities made toward ecological complexity, resulting in the overall appearance of a stagnant recovery. The extinction mechanisms during the end-Permian include extreme temperature change and low oxygen environments resulting from the volcanic emission of carbon dioxide and other toxic gasses to the atmosphere. The biotic response to ancient environmental change is a direct analog for the ecological impacts of modern anthropogenic climate change. We applied an ecological recovery rubric to benthic, sea floor dwelling, communities throughout the Early Triassic recovery in two major ocean basins. Newly collected bulk fossil data from the Moenkopi and Thaynes Formations from the Southwest US and the Werfen Formation in Italy were analyzed along with literature data. In Italy, directly following the extinction, low oxygen environments prevented an ecological rebound. Once low oxygen conditions receded, 600 kyr after the extinction, taxonomic diversity, fossil body size, and trace fossil complexity rebounded. A little more than 1 My into the Early Triassic, an extreme temperature event resulted in a reset of community complexity in both Italy and the Southwest US. The body size of gastropods and the repopulation of echinoderms were significantly inhibited as was trace fossil complexity. Low oxygen conditions that developed in the last ~2My of the Early Triassic limited diversity and body size in the Southwest United States. The stagnant recovery is re-interpreted as dynamic resets and rapid rebounds driven by environmental perturbations throughout the Early Triassic.

  7. Strangelove Ocean and Deposition of Unusual Shallow-Water Carbonates After the End-Permian Mass Extinction

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Caldeira, Ken

    2003-01-01

    The severe mass extinction of marine and terrestrial organisms at the end of the Permian Period (approx. 251 Ma) was accompanied by a rapid negative excursion of approx. 3 to 4 per mil in the carbon-isotope ratio of the global surface oceans and atmosphere that persisted for some 500,000 into the Early Triassic. Simulations with an ocean-atmosphere/carbon-cycle model suggest that the isotope excursion can be explained by collapse of ocean primary productivity (a Strangelove Ocean) and changes in the delivery and cycling of carbon in the ocean and on land. Model results also suggest that perturbations of the global carbon cycle resulting from the extinctions led to short-term fluctuations in atmospheric pCO2 and ocean carbonate deposition, and to a long-term (>1 Ma) decrease in sedimentary burial of organic carbon in the Triassic. Deposition of calcium carbonate is a major sink of river-derived ocean alkalinity and for CO2 from the ocean/atmosphere system. The end of the Permian was marked by extinction of most calcium carbonate secreting organisms. Therefore, the reduction of carbonate accumulation made the oceans vulnerable to a build-up of alkalinity and related fluctuations in atmospheric CO2. Our model results suggest that an increase in ocean carbonate-ion concentration should cause increased carbonate accumulation rates in shallow-water settings. After the end-Permian extinctions, early Triassic shallow-water sediments show an abundance of abiogenic and microbial carbonates that removed CaCO3 from the ocean and may have prevented a full 'ocean-alkalinity crisis' from developing.

  8. Geochemical and palynological records for the end-Triassic Mass-Extinction Event in the NE Paris Basin (Luxemburg)

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Natascha; van de Schootbrugge, Bas; Thein, Jean; Fiebig, Jens; Franz, Sven-Oliver; Hanzo, Micheline; Colbach, Robert; Faber, Alain

    2016-04-01

    The End-Triassic mass-extinction event is one of the "big five" mass extinctions in Earth's history. Large scale flood basalt volcanism associated with the break-up of Pangaea, which resulted in the opening of the central Atlantic Ocean, is considered as the leading cause. In addition, an asteroid impact in Rochechouart (France; 201 ± 2 Ma) may have had a local influence on ecosystems and sedimentary settings. The Luxembourg Embayment, in the NE Paris Basin, offers a rare chance to study both effects in a range of settings from deltaic to lagoonal. A multidisciplinary study (sedimentology, geochemistry, palynology) has been carried out on a number of outcrops and cores that span from the Norian to lower Hettangian. Combined geochemical and palynological records from the Boust core drilled in the NE Paris Basin, provide evidence for paleoenvironmental changes associated with the end-Triassic mass-extinction event. The Triassic-Jurassic stratigraphy of the Boust core is well constrained by palynomorphs showing the disappaerance of typical Triassic pollen taxa (e.g. Ricciisporites tuberculates) and the occurrence of the marker species Polypodiisporites polymicroforatus within the uppermost Rhaetian, prior to the Hettangian dominance of Classopollis pollen. The organic carbon stable isotope record (δ13Corg) spanning the Norian to Hettangian, shows a series of prominent negative excursions within the middle Rhaetian, followed by a trend towards more positive values (approx -24 per mille) within the uppermost Rhaetian Argiles de Levallois Member. The lowermost Hettangian is characterized by a major negative excursion, reaching - 30 per mille that occurs in organic-rich sediments. This so-called "main negative excursion" is well-known from other locations, for example from Mariental in Northern Germany and from St Audrie's Bay in England, and Stenlille in Denmark. Based on redox-sensitive trace element records (V, Cr, Ni, Co, Th, U) the lowermost Hettangian in most of

  9. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan S.; Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2012-11-01

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  10. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America.

    PubMed

    Mitchell, Jonathan S; Roopnarine, Peter D; Angielczyk, Kenneth D

    2012-11-13

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  11. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America

    PubMed Central

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2012-01-01

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America. PMID:23112149

  12. Explosive eruption of coal and basalt and the end-Permian mass extinction.

    PubMed

    Ogden, Darcy E; Sleep, Norman H

    2012-01-03

    The end-Permian extinction decimated up to 95% of carbonate shell-bearing marine species and 80% of land animals. Isotopic excursions, dissolution of shallow marine carbonates, and the demise of carbonate shell-bearing organisms suggest global warming and ocean acidification. The temporal association of the extinction with the Siberia flood basalts at approximately 250 Ma is well known, and recent evidence suggests these flood basalts may have mobilized carbon in thick deposits of organic-rich sediments. Large isotopic excursions recorded in this period are potentially explained by rapid venting of coal-derived methane, which has primarily been attributed to metamorphism of coal by basaltic intrusion. However, recently discovered contemporaneous deposits of fly ash in northern Canada suggest large-scale combustion of coal as an additional mechanism for rapid release of carbon. This massive coal combustion may have resulted from explosive interaction with basalt sills of the Siberian Traps. Here we present physical analysis of explosive eruption of coal and basalt, demonstrating that it is a viable mechanism for global extinction. We describe and constrain the physics of this process including necessary magnitudes of basaltic intrusion, mixing and mobilization of coal and basalt, ascent to the surface, explosive combustion, and the atmospheric rise necessary for global distribution.

  13. Explosive eruption of coal and basalt and the end-Permian mass extinction

    PubMed Central

    Ogden, Darcy E.; Sleep, Norman H.

    2012-01-01

    The end-Permian extinction decimated up to 95% of carbonate shell-bearing marine species and 80% of land animals. Isotopic excursions, dissolution of shallow marine carbonates, and the demise of carbonate shell-bearing organisms suggest global warming and ocean acidification. The temporal association of the extinction with the Siberia flood basalts at approximately 250 Ma is well known, and recent evidence suggests these flood basalts may have mobilized carbon in thick deposits of organic-rich sediments. Large isotopic excursions recorded in this period are potentially explained by rapid venting of coal-derived methane, which has primarily been attributed to metamorphism of coal by basaltic intrusion. However, recently discovered contemporaneous deposits of fly ash in northern Canada suggest large-scale combustion of coal as an additional mechanism for rapid release of carbon. This massive coal combustion may have resulted from explosive interaction with basalt sills of the Siberian Traps. Here we present physical analysis of explosive eruption of coal and basalt, demonstrating that it is a viable mechanism for global extinction. We describe and constrain the physics of this process including necessary magnitudes of basaltic intrusion, mixing and mobilization of coal and basalt, ascent to the surface, explosive combustion, and the atmospheric rise necessary for global distribution. PMID:22184229

  14. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery

    PubMed Central

    Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J.; Farquhar, James; Henderson, Charles M.; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D.; Chen, Kefan; Shen, Yanan

    2017-01-01

    The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ∼85–90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian–Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem. PMID:28167796

  15. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery.

    PubMed

    Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J; Farquhar, James; Henderson, Charles M; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D; Chen, Kefan; Shen, Yanan

    2017-02-21

    The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ∼85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ(33)S with either positive δ(34)S or negative δ(34)S that implies mixing of sulfide sulfur with different δ(34)S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ(33)S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.

  16. Disentangling the Hettangian carbon isotope record: Implications for the aftermath of the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Bartolini, A.; Guex, J.; Spangenberg, J. E.; Schoene, B.; Taylor, D. G.; Schaltegger, U.; Atudorei, V.

    2012-01-01

    This study provides an organic carbon stable isotope (δ13Corg) record calibrated with detailed ammonite biostratigraphy, following the end-Triassic biological crisis. Precise correlation between this crucial fossil group and the δ13Corg record is key to understanding feedbacks between biological and environmental events following mass extinction. The latest Triassic and Hettangian δ13Corg record shows several negative and positive excursions. The end-Triassic negative shift coinciding with the mass extinction interval is followed by a positive excursion in the earliest Hettangian Psiloceras spelae beds, which marks the onset of recovery in the marine ecosystem. This positive trend is interrupted by a second negative δ13Corg excursion in the P. pacificum beds related to a minor ammonite extinction event. This pattern of the δ13Corg curve culminates in the uppermost Hettangian Angulata Zone major positive excursion. This indicates that both the ecosystem and the carbon cycle remained in a state of perturbation for at least 2 Ma, although the recovery of some pelagic taxa already began at the base of Jurassic. The early and late Hettangian positive δ13Corg excursions have been confused in several recent papers. Here, we show that during the Hettangian there are indeed two distinct positive δ13Corg excursions. Phases of anoxia and further pulses of Central Atlantic Magmatic Province volcanism during the Hettangian might have inhibited the full recovery for that interval of time. The main Liasicus-Angulata organic positive CIE (carbon isotope excursion) during the Late Hettangian might be related to gradual decreasing of pCO2 due to protracted high organic burial, and coincides with a second phase of recovery, as indicated by a pulse of ammonoid diversification.

  17. Correlating the end-Triassic mass extinction and basalt volcanism of the Central Atlantic Magmatic Province at the 100,000-year level by high-precision U-Pb age determinations

    NASA Astrophysics Data System (ADS)

    Schoene, Blair; Guex, Jean; Bartolini, Annachiara; Schaltegger, Urs; Blackburn, Terrence J.

    2010-05-01

    The end-Triassic mass extinction is one of the five largest extinctions in Earth history, though considerable uncertainty remains in terms of its duration, causes and effects. Many workers suggest that the extinction was related directly or indirectly to adverse climate following the onset of the Central Atlantic Magmatic Province (CAMP), which erupted > 2.5x106 km3 of basalt in less than 1 Ma. However, there remains a need for precise and accurate geochronology to correlate the onset of CAMP volcanism, recorded uniquely in terrestrial sections, with the well-documented marine extinction event. We provide new chemical abrasion ID-TIMS U-Pb age determinations on ash bed and basaltic zircons using the well-calibrated EARTHTIME 202Pb-205Pb-233U-235U tracer solution, yielding data that are up to 70% more precise compared to single-Pb/single-U tracers. We show that the Triassic-Jurassic boundary (TJB) and end-Triassic biological crisis from two independent marine stratigraphic sections in northern Peru and in Nevada (USA) correlate with the onset of terrestrial flood volcanism in the Central Atlantic Magmatic Province (CAMP) to <150 ka. Ash bed samples reveal complicated U-Pb systematics, showing ranges in 206Pb/238U zircon dates of up to 2 Ma, representing a range of growth histories prior to eruption. Therefore, we use the youngest single closed-system zircon to approximate the eruption date. Three volcanic ash beds from the Pucara basin, northern Peru, bracket the TJB to a 206Pb/238U age of 201.31 ± 0.18/0.31/0.43 Ma (internal uncertainties/ with tracer calibration uncertainty/ with decay constant uncertainties). The first discovered ash bed from the New York canyon, Nevada, 1.5 m above TJB requires a boundary age of less than 201.33 ± 0.13 Ma. We also provide data from two laboratories which yield a new 206Pb/238U zircon age of 201.28 ± 0.02/0.22/0.31 Ma for the North Mtn. basalt, the lowest CAMP basalt from the Fundy basin, Nova Scotia. This narrows the

  18. Prediction of broadband attenuation computed using band-averaged mass extinction coefficients and band-averaged transmittance

    NASA Astrophysics Data System (ADS)

    Farmer, W. M.

    1991-09-01

    A common method of estimating the attenuation capabilities of military smokes/obscurants is to use a band-averaged mass-extinction coefficient with concentration-length values in the Beer-Bouguer transmission law. This approach ignores the effects of source spectra, sensor response, and normal atmospheric attenuation on broadband transmittance characteristics, which can significantly affect broadband transmittance. The differences that can occur in predicting relative transmittance as a function of concentration length by using band-averaged mass-extinction coefficients as opposed to more properly computing the band-averaged transmittance are discussed in this paper. Two examples are provided to illustrate the differences in results. The first example considers 3- to 5-micron and 8- to 14-micron band transmission through natural fogs. The second example considers 3- to 5-micron and 8- to 12-micron transmission through phosphorus-derived smoke (a common military obscurant) produced at 17 percent and at 90 percent relative humidity. Major differences are found in the values of concentration lengths predicted by the two methods when the transmittance relative to an unobscured atmosphere falls below about 20 percent. These results can affect conclusions concerning the detection of targets in smokes screens, smoke concentration lengths required to obscure a target, and radiative transport through polluted atmospheres.

  19. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction

    PubMed Central

    Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.

    2010-01-01

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  20. Rates of Ocean Acidification: Decoupling of Planktic and Benthic Extinctions?

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Alegret, L.

    2012-12-01

    Deep-sea benthic organisms derive food from export of organic matter produced in the photic zone, so that pelagic and benthic productivity are coupled, suggesting that severe extinction of plankton and benthos in the geological past should have been coupled. An asteroid impact at the Cretaceous/Paleogene (K/Pg) boundary (~65 Ma), however, caused mass extinction of calcifying plankton (foraminifera and nannoplankton), whereas benthic calcifyers (foraminifera) did not suffer significant extinction. Also, pelagic calcifyers did not suffer severe extinction during the carbon-cycle perturbation and global warming at the Paleocene-Eocene (P/E) boundary 10 myr later, when deep-sea benthic foraminifera did. The K/Pg extinction has been interpreted as darkness-caused collapse of productivity, but this is not supported by the lack of benthic extinction. To evaluate extinction mechanisms, we compared benthic foraminiferal and stable isotope records at ODP sites in the Pacific, SE Atlantic and Southern Oceans. Across the K/Pg boundary, the decrease in export productivity was moderate, regionally variable, and insufficient to explain the mass extinction at higher levels of the food chain. Across the P/E boundary, productivity increased in epicontinental seas and on continental margins, whereas pelagic productivity may have declined (increased trophic resource continuum). We thus found no evidence that the different benthic and pelagic extinction patterns at K/Pg and P/E were linked to changes in (export) productivity. Instead, the difference between planktic and benthic extinction patterns may have been caused by the occurrence of ocean acidification at different rates. Very rapid (faster than present anthropogenic) surface ocean acidification at the K/Pg boundary may have been due to influx of impact-generated nitric acid, followed by rapid oceanic buffering. This may have been a factor in the massive extinction of pelagic calcifyers, ammonites and top-level predators such as

  1. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Wang, Z.; Yang, S.; Shan, H.; Ma, X.; Zhang, H.; Zhao, S.; Liu, D.; Xie, C.; Wang, Y.

    2015-12-01

    Fine particle (PM2.5) affects human life and activities directly; the detection of PM2.5 mass concentration profile is very essential due to its practical and scientific meanings (such as, quantifying of air quality and its variability, and improving air quality forecast and assessment). But so far, it is difficult to detect PM2.5 mass concentration profile. The proposed methodology to study the relationship between aerosol extinction coefficient and PM2.5 mass concentration is described, which indicates that the PM2.5 mass concentration profile could be retrieved by combining a charge-coupled device (CCD) side-scatter lidar and a PM2.5 sampling detector. When the relative humidity is less than 70 %, PM2.5 mass concentration is proportional to aerosol extinction coefficient, and then the specific coefficient can be calculated. Using this specific coefficient, aerosol extinction profile is converted to PM2.5 mass concentration profile. Three cases of clean night (on 21 September 2014), pollutant night (on 17 March 2014), and heavy pollutant night (on 13 February 2015) are studied. The characteristic of PM2.5 mass concentration profile in near-ground during these three nights' cases in the western suburb of Hefei city was discussed. The PM2.5 air pollutant concentration is comparatively large in close surface varying with time and altitude. The experiment results show that the CCD side-scatter lidar combined with a PM2.5 detector is an effective and new method to explore pollutant mass concentration profile in near-ground.

  2. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer

    NASA Astrophysics Data System (ADS)

    Tao, Zongming; Wang, Zhenzhu; Yang, Shijun; Shan, Huihui; Ma, Xiaomin; Zhang, Hui; Zhao, Sugui; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2016-04-01

    Fine particles (PM2.5) affect human life and activities directly; the detection of PM2.5 mass concentration profile is very essential due to its practical and scientific significance (such as the quantification of air quality and its variability as well as the assessment of improving air quality forecast). But so far, it has been difficult to detect PM2.5 mass concentration profile. The proposed methodology to study the relationship between aerosol extinction coefficient and PM2.5 mass concentration is described, which indicates that the PM2.5 mass concentration profile could be retrieved by combining a charge-coupled device (CCD) side-scatter lidar with a PM2.5 sampling detector. When the relative humidity is less than 70 %, PM2.5, mass concentration is proportional to the aerosol extinction coefficient, and then the specific coefficient can be calculated. Through this specific coefficient, aerosol extinction profile is converted to PM2.5 mass concentration profile. Three cases of clean night (on 21 September 2014), pollutant night (on 17 March 2014), and heavy pollutant night (on 13 February 2015) are studied. The characteristics of PM2.5 mass concentration profile at the near-ground level during the cases of these 3 nights in the western suburb of Hefei city were discussed. The PM2.5 air pollutant concentration is comparatively large close to the surface and varies with time and altitude. The experiment results show that the CCD side-scatter lidar combined with a PM2.5 detector is an effective and new method to explore pollutant mass concentration profile at the near-ground level.

  3. PM2.5 mass, chemical composition, and light extinction before and during the 2008 Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; He, Kebin; Li, Chengcai; Yang, Fumo; Zhao, Qing; Ma, Yongliang; Cheng, Yuan; Ouyang, Wenjuan; Chen, Gangcai

    2013-11-01

    contrast of air quality and visibility before and during the 2008 Beijing Olympic Games provides a rare opportunity to investigate the links between PM2.5 mass, chemical composition, and light extinction in this megacity. Twenty-four hour integrated PM2.5 samples were collected, and light scattering coefficients and the concentrations of black carbon were measured at urban Beijing for this purpose during a measurement campaign from 1 July to 20 September 2008, which was classed into four stages according to the levels of emission control measures. Daily PM2.5 concentrations ranged from 15.9 to 156.7 µg m-3 with an average of 66.0 ± 35.1 µg m-3. The average PM2.5 mass during the Olympics decreased by 49% from the second stage (20 July to 7 August), mainly due to the reduction of secondary inorganic aerosols (i.e., sulfate, nitrate, and ammonium (SNA)). The counterintuitive increase of PM2.5 mass (by 27% on average) during the second stage with two most serious haze episodes, although more rigorous emission control measures were in place, compared to the first stage (1-19 July), was mainly explained by the unfavorable meteorology and input of sulfate aerosols. A daily PM2.5 mass threshold of 50 µg m-3 was extracted for frequent haze occurrence. The extinction fractions of SNA and organic material were each approximately 30% during the 20% best visibility days but changed to 81.7% and 8.4%, respectively, during the 20% worst visibility days. The results indicated that the role of SNA was magnified in haze formation during the 2008 summer in Beijing.

  4. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  5. Effect of 3He on the extinction of mass flux in solid helium

    NASA Astrophysics Data System (ADS)

    Vekhov, Ye.; Hallock, Robet

    2014-03-01

    The flux, F, carried by solid 4He , with nominal 300 ppb 3He concentration, χ, in the range 25.6 - 26.3 bar rises with falling temperature and at a temperature Td the flux decreases toward zero. The behavior of the flux above Td demonstrates the presence of a bosonic Luttinger liquid. We study F as a function of 3He concentration χ to explore the effect of 3He on Td. We find that the extinction of the flux is a sharp transition, typically complete within a few mK change in temperature. We find that Td is an increasing function of χ and we compare (Td , χ) with predictions for homogeneous phase separation. We conclude that phase separation plays an important role in the flux extinction. It is possible that the cores of edge dislocations carry the flux, and the flux is extinguished by the decoration by 3He of the cores or dislocation intersections. Supported by NSF DMR 12-05217.

  6. Redefining the Boundaries of Interplanetary Coronal Mass Ejections from Observations at the Ecliptic Plane

    NASA Astrophysics Data System (ADS)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A.

    2016-09-01

    On 2015 January 6-7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  7. Mass and momentum transfer across solid-fluid boundaries in the lattice-Boltzmann method.

    PubMed

    Yin, Xuewen; Le, Guigao; Zhang, Junfeng

    2012-08-01

    Mass conservation and momentum transfer across solid-fluid boundaries have been active topics through the development of the lattice-Boltzmann method. In this paper, we review typical treatments to prevent net mass transfer across solid-fluid boundaries in the lattice-Boltzmann method, and argue that such efforts are in general not necessary and could lead to incorrect results. Carefully designed simulations are conducted to examine the effects of normal boundary movement, tangential density gradient, and lattice grid resolution. Our simulation results show that the global mass conservation can be well satisfied even with local unbalanced mass transfer at boundary nodes, while a local mass conservation constraint can produce incorrect flow and pressure fields. These simulations suggest that local mass conservation, at either a fluid or solid boundary node, is not only an unnecessary consequence to maintain the global mass conservation, but also harmful for meaningful simulation results. In addition, the concern on the momentum addition and reduction associated with status-changing nodes is also not technically necessary. Although including this momentum addition or reduction has no direct influence on flow and pressure fields, the incorrect fluid-particle interaction may affect simulation results of particulate suspensions.

  8. Recovery Following the End-Triassic Mass Extinction: Insights from Mercury Anomalies and Their Relationship to the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Corsetti, Frank; Thibodeau, Alyson; West, A. Joshua; Ritterbush, Kathleen; Yager, Joyce; Ibarra, Yadira; Bottjer, David; Berelson, William; Bergquist, Bridget; Rosas, Silvia

    2016-04-01

    The end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and release of CO2 and other volatiles has been implicated in the extinction. However, the timing of marine biotic recovery versus CAMP eruptions remains uncertain. Here, we use Hg concentrations, Hg/TOC, and Hg isotopes as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg and Hg/TOC levels are low prior to the extinction, rise sharply in the extinction interval, peak just prior to the appearance of the first Jurassic ammonite, and remain above background in association with a depauperate (low diversity) earliest Jurassic fauna. The return of Hg to pre-extinction levels is associated with a significant pelagic and benthic faunal recovery. Hg isotopes display no significant mass independent fractionation (MIF) within the extinction and depauperate intervals, consistent with a volcanic origin for the Hg. The Hg and paleontological evidence from the same archive indicate that significant biotic recovery did not begin until CAMP eruptions ceased. Notably, carbonate dominated ecosystems did not recover for ~1 million years following the last eruption of CAMP, longer than the typical duration implied for ocean acidification events implying other factors may have played a role in prolonging the recovery time of major carbonate-producing biota.

  9. Mass extinctions in the fossil record of late Palaeozoic and Mesozoic tetrapods

    NASA Astrophysics Data System (ADS)

    Benton, Michael J.

    The fossil record of tetrapods is very patchy because of the problems of preservation in terrestrial sediments, and because vertebrates are rarely very abundant. However, the fossil record of tetrapods has the advantages that it is easier to establish a phylogenetic taxonomy than for many invertebrate groups (many characters; fast evolution), and there is the potential for more detailed ecological analyses (greater knowledge of modern tetrapod ecology). The diversity of tetrapods increased during the Devonian, the Carboniferous, and the Permian, but it remained generally constant during the Triassic, the Jurassic, and the Early Cretaceous. Overall diversity then began to increase in the Late Cretaceous, and continued to do so during the Tertiary. The rapid radiation of modern tetrapod groups — frogs, salamanders, lizards, snakes, turtles, crocodiles, birds and mammals — was hardly affected by the celebrated end-Cretaceous extinction event.

  10. The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Fröbisch, Jörg; Angielczyk, Kenneth D.; Sidor, Christian A.

    2010-02-01

    Fossils from the central Transantarctic Mountains in Antarctica are referred to a new species of the Triassic genus Kombuisia, one of four dicynodont lineages known to survive the end-Permian mass extinction. The specimens show a unique combination of characters only present in this genus, but the new species can be distinguished from the type species of the genus, Kombuisia frerensis, by the presence of a reduced but slit-like pineal foramen and the lack of contact between the postorbitals. Although incomplete, the Antarctic specimens are significant because Kombuisia was previously known only from the South African Karoo Basin and the new specimens extend the taxon’s biogeographic range to a wider portion of southern Pangaea. In addition, the new finds extend the known stratigraphic range of Kombuisia from the Middle Triassic subzone B of the Cynognathus Assemblage Zone into rocks that are equivalent in age to the Lower Triassic Lystrosaurus Assemblage Zone, shortening the proposed ghost lineage of this taxon. Most importantly, the occurrence of Kombuisia and Lystrosaurus mccaigi in the Lower Triassic of Antarctica suggests that this area served as a refuge from some of the effects of the end-Permian extinction. The composition of the lower Fremouw Formation fauna implies a community structure similar to that of the ecologically anomalous Lystrosaurus Assemblage Zone of South Africa, providing additional evidence for widespread ecological disturbance in the extinction’s aftermath.

  11. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction.

    PubMed

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P

    2016-11-08

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

  12. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction

    PubMed Central

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P.

    2016-01-01

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally. PMID:27821855

  13. Differences in concentration lengths computed using band-averaged mass extinction coefficients and band-averaged transmittance

    NASA Astrophysics Data System (ADS)

    Farmer, W. Michael

    1990-09-01

    An understanding of how broad-band transmittance is affected by the atmosphere is crucial to accurately predicting how broad-band sensors such as FLIRs will perform. This is particularly true for sensors required to function in an environment where countermeasures such as smokes/obscurants have been used to limit sensor performance. A common method of estimating the attenuation capabilities of smokes/obscurants released in the atmosphere to defeat broad-band sensors is to use a band averaged extinction coefficient with concentration length values in the Beer-Bouguer transmission law. This approach ignores the effects of source spectra, sensor response, and normal atmospheric attenuation, and can lead to results for band averages of the relative transmittance that are significantly different from those obtained using the source spectra, sensor response, and normal atmospheric transmission. In this paper we discuss the differences that occur in predicting relative transmittance as a function of concentration length using band-averaged mass extinction coefficients or computing the band-averaged transmittance as a function of source spectra. Two examples are provided to illustrate the differences in results. The first example is applicable to 8- to l4-um band transmission through natural fogs. The second example considers 3- to 5-um transmission through phosphorus smoke produced at 17% and 90% relative humidity. The results show major differences in the prediction of concentration length values by the two methods when the relative transmittance falls below about 20%.

  14. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P.

    2016-11-01

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

  15. Impacts of a massive release of methane and hydrogen sulfide on oxygen and ozone during the late Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Koga, Seizi

    2013-08-01

    The largest mass extinction of animals and plants in both the ocean and on land occurred in the late Permian (252 Ma), largely coinciding with the largest flood basalt volcanism event in Siberia and an oceanic anoxic/euxinic event. We investigated the impacts of a massive release of methane (CH4) from the Siberian igneous province and the ocean and/or hydrogen sulfide (H2S) from the euxinic ocean on oxygen and ozone using photochemical model calculations. Our calculations indicated that an approximate of 14% decrease in atmospheric O2 levels would have occurred in the case of a large combined CH4 and H2S flux to the atmosphere, whereas an approximate of 8 to 10% decrease would have occurred from the CH4 flux and oxidation of all H2S in the ocean. The slight decrease in atmospheric O2 levels may have contributed to the extinction event. We demonstrate for the first time that a massive release of CH4 from the Siberian igneous province and a coincident massive release of CH4 and H2S did not cause ozone collapse. A collapse of stratospheric ozone leading to an increase in UV is not supported by the maximum model input levels for CH4 and H2S. These conclusions on O2 and O3 are correspondent to every H2S release percentages from the ocean to the atmosphere.

  16. High-precision timeline for Earth's most severe extinction.

    PubMed

    Burgess, Seth D; Bowring, Samuel; Shen, Shu-zhong

    2014-03-04

    The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms.

  17. High sedimentation rates in the Early Triassic after latest Permian mass extinction: Carbonate production is main factor in non-Arctic regions

    NASA Astrophysics Data System (ADS)

    Horacek, Micha; Brandner, Rainer

    2016-04-01

    A substantial change in sedimentation rates towards higher values has been documented from the Late Permian to the Lower Triassic. Although it is assumed and also has been shown that the deposition of siliciclastic material increased in the Lower Triassic due to stronger erosion because of loss of land cover and increased chemical and physical weathering with extreme climate warming, the main sediment production occurred by marine carbonate production. Still, carbonate production might have been significantly influenced by weathering and erosion in the hinterland, as the transport of dust by storms into the ocean water probably was a main nutrient source for microbial carbonate producers, because "normal" nutrient supply by ocean circulation, i. e. upwelling was strongly reduced due to the elevated temperatures resulting in water-column stratification . Sediment accumulation was also clearly influenced by the paleo-geographic and latitudinal position, with lower carbonate production and sedimentation rates in moderate latitudes. The existence of a "boundary clay" and microbial carbonate mounds and layers in the immediate aftermath of the latest Permian mass extinction points towards a development from a short-timed acid ocean water - resulting in a carbonate production gap and the deposition of the boundary clay towards the deposition of the microbial mounds and layers due to the microbial production of micro-environments with higher alkalinity allowing the production of carbonate. After the return of the ocean water to normal alkalinity planktic production of carbonate resulted in a very high sedimentation rate, especially taking into account the absence of carbonate producing eukaryotic algae and animals.

  18. The Formaldehyde Deep Field: A Mass-Limited, Distance-Independent, Extinction-Free Census of Cosmic Star Formation

    NASA Astrophysics Data System (ADS)

    Darling, Jeremiah K.; Zeiger, B.

    2011-01-01

    We examine the absorption of cosmic microwave background (CMB) photons by formaldehyde (H2CO) over cosmic time. Centimeter-wave rotational transitions of H2CO become ``refrigerated'' by collisions with molecular hydrogen, driving their excitation temperatures below the CMB temperature. We demonstrate that the H2CO excitation and detectability is nearly independent of redshift or gas kinetic temperature. H2CO is thus a nearly distance-independent, extinction-free, molecular gas mass-limited tracer of galaxies and the cosmic star formation history. Moreover, H2CO line ratios provide a measurement of molecular gas density. A Formaldehyde Deep Field will be possible with large bandwidth sensitive radio interferometers such as the EVLA, spanning nearly the full history of star formation with uniform sensitivity in a single observation. This research was supported by NSF grant AST-0707713.

  19. Microconchids from microbialite ecosystem immediately after end-Permian mass extinction: ecologic selectivity and implications for microbialite ecosystem structure

    NASA Astrophysics Data System (ADS)

    Yang, H.; Chen, Z.; Wang, Y. B.; Ou, W.; Liao, W.; Mei, X.

    2013-12-01

    The Permian-Triassic (P-Tr) carbonate successions are often characterized by the presence of microbialite buildups worldwide. The widespread microbialites are believed as indication of microbial proliferation immediately after the P-Tr mass extinction. The death of animals representing the primary consumer trophic structure of marine ecosystem in the P-Tr crisis allows the bloom of microbes as an important primary producer in marine trophic food web structure. Thus, the PTB microbialite builders have been regarded as disaster taxa of the P-Tr ecologic crisis. Microbialite ecosystems were suitable for most organisms to inhabit. However, increasing evidence show that microbialite dwellers are also considerably abundant and diverse, including mainly foraminifers Earlandia sp. and Rectocornuspira sp., lingulid brachiopods, ostrocods, gastropods, and microconchids. In particular, ostracods are extremely abundant in this special ecosystem. Microconchid-like calcareous tubes are also considerably abundant. Here, we have sampled systematically a PTB microbialite deposit from the Dajiang section, southern Guizhou Province, southwest China and have extracted abundant isolated specimens of calcareous worm tubes. Quantitative analysis enables to investigate stratigraphic and facies preferences of microconchids in the PTB microbialites. Our preliminary result indicates that three microconchid species Microconchus sp., Helicoconchus elongates and Microconchus aberrans inhabited in microbialite ecosystem. Most microconchilds occurred in the upper part of the microbialite buildup and the grainstone-packstone microfacies. Very few microconchilds were found in the rocks bearing well-developed microbialite structures. Their stratigraphic and environmental preferences indicate proliferation of those metazoan organisms is coupled with ebb of the microbialite development. They also proliferated in some local niches in which microbial activities were not very active even if those

  20. The hydrocarbon cycle and its role in hyperthermals, ocean anoxic events and mass extinctions

    NASA Astrophysics Data System (ADS)

    Dahlgren, Torbjørn

    2016-04-01

    Release of light isotopic carbon, ocean oxygen deficiency and extinction characterizes the Paleocene-Eocene Thermal Maximum (PETM). The PETM carbon isotope excursion (CIE) has been linked to gas hydrate decomposition and/or methane release due to igneous intrusions in sedimentary basins. In reviewing the published geological and geochemical data it became apparent that the majority of observations are in fact compatible with a different source(s) of the light isotopic carbon, namely, that of fluids trapped in sedimentary basins. Here I make a connection between the drilled paleo-accumulations of oil and gas in the Barents Sea, their burial and tectonic history, and published data of the PETM that may be reinterpreted as to reflect large scale leakage of oil and gas accumulations. I focus on oil, as leaked oil has a preservation potential in the sedimentary record. In contrast, gas from either leaked gas accumulations or exsolution from pore waters has little preservation potential other than contributing to the CIE. Sedimentary records compatible with leaked oil is present in the Arctic Ocean and Spitsbergen as fluorescent bitumen/amorphous organic matter (AOM) with carbon isotope ratios and biomarker signatures similar to those recorded in Barents Sea oil samples. Bitumen/AOM-rich immature sediments are also found in the North Sea and unresolved complex organic matter compatible with highly weathered oil has been found as far south as Walvis Ridge, offshore Namibia. Large scale fluid leakage from sedimentary basins can also explain the increase in radiogenic Osmium and Rhenium that mimic the CIE. Also biological evidence such as the extinction of North Atlantic benthic foraminifera lineages, the A. Augustum bloom and the occurrence of malformed micro/nanno-fossils may be linked to large scale leakage of oil and diagenetically altered porewaters. The leaked oil and gas was partially re-cycled into an organic rich shale (source rock) suggesting a 'hydrocarbon cycle

  1. Terrestrial mass extinctions, cometary impacts and the sun's motion perpendicular to the galactic plane

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Stothers, R. B.

    1984-01-01

    An analysis of the data of Raup and Sepkoski (1984) is reported which suggests that the dominant cyclicity in major marine extinctions during at least the past 250 Myr is 30 + or - 1 Myr, with the standard deviation of an individual episode being + or - 9 Myr. This terrestrial cycle is found to be strongly correlated with the time needed for the solar system to oscillate vertically about the galactic plane. It is argued that galactic triggering or forcing of terrestrial biological crises may arise as a result of collisions or close encounters of the solar system with clouds of gas and dust, which would gravitationally perturb the solar system's family of comets and thereby increase the flux of comets and meteorites near the earth, leading to large-body impacts. A dominant cyclicity of 31 + or - 1 Myr is found for the observed age distribution of impact craters on earth, the phase of this cycle agreeing with the shown by the major biological crises.

  2. Extinction from a paleontological perspective

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1993-01-01

    Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined.

  3. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa

    PubMed Central

    Day, Michael O.; Ramezani, Jahandar; Bowring, Samuel A.; Sadler, Peter M.; Erwin, Douglas H.; Abdala, Fernando; Rubidge, Bruce S.

    2015-01-01

    A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian–Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74–80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid-Pristerognathus AZ that is temporally constrained by a U–Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions. PMID:26156768

  4. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa.

    PubMed

    Day, Michael O; Ramezani, Jahandar; Bowring, Samuel A; Sadler, Peter M; Erwin, Douglas H; Abdala, Fernando; Rubidge, Bruce S

    2015-07-22

    A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian-Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74-80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid-Pristerognathus AZ that is temporally constrained by a U-Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions.

  5. Paleoenvironmental Changes linked to Deccan Volcanism and the K-T Mass Extinction across India and their Correlations with more distant Areas

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Gerstch, B.; Gardin, S.; Bartolini, A.; Bajpai, S.

    2009-04-01

    Recent studies indicate that the bulk (80%) of the Deccan Trap eruptions occurred over a relatively sh