Sample records for boundary strength construct

  1. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Gao, Yanfei; Nieh, T. G.

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the appliedmore » stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.« less

  2. Anomaly in the dynamic strength of austenitic stainless steel 12Cr19Ni10Ti under shock wave loading

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Kanel, G. I.; Razorenov, S. V.; Savinykh, A. S.

    2017-07-01

    Measurement results for the shock wave compression profiles of 12Cr19Ni10Ti steel and its dynamic strength in the strain rate range 105-106 s-1 are presented. The protracted viscous character of the spall fracture is revealed. With the previously obtained data taken into account, the measurement results are described by a polynomial relation, which can be used to construct the fracture kinetics. On the lower boundary of the range, the resistance to spall fracture is close to the value of the true strength of the material under standard low-rate strain conditions; on the upper boundary, the spall strength is more than twice greater than this quantity. An increase in the temperature results in a decrease in both the dynamic limit of elasticity and the spall fracture strength of steel. The most interesting result is the anomaly in the dependence of the spall fracture strength on the duration of the shock wave compression pulse, which is related to the formation of deformation martensite near the growing discontinuities.

  3. Calculation of temperature distribution and rheological properties of the lithosphere along geotransect in the Red Sea region

    NASA Astrophysics Data System (ADS)

    Dérerová, Jana; Kohút, Igor; Radwan, Anwar H.; Bielik, Miroslav

    2017-12-01

    The temperature model of the lithosphere along profile passing through the Red Sea region has been derived using 2D integrated geophysical modelling method. Using the extrapolation of failure criteria, lithology and calculated temperature distribution, we have constructed the rheological model of the lithosphere in the area. We have calculated the strength distribution in the lithosphere and constructed the strength envelopes for both compressional and extensional regimes. The obtained results indicate that the strength steadily decreases from the Western desert through the Eastern desert towards the Red Sea where it reaches its minimum for both compressional and extensional regime. Maximum strength can be observed in the Western desert where the largest strength reaches values of about 250-300 MPa within the upper crust on the boundary between upper and lower crust. In the Eastern desert we observe slightly decreased strength with max values about 200-250 MPa within upper crust within 15 km with compression being dominant. These results suggest mostly rigid deformation in the region or Western and Eastern desert. In the Red Sea, the strength rapidly decreases to its minimum suggesting ductile processes as a result of higher temperatures.

  4. Diffusion-coupled cohesive interface simulations of stress corrosion intergranular cracking in polycrystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Chao; Gao, Yanfei; Wang, Yanli

    To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points.more » Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.« less

  5. Effects of surface anchoring on the electric Frederiks transition in ferronematic systems

    NASA Astrophysics Data System (ADS)

    Farrokhbin, Mojtaba; Kadivar, Erfan

    2016-11-01

    The effects of anchoring phenomenon on the electric Frederiks transition threshold field in a nematic liquid crystal doped with ferroelectric nanoparticles are discussed. The polarizability of these nanoparticles in combination with confinement effects cause the drastic effects on the ferronematic systems. This study is based on Frank free energy and Rapini-Papoular surface energy for ferronematic liquid crystal having finite anchoring condition. In the case of different anchoring boundary conditions, the Euler-Lagrange equation of the total free energy is numerically solved by using the finite difference method together with the relaxation method and Maxwell construction to select the physical solutions and therefore investigate the effects of different anchoring strengths on the Frederiks transition threshold field. Maxwell construction method is employed to select three periodic solutions for nematic liquid crystal director at the interfaces of a slab. In the interval from zero to half- π, there is only one solution for the director orientation. In this way, NLC director rotates toward the normal to the surface as the applied electric field increases at the walls. Our numerical results illustrate that above Frederiks transition and in the intermediate anchoring strength, nematic molecules illustrate the different orientation at slab boundaries. We also study the effects of different anchoring strengths, nanoparticle volume fractions and polarizations on the Frederiks transition threshold field. We report that decreasing in the nanoparticle polarization results in the saturation Frederiks threshold. However, this situation does not happen for the nanoparticles volume fraction.

  6. Unsuccessful initial search for a midmantle chemical boundary with seismic arrays

    USGS Publications Warehouse

    Vidale, J.E.; Schubert, G.; Earle, P.S.

    2001-01-01

    Compositional layering of the midmantle has been proposed to account for seismic and geochemical patterns [van der Hilst and Karason, 1999], and inferred radiogenic heat source concentrations [Kellogg et al., 1999]. Compositional layering would require thermal boundary layers both above and below an interface. We construct a minimal 1-D model of a mid-mantle boundary consistent with the observed nearly adiabatic compressional velocity structure [Dziewonksi and Anderson, 1981] and the proposed high heat flow from the lower mantle [Albarede and van der Hilst, 1999; Kellogg et al., 1999]. Ray tracing and reflectivity synthetic seismograms show that a distinct triplication is predicted for short-period P waves. Although topography on a boundary would cause uncertainty in the strength and the range of the triplication, many clear observations would be expected. We examine data from the US West Coast regional networks in the most likely distance range of 60?? to 70?? for a 1770-km-depth boundary, and find no evidence for P wave triplications.

  7. A class of temporal boundaries derived by quantifying the sense of separation.

    PubMed

    Paine, Llewyn Elise; Gilden, David L

    2013-12-01

    The perception of moment-to-moment environmental flux as being composed of meaningful events requires that memory processes coordinate with cues that signify beginnings and endings. We have constructed a technique that allows this coordination to be monitored indirectly. This technique works by embedding a sequential priming task into the event under study. Memory and perception must be coordinated to resolve temporal flux into scenes. The implicit memory processes inherent in sequential priming are able to effectively shadow then mirror scene-forming processes. Certain temporal boundaries are found to weaken the strength of irrelevant feature priming, a signal which can then be used in more ambiguous cases to infer how people segment time. Over the course of 13 independent studies, we were able to calibrate the technique and then use it to measure the strength of event segmentation in several instructive contexts that involved both visual and auditory modalities. The signal generated by sequential priming may permit the sense of separation between events to be measured as an extensive psychophysical quantity.

  8. A primer on selecting grain boundary sets for comparison of interfacial fracture properties in molecular dynamics simulations

    DOE PAGES

    Dingreville, Remi; Aksoy, Doruk; Spearot, Douglas E.

    2017-08-21

    In this study, all grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates setsmore » of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.« less

  9. A primer on selecting grain boundary sets for comparison of interfacial fracture properties in molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingreville, Remi; Aksoy, Doruk; Spearot, Douglas E.

    In this study, all grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates setsmore » of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.« less

  10. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.

    PubMed

    Cox, Sophie C; Thornby, John A; Gibbons, Gregory J; Williams, Mark A; Mallick, Kajal K

    2015-02-01

    A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Multiscale Modeling of UHTC: Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  12. Effect of P impurity on mechanical properties of NiAl Σ5 grain boundary: From perspectives of stress and energy

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Lan; Zhao, Ruo-Xi; Deng, Jiang-Ge; Hu, Yan-Min; Song, Qing-Gong

    2018-03-01

    In this paper, we employ the first-principle total energy method to investigate the effect of P impurity on mechanical properties of NiAl grain boundary (GB). According to “energy”, the segregation of P atom in NiAlΣ5 GB reduces the cleavage energy and embrittlement potential, demonstrating that P impurity embrittles NiAlΣ5 GB. The first-principle computational tensile test is conducted to determine the theoretical tensile strength of NiAlΣ5 GB. It is demonstrated that the maximum ideal tensile strength of NiAlΣ5 GB with P atom segregation is 144.5 GPa, which is lower than that of the pure NiAlΣ5 GB (164.7 GPa). It is indicated that the segregation of P weakens the theoretical strength of NiAlΣ5 GB. The analysis of atomic configuration shows that the GB fracture is caused by the interfacial bond breaking. Moreover, P is identified to weaken the interactions between Al–Al bonds and enhance Ni–Ni bonds. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404396 and 51201181) and the Subject Construction Fund of Civil Aviation University of China (Grant No. 000032041102).

  13. Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys

    NASA Astrophysics Data System (ADS)

    Nahhas, M. K.; Groh, S.

    2018-02-01

    In this study, the structure, the energetic, and the strength of a { 10 1 bar 1 } < 11 2 bar 0 > symmetric tilt grain boundary in magnesium and magnesium binary alloys were analyzed in the framework of (semi-)empirical potentials. Following a systematic investigation of the transferability and accuracy of the interatomic potentials, atomistic calculations of the grain boundary energy, the grain boundary sliding energy, and the grain boundary strength were performed in pure magnesium and in binary MgX alloys (X = Al, Ca, Gd, Li, Sn, Y, Ag, Nd, and Pb). The data gained in this study were analyzed to identify the most critical material parameters controlling the strength of the grain boundary, and their consequence on atomic shuffling motions occurring at the grain boundary. From the methodology perspective, the role of in-plane and out-of plane relaxation on the grain boundary sliding energy curves was investigated. In pure magnesium, the results showed that in-plane relaxation is critical in activating b2{ 10 1 bar 1 } twinning dislocation resulting in grain boundary migration. In the alloy systems, however, grain boundary migration was disabled as a consequence of the pinning of the grain boundary by segregated elements. Finally, while the grain boundary energy, the shape of the grain boundary sliding energy curves, and the grain boundary sliding energy are critical parameters controlling the grain boundary strength in pure magnesium, only the grain boundary energy and the segregation energy of the alloying elements at the grain boundary were identified as critical material parameters in the alloys system.

  14. Integral equation theory study on the phase separation in star polymer nanocomposite melts.

    PubMed

    Zhao, Lei; Li, Yi-Gui; Zhong, Chongli

    2007-10-21

    The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.

  15. Numerical Analyses of the Influence of Blast-Induced Damaged Rock Around Shallow Tunnels in Brittle Rock

    NASA Astrophysics Data System (ADS)

    Saiang, David; Nordlund, Erling

    2009-06-01

    Most of the railway tunnels in Sweden are shallow-seated (<20 m of rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr-Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.

  16. Multiscale Modeling of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2: Application to Lattice Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  17. Influence of Al content on the corrosion resistance of micro-alloyed hot rolled steel as a function of grain size

    NASA Astrophysics Data System (ADS)

    Qaban, Abdullah; Naher, Sumsun

    2018-05-01

    High-strength low-alloy steel (HSLA) has been widely used in many applications involving automobiles, aerospace, construction, and oil and gas pipelines due to their enhanced mechanical and chemical properties. One of the most critical elements used to improve these properties is Aluminium. This work will explore the effect of Al content on the corrosion behaviour of hot rolled high-strength low-alloy steel as a function of grain size. The method of investigation employed was weight loss technique. It was obvious that the increase in Al content enhanced corrosion resistance through refinement of grain size obtained through AlN precipitation by pinning grain boundaries and hindering their growth during solidification which was found to be beneficial in reducing corrosion rate.

  18. Construction Materials Used in the Historical Roman Era Bath in Myra

    PubMed Central

    Oguz, Cem; Turker, Fikret

    2014-01-01

    The physical, chemical, and mechanical properties of mortars and bricks used in the historical building that was erected at Myra within the boundaries of Antalya Province during the Roman time were investigated. The sample picked points were marked on the air photographs and plans of the buildings and samples were photographed. Then petrographic evaluation was made by stereo microscope on the polished surfaces of construction materials (mortar, brick) taken from such historical buildings in laboratory condition. Also, microstructural analyses (SEM/EDX, XRD), physical analyses (unit volume, water absorption by mass, water absorption by volume, specific mass, compacity, and porosity), chemical analyses (acid loss and sieve analysis, salt analyses, pH, protein, fat, pozzolanic activity, and conductivity analyses), and mechanical experiments (compressive strength, point loading test, and tensile strength at bending) were applied and the obtained results were evaluated. It was observed that good adherence was provided between the binder and the aggregate in mortars. It was also detected that bricks have preserved their originality against environmental, atmospheric, and physicochemical effects and their mechanical properties showed that they were produced by appropriate techniques. PMID:25089290

  19. Construction materials used in the historical Roman era bath in Myra.

    PubMed

    Oguz, Cem; Turker, Fikret; Kockal, Niyazi Ugur

    2014-01-01

    The physical, chemical, and mechanical properties of mortars and bricks used in the historical building that was erected at Myra within the boundaries of Antalya Province during the Roman time were investigated. The sample picked points were marked on the air photographs and plans of the buildings and samples were photographed. Then petrographic evaluation was made by stereo microscope on the polished surfaces of construction materials (mortar, brick) taken from such historical buildings in laboratory condition. Also, microstructural analyses (SEM/EDX, XRD), physical analyses (unit volume, water absorption by mass, water absorption by volume, specific mass, compacity, and porosity), chemical analyses (acid loss and sieve analysis, salt analyses, pH, protein, fat, pozzolanic activity, and conductivity analyses), and mechanical experiments (compressive strength, point loading test, and tensile strength at bending) were applied and the obtained results were evaluated. It was observed that good adherence was provided between the binder and the aggregate in mortars. It was also detected that bricks have preserved their originality against environmental, atmospheric, and physicochemical effects and their mechanical properties showed that they were produced by appropriate techniques.

  20. Seismic behavior of outrigger truss-wall shear connections using multiple steel angles

    NASA Astrophysics Data System (ADS)

    Li, Xian; Wang, Wei; Lü, Henglin; Zhang, Guangchang

    2016-06-01

    An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.

  1. ENGINEERING-GEOLOGY SITE APPRAISAL OF THE FEDERAL CAPITAL TERRITORY, NIGERIA.

    USGS Publications Warehouse

    Ege, J.R.; Griffitts, W.R.; Overstreet, W.C.

    1985-01-01

    The 7,700-km**2-area Federal Capital Territory, Nigeria, is underlain by crystalline igneous and metamorphic rocks of Precambrian age. Laterite caps many hills of Cretaceous rock, some hills of Precambrian rock, and crops out near stream banks in the east and northeast. The most conspicuous structural features are a broad 'J'-shaped fold traversing the eastern and central part of the Territory and a north-trending shear zone along the eastern boundary. The soils of the Territory are lateritic and belong to the SW-SP-SM (Unified Soil Classification System) groups covering Precambrian migmatites, gneisses and granites and the SC group covering Cretaceous sediments and Precambrian mica-rich schists. The engineering characteristics of the rocks are medium- to high-strength massive and gneissic rock, low-to medium-strength bedded rock, and low-strength foliated and sheared rock. An area of at least 800 km**2 is free from apparent geological hazards and should be suitable for construction of a capital city, its environs and supporting facilities.

  2. Controls of Lithospheric Mechanical Strength on the Deformation Pattern of Tien Shan

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xiong, X.; Zheng, Y.; Hu, X.; Zhang, Y.

    2015-12-01

    The Tien Shan is an outstanding example of intracontinental mountain belt, which was built rapidly and formed far away from plate boundaries. It exhibits 300~500 km in width and extends ~2000 km EW, located in central Asia. The Tien Shan is a key area for solution of the problems relating to intracontinental geodynamics. During last decades, despite a large amount of results based on various geological, geophysical and geodetic data about the Tien Shan, however, deformation mechanism remains controversial and other several principal problems related to its structure and evolution also have not been completely resolved. As for patterns of continental deformation, they are always controlled by both the forces applied to the lithosphere and by lithospheric resistance to the forces. The latter is often measured by the mechanical strength of lithosphere. The lateral variation of strength of lithosphere has been recognized to be an important factor controlling the spatial construction and temporal evolution of continent. In this study, we investigate the mechanical strength (Te) of lithosphere in the Tien Shan using wavelet coherency between Bouguer anomaly and topography. The patterns of Te variations are closely related to major tectonic boundaries and blocks. Mechanical strength exhibits a weak zone (Te~5-20km) beneath the Tien Shan while its surrounding blocks including Tarim Basin, Junggar Basin and Kazakh platform are characterized by a strong lithosphere (Te>40km). The lateral variations in mechanical strength and velocity field of horizontal movement with GPS demonstrate that strain localization appears at the margins of Tarim Basin, which is also the strong lithospheric domain. It is suggested that the weak lithosphere allows the crustal stress accumulation and the strong lithosphere helps to stress transfer. There is also a good agreement between mechanical strength and shear wave velocity structure in upper mantle. It indicates a strong domain located in the lower crust and lithospheric mantle. Combined with results of analog models, the location and style of deformation are preliminary determined and thus the related topography evolution in the Tien Shan is mainly controlled by the lateral and depth variation in lithospheric mechanical strength of surrounding areas.

  3. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa

    2015-09-01

    Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials. Electronic ESI (ESI) available: Modelling of polycrystalline graphene, verification of loading speed, biaxial tensile simulations, comparison of stress distribution, size effects of indenter radius, force-deflection curves, and stability analysis of crack propagation. See DOI: 10.1039/c5nr04134a

  4. On the stability analysis of a pair of van der Pol oscillators with delayed self-connection, position and velocity couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kun; Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon; Chung, Kwok-wai, E-mail: makchung@cityu.edu.hk

    2013-11-15

    In this paper, we perform a stability analysis of a pair of van der Pol oscillators with delayed self-connection, position and velocity couplings. Bifurcation diagram of the damping, position and velocity coupling strengths is constructed, which gives insight into how stability boundary curves come into existence and how these curves evolve from small closed loops into open-ended curves. The van der Pol oscillator has been considered by many researchers as the nodes for various networks. It is inherently unstable at the zero equilibrium. Stability control of a network is always an important problem. Currently, the stabilization of the zero equilibriummore » of a pair of van der Pol oscillators can be achieved only for small damping strength by using delayed velocity coupling. An interesting question arises naturally: can the zero equilibrium be stabilized for an arbitrarily large value of the damping strength? We prove that it can be. In addition, a simple condition is given on how to choose the feedback parameters to achieve such goal. We further investigate how the in-phase mode or the out-of-phase mode of a periodic solution is related to the stability boundary curve that it emerges from a Hopf bifurcation. Analytical expression of a periodic solution is derived using an integration method. Some illustrative examples show that the theoretical prediction and numerical simulation are in good agreement.« less

  5. Electron plasma oscillations in the Venus foreshock

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.

  6. Criteria for guaranteed breakdown in two-phase inhomogeneous bodies

    NASA Astrophysics Data System (ADS)

    Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.

    2017-08-01

    Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.

  7. A Place-Oriented, Mixed-Level Regionalization Method for Constructing Geographic Areas in Health Data Dissemination and Analysis

    PubMed Central

    Mu, Lan; Wang, Fahui; Chen, Vivien W.; Wu, Xiao-Cheng

    2015-01-01

    Similar geographic areas often have great variations in population size. In health data management and analysis, it is desirable to obtain regions of comparable population by decomposing areas of large population (to gain more spatial variability) and merging areas of small population (to mask privacy of data). Based on the Peano curve algorithm and modified scale-space clustering, this research proposes a mixed-level regionalization (MLR) method to construct geographic areas with comparable population. The method accounts for spatial connectivity and compactness, attributive homogeneity, and exogenous criteria such as minimum (and approximately equal) population or disease counts. A case study using Louisiana cancer data illustrates the MLR method and its strengths and limitations. A major benefit of the method is that most upper level geographic boundaries can be preserved to increase familiarity of constructed areas. Therefore, the MLR method is more human-oriented and place-based than computer-oriented and space-based. PMID:26251551

  8. Construction strength analysis of landing craft tank conversion to passenger ship using finite element method

    NASA Astrophysics Data System (ADS)

    Nurul Misbah, Mohammad; Setyawan, Dony; Murti Dananjaya, Wisnu

    2018-03-01

    This research aims to determine the longitudinal strength of passenger ship which was converted from Landing Craft Tank with 54 m of length as stated by BKI (Biro Klasifikasi Indonesia / Indonesian Classification Bureau). Verification of strength value is done to 4 (four) loading conditions which are (1) empty load condition during sagging wave, (2) empty load condition during hogging wave, (3) full load condition during sagging wave and (4) full load condition during hogging wave. Analysis is done using Finite Element Analysis (FEA) software by modeling the entire part of passenger ship and its loading condition. The back and upfront part of ship centerline were used as the boundary condition. From that analysis it can be concluded that the maximum stress for load condition (1) is 72,393 MPa, 74,792 MPa for load condition (2), 129,92 MPa for load condition (3), and 132,4 MPa for load condition (4). Longitudinal strength of passenger ship fulfilled the criteria of empty load condition having smaller stress value than allowable stress which is 90 MPa, and during full load condition with smaller stress value than allowable stress which is 150 MPa. Analysis on longitudinal strength comparison with entire ship plate thickness variation of ± 2 mm from initial plate was also done during this research. From this research it can be concluded that plate thickness reduction causes the value of longitudinal strength to decrease, while plate thickness addition causes the value of longitudinal strength to increase.

  9. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    PubMed

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  10. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  11. Avoidance of stress corrosion susceptibility in high strength aluminum alloys by control of grain boundary and matrix microstructure

    NASA Technical Reports Server (NTRS)

    Adler, P.; Deiasi, R.

    1974-01-01

    The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.

  12. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  13. Effect of hot extrusion, other constituents, and temperature on the strength and fracture of polycrystalline MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R.W.

    Improved agreement was confirmed between the Petch intercept and single-crystal yield stresses at 22 C. Hot-extruded MgO crystal specimens stressed parallel with the resultant axial texture (1) gave the highest and least-scattered strength-grain size results at 22 C, (2) showed direct fractographic evidence of microplastic initiated fracture at 22 C and showed macroscopic yield at 1,315 and especially 1,540 C, and (3) fractured entirely via transgranular cleavage, except for intergranular failure initiation from one or a few grain boundary surfaces exposed on the subsequent fracture surface, mainly at 1,540 C. Hot-extruded, hot-pressed MgO billets gave comparable strength when fracture initiatedmore » transgranularly, but lower strength when fracture initiated from one or especially a few grain boundary surfaces exposed on the fracture. The extent and frequency of such boundary fracture increased with test temperature. While oxide additions of [<=] 5% or impurities in hot-pressed or hot-extruded MgO can make limited strength increases at larger grain sizes, those having limited solubility can limit strength at finer grain sizes, as can coarser surface finish. Overall, MgO strength is seen as a balance between flaw and microplastic controlled failure, with several parameters shifting the balance.« less

  14. The magnetic nature of umbra-penumbra boundary in sunspots

    NASA Astrophysics Data System (ADS)

    Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.

    2018-03-01

    Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.

  15. A Study of the Effects of Large Scale Gust Generation in a Small Scale Atmospheric Wind Tunnel: Application to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason; Mohseni, Kamran

    2009-11-01

    Modern technology operating in the atmospheric boundary layer could benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the turbulence of the atmospheric boundary layer at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an ``atmospheric wind tunnel'' is sought. Many programs could utilize such a tool including that of Micro Aerial Vehicles (MAVs) and other unmanned aircraft, the wind energy industry, fuel efficient vehicles, and the study of bird and insect fight. The construction of an active ``gust generator'' for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to days ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using oil flow visualization.

  16. Reducing the anisotropy of a Brazilian disc generated in a bonded-particle model

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Zhang, X. P.; Ji, P. Q.

    2018-03-01

    The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bonded-particle models (BPMs). In previous studies, the Brazilian disc has typically been trimmed from a compacted rectangular specimen. The present study shows that different tensile strength values are obtained depending on the compressive loading direction. Several measures are proposed to reduce the anisotropy of the disc. The results reveal that the anisotropy of the disc is significantly influenced by the compactibility of the specimen from which it is trimmed. A new method is proposed in which the Brazilian disc is directly generated with a particle boundary, effectively reducing the anisotropy. The stiffness (particle and bond) and strength (bond) of the boundary are set at less than and greater than those of the disc assembly, respectively, which significantly decreases the stress concentration at the boundary contacts and prevents breakage of the boundary particle bonds. This leads to a significant reduction in the anisotropy of the disc and the discreteness of the tensile strength. This method is more suitable for carrying out a realistic Brazilian test for homogeneous rock-like material in the BPM.

  17. Boundary integral solutions for faults in flowing rock

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    We develop new boundary-integral solutions for faulting in viscous rock and implement solutions numerically with a boundary-element computer program, called Faux_Pas. In the solutions, large permanent rock deformations near faults are treated with velocity discontinuities within linear, incompressible, creeping, viscous flows. The faults may have zero strength or a finite strength that can be a constant or varying with deformation. Large deformations are achieved by integrating step by step with the fourth-order Runge-Kutta method. With this method, the boundaries and passive markers are updated dynamically. Faux_Pas has been applied to straight and curved elementary faults, and to listric and dish compound faults, composed of two or more elementary faults, such as listric faults and dish faults, all subjected to simple shear, shortening and lengthening. It reproduces the essential geometric elements seen in seismic profiles of fault-related folds associated with listric thrust faults in the Bighorn Basin of Wyoming, with dish faults in the Appalachians in Pennsylvania, Parry Islands of Canada and San Fernando Valley, California, and with listric normal faults in the Gulf of Mexico. Faux_Pas also predicts that some of these fault-related structures will include fascinating minor folds, especially in the footwall of the fault, that have been recognized earlier but have not been known to be related to the faulting. Some of these minor folds are potential structural traps. Faux_Pas is superior in several respects to current geometric techniques of balancing profiles, such as the "fault-bend fold" construction. With Faux_Pas, both the hanging wall and footwall are deformable, the faults are mechanical features, the cross sections are automatically balanced and, most important, the solutions are based on the first principles of mechanics. With the geometric techniques, folds are drawn only in the hanging wall, the faults are simply lines, the cross sections are arbitrarily balanced and, most important, the drawings are based on unsubstantiated rules of thumb. Faux_Pas provides the first rational tool for the study of fault-related folds.

  18. The Learning of Peace.

    ERIC Educational Resources Information Center

    Boulding, Kenneth E.

    The international system exhibits very sharp phase boundaries, the most striking of which is the boundary between war and peace. A phase boundary for water would be the difference between water and ice, influenced by pressure and temperature. Similarly the phase boundary between war and peace is influenced by national strength and stress. Although…

  19. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Yueh, Herng-Aung

    1990-01-01

    The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The vegetation canopy is modeled as an anisotropic random medium containing nonspherical scatterers with preferred alignment. The underlying medium is considered as a homogeneous half space. The scattering effect of the vegetation canopy are characterized by 3-D correlation functions with variances and correlation lengths respectively corresponding to the fluctuation strengths and the physical geometries of the scatterers. The strong fluctuation theory is used to calculate the anisotropic effective permittivity tensor of the random medium and the distorted Born approximation is then applied to obtain the covariance matrix which describes the fully polarimetric scattering properties of the vegetation field. This model accounts for all the interaction processes between the boundaries and the scatterers and includes all the coherent effects due to wave propagation in different directions such as the constructive and destructive interferences. For a vegetation canopy with low attenuation, the boundary between the vegetation and the underlying medium can give rise to significant coherent effects.

  20. System for conversion between the boundary representation model and a constructive solid geometry model of an object

    DOEpatents

    Christensen, Noel C.; Emery, James D.; Smith, Maurice L.

    1988-04-05

    A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object.

  1. [Delimitation of urban growth boundary based on ecological suitability and risk control: A case of Taibai Lake New District in Jining City, Shandong, China.

    PubMed

    Liu, Yan Xu; Peng, Jian; Sun, Mao Long; Yang, Yang

    2016-08-01

    Urban growth boundary, with full consideration of regional ecological constraints, can effectively control the unordered urban sprawl. Thus, urban growth boundary is a significant planning concept integrating regional ecological protection and urban construction. Finding the preferential position for urban construction, as well as controlling the ecological risk, has always been the core content of urban growth boundary delimitation. This study selected Taibai Lake New District in Jining City as a case area, and analyzed the scenario of ecological suitability by ordered weighted ave-raging algorithm. Surface temperature retrieval and rain flooding simulation were used to identify the spatial ecological risk. In the result of ecological suitability, the suitable construction zone accounted for 25.3% of the total area, the unsuitable construction zone accounted for 20.4%, and the other area was in the limit construction zone. Excluding the ecological risk control region, the flexible urban growth boundary covered 2975 hm 2 in near term, and covered 6754 hm 2 in long term. The final inflexible urban growth boundary covered 9405 hm 2 . As a new method, the scenario algorithms of ordered weighted averaging and ecological risk modeling could provide effective support in urban growth boundary identification.

  2. Grain boundary engineering for structure materials of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Allen, T. R.; Busby, J. T.

    2013-10-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  3. Laser-induced Self-organizing Microstructures on Steel for Joining with Polymers

    NASA Astrophysics Data System (ADS)

    van der Straeten, Kira; Burkhardt, Irmela; Olowinsky, Alexander; Gillner, Arnold

    The combination of different materials such as thermoplastic composites and metals is an important way to improve lightweight construction. As direct connections between these materials fail due to their physical and chemical properties, other joining techniques are required. A new joining approach besides fastening and adhesive joining is a laser-based two-step process. Within the first step the metal surface is modified by laser-microstructuring. In order to enlarge the boundary surface and create undercuts, random self-organizing microstructures are generated on stainless steel substrates. In a second process step both joining partners, metal and composite, are clamped together, the steel surface is heated up with laser radiation and through heat conduction the thermoplastic matrix is melted and flows into the structures. After cooling-down a firm joint between both materials is created. The presented work shows the influence of different laser parameters on the generation of the microstructures. The joint strength is investigated through tensile shear strength tests.

  4. Effect of grain-boundary crystallization on the high-temperature strength of silicon nitride

    NASA Technical Reports Server (NTRS)

    Pierce, L. A.; Mieskowski, D. M.; Sanders, W. A.

    1986-01-01

    Si3N4 specimens having the composition 88.7 wt pct Si3N4-4.9 wt pct SiO2-6.4 wt pct Y2O3 were sintered at 2140 C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500 C. Crystallization of an amorphous grain-boundary phase resulted in the formation of Y2Si2O7. The short-time 1370 C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.

  5. Lithospheric strength variations as a control on new plate boundaries: examples from the northern Red Sea region

    NASA Astrophysics Data System (ADS)

    Steckler, Michael S.; ten Brink, Uri S.

    1986-08-01

    The complex plate boundary between Arabia and Africa at the northern end of the Red Sea includes the Gulf of Suez rift and the Gulf of Aqaba—Dead Sea transform. Geologic evidence indicates that during the earliest phase of rifting the Red Sea propagated NNW towards the Mediterranean Sea creating the Gulf of Suez. Subsequently, the majority of the relative movement between the plates shifted eastward to the Dead Sea transform. We propose that an increase in the strength of the lithosphere across the Mediterranean continental margin acted as a barrier to the propagation of the rift. A new plate boundary, the Dead Sea transform formed along a zone of minimum strength. We present an analysis of lithospheric strength variations across the Mediterranean continental margin. The main factors controlling these variations are the geotherm, crustal thickness and composition, and sediment thickness. The analysis predicts a characteristic strength profile at continental margins which consists of a marked increase in strength seaward of the hinge zone and a strength minimum landward of the hinge zone. This strength profile also favors the creation of thin continental slivers such as the Levant west of the Dead Sea transform and the continental promontory containing Socotra Island at the mouth of the Gulf of Aden. Calculations of strength variations based on changes of crustal thickness, geotherm and sediment thickness can be extended to other geologic settings as well. They can explain the location of rerifting events at intracratonic basins, of backarc basins and of major continental strike-slip zones.

  6. [Delineation of urban development boundary based on the combination of rigidity and elasti-city: A case of Yiwu City in Zhejiang Province, China.

    PubMed

    Qiu, Si Qi; Yue, Wen Ze

    2018-05-01

    Under the background of rapid urbanization, we took the contradiction between the rapid urbanization and resource environment protection as the starting point, conducted some theoretical research on urban growth boundary. Based on the definition of urban development boundary, we took Yiwu City, Zhejiang Province as a typical instance. Firstly, this study delimited the ecological boundary as ecological basic constraint area, using the methods of ecological red line discrimination and ecological sensitivity evaluation. Furthermore, the MCE-CA model was used in simulating the city size in 2020, making some adjustments to the moderate and low ecological-sensitive areas in the eco-sensitivity assessing, and delimiting the size of urban growth boundary and elastic control zones. The results showed that the ecological constraint area with a total area of385.2 km 2 and outside of the ecological boundary was the security line of urban development and construction. The urban growth boundary with a total area of 163.3 km 2 was not only the spatial boundary that could be constructed now, but also could meet the future development and construction. The district between the ecological boundary and urban growth boundary was an elastic control zone, in which urban development activities were allowed, but the size of construction could not exceed 8.5% of the total urban development boundary area. Our results delimited the urban development boundary under the rigidity and elasticity, which could guide the urban space development and provide a theoretical reference for China.

  7. Rotor boundary layer development with inlet guide vane (IGV) wake impingement

    NASA Astrophysics Data System (ADS)

    Jia, Lichao; Zou, Tengda; Zhu, Yiding; Lee, Cunbiao

    2018-04-01

    This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake's high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake's arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

  8. Help or hindrance? Day-level relationships between flextime use, work-nonwork boundaries, and affective well-being.

    PubMed

    Spieler, Ines; Scheibe, Susanne; Stamov-Roßnagel, Christian; Kappas, Arvid

    2017-01-01

    Flexible working time arrangements are becoming increasingly popular around the globe, but do they actually benefit employees? To address this question, we take a differentiated look at employees' day-specific use of flextime and its effect on the intersection of work and nonwork life. Specifically, we examined whether links between day-specific flextime use and affective well-being at work and at home can be explained by level of goal completion and the subjective boundaries around one's work and private life domains (i.e., the strength of work-nonwork boundaries ). During 2 consecutive workweeks, 150 bank employees from various functions (Study 1) and a heterogeneous sample of 608 employees (Study 2) reported their day-specific use of flextime, boundary strength at work and home, and affective well-being in the evening and the next day. Multilevel structural equation modeling of 2,223 (Study 1) and 3,164 (Study 2) observations revealed that flextime use was associated with stronger boundaries at home in both studies and stronger boundaries at work in Study 2. Stronger boundaries were, in turn, positively associated with affective well-being, both in the same evening and the next day. Study 2 further revealed that day-specific nonwork goal completion mediated the positive association between daily flextime use and boundary strength at work. However, whereas occasional flextime use had unequivocal positive consequences, chronic flextime use undermined the completion of work goals. Overall, findings suggest that flextime use benefits employees when used in moderation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. The Strength-Grain Size Relationship in Ultrafine-Grained Metals

    NASA Astrophysics Data System (ADS)

    Balasubramanian, N.; Langdon, Terence G.

    2016-12-01

    Metals processed by severe plastic deformation (SPD) techniques, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), generally have submicrometer grain sizes. Consequently, they exhibit high strength as expected on the basis of the Hall-Petch (H-P) relationship. Examples of this behavior are discussed using experimental data for Ti, Al, and Ni. These materials typically have grain sizes greater than 50 nm where softening is not expected. An increase in strength is usually accompanied by a decrease in ductility. However, both high strength and high ductility may be achieved simultaneously by imposing high strain to obtain ultrafine-grain sizes and high fractions of high-angle grain boundaries. This facilitates grain boundary sliding, and an example is presented for a cast Al-7 pct Si alloy processed by HPT. In some materials, SPD may result in a weakening even with a very fine grain size, and this is due to microstructural changes during processing. Examples are presented for an Al-7034 alloy processed by ECAP and a Zn-22 pct Al alloy processed by HPT. In some SPD-processed materials, it is possible that grain boundary segregation and other features are present leading to higher strengths than predicted by the H-P relationship.

  10. An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry

    DTIC Science & Technology

    2015-12-01

    ARL-SR-0347 ● DEC 2015 US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary...US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to...from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  11. System for conversion between the boundary representation model and a constructive solid geometry model of an object

    DOEpatents

    Christensen, N.C.; Emery, J.D.; Smith, M.L.

    1985-04-29

    A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object. 19 figs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenon, Cedric; Lake, Kayll

    The generalized Swiss-cheese model, consisting of a Lemaitre-Tolman (inhomogeneous dust) region matched, by way of a comoving boundary surface, onto a Robertson-Walker background of homogeneous dust, has become a standard construction in modern cosmology. Here, we ask if this construction can be made more realistic by introducing some evolution of the boundary surface. The answer we find is no. To maintain a boundary surface using the Darmois-Israel junction conditions, as opposed to the introduction of a surface layer, the boundary must remain exactly comoving. The options are to drop the assumption of dust or allow the development of surface layers.more » Either option fundamentally changes the original construction.« less

  13. Classical BV Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2014-12-01

    In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with corners. We present several examples including electrodynamics, Yang-Mills theory and topological field theories coming from the AKSZ construction, in particular, the Chern-Simons theory, the BF theory, and the Poisson sigma model. This paper is the first step towards developing the perturbative quantization of such theories on manifolds with boundary in a way consistent with gluing.

  14. Precipitate Redistribution during Creep of Alloy 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Schlegel; S. Hopkins; E. Young

    2009-12-01

    Nickel-based superalloys are being considered for applications within advanced nuclear power generation systems due to their high temperature strength and corrosion resistance. Alloy 617, a candidate for use in heat exchangers, derives its strength from both solid solution strengthening and the precipitation of carbide particles. However, during creep, carbides that are supposed to retard grain boundary motion are found to dissolve and re-precipitate on boundaries in tension. To quantify the redistribution, we have used electron backscatter diffraction and energy dispersive spectroscopy to analyze the microstructure of 617 after creep testing at 900 and 1000°C. The data were analyzed with respectmore » to location of the carbides (e.g., intergranular vs. intragranular), grain boundary character, and precipitate type (i.e., Cr-rich or Mo-rich). We find that grain boundary character is the most important factor in carbide distribution; some evidence of preferential distribution to boundaries in tension is also observed at higher applied stresses. Finally, the results suggest that the observed redistribution is due to the migration of carbides to the boundaries and not the migration of boundaries to the precipitates.« less

  15. Boundary layers at the interface of two different shear flows

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick D.; Wang, C. Y.

    2018-05-01

    We present solutions for the boundary layer between two uniform shear flows flowing in the same direction. In the upper layer, the flow has shear strength a, fluid density ρ1, and kinematic viscosity ν1, while the lower layer has shear strength b, fluid density ρ2, and kinematic viscosity ν2. Similarity transformations reduce the boundary-layer equations to a pair of ordinary differential equations governed by three dimensionless parameters: the shear strength ratio γ = b/a, the density ratio ρ = ρ2/ρ1, and the viscosity ratio ν = ν2/ν1. Further analysis shows that an affine transformation reduces this multi-parameter problem to a single ordinary differential equation which may be efficiently integrated as an initial-value problem. Solutions of the original boundary-value problem are shown to agree with the initial-value integrations, but additional dual and quadruple solutions are found using this method. We argue on physical grounds and through bifurcation analysis that these additional solutions are not tenable. The present problem is applicable to the trailing edge flow over a thin airfoil with camber.

  16. Vortex detection through pressure measurements

    NASA Astrophysics Data System (ADS)

    Bhide, Aditi

    Vortex Generators (VGs) are known to hinder boundary layer separation, a frequently unwanted phenomenon when it comes to external flows over aircraft wings, on-ground vehicles or internal flows within pipes, diffusers and turbomachinery. Boundary layer separation leads to loss of lift, higher drag and subsequently, energy losses. The vortices generated inhibit boundary layer separation. This thesis is an effort to discern the strength and location of these generated vortices using an array of VGs over a flat plate. Such information may be useful in the future in active control systems for streamwise vortices, which have been proposed to relaminarize turbulent boundary layers. Flow over flat plates, simulated using wind tunnel experiments, is studied for pressure variation using an array of pressure ports mounted over the plate and connected to suitable pressure sensors. Pressure coefficient and Velocity maps are generated using the data obtained from the Kirsten Wind Tunnel data acquisition system. These represent the nature of the flow field over the plate and are used to locate the vortices and determine their strength. It was found that the vortices can be detected using this method and their strength and location can be estimated.

  17. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  18. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  19. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  20. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  1. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  2. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  3. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants

    PubMed Central

    Abe, Fujio

    2008-01-01

    It is crucial for the carbon concentration of 9% Cr steel to be reduced to a very low level, so as to promote the formation of MX nitrides rich in vanadium as very fine and thermally stable particles to enable prolonged periods of exposure at elevated temperatures and also to eliminate Cr-rich carbides M23C6. Sub-boundary hardening, which is inversely proportional to the width of laths and blocks, is shown to be the most important strengthening mechanism for creep and is enhanced by the fine dispersion of precipitates along boundaries. The suppression of particle coarsening during creep and the maintenance of a homogeneous distribution of M23C6 carbides near prior austenite grain boundaries, which precipitate during tempering and are less fine, are effective for preventing the long-term degradation of creep strength and for improving long-term creep strength. This can be achieved by the addition of boron. The steels considered in this paper exhibit higher creep strength at 650 °C than existing high-strength steels used for thick section boiler components. PMID:27877920

  4. Generalized Swiss-cheese cosmologies. II. Spherical dust

    NASA Astrophysics Data System (ADS)

    Grenon, Cédric; Lake, Kayll

    2011-10-01

    The generalized Swiss-cheese model, consisting of a Lemaître-Tolman (inhomogeneous dust) region matched, by way of a comoving boundary surface, onto a Robertson-Walker background of homogeneous dust, has become a standard construction in modern cosmology. Here, we ask if this construction can be made more realistic by introducing some evolution of the boundary surface. The answer we find is no. To maintain a boundary surface using the Darmois-Israel junction conditions, as opposed to the introduction of a surface layer, the boundary must remain exactly comoving. The options are to drop the assumption of dust or allow the development of surface layers. Either option fundamentally changes the original construction.

  5. Periodic and quasiperiodic revivals in periodically driven interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Luitz, David J.; Lazarides, Achilleas; Bar Lev, Yevgeny

    2018-01-01

    Recently it has been shown that interparticle interactions generically destroy dynamical localization in periodically driven systems, resulting in diffusive transport and heating. In this Rapid Communication we rigorously construct a family of interacting driven systems which are dynamically localized and effectively decoupled from the external driving potential. We show that these systems exhibit tunable periodic or quasiperiodic revivals of the many-body wave function and thus of all physical observables. By numerically examining spinless fermions on a one-dimensional lattice we show that the analytically obtained revivals of such systems remain stable for finite systems with open boundary conditions while having a finite lifetime in the presence of static spatial disorder. We find this lifetime to be inversely proportional to the disorder strength.

  6. On Raviart-Thomas and VMS formulations for flow in heterogeneous materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Daniel Zack

    It is well known that the continuous Galerkin method (in its standard form) is not locally conservative, yet many stabilized methods are constructed by augmenting the standard Galerkin weak form. In particular, the Variational Multiscale (VMS) method has achieved popularity for combating numerical instabilities that arise for mixed formulations that do not otherwise satisfy the LBB condition. Among alternative methods that satisfy local and global conservation, many employ Raviart-Thomas function spaces. The lowest order Raviart-Thomas finite element formulation (RT0) consists of evaluating fluxes over the midpoint of element edges and constant pressures within the element. Although the RT0 element posesmore » many advantages, it has only been shown viable for triangular or tetrahedral elements (quadrilateral variants of this method do not pass the patch test). In the context of heterogenous materials, both of these methods have been used to model the mixed form of the Darcy equation. This work aims, in a comparative fashion, to evaluate the strengths and weaknesses of either approach for modeling Darcy flow for problems with highly varying material permeabilities and predominantly open flow boundary conditions. Such problems include carbon sequestration and enhanced oil recovery simulations for which the far-field boundary is typically described with some type of pressure boundary condition. We intend to show the degree to which the VMS formulation violates local mass conservation for these types of problems and compare the performance of the VMS and RT0 methods at boundaries between disparate permeabilities.« less

  7. Inverse methods-based estimation of plate coupling in a plate motion model governed by mantle flow

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, V.; Stadler, G.; Gurnis, M.

    2013-12-01

    Plate motion is primarily controlled by buoyancy (slab pull) which occurs at convergent plate margins where oceanic plates undergo deformation near the seismogenic zone. Yielding within subducting plates, lateral variations in viscosity, and the strength of seismic coupling between plate margins likely have an important control on plate motion. Here, we wish to infer the inter-plate coupling for different subduction zones, and develop a method for inferring it as a PDE-constrained optimization problem, where the cost functional is the misfit in plate velocities and is constrained by the nonlinear Stokes equation. The inverse models have well resolved slabs, plates, and plate margins in addition to a power law rheology with yielding in the upper mantle. Additionally, a Newton method is used to solve the nonlinear Stokes equation with viscosity bounds. We infer plate boundary strength using an inexact Gauss-Newton method with line search for backtracking. Each inverse model is applied to two simple 2-D scenarios (each with three subduction zones), one with back-arc spreading and one without. For each case we examine the sensitivity of the inversion to the amount of surface velocity used: 1) full surface velocity data and 2) surface velocity data simplified using a single scalar average (2-D equivalent to an Euler pole) for each plate. We can recover plate boundary strength in each case, even in the presence of highly nonlinear flow with extreme variations in viscosity. Additionally, we ascribe an uncertainty in each plate's velocity and perform an uncertainty quantification (UQ) through the Hessian of the misfit in plate velocities. We find that as plate boundaries become strongly coupled, the uncertainty in the inferred plate boundary strength decreases. For very weak, uncoupled subduction zones, the uncertainty of inferred plate margin strength increases since there is little sensitivity between plate margin strength and plate velocity. This result is significant because it implies we can infer which plate boundaries are more coupled (seismically) for a realistic dynamic model of plates and mantle flow.

  8. Lithospheric strength in the active boundary between the Pacific Plate and Baja California microplate constrained from lower crustal and upper mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; van der Werf, Thomas; Kriegsman, Leo M.; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.

    2017-04-01

    The lower crust is the most poorly understood of the lithospheric layers in terms of its rheology, particularly at active plate boundaries. We studied naturally deformed lower crustal xenoliths within an active plate boundary, in order to link their microstructures and rheological parameters to the well-defined active tectonic context. The Baja California shear zone (BCSZ), located at the western boundary of the Baja California microplate, comprises the active boundary accommodating the relative motion between the Pacific plate and Baja California microplate. The basalts of the Holocene San Quintin volcanic field carry lower crustal and upper mantle xenoliths, which sample the Baja California microplate lithosphere in the vicinity of the BCSZ. The lower crustal xenoliths range from undeformed gabbros to granoblastic two-pyroxene granulites. Two-pyroxene geothermometry shows that the granulites equilibrated at temperatures of 690-920 oC. Phase equilibria (P-T pseudosections using Perple_X) indicate that symplectites with intergrown pyroxenes, plagioclase, olivine and spinel formed at 3.6-5.4 kbar, following decompression from pressures exceeding 6 kbar. FTIR spectroscopy shows that the water content of plagioclase varies among the analyzed xenoliths; plagioclase is relatively dry in two xenoliths while one xenolith contains hydrated plagioclase grains. Microstructural observations and analysis of the crystallographic texture provide evidence for deformation of plagioclase by a combination of dislocation creep and grain boundary sliding. To constrain the strength of the lower crust and upper mantle near the BCSZ we estimated the differential stress using plagioclase and olivine grain size paleopiezomtery, respectively. Differential stress estimates for plagioclase range from 10 to 32 MPa and for olivine are 30 MPa. Thus the active microplate boundary records elevated crustal temperatures, heterogeneous levels of hydration, and low strength in both the lower crust and upper mantle. To further investigate the relative strength of the two lithospheric layers, we calculated the strain rate of plagioclase in granulites and the strain rate of olivine in lherzolites using experimental flow laws. These flow laws predict that plagioclase deforms at higher strain rates than olivine. Our data provide constraints on the viscosity structure of active transform plate boundaries and insights on how rheological processes in the lithosphere may change during plate boundary evolution.

  9. Strengthening and Toughening of a Heavy Plate Steel for Shipbuilding with Yield Strength of Approximately 690 MPa

    NASA Astrophysics Data System (ADS)

    Liu, Dongsheng; Cheng, Binggui; Chen, Yuanyuan

    2013-01-01

    HSLA-100 steel with high content of alloying elements (nominally in wt pct, 3.5 Ni, 1.6 Cu, and 0.6Mo) is now used to produce heavy plates for constructing a hull and drilling platform. We proposed here a substantially leaner steel composition (containing 1.7 Ni, 1.1 Cu, and 0.5Mo) to produce a heavy plate to 80 mm thickness with mechanical properties comparable with those of the HSLA-100 grade. A continuous cooling transformation (CCT) diagram of the steel was constructed. Key parameters of thermal treatment and revealing mechanisms of strengthening and toughening were derived based on industrial production trials. The microstructures of the 80-mm-thick plate were lath-like bainite (LB) at near surface of the quarter thickness ( t/4), and granular bainite (GB)+LB at center thickness ( t/2) after solutionizing and water quenching (Q). The effect of tempering (T) on the microstructures and properties of the plate was investigated. Excellent combination of room temperature strength and low-temperature Charpy V-notch (CVN) toughness approximately equivalent to that of the HSLA 100 grade (YS > 690 MPa, CVN energy >100 J even at 193 K [-80 °C]) was achieved in the plate treated by the QT process with tempering temperature of 898 K (625 °C). The combination of strength and toughness at t/4 is superior to that at t/2 of the plate under both as-quenched and QT conditions. This result is attributed to that the fraction of high-angle grain boundaries (HAGBs) at t/4 is higher than that at t/2.

  10. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    NASA Astrophysics Data System (ADS)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  11. On the Effective Construction of Compactly Supported Wavelets Satisfying Homogenous Boundary Conditions on the Interval

    NASA Technical Reports Server (NTRS)

    Chiavassa, G.; Liandrat, J.

    1996-01-01

    We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.

  12. Effect of Boron Microalloying Element on Susceptibility to Hydrogen Embrittlement in High Strength Mooring Chain Steel

    NASA Astrophysics Data System (ADS)

    Li, H.; Cheng, X. Y.; Shen, H. P.; Su, L. C.; Zhang, S. Y.

    The susceptibility to hydrogen embrittlement in high strength mooring chain steel with different boron content (0, 0.003 %, 0.008 %) were investigated by electrochemical hydrogen charging technique and tensile test. The results revealed that appropriate boron content can effectively depress hydrogen induced embrittlement. Precharged with a low current density, this effect seemed to be unobvious. It gradually became clearly with the increasing current density. The increase of resistance to the hydrogen embrittlement for 3B and 8B after adding appropriate boron was attributed to three facts. The first was that the segregation of boron atoms along grain boundaries reduced the grain boundary segregation of phosphorus, which prohibited hydrogen concentration at the grain boundaries, depressing the possibility of the intergranular fracture due to H. The second was that the segregation of boron increased intergranular cohesion, enhanced grain boundary strength, and refined the final microstructure. The third was that the addition of boron changed the state of hydrogen traps, leading to the small amount of diffusible hydrogen. That is to say, hydrogen transferred to these defects by dislocations was accordingly decreased, which led to the low sensitive of hydrogen induced cracking.

  13. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  14. HELP - A Multimaterial Eulerian Program in Two Space Dimensions and Time

    DTIC Science & Technology

    1976-04-01

    ASSUMPTIONS 3-1 3.2 STRENGTH PHASE (SPHASE) 3-1 3.2.1 Definition of Strain Rate Derivatives for Cells at a Grid Boundary 3-3 3.2.2 Definition...of Interpolated Strain Rates and Stresses for Cells at a Grid Boundary 3-4 3.2.3 Definition of Velocities and Deviator Stresses at Grid Boundaries...Grid Boundaries 3-9 3.4.2 Change of Momentum for Cells at Reflective Grid Boundaries in TPHASE.. 3-10 3.4.3 Correction to Theoretical Energy for

  15. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy.

    PubMed

    Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng

    2018-01-01

    This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper

    NASA Astrophysics Data System (ADS)

    Mahata, Avik; Mukhopadhyay, Tanmoy; Adhikari, Sondipon

    2016-03-01

    Nano-twinned structures are mechanically stronger, ductile and stable than its non-twinned form. We have investigated the effect of varying twin spacing and twin boundary width (TBW) on the yield strength of the nano-twinned copper in a probabilistic framework. An efficient surrogate modelling approach based on polynomial chaos expansion has been proposed for the analysis. Effectively utilising 15 sets of expensive molecular dynamics simulations, thousands of outputs have been obtained corresponding to different sets of twin spacing and twin width using virtual experiments based on the surrogates. One of the major outcomes of this work is that there exists an optimal combination of twin boundary spacing and twin width until which the strength can be increased and after that critical point the nanowires weaken. This study also reveals that the yield strength of nano-twinned copper is more sensitive to TBW than twin spacing. Such robust inferences have been possible to be drawn only because of applying the surrogate modelling approach, which makes it feasible to obtain results corresponding to 40 000 combinations of different twin boundary spacing and twin width in a computationally efficient framework.

  17. A novel abutment construction technique for rapid bridge construction : controlled low strength Materials (CLSM) with full-height concrete panels.

    DOT National Transportation Integrated Search

    2012-01-01

    One of the major obstacles facing rapid bridge construction for typical span type bridges is the time required to construct bridge abutments and foundations. This can be remedied by using the controlled low strength materials (CLSM) bridge abutment. ...

  18. Nationwide desert highway assessment: a case study in China.

    PubMed

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-07-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert's comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection.

  19. Nationwide Desert Highway Assessment: A Case Study in China

    PubMed Central

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-01-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert’s comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection. PMID:21845155

  20. Phase behaviors of supramolecular graft copolymers with reversible bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less

  1. Corrosion behavior of high-strength spring steel for high-speed railway

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Chen, Yin-li; Wu, Hui-bin; Wang, Xuan; Tang, Di

    2018-05-01

    The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray (5wt% NaCl solution). A formation model of γ-FeOOH and a transformation model describing the conversion of γ-FeOOH to α-FeOOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-FeOOH into α-FeOOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products.

  2. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jeffries, J. B.; Hanson, R. K.; Hinckley, K. M.; Woodmansee, M. A.

    2006-03-01

    A tunable diode laser (TDL) temperature sensor is designed, constructed, tested, and demonstrated in the exhaust of an industrial gas turbine. Temperature is determined from the ratio of the measured absorbance of two water vapor overtone transitions in the near infrared where telecommunication diode lasers are available. Design rules are developed to select the optimal pair of transitions for direct absorption measurements using spectral simulations by systematically examining the absorption strength, spectral isolation, and temperature sensitivity to maximize temperature accuracy in the core flow and minimize sensitivity to water vapor in the cold boundary layer. The contribution to temperature uncertainty from the spectroscopic database is evaluated and precise line-strength data are measured for the selected transitions. Gas-temperature measurements in a heated cell are used to verify the sensor accuracy (over the temperature range of 350 to 1000 K, ΔT˜2 K for the optimal line pair and ΔT˜5 K for an alternative line pair). Field measurements of exhaust-gas temperature in an industrial gas turbine demonstrate the practical utility of TDL sensing in harsh industrial environments.

  3. A Method of Computing Electric Field Parameters on Boundaries between Two Media

    ERIC Educational Resources Information Center

    Rizhov, Alexander

    2010-01-01

    Many problems of electric field strength on a boundary between two media require college-level mathematical analysis. However, when the boundary between media is represented by a sphere or a flat plane, these types of problems can be solved algebraically, placing them within reach of high school students. This article presents a solution analysis…

  4. Construction Method of Analytical Solutions to the Mathematical Physics Boundary Problems for Non-Canonical Domains

    NASA Astrophysics Data System (ADS)

    Mobarakeh, Pouyan Shakeri; Grinchenko, Victor T.

    2015-06-01

    The majority of practical cases of acoustics problems requires solving the boundary problems in non-canonical domains. Therefore construction of analytical solutions of mathematical physics boundary problems for non-canonical domains is both lucrative from the academic viewpoint, and very instrumental for elaboration of efficient algorithms of quantitative estimation of the field characteristics under study. One of the main solving ideologies for such problems is based on the superposition method that allows one to analyze a wide class of specific problems with domains which can be constructed as the union of canonically-shaped subdomains. It is also assumed that an analytical solution (or quasi-solution) can be constructed for each subdomain in one form or another. However, this case implies some difficulties in the construction of calculation algorithms, insofar as the boundary conditions are incompletely defined in the intervals, where the functions appearing in the general solution are orthogonal to each other. We discuss several typical examples of problems with such difficulties, we study their nature and identify the optimal methods to overcome them.

  5. How children remember neutral and emotional pictures: boundary extension in children's scene memories.

    PubMed

    Candel, Ingrid; Merckelbach, Harald; Houben, Katrijn; Vandyck, Inne

    2004-01-01

    Boundary extension is the tendency to remember more of a scene than was actually shown. The dominant interpretation of this memory illusion is that it originates from schemata that people construct when viewing a scene. Evidence of boundary extension has been obtained primarily with adult participants who remember neutral pictures. The current study addressed the developmental stability of this phenomenon. Therefore, we investigated whether children aged 10-12 years display boundary extension for neutral pictures. Moreover, we examined emotional scene memory. Eighty-seven children drew pictures from memory after they had seen either neutral or emotional pictures. Both their neutral and emotional drawings revealed boundary extension. Apparently, the schema construction that underlies boundary extension is a robust and ubiquitous process.

  6. 46 CFR 127.420 - Strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Strength. 127.420 Section 127.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Construction of Windows, Visibility, and Operability of Coverings § 127.420 Strength. Each window or porthole...

  7. 46 CFR 127.420 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Strength. 127.420 Section 127.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Construction of Windows, Visibility, and Operability of Coverings § 127.420 Strength. Each window or porthole...

  8. Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Shrivastava, Amit Kumar; Rao, K. Seshagiri

    2018-01-01

    Despite their frequent natural occurrence, filled discontinuities under constant normal stiffness (CNS) boundary conditions have been studied much less systematically, perhaps because of the difficulties arising from the increased number of variable parameters. Because of the lack of reliable and realistic theoretical or empirical relations and the difficulties in obtaining and testing representative samples, engineers rely on judgment and often consider the shear strength of the infilled material itself as shear strength of rock joints. This assumption leads to uneconomical and also sometimes the unsafe design of underground structures, slopes, rock-socketed piles and foundations. To study the effect of infill on the shear behavior of rock joints, tests were performed on the modeled infilled rock joint having different joint roughness under constant normal load (CNL) and CNS boundary conditions at various initial normal stress and varying thickness of the infilled material. The test results indicate that shear strength decreases with an increase in t/ a ratio for both CNL and CNS conditions, but the reduction in shear strength is more for CNL than for CNS condition for a given initial normal stress. The detailed account of the effect of thickness of infilled material on shear and deformation behavior of infilled rock joint is discussed in this paper, and a model is proposed to predict shear strength of infilled rock joint.

  9. Shear strength of a three-dimensional capillary-porous titanium coating for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu; Alpatov, A. V.; Komlev, V. S.; Mamonov, V. I.; Sevostyanov, M. A.; Baikin, A. S.

    2018-04-01

    The effect of pretreatment and plasma preheating of Ti-substrate on shear strength of three-dimensional capillary porous Ti-coating was studied. After sandblasting the shear strength of the plasma sprayed coating was 200 ± 2 MPa, and after additional matting it was 68 ± 4 MPa. The use of plasma preheating of the substrates for 9 seconds decreased difference between values of the shear strength to 249 ± 17 MPa and 229 ± 16 MPa, respectively. After plasma spraying the microhardness of the surface layer of the substrate was 4.34 ± 0.35 GPa, the microhardness of the boundary between the coating and the substrate was 8.08 ± 0.45 GPa, and the microhardness of the coating was 3.48 ± 0.25 GPa. High shear strength of the coating was attributed to the activation of the substrate by means of plasma preheating and hardening of the boundary between the coating and the substrate by oxides and nitrides.

  10. Ground state for a massive scalar field in the BTZ spacetime with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Bussola, Francesco; Dappiaggi, Claudio; Ferreira, Hugo R. C.; Khavkine, Igor

    2017-11-01

    We consider a real, massive scalar field in Bañados-Teitelboim-Zanelli spacetime, a 2 +1 -dimensional black hole solution of Einstein's field equations with a negative cosmological constant. First, we analyze the space of classical solutions in a mode decomposition, and we characterize the collection of all admissible boundary conditions of Robin type which can be imposed at infinity. Second, we investigate whether, for a given boundary condition, there exists a ground state by constructing explicitly its two-point function. We demonstrate that for a subclass of the boundary conditions it is possible to construct a ground state that locally satisfies the Hadamard property. In all other cases, we show that bound state mode solutions exist and, therefore, such construction is not possible.

  11. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hyuk; Suh, Ho-Young; Han, Seul-Ki; Noh, Jae-Soo; Lee, Jong-Hyeon

    2016-10-01

    The intergranular carbide precipitation behavior and its effect on the tensile properties were investigated in alloy 690. The precipitation of intergranular carbides, identified as Cr-rich M23C6, was retarded on the low-angle grain boundaries and the coincidence-site lattice boundaries. The M23C6 carbides have a cube-cube orientation relationship with the matrix. The ultimate tensile strength, yield strength, and elongation of the solution annealed alloy 690 are 648.2 ± 8.2 MPa, 242.8 ± 10.5 MPa and 44.9 ± 2.3%, respectively. The ultimate tensile strength and the yield strength increased to 764.8 ± 7.8 MPa and 364.8 ± 10.2 MPa until the aging time reached 16 h. This increase is ascribed to the M23C6 carbide acting as reinforcements. However, when the aging time exceed 16 h, these properties gradually decreased with increasing aging time. The decrease in ultimate tensile strength, yield strength, and elongation were mainly caused by the intergranular cracking due to the low bond strength between the carbide and the matrix.

  12. 46 CFR 163.003-17 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Strength. 163.003-17 Section 163.003-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-17 Strength. (a) Each pilot ladder must be...

  13. 46 CFR 163.003-17 - Strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Strength. 163.003-17 Section 163.003-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-17 Strength. (a) Each pilot ladder must be...

  14. Fermionic edge states and new physics

    NASA Astrophysics Data System (ADS)

    Govindarajan, T. R.; Tibrewala, Rakesh

    2015-08-01

    We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.

  15. Additively manufactured hierarchical stainless steels with high strength and ductility.

    PubMed

    Wang, Y Morris; Voisin, Thomas; McKeown, Joseph T; Ye, Jianchao; Calta, Nicholas P; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T; Santala, Melissa K; Depond, Philip J; Matthews, Manyalibo J; Hamza, Alex V; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  16. Toughness and strength of nanocrystalline graphene

    DOE PAGES

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-28

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link’ statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidatemore » the nanoscale origins of the grain-size dependence of its strength and toughness. Lastly, our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials.« less

  17. Additively manufactured hierarchical stainless steels with high strength and ductility

    NASA Astrophysics Data System (ADS)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  18. On the differentiation matrix for Daubechies-based wavelets on an interval

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a Daubechies-based wavlet basis defined on an interval will be constructed. It will be shown that the differentiation matrix based on the currently available boundary constructions does not maintain the superconvergence encountered under periodic boundary conditions.

  19. Application of the Extended Completeness Relation to the Absorbing Boundary Condition

    NASA Astrophysics Data System (ADS)

    Iwasaki, Masataka; Otani, Reiji; Ito, Makoto

    The strength function of the linear response by the external field is calculated in the formalism of the absorbing boundary condition (ABC). The dipole excitation of a schematic two-body system is treated in the present study. The extended completeness relation, which is assumed on the analogy of the formulation in the complex scaling method (CSM), is applied to the calculation of the strength function. The calculation of the strength function is successful in the present formalism and hence, the extended completeness relation seems to work well in the ABC formalism. The contributions from the resonance and the non-resonant continuum are also analyzed according to the decomposition of the energy levels in the extended completeness relation.

  20. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Li, Ming; Mourrain, Bernard; Rabczuk, Timon; Xu, Jinlan; Bordas, Stéphane P. A.

    2018-01-01

    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach.

  1. 46 CFR 177.1020 - Strength.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Strength. 177.1020 Section 177.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Window Construction and Visibility § 177.1020 Strength. Each window, port hole, and its means of...

  2. 46 CFR 177.1020 - Strength.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Strength. 177.1020 Section 177.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Window Construction and Visibility § 177.1020 Strength. Each window, port hole, and its means of...

  3. 46 CFR 177.1020 - Strength.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Strength. 177.1020 Section 177.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Window Construction and Visibility § 177.1020 Strength. Each window, port hole, and its means of...

  4. 46 CFR 177.1020 - Strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Strength. 177.1020 Section 177.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Window Construction and Visibility § 177.1020 Strength. Each window, port hole, and its means of...

  5. 46 CFR 177.1020 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Strength. 177.1020 Section 177.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Window Construction and Visibility § 177.1020 Strength. Each window, port hole, and its means of...

  6. An Exploration of Boundaries and Solidarity in Counseling Relationships

    ERIC Educational Resources Information Center

    Speight, Suzette L.

    2012-01-01

    This article explores the boundaries between clinicians and clients in light of the construct of solidarity. A universal conception of boundaries is critiqued and a culturally congruent view of boundaries is examined, rooted in the concept of solidarity. The article includes case illustrations of the connection between boundaries and solidarity…

  7. New software for 3D fracture network analysis and visualization

    NASA Astrophysics Data System (ADS)

    Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.

    2013-12-01

    This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  8. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies

    PubMed Central

    Nekkanty, Srikant; Yerramshetty, Janardhan; Kim, Do-Gyoon; Zauel, Roger; Johnson, Evan; Cody, Dianna D.; Yeni, Yener N.

    2013-01-01

    Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat panel CT system and followed with axial compression testing with Wood’s metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood’s metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained this association was kurtosis of inferior endplate topography. Our results indicate that endplate topography variations may provide insight into the mechanisms responsible for vertebral fractures. PMID:20633709

  9. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE PAGES

    Guo, Y.; Collins, D. M.; Tarleton, E.; ...

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  10. Design space construction of multiple dose-strength tablets utilizing bayesian estimation based on one set of design-of-experiments.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-01-01

    Design spaces for multiple dose strengths of tablets were constructed using a Bayesian estimation method with one set of design of experiments (DoE) of only the highest dose-strength tablet. The lubricant blending process for theophylline tablets with dose strengths of 100, 50, and 25 mg is used as a model manufacturing process in order to construct design spaces. The DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) for theophylline 100-mg tablet. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) of the 100-mg tablet were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. Three experiments under an optimal condition and two experiments under other conditions were performed using 50- and 25-mg tablets, respectively. The response surfaces of the highest-strength tablet were corrected to those of the lower-strength tablets by Bayesian estimation using the manufacturing data of the lower-strength tablets. Experiments under three additional sets of conditions of lower-strength tablets showed that the corrected design space made it possible to predict the quality of lower-strength tablets more precisely than the design space of the highest-strength tablet. This approach is useful for constructing design spaces of tablets with multiple strengths.

  11. Less-invasive stabilization of rib fractures by intramedullary fixation: a biomechanical evaluation.

    PubMed

    Bottlang, Michael; Helzel, Inga; Long, William; Fitzpatrick, Daniel; Madey, Steven

    2010-05-01

    This study evaluated intramedullary fixation of rib fractures with Kirschner wires and novel ribs splints. We hypothesized that rib splints can provide equivalent fixation strength while avoiding complications associated with Kirschner wires, namely wire migration and cutout. The durability, strength, and failure modes of rib fracture fixation with Kirschner wires and rib splints were evaluated in 22 paired human ribs. First, intact ribs were loaded to failure to determine their strength. After fracture fixation with Kirschner wires and rib splints, fixation constructs were dynamically loaded to 360,000 cycles at five times the respiratory load to determine their durability. Finally, constructs were loaded to failure to determine residual strength and failure modes. All constructs sustained dynamic loading without failure. Dynamic loading caused three times more subsidence in Kirschner wire constructs (1.2 mm +/- 1.4 mm) than in rib splint constructs (0.4 mm +/- 0.2 mm, p = 0.09). After dynamic loading, rib splint constructs remained 48% stronger than Kirschner wire constructs (p = 0.001). Five of 11 Kirschner wire constructs failed catastrophically by cutting through the medial cortex, leading to complete loss of stability and wire migration through the lateral cortex. The remaining six constructs failed by wire bending. Rib splint constructs failed by development of fracture lines along the superior and interior cortices. No splint construct failed catastrophically, and all splint constructs retained functional reduction and fixation. Because of their superior strength and absence of catastrophic failure mode, rib splints can serve as an attractive alternative to Kirschner wires for intramedullary stabilization of rib fractures, especially in the case of posterior rib fractures where access for plating is limited.

  12. Intratester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.

    PubMed

    Brindle, Richard A; Ebaugh, David; Milner, Clare E

    2018-06-06

    Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a "break" test, the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intrarater reliability and construct validity of a hip abductor eccentric strength test. Intrarater reliability and construct validity study. Twenty healthy adults (26 [6] y; 1.66 [0.06] m; 62.2 [8.0] kg) made 2 visits to the laboratory at least 1 week apart. During the hip abductor eccentric strength test, a handheld dynamometer recorded peak force and time to peak force, and limb position was recorded via a motion capture system. Intrarater reliability was determined using intraclass correlation, SEM, and minimal detectable difference. Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a 1-sample t test. The hip abductor eccentric strength test had substantial intrarater reliability (intraclass correlation (3,3)  = .88; 95% confidence interval, .65-.95), SEM of 0.9 %BWh, and a minimal detectable difference of 2.5 %BWh. Construct validity was established as peak force occurred 2.1 (0.6) seconds (range: 0.7-3.7 s) after the start of the lowering phase of the test (P ≤ .001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.

  13. Estimation of internal friction angle of subduction zone in northeast of Japan by using seismic focal mechanisms

    NASA Astrophysics Data System (ADS)

    Miyakawa, A.; Sato, K.; Otsubo, M.

    2017-12-01

    Physical properties, such as friction angle of the material, is important to understand the interplate earthquake of a subduction zone. Coulomb wedge model (Davis et al., 1983, JGR) is successfully revealed the relationship between a geometry of an accretionary wedge in a subduction zone and the physical properties of the material composing the accretionary wedge (e.g. Dahlen, 1984, JGR). An internal friction angle of the wedge and the frictional strength of the plate boundary fault control the wedge angle according to the Coulomb wedge model. However, the internal friction angle of the wedge and the frictional strength of the plate boundary fault are hard to estimate. Many previous works assumed the internal friction angle of the wedge on the basis of the laboratory experiments. Then, the frictional strength of the plate boundary fault, which is usually most interested, were evaluated from the observed wedge angle and the assumed internal friction angle of the wedge. Consequently, we should be careful of the selection of the internal friction angle of the wedge, otherwise, the uncertain an inappropriate internal friction angle may mislead the frictional strength of the plate boundary fault. In this study, we employed the newly developed technique to evaluate the internal friction angle of the wedge from the earthquake focal mechanisms occurred in the wedge along Japan Trench, northeast Japan. We used 650 earthquake mechanisms determined by NIED, Japan for the stress and friction coefficient inversion. The stress and friction coefficient inversion method is modified to handle the earthquake focal mechanisms from a computerized method to estimate the friction coefficient from the orientation distribution of faults (Sato, 2016, JSG). Finally, we obtained 25 degrees of internal friction angle of the wedge from the inversion. This value of friction angle is lower than usually assumed internal friction angle (30 degrees) (Byerlee, 1978, PAGEOPH). This lower internal friction angle leads to lower frictional strength of plate boundary fault ( 0.35) according to the Coulomb wedge model. These constrained physical parameters can contribute to understanding the interplate earthquake at each subduction zones.

  14. (De)constructing Organizational Boundaries of University Administrations: Changing Profiles of Administrative Leadership at German Universities

    ERIC Educational Resources Information Center

    Blümel, Albrecht

    2016-01-01

    By analysing institutional changes of administrative leadership at German universities, this paper studies the construction of organizational boundaries as an important aspect of organizational transformation of universities as complete organizations. Building on an analysis of the formal status of administrative leadership at universities derived…

  15. Pros and cons of multistory RC tunnel-form (box-type) buildings

    USGS Publications Warehouse

    Kalkan, E.; Yuksel, S.B.

    2008-01-01

    Tunnel-form structural systems (i.e., box systems), having a load-carrying mechanism composed of reinforced concrete (RC) shear walls and slabs only, have been prevailingly utilized in the construction of multistory residential units. The superiority of tunnel-form buildings over their conventional counterparts stems from the enhanced earthquake resistance they provide, and the considerable speed and economy of their construction. During recent earthquakes in Turkey, they exhibited better seismic performance in contrast to the damaged condition of a number of RC frames and dual systems (i.e., RC frames with shear wall configurations). Thus the tunnel-form system has become a primary construction technique in many seismically active regions. In this paper, the strengths and weaknesses of tunnel-form buildings are addressed in terms of design considerations and construction applications. The impacts of shear wall reinforcement ratio and its detailing on system ductility, loadcarrying capacity and failure mechanism under seismic forces are evaluated at section and global system levels. Influences of tension/compression coupling and wall openings on the response are also discussed. Three-dimensional nonlinear finite element models, verified through comparisons with experimental results, were used for numerical assessments. Findings from this projection provide useful information on adequate vertical reinforcement ratio and boundary reinforcement to achieve enhanced performance of tunnel-form buildings under seismic actions. Copyright ?? 2007 John Wiley & Sons, Ltd.

  16. Analysis of Stresses in German Airplanes

    NASA Technical Reports Server (NTRS)

    Hoff, Wilhelm

    1923-01-01

    This report contains an account of the origin of the views and fundamental principles underlying the construction of German airplanes during the war. The report contains a detailed discussion of the aerodynamic principles and their use in determining the strength of airplanes, the analysis of the strength qualities of materials and in the construction, the calculated strength of air flows and a description of tests made in determining the strength of airplanes.

  17. Active Interior Noise Control Studies

    NASA Technical Reports Server (NTRS)

    Park, J.; Veeramani, S.; Sampath, A.; Balachandran, B.; Wereley, N.

    1996-01-01

    Analytical and experimental investigations into the control of noise in the interior of a three-dimensional enclosure with a flexible boundary are presented. The rigid boundaries are constructed from acrylic material, and in the different cases considered the flexible boundary is constructed from either aluminum or composite material. Noise generated by an external speaker is transmitted into the enclosure through the flexible boundary and active control is realized by using Lead Zirconate Titanate (PZT) piezoelectric actuators bonded to the flexible boundary. Condenser microphones are used for noise measurements inside and outside the enclosure. Minimization schemes for global and local noise control in the presence of a harmonic disturbance are developed and discussed. In the experiments, analog feedforward control is implemented by using the harmonic disturbance as a reference signal.

  18. Development and initial evaluation of an enhanced measure of boundary flexibility for the work and family domains.

    PubMed

    Matthews, Russell A; Barnes-Farrell, Janet L

    2010-07-01

    This manuscript reports the development of a measure of work and family domain boundary flexibility. Building on previous research, we propose an expanded definition of boundary flexibility that includes two components-flexibility-ability and flexibility-willingness-and we develop a measure designed to capture this more comprehensive definition of boundary flexibility. Flexibility-ability is conceptualized as an individual's perception of personal and situational constraints that affect boundary management, and flexibility-willingness is conceptualized as an individual difference variable that captures the motivation to engage in boundary flexing. An additional feature of domain boundaries, permeability, is also examined. Data are presented from two studies. Study 1 (N = 244) describes the development of a multiscale measure that extends current conceptual definitions of boundary flexibility. Study 2 (N = 225) describes the refinement and evaluation of this measure. Confirmatory factor analysis, reliability evidence, interscale correlations, and correlations with important work-family constructs (e.g., domain centrality, work-family conflict) provide initial construct validity evidence for the measure.

  19. Microstructures and mechanical properties of Cu-Sn alloy subjected to elevated-temperature heat deformation

    NASA Astrophysics Data System (ADS)

    Hui, Jun; Feng, Zaixin; Fan, Wenxin; Wang, Pengfei

    2018-04-01

    Cu-Sn alloy was subjected to elevated-temperature isothermal compression with 0.01 s‑1 strain rate and 500 ∼ 700 °C temperature range. The thermal compression curve reflected a competing process of work hardening versus dynamic recovery (DRV) and recrystallization, which exhibited an obvious softening trend. Meanwhile, high-temperature deformation and microstructural features in different regions of the alloy was analyzed through EBSD. The results show that grains grow as the temperature rises, competition among recrystallization, substructural, and deformation regions tends to increase with the increase of temperature, and distribution frequency of recrystallization regions gradually increases and then drops suddenly at 650 °C. At 500 ∼ 550 °C, preferentially oriented texturing phenomenon occurs, low angle boundaries(LABs) are gradually transformed into high angle boundaries (HABs) and the Σ (CSL) boundaries turn gradually into Σ3 boundaries. In tensile test of tin bronze, elongation at break increases slowly, whereas yield strength (YS) and ultimate tensile strength (TS) decrease gradually.

  20. Micropillar compression study of the influence of size and internal boundary on the strength of HT9 tempered martensitic steel

    NASA Astrophysics Data System (ADS)

    Lim, Sangyeob; Shin, Chansun; Heo, Jungwoo; Kim, Sangeun; Jin, Hyung-Ha; Kwon, Junhyun; Guim, Hwanuk; Jang, Dongchan

    2018-05-01

    HT9, a ferritic/martensitic steel, is a candidate structural material for next-generation advanced reactors. Its microstructure is a typical tempered martensite showing a hierarchical lath-block-and-packet structure. We investigate the specimen size effect and strengthening contribution of various microstructural boundaries manifested in the compression tests of micropillars with diameters ranging from 0.5 to 17 μm. It is observed that micropillars with diameters larger than 3 μm show uniform deformation and plastic flow curves comparable to the bulk flow curve. Localized deformation by a few pronounced slip bands occurs in micropillars with diameters smaller than 1 μm, and the yield strength is reduced. Careful examination of the sizes of the microstructural features and cross-sections of the micropillars shows that the block boundaries are the most effective strengthening boundaries in tempered martensitic microstructure. The bulk mechanical properties of HT9 can be evaluated from a micropillar with diameter as low as 3 μm.

  1. 46 CFR 116.1020 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS CONSTRUCTION AND ARRANGEMENT Window Construction and Visibility § 116.1020 Strength. Each window, port hole, and its means of attachment to the hull or deck house...

  2. Methodology discourses as boundary work in the construction of engineering education.

    PubMed

    Beddoes, Kacey

    2014-04-01

    Engineering education research is a new field that emerged in the social sciences over the past 10 years. This analysis of engineering education research demonstrates that methodology discourses have played a central role in the construction and development of the field of engineering education, and that they have done so primarily through boundary work. This article thus contributes to science and technology studies literature by examining the role of methodology discourses in an emerging social science field. I begin with an overview of engineering education research before situating the case within relevant bodies of literature on methodology discourses and boundary work. I then identify two methodology discourses--rigor and methodological diversity--and discuss how they contribute to the construction and development of engineering education research. The article concludes with a discussion of how the findings relate to prior research on methodology discourses and boundary work and implications for future research.

  3. Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties

    NASA Astrophysics Data System (ADS)

    Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.

    A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.

  4. Atomistic simulation of the trapping capability of He-vacancy defects at Ni {\\sum}^{}3\\left(1\\bar{1}2\\right)[110] grain boundary

    NASA Astrophysics Data System (ADS)

    Gong, Hengfeng; Wang, Chengbin; Zhang, Wei; Huai, Ping; Lu, Wei; Zhu, Zhiyuan

    2016-12-01

    He atoms tend to cluster and precipitate into bubbles that prefer to grow in the grain boundaries, resulting in high temperature He embrittlement with significantly degraded material properties. This is a major bottleneck in employing Ni-based alloys for applications such as molten salt reactors (MSRs). This paper focuses on understanding how the local grain boundary structure interacts with He atoms and how the local atomistic environment in the grain boundary influences the binding energy of He defects. Using molecular dynamics simulations, we have investigated the trapping capability of the Ni {\\sum}3≤ft(1 \\bar{1} 2\\right)≤ft[1 1 0\\right] grain boundary to He defects (He N ) and to He-vacancy defects (He N V M ). The two defects in the Ni grain boundary exhibit geometries with high symmetry. The binding energy of an interstitial He atom to He N V M defects is found to be generally larger in pure Ni than that in the grain boundary. We compared the binding energy of He N defects to the Ni vacancy and to the Ni grain boundary, finding that the Ni vacancy possesses a higher trapping strength to He N . We also found that the binding strength of He N to the grain boundary is stronger than that of He N V M to the grain boundary. The He-vacancy ratio in He N V M defects does not significantly affect the binding energy in the grain boundary plane. The current work will provide insight in understanding the experimentally observed He bubble formation in Ni-based alloys and bridge atomic scale events and damage with macroscopic failure.

  5. Program Helps Generate Boundary-Element Mathematical Models

    NASA Technical Reports Server (NTRS)

    Goldberg, R. K.

    1995-01-01

    Composite Model Generation-Boundary Element Method (COM-GEN-BEM) computer program significantly reduces time and effort needed to construct boundary-element mathematical models of continuous-fiber composite materials at micro-mechanical (constituent) scale. Generates boundary-element models compatible with BEST-CMS boundary-element code for anlaysis of micromechanics of composite material. Written in PATRAN Command Language (PCL).

  6. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  7. Relationship between chemistry, microstructure and mechanical properties of alpha-silicon aluminum oxynitride

    NASA Astrophysics Data System (ADS)

    Shuba, Roman

    The aim of this thesis was to improve the mechanical properties of Y-alpha-SiAlON ceramics by controlling microstructure and tailoring grain boundary composition. Three properties of importance for engineering applications were targeted: strength retention and oxidation resistance at high temperature, fracture toughness at room temperature, and machinability. As a result of this work, several ceramics with one or more of the above properties optimized have been developed. The performance of Si3N4/SiAlON-based ceramics at high (>1000 degree C) temperature is generally limited by the softening of grain-boundary glass. Refractory alpha-SiAlONs was obtained by three methods: reducing residual liquid by minimizing nitride powder oxidation during processing, promoting liquid/SiAlON conversion by adding excess AlN, and improving refractoriness by incorporating La2O3 into glass. Ceramics thus, obtained featured excellent room-temperature strength (1050 MPa) and high-temperature strength (650 MPa at 1300 degree C), as well as good oxidation resistance. In all cases grain growth was inhibited, which resulted in a relatively low toughness (5--7 MPa x m1/2). In-situ toughened Y-alpha-SiAlON (9 MPa x m1/2) was obtained through growth of large elongated grains with low debonding strength. This was achieved by introducing seed crystals to the starting powder mixtures, in addition to using sintering aids and dopants. Additives modified the properties of grain boundary glass, while dopants lowered the strength of glass/grain interface. Through the use of nanosized turbostratic BN precursor obtained via pyrolysis of melamine borate salt, which yielded finely dispersed hexagonal BN particles in alpha-SiAlON, high-strength (800 MPa) Y-alpha-SiAlON/BN composites, machinable using WC/Co tools, were also fabricated.

  8. An automated design and fabrication pipeline for improving the strength of 3D printed artifacts under tensile loading

    NASA Astrophysics Data System (ADS)

    Al, Can Mert; Yaman, Ulas

    2018-05-01

    In the scope of this study, an alternative automated method to the conventional design and fabrication pipeline of 3D printers is developed by using an integrated CAD/CAE/CAM approach. It increases the load carrying capacity of the parts by constructing heterogeneous infill structures. Traditional CAM software of Additive Manufacturing machinery starts with a design model in STL file format which only includes data about the outer boundary in the triangular mesh form. Depending on the given infill percentage, the algorithm running behind constructs the interior of the artifact by using homogeneous infill structures. As opposed to the current CAM software, the proposed method provides a way to construct heterogeneous infill structures with respect to the Von Misses stress field results obtained from a finite element analysis. Throughout the work, Rhinoceros3D is used for the design of the parts along with Grasshopper3D, an algorithmic design tool for Rhinoceros3D. In addition, finite element analyses are performed using Karamba3D, a plug-in for Grasshopper3D. According to the results of the tensile tests, the method offers an improvement of load carrying capacity about 50% compared to traditional slicing algorithms of 3D printing.

  9. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  10. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  11. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  12. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  13. Aircraft landing dynamics facility carriage weld test program

    NASA Technical Reports Server (NTRS)

    Lawson, A. G.

    1984-01-01

    A welded tubular structure constructed of low alloy high strength quenched and tempered steel was tested. The consistency of the mechanical strengths and chemical composition and the degree of difficulty of obtaining full strength welds with these steels is characterized. The results of constructing and testing two typical connections which are used in the structure design are reported.

  14. Turbulence Measurement in the Atmospheric Boundary Layer Using Cellular Telephone Signals

    DTIC Science & Technology

    2012-03-01

    TURBULENCE MEASUREMENT IN THE ATMOSPHERIC BOUNDARY LAYER USING CELLULAR TELEPHONE SIGNALS THESIS Lee R. Burchett, Civilian AFIT/APPLPHY/ENP/12 - M01...85 xiv TURBULENCE MEASUREMENT IN THE ATMOSPHERIC BOUNDARY LAYER USING CELLULAR TELEPHONE SIGNALS I. Introduction What follows is an...efficient use of these systems. For example, the effective range of a laser weapon is limited by the strength of turbulence on the path to the target

  15. Experimental and numerical investigation of the effect of distributed suction on oblique shock wave/turbulent boundary layer interaction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Benhachmi, Driss; Greber, Isaac; Hingst, Warren R.

    1988-01-01

    A combined experimental and numerical study of the interaction of an incident oblique shock wave with a turbulent boundary layer on a rough plate and on a porous plate with suction is presented. The experimental phase involved the acquisition of mean data upstream of, within, and downstream of the interaction region at Mach numbers 2.5 and 3.0. Data were taken at unit Reynolds numbers of 1.66 E7 and 1.85 E7 m respectively, and for flow deflection angles of 0, 4, 6 and 8 degs. Measured data include wall static pressure, pitot pressure profiles, and local bleed distributions on the porous plate. On the rough plate, with no suction, the boundary layer profiles were modified near the wall, but not separated for the 4 deg flow deflection angle. For the higher deflection angles of 6 and 8 degs, the boundary layer was separated. Suction increases the strength of the incident shock required to separate the turbulent boundary layer; for all shock strengths tested, separation is completely eliminated. The pitot pressure profiles are affected throughout the whole boundary layer; they are fuller than the ones obtained on the rough plate. It is also found that the combination of suction and roughness introduces spatial perturbations.

  16. Flexible categorization of relative stimulus strength by the optic tectum

    PubMed Central

    Mysore, Shreesh P.; Knudsen, Eric I.

    2011-01-01

    Categorization is the process by which the brain segregates continuously variable stimuli into discrete groups. We report that patterns of neural population activity in the owl optic tectum (OT) categorize stimuli based on their relative strengths into “strongest” versus “other”. The category boundary shifts adaptively to track changes in the absolute strength of the strongest stimulus. This population-wide categorization is mediated by the responses of a small subset of neurons. Our data constitute the first direct demonstration of an explicit categorization of stimuli by a neural network based on relative stimulus strength or salience. The finding of categorization by the population code relaxes constraints on the properties of downstream decoders that might read out the location of the strongest stimulus. These results indicate that the ensemble neural code in the OT could mediate bottom-up stimulus selection for gaze and attention, a form of stimulus categorization in which the category boundary often shifts within hundreds of milliseconds. PMID:21613487

  17. Reconstruction of the boundary between climate science and politics: the IPCC in the Japanese mass media, 1988-2007.

    PubMed

    Asayama, Shinichiro; Ishii, Atsushi

    2014-02-01

    The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context.

  18. Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

    NASA Astrophysics Data System (ADS)

    Goryk, A. V.; Koval'chuk, S. B.

    2018-05-01

    An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

  19. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  20. SPATIAL VARIATION OF THE EVOLUTION AND STRUCTURE OF THE URBAN BOUNDARY LAYER

    EPA Science Inventory

    The spatial variation of the nocturnal urban boundary layer structure and the time variation of the mixing height, the nocturnal inversion top and strength after sunrise are presented for urban sites located upwind, downwind, and near the center of the heat island and for upwind ...

  1. Space, Scale and Languages: Identity Construction of Cross-Boundary Students in a Multilingual University in Hong Kong

    ERIC Educational Resources Information Center

    Gu, Mingyue Michelle; Tong, Ho Kin

    2012-01-01

    Drawing on the notions of scale and space, this paper investigates identity construction among a group of mainland Chinese cross-boundary students by analysing their language choices and linguistic practices in a multilingual university in Hong Kong. The research illustrates how movement across spaces by these students produces varying index…

  2. Psychodynamic Perspective on Therapeutic Boundaries

    PubMed Central

    Bridges, Nancy A.

    1999-01-01

    Discussion of boundaries in therapeutic work most often focuses on boundary maintenance, risk management factors, and boundary violations. The psychodynamic meaning and clinical management of boundaries in therapeutic relationships remains a neglected area of discourse. Clinical vignettes will illustrate a psychodynamic, developmental-relational perspective using boundary dilemmas to deepen and advance the therapeutic process. This article contributes to the dialogue about the process of making meaning and constructing therapeutically useful and creative boundaries that further the psychotherapeutic process. PMID:10523432

  3. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris.

    PubMed

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-06-29

    VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  4. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris

    PubMed Central

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-01-01

    Background VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. Methods VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. Results From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. Conclusion These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development. PMID:19563628

  5. Investigations on the mechanical behavior of nanowires with twin boundaries by atomistic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xia, E-mail: tianxia@lsec.cc.ac.cn

    2015-03-10

    Atomistic simulations are used to study the deformation behavior of twinned Cu nanowires with a <111> growth orientation under tension. Due to the existence of the twin boundaries, the strength of the twinned nanowires is higher than that of the twin-free nanowire and the yielding stress of twinned nanowires is inversely proportional to the spacings of the twin boundaries. Moreover, The ductility of the twin-free nanowire is the highest of all and it grows with the increasing spacings of the twin boundaries for twinned nanowires. Besides, we find that the twin boundaries can be served as dislocation sources as wellmore » as the free surfaces and grain boundaries.« less

  6. Strength Investigations in Aircraft Construction Under Repeated Application of the Load

    NASA Technical Reports Server (NTRS)

    Gassner, E.

    1946-01-01

    In the calculation of the dimensions of modern machines and building constructions, account is taken of the frequency of the occurrence of the anticipated loads. It is generally assumed that these loads will be repeated an infinite number, or at any rate some millions, of times during the total working life of the construction, When calculating the dimensions of the structural parts of aircraft, on the contrary, a consideration only of those frequencies in the appearance of the loads which actually come into play in the various states of stress is allowable. This is because in aircraft construction it is absolutely essential not only to ensure adequate structural strength but also to keep down the structural weight to the lowest possible limit, Strength tests in which this requirement is directly taken into account have recently been carried out by the DVL Material Strength Department.

  7. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    NASA Astrophysics Data System (ADS)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  8. [Relationship between fishing grounds temporal-spatial distribution of Thunnus obesus and thermocline characteristics in the Western and Central Pacific Ocean].

    PubMed

    Yang, Sheng Long; Wu, Yu Mei; Zhang, Bian Bian; Zhang, Yu; Fan, Wei; Jin, Shao Fei; Dai, Yang

    2017-01-01

    A thermocline characteristics contour on a spatial overlay map was plotted using data collected on a monthly basis from Argo buoys and data of monthly CPUE (catch per unit effort) bigeye tuna (Thunnus obesus) long-lines fishery from the Western and Central Pacific Fisheries Commission (WCPFC) to evaluate the relationship between fishing grounds temporal-spatial distribution of bigeye tuna and thermocline characteristics in the Western and Central Pacific Ocean (WCPO). In addition, Numerical methods were used to calculate the optimum ranges of thermocline characteristics of the central fishing grounds. The results showed that the central fishing grounds were mainly distributed between 10° N and 10° S. Seasonal fishing grounds in the south of equator were related to the seasonal variations in the upper boundary temperature, depth and thickness of thermocline. The fishing grounds were observed in areas where the upper boundary depth of thermocline was deep (70-100 m) and the thermocline thickness was more than 60 m. The CPUE tended to be low in area where the thermocline thickness was less than 40 m. The optimum upper boundary temperature range for distribution was 26-29 ℃, and the CPUE was mostly lower than the threshold value (Q3) of central fishing grounds when the temperature was higher than 29 ℃ or lower than 26 ℃. The temporal and spatial distribution of the fishing grounds was influenced by the seasonal variations in upper boundary depth and thermocline thickness. The central fishing grounds in the south of equator disappeared when the upper boundary depth of thermocline decreased and thermocline thickness became thinner. The lower boundary temperature and depth of thermocline and thermocline strength has little variation, but were strongly linked to the location of fishing grounds. The fishing grounds were mainly located between the two high-value zones of the lower boundary depth of thermocline, where the temperature was lower than 13 ℃ and the strength was high. When the depth was more than 300 m or less than 150 m, the lower boundary temperature was more than 17 ℃, or the strength was low, the CPUE tended to be low. The optimum range of thermocline characteristics was calculated using frequency analysis and empirical cumulative distribution function. The results showed that the optimum ranges for upper boundary thermocline temperature and depth were 26-29 ℃ and 70-110 m, the optimum lower boundary thermocline temperature and depth ranges were 11-13 ℃ and 200-280 m, the optimum ranges for thermocline thickness and thermocline strength were 50-90 m and 0.1-0.16 ℃·m -1 , respectively. The paper documented the distribution interval of thermocline characteristics for central fishing ground of the bigeye tuna in WCPO. The results provided a reference for improving the efficiency of pelagic bigeye tuna fishing operation and tuna resource management in WCPO.

  9. Work and personal life boundary management: boundary strength, work/personal life balance, and the segmentation-integration continuum.

    PubMed

    Bulger, Carrie A; Matthews, Russell A; Hoffman, Mark E

    2007-10-01

    While researchers are increasingly interested in understanding the boundaries surrounding the work and personal life domains, few have tested the propositions set forth by theory. Boundary theory proposes that individuals manage the boundaries between work and personal life through processes of segmenting and/or integrating the domains. The authors investigated boundary management profiles of 332 workers in an investigation of the segmentation-integration continuum. Cluster analysis indicated consistent clusters of boundary management practices related to varying segmentation and integration of the work and personal life domains. But, the authors suggest that the segmentation-integration continuum may be more complicated. Results also indicated relationships between boundary management practices and work-personal life interference and work-personal life enhancement. Less flexible and more permeable boundaries were related to more interference, while more flexible and more permeable boundaries were related to more enhancement.

  10. Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Tang, Hui; Duan, Fei

    2015-08-01

    An experimental investigation is conducted on the vortices induced by twin synthetic jets (SJs) in line with a laminar boundary layer flow over a flat plate. The twin SJs operating at four different phase differences, i.e., Δϕ = 0°, 90°, 180°, and 270°, are visualized using a stereoscopic color dye visualization system and measured using a two-dimensional particle image velocimetry (PIV) system. It is found that depending on the phase difference of twin SJs, three types of vortex structures are produced. At Δϕ = 90°, the two hairpin vortices interact in a very constructive way in terms of the vortex size, strength, and celerity, forming one combined vortex. At Δϕ = 270°, the two individual hairpin vortices do not have much interaction, forming two completely separated hairpin vortices that behave like doubling the frequency of the single SJ case. At Δϕ = 0° and 180°, the two hairpin vortices produced by the twin SJ actuators are close enough, with the head of one hairpin vortex coupled with the legs of the other, forming partially interacting vortex structures. Quantitative analysis of the twin SJs is conducted, including the time histories of vortex circulation in the mid-span plane as well as a selected spanwise-wall-normal plane, and the influence of the twin SJs on the boundary layer flow filed. In addition, dynamic mode decomposition analysis of the PIV data is conducted to extract representative coherent structures. Through this study, a better understanding in the vortex dynamics associated with the interaction of in-line twin SJs in laminar boundary layers is achieved, which provides useful information for future SJ-array applications.

  11. Evaluation of omniweave reinforcement for composite fabrication

    NASA Technical Reports Server (NTRS)

    Belman, R.; Edighoffer, H.; Fenton, R.; Lowe, D.; Wexler, M.

    1971-01-01

    Molded composites made from type-2 Morganite and/or boron are suitable for structural skins. Layered-in-depth omniweave construction yields higher in-plane strength characteristics than fiber-pitch angle construction, and strength and moduli data vary with fiber orientation.

  12. Four Point Measurements of the Foreshock

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Omidi, N.; Angelopoulos, V.

    2008-01-01

    Hybrid code numerical simulations accurately predict the properties of the Earth's foreshock, a region populated by solar wind particles heated and reflected by their interaction with the bow shock. The thermal pressures associated with the reflected population suffice to substantially modify the oncoming solar wind, substantially reducing densities, velocities, and magnetic field strengths, but enhance temperatures. Enhanced thermal pressures cause the foreshock to expand at the expense of the ambient solar wind, creating a boundary that extends approx.10 RE upstream which is marked by enhanced densities and magnetic field strengths, and flows deflected away from the foreshock. We present a case study of Cluster plasma and magnetic field observations of this boundary.

  13. Fast Boundary Element Method for acoustics with the Sparse Cardinal Sine Decomposition

    NASA Astrophysics Data System (ADS)

    Alouges, François; Aussal, Matthieu; Parolin, Emile

    2017-07-01

    This paper presents the newly proposed method Sparse Cardinal Sine Decomposition that allows fast convolution on unstructured grids. We focus on its use when coupled with finite element techniques to solve acoustic problems with the (compressed) Boundary Element Method. In addition, we also compare the computational performances of two equivalent Matlab® and Python implementations of the method. We show validation test cases in order to assess the precision of the approach. Eventually, the performance of the method is illustrated by the computation of the acoustic target strength of a realistic submarine from the Benchmark Target Strength Simulation international workshop.

  14. Failure modes for compression loaded angle-ply plates with holes

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Herakovich, C. T.; Williams, J. G.

    1987-01-01

    A combined theoretical-experimental investigation of failure in notched, graphite-epoxy, angle-ply laminates subjected to far-field compression loading indicates that failure generally initiates on the hole boundary and propagates along a line parallel to the fiber orientation of the laminate. The strength of notched laminates with specimen width-to-hole diameter ratios of 5 and 10 are compared to the strength of unnotched laminates. The experimental results are complemented by a three-dimensional finite element stress analysis that includes interlaminar stresses around holes in (+/- theta)s laminates. The finite element predictions indicate that failure is initiated by shear stresses at the hole boundary.

  15. Simultaneous increase in the strength, plasticity, and corrosion resistance of an ultrafine-grained Ti-4Al-2V pseudo-alpha-titanium alloy

    NASA Astrophysics Data System (ADS)

    Chuvil'deev, V. N.; Kopylov, V. I.; Nokhrin, A. V.; Bakhmet'ev, A. M.; Sandler, N. G.; Kozlova, N. A.; Tryaev, P. V.; Tabachkova, N. Yu.; Mikhailov, A. S.; Ershova, A. V.; Gryaznov, M. Yu.; Chegurov, M. K.; Sysoev, A. N.; Smirnova, E. S.

    2017-05-01

    The influence of severe plastic deformation on the structural-phase state of grain boundaries in a Ti-4Al-2V (commercial PT3V grade) pseudo-alpha-titanium alloy has been studied. It is established that increase in the strength, plasticity, and corrosion resistance of this alloy is related to the formation of an ultrafine- grained structure. In particular, it is shown that an increase in the resistance to hot-salt intergranular corrosion is due to diffusion-controlled redistribution of aluminum and vanadium atoms at the grain boundaries of titanium formed during thermal severe plastic deformation.

  16. Image Processing Language. Phase 1

    DTIC Science & Technology

    1988-05-01

    their entirety. Nonetheless, they can serve as guidelines to which the construction of a useful and comprehensive imaging algebra might aspire. 3. TIH... guidelines to which the construction of a useful and comprehensive imaging algebra might aspire. * It was recognized that any structure which encompasses...Bernstein Polynomial Approximation Best Plane Fit ( BPF , Sobel, Roberts, Prewitt, Gradient) Boundary Finder Boundary Segmenter Chain Code Angle

  17. The Construction of a Muscular Strength Test Battery for Girls in the Primary Grades.

    ERIC Educational Resources Information Center

    DiNucci, James M.; Pelton, Elois B.

    This study was designed to construct a gross muscular strength test battery for girls 6-9 years of age in grades 1-3. The subjects for this investigation were a random sample of 183 girls in grades 1-3 of the public schools of Natchitoches, Louisiana. The variables selected were 22 cable tension strength tests developed by Clarke and associates.…

  18. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  19. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Zhong

    1998-01-01

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

  20. FIM/atom probe analysis of a heat treated 7150 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Brenner, S. S.; Kowalik, J.; Hua Ming-Jian

    1991-04-01

    The stress corrosion cracking resistance of high strength aluminum alloys can be substantially altered by heat treatment. In addition to microstructural changes, the alloys may also undergo chemical changes as a result of the heat treatment which may affect the stress corrosion properties. The FIM/atom probe has been used to detect such changes. The compositions of the matrix, matrix precipitates, precipitate-free zone (PFZ) and grain boundary precipitates in a heat-treated 7150 Al alloy tempered to peak strength have been quantitatively measured. A substantial increase in the concentrations of Mg, Zn and Cu were found in the PFZ. The average compositions of the precipitates in the matrix and at the sub-boundaries were shown not to differ significantly. The coarser precipitates at high-angle boundaries, which may have a more important effect on stress corrosion, were difficult to analyze because of their low number density and the large grain size of the material.

  1. High-temperature effect of hydrogen on sintered alpha-silicon carbide

    NASA Technical Reports Server (NTRS)

    Hallum, G. W.; Herbell, T. P.

    1986-01-01

    Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.

  2. Effect of high-temperature hydrogen exposure on sintered alpha-SiC

    NASA Technical Reports Server (NTRS)

    Hallum, Gary W.; Herbell, Thomas P.

    1988-01-01

    Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrosion at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.

  3. Remote sensing of the boundary layer over the oceans. [by IRIS measurements

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.; Nath, N. R.; Lo, R.

    1978-01-01

    The paper explores the possibility of remotely sensing the boundary layer structure over the oceans by means of the Nimbus 4 IR Interferometric Spectrometer (IRIS) measurements in the water vapor bands. It is found from theoretical considerations that the moderately strong spectral lines in the 9-micron water vapor window region contain useful information about the lowest layers in the atmosphere. The difference between the observed line strength and the theoretically predicted line strength provides information about the departure in the atmospheric temperature and water vapor profiles from standard conditions. The observations of METEOR oceanographic expedition over the North and South Atlantic, and the Indian Ocean expedition make it possible to model the inversion conditions. It is concluded that significant characteristics of the temperature and water vapor profiles in the boundary layer of the atmosphere can be remotely sensed using the water vapor spectral measurements over the oceans.

  4. The dependence of the strength and thickness of field-aligned currents on solar wind and ionospheric parameters

    PubMed Central

    Johnson, Jay R.; Wing, Simon

    2017-01-01

    Sheared plasma flows at the low-latitude boundary layer (LLBL) correlate well with early afternoon auroral arcs and upward field-aligned currents. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents (Λ) in a region of sheared velocity, such as the LLBL. We compare the predictions of the model with DMSP observations and find remarkably good scaling of the upward region 1 currents with solar wind and ionospheric parameters in region located at the boundary layer or open field lines at 1100–1700 magnetic local time. We demonstrate that Λ~nsw−0.5 and Λ ~ L when Λ/L < 5 where L is the auroral electrostatic scale length. The sheared boundary layer thickness (Δm) is inferred to be around 3000 km, which appears to have weak dependence on Vsw. J‖ has dependencies on Δm, Σp, nsw, and Vsw. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data. PMID:29057194

  5. Constructing entanglement wedges for Lifshitz spacetimes with Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Cheyne, Jonathan; Mattingly, David

    2018-03-01

    Holographic relationships between entanglement entropy on the boundary of a spacetime and the area of minimal surfaces in the bulk provide an important entry in the bulk/boundary dictionary. While constructing the necessary causal and entanglement wedges is well understood in asymptotically AdS spacetimes, less is known about the equivalent constructions in spacetimes with different asymptotics. In particular, recent attempts to construct entanglement and causal wedges for asymptotically Lifshitz solutions in relativistic gravitational theories have proven problematic. We note a simple observation, that a Lifshitz bulk theory, specifically a covariant formulation of Hořava-Lifshitz gravity coupled to matter, has causal propagation defined by Lifshitz modes. We use these modes to construct causal and entanglement wedges and compute the geometric entanglement entropy, which in such a construction matches the field theory prescription.

  6. Skin-Friction Measurements at Subsonic and Transonic Mach Numbers with Embedded-Wire Gages

    DTIC Science & Technology

    1981-01-01

    Model ................................... 17 9. Boundary-Layer Rake Installation on EBOR Model...boundary-layer total pressure rake eliminates this bulky mechanism and the long data acquisition time, but it introduces interferences which affect the...its construction. Further, boundary-layer rakes are restricted to measurements in thick boundary layers. Surface pressure probes such as Stanton tubes

  7. Crystallography and Interphase Boundary of Martensite and Bainite in Steels

    NASA Astrophysics Data System (ADS)

    Furuhara, Tadashi; Chiba, Tadachika; Kaneshita, Takeshi; Wu, Huidong; Miyamoto, Goro

    2017-06-01

    Grain refinements in lath martensite and bainite structures are crucial for strengthening and toughening of high-strength structural steels. Clearly, crystallography of transformation plays an important role in determining the "grain" sizes in these structures. In the present study, crystallography and intrinsic boundary structure of martensite and bainite are described. Furthermore, various extrinsic factors affecting variant selection and growth kinetics, such as elastic/plastic strain and alloying effects on interphase boundary migration, are discussed.

  8. Interaction of two glancing, crossing shock waves with a turbulent boundary-layer at various Mach numbers

    NASA Technical Reports Server (NTRS)

    Hingst, Warren R.; Williams, Kevin E.

    1991-01-01

    A preliminary experimental investigation was conducted to study two crossing, glancing shock waves of equal strengths, interacting with the boundary-layer developed on a supersonic wind tunnel wall. This study was performed at several Mach numbers between 2.5 and 4.0. The shock waves were created by fins (shock generators), spanning the tunnel test section, that were set at angles varying from 4 to 12 degrees. The data acquired are wall static pressure measurements, and qualitative information in the form of oil flow and schlieren visualizations. The principle aim is two-fold. First, a fundamental understanding of the physics underlying this flow phenomena is desired. Also, a comprehensive data set is needed for computational fluid dynamic code validation. Results indicate that for small shock generator angles, the boundary-layer remains attached throughout the flow field. However, with increasing shock strengths (increasing generator angles), boundary layer separation does occur and becomes progressively more severe as the generator angles are increased further. The location of the separation, which starts well downstream of the shock crossing point, moves upstream as shock strengths are increased. At the highest generator angles, the separation appears to begin coincident with the generator leading edges and engulfs most of the area between the generators. This phenomena occurs very near the 'unstart' limit for the generators. The wall pressures at the lower generator angles are nominally consistent with the flow geometries (i.e. shock patterns) although significantly affected by the boundary-layer upstream influence. As separation occurs, the wall pressures exhibit a gradient that is mainly axial in direction in the vicinity of the separation. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  9. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    PubMed

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  10. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    PubMed Central

    Yang, Wei

    2018-01-01

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality. PMID:29671792

  11. Additively manufactured hierarchical stainless steels with high strength and ductility

    DOE PAGES

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; ...

    2017-10-30

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less

  12. Additively manufactured hierarchical stainless steels with high strength and ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less

  13. Modeling shock responses of plastic bonded explosives using material point method

    NASA Astrophysics Data System (ADS)

    Shang, Hailin; Zhao, Feng; Fu, Hua

    2017-01-01

    Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.

  14. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  15. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Jiang, B.; Weng, G. J.

    2004-05-01

    Inspired by recent molecular dynamic simulations of nanocrystalline solids, a generalized self-consistent polycrystal model is proposed to study the transition of yield strength of polycrystalline metals as the grain size decreases from the traditional coarse grain to the nanometer scale. These atomic simulations revealed that a significant portion of atoms resides in the grain boundaries and the plastic flow of the grain-boundary region is responsible for the unique characteristics displayed by such materials. The proposed model takes each oriented grain and its immediate grain boundary to form a pair, which in turn is embedded in the infinite effective medium with a property representing the orientational average of all these pairs. We make use of the linear comparison composite to determine the nonlinear behavior of the nanocrystalline polycrystal through the concept of secant moduli. To this end an auxiliary problem of Christensen and Lo (J. Mech. Phys. Solids 27 (1979) 315) superimposed on the eigenstrain field of Luo and Weng (Mech. Mater. 6 (1987) 347) is first considered, and then the nonlinear elastoplastic polycrystal problem is addressed. The plastic flow of each grain is calculated from its crystallographic slips, but the plastic behavior of the grain-boundary phase is modeled as that of an amorphous material. The calculated yield stress for Cu is found to follow the classic Hall-Petch relation initially, but as the gain size decreases it begins to depart from it. The yield strength eventually attains a maximum at a critical grain size and then the Hall-Petch slope turns negative in the nano-range. It is also found that, when the Hall-Petch relation is observed, the plastic behavior of the polycrystal is governed by crystallographic slips in the grains, but when the slope is negative it is governed by the grain boundaries. During the transition both grains and grain boundaries contribute competitively.

  16. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    NASA Astrophysics Data System (ADS)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  17. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  18. Entanglement entropy of a three-spin-interacting spin chain with a time-reversal-breaking impurity at one boundary.

    PubMed

    Nag, Tanay; Rajak, Atanu

    2018-04-01

    We investigate the effect of a time-reversal-breaking impurity term (of strength λ_{d}) on both the equilibrium and nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model, which can be mapped to a p-wave superconducting chain with next-nearest-neighbor hopping and interaction. Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength for a lower range of λ_{d} and eventually saturates with an exponential damping factor [∼exp(-λ_{d})] for the phase boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear correction in term of λ_{d} for an another phase boundary. Finally, we focus to study the effect of the impurity in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λ_{d} and finally, for higher values of λ_{d}, it increases very slowly dictated by an exponential damping factor. The impurity-induced behavior of EE might bear some deep underlying connection to thermalization.

  19. Entanglement entropy of a three-spin-interacting spin chain with a time-reversal-breaking impurity at one boundary

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Rajak, Atanu

    2018-04-01

    We investigate the effect of a time-reversal-breaking impurity term (of strength λd) on both the equilibrium and nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model, which can be mapped to a p -wave superconducting chain with next-nearest-neighbor hopping and interaction. Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength for a lower range of λd and eventually saturates with an exponential damping factor [˜exp(-λd) ] for the phase boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear correction in term of λd for an another phase boundary. Finally, we focus to study the effect of the impurity in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λd and finally, for higher values of λd, it increases very slowly dictated by an exponential damping factor. The impurity-induced behavior of EE might bear some deep underlying connection to thermalization.

  20. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C — Beyond Grades 91, 92 and 122

    NASA Astrophysics Data System (ADS)

    Abe, Fujio; Tabuchi, M.; Tsukamoto, S.

    Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.

  1. Sustainable construction: composite use of tyres and ash in concrete.

    PubMed

    Snelson, D G; Kinuthia, J M; Davies, P A; Chang, S-R

    2009-01-01

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.

  2. Sustainable construction: Composite use of tyres and ash in concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snelson, D.G.; Kinuthia, J.M.; Davies, P.A.

    2009-01-15

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chipsmore » 15-20 mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.« less

  3. Effect of screw position on single cycle to failure in bending and torsion of a locking plate-rod construct in a synthetic feline femoral gap model.

    PubMed

    Niederhäuser, Simone K; Tepic, Slobodan; Weber, Urs T

    2015-05-01

    To evaluate the effect of screw position on strength and stiffness of a combination locking plate-rod construct in a synthetic feline femoral gap model. 30 synthetic long-bone models derived from beechwood and balsa wood. 3 constructs (2 locking plate-rod constructs and 1 locking plate construct; 10 specimens/construct) were tested in a diaphyseal bridge plating configuration by use of 4-point bending and torsion. Variables included screw position (near the fracture gap and far from the fracture gap) and application of an intramedullary pin. Constructs were tested to failure in each loading mode to determine strength and stiffness. Failure was defined as plastic deformation of the plate or breakage of the bone model or plate. Strength, yield angle, and stiffness were compared by use of a Wilcoxon test. Placement of screws near the fracture gap did not increase bending or torsional stiffness in the locking plate-rod constructs, assuming the plate was placed on the tension side of the bone. Addition of an intramedullary pin resulted in a significant increase in bending strength of the construct. Screw positioning did not have a significant effect on any torsion variables. Results of this study suggested that, in the investigated plate-rod construct, screw insertion adjacent to the fracture lacked mechanical advantages over screw insertion at the plate ends. For surgeons attempting to minimize soft tissue dissection, the decision to make additional incisions for screw placement should be considered with even more caution.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shassere, Benjamin; Yamamoto, Yukinori; Poplawsky, Jonathan

    We have develooped a new Fe-Cr-Al (FCA) alloy system with good oxidation resistance and creep strength at high temperature. The alloy system is a candidate for use in future fossil-fueled power plants. The creep strength of these alloys at 973 K (700 °C) was found to be comparable with traditional 9 pct Cr ferritic–martensitic steels. A few FCA alloys with general composition of Fe-30Cr-3Al-.2Si-xNb (x = 0, 1, or 2) with a ferrite matrix and Fe 2Nb-type Laves precipitates were prepared. The detailed microstructural characterization of samples, before and after creep rupture testing, indicated precipitation of the Laves phase withinmore » the matrix, Laves phase at the grain boundaries, and a 0.5 to 1.5 μm wide precipitate-free zone (PFZ) parallel to all the grain boundaries. In these alloys, the areal fraction of grain boundary Laves phase and the width of the PFZ controlled the cavitation nucleation and eventual grain boundary ductile failure. Finally, we used a phenomenological model to compare the creep strain rates controlled by the effects of the particles on the dislocations within the grain and at grain boundaries. (The research sponsored by US-DOE, Office of Fossil Energy, the Crosscutting Research Program).« less

  5. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jumper, S. J.

    1982-01-01

    A computer program was developed to calculate the three dimensional, steady, incompressible, inviscid, irrotational flow field at the propeller plane (propeller removed) located upstream of an arbitrary airframe geometry. The program uses a horseshoe vortex of known strength to model the wing. All other airframe surfaces are modeled by a network source panels of unknown strength which is exposed to a uniform free stream and the wing-induced velocity field. By satisfying boundary conditions on each panel (the Neumann problem), relaxed boundary conditions being used on certain panels to simulate inlet inflow, the source strengths are determined. From the known source and wing vortex strengths, the resulting velocity fields on the airframe surface and at the propeller plane are obtained. All program equations are derived in detail, and a brief description of the program structure is presented. A user's manual which fully documents the program is cited. Computer predictions of the flow on the surface of a sphere and at a propeller plane upstream of the sphere are compared with the exact mathematical solutions. Agreement is good, and correct program operation is verified.

  6. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  7. Theoretical model for the control of Pleistocene moisture availability in the Tropics: combining independent movement of north and south boundaries of the ITCZ and precessional forcing.

    NASA Astrophysics Data System (ADS)

    Maslin, M. A.

    2008-12-01

    Paleoclimate records of tropical moisture availability suggest there are complex controls. Using marine and continental records from both South America and Africa it is possible to resolve these influences and start to build a theoretical model explaining variations in both rainfall and moisture availability. The first control is the position of the Intertropical Convergence Zone (ITCZ). Evidence is emerging that the northern and southern boundaries of the ITCZ move independently. The extreme seasonal position of the boundary is controlled by the temperature gradient between the Equator and the relevant Pole. The temperature gradient of each Hemisphere is governed primarily by the prevalent boundary condition i.e., whether it is a glacial or interglacial period. The secondary influence are millennial-scale changes such as the Heinrich events. This idea is important as it moves away from the concept that the ITCZ is a fixed band which moves north and south. The second major control is precession which influences seasonality in the Tropics. This is important as it controls the strength of convection in each Hemisphere and thus the strength of the resultant monsoon. For example Amazonia monsoon is controlled by Southern Hemisphere convection strength, while the Congo and SE Asia monsoons are controlled by the Northern Hemisphere. In terms of tropical rainfall it has been shown by GCMs that precession can have the same scale of affect as switching from a glacial to an interglacial period. In summary the relative position of the northern and southern boundaries of the ITCZ controls the location of rainfall. While precession controls the intensity of the convection within the ITZC and thus the strength of the monsoon. This radical new theoretical framework explains why rainfall and moisture records from the same region e.g., Amazonia can be very different on a millennial and centennial time-scale. New evidence from Amazonia and East Africa combined with ice core data will be presented to support this new theoretical model.

  8. Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd–Au Alloy

    PubMed Central

    Skrotzki, Werner; Zhao, Yajun; Pukenas, Aurimas; Birringer, Rainer

    2018-01-01

    Employing a recent modeling scheme for grain boundary sliding [Zhao et al. Adv. Eng. Mater. 2017, doi:10.1002/adem.201700212], crystallographic textures were simulated for nanocrystalline fcc metals deformed in shear compression. It is shown that, as grain boundary sliding increases, the texture strength decreases while the signature of the texture type remains the same. Grain boundary sliding affects the texture components differently with respect to intensity and angular position. A comparison of a simulation and an experiment on a Pd–10 atom % Au alloy with a 15 nm grain size reveals that, at room temperature, the predominant deformation mode is grain boundary sliding contributing to strain by about 60%. PMID:29370130

  9. Construction, Instrumentation, and Testing of Fast-Setting Hydraulic Cement Concrete in Palmdale, California

    DOT National Transportation Integrated Search

    2000-08-01

    To minimize the lane closure time for construction, Caltrans is exploring the use of fast-setting hydraulic cement concrete (FSHCC). The principal property of the FSHCC is its high early strength gain. This accelerated strength gain would increase th...

  10. Feasibility evaluation of utilizing high-strength concrete in design and construction of highway bridge structures.

    DOT National Transportation Integrated Search

    1994-01-01

    The objective of this investigation was to evaluate the feasibility of using high-strength concrete in the design and construction of highway bridge structures. A literature search was conducted; a survey of five regional fabrication plants was perfo...

  11. Strings, vortex rings, and modes of instability

    DOE PAGES

    Gubser, Steven S.; Nayar, Revant; Parikh, Sarthak

    2015-01-12

    We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scalemore » which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.« less

  12. Frequency spirals.

    PubMed

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  13. Fairness at the collective level: a meta-analytic examination of the consequences and boundary conditions of organizational justice climate.

    PubMed

    Whitman, Daniel S; Caleo, Suzette; Carpenter, Nichelle C; Horner, Margaret T; Bernerth, Jeremy B

    2012-07-01

    This article uses meta-analytic methods (k = 38) to examine the relationship between organizational justice climate and unit-level effectiveness. Overall, our results suggest that the relationship between justice and effectiveness is significant (ρ = .40) when both constructs are construed at the collective level. Our results also indicate that distributive justice climate was most strongly linked with unit-level performance (e.g., productivity, customer satisfaction), whereas interactional justice was most strongly related to unit-level processes (e.g., organizational citizenship behavior, cohesion). We also show that a number of factors moderate this relationship, including justice climate strength, the level of referent in the justice measure, the hierarchical level of the unit, and how criteria are classified. We elaborate on these findings and attempt to provide a clearer direction for future research in this area. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  14. Optimization of Cost of Building with Concrete Slabs Based on the Maturity Method

    NASA Astrophysics Data System (ADS)

    Skibicki, Szymon

    2017-10-01

    The maturity method is a well-known technique for determination of mechanical properties of the concrete (e.g. compressive strength) based on the development of temperature during hardening. The compressive strength of concrete can be used to determine necessary striking time of the formwork. Use of this method for this purpose is economically effective and provides necessary safety measures. This method is used in many construction sites. Time of formwork striking depends on many factors e. g. class of concrete, grade of cement, type of cement, temperature, size of the element and air humidity. The existing technical Standards and scientific research on the striking of formwork present different estimated for the striking time. Striking time for the main structural elements ranges from 14 to 21 days. For structura elements such as slabs or beams with a span of more than 6 m need to reach the minimum of 70-85% of their designed strength to remove the formwork depend on the Standards. During the construction of the buildings in summer concrete acquires the required strength for striking of the formwork faster due to the higher ambient temperature. Knowing the maturity method, we are able to estimate the compressive strength of concrete. If concrete have the required strength, the striking time can be shortened. This allows to reduce the overall costs of construction. The more concrete works are done during the construction phase the bigger the generated savings. In this article formwork striking time for concrete slabs in building based on maturity method was determined. The structure was subjected to 10 different simulated weather conditions typical for the Central and Western Europe that varied by localization of the construction. Based on simulated weather conditions the temperature in structural elements was established. The results allowed to determine the formwork striking time using the maturity method. Presented analysis shows that use of the maturity method on construction site can result in lower overall costs due to shorter time of constructing.

  15. Association between V̇O2max, handgrip strength, and musculoskeletal pain among construction and health care workers.

    PubMed

    Moberg, Lene Lehmann; Lunde, Lars-Kristian; Koch, Markus; Tveter, Anne Therese; Veiersted, Kaj Bo

    2017-03-21

    Construction and health care workers have a high prevalence of musculoskeletal disorders, and they are assumed to have physically demanding jobs. Profession- and gender-specific associations between individual capacity and musculoskeletal pain have not been sufficiently investigated. The main aim of this study was to examine the association between individual capacity (maximal oxygen uptake (V̇O 2max ) and handgrip strength) and musculoskeletal pain among construction and health care workers. This cross-sectional study examined 137 construction and health care workers (58 women and 79 men) with a mean age of 41.8 years (standard deviation 12). Aerobic capacity was indirectly assessed by the Åstrand cycle test, and strength was assessed by a handgrip test. Musculoskeletal pain was described by total pain, divided into neck, shoulder, and low back pain, during the last 12 months, and it was dichotomized in below or above 30 days. Logistic regression was used to analyse the associations between V̇O 2max , strength, and musculoskeletal pain in the total study sample and separately for construction and health care workers. Analyses were adjusted for age, gender, body mass index (BMI), and selected mechanical and psychosocial factors. Every second participant (51.8%) reported pain in either neck, shoulders or low back for more than 30 days during the last 12 months. Among the health care workers, a small but significant association was found between a high V̇O 2max , high handgrip strength, and a low level of musculoskeletal pain. No association was found for the construction workers. An association between V̇O 2max, handgrip strength, and musculoskeletal pain was found for health care workers but not for construction workers. These results indicate that activities promoting individual capacity may reduce musculoskeletal pain for health care workers.

  16. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Inoue, T.; Ishiwata, J.

    2015-12-01

    Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.

  17. Polarimetry and spectroscopy of a simple sunspot. I - On the magnetic field of a sunspot penumbra

    NASA Technical Reports Server (NTRS)

    Schmidt, W.; Hofmann, A.; Balthasar, H.; Tarbell, T. D.; Frank, Z. A.

    1992-01-01

    We investigate the magnetic field structure of a medium sized sunspot using high resolution magnetograms and spectrograms and derive a relationship between the brightness of penumbral structures and the inclination of the magnetic field. The field inclination to the spot normal is larger in the dark structures than in the bright ones. We show that the field strength does not vary between dark and bright structures. At the inner penumbral boundary the field strength is 2000 Gauss and about 1000 Gauss at the outer penumbral edge. The line-of sight component of the material flow decreases rapidly within one arcsecond at the photospheric boundary of the spot.

  18. Investigation of the strength of shielded and unshielded underwater electrical cables

    NASA Astrophysics Data System (ADS)

    Glowe, D. E.; Arnett, S. L.

    1981-09-01

    The mechanical properties of shielded and unshielded submarine cables (MIL-C-915/8E) were investigated to determine the effect of shielding on cable life, performance, and reliability. Ten cables (five shielded and five unshielded) were selected for laboratory evaluation. A mission profile was developed to establish the mechanical stress limits that cables must endure in service and a test sequence designed to measure tensile strength, flexural abrasion endurance, crush resistance, creep under static tension, and performance in a hull-stuffing tube. The results of this program showed that: (1) DSS-2 cable does not have adequate tensile strength and should have a strength member added. DSS-3 and larger cables have adequate tensile strength with or without the shield; (2) Unshielded DSS-3 type cable does not perform satisfactorily in hull-stuffing tubes; (3) Shielding is not required to meet mission profile specifications for cable crush or flexural abrasion resistance; (4) Construction parameters other than shielding can significantly affect mechanical performance of cable; (5) Unshielded cable construction can result in increased reliability since it permits a thicker single-jacket construction; and (6) Unshielded cable construction can reduce the cost of cable by 8 to 20 percent.

  19. Properties of a hybrid plaster-fibreglass cast

    PubMed Central

    Charles, Mark N.; Yen, David

    2000-01-01

    Objective To examine the suitability of a plaster-fibreglass hybrid cast for orthopedic applications, comparing them to plaster of Paris (POP) and fibreglass constructs. Method Groups of 10 standardized hybrid, POP and fibreglass casts were studied. An Instron servo-hydraulic system was used to test the casts in 3-point bending and shear. Outcome measures Strength, stiffness, weight, thickness and cost of the 3 types of cast, and shear strength at the interface between the POP and fibreglass in the hybrid casts. Results The hybrid casts were twice as strong as the POP constructs, were stiffer and weighed 14% less but were thicker and cost 2.5 times more. They were almost as strong as and less than half the cost of the fibreglass constructs but were thicker, not as stiff, and weighed 42% more. The shear strength of the POP–fibreglass interface in the hybrid casts was higher than the 3-point bending strength of this construct by a factor of 3. Conclusions Plaster-fibreglass hybrid casts should be considered for orthopedic use on the basis of their strength, stiffness, weight and cost, combined with their acknowledged advantages of good moulding ability and water resistance. PMID:11045095

  20. Feasibility evaluation of utilizing high strength concrete in design and construction of highway bridge structures : interim report.

    DOT National Transportation Integrated Search

    1992-12-01

    The objective of this investigation was to evaluate the feasibility of using high-strength concrete in the design and construction of highway bridge structures. A literature search was conducted; a survey of five regional fabrication plants was perfo...

  1. Impairment Effects as a Career Boundary: A Case Study of Disabled Academics

    ERIC Educational Resources Information Center

    Williams, Jannine; Mavin, Sharon

    2015-01-01

    Within the academic career literature, disabled academics are under-researched, despite calls for career theory development through the exploration of marginalized groups' career experiences and the boundaries which shape these experiences. Here, boundaries refer to the symbolic resources which become reified to construct social boundaries…

  2. Advancing Measurement of Work and Family Domain Boundary Characteristics

    ERIC Educational Resources Information Center

    Matthews, Russell A.; Barnes-Farrell, Janet L.; Bulger, Carrie A.

    2010-01-01

    Recent research offers promising theoretical frameworks for thinking about the work-family interface in terms of the boundaries individuals develop around work and family. However, measures for important constructs proposed by these theories are needed. Using two independent samples, we report on the refinement of existing "boundary flexibility"…

  3. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1991-01-01

    An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.

  4. Streamline integration as a method for two-dimensional elliptic grid generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.

    We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less

  5. Grain boundary stability and influence on ionic conductivity in a disordered perovskite -- a first-principles investigation of lithium lanthanum titanate

    DOE PAGES

    Alexander, Kathleen C.; Ganesh, P.; Chi, Miaofang; ...

    2016-12-01

    The origin of ionic conductivity in bulk lithium lanthanum titanate, a promising solid electrolyte for Li-ion batteries, has long been under debate, with experiments showing lower conductivity than predictions. Recent microscopy images show Type I and Type II grain boundaries. Using first-principles based calculations we find that experimentally observed Type I boundaries are more stable compared to the Type II grain boundaries, consistent with their observed relative abundance. Grain boundary stability appears to strongly anti-correlate with the field strength as well as the spatial extent of the space charge region. Ion migration is faster along Type II grain boundaries thanmore » across, consistent with recent experiments of increased conductivity when Type II densities were increased.« less

  6. Algorithm based on regional separation for automatic grain boundary extraction using improved mean shift method

    NASA Astrophysics Data System (ADS)

    Zhenying, Xu; Jiandong, Zhu; Qi, Zhang; Yamba, Philip

    2018-06-01

    Metallographic microscopy shows that the vast majority of metal materials are composed of many small grains; the grain size of a metal is important for determining the tensile strength, toughness, plasticity, and other mechanical properties. In order to quantitatively evaluate grain size in metals, grain boundaries must be identified in metallographic images. Based on the phenomenon of grain boundary blurring or disconnection in metallographic images, this study develops an algorithm based on regional separation for automatically extracting grain boundaries by an improved mean shift method. Experimental observation shows that the grain boundaries obtained by the proposed algorithm are highly complete and accurate. This research has practical value because the proposed algorithm is suitable for grain boundary extraction from most metallographic images.

  7. The influence of grain boundary geometry on intergranular crack propagation in Ni[sub 3]Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Lin; Pope, D.P.

    1993-02-01

    The distribution of grain boundary types along intergranular cracks in Ni[sub 3]Al was measured, by [Sigma] value, and compared to the distribution in the bulk, using statistically significant sample sizes. It was found that low angle ([Sigma] 1) and symmetrical [Sigma]3 boundaries (twins) are particularly strong, and all high angle boundaries, independent of their [Sigma] values are weak. In particular, low [Sigma], high angle boundaries, as a group, are also weak. These results are in qualitative agreement with predictions based on the structural unit model and imply that the fracture strength of an intergranularly brittle polycrystalline aggregate can be increasedmore » only by increasing the fraction of low angle and symmetrical [Sigma]3 boundaries.« less

  8. Influence of processing factors over concrete strength.

    NASA Astrophysics Data System (ADS)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  9. Solidification/stabilization of dredged marine sediments for road construction.

    PubMed

    Wang, Dong Xing; Abriak, Nor Edine; Zentar, Rachid; Xu, WeiYa

    2012-01-01

    Cement/lime-based solidification is an environmentally sound solution for the management of dredged marine sediments, instead of traditional solutions such as immersion. Based on the mineralogical composition and physical characteristics of Dunkirk sediments, the effects of cement and lime are assessed through Atterberg limits, modified Proctor compaction, unconfined compressive strength and indirect tensile strength tests. The variation of Atterberg limits and the improvement in strength are discussed at different binder contents. The potential of sediments solidified with cement or lime for road construction is evaluated through a proposed methodology from two aspects: I-CBR value and material classification. The test results show the feasibility of solidified dredged sediments for beneficial use as a material in road construction. Cement is superior to lime in terms of strength improvement, and adding 6% cement is an economic and reasonable method to stabilize fine sediments.

  10. Quantitative Relationships Linking Rock Strength to Channel Morphology: A Case Study in Central Arizona

    NASA Astrophysics Data System (ADS)

    Larimer, J. E.; Yanites, B.

    2016-12-01

    River morphology is a consequence of the erosive forces acting on the channel boundary and the resisting forces that limit erosion. For bedrock rivers, the erosive forces are generated by the stresses exerted by impacting sediment and flowing water, while the resisting forces are controlled by the internal strength regime of the local rock. We investigate the susceptibility of different rock types to different erosional processes (i.e. abrasion and plucking) and how changes in channel morphology reflect rock strength properties across lithologic boundaries. The bedrock rivers in the Prescott National Forest, AZ flow over a number of rock types with variable strength including sedimentary, igneous, and metamorphic lithologies providing a natural experiment to quantify the influence of rock strength on channel morphology. We collected bedrock samples and channel surveys from 12 different rock types. Rock-strength and rock-mass properties include compressive strength, tensile strength, fatigue strength, decimeter scale P-wave velocity (varies by 8-fold), Schmidt rebound value, fracture spacing, fracture aperture, and slake durability (as a proxy for weathering susceptibility. Morphological measurements include channel width, channel steepness (varies by 10-fold), and grain size distribution. To distinguish between the major mechanisms of erosion we measure bedrock surface roughness factor at the centimeter scale. Preliminary results show that channel steepness (ksn) increases with P-wave velocity while normalized channel width (kwn) decreases with P-wave velocity. We use these data to quantify scaling relationships of channel geometry with rock strength properties. We consider the results in the context of the driving mechanistic process to develop new quantitative understandings of how rock strength properties influence the efficiency of erosion processes and how rock strength is reflected in river morphology. By comparing the results among different rock types in a landscape subject to spatially consistent tectonic and climatic influence, our work seeks to advance process-based river erosion models through field and laboratory measurements.

  11. Use of high performance, high strength concrete (HPC) bulb-tee girders saves millions on I-10 twin span bridge in New Orleans district.

    DOT National Transportation Integrated Search

    2005-01-01

    History: LADOTD has been gradually introducing high performance, high strength concrete into its bridge construction program. At the same time, LTRC has been sponsoring research work to address design and construction issues related to the utilizatio...

  12. Redefining the "English" Major: Adding Strength to Strength

    ERIC Educational Resources Information Center

    Isip, J. D.

    2012-01-01

    Harvard served as a model for English Departments in the past and, with its 2008-2009 changes, it seems to take the mantle in providing yet another model. However, I propose a much more radical approach to creating an undergraduate "English" curriculum that does more than push the boundaries of traditional study of English literatures. I…

  13. The local strength of individual alumina particles

    NASA Astrophysics Data System (ADS)

    Pejchal, Václav; Fornabaio, Marta; Žagar, Goran; Mortensen, Andreas

    2017-12-01

    We implement the C-shaped sample test method and micro-cantilever beam testing to measure the local strength of microscopic, low-aspect-ratio ceramic particles, namely high-purity vapor grown α-alumina Sumicorundum® particles 15-30 μm in diameter, known to be attractive reinforcing particles for aluminum. Individual particles are shaped by focused ion beam micromachining so as to probe in tension a portion of the particle surface that is left unaffected by ion-milling. Mechanical testing of C-shaped specimens is done ex-situ using a nanoindentation apparatus, and in the SEM using an in-situ nanomechanical testing system for micro-cantilever beams. The strength is evaluated for each individual specimen using bespoke finite element simulation. Results show that, provided the particle surface is free of readily observable defects such as pores, twins or grain boundaries and their associated grooves, the particles can achieve local strength values that approach those of high-perfection single-crystal alumina whiskers, on the order of 10 GPa, outperforming high-strength nanocrystalline alumina fibers and nano-thick alumina platelets used in bio-inspired composites. It is also shown that by far the most harmful defects are grain boundaries, leading to the general conclusion that alumina particles must be single-crystalline or alternatively nanocrystalline to fully develop their potential as a strong reinforcing phase in composite materials.

  14. Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. M.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2011-07-01

    The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.

  15. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements

    NASA Astrophysics Data System (ADS)

    Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona

    2018-01-01

    Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.

  16. Epitaxially influenced boundary layer model for size effect in thin metallic films

    NASA Astrophysics Data System (ADS)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  17. Driving forces: Slab subduction and mantle convection

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  18. Acoustic Source Analysis of Magnetoacoustic Tomography With Magnetic Induction for Conductivity Gradual-Varying Tissues.

    PubMed

    Wang, Jiawei; Zhou, Yuqi; Sun, Xiaodong; Ma, Qingyu; Zhang, Dong

    2016-04-01

    As a multiphysics imaging approach, magnetoacoustic tomography with magnetic induction (MAT-MI) works on the physical mechanism of magnetic excitation, acoustic vibration, and transmission. Based on the theoretical analysis of the source vibration, numerical studies are conducted to simulate the pathological changes of tissues for a single-layer cylindrical conductivity gradual-varying model and estimate the strengths of sources inside the model. The results suggest that the inner source is generated by the product of the conductivity and the curl of the induced electric intensity inside conductivity homogeneous medium, while the boundary source is produced by the cross product of the gradient of conductivity and the induced electric intensity at conductivity boundary. For a biological tissue with low conductivity, the strength of boundary source is much higher than that of the inner source only when the size of conductivity transition zone is small. In this case, the tissue can be treated as a conductivity abrupt-varying model, ignoring the influence of inner source. Otherwise, the contributions of inner and boundary sources should be evaluated together quantitatively. This study provide basis for further study of precise image reconstruction of MAT-MI for pathological tissues.

  19. Strength of visual interpolation depends on the ratio of physically specified to total edge length.

    PubMed

    Shipley, T F; Kellman, P J

    1992-07-01

    We report four experiments in which the strength of edge interpolation in illusory figure displays was tested. In Experiment 1, we investigated the relative contributions of the lengths of luminance-specified edges and the gaps between them to perceived boundary clarity as measured by using a magnitude estimation procedure. The contributions of these variables were found to be best characterized by a ratio of the length of luminance-specified contour to the length of the entire edge (specified plus interpolated edge). Experiment 2 showed that this ratio predicts boundary clarity for a wide range of ratio values and display sizes. There was no evidence that illusory figure boundaries are clearer in displays with small gaps than they are in displays with larger gaps and equivalent ratios. In Experiment 3, using a more sensitive pairwise comparison paradigm, we again found no such effect. Implications for boundary interpolation in general, including perception of partially occluded objects, are discussed. The dependence of interpolation on the ratio of physically specified edges to total edge length has the desirable ecological consequence that unit formation will not change with variations in viewing distance.

  20. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.

    PubMed

    Gong, Yixiao; Lazaris, Charalampos; Sakellaropoulos, Theodore; Lozano, Aurelie; Kambadur, Prabhanjan; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis

    2018-02-07

    The metazoan genome is compartmentalized in areas of highly interacting chromatin known as topologically associating domains (TADs). TADs are demarcated by boundaries mostly conserved across cell types and even across species. However, a genome-wide characterization of TAD boundary strength in mammals is still lacking. In this study, we first use fused two-dimensional lasso as a machine learning method to improve Hi-C contact matrix reproducibility, and, subsequently, we categorize TAD boundaries based on their insulation score. We demonstrate that higher TAD boundary insulation scores are associated with elevated CTCF levels and that they may differ across cell types. Intriguingly, we observe that super-enhancers are preferentially insulated by strong boundaries. Furthermore, we demonstrate that strong TAD boundaries and super-enhancer elements are frequently co-duplicated in cancer patients. Taken together, our findings suggest that super-enhancers insulated by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to promote oncogenesis.

  1. Dispersion-relation-preserving finite difference schemes for computational acoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1993-01-01

    Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.

  2. Improved toughness of refractory compounds. [with elimination of the grain boundary phase

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Niesz, D. E.

    1974-01-01

    The concept of grain-boundary-engineering through elimination of the grain-boundary silicate phase in silicon nitride was developed. The process involved removal of the silica from the nitride powder via a thermal treatment coupled with the use of nitride additives to compensate the remaining oxygen. Magnesium and aluminum nitrides are found to be the most effective additive for use as oxygen compensators. Strength decreases at elevated temperatures are not observed in the alumina containing material. The creep rate of a dual additive sialon composition was two orders of magnitude lower at 1400 C than commercial silicon nitride. A cursory analysis of the creep mechanism indicate that grain-boundary sliding is avoided through elimination of the grain-boundary silicate phase.

  3. Compression deformation of WC: atomistic description of hard ceramic material

    NASA Astrophysics Data System (ADS)

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-01

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  4. Compression deformation of WC: atomistic description of hard ceramic material.

    PubMed

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-24

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  5. Experimental research on crossing shock wave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  6. Vanishing Boundaries: When Teaching "about" Religion Becomes "Spiritual Guidance" in the Classroom

    ERIC Educational Resources Information Center

    Simmons, John K.

    2006-01-01

    This article revisits the pedagogical dilemma of maintaining neutrality in the religious studies/theology classroom. I argue that if the boundary between teaching about religion and actually teaching spirituality seems to be vanishing, it is because the boundary was inappropriately constructed in the first place. To the extent that the religious…

  7. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-09-10

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  8. First-principles study of the effect of phosphorus on nickel grain boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenguan; Ren, Cuilan; Han, Han, E-mail: hanhan@sinap.ac.cn, E-mail: xuhongjie@sinap.ac.cn

    2014-01-28

    Based on first-principles quantum-mechanical calculations, the impurity-dopant effects of phosphorus on Σ5(012) symmetrical tilt grain boundary in nickel have been studied. The calculated binding energy suggests that phosphorus has a strong tendency to segregate to the grain boundary. Phosphorus forms strong and covalent-like bonding with nickel, which is beneficial to the grain boundary cohesion. However, a too high phosphorus content can result in a thin and fragile zone in the grain boundary, due to the repulsion between phosphorus atoms. As the concentration of phosphorus increases, the strength of the grain boundary increases first and then decreases. Obviously, there exists anmore » optimum concentration for phosphorus segregation, which is consistent with observed segregation behaviors of phosphorus in the grain boundary of nickel. This work is very helpful to understand the comprehensive effects of phosphorus.« less

  9. Heat kernel for the elliptic system of linear elasticity with boundary conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Justin; Kim, Seick; Brown, Russell

    2014-10-01

    We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.

  10. Responsiveness of performance-based outcome measures for mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1.

    PubMed

    Kierkegaard, Marie; Petitclerc, Émilie; Hébert, Luc J; Mathieu, Jean; Gagnon, Cynthia

    2018-02-28

    To assess changes and responsiveness in outcome measures of mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1. A 9-year longitudinal study conducted with 113 patients. The responsiveness of the Timed Up and Go test, Berg Balance Scale, quantitative muscle testing, grip and pinch-grip strength, and Purdue Pegboard Test was assessed using criterion and construct approaches. Patient-reported perceived changes (worse/stable) in balance, walking, lower-limb weakness, stair-climbing and hand weakness were used as criteria. Predefined hypotheses about expected area under the receiver operating characteristic curves (criterion approach) and correlations between relative changes (construct approach) were explored. The direction and magnitude of median changes in outcome measures corresponded with patient-reported changes. Median changes in the Timed Up and Go test, grip strength, pinch-grip strength and Purdue Pegboard Test did not, in general, exceed known measurement errors. Most criterion (72%) and construct (70%) approach hypotheses were supported. Promising responsiveness was found for outcome measures of mobility, balance and muscle strength. Grip strength and manual dexterity measures showed poorer responsiveness. The performance-based outcome measures captured changes over the 9-year period and responsiveness was promising. Knowledge of measurement errors is needed to interpret the meaning of these longitudinal changes.

  11. Heterogeneous Creep Deformations and Correlation to Microstructures in Fe-30Cr-3Al Alloys Strengthened by an Fe 2Nb Laves Phase

    DOE PAGES

    Shassere, Benjamin; Yamamoto, Yukinori; Poplawsky, Jonathan; ...

    2017-08-07

    We have develooped a new Fe-Cr-Al (FCA) alloy system with good oxidation resistance and creep strength at high temperature. The alloy system is a candidate for use in future fossil-fueled power plants. The creep strength of these alloys at 973 K (700 °C) was found to be comparable with traditional 9 pct Cr ferritic–martensitic steels. A few FCA alloys with general composition of Fe-30Cr-3Al-.2Si-xNb (x = 0, 1, or 2) with a ferrite matrix and Fe 2Nb-type Laves precipitates were prepared. The detailed microstructural characterization of samples, before and after creep rupture testing, indicated precipitation of the Laves phase withinmore » the matrix, Laves phase at the grain boundaries, and a 0.5 to 1.5 μm wide precipitate-free zone (PFZ) parallel to all the grain boundaries. In these alloys, the areal fraction of grain boundary Laves phase and the width of the PFZ controlled the cavitation nucleation and eventual grain boundary ductile failure. Finally, we used a phenomenological model to compare the creep strain rates controlled by the effects of the particles on the dislocations within the grain and at grain boundaries. (The research sponsored by US-DOE, Office of Fossil Energy, the Crosscutting Research Program).« less

  12. Attitudes about race predict individual differences in face adaptation aftereffects.

    PubMed

    Elliott, Sarah L; Chu, Kelly; Coleman, Jill

    2017-12-01

    This study examined whether category boundaries between Black and White faces relate to individual attitudes about race. Fifty-seven (20 Black, 37 White) participants completed measures of explicit racism, implicit racism, collective self-esteem (CSE), and racial centrality. Category boundaries between Black and White faces were measured in three separate conditions: following adaptation to (1) a neutral gray background, a sequence of (2) Black or (3) White faces. Two additional conditions measured category boundaries for facial distortion to investigate whether attitudes relate to mechanisms of racial identity alone, or to more global mechanisms of face perception. Using a two-alternative forced-choice staircase procedure, participants indicated whether a test image appeared to be Black or White (or contracted or expanded). Following neutral adaptation, participants with higher CSE showed category boundaries shifted toward faces with a higher percentage of Black features. In addition, the strength of short-term sensitivity shifts following adaptation to Black and White faces was related to explicit and implicit attitudes about race. Sensitivity shifts were weaker when participants scored higher on explicit racism, but were stronger when participants scored higher on implicit but lower on explicit racism. The results of this study indicate that attitudes about race account for some individual differences in natural category boundaries between races as well as the strength of identity aftereffects following face adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anderson localization of light near boundaries of disordered photonic lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovic, Dragana M.; Texas A and M University at Qatar, P. O. Box 23874, Doha; Kivshar, Yuri S.

    We study numerically the effect of boundaries on Anderson localization of light in truncated two-dimensional photonic lattices in a nonlinear medium. We demonstrate suppression of Anderson localization at the edges and corners, so that stronger disorder is needed near the boundaries to obtain the same localization as in the bulk. We find that the level of suppression depends on the location in the lattice (edge vs corner), as well as on the strength of disorder. We also discuss the effect of nonlinearity on various regimes of Anderson localization.

  14. Recycling of waste spent catalyst in road construction and masonry blocks.

    PubMed

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  16. Effect of Si content on fatigue fracture behavior of hot-rolled high-silicon steels

    NASA Astrophysics Data System (ADS)

    Umezawa, Osamu; Kanda, Jyunichi; Yamazaki, Takao

    2017-05-01

    As the Si content was increased from 1.5 to 5 mass%, both the yield stress and ultimate tensile strength were increased, respectively. The work hardening rate was also increased as the increase of Si content. On the contrary, the elongation was decreased as the increase of Si content, and the fracture manner was shifted from ductile to brittle. The 107 cycles fatigue strength was higher as the increase of Si content. The small misorientation distribution as ladder-like was detected in the grains of 1.5 mass%Si steel. Around the grain boundary, the strain incompatibility was detected in the steels containing over 3 mass%Si. The lattice rotation was locally detected in the vicinity of grain boundaries.

  17. Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji

    Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.

  18. The effect of varying Mach number on crossing, glancing shocks/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Williams, K. E.

    1991-01-01

    Two crossing side-wall shocks interacting with a supersonic tunnel wall boundary layer have been investigated over a Mach number range of 2.5 to 4.0. The investigation included a range of equal shock strengths produced by shock generators at angles from 4.0 to 12.0 degrees. Results of flow visualization show that the interaction is unseparated at the low shock generator angles. With increasing shock strength, the flow begins to form a separated region that grows in size and moves forward and eventually the model unstarts. The wall static pressures show a symmetrical compression that merges on the centerline upstream of the inviscid shock locations and becomes more 1D downstream. The region of the 1D pressure gradient moves upstream with increasing shock strengths until it coincides with the leading edge of the shock generators at the limit before model unstart. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  19. Strength of fixation constructs for basilar osteotomies of the first metatarsal.

    PubMed

    Lian, G J; Markolf, K; Cracchiolo, A

    1992-01-01

    Twenty-four pairs of fresh-frozen human feet had a proximal osteotomy of the first metatarsal that was fixed using either screws, staples, or K wires. Each metatarsal was excised and the specimen was loaded to failure in a cantilever beam configuration by applying a superiorly directed force to the metatarsal head using an MTS servohydraulic test machine. Specimens with a crescentic osteotomy that were fixed using a single screw demonstrated higher mean failure moments than pairs that were fixed with four staples or two K wires; staples were the weakest construct. All specimens fixed with staples failed by bending of the staples without bony fracture; all K wire constructs but one failed by wire bending. Chevron and crescentic osteotomies fixed with a single screw demonstrated equal bending strengths; the bending strength of an oblique osteotomy fixed with two screws was 82% greater than for a crescentic osteotomy fixed with a single screw. Basilar osteotomies of the first metatarsal are useful in correcting metatarsus primus varus often associated with hallux valgus pathology. Fixation strength is an important consideration since weightbearing forces on the head of the first metatarsal acting at a distance from the osteotomy site subject the construct to a dorsiflexion bending moment, as simulated in our tests. Our results show that screw fixation is the strongest method for stabilizing a basilar osteotomy. Based upon the relatively low bending strengths of the staple and K wire constructs, we would not recommend these forms of fixation.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Multiple Positive Solutions in the Second Order Autonomous Nonlinear Boundary Value Problems

    NASA Astrophysics Data System (ADS)

    Atslega, Svetlana; Sadyrbaev, Felix

    2009-09-01

    We construct the second order autonomous equations with arbitrarily large number of positive solutions satisfying homogeneous Dirichlet boundary conditions. Phase plane approach and bifurcation of solutions are the main tools.

  1. The structure of 110 tilt boundaries in large area solar silicon

    NASA Technical Reports Server (NTRS)

    Ast, D. G.; Cunningham, B.; Vaudin, M.

    1982-01-01

    The models of Hornstra and their connection to the repeating group description of grain boundaries (7-10) are discussed. A model for the Sigma = 27 boundary containing a zig-zag arrangement of dislocations is constructed and it is shown that zig-zag models can account for the contrast features observed in high resolution transmission electron micrographs of second and third order twin boundaries in silicon. The boundaries discussed are symmetric with a 110 tilt axis and a (110) boundary plane in the median lattice (the median plane). The median lattice is identical in structure and halfway in orientation between the crystal lattices either side of the boundary.

  2. Stress Rotation Across the Cascadia Megathrust Requires a Weak Subduction Plate Boundary at Seismogenic Depths

    NASA Astrophysics Data System (ADS)

    Li, D.; McGuire, J. J.; Liu, Y.; Hardebeck, J.

    2017-12-01

    Despite the great effort spent investigating subduction zones, there are very limited constraints on the stress state on the plate boundary fault at the depth of megathrust earthquakes. Here we utilize a focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. We present a high-resolution inversion for the principal stress orientations both above and below the thrust interface in the southern Cascadia Subduction zone. The distinctive stresses above and below the interface require a significant stress rotation within 10 km of the plate boundary. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our approach utilizes the continuous traction boundary conditions between layers as well as the observed principal stress orientations and the relative magnitude ratios in the crust and subducting mantle as constraints. Our results indicate that the shear stress on the plate boundary fault is likely no more than about 50 MPa at 20 km depth. Regardless of the assumed upper mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of 0 to 0.2 at seismogenic depths. The central question for the Cascadia subduction zone is why it remains seismically quiet despite the 300+ years of stress accumulation since the last megathrust earthquake. For example, we also document that no thrust earthquakes were recorded by the 2-year Cascadia Initiative expedition down to magnitude 2.0, despite the stress perturbation generated by a nearby Mw5.7 earthquake on Jan 28th, 2015, on the Mendocino Transform fault. To help answer that question, we provide a new and fundamental constraint on the absolute level of stress accumulation to date in the current seismic cycle. Our technique for evaluating the absolute level of stress in subduction zones can be applied at a number of regions around the globe as datasets improve.

  3. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.

  4. Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2014-01-01

    The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.

  5. Crossing Educational Boundaries: Text, Technology, and Dialogue as a Critical Pathway

    ERIC Educational Resources Information Center

    Abnet, LaNae; Nichols, Joe D.; Moss, Glenda

    2008-01-01

    Can the perceived boundary between professor and student be crossed? Can technology be used as a pathway to cross that boundary? These questions were answered as a result of a project initiated to meet the requirements in creating an honors option for an undergraduate educational psychology course. In constructing the course requirements, the…

  6. Quasicontinuum analysis of dislocation-coherent twin boundary interaction to provide local rules to discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.

    2017-10-01

    The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.

  7. Explicit role of ionic strength in retention behavior of polystyrene latex particles in sedimentation field-flow fractionation: Slip boundary model.

    PubMed

    Rah, Kyunil; Han, Sujeong; Choi, Jaeyeong; Eum, Chul Hun; Lee, Seungho

    2017-12-15

    We investigate an explicit role of the ionic strength in the retention behaviors of polystyrene (PS) latex particles in sedimentation field-flow fractionation (SdFFF) by hinging upon the retention theory recently developed [1] asR=(R o +v b * )/(1+v b * ). Here R is an experimental retention ratio, and R o is the analytical expression of the standard retention theory based on the parabolic flow velocity. The reduced boundary velocityv b * is expressed in terms of the ionic strength I of the carrier liquid as v b * =v b,o * /(1+εI), where v b,o * =0.070and ε=60 mM -1 for all the PS latex systems under investigation. We then apply this to study the explicit ionic strength effect on the retention behaviors of PS beads of 200, 300, 400, and 500nm, respectively. As a primary result, the strong dependence of the retention ratio on the ionic strength can be quantitatively accounted for in an excellent accuracy: The slip effect at the channel surface is significant, particularly when I≲0.5mM, without showing any distinguishable dependence on the specific additives to control I, such as FL-70, SDS, NaNO 3 , and NaN 3 . Based on the present study, we put forward an experimental means to estimate the ionic strength of an aqueous solution using an FFF technique. Copyright © 2017. Published by Elsevier B.V.

  8. Strengthening and toughening mechanisms in low-c microalloyed martensitic steel as influenced by austenite conditioning

    NASA Astrophysics Data System (ADS)

    Kennett, Shane C.

    Three low-carbon ASTM A514 microalloyed steels were used to assess the effects of austenite conditioning on the microstructure and mechanical properties of martensite. A range of prior austenite grain sizes with and without thermomechanical processing were produced in a Gleeble RTM 3500 and direct-quenched. Samples in the as-quenched, low temperature tempered, and high temperature tempered conditions were studied. The microstructure was characterized with scanning electron microscopy, electron backscattered diffraction, transmission electron microscopy, and x-ray diffraction. The uniaxial tensile properties and Charpy V-notch properties were measured and compared with the microstructural features (prior austenite grain size, packet size, block size, lath boundaries, and dislocation density). For the equiaxed prior austenite grain conditions, prior austenite grain size refinement decreases the packet size, decreases the block size, and increases the dislocation density of as-quenched martensite. However, after high temperature tempering the dislocation density decreases with prior austenite grain size refinement. Thermomechanical processing increases the low angle substructure, increases the dislocation density, and decreases the block size of as-quenched martensite. The dislocation density increase and block size refinement is sensitive to the austenite grain size before ausforming. The larger prior austenite grain size conditions have a larger increase in dislocation density, but the small prior austenite grain size conditions have the largest refinement in block size. Additionally, for the large prior austenite grain size conditions, the packet size increases with thermomechanical processing. The strength of martensite is often related to an effective grain size or carbon concentration. For the current work, it was concluded that the strength of martensite is primarily controlled by the dislocation density and dislocation substructure; which is related to a grain size and carbon concentration. In the microyielding regime, the strength and work hardening is related to the motion of unpinned dislocation segments. However, with tensile strain, a dislocation cell structure is developed and the flow strength (greater than 1% offset) is controlled by the dislocation density following a Taylor hardening model, thereby ruling out any grain size effects on the flow strength. Additionally, it is proposed that lath boundaries contribute to strength. It is shown that the strength differences associated with thermomechanically processed steels can be fully accounted for by dislocation density differences and the effect of lath boundaries. The low temperature ductile to brittle transition of martensite is controlled by the martensite block size, packet size, and prior austenite grain size. However, the effect of block size is likely small in comparison. The ductile to brittle transition temperature is best correlated to the inverse square root of the martensite packet size because large crack deflections are typical at packet boundaries.

  9. Riveting in metal airplane construction. Part III : strength of riveted joints in duralumin (continued)

    NASA Technical Reports Server (NTRS)

    Pleines, Wilhelm

    1930-01-01

    This report includes strength of riveted joints in duralumin, descriptions of test procedure and results of tests. Tabulated data includes: curshing strength by failure for various conditions, shearing strength of hole edge zone in direction of tearing, tearing strengths of plates weakened by rivet holes, and enlargement of holes at beginning of break.

  10. Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces

    NASA Astrophysics Data System (ADS)

    Mantile, Andrea; Posilicano, Andrea; Sini, Mourad

    2016-07-01

    The theory of self-adjoint extensions of symmetric operators is used to construct self-adjoint realizations of a second-order elliptic differential operator on Rn with linear boundary conditions on (a relatively open part of) a compact hypersurface. Our approach allows to obtain Kreĭn-like resolvent formulae where the reference operator coincides with the ;free; operator with domain H2 (Rn); this provides an useful tool for the scattering problem from a hypersurface. Concrete examples of this construction are developed in connection with the standard boundary conditions, Dirichlet, Neumann, Robin, δ and δ‧-type, assigned either on a (n - 1) dimensional compact boundary Γ = ∂ Ω or on a relatively open part Σ ⊂ Γ. Schatten-von Neumann estimates for the difference of the powers of resolvents of the free and the perturbed operators are also proven; these give existence and completeness of the wave operators of the associated scattering systems.

  11. Refined open intersection numbers and the Kontsevich-Penner matrix model

    NASA Astrophysics Data System (ADS)

    Alexandrov, Alexander; Buryak, Alexandr; Tessler, Ran J.

    2017-03-01

    A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.

  12. Using Mindfulness-Based Strengths Practices with Gifted Populations

    ERIC Educational Resources Information Center

    Sharp, Jennifer E.; Niemiec, Ryan M.; Lawrence, Christopher

    2017-01-01

    Mindfulness and character strengths are synergistic tools that work together to cultivate well-being. Mindfulness-Based Strengths Practice (MBSP) combines the research and practice of these constructs to enhance well-being, meaning, and engagement. In this article, research supporting how mindfulness and character strengths may benefit the gifted…

  13. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    DOT National Transportation Integrated Search

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  14. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    NASA Astrophysics Data System (ADS)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  15. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    USGS Publications Warehouse

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  16. Effect of Hot Rolling on the Microstructure and Mechanical Properties of Nitrogen Alloyed Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.

    2018-05-01

    In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.

  17. Effect of Hot Rolling on the Microstructure and Mechanical Properties of Nitrogen Alloyed Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.

    2018-04-01

    In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.

  18. Effect of transition metal impurities on the strength of grain boundaries in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei

    2016-09-07

    Effects of 3d (Ti-Ni), 4d (Zr-Pd), and 5d (Hf-Pt) transition metal impurities on strength of two representative vanadium grain boundaries (GBs), symmetric Σ3(111) and asymmetric Σ5(210), were studied by first-principles calculations within the framework of the Rice-Wang thermodynamic model and within the computational tensile test. The desirable elements to increase the GB cohesion were predicted based on their segregation and strengthening behaviors across the different GB sites. It reveals that the elements Ti, Zr, Hf, Nb, and Ta are good choices for the GB cohesion enhancers. In addition, the GB strengthening by solutes is sensitive to the GB structures. Themore » elements Cr, Mn, Fe, Co, and Ni decrease the GB strength of the Σ3(111) GB but they can increase the cohesion of the Σ5(210) GB. Furthermore, the origin of Ti-induced change of the GB strength was uncovered by analyzing the atomic bonds and electronic structures as well as the tensile strength. This work provides a theoretical guidance to screen promising alloying elements in V-based materials with improved resistance to GB decohesion and also helps us to understand the formation mechanism of Ti-rich precipitates in the V-Cr-Ti alloys under neutron or ion irradiation environments.« less

  19. Wavelet multiresolution analyses adapted for the fast solution of boundary value ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Jawerth, Bjoern; Sweldens, Wim

    1993-01-01

    We present ideas on how to use wavelets in the solution of boundary value ordinary differential equations. Rather than using classical wavelets, we adapt their construction so that they become (bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can construct an O(N) algorithm for various constant and variable coefficient operators.

  20. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of microstructurally stable structural alloys with high strength and creep resistance for various high-temperature applications, including in the aerospace, naval, civilian infrastructure and energy sectors.

  1. Comparative Laboratory and Numerical Simulations of Shearing Granular Fault Gouge: Micromechanical Processes

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.

    2004-12-01

    Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during shear.

  2. Calculation Method of Lateral Strengths and Ductility Factors of Constructions with Shear Walls of Different Ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Nobuyoshi; Nakao, Masato; Murakami, Masahide

    2008-07-08

    For seismic design, ductility-related force modification factors are named R factor in Uniform Building Code of U.S, q factor in Euro Code 8 and Ds (inverse of R) factor in Japanese Building Code. These ductility-related force modification factors for each type of shear elements are appeared in those codes. Some constructions use various types of shear walls that have different ductility, especially for their retrofit or re-strengthening. In these cases, engineers puzzle the decision of force modification factors of the constructions. Solving this problem, new method to calculate lateral strengths of stories for simple shear wall systems is proposed andmore » named 'Stiffness--Potential Energy Addition Method' in this paper. This method uses two design lateral strengths for each type of shear walls in damage limit state and safety limit state. Two lateral strengths of stories in both limit states are calculated from these two design lateral strengths for each type of shear walls in both limit states. Calculated strengths have the same quality as values obtained by strength addition method using many steps of load-deformation data of shear walls. The new method to calculate ductility factors is also proposed in this paper. This method is based on the new method to calculate lateral strengths of stories. This method can solve the problem to obtain ductility factors of stories with shear walls of different ductility.« less

  3. Production and construction technology of C100 high strength concrete filled steel tube

    NASA Astrophysics Data System (ADS)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  4. 47 CFR 101.1333 - Interference protection criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... prohibited from exceeding a signal strength of 40 dBµV/m at their service area boundaries, unless a higher... prohibited from exceeding a signal strength of 40 dBµV/m at incumbent licensees' 40.2 kilometer (25-mile... 941.0-941.25 MHz. (i) Within Lines A, B, C, and D, as defined in § 1.928(e) of this chapter, along the...

  5. 47 CFR 101.1333 - Interference protection criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... prohibited from exceeding a signal strength of 40 dBµV/m at their service area boundaries, unless a higher... prohibited from exceeding a signal strength of 40 dBµV/m at incumbent licensees' 40.2 kilometer (25-mile... 941.0-941.25 MHz. (i) Within Lines A, B, C, and D, as defined in § 1.928(e) of this chapter, along the...

  6. 47 CFR 101.1333 - Interference protection criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... prohibited from exceeding a signal strength of 40 dBµV/m at their service area boundaries, unless a higher... prohibited from exceeding a signal strength of 40 dBµV/m at incumbent licensees' 40.2 kilometer (25-mile... 941.0-941.25 MHz. (i) Within Lines A, B, C, and D, as defined in § 1.928(e) of this chapter, along the...

  7. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    NASA Astrophysics Data System (ADS)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  8. Boundary-Work in Science Education: A Case Study of GM Food

    ERIC Educational Resources Information Center

    Lin, Yin-Ling

    2016-01-01

    The term "boundary-work" is used to refer to the constant effort to draw and re-draw the boundary of science; it has long been portrayed as constructed by the stakeholders of science to demarcate science from non-science to establish the authority of science. Twenty-nine semi-structured interviews were carried out with students from one…

  9. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Windows and air ports in fire control boundaries. 116... CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.433 Windows and air ports in fire control boundaries. (a) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches) in...

  10. Coupled crystal orientation-size effects on the strength of nano crystals

    PubMed Central

    Yuan, Rui; Beyerlein, Irene J.; Zhou, Caizhi

    2016-01-01

    We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture is too influential to be neglected when analyzing and engineering grain size effects for increasing nanomaterial strength. PMID:27185364

  11. HYPOTHESIS TESTING FOR HIGH-DIMENSIONAL SPARSE BINARY REGRESSION

    PubMed Central

    Mukherjee, Rajarshi; Pillai, Natesh S.; Lin, Xihong

    2015-01-01

    In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which does not occur in the case of Gaussian linear regression. We derive the detection boundary as a function of two components: a design matrix sparsity index and signal strength, each of which is a function of the sparsity of the alternative. For any alternative, if the design matrix sparsity index is too high, any test is asymptotically powerless irrespective of the magnitude of signal strength. For binary design matrices with the sparsity index that is not too high, our results are parallel to those in the Gaussian case. In this context, we derive detection boundaries for both dense and sparse regimes. For the dense regime, we show that the generalized likelihood ratio is rate optimal; for the sparse regime, we propose an extended Higher Criticism Test and show it is rate optimal and sharp. We illustrate the finite sample properties of the theoretical results using simulation studies. PMID:26246645

  12. The Tectonic Boundary Between Eastern Subbaisin and South-West Subbasin of the South China Sea Revealed from the Normalized Magnetic Source Strength

    NASA Astrophysics Data System (ADS)

    Guo, L.; Meng, X.

    2014-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, is one of the largest marginal seas in the Western Pacific. It was formed by the interaction of the three plates and the seafloor spreading during Late Oligocene time to Early Miocene time. The boundary between Eastern Subbaisin and South-west Subbasin of the SCS has long been debated in the literature. Refining the boundary is one of the crucial tasks for correctly understanding the seafloor spreading model of the SCS. Due to few drills on the deep ocean basin of the SCS, magnetic data become important information for refining the boundary. However, the interpretation of magnetic data in the SCS suffers from the remanent magnetization of ocean crust as well as igneous rock and seamounts. The conventional reduction-to-pole anomalies at low latitudes usually neglect the remanent magnetization, making the interpretation incorrect. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then did a special transformation of the TMI anomalies with a varying magnetic inclinations algorithm to obtain the normalized source strength (NSS). The NSS has advantage of insensitivity to remanent magnetization, benefitting correct interpretation. The NSS presents discriminative features from east to west in the ocean basin. The boundary of the discriminative features is clear and just ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank. These imply that magnetic structure and tectonic features in the crust are discriminative between both sides of this boundary. It can be deduced that this boundary is the tectonic boundary between Eastern Subbaisin and South-west Subbasin. We acknowledge the financial support of the National Natural Science Foundation of China (41374093) and the SinoProbe-01-05 project.

  13. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.

  14. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing reduced the strength of transition joints and the reduction was maximum for specimen welded with Inconel 82.

  15. Tracking Emotional and Behavioral Changes in Childhood: Does the Strength and Difficulties Questionnaire Measure the Same Constructs across Time?

    ERIC Educational Resources Information Center

    Sosu, Edward M.; Schmidt, Peter

    2017-01-01

    R. Goodman's Strength and Difficulties Questionnaire (SDQ) is widely used to measure emotional and behavioral difficulties in childhood and adolescence. In the present study, we examined whether the SDQ measures the same construct across time, when used for longitudinal research. A nationally representative sample of parents (N = 3,375) provided…

  16. Large Deviations in Weakly Interacting Boundary Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    van Wijland, Frédéric; Rácz, Zoltán

    2005-01-01

    One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.

  17. Four-parameter potential box with inverse square singular boundaries

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2018-03-01

    Using the Tridiagonal Representation Approach (TRA), we obtain solutions (energy spectrum and corresponding wavefunctions) for a four-parameter potential box with inverse square singularity at the boundaries. It could be utilized in physical applications to replace the widely used one-parameter infinite square potential well (ISPW). The four parameters of the potential provide an added flexibility over the one-parameter ISPW to control the physical features of the system. The two potential parameters that give the singularity strength at the boundaries are naturally constrained to avoid the inherent quantum anomalies associated with the inverse square potential.

  18. Gravity and large black holes in Randall-Sundrum II braneworlds.

    PubMed

    Figueras, Pau; Wiseman, Toby

    2011-08-19

    We show how to construct low energy solutions to the Randall-Sundrum II (RSII) model by using an associated five-dimensional anti-de Sitter space (AdS(5)) and/or four-dimensional conformal field theory (CFT(4)) problem. The RSII solution is given as a perturbation of the AdS(5)-CFT(4) solution, with the perturbation parameter being the radius of curvature of the brane metric compared to the AdS length ℓ. The brane metric is then a specific perturbation of the AdS(5)-CFT(4) boundary metric. For low curvatures the RSII solution reproduces 4D general relativity on the brane. Recently, AdS(5)-CFT(4) solutions with a 4D Schwarzschild boundary metric were numerically constructed. We modify the boundary conditions to numerically construct large RSII static black holes with radius up to ~20ℓ. For a large radius, the RSII solutions are indeed close to the associated AdS(5)-CFT(4) solution. © 2011 American Physical Society

  19. A process-oriented measure of habit strength for moderate-to-vigorous physical activity

    PubMed Central

    Grove, J. Robert; Zillich, Irja; Medic, Nikola

    2014-01-01

    Purpose: Habitual action is an important aspect of health behaviour, but the relevance of various habit strength indicators continues to be debated. This study focused specifically on moderate-to-vigorous physical activity (MVPA) and evaluated the construct validity of a framework emphasizing patterned action, stimulus-response bonding, automaticity, and negative consequences for nonperformance as indicators of habit strength for this form of exercise. Methods: Upper-level undergraduates (N = 124) provided demographic information and responded to questionnaire items assessing historical MVPA involvement, current MVPA involvement, and the four proposed habit strength dimensions. Factor analyses were used to examine the latent structure of the habit strength indicators, and the model's construct validity was evaluated via an examination of relationships with repetition history and current behaviour. Results: At a measurement level, findings indicated that the proposed four-component model possessed psychometric integrity as a coherent set of factors. Criterion-related validity was also demonstrated via significant changes in three of the four factors as a function of past involvement in MVPA and significant correlations with the frequency, duration, and intensity of current MVPA. Conclusions: These findings support the construct validity of this exercise habit strength model and suggest that it could provide a template for future research on how MVPA habits are developed and maintained. PMID:25750789

  20. A process-oriented measure of habit strength for moderate-to-vigorous physical activity.

    PubMed

    Grove, J Robert; Zillich, Irja; Medic, Nikola

    2014-01-01

    Purpose : Habitual action is an important aspect of health behaviour, but the relevance of various habit strength indicators continues to be debated. This study focused specifically on moderate-to-vigorous physical activity (MVPA) and evaluated the construct validity of a framework emphasizing patterned action, stimulus-response bonding, automaticity, and negative consequences for nonperformance as indicators of habit strength for this form of exercise. Methods : Upper-level undergraduates ( N  = 124) provided demographic information and responded to questionnaire items assessing historical MVPA involvement, current MVPA involvement, and the four proposed habit strength dimensions. Factor analyses were used to examine the latent structure of the habit strength indicators, and the model's construct validity was evaluated via an examination of relationships with repetition history and current behaviour. Results : At a measurement level, findings indicated that the proposed four-component model possessed psychometric integrity as a coherent set of factors. Criterion-related validity was also demonstrated via significant changes in three of the four factors as a function of past involvement in MVPA and significant correlations with the frequency, duration, and intensity of current MVPA. Conclusions : These findings support the construct validity of this exercise habit strength model and suggest that it could provide a template for future research on how MVPA habits are developed and maintained.

  1. [A development of FRP frame for crown and bridge resin. (2) Rigidity and adaptability of FRP frame].

    PubMed

    Kimura, H; Teraoka, F

    1990-05-01

    Retainer and pontic of FRP frame for crown and bridge resin were constructed with two different prepregs, used glass cloth and roving as reinforcement. Rigidity and adaptability of the FRP frame and bonding strength of jointing of retainer and pontic were investigated. The glass content was about 50 wt% for both kinds of prepregs. Bonding strength and modulus of FRP plate reinforced with glass roving were about 1.5 times larger than that of the FRP plate reinforced with glass cloth. Bonding strength of FRP specimen constructed by curing the prepreg put on the FRP plate was about 3 kgf/mm2. However, the bonding strength of specimen constructed by curing simultaneously the two prepregs was about 12 kgf/mm2. Though discrepancy of the FRP frame to stone cast of abutment tooth was proportional to the length of pontic, that of the FRP frame with a 50 mm pontic was less than 0.05 mm.

  2. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.

    PubMed

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-11-10

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.

  3. Boundaries, mirror symmetry, and symplectic duality in 3d N = 4 gauge theory

    DOE PAGES

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; ...

    2016-10-20

    We introduce several families of N = (2, 2) UV boundary conditions in 3d N=4 gauge theories and study their IR images in sigma-models to the Higgs and Coulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respectively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studyingmore » two-dimensional compactifications of 3d N = 4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality $-$ an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.« less

  4. Cell-Averaged discretization for incompressible Navier-Stokes with embedded boundaries and locally refined Cartesian meshes: a high-order finite volume approach

    NASA Astrophysics Data System (ADS)

    Bhalla, Amneet Pal Singh; Johansen, Hans; Graves, Dan; Martin, Dan; Colella, Phillip; Applied Numerical Algorithms Group Team

    2017-11-01

    We present a consistent cell-averaged discretization for incompressible Navier-Stokes equations on complex domains using embedded boundaries. The embedded boundary is allowed to freely cut the locally-refined background Cartesian grid. Implicit-function representation is used for the embedded boundary, which allows us to convert the required geometric moments in the Taylor series expansion (upto arbitrary order) of polynomials into an algebraic problem in lower dimensions. The computed geometric moments are then used to construct stencils for various operators like the Laplacian, divergence, gradient, etc., by solving a least-squares system locally. We also construct the inter-level data-transfer operators like prolongation and restriction for multi grid solvers using the same least-squares system approach. This allows us to retain high-order of accuracy near coarse-fine interface and near embedded boundaries. Canonical problems like Taylor-Green vortex flow and flow past bluff bodies will be presented to demonstrate the proposed method. U.S. Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231).

  5. Investigation of low compressive strengths of concrete in paving, precast and structural concrete

    DOT National Transportation Integrated Search

    2000-08-01

    This research examines the causes for a high incidence of catastrophically low compressive strengths, primarily on structural concrete, during the 1997 construction season. The source for the low strengths was poor aggregate-paste bond associated wit...

  6. 14 CFR 35.24 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Strength. 35.24 Section 35.24 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.24 Strength. The maximum stresses developed in the...

  7. 14 CFR 35.24 - Strength.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Strength. 35.24 Section 35.24 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.24 Strength. The maximum stresses developed in the...

  8. 14 CFR 35.24 - Strength.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Strength. 35.24 Section 35.24 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.24 Strength. The maximum stresses developed in the...

  9. 14 CFR 35.24 - Strength.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Strength. 35.24 Section 35.24 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.24 Strength. The maximum stresses developed in the...

  10. Innovative concrete bridging systems for pedestrian bridges : implementation and monitoring.

    DOT National Transportation Integrated Search

    2013-08-01

    Two precast, prestressed pedestrian bridges were designed for rapid construction in Rolla, MO, utilizing high-strength concrete (HSC) : and high-strength self-consolidating concrete (HS-SCC) with a target 28 day compressive strength of 68.9 MPa (10,0...

  11. Gapped boundary phases of topological insulators via weak coupling

    DOE PAGES

    Seiberg, Nathan; Witten, Edward

    2016-11-04

    The standard boundary state of a topological insulator in 3 + 1 dimensions has gapless charged fermions. We present model systems that reproduce this standard gapless boundary state in one phase, but also have gapped phases with topological order. Our models are weakly coupled and all the dynamics is explicit. We rederive some known boundary states of topological insulators and construct new ones. Consistency with the standard spin/charge relation of condensed matter physics places a nontrivial constraint on models

  12. Boundary Quantum Knizhnik-Zamolodchikov Equations and Bethe Vectors

    NASA Astrophysics Data System (ADS)

    Reshetikhin, Nicolai; Stokman, Jasper; Vlaar, Bart

    2015-06-01

    Solutions to boundary quantum Knizhnik-Zamolodchikov equations are constructed as bilateral sums involving "off-shell" Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of is involved. We also consider their rational and classical degenerations.

  13. Effect of Heat Treatments on Microstructures and Tensile Properties of Cu-3 wt%Ag-0.5 wt%Zr Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wang, ChuanJie; Zhang, Ying; Yi, Cen; Zhang, Peng

    2018-03-01

    The microstructures and tensile properties of Cu-3 wt%Ag-0.5 wt%Zr alloy sheets under different aging treatments are investigated in this research. As one kind of precipitate, Ag nanoparticles with coherent orientation relationship with matrix precipitate. However, after the peak-age point, most of Ag nanoparticles grow into short rod shape with the interface translating to semi-coherent, which leads to the lower strength of over-aging sample. The yield strength is estimated by considering solid solute, grain boundary and precipitation strengthening mechanisms. The result shows that the Ag precipitates provide the main strengthening role. Then a constitutive equation representing the evolution of dislocation density with plastic strain is built by considering work-hardening behavior coming from shearable and non-shearable precipitates which is mainly the particles containing Zr. The flow stress contributed by shearable particle hardening is higher than that of non-shearable one. Due to the coarsening of grain boundary precipitates and low rate of damage accumulation of these non-shearable particles, the micro-cracks nucleate easily at grain boundary which leads to intergranular fracture.

  14. Effects of Stress Relaxation Aging with Electrical Pulses on Microstructures and Properties of 2219 Aluminum Alloy

    PubMed Central

    Tan, Jingsheng; Zhan, Lihua; Zhang, Jiao; Yang, Zhan; Ma, Ziyao

    2016-01-01

    To realize the high-efficiency and high-performance manufacture of complex high-web panels, this paper introduced electric pulse current (EPC) into the stress relaxation aging forming process of 2219 aluminum alloy and systematically studied the effects of EPC, stress, and aging time upon the microstructure and properties of 2219 aluminum alloy. It is discovered that: (a) EPC greatly enhanced the mechanical properties after stress relaxation aging and reduced the sensitivity of the yield strength for the initial stress under the aging system of 165 °C/11 h; (b) compared with general aging, stress relaxation aging instead delayed the aging process of 2219 aluminum alloy and greatly increased the peak strength value; (c) EPC accelerated the aging precipitation behavior of 2219 aluminum alloy and reduced transgranular and grain-boundary energy difference, thus leading to a more diffused distribution of the transgranular precipitated phase and the absence of a significant precipitation-free zone (PFZ) and grain-boundary stable phase in the grain boundary, further improving the mechanical properties of the alloy. PMID:28773660

  15. Steady state toroidal magnetic field at earth's core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  16. Microscale mechanical characterization of materials for extreme environments

    NASA Astrophysics Data System (ADS)

    Ozerinc, Sezer

    Nanocrystalline metals are promising materials for applications that require outstanding strength and stability in extreme environments. Further improvements in the desirable mechanical properties of these materials require a better understanding of the relationship between their microstructure and grain boundary deformation behavior. Previous molecular dynamics simulations suggested that solute additions to grain boundaries can enhance the strength of nanocrystalline metals, but there has been a lack of experimental studies investigating this prediction. This dissertation presents mechanical and microstructural characterization of nanocrystalline Cu alloys and demonstrate that addition of Nb solutes to grain boundaries greatly enhances the strength of Cu. The measured hardness of Cu90Nb10 alloy is 5.6 GPa which is more than double the hardness of nanocrystalline pure Cu. Microstructural characterization through transmission electron microscopy and energy-dispersive X-ray spectroscopy on these alloys indicates a strong correlation between the grain boundary composition and the hardness. Variation of measured hardness with measured grain boundary composition is in very good agreement with previous molecular dynamics simulation predictions. The results of this work provide experimental evidence that grain boundary doping enhances the strength of nanocrystalline Cu far beyond that predicted by classical Hall-Petch strengthening and decreasing grain boundary energy through solute additions is the key to reaching theoretical strength in nanocrystalline metals. Irradiation induced creep is a deformation mechanism that takes place under combined stress and particle bombardment. Effective characterization of this phenomenon on nanostructured materials is crucial for the assessment of their potential use in next generation nuclear power plants. Direct measurements of irradiation induced creep under MeV-heavy ion bombardment have not been feasible until recently due to the requirements of micron-sized specimens, muN-level force sensitivity, and nm-level displacement sensitivity. A recently developed mechanical characterization technique, micropillar compression, has enabled the testing of miniaturized specimens; however, there has been no demonstration of the application of this technique to irradiation induced creep measurements. This dissertation presents the development of an in situ measurement apparatus for compression testing of micron-sized cylindrical specimens under MeV-heavy ion bombardment. The apparatus has a force resolution of 1 muN and a displacement resolution of 1 nm. The apparatus measured irradiation induced creep in four different amorphous materials and the findings clarified the significance of different creep mechanisms in these materials. In amorphous metals and amorphous Si, the measured irradiation induced fluidity is ≈ 3 dpa-1GPa-1 (dpa: displacements per atom). The measured fluidity is in excellent agreement with previous molecular dynamics simulation predictions, providing experimental evidence for point defect mediated plastic flow under ion bombardment. For amorphous SiO2, stress relaxation through thermal spikes further contribute to the creep response, resulting in higher fluidities up to ≈ 83 dpa-1GPa -1. Finally, this dissertation presents the further development of the creep testing apparatus for high temperature measurements. The apparatus demonstrated good thermal and mechanical stability and measured irradiation induced creep of nanocrystalline Cu at 200°C. Resulting irradiation induced fluidity is ≈ 10% of the fluidity of the amorphous metals, in agreement with previous measurements on free-standing films. Understanding the creep behavior of nanostructured metals under heavy ion bombardment at elevated temperatures is important for identifying the governing creep mechanisms in these materials. The developed apparatus provides a new and effective method of accelerated mechanical characterization of such promising materials for their potential use in future nuclear applications.

  17. The connection between BRG1, CTCF and topoisomerases at TAD boundaries.

    PubMed

    Barutcu, A Rasim; Lian, Jane B; Stein, Janet L; Stein, Gary S; Imbalzano, Anthony N

    2017-03-04

    The eukaryotic genome is partitioned into topologically associating domains (TADs). Despite recent advances characterizing TADs and TAD boundaries, the organization of these structures is an important dimension of genome architecture and function that is not well understood. Recently, we demonstrated that knockdown of BRG1, an ATPase driving the chromatin remodeling activity of mammalian SWI/SNF enzymes, globally alters long-range genomic interactions and results in a reduction of TAD boundary strength. We provided evidence suggesting that this effect may be due to BRG1 affecting nucleosome occupancy around CTCF sites present at TAD boundaries. In this review, we elaborate on our findings and speculate that BRG1 may contribute to the regulation of the structural and functional properties of chromatin at TAD boundaries by affecting the function or the recruitment of CTCF and DNA topoisomerase complexes.

  18. Grain boundary oxidation and fatigue crack growth at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1986-01-01

    Fatigue crack growth rate at elevated temperatures can be accelerated by grain boundary oxidation. Grain boundary oxidation kinetics and the statistical distribution of grain boundary oxide penetration depth were studied. At a constant delta K-level and at a constant test temperature, fatigue crack growth rate, da/dN, is a function of cyclic frequency, nu. A fatigue crack growth model of intermittent micro-ruptures of grain boundary oxide is constructed. The model is consistent with the experimental observations that, in the low frequency region, da/dN is inversely proportional to nu, and fatigue crack growth is intergranular.

  19. Inclusion of inhomogeneous deformation and strength characteristics in the problem on zonal disintegration of rocks

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Belousova, OE

    2018-03-01

    The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.

  20. Effect of metallurgical structure and properties on adhesion and friction behavior of cobalt alloys

    NASA Technical Reports Server (NTRS)

    Keller, D. V., Jr.; Shatynski, S.; Vedamanikam, P. M.

    1972-01-01

    The metallurgical structure and some of the mechanical properties of two cobalt alloys, cobalt-50% iron and cobalt-25% molybdenum-10% chromium, were determined under various heat treated conditions. The mechanical properties of the bcc disordered Co-50Fe alloy, which was found to be very brittle, indicated an exceedingly low fracture strength, low hardness, and very weak grain boundary strength. Ordering by suitable heat treatment only produced a more brittle material with a lower fracture strength and a slightly higher hardness value. Work hardening was found to produce a finer grain structure and a greater grain boundary strength. Tensile properties were examined. It was found that the Co-25Mo-10Cr alloy was difficult to place in the alpha Co solid solution condition, which limited the ability to use precipitation as a hardening reaction. Over two hundred adhesion cycles from zero contact load, to maximum load, to fracture were conducted between couples for each of the above alloys in an ultrahigh vacuum system which would permit the sample surfaces to be cleaned of all contaminant layers. In the Co-50Fe case, the calculated fracture stress from the adhesion tests showed values in the range of 80 to 150 k.s.i., which is about ten times greater than the values from tension tests.

  1. High-early-strength high-performance concrete for rapid pavement repair.

    DOT National Transportation Integrated Search

    2016-01-01

    In the construction industry, High Early-Age Strength (HES) concrete was : traditionally regarded as a concrete that achieves a loading strength in matter of days : rather than weeks. However, in the last 10-15 years, this time has been reduced down ...

  2. Motivating Students to Work with Elders: A Strengths, Social Construction, and Human Rights and Social Justice Approach

    ERIC Educational Resources Information Center

    Patterson, Fiona M.

    2004-01-01

    At a time when increasing numbers of elders need and continue to rely on social work services, it is important to build enthusiasm among students to prepare them for future work with this special population. A three-pronged approach to teaching about aging, which is built on the strengths perspective, critical social construction, and a human…

  3. Role construction and boundaries in interprofessional primary health care teams: a qualitative study.

    PubMed

    MacNaughton, Kate; Chreim, Samia; Bourgeault, Ivy Lynn

    2013-11-24

    The move towards enhancing teamwork and interprofessional collaboration in health care raises issues regarding the management of professional boundaries and the relationship among health care providers. This qualitative study explores how roles are constructed within interprofessional health care teams. It focuses on elucidating the different types of role boundaries, the influences on role construction and the implications for professionals and patients. A comparative case study was conducted to examine the dynamics of role construction on two interprofessional primary health care teams. The data collection included interviews and non-participant observation of team meetings. Thematic content analysis was used to code and analyze the data and a conceptual model was developed to represent the emergent findings. The findings indicate that role boundaries can be organized around interprofessional interactions (giving rise to autonomous or collaborative roles) as well as the distribution of tasks (giving rise to interchangeable or differentiated roles). Different influences on role construction were identified. They are categorized as structural (characteristics of the workplace), interpersonal (dynamics between team members such as trust and leadership) and individual dynamics (personal attributes). The implications of role construction were found to include professional satisfaction and more favourable wait times for patients. A model that integrates these different elements was developed. Based on the results of this study, we argue that autonomy may be an important element of interprofessional team functioning. Counter-intuitive as this may sound, we found that empowering team members to develop autonomy can enhance collaborative interactions. We also argue that while more interchangeable roles could help to lessen the workloads of team members, they could also increase the potential for power struggles because the roles of various professions would become less differentiated. We consider the conceptual and practical implications of our findings and we address the transferability of our model to other interprofessional teams.

  4. Role construction and boundaries in interprofessional primary health care teams: a qualitative study

    PubMed Central

    2013-01-01

    Background The move towards enhancing teamwork and interprofessional collaboration in health care raises issues regarding the management of professional boundaries and the relationship among health care providers. This qualitative study explores how roles are constructed within interprofessional health care teams. It focuses on elucidating the different types of role boundaries, the influences on role construction and the implications for professionals and patients. Methods A comparative case study was conducted to examine the dynamics of role construction on two interprofessional primary health care teams. The data collection included interviews and non-participant observation of team meetings. Thematic content analysis was used to code and analyze the data and a conceptual model was developed to represent the emergent findings. Results The findings indicate that role boundaries can be organized around interprofessional interactions (giving rise to autonomous or collaborative roles) as well as the distribution of tasks (giving rise to interchangeable or differentiated roles). Different influences on role construction were identified. They are categorized as structural (characteristics of the workplace), interpersonal (dynamics between team members such as trust and leadership) and individual dynamics (personal attributes). The implications of role construction were found to include professional satisfaction and more favourable wait times for patients. A model that integrates these different elements was developed. Conclusions Based on the results of this study, we argue that autonomy may be an important element of interprofessional team functioning. Counter-intuitive as this may sound, we found that empowering team members to develop autonomy can enhance collaborative interactions. We also argue that while more interchangeable roles could help to lessen the workloads of team members, they could also increase the potential for power struggles because the roles of various professions would become less differentiated. We consider the conceptual and practical implications of our findings and we address the transferability of our model to other interprofessional teams. PMID:24267663

  5. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  6. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOEpatents

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2006-12-26

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  7. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    DOEpatents

    Mazias, Philip J [Oak Ridge, TN; McGreevy, Tim [Morton, IL; Pollard, Michael James [East Peoria, IL; Siebenaler, Chad W [Peoria, IL; Swindeman, Robert W [Oak Ridge, TN

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  8. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOEpatents

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2010-08-17

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  9. Effects of doping and interchain interactions on the metal-insulator transition in trans-polyacetylene

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    1999-09-01

    Using a tight-binding Hamiltonian the metal-insulator phase diagram for trans-polyacetylene was calculated as a function of doping concentration and interchain interaction strength. The phase boundary for the periodic system coincides with the gap closing, which occurs for certain combinations of critical values for the doping concentration and the interchain interaction strength. The values found are in good agreement with the experimentally observed increase in the Pauli susceptibility. To simulate disorder in the polymer, the effect of finite chain lengths was studied. This type of disorder pushes the metal/insulator phase boundary towards the metallic side of the phase diagram. An increase in the doping concentration and/or interchain interaction is shown to reduce the localizing effects of disorder effectively. For realistic values of the interchain interaction strength the number of chain breaks needed to localize the states at the Fermi energy is quite small, of the order of a few percent. The localization length is found to be substantially longer than the conjugation length of the polymer.

  10. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought basemore » metal levels.« less

  11. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorelik, V. S.; Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru

    2016-09-15

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center ofmore » the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.« less

  12. The effect of microstructure on the deformation modes and mechanical properties of Ti-6Al-2Nb-1Ta-0.8Mo: Part II. Equiaxed structures

    NASA Astrophysics Data System (ADS)

    Lin, Fu-Shiong; Starke, E. A.; Gysler, A.

    1984-10-01

    The Ti-6Al-2Nb-lTa-0.8Mo alloy was processed to develop both near-basal and transverse textures. Samples were annealed at different temperatures to vary the equiaxed alpha grain size and the thick-ness of the grain boundary beta, and subsequently quenched in order to transform the beta phase to either martensite, tempered martensite, or Widmanstätten alpha + beta. The effect of microstructure and texture on tensile properties and on fracture toughness was investigated. In addition, yield locus diagrams were constructed in order to study the texture strengthening effect. The yield strength was found to be strongly dependent on the thickness and Burgers relationship of the transformed beta phase surrounding the alpha grains. A texture hardening effect as large as 60 pct was found for the basal-texture material but only 15 pct for the transverse texture material. These variations are asso-ciated with differences in deformation behavior.

  13. HIV Prevention in Gay Family and House Networks: Fostering Self-Determination and Sexual Safety.

    PubMed

    Levitt, Heidi M; Horne, Sharon G; Freeman-Coppadge, Darren; Roberts, Tangela

    2017-10-01

    Many gay, bisexual, and transgender (GBT) people of color (POC) join house and/or constructed family communities, which serve as support networks composed mostly of other non-biologically related GBT/POC. These networks can decrease or increase the risk of exposure to HIV via multiple mechanisms (e.g., providing informal sexual safety education versus stigmatizing family members with HIV, encouraging sexual safety practices versus unsafe escorting, teaching self-care versus substance use) but act to support family members in the face of social and economic hardship. Researchers interviewed ten members of these social networks in the Boston metro area of the US and produced a saturated grounded theory analysis to explore the role of gay family/house networks in HIV risk management. While network members utilized HIV prevention resources, interviewees described how their efficacy was related to the intentions of leadership and strength of kinship boundaries within their community, economic opportunities, and communication skills. Clinical and research implications are discussed.

  14. Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data

    PubMed Central

    Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong

    2014-01-01

    The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips. PMID:24465849

  15. Frequency spirals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seenmore » in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.« less

  16. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.

    PubMed

    Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong

    2014-01-01

    The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.

  17. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime

    NASA Astrophysics Data System (ADS)

    Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J.

    2015-12-01

    Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime.

  18. Acceptable vibrations on green concrete.

    DOT National Transportation Integrated Search

    2013-12-01

    Vibrations are potentially harmful to green concrete in shaft foundations, and many states, including : Mississippi, cautiously established limits in terms of compressive strength, distance boundary, and : wait time to protect early age concrete. But...

  19. Transformation of two and three-dimensional regions by elliptic systems

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1991-01-01

    A reliable linear system is presented for grid generation in 2-D and 3-D. The method is robust in the sense that convergence is guaranteed but is not as reliable as other nonlinear elliptic methods in generating nonfolding grids. The construction of nonfolding grids depends on having reasonable approximations of cell aspect ratios and an appropriate distribution of grid points on the boundary of the region. Some guidelines are included on approximating the aspect ratios, but little help is offered on setting up the boundary grid other than to say that in 2-D the boundary correspondence should be close to that generated by a conformal mapping. It is assumed that the functions which control the grid distribution depend only on the computational variables and not on the physical variables. Whether this is actually the case depends on how the grid is constructed. In a dynamic adaptive procedure where the grid is constructed in the process of solving a fluid flow problem, the grid is usually updated at fixed iteration counts using the current value of the control function. Since the control function is not being updated during the iteration of the grid equations, the grid construction is a linear procedure. However, in the case of a static adaptive procedure where a trial solution is computed and used to construct an adaptive grid, the control functions may be recomputed at every step of the grid iteration.

  20. Tracking "Large" or "Smal": Boundaries and their Consequences for Veterinary Students within the Tracking System

    NASA Astrophysics Data System (ADS)

    Vermilya, Jenny R.

    In this dissertation, I use 42 in-depth qualitative interviews with veterinary medical students to explore the experience of being in an educational program that tracks students based on the species of non-human animals that they wish to treat. Specifically, I examine how tracking produces multiple boundaries for veterinary students. The boundaries between different animal species produce consequences for the treatment of those animals; this has been well documented. Using a symbolic interactionist perspective, my research extends the body of knowledge on species boundaries by revealing other consequences of this boundary work. For example, I analyze the symbolic boundaries involved in the gendering of animals, practitioners, and professions. I also examine how boundaries influence the collective identity of students entering an occupation segmented into various specialties. The collective identity of veterinarian is one characterized by care, thus students have to construct different definitions of care to access and maintain the collective identity. The tracking system additionally produces consequences for the knowledge created and reproduced in different areas of animal medicine, creating a system of power and inequality based on whose knowledge is privileged, how, and why. Finally, socially constructed boundaries generated from tracking inevitably lead to cases that do not fit. In particular, horses serve as a "border species" for veterinary students who struggle to place them into the tracking system. I argue that border species, like other metaphorical borders, have the potential to challenge discourses and lead to social change.

  1. Conformal Solid T-spline Construction from Boundary T-spline Representations

    DTIC Science & Technology

    2012-07-01

    TITLE AND SUBTITLE Conformal Solid T-spline Construction from Boundary T-spline Representations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Zhang’s ONR-YIP award N00014-10-1-0698 and an ONR Grant N00014-08-1-0653. The work of T. J.R. Hughes was supported by ONR Grant N00014-08-1-0992, NSF...GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF grant UTA10-000374. References 1. M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B

  2. Computer constructed imagery of distant plasma interaction boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenstadt, E.W.; Schurr, H.D.; Tsugawa, R.K.

    1982-01-01

    Computer constructed sketches of plasma boundaries arising from the interaction between the solar wind and the magnetosphere can serve as both didactic and research tools. In particular, the structure of the earth's bow shock can be represented as a nonuniform surfce according to the instantaneous orientation of the IMF, and temporal changes in structural distribution can be modeled as a sequence of sketches based on observed sequences of spacecraft-based measurements. Viewed rapidly, such a sequence of sketches can be the basis for representation of plasma processes by computer animation.

  3. Unoriented 3d TFTs

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Lakshya

    2017-05-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.

  4. Load response and gap formation in a single-row cruciate suture rotator cuff repair.

    PubMed

    Huntington, Lachlan; Richardson, Martin; Sobol, Tony; Caldow, Jonathon; Ackland, David C

    2017-06-01

    Double-row rotator cuff tendon repair techniques may provide superior contact area and strength compared with single-row repairs, but are associated with higher material expenses and prolonged operating time. The purpose of this study was to evaluate gap formation, ultimate tensile strength and stiffness of a single-row cruciate suture rotator cuff repair construct, and to compare these results with those of the Mason-Allen and SutureBridge repair constructs. Infraspinatus tendons from 24 spring lamb shoulders were harvested and allocated to cruciate suture, Mason-Allen and SutureBridge repair groups. Specimens were loaded cyclically between 10 and 62 N for 200 cycles, and gap formation simultaneously measured using a high-speed digital camera. Specimens were then loaded in uniaxial tension to failure, and construct stiffness and repair strength were evaluated. Gap formation in the cruciate suture repair was significantly lower than that of the Mason-Allen repair (mean difference = 0.6 mm, P = 0.009) and no different from that of the SutureBridge repair (P > 0.05). Both the cruciate suture repair (mean difference = 15.7 N/mm, P = 0.002) and SutureBridge repair (mean difference = 15.8 N/mm, P = 0.034) were significantly stiffer than that of the Mason-Allen repair; however, no significant differences in ultimate tensile strength between repair groups were discerned (P > 0.05). The cruciate suture repair construct, which may represent a simple and cost-effective alternative to double-row and double-row equivalent rotator cuff repairs, has comparable biomechanical strength and integrity with that of the SutureBridge repair, and may result in improved construct longevity and tendon healing compared with the Mason-Allen repair. © 2017 Royal Australasian College of Surgeons.

  5. Development of a Boundary Layer Property Interpolation Tool in Support of Orbiter Return To Flight

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Hamilton, H. Harris

    2006-01-01

    A new tool was developed to predict the boundary layer quantities required by several physics-based predictive/analytic methods that assess damaged Orbiter tile. This new tool, the Boundary Layer Property Prediction (BLPROP) tool, supplies boundary layer values used in correlations that determine boundary layer transition onset and surface heating-rate augmentation/attenuation factors inside tile gouges (i.e. cavities). BLPROP interpolates through a database of computed solutions and provides boundary layer and wall data (delta, theta, Re(sub theta)/M(sub e), Re(sub theta)/M(sub e), Re(sub theta), P(sub w), and q(sub w)) based on user input surface location and free stream conditions. Surface locations are limited to the Orbiter s windward surface. Constructed using predictions from an inviscid w/boundary-layer method and benchmark viscous CFD, the computed database covers the hypersonic continuum flight regime based on two reference flight trajectories. First-order one-dimensional Lagrange interpolation accounts for Mach number and angle-of-attack variations, whereas non-dimensional normalization accounts for differences between the reference and input Reynolds number. Employing the same computational methods used to construct the database, solutions at other trajectory points taken from previous STS flights were computed: these results validate the BLPROP algorithm. Percentage differences between interpolated and computed values are presented and are used to establish the level of uncertainty of the new tool.

  6. Rapid curing and strength relationships of concrete : final report.

    DOT National Transportation Integrated Search

    1985-05-01

    The rapid rate of construction has created a need to have information on the strength of concrete at the earliest possible time. Having to wait 28 days before the strength can be determined can cause serious problems if inferior concrete had been use...

  7. 46 CFR 160.017-17 - Strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Strength. 160.017-17 Section 160.017-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Chain Ladder § 160.017-17 Strength. (a) Each chain ladder must...

  8. 46 CFR 160.017-17 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Strength. 160.017-17 Section 160.017-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Chain Ladder § 160.017-17 Strength. (a) Each chain ladder must...

  9. Pervious concrete mix optimization for sustainable pavement solution

    NASA Astrophysics Data System (ADS)

    Barišić, Ivana; Galić, Mario; Netinger Grubeša, Ivanka

    2017-10-01

    In order to fulfill requirements of sustainable road construction, new materials for pavement construction are investigated with the main goal to preserve natural resources and achieve energy savings. One of such sustainable pavement material is pervious concrete as a new solution for low volume pavements. To accommodate required strength and porosity as the measure of appropriate drainage capability, four mixtures of pervious concrete are investigated and results of laboratory tests of compressive and flexural strength and porosity are presented. For defining the optimal pervious concrete mixture in a view of aggregate and financial savings, optimization model is utilized and optimal mixtures defined according to required strength and porosity characteristics. Results of laboratory research showed that comparing single-sized aggregate pervious concrete mixtures, coarse aggregate mixture result in increased porosity but reduced strengths. The optimal share of the coarse aggregate turn to be 40.21%, the share of fine aggregate is 49.79% for achieving required compressive strength of 25 MPa, flexural strength of 4.31 MPa and porosity of 21.66%.

  10. On Another Edge of Defocusing: Hyperbolicity of Asymmetric Lemon Billiards

    NASA Astrophysics Data System (ADS)

    Bunimovich, Leonid; Zhang, Hong-Kun; Zhang, Pengfei

    2016-02-01

    Defocusing mechanism provides a way to construct chaotic (hyperbolic) billiards with focusing components by separating all regular components of the boundary of a billiard table sufficiently far away from each focusing component. If all focusing components of the boundary of the billiard table are circular arcs, then the above separation requirement reduces to that all circles obtained by completion of focusing components are contained in the billiard table. In the present paper we demonstrate that a class of convex tables— asymmetric lemons, whose boundary consists of two circular arcs, generate hyperbolic billiards. This result is quite surprising because the focusing components of the asymmetric lemon table are extremely close to each other, and because these tables are perturbations of the first convex ergodic billiard constructed more than 40 years ago.

  11. In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew

    The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up.more » Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.« less

  12. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  13. 14 CFR 35.24 - Strength.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: PROPELLERS Design and Construction § 35.24 Strength. The maximum stresses developed in the propeller may not exceed values acceptable to the Administrator considering the particular form of...

  14. 22 CFR 1103.151 - Program accessibility: New construction and alterations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... alterations. 1103.151 Section 1103.151 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO...

  15. 33 CFR 279.10 - Implementation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boundaries, conduct of regional studies and content and format of report requirements. As a minimum, one... projects with existing use patterns and constructed facilities. (b) Regional studies are prerequisite to... not be restricted either to States or to District hydrologic boundaries. In those cases where a region...

  16. 33 CFR 279.10 - Implementation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... boundaries, conduct of regional studies and content and format of report requirements. As a minimum, one... projects with existing use patterns and constructed facilities. (b) Regional studies are prerequisite to... not be restricted either to States or to District hydrologic boundaries. In those cases where a region...

  17. 33 CFR 279.10 - Implementation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... boundaries, conduct of regional studies and content and format of report requirements. As a minimum, one... projects with existing use patterns and constructed facilities. (b) Regional studies are prerequisite to... not be restricted either to States or to District hydrologic boundaries. In those cases where a region...

  18. 33 CFR 279.10 - Implementation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... boundaries, conduct of regional studies and content and format of report requirements. As a minimum, one... projects with existing use patterns and constructed facilities. (b) Regional studies are prerequisite to... not be restricted either to States or to District hydrologic boundaries. In those cases where a region...

  19. 33 CFR 279.10 - Implementation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... boundaries, conduct of regional studies and content and format of report requirements. As a minimum, one... projects with existing use patterns and constructed facilities. (b) Regional studies are prerequisite to... not be restricted either to States or to District hydrologic boundaries. In those cases where a region...

  20. A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization

    NASA Technical Reports Server (NTRS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    2001-01-01

    A working wind tunnel test facility has been constructed at the University of Notre Dame's Hessert Center. The relaminarization test facility has been constructed in the 1.5m x 1.5m (5ft x 5 ft) atmospheric wind tunnel and generates a Re(theta)=4694 turbulent boundary layer in nominally zero-pressure gradient before it is exposed to the Case #1 pressure gradient (K approximately equal to 4.2 x 10(exp -6), which is believed to be sufficient to achieve relaminarization. Future work to be conducted will include measuring the response of the turbulent boundary layer to the favorable pressure gradients created in the test facility and documenting this response in order to understand the underlying flow physics responsible for relaminarization. It is the goal of this research to have a better understanding of accelerated turbulent boundary layers which will aid in the development of future flow diagnostic utilities to be implemented in applied aerodynamic research.

  1. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films

    NASA Astrophysics Data System (ADS)

    Wu, K.; Zhang, J. Y.; Li, G.; Wang, Y. Q.; Cui, J. C.; Liu, G.; Sun, J.

    2017-11-01

    In this work, we prepared nanocrystalline (NC) Ti thin films with abundant stacking faults (SFs), which were created via partial dislocations emitted from grain boundaries and which were insensitive to grain sizes. By employing the nanoindentation test, we investigated the effects of SFs and grain sizes on the strength of NC Ti films at room temperature. The high density of SFs significantly strengthens NC Ti films, via dislocation-SF interactions associated with the reported highest Hall-Petch slope of ˜20 GPa nm1/2, to an ultrahigh strength of ˜4.4 GPa, approaching ˜50% of its ideal strength.

  2. The DC dielectric breakdown strength of magnetic fluids based on transformer oil

    NASA Astrophysics Data System (ADS)

    Kopčanský, Peter; Tomčo, Ladislav; Marton, Karol; Koneracká, Martina; Timko, Milan; Potočová, Ivana

    2005-03-01

    The DC dielectric breakdown strength of magnetic fluids based on transformer oil TECHNOL US 4000, with different saturation magnetizations, was investigated in various orientations of external magnetic field. It was shown that the dielectric breakdown strength in H∣∣ E is strongly influenced by the aggregation effects. As a boundary volume concentration of magnetic particles, below which the magnetic fluids have better dielectric properties than pure transformer oil, the volume concentration Φ=0.01 was found. Thus magnetic fluids with Φ<0.01 are suitable for the use as a high-voltage insulation.

  3. Applicability of recycled aggregates in concrete piles for soft soil improvement.

    PubMed

    Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G

    2017-01-01

    The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.

  4. The boundary vector cell model of place cell firing and spatial memory

    PubMed Central

    Barry, Caswell; Lever, Colin; Hayman, Robin; Hartley, Tom; Burton, Stephen; O'Keefe, John; Jeffery, Kate; Burgess, Neil

    2009-01-01

    We review evidence for the boundary vector cell model of the environmental determinants of the firing of hippocampal place cells. Preliminary experimental results are presented concerning the effects of addition or removal of environmental boundaries on place cell firing and evidence that boundary vector cells may exist in the subiculum. We review and update computational simulations predicting the location of human search within a virtual environment of variable geometry, assuming that boundary vector cells provide one of the input representations of location used in mammalian spatial memory. Finally, we extend the model to include experience-dependent modification of connection strengths through a BCM-like learning rule, and compare the effects to experimental data on the firing of place cells under geometrical manipulations to their environment. The relationship between neurophysiological results in rats and spatial behaviour in humans is discussed. PMID:16703944

  5. First principles determination of dislocation properties.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, John C.

    2003-12-01

    This report details the work accomplished on first principles determination of dislocation properties. It contains an introduction and three chapters detailing three major accomplishments. First, we have used first principle calculations to determine the shear strength of an aluminum twin boundary. We find it to be remarkably small ({approx}17 mJ/m{sup 2}). This unexpected result is explained and will likely pertain for many other grain boundaries. Second, we have proven that the conventional explanation for finite grain boundary facets is wrong for a particular aluminum grain boundary. Instead of finite facets being stabilized by grain boundary stress, we find them tomore » originate from kinetic effects. Finally we report on a new application of the Frenkel-Kontorova model to understand reconstructions of (100) type surfaces. In addition to the commonly accepted formation of rectangular dislocation arrays, we find numerous other possible solutions to the model including hexagonal reconstructions and a clock-rotated structure.« less

  6. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy.

    PubMed

    Edalati, Kaveh; Horita, Zenji; Valiev, Ruslan Z

    2018-04-30

    Recent developments of nanostructured materials with grain sizes in the nanometer to submicrometer range have provided ground for numerous functional properties and new applications. However, in terms of mechanical properties, bulk nanostructured materials typically show poor ductility despite their high strength, which limits their use for structural applications. The present article shows that the poor ductility of nanostructured alloys can be changed to room-temperature superplastisity by a transition in the deformation mechanism from dislocation activity to grain-boundary sliding. We report the first observation of room-temperature superplasticity (over 400% tensile elongations) in a nanostructured Al alloy by enhanced grain-boundary sliding. The room-temperature grain-boundary sliding and superplasticity was realized by engineering the Zn segregation along the Al/Al boundaries through severe plastic deformation. This work introduces a new boundary-based strategy to improve the mechanical properties of nanostructured materials for structural applications, where high deformability is a requirement.

  7. The effect of load obliquity on the strength of locking and nonlocking constructs in synthetic osteoporotic bone.

    PubMed

    Tensmeyer, Daniel F; Gustafson, Peter A; Jastifer, James R; Patel, Bipin; Chess, Joseph L

    2015-11-01

    The biomechanical performance of internal fracture fixation depends on several factors. One measure of performance is the strength of the construct. The objective of this biomechanical study was to identify the effect of load obliquity on the strength of locking and nonlocking plate and screw constructs. For this study, plates and screws were fixed to synthetic osteoporotic bone that had a 1 mm thick synthetic cortical shell. An 8-hole, 3.5 mm thick hybrid plate was fixed with either two 3.5 mm major diameter locking screws or two 4.0 mm major diameter cancellous screws. Forces were applied at 0, 45, and 90 degrees to the plate normal. Eight specimens were loaded to failure for each group. When loads were applied normal to the plate, the nonlocking construct failed initially at higher loads (123.2 ± 13.2 N) than the locking construct (108.7 ± 7.6 N, P = 0.020). For oblique loads, the locking construct failed at higher mean loads but the difference of means was not statistically significant (167.7 ± 14.9 N compared to 154.2 ± 9.4 N, P = 0.052). For loads parallel to the plate, the locking construct was much stronger than the nonlocking construct (1591 ± 227 N compared to 913 ± 237 N, P < 0.001). Stiffness and Energy outcomes are also compared. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. A Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2014-11-01

    We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.

  9. Mars boundary layer simulations - Comparison with Viking lander and entry observations

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Houben, H. C.

    1991-01-01

    Diurnal variations of wind and temperature in the lower Martian atmosphere are simulated with a boundary layer model that includes radiative heating in a dusty CO2 atmosphere, turbulence generated by convection and/or shear stresses, a surface heat budget, and time varying pressure forces due to sloping terrain. Model results for early northern summer are compared with Viking lander observations to determine the model's strengths and weaknesses, and suitability as an engineering model.

  10. Grain Boundary Complexions

    DTIC Science & Technology

    2014-05-01

    for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE MAY 2014 2. REPORT...TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Grain boundary complexions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...specific adsorption sites of rare- earth elements at IGF/grain inter- faces [142–144], and the viscosity [145] and mechanical strength [146–148] of

  11. Use of Niobium High Strength Steels with 450 MPA Yield Strength for Construction

    NASA Astrophysics Data System (ADS)

    Silvestre, Leonardo; Langenberg, Peter; Amaral, Thiago; Carboni, Marcelo; Meira, Marcos; Jordão, Alexandre

    This paper presents an actual case of a new industrial building at CBMM's plant in Araxá, Brazil as an example of lean design using microalloyed steels. The structure consists mostly of microalloyed ASTM A572 steel grades 65 and 50 instead of the conventional carbon manganese ASTM A36 steel. The application of grade 65 with more than 450 MPa of yield strength is an innovative solution for this type of construction in South America. A complete welding evaluation performed on the low carbon, niobium microalloyed grade 65 steel showed the welding properties and benefits. Niobium's effect of increasing strength and toughness simultaneously resulted in relevant savings in total steel consumption for the project. The paper also quantifies the expected savings in costs, energy and carbon dioxide emissions.

  12. Structural tests on space shuttle thermal protection system constructed with nondensified and densified Li 900 and LI 2200 tile

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1981-01-01

    Structural tests were conducted on thermal protection systems (TPS) LI 900 and LI 2200 tiles and .41 cm and .23 cm thick strain isolation pads. The bond surface of selected tiles was densified to obtain improved strength. Four basic types of experiments were conducted including tension tests, substrate mismatch (initial imperfection) tests, tension loads eccentrically applied, and pressure loads applied rapidly to the tile top surface. A small initial imperfection mismatch (2.29 m spherical radius on the substrate) did not influence significantly the ultimate failure strength. Densification of the tile bond region improved the strength of TPS constructed both of LI 900 tile and of LI 2200 tile. Pressure shock conditions studied did not significantly affect the TPS strength.

  13. Mechanical testing of a steel-reinforced epoxy resin bar and clamp for external skeletal fixation of long-bone fractures in cats.

    PubMed

    Leitch, B J; Worth, A J

    2018-05-01

    To provide veterinarians with confidence when using a commercially available epoxy resin in external skeletal fixators (ESF), testing was conducted to determine exothermia during curing of the epoxy resin compared to polymethylmethacrylate (PMMA), the hardness of the epoxy resin as a bar over 16 weeks, and the strength of the epoxy resin bar compared with metal clamps in similarly constructed Type 1a ESF constructs simulating the repair of feline long bone fractures. Exothermia of the epoxy resin during curing was tested against PMMA with surface temperatures recorded over the first 15 minutes of curing, using four samples of each product. The hardness of 90 identical epoxy resin bars was tested by subjecting them to cyclic loads (1,000 cycles of 20.5 N, every 7 days) over a 16-week period and impact testing 10 bars every 2 weeks. Ten bars that were not subjected to cyclic loads were impact tested at 0 weeks and another 10 at 16 weeks. Strength of the epoxy resin product, as a bar and clamp composite, was tested against metal SK and Kirschner-Ehmer (KE) clamps and bars in Type 1a, tied-in intramedullary pin, ESF constructs with either 90° or 75° pin placement, subjected to compressive and bending loads to 75 N. The maximum temperature during curing of the epoxy resin (min 39.8, max 43.0)°C was less than the PMMA (min 85.2, max 98.5)°C (p<0.001). There was no change in hardness of the epoxy resin bars over the 16 weeks of cyclic loading (p=0.58). There were no differences between the median strength of the epoxy resin, SK or KE ESF constructs in compression or bending when tested to 75 N (p>0.05). Stiffness of constructs with 75° pin placement was greater for SK than epoxy resin constructs in compression (p=0.046), and was greater for KE than epoxy resin constructs in bending (p=0.033). The epoxy resin tested was found to be less exothermic than PMMA; bars made from the epoxy resin showed durability over an expected fracture healing timeframe and had mechanical strength characteristics comparable to metal bar and clamp ESF constructs. The epoxy resin ESF construct tested in this study can be considered a suitable replacement for SK or KE ESF constructs in the treatment of feline long-bone fractures, in terms of mechanical strength.

  14. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.

  15. A thermally activated dislocation-based constitutive flow model of nanostructured FCC metals involving microstructural evolution

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, J.; Wu, K.; Liu, G.; Sun, J.

    2017-03-01

    Due to their interface and nanoscale effects associated with structural peculiarities of nanostructured, face-centered-cubic (FCC) ultrafine-grained/nanocrystalline (UFG/NC) metals, in particular nanotwinned (NT) metals exhibit unexpected deformation behaviours fundamentally different from their coarse-grained (CG) counterparts. These internal boundaries, including grain boundaries and twin boundaries in UFG/NC metals, strongly interact with dislocations as deformation barriers to enhance the strength and strain rate sensitivity (SRS) of materials on the one hand, and play critical roles in their microstructural evolution as dislocation sources/sinks to sustain plastic deformation on the other. In this work, building on the findings of twin softening and (de)twinning-mediated grain growth/refinement in stretched free-standing NT-Ni foils, a constitutive model based on the thermally activated depinning process of dislocations residing in boundaries has been proposed to predict the steady-state grain size and simulate the plastic flow of NT-Ni, by considering the blocking effects of nanotwins on the absorption of dislocations emitted from boundaries. It is uncovered that the stress ratio (ηstress) of effective-to-internal stress can be taken as a signature to estimate the stability of microstructures during plastic deformation. This model not only reproduces well the plastic flow of the stretched NT-Ni foils as well as reported NT-Cu and the steady-state grain size, but also sheds light on the size-dependent SRS and failure of FCC UFG/NC metals. This theoretical framework offers the opportunity to tune the microstructures in the polycrystalline materials to synthesise high performance engineering materials with high strength and great ductility.

  16. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  17. 14 CFR 29.757 - Hull and auxiliary float strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...

  18. Properties and uses of concrete, appendix B

    NASA Technical Reports Server (NTRS)

    Corley, Gene

    1992-01-01

    Concretes that can now be formed have properties which may make them valuable for lunar or space construction. These properties include high compressive strength, good flexural strength (when reinforced), and favorable responses to temperature extremes (even increased strength at low temperatures). These and other properties of concrete are discussed.

  19. Effects of water on the strength of Zerodur

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Setzer, Andrew

    1991-01-01

    An experimental design matrix was constructed to determine the effects of time and temperature water soak on the strength of Zerodur glass-ceramic. It was found that strength does increase in a nonlinear manner which is consistent with existing theories of crack tip blunting and residual stress reduction.

  20. Invariant functionals in higher-spin theory

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. A.

    2017-03-01

    A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.

  1. Development of maturity protocol for construction of NJDOT concrete structures

    DOT National Transportation Integrated Search

    1999-12-01

    In-place tests can be used to estimate concrete strength during construction so that : construction operations can be performed safely or curing procedures can be terminated. : Compression tests pertaining to field cylinders do not represent the stre...

  2. Moisture-strength-constructability guidelines for subgrade foundation soils found in Indiana.

    DOT National Transportation Integrated Search

    2016-09-01

    Soil moisture is an important indicator of constructability in the field. Construction activities become difficult when the soil moisture content is excessive, especially in fine-grained soils. Change orders caused by excessive soil moisture during c...

  3. New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations

    NASA Astrophysics Data System (ADS)

    Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.

    2017-12-01

    After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central Valley and ocean lithosphere.

  4. Effects of hot extrusion and heat treatment on microstructure and properties of industrial large-scale spray-deposited 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yonggang; Zhao, Yutao; Kai, Xizhou; Zhang, Zhen; Zhang, Hao; Tao, Ran; Chen, Gang; Yin, Houshang; Wang, Min

    2018-01-01

    The industrial large-scale 7055 aluminum alloy fabricated by spray forming technology was subjected to hot extrusion and heat treatment to achieve high strength and ductility. Microstructure of the as-deposited alloy indicates that higher density billets with equiaxed grains (20-40 μm) were fabricated rather than a typical dendritic microstructure of the as-cast alloy. The grains of the as-extruded alloy exhibit fibrous morphology, the original boundaries disappear and fined second phases with size about 0.5-5 μm distribute along with extrusion direction. Meanwhile, the defects could be eliminated by hot extrusion, which resulted in good strength as well as ductility. The ultimate tensile strength, yield strength and elongation of the as-extruded alloy are 345 MPa, 236 MPa and 18.5%, respectively. After heat treatment, the partial recrystallization is observed around the un-recrystallized grains and sub-grains. And the platelet/rod-shaped precipitates (MgZn2) show a uniform distribution in the matrix alloy. The alloy reaches the maximum tensile strength of 730 MPa after T6 temper treatment, associated with a fine precipitation (MgZn2). However, with further deepen aging degree (from T6 to T73 temper), the size of dominant precipitated phases (MgZn2) grows obviously, the grain boundary precipitates transform from continuous to individual ones and the width of precipitate free zone increases. The result shows that the alloy after T7X temper treatment exhibits higher electrical conductivity (>35 %IACS) and facture toughness (>25.6 MPa m1/2) although a 8%-17% reduction in strength compared with that at T6 temper.

  5. Webs on surfaces, rings of invariants, and clusters.

    PubMed

    Fomin, Sergey; Pylyavskyy, Pavlo

    2014-07-08

    We construct and study cluster algebra structures in rings of invariants of the special linear group action on collections of 3D vectors, covectors, and matrices. The construction uses Kuperberg's calculus of webs on marked surfaces with boundary.

  6. A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain

    NASA Astrophysics Data System (ADS)

    Besse, Nicolas; Frisch, Uriel

    2017-04-01

    The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy's Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95-104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499-505, 2014; Podvigina et al. in J Comput Phys 306:320-342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1-51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy-Lagrangian method.

  7. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-04-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  8. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-06-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  9. Discussion on design and stress checking of cast-in-place bracket

    NASA Astrophysics Data System (ADS)

    Xi, Tang Xian; Yong, He; Hu, Sun Shuan

    2018-04-01

    The cast-in-place bracket is the main support structure in the construction of bridge. Its strength, stiffness and stability have a direct impact on the quality and the safety of bridge construction. The design and calculation of the bracket in the prestressed concrete box girder are analyzed in this paper. The models including Bailey beam, steel crossbeam and steel columns are established by the finite element software. The strength, stiffness and stability of each model under the most unfavorable load are analyzed by MIDAS Civil. The analysis results verify that the support plan meets the relevant specifications and construction requirements. The feasibility of the support scheme was verified well accordingly. The paper can provide reference and guidance for similar engineering construction.

  10. Reuse of polyethylene waste in road construction.

    PubMed

    Raju, S S S V Gopala; Murali, M; Rengaraju, V R

    2007-01-01

    The cost of construction of flexible pavements depends on thickness of the pavement layers. The thickness of pavement mainly depends on the strength of the subgrade. By suitable improvement to the strength of the subgrade, considerable saving in the scarce resources and economy can be achieved. Because of their lightweight, easy handling, non-breakable and corrosion free nature, polyethylene have surpassed all other materials in utility. But polyethylene waste has been a matter of concern to environmentalists as it is non-biodegradable. In this investigation, an attempt has been made to study the improvement of California Bearing Ratio (CBR) value of soils stabilized with waste polyethylene bags. This alternative material is mixed in different proportions to the gravel and clay to determine the improvement ofCBR value. Use of the waste polyethylene bags observed to have a significant impact on the strength and economy in pavement construction, when these are available locally in large quantities.

  11. Dual boundary conditions in 3d SCFT's

    NASA Astrophysics Data System (ADS)

    Dimofte, Tudor; Gaiotto, Davide; Paquette, Natalie M.

    2018-05-01

    We propose matching pairs of half-BPS boundary conditions related by IR dualities of 3d N=2 gauge theories. From these matching pairs we construct duality interfaces. We test our proposals by anomaly matching and the computation of supersymmetric indices. Examples include basic abelian dualities, level-rank dualities, and Aharony dualities.

  12. Deaf Culture and Academic Culture: Cultivating Understanding across Cultural and Linguistic Boundaries

    ERIC Educational Resources Information Center

    O'Brien, Catherine; Kroner, Crystal; Placier, Peggy

    2015-01-01

    This exploratory study examined student responses to an interactive theater performance about the experiences of deaf students in the hearing culture of higher education. The theoretical framework for the study synthesized sociological work by Zerubavel, Foucault, and Bourdieu on construction and maintenance of institutional boundaries separating…

  13. Composite strengthening. [of nonferrous, fiber reinforced alloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.

    1976-01-01

    The mechanical behavior of unidirectionally reinforced metals is examined, with particular attention to fabrication techniques for artificial composites and eutectic alloys and to principles of fiber reinforcement. The properties of artificial composites are discussed in terms of strength of fiber composites, strength of ribbon-reinforced composites, crack initiation, crack propagation, and creep behavior. The properties of eutectic composites are examined relative to tensile strength, compressive strength, fracture, high-temperature strength, and fatigue. In the case of artificial composites, parallelism of fibers, good bonding between fibers and matrix, and freedom of fibers from damage are all necessary to ensure superior performance. For many eutectic systems there are stringent boundary conditions relative to melt purity and superheat, atmosphere control, temperature gradient, and growth rate in order to provide near-perfect alignment of the reinforcements with a minimum of growth defects.

  14. New insights into cycling of 231Pa and 230Th in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Rempfer, Johannes; Stocker, Thomas F.; Joos, Fortunat; Lippold, Jörg; Jaccard, Samuel L.

    2017-06-01

    We use the Bern3D model of intermediate complexity to examine the marine cycle of isotopes 231Pa and 230Th and the relationship between the particle-bound ratio Pap /Thp and changes in the formation of the North Atlantic Deep Water (NADW). Model parameters describing reversible scavenging of isotopes by organic particles, opal, calcite and resuspended sediments were systematically varied and alternative sink parametrisations explored. It proves difficult to simultaneously achieve a good agreement with observations of dissolved and particle-associated concentrations of 231Pa and 230Th (Pad, Thd, Pap, Thp) as well as the particle-bound ratio Pap /Thp within the classical concept of reversible scavenging alone. Agreement between simulated and observed Pad, Thd and estimates of mean ocean residence times is improved by taking into account simplified representations of additional sinks at the sea floor (bottom scavenging) and at continental boundaries (boundary scavenging). We also find improved agreement between model and data by increasing lateral advection, in particular for Pad. These results point to the importance of sink processes that act in addition to reversible scavenging to shape the steady state distribution of 231Pa and, to a lesser degree, of 230Th. In transient experiments in which the strength of the Atlantic meridional overturning circulation (AMOC) is periodically turned on and off, we find a strong statistical relationship between variations in AMOC strength and Pap /Thp at great depths in the Northwest Atlantic region. These conclusions are robust across the range of sink parametrisations, that are consistent with estimates in the mean ocean residence time of 231Pa and 230Th. Our results indicate that the relationship between Pap /Thp and AMOC-strength may not be fundamentally affected by uncertainties in sink processes, at least on the large spatial and temporal scale considered here, and support the idea that changes in Pap /Thp in sediments of the Northwest Atlantic are indicative of changes in AMOC strength. Taking into account our simplified approach, our results indicate that the relationship between Pap /Thp and AMOC-strength in the deep Northwest Atlantic is not affected by boundary scavenging or bottom scavenging. Our results thus support the idea that changes in Pap /Thp in sediments of the Northwest Atlantic are indicative of changes in AMOC strength.

  15. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  16. Combined measurement of surface, grain boundary and lattice diffusion coefficients on olivine bi-crystals

    NASA Astrophysics Data System (ADS)

    Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes

    2014-05-01

    Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA measurements. To evaluate the obtained diffusion profiles we adapted the isolated grain boundary model, first proposed by Fisher (1951) to match several observations: (i) Anisotropic diffusion in forsterite, (ii) fast diffusion along the grain boundary, (iii) fast diffusion on the surface of the sample. The latter process is needed to explain an additional flux of material from the surface into the grain boundary. Surface and grain boundary diffusion coefficients are on the order of 10000 times faster than diffusion in the lattice. Another observation was that in some regions the diffusion profiles in the lattice were greatly extended. TEM observations suggest here that surface defects (nano-cracks, ect.) have been present, which apparently enhanced the diffusion through the bulk lattice. Dohmen, R., & Milke, R. (2010). Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data. Reviews in Mineralogy and Geochemistry, 72(1), 921-970. Fisher, J. C. (1951). Calculations of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. Journal of Applied Physics, 22(1), 74-77. Le Claire, A. D. (1951). Grain boundary diffusion in metals. Philosophical Magazine A, 42(328), 468-474.

  17. Final report: Constructing comprehensive models of grain boundaries using high-throughput experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Michael; Schuh, Christopher; Marzouk, Youssef

    2016-08-29

    This is the final report on project DE-SC0008926. The goal of this project was to create capabilities for constructing, analyzing, and modeling experimental databases of the crystallographic characters and physical properties of thousands of individual grain boundaries (GBs) in polycrystalline metals. This project focused on gallium permeation through aluminum (Al) GBs and hydrogen uptake into nickel (Ni) GBs as model problems. This report summarizes the work done within the duration of this project (including the original three-year award and the subsequent one-year renewal), i.e. from August 1, 2012 until April 30, 2016.

  18. Hairpin vortices in the outer and near wall regions of the canonical turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Wallace, James; Wu, Xiaohua; Moin, Parviz

    2016-11-01

    While the dominance of hairpin vortices and their significance for transport processes in the transitional and early turbulent regions of the canonical turbulent boundary layer has been widely accepted, opinion is divided about the developed flow downstream. Here we investigate the representative vortical structures in the outer and near wall regions for the momentum thickness Reynolds number, Reθ , of up to 3000 using the DNS database described in. This boundary layer grows spatially from a laminar state at Reθ = 80 beneath a freestream of continuous and nearly isotropic turbulence decaying from an intensity of 3 to 0.8%. The vortical structures are visualized with the swirling strength, λci. In the outer region hairpin vortices appear and are advected over distances corresponding to about 300 - 400 in Reθ within the fully turbulent region, demonstrating that they are not remnants of transitional structures. The near wall vortical structures are more difficult to visualize and require careful tuning of the swirling strength and making invisible the flow above the near wall region of the flow. The hairpins in this region occur in intermittent clusters that have features remarkably similar to transitional turbulent spots.

  19. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey

    NASA Astrophysics Data System (ADS)

    Oruç, Bülent; Sönmez, Tuba

    2017-05-01

    The aim of this work is to propose the geometries of the crustal-lithospheric mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) and the 1D thermal structure of the lithosphere, in order to establish a rheological model of the Eastern Marmara region. The average depths of Moho and LAB are respectively 35 km and 51 km from radially averaged amplitude spectra of EGM08 Bouguer anomalies. The geometries of Moho and LAB interfaces are estimated from the Parker-Oldenburg gravity inversion algorithm. Our results show the Moho depth varies from 31 km at the northern part of North Anatolian Fault Zone (NAFZ) to 39 km below the mountain belt in the southern part of the NAFZ. The depth to the LAB beneath the same parts of the region ranges from 45 km to 55 km. Having lithospheric strength and thermal boundary layer structure, we analyzed the conditions of development of lithosphere thinning. A two-dimensional strength profile has been estimated for rheology model of the study area. Thus we suggest that the rheological structure consists of a strong upper crust, a weak lower crust, and a partly molten upper lithospheric mantle.

  20. The Social Construction of Teachers' Individualism: How to Transcend Traditional Boundaries of Teachers' Identity?

    ERIC Educational Resources Information Center

    Diniz-Pereira, Emilio Julio

    This paper addresses the social construction of individualism as one of the strongest marks of traditional teacher identity. It discusses, through an educational literature review, why individualism is one of the strongest marks of traditional teacher identity, how this feature has been historically and socially constructed, why it has been so…

  1. Biocalcification using Ureolytic Bacteria (UB) for strengthening Interlocking Compressed Earth Blocks (ICEB)

    NASA Astrophysics Data System (ADS)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2018-02-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. This characteristic resulted to faster the process of building walls and required less skilled labor as the blocks are laid dry and lock into place. Recently, implementation in using bacteria as construction material improvement is vigorously used in research in order pursuit the sustainable construction works. This paper provide the results of ureolytic bacteria (UB) throughout enrichment process in soil condition to acclimatize the ICEB environment, compressive strength of 1%, 3% and 5% UB and SEM analysis of ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the optimal growth achieved based on the days and absorbance from optical density (OD) test which are in 12th days with absorbance of 0.55 whereas the results for strength shows the increment of 15.25% with 5% UB on 28th days of testing compared to control specimen. Therefore this study hopes that positive results from the UB as improving in strength of ICEB which will lead to improve others ICEB properties and others construction materials.

  2. Study on strength estimation of soil cement used in the embedded pile method by electrical resistivity measurement

    NASA Astrophysics Data System (ADS)

    Mochida, Y.; Sakurai, Y.; Indra, H.; Karimi, A. L.

    2017-11-01

    Problems caused by poor quality control and quality assurance of the pre-boring embedded pile construction, such as on domestic apartment house is still occurring nowadays. An adequate consideration for invisible risks inside or below the ground is important in pile foundation construction therefore the demand for advanced and reliable quality assurance is increase in the future. In this research, to understand the quality of the construction at early stage, the compressive strength of cement-soil mixture of pile construction after 28 days is estimated using electrical resistivity value of the mixture. More accurate measurement for electrical resistivity value is conducted by inserting the electrodes without using potassium chloride solution as a catalyst. The result showed that there is a certain tendency in the electric resistivity value at the early age regarding to the type of soil (sand, clay) mixed in. The most accurate estimation was achieved from the electric resistivity value at the first day and several days onwards, and from the compressive strength after 3 days.

  3. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.

  4. Alternative auxiliary fields for chiral multiplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Hitoshi; Rajpoot, Subhash

    We study 3-form auxiliary field formulation for chiral multiplets in the Wess-Zumino model. The conventional auxiliary fields F and G are replaced by their Hodge duals K{sub {mu}}{sub {nu}}{sub {rho}}{sub {sigma}} and H{sub {mu}}{sub {nu}}{sub {rho}}{sub {sigma}} which are the field strengths of the 3-form potential auxiliary fields G{sub {mu}}{sub {nu}}{sub {rho}} and F{sub {mu}}{sub {nu}}{sub {rho}}. Even though duality transformations connect these two formulations, there exist certain differences from the conventional formulation. When boundary conditions are taken into account, the field equations in the 3-form formulation are equivalent to the conventional ones, while our Lagrangian is not. We alsomore » show that the new field strengths acquire generalized Chern-Simons terms. The O'Raifeartaigh mechanism works for spontaneous supersymmetry breaking also in the 3-form auxiliary field formulation via the boundary conditions on the 3-form auxiliary fields.« less

  5. Microalloying Ultrafine Grained Al Alloys with Enhanced Ductility

    PubMed Central

    Jiang, L.; Li, J. K.; Cheng, P. M.; Liu, G.; Wang, R. H.; Chen, B. A.; Zhang, J. Y.; Sun, J.; Yang, M. X.; Yang, G.

    2014-01-01

    Bulk ultrafine grained (UFG)/nanocrystal metals possess exceptional strength but normally poor ductility and thermal stability, which hinder their practical applications especially in high-temperature environments. Through microalloying strategy that enables the control of grains and precipitations in nanostructured regime, here we design and successfully produce a highly microstructure-stable UFG Al-Cu-Sc alloy with ~275% increment in ductility and simultaneously ~50% enhancement in yield strength compared with its Sc-free counterpart. Although the precipitations in UFG alloys are usually preferentially occurred at grain boundaries even at room temperature, minor Sc addition into the UFG Al-Cu alloys is found to effectively stabilize the as-processed microstructure, strongly suppress the θ-Al2Cu phase precipitation at grain boundary, and remarkably promote the θ′-Al2Cu nanoparticles dispersed in the grain interior in artificial aging. A similar microalloying strategy is expected to be equally effective for other UFG heat-treatable alloys. PMID:24398915

  6. Properties of concrete blocks prepared with low grade recycled aggregates.

    PubMed

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  7. Effects of Residual Impurities on Hydrogen Assisted Cracking in High Strength Steels. Part II.

    DTIC Science & Technology

    1982-06-01

    source of hydrogen is the corrosion reaction of steel with aqueous hydrogen sulfide solutions encountered either in the production of crude oil and...autoradiography technique, it has been shown that in Armco iron and in maraging steel of hydrogen is trapped at prior austenite grain boundaries. Tritium...also play a deleterious role in hydrogen-induced cracking. In these ultra-high strength steels , the crack-tip stress level and the concomitant stress

  8. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-03-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  9. Structure and mechanical properties of a high-carbon steel subjected to severe deformation

    NASA Astrophysics Data System (ADS)

    Gorkunov, E. S.; Zadvorkin, S. M.; Goruleva, L. S.; Makarov, A. V.; Pecherkina, N. L.

    2017-10-01

    The structure and mechanical properties of a high-carbon eutectic steel subjected to the cold plastic deformation by hydrostatic extrusion in a wide range of true strain have been studied. Using scanning and transmission electron microscopy, it has been shown that the formation of cellular, fragmented, and submicrocrystalline structures occurs in the ferritic constituent of the pearlite structure of the steel upon extrusion. This is a consequence of the occurrence of dynamic recovery and continuous dynamic and post-dynamic recrystallization, which cause a decrease in the density of free dislocations at the true strain of more than 1.62. The partial dissolution of the carbide phase is also observed. It has been found that, at a true strain of up to 0.81, the strength properties of the investigated steel are determined mainly by subgrain, dislocation, and precipitation mechanisms of the strengthening; in the deformation range of 0.81-1.62, the role of the grainboundary strengthening increases. At strains above 1.62, grain-boundary strengthening is a prevailing mechanism in the formation of the level of strength properties of the extruded U8A steel. The ultimate tensile strength and yield stress over the entire strain range only uniquely correlate with the density of highangle boundaries; the dependences of the strength characteristics on other structural parameters are not monotonic.

  10. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  11. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, S.; Yang, M.; Song, X.L.

    The Laves phase precipitation process was characterised by means of field emission scanning electron microscopy to demonstrate its effect on creep rupture strength of steels with a fully ferritic matrix. To eliminate the effects of carbide and carbonitride precipitations so that the creep rupture data can be analysed exclusively in relation to the Laves phase precipitation process, an alloy Fe–9Cr–3Co–3W (wt.%) without C and N additions was used for the study. Creep rupture strengths were measured and volume fraction and particle size of Laves phase precipitates in the ruptured specimens were analysed. It was found that the creep rupture strengthmore » started to collapse (or decrease more rapidly) long before the Laves phase precipitation reached equilibrium fraction. This was related to the onset of the coarsening of Laves phase particles, which precipitated only on grain boundaries and hence contributed little to precipitation strengthening. Creep deformation had no effect either on the precipitation kinetics or on the growth kinetics of Laves phase particles. - Highlights: • Laves phase precipitation at 650 °C was characterised for Fe–9Cr–3W–3Co alloy. • Laves phase precipitated predominantly on grain boundaries. • Creep deformation had no effect on Laves phase precipitation and growth kinetics. • Creep strength started to collapse long before Laves phase precipitation is ended. • Collapse of creep strength was attributed to the coarsening of Laves phase particles.« less

  13. Effect of Boundary Conditions on the Back Face Deformations of Flat UHMWPE Panels

    DTIC Science & Technology

    2014-12-01

    Zhang [2] carried out a numerical study of the effects of clamping type and clamping pressure on the ballistic performance of woven Kevlar , and found...effects of composite size were also studied. Singletary [5] studied the effects of boundary conditions and panel sizes on V50 for Kevlar KM2 fabric. The...on the BFD in flat UHMWPE panels. UHMWPE possesses high tenacity and high strength compared to Kevlar , as a result of which it is the material of

  14. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, F. K.; Settles, G. S.

    1990-01-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  15. Experimental Analysis of Displacements and Shears at the Surface on Contact between Two Loaded Bodies,

    DTIC Science & Technology

    1980-07-01

    thin bars are extended. The complete solution is presented in graphs for the use of designers . The theoretical development is correlated with experiments...The concept of "coefficient of efficiency" is introduced to evaluate the degree of optimization. An ideal design of the inside boundary of a tube...efficiency coefficient is increased from 0.59 to 0.95. Tests with a brittle material show an increase in strength of 20Z. An ideal design of the boundary of

  16. Investigation of geomagnetic field forecasting and fluid dynamics of the core

    NASA Technical Reports Server (NTRS)

    Benton, E. R. (Principal Investigator)

    1981-01-01

    The magnetic determination of the depth of the core-mantle boundary using MAGSAT data is discussed. Refinements to the approach of using the pole-strength of Earth to evaluate the radius of the Earth's core-mantle boundary are reported. The downward extrapolation through the electrically conducting mantle was reviewed. Estimates of an upper bound for the time required for Earth's liquid core to overturn completely are presented. High order analytic approximations to the unsigned magnetic flux crossing the Earth's surface are also presented.

  17. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    NASA Astrophysics Data System (ADS)

    Lu, F. K.; Settles, G. S.

    1990-03-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  18. An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, Grigorios G.; Fatichi, Simone; Burlando, Paolo

    2015-09-01

    Extreme rainfall events are the major driver of shallow landslide occurrences in mountainous and steep terrain regions around the world. Subsurface hydrology has a dominant role on the initiation of rainfall-induced shallow landslides, since changes in the soil water content affect significantly the soil shear strength. Rainfall infiltration produces an increase of soil water potential, which is followed by a rapid drop in apparent cohesion. Especially on steep slopes of shallow soils, this loss of shear strength can lead to failure even in unsaturated conditions before positive water pressures are developed. We present HYDROlisthisis, a process-based model, fully distributed in space with fine time resolution, in order to investigate the interactions between surface and subsurface hydrology and shallow landslides initiation. Fundamental elements of the approach are the dependence of shear strength on the three-dimensional (3-D) field of soil water potential, as well as the temporal evolution of soil water potential during the wetting and drying phases. Specifically, 3-D variably saturated flow conditions, including soil hydraulic hysteresis and preferential flow phenomena, are simulated for the subsurface flow, coupled with a surface runoff routine based on the kinematic wave approximation. The geotechnical component of the model is based on a multidimensional limit equilibrium analysis, which takes into account the basic principles of unsaturated soil mechanics. A series of numerical simulations were carried out with various boundary conditions and using different hydrological and geotechnical components. Boundary conditions in terms of distributed soil depth were generated using both empirical and process-based models. The effect of including preferential flow and soil hydraulic hysteresis was tested together with the replacement of the infinite slope assumption with the multidimensional limit equilibrium analysis. The results show that boundary conditions play a crucial role in the model performance and that the introduced hydrological (preferential flow and soil hydraulic hysteresis) and geotechnical components (multidimensional limit equilibrium analysis) significantly improve predictive capabilities in the presented case study.

  19. The Boundary Function Method. Fundamentals

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.

  20. Absorbing boundary conditions for second-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Jiang, Hong; Wong, Yau Shu

    1989-01-01

    A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.

  1. Reliability and Validity of Finger Strength and Endurance Measurements in Rock Climbing

    ERIC Educational Resources Information Center

    Michailov, Michail Lubomirov; Baláš, Jirí; Tanev, Stoyan Kolev; Andonov, Hristo Stoyanov; Kodejška, Jan; Brown, Lee

    2018-01-01

    Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the…

  2. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  3. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  4. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  5. Yield Strength Testing in Human Cadaver Nasal Septal Cartilage and L-Strut Constructs.

    PubMed

    Liu, Yuan F; Messinger, Kelton; Inman, Jared C

    2017-01-01

    To our knowledge, yield strength testing in human nasal septal cartilage has not been reported to date. An understanding of the basic mechanics of the nasal septum may help surgeons decide how much of an L-strut to preserve and how much grafting is needed. To determine the factors correlated with yield strength of the cartilaginous nasal septum and to explore the association between L-strut width and thickness in determining yield strength. In an anatomy laboratory, yield strength of rectangular pieces of fresh cadaver nasal septal cartilage was measured, and regression was performed to identify the factors correlated with yield strength. To measure yield strength in L-shaped models, 4 bonded paper L-struts models were constructed for every possible combination of the width and thickness, for a total of 240 models. Mathematical modeling using the resultant data with trend lines and surface fitting was performed to quantify the associations among L-strut width, thickness, and yield strength. The study dates were November 1, 2015, to April 1, 2016. The factors correlated with nasal cartilage yield strength and the associations among L-strut width, thickness, and yield strength in L-shaped models. Among 95 cartilage pieces from 12 human cadavers (mean [SD] age, 67.7 [12.6] years) and 240 constructed L-strut models, L-strut thickness was the only factor correlated with nasal septal cartilage yield strength (coefficient for thickness, 5.54; 95% CI, 4.08-7.00; P < .001), with an adjusted R2 correlation coefficient of 0.37. The mean (SD) yield strength R2 varied with L-strut thickness exponentially (0.93 [0.06]) for set widths, and it varied with L-strut width linearly (0.82 [0.11]) or logarithmically (0.85 [0.17]) for set thicknesses. A 3-dimensional surface model of yield strength with L-strut width and thickness as variables was created using a 2-dimensional gaussian function (adjusted R2 = 0.94). Estimated yield strengths were generated from the model to allow determination of the desired yield strength with different permutations of L-strut width and thickness. In this study of human cadaver nasal septal cartilage, L-strut thickness was significantly associated with yield strength. In a bonded paper L-strut model, L-strut thickness had a more important role in determining yield strength than L-strut width. Surgeons should consider the thickness of potential L-struts when determining the amount of cartilaginous septum to harvest and graft. NA.

  6. A comparison of biomechanical stability and pullout strength of two C1-C2 fixation constructs.

    PubMed

    Savage, Jason W; Limthongkul, Worawat; Park, Hyung-Soon; Zhang, Li-Qun; Karaikovic, Eldin E

    2011-07-01

    Several fusion techniques are used to treat atlantoaxial instability. Recent literature suggests that intralaminar screw (LS) fixation and pedicle screw (PS) fixation offer similar stability and comparable pullout strength. No studies have compared these characteristics after cyclic loading. To compare the stability and pullout strength of intra-LSs and PSs in a C1-C2 instability model after 1,000 cycles of axial loading. In vitro biomechanical study. Stability in axial rotation and screw pullout strength after cyclic loading. Six fresh-frozen human cadaveric cervical spines (C1-C2) were used in this study. C1-C2 instability was mimicked via odontoidotomy at its base and posterior soft-tissue release, including the supraspinous ligaments and facet joint capsules. Specimens were tested to 1,000 cycles after stabilization with two fixation constructs: C1 lateral mass (LM) screws and C2 intra-LSs (C1LM-C2LS) and C1 LM screws and C2 PSs (C1LM-C2PS). Angular motion was recorded for right and left axial rotation using an Optotrak 3020 system (Northern Digital, Waterloo, Ontario, Canada). Tensile loading to failure was then performed collinear to the longitudinal axis of the screw, and the data were recorded as peak pullout strength in newtons. There was no statistically significant difference in stability (measured in degrees of rotation) between the intra-LS and PS constructs at 250, 500, 750, and 1,000 cycles of axial rotation. Furthermore, there was no significant difference in stability at 250 cycles versus 1,000 cycles for the LS (1.30 vs. 1.49, p = .80) or PS (0.84 vs. 0.85, p = .96). Pedicle screws had higher pullout strength when compared with the intra-LSs (757.5 ± 239 vs. 583.4 ± 472 N); however, high standard deviation precluded statistical significance (p = .44). Our data suggest that a C1LM and C2LS construct has similar biomechanical stability when compared with a C1LM and C2PS construct after 1,000 cycles of axial rotation. Furthermore, PSs had higher pullout strength when compared with LSs; however, this result was not statistically significant. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles

    DOE PAGES

    Jiao, Z. B.; Luan, J. H.; Guo, W.; ...

    2016-09-01

    The effects of welding and post-weld heat treatment (PWHT) on nanoscale co-precipitation, grain structure, and mechanical properties of an ultra-high strength steel were studied through a combination of atom probe tomography (APT) and mechanical tests. Our results indicate that the welding process dissolves all pre-existing nanoparticles and causes grain coarsening in the fusion zone, resulting in a soft and ductile weld without any cracks in the as-welded condition. A 550 °C PWHT induces fine-scale re-precipitation of NiAl and Cu co-precipitates with high number densities and ultra-fine sizes, leading to a large recovery of strength but a loss of ductility withmore » intergranular failure, whereas a 600 °C PWHT gives rise to coarse-scale re-precipitation of nanoparticles together with the formation of a small amount of reverted austenite, resulting in a great recovery in both strength and ductility. Our analysis indicates that the degree of strength recovery is dependent mainly upon the re-precipitation microstructure of nanoparticles, together with grain size and reversion of austenite, while the ductility recovery is sensitive to the grain-boundary structure. In conclusion, APT reveals that the grain-boundary segregation of Mn and P may be the main reason for the 550 °C embrittlement, and the enhanced ductility at 600 °C is ascribed to a possible reduction of the segregation and reversion of austenite.« less

  8. Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Z. B.; Luan, J. H.; Guo, W.

    The effects of welding and post-weld heat treatment (PWHT) on nanoscale co-precipitation, grain structure, and mechanical properties of an ultra-high strength steel were studied through a combination of atom probe tomography (APT) and mechanical tests. Our results indicate that the welding process dissolves all pre-existing nanoparticles and causes grain coarsening in the fusion zone, resulting in a soft and ductile weld without any cracks in the as-welded condition. A 550 °C PWHT induces fine-scale re-precipitation of NiAl and Cu co-precipitates with high number densities and ultra-fine sizes, leading to a large recovery of strength but a loss of ductility withmore » intergranular failure, whereas a 600 °C PWHT gives rise to coarse-scale re-precipitation of nanoparticles together with the formation of a small amount of reverted austenite, resulting in a great recovery in both strength and ductility. Our analysis indicates that the degree of strength recovery is dependent mainly upon the re-precipitation microstructure of nanoparticles, together with grain size and reversion of austenite, while the ductility recovery is sensitive to the grain-boundary structure. In conclusion, APT reveals that the grain-boundary segregation of Mn and P may be the main reason for the 550 °C embrittlement, and the enhanced ductility at 600 °C is ascribed to a possible reduction of the segregation and reversion of austenite.« less

  9. A comparative study of skin cell activities in collagen and fibrin constructs.

    PubMed

    Law, Jia Xian; Musa, Faiza; Ruszymah, Bt Hj Idrus; El Haj, Alicia J; Yang, Ying

    2016-09-01

    Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term

    NASA Astrophysics Data System (ADS)

    Deruelle, Nathalie; Merino, Nelson; Olea, Rodrigo

    2018-05-01

    We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil theorem plus a dimensional continuation process, such that the extremization of the full action yields the equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial language, this boundary term is the generalization to this theory of the Katz boundary term and vector for general relativity. The boundary term constructed in this paper allows to deal with a general background and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide if one replaces the background of the Katz procedure by a product manifold. As a first application we show that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the Boulware-Deser black hole.

  11. On integrable boundaries in the 2 dimensional O(N) σ-models

    NASA Astrophysics Data System (ADS)

    Aniceto, Inês; Bajnok, Zoltán; Gombor, Tamás; Kim, Minkyoo; Palla, László

    2017-09-01

    We make an attempt to map the integrable boundary conditions for 2 dimensional non-linear O(N) σ-models. We do it at various levels: classically, by demanding the existence of infinitely many conserved local charges and also by constructing the double row transfer matrix from the Lax connection, which leads to the spectral curve formulation of the problem; at the quantum level, we describe the solutions of the boundary Yang-Baxter equation and derive the Bethe-Yang equations. We then show how to connect the thermodynamic limit of the boundary Bethe-Yang equations to the spectral curve.

  12. Numerical methods for stiff systems of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  13. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    NASA Astrophysics Data System (ADS)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  14. Stokesian dynamics of pill-shaped Janus particles with stick and slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo Cheong; Chan, Derek Y. C.

    2013-04-01

    We study the forces and torques experienced by pill-shaped Janus particles of different aspect ratios where half of the surface obeys the no-slip boundary condition and the other half obeys the Navier slip condition of varying slip lengths. Using a recently developed boundary integral formulation whereby the traditional singular behavior of this approach is removed analytically, we quantify the strength of the forces and torques experienced by such particles in a uniform flow field in the Stokes regime. Depending on the aspect ratio and the slip length, the force transverse to the flow direction can change sign. This is a novel property unique to the Janus nature of the particles.

  15. Void migration in fusion materials

    NASA Astrophysics Data System (ADS)

    Cottrell, G. A.

    2002-04-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.

  16. Asymptotic boundary conditions for dissipative waves: General theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  17. Ex vivo biomechanical evaluation of pigeon (Columba livia) cadaver intact humeri and ostectomized humeri stabilized with caudally applied titanium locking plate or stainless steel nonlocking plate constructs.

    PubMed

    Darrow, Brett G; Biskup, Jeffrey J; Weigel, Joseph P; Jones, Michael P; Xie, Xie; Liaw, Peter K; Tharpe, Josh L; Sharma, Aashish; Penumadu, Dayakar

    2017-05-01

    OBJECTIVE To evaluate mechanical properties of pigeon (Columba livia) cadaver intact humeri versus ostectomized humeri stabilized with a locking or nonlocking plate. SAMPLE 30 humeri from pigeon cadavers. PROCEDURES Specimens were allocated into 3 groups and tested in bending and torsion. Results for intact pigeon humeri were compared with results for ostectomized humeri repaired with a titanium 1.6-mm screw locking plate or a stainless steel 1.5-mm dynamic compression plate; the ostectomized humeri mimicked a fracture in a thin cortical bone. Locking plates were secured with locking screws (2 bicortical and 4 monocortical), and nonlocking plates were secured with bicortical nonlocking screws. Constructs were cyclically tested nondestructively in 4-point bending and then tested to failure in bending. A second set of constructs were cyclically tested non-destructively and then to failure in torsion. Stiffness, strength, and strain energy of each construct were compared. RESULTS Intact specimens were stiffer and stronger than the repair groups for all testing methods, except for nonlocking constructs, which were significantly stiffer than intact specimens under cyclic bending. Intact bones had significantly higher strain energies than locking plates in both bending and torsion. Locking and nonlocking plates were of equal strength and strain energy, but not stiffness, in bending and were of equal strength, stiffness, and strain energy in torsion. CONCLUSIONS AND CLINICAL RELEVANCE Results for this study suggested that increased torsional strength may be needed before bone plate repair can be considered as the sole fixation method for avian species.

  18. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    PubMed

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  19. Evaluating the time and temperature dependent biaxial strength of Gore-Select ® series 57 proton exchange membrane using a pressure loaded blister test

    NASA Astrophysics Data System (ADS)

    Grohs, Jacob R.; Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.

    Temperature and humidity fluctuations in operating fuel cells impose significant biaxial stresses in the constrained proton exchange membranes (PEMs) of a fuel cell stack. The strength of the PEM, and its ability to withstand cyclic environment-induced stresses, plays an important role in membrane integrity and consequently, fuel cell durability. In this study, a pressure loaded blister test is used to characterize the biaxial strength of Gore-Select ® series 57 over a range of times and temperatures. Hencky's classical solution for a pressurized circular membrane is used to estimate biaxial strength values from burst pressure measurements. A hereditary integral is employed to construct the linear viscoelastic analog to Hencky's linear elastic exact solution. Biaxial strength master curves are constructed using traditional time-temperature superposition principle techniques and the associated temperature shift factors show good agreement with shift factors obtained from constitutive (stress relaxation) and fracture (knife slit) tests of the material.

  20. In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals

    DOE PAGES

    Liu, Y.; Li, N.; Bufford, D.; ...

    2015-07-14

    Certain nanotwinned (nt) metals have rare combinations of high mechanical strength and ductility. Here, we review recent in situ nanoindentation studies (using transmission electron microscopes) on the deformation mechanisms of nt face-centered cubic metals including Cu, Ni, and Al with a wide range of stacking fault energy (SFE). Moreover, in nt Cu with low-to-intermediate SFE, detwinning (accompanied by rapid twin boundary migration) occurs at ultralow stress. In Ni with relatively high SFE, coherent {111} twin boundaries lead to substantial work hardening. Twinned Al has abundant {112} incoherent twin boundaries, which induce significant work-hardening capability and plasticity in Al. Finally, twinmore » boundaries in Al also migrate but at very high stresses. Furthermore, molecular dynamics simulations reveal the influence of SFE on deformation mechanisms in twinned metals.« less

  1. Interactive calculation procedures for mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  2. Localized rotating convection with no-slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Beaume, Cédric; Kao, Hsien-Ching; Knobloch, Edgar; Bergeon, Alain

    2013-12-01

    Localized patches of stationary convection embedded in a background conduction state are called convectons. Multiple states of this type have recently been found in two-dimensional Boussinesq convection in a horizontal fluid layer with stress-free boundary conditions at top and bottom, and rotating about the vertical. The convectons differ in their lengths and in the strength of the self-generated shear within which they are embedded, and exhibit slanted snaking. We use homotopic continuation of the boundary conditions to show that similar structures exist in the presence of no-slip boundary conditions at the top and bottom of the layer and show that such structures exhibit standard snaking. The homotopic continuation allows us to study the transformation from slanted snaking characteristic of systems with a conserved quantity, here the zonal momentum, to standard snaking characteristic of systems with no conserved quantity.

  3. Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Fatuzzo, Marco; Adams, Fred C.

    2018-04-01

    External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.

  4. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    USDA-ARS?s Scientific Manuscript database

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  5. The Sloan-C Pillars and Boundary Objects As a Framework for Evaluating Blended Learning

    ERIC Educational Resources Information Center

    Laumakis, Mark; Graham, Charles; Dziuban, Chuck

    2009-01-01

    The authors contend that blended learning represents a boundary object; a construct that brings together constituencies from a variety of backgrounds with each of these cohorts defining the object somewhat differently. The Sloan-C Pillars (learning effectiveness, access, cost effectiveness, student satisfaction, and faculty satisfaction) provide…

  6. Wilderness ecology: virgin plant communities of the Boundary Waters Canoe Area.

    Treesearch

    Lewis F. Ohmann; Robert R. Ream

    1971-01-01

    Describes virgin plant communities in the Boundary Waters Canoe Area. Data from all vegetative components of 106 virgin upland stands were used to construct a community classification through a combination of agglomerative clustering and principal components analysis. Discusses the relation of communities to their environment and to past wildfires.

  7. Local phase space and edge modes for diffeomorphism-invariant theories

    NASA Astrophysics Data System (ADS)

    Speranza, Antony J.

    2018-02-01

    We discuss an approach to characterizing local degrees of freedom of a subregion in diffeomorphism-invariant theories using the extended phase space of Donnelly and Freidel [36]. Such a characterization is important for defining local observables and entanglement entropy in gravitational theories. Traditional phase space constructions for subregions are not invariant with respect to diffeomorphisms that act at the boundary. The extended phase space remedies this problem by introducing edge mode fields at the boundary whose transformations under diffeomorphisms render the extended symplectic structure fully gauge invariant. In this work, we present a general construction for the edge mode symplectic structure. We show that the new fields satisfy a surface symmetry algebra generated by the Noether charges associated with the edge mode fields. For surface-preserving symmetries, the algebra is universal for all diffeomorphism-invariant theories, comprised of diffeomorphisms of the boundary, SL(2, ℝ) transformations of the normal plane, and, in some cases, normal shearing transformations. We also show that if boundary conditions are chosen such that surface translations are symmetries, the algebra acquires a central extension.

  8. Freeze-thaw durability of composite materials.

    DOT National Transportation Integrated Search

    1996-01-01

    Composite materials, produced from polymer resins and high strength fibers, have the potential to be widely used in construction because of their corrosion resistance and high strength-to-weight ratio, However, such environmental factors as extreme t...

  9. Intertwining operator realization of non-relativistic holography

    NASA Astrophysics Data System (ADS)

    Aizawa, N.; Dobrev, V. K.

    2010-04-01

    We give a group-theoretic interpretation of non-relativistic holography as equivalence between representations of the Schrödinger algebra describing bulk fields and boundary fields. Our main result is the explicit construction of the boundary-to-bulk operators in the framework of representation theory (without specifying any action). Further we show that these operators and the bulk-to-boundary operators are intertwining operators. In analogy to the relativistic case, we show that each bulk field has two boundary fields with conjugated conformal weights. These fields are related by another intertwining operator given by a two-point function on the boundary. Analogously to the relativistic result of Klebanov-Witten we give the conditions when both boundary fields are physical. Finally, we recover in our formalism earlier non-relativistic results for scalar fields by Son and others.

  10. Effective search for stable segregation configurations at grain boundaries with data-mining techniques

    NASA Astrophysics Data System (ADS)

    Kiyohara, Shin; Mizoguchi, Teruyasu

    2018-03-01

    Grain boundary segregation of dopants plays a crucial role in materials properties. To investigate the dopant segregation behavior at the grain boundary, an enormous number of combinations have to be considered in the segregation of multiple dopants at the complex grain boundary structures. Here, two data mining techniques, the random-forests regression and the genetic algorithm, were applied to determine stable segregation sites at grain boundaries efficiently. Using the random-forests method, a predictive model was constructed from 2% of the segregation configurations and it has been shown that this model could determine the stable segregation configurations. Furthermore, the genetic algorithm also successfully determined the most stable segregation configuration with great efficiency. We demonstrate that these approaches are quite effective to investigate the dopant segregation behaviors at grain boundaries.

  11. Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface

    NASA Astrophysics Data System (ADS)

    Gou, J.; Zhou, W.; Wu, L.

    2016-10-01

    Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.

  12. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    DOE PAGES

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; ...

    2016-08-27

    We struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Artic winter using weather and climate models, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Themore » transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Finally, observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.« less

  13. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    PubMed Central

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, HAM; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2017-01-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour. PMID:28966718

  14. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison.

    PubMed

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, Ham; Svensson, Gunilla; Vaillancourt, Paul A; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first L agrangian Arc tic air form ation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour.

  15. A quiet flow Ludwieg tube for study of transition in compressible boundary layers: Design and feasibility

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1991-01-01

    Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.

  16. Boundary control of elliptic solutions to enforce local constraints

    NASA Astrophysics Data System (ADS)

    Bal, G.; Courdurier, M.

    We present a constructive method to devise boundary conditions for solutions of second-order elliptic equations so that these solutions satisfy specific qualitative properties such as: (i) the norm of the gradient of one solution is bounded from below by a positive constant in the vicinity of a finite number of prescribed points; (ii) the determinant of gradients of n solutions is bounded from below in the vicinity of a finite number of prescribed points. Such constructions find applications in recent hybrid medical imaging modalities. The methodology is based on starting from a controlled setting in which the constraints are satisfied and continuously modifying the coefficients in the second-order elliptic equation. The boundary condition is evolved by solving an ordinary differential equation (ODE) defined via appropriate optimality conditions. Unique continuations and standard regularity results for elliptic equations are used to show that the ODE admits a solution for sufficiently long times.

  17. Evaluation of a Diffusion/Trapping Model for Hydrogen Ingress in High- Strength Alloys

    DTIC Science & Technology

    1992-10-01

    high-strength steels [3-5], precipitation -hardened and work-hardened nickel-base alloys [3-61, and titanium [71 and was shown to be effective in...other two alloys, Ti-13-11-3 was tested in the unaged and age- conditions to establish the role of the secondary (x phase precipitated during aging... maraging steel , so it probably takes the form of reversible trapping [5,29]. Hence, grain boundaries are considered to be the most likely sites for

  18. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farbaniec, L., E-mail: lfarban1@jhu.edu; Dirras, G., E-mail: dirras@univ-paris13.fr; Krawczynska, A.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim weremore » observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.« less

  19. Riveting in metal airplane construction. Part IV : strength of riveted joints in duralumin (concluded)

    NASA Technical Reports Server (NTRS)

    Pleines, Wilhelm

    1930-01-01

    Tests were made to determine the crushing strength of a riveted joint, in order to define the difference in crushing stregth between a strictly bolted joint and a riveted joint. The object was to tabulate the crushing strength by failure on various plate thicknesses for a one-rivet double-shear riveted joint.

  20. Size and Strength: Do We Need Both to Measure Vocabulary Knowledge?

    ERIC Educational Resources Information Center

    Laufer, B.; Elder, C.; Hill, K.; Congdon, P.

    2004-01-01

    This article describes the development and validation of a test of vocabulary size and strength. The first part of the article sets out the theoretical rationale for the test, and describes how the size and strength constructs have been conceptualized and operationalized. The second part of the article focusses on the process of test validation,…

  1. Semi-span model testing in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona; Milholen, William E., II

    1993-01-01

    A semi-span testing technique has been proposed for the NASA Langley Research Center's National Transonic Facility (NTF). Semi-span testing has several advantages including (1) larger model size, giving increased Reynolds number capability; (2) improved model fidelity, allowing ease of flap and slat positioning which ultimately improves data quality; and (3) reduced construction costs compared with a full-span model. In addition, the increased model size inherently allows for increased model strength, reducing aeroelastic effects at the high dynamic pressure levels necessary to simulate flight Reynolds numbers. The Energy Efficient Transport (EET) full-span model has been modified to become the EET semi-span model. The full-span EET model was tested extensively at both NASA LRC and NASA Ames Research Center. The available full-span data will be useful in validating the semi-span test strategy in the NTF. In spite of the advantages discussed above, the use of a semi-span model does introduce additional challenges which must be addressed in the testing procedure. To minimize the influence of the sidewall boundary layer on the flow over the semi-span model, the model must be off-set from the sidewall. The objective is to remove the semi-span model from the sidewall boundary layer by use of a stand-off geometry. When this is done however, the symmetry along the centerline of the full-span model is lost when the semi-span model is mounted on the wind tunnel sidewall. In addition, the large semi-span model will impose a significant pressure loading on the sidewall boundary layer, which may cause separation. Even under flow conditions where the sidewall boundary layer remains attached, the sidewall boundary layer may adversely effect the flow over the semi-span model. Also, the increased model size and sidewall mounting requires a modified wall correction strategy. With these issues in mind, the semi-span model has been well instrumented with surface pressure taps to obtain data on the expected complex flow field in the near wall region. This status report summarizes the progress to date on developing the semi-span geometry definition suitable for generating structured grids for the computational research. In addition, the progress on evaluating three state-of-the-art Navier-Stokes codes is presented.

  2. Reconstruction of multiple cracks from experimental electrostatic boundary measurements

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Liepa, Valdis; Vogelius, Michael

    1993-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is described. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. An apparatus that was constructed specifically for generating laboratory data on which to test the algorithm is also described. The algorithm is applied to a number of different test cases and the results are discussed.

  3. Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Fei, Mingwen; Han, Daozhi; Wang, Xiaoming

    2017-01-01

    In this paper, we study the vanishing Darcy number limit of the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system (DBOB). This singular perturbation problem involves singular structures both in time and in space giving rise to initial layers, boundary layers and initial-boundary layers. We construct an approximate solution to the DBOB system by the method of multiple scale expansions. The convergence with optimal convergence rates in certain Sobolev norms is established rigorously via the energy method.

  4. Schramm-Loewner evolution and Liouville quantum gravity.

    PubMed

    Duplantier, Bertrand; Sheffield, Scott

    2011-09-23

    We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal welding maps related to Schramm-Loewner evolution. As an application, we construct quantum length and boundary intersection measures on the Schramm-Loewner evolution curve itself.

  5. The topological basis expression of four-qubit XXZ spin chain with twist boundary condition

    NASA Astrophysics Data System (ADS)

    Du, Guijiao; Xue, Kang; Zhou, Chengcheng; Sun, Chunfang; Wang, Gangcheng

    2013-07-01

    We investigate the XXZ model's characteristic with the twisted boundary condition and the topological basis expression. Owing to twist boundary condition, the ground state energy will changing back and forth between E_{13} and E_{15} by modulate the parameter φ . By using TLA generators, the XXZ model's Hamiltonian can be constructed. All the eigenstates can be expressed by topological basis, and the whole of eigenstates' entanglement are maximally entangle states (Q(|φ _i> )=1).

  6. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius is denoted by h. It is the final value of h, reached before beginning construction on the next spindle, that is denoted by r. During construction of a spindle, if a new vector falls between C and the inner boundary, the vector is regarded as completely familiar and no action is taken. If the new vector falls into the region between the inner and outer boundaries, it is considered unusual enough to warrant the adjustment of C and r by use of the aforementioned algorithms, but not unusual enough to be considered novel. If a vector falls outside the outer boundary, it is considered novel, in which case one of several appropriate responses could be initiation of construction of a new spindle.

  7. Marginally trapped surfaces and AdS/CFT

    NASA Astrophysics Data System (ADS)

    Grado-White, Brianna; Marolf, Donald

    2018-02-01

    It has been proposed that the areas of marginally trapped or anti-trapped surfaces (also known as leaves of holographic screens) may encode some notion of entropy. To connect this to AdS/CFT, we study the case of marginally trapped surfaces anchored to an AdS boundary. We establish that such boundary-anchored leaves lie between the causal and extremal surfaces defined by the anchor and that they have area bounded below by that of the minimal extremal surface. This suggests that the area of any leaf represents a coarse-grained von Neumann entropy for the associated region of the dual CFT. We further demonstrate that the leading area-divergence of a boundary-anchored marginally trapped surface agrees with that for the associated extremal surface, though subleading divergences generally differ. Finally, we generalize an argument of Bousso and Engelhardt to show that holographic screens with all leaves anchored to the same boundary set have leaf-areas that increase monotonically along the screen, and we describe a construction through which this monotonicity can take the more standard form of requiring entropy to increase with boundary time. This construction is related to what one might call future causal holographic information, which in such cases also provides an upper bound on the area of the associated leaves.

  8. Methods and formulas for calculating the strength of plate and shell constructions as used in airplane design

    NASA Technical Reports Server (NTRS)

    Heck, O S; Ebner, H

    1936-01-01

    This report is a compilation of previously published articles on formulas and methods of calculation for the determination of the strength and stability of plate and shell construction as employed in airplane design. In particular, it treats the problem of isotropic, orthotopic, and stiffened rectangular plates, thin curved panels, and circular cylinders under various loading conditions. The purpose of appending the pertinent literature references following the subjects discussed was to facilitate a comprehensive study of the treated problems.

  9. Role of Grain Boundaries under Long-Time Radiation

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Luo, Jing; Guo, Xu; Xiang, Yang; Chapman, Stephen Jonathan

    2018-06-01

    Materials containing a high proportion of grain boundaries offer significant potential for the development of radiation-resistant structural materials. However, a proper understanding of the connection between the radiation-induced microstructural behavior of a grain boundary and its impact at long natural time scales is still missing. In this Letter, point defect absorption at interfaces is summarized by a jump Robin-type condition at a coarse-grained level, wherein the role of interface microstructure is effectively taken into account. Then a concise formula linking the sink strength of a polycrystalline aggregate with its grain size is introduced and is well compared with experimental observation. Based on the derived model, a coarse-grained formulation incorporating the coupled evolution of grain boundaries and point defects is proposed, so as to underpin the study of long-time morphological evolution of grains induced by irradiation. Our simulation results suggest that the presence of point defect sources within a grain further accelerates its shrinking process, and radiation tends to trigger the extension of twin boundary sections.

  10. Literature survey on oxidations and fatigue lives at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1984-01-01

    Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.

  11. THE KELVIN-HELMHOLTZ INSTABILITY AT CORONAL MASS EJECTION BOUNDARIES IN THE SOLAR CORONA: OBSERVATIONS AND 2.5D MHD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moestl, U. V.; Temmer, M.; Veronig, A. M., E-mail: ute.moestl@uni-graz.at

    2013-03-20

    The Atmospheric Imaging Assembly on board the Solar Dynamics Observatory observed a coronal mass ejection with an embedded filament on 2011 February 24, revealing quasi-periodic vortex-like structures at the northern side of the filament boundary with a wavelength of approximately 14.4 Mm and a propagation speed of about 310 {+-} 20 km s{sup -1}. These structures could result from the Kelvin-Helmholtz instability occurring on the boundary. We perform 2.5D numerical simulations of the Kelvin-Helmholtz instability and compare the simulated characteristic properties of the instability with the observations, where we obtain qualitative as well as quantitative accordance. We study the absencemore » of Kelvin-Helmholtz vortex-like structures on the southern side of the filament boundary and find that a magnetic field component parallel to the boundary with a strength of about 20% of the total magnetic field has stabilizing effects resulting in an asymmetric development of the instability.« less

  12. A biomechanical analysis of the self-retaining pedicle hook device in posterior spinal fixation

    PubMed Central

    van Laar, Wilbert; Meester, Rinse J.; Smit, Theo H.

    2007-01-01

    Regular hooks lack initial fixation to the spine during spinal deformity surgery. This runs the risk of posterior hook dislodgement during manipulation and correction of the spinal deformity, that may lead to loss of correction, hook migration, and post-operative junctional kyphosis. To prevent hook dislodgement during surgery, a self-retaining pedicle hook device (SPHD) is available that is made up of two counter-positioned hooks forming a monoblock posterior claw device. The initial segmental posterior fixation strength of a SPHD, however, is unknown. A biomechanical pull-out study of posterior segmental spinal fixation in a cadaver vertebral model was designed to investigate the axial pull-out strength for a SPHD, and compared to the pull-out strength of a pedicle screw. Ten porcine lumbar vertebral bodies were instrumented in pairs with two different instrumentation constructs after measuring the bone mineral density of each individual vertebra. The instrumentation constructs were extracted employing a material testing system using axial forces. The maximum pull-out forces were recorded at the time of the construct failure. Failure of the SPHD appeared in rotation and lateral displacement, without fracturing of the posterior structures. The average pull-out strength of the SPHD was 236 N versus 1,047 N in the pedicle screws (P < 0.001). The pull-out strength of the pedicle screws showed greater correlation with the BMC compared to the SPHD (P < 0.005). The SPHD showed to provide a significant inferior segmental fixation to the posterior spine in comparison to pedicle screw fixation. Despite the beneficial characteristics of the monoblock claw construct in a SPHD, that decreases the risk of posterior hook dislodgement during surgery compared to regular hooks, the SPHD does not improve the pull-out strength in such a way that it may provide a biomechanically solid alternative to pedicle screw fixation in the posterior spine. PMID:17203270

  13. Very-Early-Strength Latex-Modified Concrete Overlays

    DOT National Transportation Integrated Search

    1998-12-01

    This report describes the installation and condition of the first two very-early-strength latex-modified concrete (LMC-VE) overlays to be constructed for the Virginia Department of Transportation. The overlays were prepared with a special blended cem...

  14. Very-early-strength latex-modified concrete overlay.

    DOT National Transportation Integrated Search

    1998-12-01

    This paper describes the installation and condition of the first two very-early-strength latex modified concrete (LMC-VE) overlays constructed for the Virginia Department of Transportation. The overlays were prepared with a special blended cement rat...

  15. Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms

    NASA Astrophysics Data System (ADS)

    Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.; Parnell, C. E.

    2013-09-01

    This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.

  16. Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network

    NASA Astrophysics Data System (ADS)

    Valencia, Daniel; Wilson, Evan; Jiang, Zhengping; Valencia-Zapata, Gustavo A.; Wang, Kuang-Chung; Klimeck, Gerhard; Povolotskyi, Michael

    2018-04-01

    Orientation effects on the specific resistance of copper grain boundaries are studied systematically with two different atomistic tight-binding methods. A methodology is developed to model the specific resistance of grain boundaries in the ballistic limit using the embedded atom model, tight- binding methods, and nonequilibrium Green's functions. The methodology is validated against first-principles calculations for thin films with a single coincident grain boundary, with 6.4% deviation in the specific resistance. A statistical ensemble of 600 large, random structures with grains is studied. For structures with three grains, it is found that the distribution of specific resistances is close to normal. Finally, a compact model for grain-boundary-specific resistance is constructed based on a neural network.

  17. Family Boundary Ambiguity: A 30-Year Review of Theory, Research, and Measurement

    ERIC Educational Resources Information Center

    Carroll, Jason S.; Olson, Chad D.; Buckmiller, Nicolle

    2007-01-01

    Since its introduction 30 years ago, family boundary ambiguity (BA) has been a widely used construct in family stress research and clinical intervention. In this article, we present a comprehensive and interdisciplinary review of published research studies that have used BA as a primary variable. Our review identified 37 studies investigating BA…

  18. Coping Strategies of Part-Time MBA Students: The Role of Boundary Management

    ERIC Educational Resources Information Center

    Dunagan, Marion

    2012-01-01

    Using the framework of boundary theory as applied to the work-life-school construct, the study focused on part-time MBA students who worked full-time, their tendency to segment or integrate their numerous roles, and the coping tactics they utilized in redistributing their efforts as they added graduate school to these roles. The research…

  19. Anticipatory Scene Representation in Preschool Children's Recall and Recognition Memory

    ERIC Educational Resources Information Center

    Kreindel, Erica; Intraub, Helene

    2017-01-01

    Behavioral and neuroscience research on boundary extension (false memory beyond the edges of a view of a scene) has provided new insights into the constructive nature of scene representation, and motivates questions about development. Early research with children (as young as 6-7 years) was consistent with boundary extension, but relied on an…

  20. Reuse of industrial sludge as construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  1. 42 CFR 137.335 - What costs may be included in the budget for a construction agreement?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... oversight of the design during construction; (4) Real property lease or acquisition; (5) Development of project surveys including topographical surveys, site boundary descriptions, geotechnical surveys, archeological surveys, and NEPA compliance; (6) Project management, superintendence, safety and inspection; (7...

  2. 42 CFR 137.335 - What costs may be included in the budget for a construction agreement?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... oversight of the design during construction; (4) Real property lease or acquisition; (5) Development of project surveys including topographical surveys, site boundary descriptions, geotechnical surveys, archeological surveys, and NEPA compliance; (6) Project management, superintendence, safety and inspection; (7...

  3. 42 CFR 137.335 - What costs may be included in the budget for a construction agreement?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... oversight of the design during construction; (4) Real property lease or acquisition; (5) Development of project surveys including topographical surveys, site boundary descriptions, geotechnical surveys, archeological surveys, and NEPA compliance; (6) Project management, superintendence, safety and inspection; (7...

  4. 42 CFR 137.335 - What costs may be included in the budget for a construction agreement?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... oversight of the design during construction; (4) Real property lease or acquisition; (5) Development of project surveys including topographical surveys, site boundary descriptions, geotechnical surveys, archeological surveys, and NEPA compliance; (6) Project management, superintendence, safety and inspection; (7...

  5. 42 CFR 137.335 - What costs may be included in the budget for a construction agreement?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... oversight of the design during construction; (4) Real property lease or acquisition; (5) Development of project surveys including topographical surveys, site boundary descriptions, geotechnical surveys, archeological surveys, and NEPA compliance; (6) Project management, superintendence, safety and inspection; (7...

  6. A Developmental Perspective on the Relationship between Grammar and Text.

    ERIC Educational Resources Information Center

    Kenkel, James; Yates, Robert

    2003-01-01

    Presents a developmental perspective on text construction, understood as managing information within and across sentence boundaries. Claims that the systematicity in non-standard constructions in basic writer's texts reflects student awareness of three obligatory areas of information management in texts: topic management, reference tracking, and…

  7. Studying of influence of fiber reinforcing at fine-grained concrete applying in transport construction

    NASA Astrophysics Data System (ADS)

    Begunov, Oleg; Alexandrova, Olga; Solovyov, Vadim

    2017-10-01

    We observed causes of using fiber in nowadays construction industry and its influence on a final product properties, where the fine-grained concrete basing of repairing dry construction mix was used as a base. However, in Russia we do not have such experience. If we’re talking about changes occurring in the fine-grained concrete all of its are known about it, either in concrete, but in dry-construction mixes changes may have another purpose. Advantages and disadvantages of using fiber were oblieved also in that article. The main subject of this research is the influence of fiber on a mechanical properties of fine-grained concrete. The most attention is paid to estimate the influence of a concrete’s properties by metal fibers: casting time (initial and final), workability and strength (tensile strength and compressive strength) in this article. The most popular different type of metal fiber compares for its length and width and the optimum quantity of metal component chooses, which will indicate the maximum possible affirmative result of its using. Dependences comparing properties of fine-grained properties with fiber’s type, measurements and quantity which show the evident result of researching are discussed.

  8. COMOC: Three dimensional boundary region variant, programmer's manual

    NASA Technical Reports Server (NTRS)

    Orzechowski, J. A.; Baker, A. J.

    1974-01-01

    The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.

  9. Effect of Microstructural Interfaces on the Mechanical Response of Crystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Aitken, Zachary H.

    Advances in nano-scale mechanical testing have brought about progress in the understanding of physical phenomena in materials and a measure of control in the fabrication of novel materials. In contrast to bulk materials that display size-invariant mechanical properties, sub-micron metallic samples show a critical dependence on sample size. The strength of nano-scale single crystalline metals is well-described by a power-law function, sigma ∝ D-n, where D is a critical sample size and n is a experimentally-fit positive exponent. This relationship is attributed to source-driven plasticity and demonstrates a strengthening as the decreasing sample size begins to limit the size and number of dislocation sources. A full understanding of this size-dependence is complicated by the presence of microstructural features such as interfaces that can compete with the dominant dislocation-based deformation mechanisms. In this thesis, the effects of microstructural features such as grain boundaries and anisotropic crystallinity on nano-scale metals are investigated through uniaxial compression testing. We find that nano-sized Cu covered by a hard coating displays a Bauschinger effect and the emergence of this behavior can be explained through a simple dislocation-based analytic model. Al nano-pillars containing a single vertically-oriented coincident site lattice grain boundary are found to show similar deformation to single-crystalline nano-pillars with slip traces passing through the grain boundary. With increasing tilt angle of the grain boundary from the pillar axis, we observe a transition from dislocation-dominated deformation to grain boundary sliding. Crystallites are observed to shear along the grain boundary and molecular dynamics simulations reveal a mechanism of atomic migration that accommodates boundary sliding. We conclude with an analysis of the effects of inherent crystal anisotropy and alloying on the mechanical behavior of the Mg alloy, AZ31. Through comparison to pure Mg, we show that the size effect dominates the strength of samples below 10 microm, that differences in the size effect between hexagonal slip systems is due to the inherent crystal anisotropy, suggesting that the fundamental mechanism of the size effect in these slip systems is the same.

  10. High early strength latex modified concrete overlay.

    DOT National Transportation Integrated Search

    1988-01-01

    This report describes the condition of the first high early strength latex modified concrete (LMC-HE) overlay to be constructed for the Virginia Department of Transportation. The overlay was prepared with type III cement and with more cement and less...

  11. Shear strength of clay and silt embankments.

    DOT National Transportation Integrated Search

    2009-09-01

    Highway embankment is one of the most common large-scale geotechnical facilities constructed in Ohio. In the past, the design of these embankments was largely based on soil shear strength properties that had been estimated from previously published e...

  12. Influence of nanomodification additives on the properties of multilayer composite coating obtained in laser surfacing

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Ovcharenko, V. E.; Malikov, A. G.; Drozdov, V. O.; Pshenichnikov, A. P.

    2017-10-01

    The paper presents the results of numerical and experimental studies of the process of obtaining a permanent joint of two plates of heterogeneous metals that cannot be welded in the usual way: alloy Grade 4 and steel AISI 321 using a laser beam and an intermediate composite insert. The composite insert was obtained by explosion welding of four thin plates of titanium (Grade 4), niobium, copper, and steel (AISI 321). The insert was placed between the welded plates of titanium and steel, and the steel plate was welded with the steel part of the insert, and the titanium plate was welded with the titanium part of the insert. The plates were welded using a CO2 laser. The connection of metals with the help of explosion is carried out without their melting, so the formation of the brittle intermetallics does not occur in most cases. This ensures the greatest strength of the joints as compared to the joints obtained by other welding methods. To analyze the distribution of thermal fields in the composite insert and welded plates, a numerical study was conducted of the laser welding of steel and titanium plates with the corresponding parts of the insert. The purpose of the study was to determine the rational parameters of welding (laser beam power, speed of its movement, size and position of the focal spot), at which there was no complete melting of the steel and titanium parts of the insert during through penetration of the welded plates. The experimental part of the work is devoted to analysis of formation of the internal boundaries and microstructure of the composite insert and the strength of the permanent joint. It is shown that as a result of the explosion welding, weld seams of different wavelike configuration are formed. The most pronounced wavelike boundary is observed in the steel-copper connection, since these materials have a face-centered cubic lattice and are easily subjected to plastic deformation. At the contact boundaries of the plates, transition diffusion zones with different widths (from 5 to 40 μm) and element concentrations are formed. The hardness in the boundary diffusion zones is higher than in the connected metals, which is due to the diffusion interaction of the materials adjacent to each other. It has been established that the tensile strength of the composite insert is comparable to the maximum strength of Grade 4 alloy (456-511 MPa), and the failure in most cases occurred over the least durable component of the composite material, which is the copper plate, whose strength was significantly increased by cold hardening during explosion welding and diffusion of elements of the contacting plates.

  13. Towards industrial-strength Navier-Stokes codes

    NASA Technical Reports Server (NTRS)

    Jou, Wen-Huei; Wigton, Laurence B.; Allmaras, Steven R.

    1992-01-01

    In this paper we discuss our experiences with Navier-Stokes (NS) codes using central differencing (CD) and scalar artificial dissipation (SAD). The NS-CDSAD codes have been developed by several researchers. Our results confirm that for typical commercial transport wing and wing/body configurations flying at transonic conditions with all turbulent boundary layers, NS-CDSAD codes, when used with the Johnson-King turbulence model, are capable of computing pressure distributions in excellent agreement with experimental data. However, results are not as good when laminar boundary layers are present. Exhaustive 2-D grid refinement studies supported by detailed analysis suggest that the numerical errors associated with SAD severely contaminate the solution in the laminar portion of the boundary layer. It is left as a challenge to the CFD community to find and fix the problems with Navier-Stokes codes and to produce a NS code which converges reliably and properly captures the laminar portion of the boundary layer on a reasonable grid.

  14. Evaluation of Wiring Constructions for Space Applications

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Stavnes, Mark W.; Dickman, John E.; Burkhardt, Linda A.; Woodford, Lynn M.; Ide, James R.; Muegge, ED

    1994-01-01

    A NASA Office of Safety and Mission Assurance (OS&MA) program to develop lightweight, reliable, and safe wiring insulations for aerospace applications is being performed by the NASA Lewis Research Center (LeRC). As part of this effort, a new wiring construction utilizing high strength PTFE (poly tetrafluoroethylene) as the insulation has been tested and compared with the existing military standard polyimide-based MIL-W-81381 wire construction. Electrical properties which were investigated included ac corona inception and extinction voltages (sea level and 60,000 feet), time/current to smoke, and wire fusing time. The two constructions were also characterized in terms of their mechanical properties of flexural strength, abrasion resistance (23 C and 150 C), and dynamic cut-through (23 C and 200 C). The results obtained in this testing effort are presented and discussed in this paper.

  15. Hot corrosion attack and strength degradation of SiC and Si(sub)3N(sub)4

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Fox, Dennis S.; Jacobson, Nathan S.

    1987-01-01

    Thin films of Na2SO4 and Na2CO3 molten salt deposits were used to corrode sintered SiC and Si3N4 at 1000 C. The resulting attack produced pitting and grain boundary etching resulting in strength decreases ranging from 15 to 50 percent. Corrosion pits were the predominant sources of fracture. The degree of strength decrease was found to be roughly correlated with the depth of the pit, as predicted from fracture toughness considerations. Gas evolution and bubble formation were key aspects of pit formation. Many of the observations of furnace exposures held true in a more realistic burner rig test.

  16. Mechanical properties and grindability of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu

    2004-06-01

    Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.

  17. LoCoH: Non-parameteric kernel methods for constructing home ranges and utilization distributions

    USGS Publications Warehouse

    Getz, Wayne M.; Fortmann-Roe, Scott; Cross, Paul C.; Lyons, Andrew J.; Ryan, Sadie J.; Wilmers, Christopher C.

    2007-01-01

    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: ‘‘fixed sphere-of-influence,’’ or r -LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an ‘‘adaptive sphere-of-influence,’’ or a -LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a ), and compare them to the original ‘‘fixed-number-of-points,’’ or k -LoCoH (all kernels constructed from k -1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a -LoCoH is generally superior to k - and r -LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu).

  18. A theoretical model of grain boundary self-diffusion in metals with phase transitions (case study into titanium and zirconium)

    NASA Astrophysics Data System (ADS)

    Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.

    2018-05-01

    The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.

  19. The Strength of Shell Bodies : Theory and Practice

    NASA Technical Reports Server (NTRS)

    Ebner, H

    1937-01-01

    The monocoque form of airplane construction has introduced a number of new problems to the stress calculator and the designer. The problems for the stress calculator fall into two groups: the determination of the stress condition (shell statics) and the determination of the failing strength (shell strength). The present report summarizes the most important theoretical and experimental results on this subject.

  20. Mechanical behavior of nanotwinned materials – experimental and computational approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavas, Hakan

    2016-12-17

    Nanotwinned materials exhibit high strength combined with excellent thermal stability, making them potentially attractive for numerous applications. When deposited on cold substrates at high rates, for example, silver films can be prepared with a high-density of growth twins with an average twin boundary spacing of less than 10 nm. These films show a very strong {111} texture, with the twin boundaries being perpendicular to the growth direction. The origins of superior mechanical and thermal properties of nanotwinned materials, however, are not yet fully understood and need further improvements.

  1. Coupled-rearrangement-channels calculation of the three-body system under the absorbing boundary condition

    NASA Astrophysics Data System (ADS)

    Iwasaki, M.; Otani, R.; Ito, M.; Kamimura, M.

    2016-05-01

    We formulate the method of the absorbing boundary condition (ABC) in the coupled-rearrangement-channels variational method (CRCMV) for the three-body problem. In the present study, we handle the simple three-boson system, and the absorbing potential is introduced in the Jacobi coordinate in the individual rearrangement channels. The resonance parameters and the strength of the monopole breakup are compared with the complex scaling method (CSM). We have found that the CRCVM + ABC method nicely works in the threebody problem with the rearrangement channels.

  2. Conical similarity of shock/boundary layer interactions generated by swept fins

    NASA Technical Reports Server (NTRS)

    Lu, F. K.; Settles, G. S.

    1983-01-01

    A parametric experimental study has been made of the class of 3D shock wave/turbulent boundary layer interactions generated by swept-leading-edge fins. The fin sweepback angles ranged from 0 to 65 deg at angles of attack of 5, 9, and 15 deg. Two equilibrium 2D turbulent boundary layers with a free-stream Mach number of 2.95 and a Reynolds number of 6.3 x 10 to the 7th/m were used as incoming flow conditions. All the resulting interactions were found to possess conical symmetry of surface pressures and skin friction lines beyond an initial inception zone. Further, these interactions revealed a simple similarity based on inviscid shock strength irrespective of fin sweepback or angle of attack.

  3. A general panel method for the analysis and design of arbitrary configurations in incompressible flows. [boundary value problem

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.

    1980-01-01

    A method for solving the linear integral equations of incompressible potential flow in three dimensions is presented. Both analysis (Neumann) and design (Dirichlet) boundary conditions are treated in a unified approach to the general flow problem. The method is an influence coefficient scheme which employs source and doublet panels as boundary surfaces. Curved panels possessing singularity strengths, which vary as polynomials are used, and all influence coefficients are derived in closed form. These and other features combine to produce an efficient scheme which is not only versatile but eminently suited to the practical realities of a user-oriented environment. A wide variety of numerical results demonstrating the method is presented.

  4. A seismic gap along an accreting plate boundary : Example of the Djibouti Ridge, Afar, East Africa

    NASA Astrophysics Data System (ADS)

    Ruegg, Jean-Claude; Lépine, Jean-Claude

    1983-05-01

    A segment of the Gulf of Tadjoura (Djibouti, East-Africa) accreting plate boundary, shows a period of quiescence in the seismic activity since 1974. This segment corresponds to the extension area of the aftershock activity that has occured after a cluster of magnitude 5.5 earthquakes in April 1973. From this example we propose that the seismic gap concept can be extended to moderate earthquakes occuring at extensional plate boundaries. The magnitude of the largest earthquakes at the spreading axis is limited by the size of the rupture length and by the strength of the brittle lithosphere. In the case of the Djibouti ridge recurrence time of 10-20 years are found for earthquakes of about M =6.

  5. Commentary: Rural Histories, Rural Boundaries, Rural Change

    ERIC Educational Resources Information Center

    Tieken, Mara Casey

    2017-01-01

    Cross-sector collaborations can generate the resources and political will necessary to tackle urgent, complex issues. Because these partnerships involve local leaders, they are typically responsive to their surrounding communities, addressing local concerns, and capitalizing upon local assets. These strengths-oriented, locally driven…

  6. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Werner, Wendelin

    2018-06-01

    We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

  7. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

    2018-06-01

    This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

  8. Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, X.; Guo, H.; Yang, S.; Wang, X.; Shang, C.; Misra, R. D. K.

    2018-04-01

    We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0}<1 1 1> and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.

  9. Analysis of temporal decay of diffuse broadband sound fields in enclosures by decomposition in powers of an absorption parameter

    NASA Astrophysics Data System (ADS)

    Bliss, Donald; Franzoni, Linda; Rouse, Jerry; Manning, Ben

    2005-09-01

    An analysis method for time-dependent broadband diffuse sound fields in enclosures is described. Beginning with a formulation utilizing time-dependent broadband intensity boundary sources, the strength of these wall sources is expanded in a series in powers of an absorption parameter, thereby giving a separate boundary integral problem for each power. The temporal behavior is characterized by a Taylor expansion in the delay time for a source to influence an evaluation point. The lowest-order problem has a uniform interior field proportional to the reciprocal of the absorption parameter, as expected, and exhibits relatively slow exponential decay. The next-order problem gives a mean-square pressure distribution that is independent of the absorption parameter and is primarily responsible for the spatial variation of the reverberant field. This problem, which is driven by input sources and the lowest-order reverberant field, depends on source location and the spatial distribution of absorption. Additional problems proceed at integer powers of the absorption parameter, but are essentially higher-order corrections to the spatial variation. Temporal behavior is expressed in terms of an eigenvalue problem, with boundary source strength distributions expressed as eigenmodes. Solutions exhibit rapid short-time spatial redistribution followed by long-time decay of a predominant spatial mode.

  10. Multiscale Approach to Small River Plumes off California

    NASA Astrophysics Data System (ADS)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  11. Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will

    2018-05-01

    Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.

  12. Phase transformation and long-term service of high-temperature martensitic chromium steels

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2000-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  13. Phase transformation and long-term service of high-temperature martensitic chromium steels

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2001-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  14. Language, Power and Identity

    ERIC Educational Resources Information Center

    Wodak, Ruth

    2012-01-01

    How are identities constructed in discourse? How are national and European identities tied to language and communication? And what role does power have--power in discourse, over discourse and of discourse? This paper seeks to identify and analyse processes of identity construction within Europe and at its boundaries, particularly the diversity of…

  15. 46 CFR 190.07-10 - Construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... use of other suitable material in special cases, having in mind the risk of fire. (b) The boundary... bulkheads and decks separating the accomodations and control stations from hold and machinery spaces... square feet or less from accommodations and control stations shall be of “A-15” Class construction as...

  16. Liquid Ice Surfers--The Construction of Surfer Identities in Norway

    ERIC Educational Resources Information Center

    Langseth, Tommy

    2012-01-01

    Surfing is getting increasingly popular in Norway as well as other countries that have a coastline with rideable waves. As surfing gains in popularity, however, the boundaries of the surfing subculture become increasingly guarded. Through ethnography and qualitative interviews, this study examines identity construction on an individual and group…

  17. 7 CFR 1794.23 - Proposals normally requiring an EA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... classification are: (1) Construction of fuel cell, combustion turbine, combined cycle, or diesel generating... be covered in the EA; (2) Construction of fuel cell, combustion turbine, combined cycle, or diesel... boundaries. (12) Installing a heat recovery steam generator and steam turbine with a rating of more than 200...

  18. 30 CFR 707.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... For purposes of this part, only that coal extracted from within the right-of-way, in the case of a... construction. Extraction of coal outside the right-of-way or boundary of the area directly affected by the... or office of the unit which, directly or through another unit of government, finances construction...

  19. Implementation of the concrete maturity meter for Maryland : December 2011.

    DOT National Transportation Integrated Search

    2011-12-01

    The process of waiting for concrete to attain its desired strength for certain construction : applications can pose one of two problems. The concrete strength may be overestimated, : which creates a safety concern for workers and the general public. ...

  20. Implementation of the concrete maturity meter for Maryland : November 2011.

    DOT National Transportation Integrated Search

    2011-11-01

    The process of waiting for concrete to attain its desired strength for certain construction : applications can pose one of two problems. The concrete strength may be overestimated, : which creates a safety concern for workers and the general public. ...

Top