USDA-ARS?s Scientific Manuscript database
The genus Pestivirus of the family Flaviviridae consists of four recognized species: Bovine viral diarrhea virus 1 (BVDV-1), Bovine viral diarrhea virus 2 (BVDV-2), Classical swine fever virus (CSFV) And Border disease virus (BDV). Recently, atypical pestiviruses (‘HoBi’-like pestiviruses) were iden...
USDA-ARS?s Scientific Manuscript database
The term bovine viral diarrhea (BVD) has come to refer to a diverse collection of clinical presentations that include respiratory, enteric and reproductive symptoms accompanied by immunosuppression. While the majority of cases are subclinical in nature two forms exist, mucosal disease and hemorrhag...
Severe acute bovine viral diarrhea in Ontario, 1993-1995.
Carman, S; van Dreumel, T; Ridpath, J; Hazlett, M; Alves, D; Dubovi, E; Tremblay, R; Bolin, S; Godkin, A; Anderson, N
1998-01-01
In 1993, noncytopathic bovine viral diarrhea virus (BVDV) strains with enhanced virulence caused unprecedented outbreaks of severe acute bovine viral diarrhea (BVD) in dairy, beef, and veal herds in Ontario (Canada). Fever, pneumonia, diarrhea, and sudden death occurred in all age groups of cattle. Abortions often occurred in pregnant animals. Gross lesions in the alimentary tract were similar to those associated with mucosal disease, especially in animals >6 months of age. Cattle of all age groups had microscopic lesions in the alimentary tract similar to those seen with mucosal disease. The epidemic peaked in the summer of 1993, with 15% of all bovine accessions from diseased cattle presented to the diagnostic laboratory being associated with BVDV. The virus strains involved in the outbreak were analyzed using monoclonal and polyclonal antibodies and the polymerase chain reaction. The virus isolates from these outbreaks of severe disease were determined to be type 2 BVDV. Type 2 BVDV has been present in Ontario at least since 1981 without causing widespread outbreaks of severe acute BVD, which suggests that type 2 designation in itself does not imply enhanced virulence. Cattle properly vaccinated with type 1 BVDV vaccines appear to be protected from clinical disease.
Nelson, Danielle D.; Duprau, Jennifer L.; Wolff, Peregrine L.; Evermann, James F.
2016-01-01
Bovine viral diarrhea virus (BVDV) is a pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus). PMID:26779126
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is a positive single stranded RNA virus belonging to the Pestivirus genus of the Flaviviridae family. BVDV has a wide host range that includes most ruminants. Noncytopathic (ncp) BVDV may establish lifelong persistent infections in calves following infection of t...
Radostits, Otto M.; Littlejohns, Ian R.
1988-01-01
The new information on the pathogenesis and epidemiology of mucosal disease of cattle is reviewed. It is now known that clinical mucosal disease occurs only in cattle which were infected with a pestivirus in early gestation and were born with persistent viral infection and specific immunotolerance. These animals may be clinically normal at birth but may develop fatal mucosal disease, perhaps following superinfection with another pestivirus, usually between 6 and 24 months of age. They may also remain clinically normal indefinitely and breed successfully. The progeny from persistently infected females will similarly be persistently viremic, and maternal families of such animals may be established. Congenital defects may occur when infection of the fetus occurs in mid-gestation. Although fetuses may be infected in utero in late gestation, the infections do not persist, the fetuses develop antibodies, and they appear to suffer no ill-effects. Postnatal infection can result in subclinical disease (bovine viral diarrhea) with a normal immune response; the virus may also be responsible for enhanced susceptibility to other infections, diarrhea in newborn calves, and reproductive failure. Prevention of the economically important diseases caused by the virus is dependent upon the identification and elimination of persistently viremic animals, which are reservoirs of infection, and the vaccination of immunocompetent females at least three weeks before breeding. However, because of serotypic differences between strains, there is some doubt whether vaccination will reliably provide protection against the transplacental fetal infections that are important in the pathogenesis of this disease. There is no substantial evidence to warrant the vaccination of feedlot cattle. PMID:17423063
Bovine viral diarrhea virus modulation of monocyte derived macrophages
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is a single stranded, positive sense RNA virus and is the causative agent of bovine viral diarrhea (BVD). Disease can range from persistently infected (PI) animals displaying no clinical symptoms of disease to an acute, severe disease. Presently, limited studies ha...
USDA-ARS?s Scientific Manuscript database
Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...
Bovine viral diarrhea virus: involvement in bovine respiratory disease and diagnostic challenges
USDA-ARS?s Scientific Manuscript database
This paper reviews the contribution of bovine viral diarrhea viruses (BVDV) to the development of Bovine Respiratory Disease (BRD). Veterinarians and producers generally consider BRD as one of the most significant diseases affecting production in the cattle industry. BRD can affect the performance (...
USDA-ARS?s Scientific Manuscript database
This study investigated viruses in bovine respiratory disease (BRD) cases in feedlots, including bovine herpesvirus-1 (BoHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronaviruses (BoCV) and parainfluenza-3 virus (PI3V). Nasal swabs were collected fro...
Rahpaya, Sayed Samim; Tsuchiaka, Shinobu; Kishimoto, Mai; Oba, Mami; Katayama, Yukie; Nunomura, Yuka; Kokawa, Saki; Kimura, Takashi; Kobayashi, Atsushi; Kirino, Yumi; Okabayashi, Tamaki; Nonaka, Nariaki; Mekata, Hirohisa; Aoki, Hiroshi; Shiokawa, Mai; Umetsu, Moeko; Morita, Tatsushi; Hasebe, Ayako; Otsu, Keiko; Asai, Tetsuo; Yamaguchi, Tomohiro; Makino, Shinji; Murata, Yoshiteru; Abi, Ahmad Jan; Omatsu, Tsutomu; Mizutani, Tetsuya
2018-05-31
Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum ; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.
USDA-ARS?s Scientific Manuscript database
Infection of pregnant cattle with bovine viral diarrhea viruses can result in reproductive disease that includes fetal reabsorption, mummification, abortion, still births, congenital defects affecting structural, neural, reproductive and immune systems and the birth of calves persistently infected w...
Byers, Stacey R.; Evermann, James F.; Bradway, Daniel S.; Grimm, Amanda L.; Ridpath, Julia F.; Parish, Steven M.; Tibary, Ahmed; Barrington, George M.
2011-01-01
Reports of bovine viral diarrhea virus (BVDV) infections in alpacas have been increasing in recent years but much is still unknown about the mechanisms of disease in this species. This report characterizes the transmission of BVDV from persistently infected (PI) alpacas to BVDV naïve alpacas, documents shedding patterns, and characterizes the disease effects in both PI and transiently infected alpacas. Two PI alpacas shed BVDV Type 1b virus in most body fluids, and commonly available diagnostic tests verified their status. Bovine viral diarrhea virus Type 1b transient infections produced only mild signs of disease in BVDV naïve alpacas. Viremia was detected in whole blood, but viral shedding during the acute phase was not detected and antibody appeared to be protective upon re-exposure to the virus. PMID:21629418
9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...
9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...
9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...
9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...
9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...
USDA-ARS?s Scientific Manuscript database
Bovine Viral Diarrhea Virus (BVDV) is a diverse group of viruses causing disease in ruminants. The objective was to determine genomic regions harboring single nucleotide polymorphisms (SNP) associated with presence or absence of persistent BVDV infections. A genome wide association approach based on...
USDA-ARS?s Scientific Manuscript database
Bovine Viral Diarrhea Viruses (BVDV) comprises a diverse group of viruses that causes disease in cattle. BVDV may establish both, transient and persistent infections depending on the developmental stage of the animal at exposure. The objective was to determine if genomic regions harboring single nuc...
USDA-ARS?s Scientific Manuscript database
Bovine Viral Diarrhea Viruses (BVDV) comprise a diverse group of viruses that cause disease in cattle. BVDV may establish both, transient and persistent infections depending on the developmental stage of the animal at exposure. The objective was to determine if genomic regions harboring single nucle...
Circulating microRNAs in serum from cattle challenged with Bovine Viral Diarrhea Virus
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopat...
9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...
9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...
9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...
9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...
First finding of genetic and antigenic diversity in 1b-BVDV isolates from Argentina.
Pecora, A; Malacari, D A; Ridpath, J F; Perez Aguirreburualde, M S; Combessies, G; Odeón, A C; Romera, S A; Golemba, M D; Wigdorovitz, A
2014-02-01
Infection with Bovine Viral Diarrhea Viruses (BVDV) in cattle results in a wide range of clinical manifestations, ranging from mild respiratory disease to fetal death and mucosal disease, depending on the virulence of the virus and the immune and reproductive status of the host. In this study 30 Argentinean BVDV isolates were characterized by phylogenetic analysis. The isolates were genotyped based on comparison of the 5' untranslated region (5' UTR) and the E2 gene. In both phylogenetic trees, 76% of the viruses were assigned to BVDV 1b, whereas BVDV 1a, 2a and 2b were also found. Eight of the BVDV 1b isolates were further characterized by cross-neutralization tests using guinea pig antisera and sera from bovines vaccinated with two different commercial vaccines. The results demonstrated the presence of a marked antigenic diversity among Argentinean BVDV isolates and suggest the need to incorporate BVDV 1b isolates in diagnostic strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is an RNA virus that causes respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. However, microRNA profiles in cattle exposed to BVDV are currently nonexistent and few studies have been reported; therefore,...
Seroprevalence of viral and bacterial diseases among the bovines in Himachal Pradesh, India
Katoch, Shailja; Dohru, Shweta; Sharma, Mandeep; Vashist, Vikram; Chahota, Rajesh; Dhar, Prasenjit; Thakur, Aneesh; Verma, Subhash
2017-01-01
Aim: The study was designed to measure the seroprevalence of viral and bacterial diseases: Infectious bovine rhinotracheitis, bovine viral diarrhea, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, brucellosis, and paratuberculosis among bovine of Himachal Pradesh during the year 2013-2015. Materials and Methods: The serum samples were collected from seven districts of state, namely, Bilaspur, Kangra, Kinnaur, Lahul and Spiti, Mandi, Sirmour, and Solan. The samples were screened using indirect ELISA kits to measure the seroprevalence of viral and bacterial diseases. Results: The overall seroprevalence of infectious bovine rhinotracheitis was 24.24%, bovine viral diarrhea 1.52%, bovine leukemia 9.09%, bovine parainfluenza 57.58%, bovine respiratory syncytial disease 50%, brucellosis 19.69%, and paratuberculosis 9.09% in Himachal Pradesh. The seroprevalence of bovine rhinotracheitis, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, and paratuberculosis in the state varied significantly (p<0.01) while was insignificant for bovine viral diarrhea and brucellosis (p>0.01). Multiple seropositivity has been observed in this study. Bovine parainfluenza virus 3 was observed commonly in mixed infection with almost all viruses and bacteria under study. Conclusion: The viral and bacterial diseases are prevalent in the seven districts of Himachal Pradesh investigated in the study. Therefore, appropriate management practices and routine vaccination programs should be adopted to reduce the prevalence of these diseases. PMID:29391682
Shope, R E; Muscoplat, C C; Chen, A W; Johnson, D W
1976-01-01
A series of investigations was designed to study the role of cellular immunity and passive antibody in protecting neonatal calves from primary bovine viral diarrhea virus infection. Administration of corticosteroids (dexamethasone) in doses capable of suppressing cellular immunity markedly potentiated systemic bovine viral diarrhea virus infection in calves which lacked bovine viral diarrhea passive neutralizing antibody. Immunosuppressed calves did not form neutralizing antibody to bovine viral diarrhea virus and developed a fatal viremia. Calves with high levels of passive bovine viral diarrhea neutralizing antibodies were protected from the effect of corticosteroids. The results suggest an essential role for humoral passive antibody, but not for cellular immunity, in protection from primary systemic bovine viral diarrhea virus infection in calves. PMID:187303
Forsythoside A Inhibits BVDV Replication via TRAF2-Dependent CD28-4-1BB Signaling in Bovine PBMCs.
Song, Quan-Jiang; Weng, Xiao-Gang; Cai, Dong-Jie; Zhang, Wang; Wang, Jiu-Feng
2016-01-01
Bovine viral diarrhea virus (BVDV), the causative agent of bovine viral diarrhea/mucosal disease (BVD/MD), is an important pathogen of cattle and other wild animals throughout the world. BVDV infection typically leads to an impaired immune response in cattle. In the present study, we investigated the effect of Forsythoside A (FTA) on BVDV infection of bovine peripheral blood mononuclear cells (PBMCs). We found that Forsythoside A could not only promote proliferation of PBMCs and T cells activation but also inhibit the replication of BVDV as well as apoptosis induced by BVDV. FTA treatment could counteract the BVDV-induced overproduction of IFN-γ to maintain the immune homeostasis in bovine PBMCs. At same time, FTA can enhance the secretion of IL-2. What's more, BVDV promotes the expression of CD28, 4-1BB and TRAF-2, which can be modulated by FTA. Our data suggest that FTA protects PBMCs from BVDV infection possibly via TRAF2-dependent CD28-4-1BB signaling, which may activate PBMCs in response to BVDV infection. Therefore, this aids in the development of an effective adjuvant for vaccines against BVDV and other specific FTA-based therapies for preventing BVDV infection.
USDA-ARS?s Scientific Manuscript database
Reports of bovine viral diarrhea virus (BVDV) infections in alpacas have been increasing over the past several years but much is still unknown about the mechanisms of disease in this species. This report describes research performed to characterize the transmission of BVDV from persistently infected...
Mendez, Ernesto; Ruggli, Nicolas; Collett, Marc S.; Rice, Charles M.
1998-01-01
Bovine viral diarrhea virus (BVDV), strain NADL, was originally isolated from an animal with fatal mucosal disease. This isolate is cytopathic in cell culture and produces two forms of NS3-containing proteins: uncleaved NS2-3 and mature NS3. For BVDV NADL, the production of NS3, a characteristic of cytopathic BVDV strains, is believed to be a consequence of an in-frame insertion of a 270-nucleotide cellular mRNA sequence (called cIns) in the NS2 coding region. In this study, we constructed a stable full-length cDNA copy of BVDV NADL in a low-copy-number plasmid vector. As assayed by transfection of MDBK cells, uncapped RNAs transcribed from this template were highly infectious (>105 PFU/μg). The recovered virus was similar in plaque morphology, growth properties, polyprotein processing, and cytopathogenicity to the BVDV NADL parent. Deletion of cIns abolished processing at the NS2/NS3 site and produced a virus that was no longer cytopathic for MDBK cells. This deletion did not affect the efficiency of infectious virus production or viral protein production, but it reduced the level of virus-specific RNA synthesis and accumulation. Thus, cIns not only modulates NS3 production but also upregulates RNA replication relative to an isogenic noncytopathic derivative lacking the insert. These results raise the possibility of a linkage between enhanced BVDV NADL RNA replication and virus-induced cytopathogenicity. PMID:9573238
Forsythoside A Inhibits BVDV Replication via TRAF2-Dependent CD28–4-1BB Signaling in Bovine PBMCs
Song, Quan-Jiang; Weng, Xiao-Gang; Cai, Dong-Jie; Zhang, Wang; Wang, Jiu-Feng
2016-01-01
Bovine viral diarrhea virus (BVDV), the causative agent of bovine viral diarrhea/mucosal disease (BVD/MD), is an important pathogen of cattle and other wild animals throughout the world. BVDV infection typically leads to an impaired immune response in cattle. In the present study, we investigated the effect of Forsythoside A (FTA) on BVDV infection of bovine peripheral blood mononuclear cells (PBMCs). We found that Forsythoside A could not only promote proliferation of PBMCs and T cells activation but also inhibit the replication of BVDV as well as apoptosis induced by BVDV. FTA treatment could counteract the BVDV-induced overproduction of IFN-γ to maintain the immune homeostasis in bovine PBMCs. At same time, FTA can enhance the secretion of IL-2. What’s more, BVDV promotes the expression of CD28, 4-1BB and TRAF-2, which can be modulated by FTA. Our data suggest that FTA protects PBMCs from BVDV infection possibly via TRAF2-dependent CD28–4-1BB signaling, which may activate PBMCs in response to BVDV infection. Therefore, this aids in the development of an effective adjuvant for vaccines against BVDV and other specific FTA-based therapies for preventing BVDV infection. PMID:27617959
Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio
2010-05-14
The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Viruses from recognized pestivirus species bovine viral diarrhea 1 (BVDV-1) and BVDV-2 and the proposed pestivirus species HoBi-like virus infect primarily cattle. Exposure of cattle to these viruses can lead to either acute or persistent infections depending on the timing and status of the animal ...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. Beef heifers and cows (n=122), seronegative and virus negative for BVDV, were randomly ...
O’Sullivan, Terri; Friendship, Robert; Carman, Susy; Pearl, David L.; McEwen, Beverly; Dewey, Catherine
2011-01-01
A pilot study was initiated to determine the seroprevalence of bovine viral diarrhea virus (BVDV) neutralizing antibodies in finisher hogs in Ontario swine herds, including 2 swine herds with clinical syndromes suspicious of BVDV. No herds were positive for BVDV antibodies by virus neutralization. The 2 swine herds with clinical disease suggestive of pestivirus infection were also negative for antibodies to BVDV in indirect fluorescent antibody assays. Prevalence of BVDV in Ontario swine farms is negligible. PMID:22654141
9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.
Code of Federal Regulations, 2010 CFR
2010-01-01
... virus diarrhea post-challenge; or both, the Master Seed Virus is unsatisfactory. (6) A sequential test... virus diarrhea susceptible calves shall be used as test animals (20 vaccinates and five controls). Blood... serum dilution in a varying serum-constant virus neutralization test with less than 500 TCID50 of bovine...
USDA-ARS?s Scientific Manuscript database
Four species of ruminant pestivirus are currently circulating in the United States (U.S.): Bovine viral diarrhea virus (BVDV) types 1 and 2 (predominant host cattle), Border disease virus (BDV) (predominant host sheep) and the Pronghorn virus (sporadically detected in wild ruminants). A third bovin...
Bezek, D M; Baker, J C; Kaneene, J B
1988-01-01
A study to evaluate the detection of bovine virus diarrhea viral antigen using immunofluorescence testing of white blood cells was conducted. Five colostrum-deprived calves were inoculated intravenously with a cytopathic strain of the virus. Lymphocyte and buffy coat smears were prepared daily for direct immunofluorescent staining for detection of antigen. Lymphocytes were separated from heparinized blood using a Ficoll density procedure. Buffy coat smears were prepared from centrifuged blood samples collected using ethylenediaminetetraacetic acid as an anticoagulant. Bovine viral diarrhea virus antigen was detected by immunofluorescence between 3 and 11 days postinfection in lymphocyte smears and 3 to 12 days postinfection in buffy coat smears. Isolation of virus from both lymphocytes and buffy coat preparations correlated with detection of immunofluorescence. Serum neutralizing antibody to bovine virus diarrhea virus was detected on day 10 postinfection. Buffy coat smears were as sensitive as lymphocyte smears for the detection of antigen by immunofluorescence. It appeared that immunofluorescent staining of white blood cells was an effective method of detecting bovine virus diarrhea viral antigen. PMID:2836047
Bovine Viral Diarrhea Virus in Zoos: A Perspective from the Veterinary Team
Kottwitz, Jack J.; Ortiz, Melissa
2016-01-01
The many different species in close proximity make zoological collections a unique environment for disease transmission. Bovine Viral Diarrhea Virus (BVDV) is of special concern with zoos due to the numerous exotic ruminant species that this virus can infect. BVDV occurs as both a non-cytopathic and a cytopathic strain both of which are capable of infecting exotic ruminants. The cytopathic strain causes mucosal disease (MD) and death. Infection with the non-cytopathic strain may produce persistently infected (PI) animals. PI individuals may show vague clinical signs, including abortion. Management of BVDV in zoos should focus on identification of PI individuals and prevention of infection of other animals of the collection. Variability makes serological testing as the sole method of screening for BVDV infection undesirable in exotic ruminants. Combination testing provides a definitive answer, especially in sensitive wildlife. Use of a combination of antigen-capture ELISA (ACE) with haired skin, Real Time-PCR (RT-PCR) on whole blood, and antibody detection via serum neutralization has the greatest potential to identify PI animals. An animal that is positive on both ACE and RT-PCR, but is negative on serology should be considered highly suspicious of being a PI, and should be isolated and undergo repeat testing 4–6 weeks later to confirm positive status. This testing methodology also allows screening of pregnant and newborn animals. Isolation or culling may need to be considered in animals determined to be positive via combination testing. These decisions should only be made after careful consideration and evaluation, especially with endangered species. PMID:26779151
Bovine Viral Diarrhea Virus in Zoos: A Perspective from the Veterinary Team.
Kottwitz, Jack J; Ortiz, Melissa
2015-01-01
The many different species in close proximity make zoological collections a unique environment for disease transmission. Bovine Viral Diarrhea Virus (BVDV) is of special concern with zoos due to the numerous exotic ruminant species that this virus can infect. BVDV occurs as both a non-cytopathic and a cytopathic strain both of which are capable of infecting exotic ruminants. The cytopathic strain causes mucosal disease (MD) and death. Infection with the non-cytopathic strain may produce persistently infected (PI) animals. PI individuals may show vague clinical signs, including abortion. Management of BVDV in zoos should focus on identification of PI individuals and prevention of infection of other animals of the collection. Variability makes serological testing as the sole method of screening for BVDV infection undesirable in exotic ruminants. Combination testing provides a definitive answer, especially in sensitive wildlife. Use of a combination of antigen-capture ELISA (ACE) with haired skin, Real Time-PCR (RT-PCR) on whole blood, and antibody detection via serum neutralization has the greatest potential to identify PI animals. An animal that is positive on both ACE and RT-PCR, but is negative on serology should be considered highly suspicious of being a PI, and should be isolated and undergo repeat testing 4-6 weeks later to confirm positive status. This testing methodology also allows screening of pregnant and newborn animals. Isolation or culling may need to be considered in animals determined to be positive via combination testing. These decisions should only be made after careful consideration and evaluation, especially with endangered species.
USDA-ARS?s Scientific Manuscript database
Acute bovine viral diarrhea virus (BVDV) infection can result in a range of disease outcomes from subclinical in the case of low virulence (LV) strains, to anorexia, fever, bloody diarrhea, and death in cases of severe acute disease. Despite the significant range of clinical disease severity, it rem...
Purtle, Lisa; Mattick, Debra; Schneider, Corey; Smith, Linda; Xue, Wenzhi; Trigo, Emilio
2016-03-18
Three studies were performed to determine the duration of immunity of the bovine viral diarrhea virus type 1 and type 2 (BVDV-1 and BVDV-2) and bovine herpesvirus-1 (BHV-1) fractions of a commercially prepared modified-live vaccine. Vista® Once SQ (Vista®) vaccine contains five modified-live viruses, BVDV-1, BVDV-2, BHV-1, bovine respiratory syncytial virus, and bovine parainfluenza 3 virus, and two modified-live bacteria, Pasteurella multocida and Mannheimia haemolytica. For all three studies, calves were administered a single dose of vaccine or placebo vaccine subcutaneously, and were challenged with one of the three virulent viruses at least one year following vaccination. Calves were evaluated daily following challenge for clinical signs of disease associated with viral infection, nasal swab samples were evaluated for virus shedding, and serum was tested for neutralizing antibodies. Following the BVDV-1 and BVDV-2 challenges, whole blood was evaluated for white blood cell counts, and for the BVDV-2 study, whole blood was also evaluated for platelet counts. Calves vaccinated with BVDV type 1a, were protected from challenge with BVDV type 1b, and had significant reductions in clinical disease, fever, leukopenia, and virus shedding compared to control calves. Vaccinated calves in the BVDV-2 study were protected from clinical disease, mortality, fever, leukopenia, thrombocytopenia, and virus shedding compared to controls. Vaccinated calves in the BHV-1 study were protected from clinical disease and fever, and had significantly reduced duration of nasal virus shedding. These three studies demonstrated that a single administration of the Vista® vaccine to healthy calves induces protective immunity against BVDV-1, BVDV-2 and BHV-1 that lasts at least one year following vaccination. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S; Danganan, L; Tammero, L
Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed advanced rapid diagnostics that may be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the potential to improve our nation's ability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect animal populations of high economic importance in themore » United States. Under 2005 DHS funding we have developed multiplexed (MUX) nucleic-acid-based PCR assays that combine foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease (SVD) and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1 or Infectious Bovine Rhinotracheitus IBR), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus BPSV, Orf of sheep, and Pseudocowpox). Under 2006 funding we have developed a Multiplexed PCR [MUX] porcine assay for detection of FMDV with rule out tests for VESV and SVD foreign animal diseases in addition to one other domestic vesicular animal disease vesicular stomatitis virus (VSV) and one domestic animal disease of swine porcine reproductive and respiratory syndrome (PRRS). We have also developed a MUX bovine assay for detection of FMDV with rule out tests for the two bovine foreign animal diseases malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV), bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitus virus (BHV-1), bluetongue virus (BTV), and the Parapox viruses which are of two bovine types bovine papular stomatitis virus (BPSV) and psuedocowpox (PCP). This document provides details of signature generation, evaluation, and testing, as well as the specific methods and materials used. A condensed summary of the development, testing and performance of the multiplexed assay panel was presented in a 126 page separate document, entitled 'Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out'. This supplemental document provides additional details of large amount of data collected for signature generation, evaluation, and testing, as well as the specific methods and materials used for all steps in the assay development and utilization processes. In contrast to last years effort, the development of the bovine and porcine panels is pending additional work to complete analytical characterization of FMDV, VESV, VSV, SVD, RPV and MCF. The signature screening process and final panel composition impacts this effort. The unique challenge presented this year was having strict predecessor limitations in completing characterization, where efforts at LLNL must preceed efforts at PIADC, such challenges were alleviated in the 2006 reporting by having characterization data from the interlaboratory comparison and at Plum Island under AgDDAP project. We will present an addendum at a later date with additional data on the characterization of the porcine and bovine multiplex assays when that data is available.« less
HoBi-like viruses: an emerging group of pestiviruses
USDA-ARS?s Scientific Manuscript database
The genus Pestivirus is composed by four important pathogens of livestock: bovine viral diarrhea virus types 1 and 2 (BVDV-1 and BVDV-2), classical swine fever virus (CSFV) and border disease virus of sheep (BDV). BVDV are major pathogens of cattle and infection results in significant economic losse...
Bovine viral diarrhea virus 1b fetal infection with extensive hemorrhages
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) subtype 1b was isolated from tissues of a term bovine fetus with hemorrhages in multiple tissues. At autopsy, multiple petechial hemorrhages were observed at gross examination throughout the body and placenta. Lung, kidney, thymus, and liver fresh tissues were exam...
Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae.
Smith, Donald B; Meyers, Gregor; Bukh, Jens; Gould, Ernest A; Monath, Thomas; Scott Muerhoff, A; Pletnev, Alexander; Rico-Hesse, Rebecca; Stapleton, Jack T; Simmonds, Peter; Becher, Paul
2017-08-01
We propose the creation of seven new species in the genus Pestivirus (family Flaviviridae) in addition to the four existing species, and naming species in a host-independent manner using the format Pestivirus X. Only the virus species names would change; virus isolates would still be referred to by their original names. The original species would be re-designated as Pestivirus A (original designation Bovine viral diarrhea virus 1), Pestivirus B (Bovine viral diarrhea virus 2), Pestivirus C (Classical swine fever virus) and Pestivirus D (Border disease virus). The seven new species (and example isolates) would be Pestivirus E (pronghorn pestivirus), Pestivirus F (Bungowannah virus), Pestivirus G (giraffe pestivirus), Pestivirus H (Hobi-like pestivirus), Pestivirus I (Aydin-like pestivirus), Pestivirus J (rat pestivirus) and Pestivirus K (atypical porcine pestivirus). A bat-derived virus and pestiviruses identified from sheep and goat (Tunisian sheep pestiviruses), which lack complete coding region sequences, may represent two additional species.
Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae
Meyers, Gregor; Bukh, Jens; Gould, Ernest A.; Monath, Thomas; Muerhoff, A. Scott; Pletnev, Alexander; Rico-Hesse, Rebecca; Stapleton, Jack T.; Simmonds, Peter; Becher, Paul
2017-01-01
We propose the creation of seven new species in the genus Pestivirus (family Flaviviridae) in addition to the four existing species, and naming species in a host-independent manner using the format Pestivirus X. Only the virus species names would change; virus isolates would still be referred to by their original names. The original species would be re-designated as Pestivirus A (original designation Bovine viral diarrhea virus 1), Pestivirus B (Bovine viral diarrhea virus 2), Pestivirus C (Classical swine fever virus) and Pestivirus D (Border disease virus). The seven new species (and example isolates) would be Pestivirus E (pronghorn pestivirus), Pestivirus F (Bungowannah virus), Pestivirus G (giraffe pestivirus), Pestivirus H (Hobi-like pestivirus), Pestivirus I (Aydin-like pestivirus), Pestivirus J (rat pestivirus) and Pestivirus K (atypical porcine pestivirus). A bat-derived virus and pestiviruses identified from sheep and goat (Tunisian sheep pestiviruses), which lack complete coding region sequences, may represent two additional species. PMID:28786787
Vega, C; Bok, M; Chacana, P; Saif, L; Fernandez, F; Parreño, V
2011-08-15
Bovine rotavirus (BRV) is an important cause of diarrhea in newborn calves. Local passive immunity is the most efficient protective strategy to control the disease. IgY technology (the use of chicken egg yolk immunoglobulins) is an economic and practical alternative to prevent BRV diarrhea in dairy calves. The aim of this study was to evaluate the protection and immunomodulation induced by the oral administration of egg yolk enriched in BRV specific IgY to experimentally BRV infected calves. All calves in groups Gp 1, 2 and 3 received control colostrum (CC; BRV virus neutralization Ab titer - VN=65,536; ELISA BRV IgG(1)=16,384) prior to gut closure. After gut closure, calves received milk supplemented with 6% BRV-immune egg yolk [(Gp 1) VN=2048; ELISA IgY Ab titer=4096] or non-immune control egg yolk [(Gp 2) VN<4; ELISA IgY Ab titer<4] twice a day, for 14 days. Calves receiving CC only or colostrum deprived calves (CD) fed antibody (Ab) free milk served as controls (Gp 3 and 4, respectively). Calves were inoculated with 10(5.85)focus forming units (FFU) of virulent BRV IND at 2 days of age. Control calves (Gp 3 and 4) and calves fed control IgY (Gp 2) were infected and developed severe diarrhea. Around 80% calves in Gp 1 (IgY 4096) were infected, but they showed 80% (4/5) protection against BRV diarrhea. Bovine RV-specific IgY Ab were detected in the feces of calves in Gp 1, indicating that avian antibodies (Abs) remained intact after passage through the gastrointestinal tract. At post infection day 21, the duodenum was the major site of BRV specific antibody secreting cells (ASC) in all experimental groups. Mucosal ASC responses of all isotypes were significantly higher in the IgY treated groups, independently of the specificity of the treatment, indicating that egg yolk components modulated the immune response against BRV infection at the mucosal level. These results indicate that supplementing newborn calves' diets for the first 14 days of life with egg yolk enriched in BRV-specific IgY represents a promising strategy to prevent BRV diarrhea. Moreover a strong active ASC immune response is induced in the intestinal mucosa following BRV infection after the administration of egg yolk, regardless the specificity of the treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
Vega, C.; Bok, M.; Chacana, P.; Saif, L.; Fernandez, F.; Parreño, V.
2011-01-01
Bovine rotavirus (BRV) is an important cause of diarrhea in newborn calves. Local passive immunity is the most efficient protective strategy to control the disease. IgY technology (the use of chicken egg yolk immunoglobulins) is an economic and practical alternative to prevent BRV diarrhea in dairy calves. The aim of this study was to evaluate the protection and immunomodulation induced by the oral administration of egg yolk enriched in BRV specific IgY to experimentally BRV infected calves. All calves in groups Gp 1, 2 and 3 received control colostrum (CC; BRV virus neutralization Ab titer – VN- =65,536; ELISA BRV IgG1 =16,384) prior to gut closure. After gut closure, calves received milk supplemented with 6% BRV-immune egg yolk [(Gp1) VN=2048; ELISA IgY Ab titer =4096] or non-immune control egg yolk [(Gp2) VN <4; ELISA IgY Ab titer <4) twice a day, for 14 days. Calves receiving CC only or colostrum deprived calves (CD) fed antibody (Ab) free milk served as controls (Gp 3 and 4, respectively). Calves were inoculated with 105.85 focus forming units (FFU) of virulent BRV IND at 2 days of age. Control calves (Gp 3 and 4) and calves fed control IgY (Gp 2) were infected and developed severe diarrhea. Around 80% calves in Gp 1 (IgY 4096) were infected, but they showed 80% (4/5) protection against BRV diarrhea. Bovine RV-specific IgY Ab were detected in the feces of calves in Gp 1, indicating that avian antibodies (Abs) remained intact after passage through the gastrointestinal tract. At post infection day 21, the duodenum was the major site of BRV specific antibody secreting cells (ASC) in all experimental groups. Mucosal ASC responses of all isotypes were significantly higher in the IgY treated groups, independently of the specificity of the treatment, indicating that egg yolk components modulated the immune response against BRV infection at the mucosal level. These results indicate that supplementing newborn calves’ diets for the first 14 days of life with egg yolk enriched in BRV-specific IgY represents a promising strategy to prevent BRV diarrhea. Moreover a strong active ASC immune response is induced in the intestinal mucosa following BRV infection after the administration of egg yolk, regardless the specificity of the treatment. PMID:21652087
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...
Bovine viral diarrhea virus: impact of the virus on cattle performance
USDA-ARS?s Scientific Manuscript database
This paper details the impact that infection with bovine viral diarrhea viruses (BVDV) has on cattle performance. Published studies are reviewed that suggest that BVDV infections can alter the normal production of cytokines and free radicals, thus resulting in more severe inflammation and tissue dam...
Case Report: Emergence of bovine viral diarrhea virus persistently infected calves in a closed herd
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) continues to have significant economic impact on the cattle industry worldwide. The virus is primarily maintained in the cattle population due to persistently infected animals. Herd surveillance along with good vaccination programs and biosecurity practices are the...
USDA-ARS?s Scientific Manuscript database
The ability of bovine viral diarrhea viruses (BVDV) to establish persistent infection (PI) following fetal infection is central to keeping these viruses circulating. Similarly, an emerging species of pestivirus, HoBi-like viruses, is also able to establish PIs. Dams that are not PI, but carrying PI ...
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea viruses are economically important pathogens of cattle. Most new infections are acquired from animals persistently infected with the virus. Surveillance programs rely on skin biopsies for detection of persistently infected cattle. The purpose of this study was to compare ant...
Zhao, Yuelan; Jiang, Lufeng; Liu, Teng; Wang, Min; Cao, Wenbo; Bao, Yongzhan; Qin, Jianhua
2015-12-01
Bovine viral diarrhea/mucosal disease (BVD/MD) is an infectious disease of cattle with a worldwide distribution, creating a substantial economic impact. It is caused by bovine viral diarrhea virus (BVDV). This research was conducted to construct the recombinant Lactobacillus acidophilus (L. acidophilus) pMG36e-E0-LA-5 of BVDV E0 gene and to test its immunogenicity and protective efficacy against BVDV infection in the mice model. The BVDV E0 gene was sub-cloned into the expression vector and then transformed into the L. acidophilus LA-5 strain by electroporation. The recombinant L. acidophilus pMG36e-E0-LA-5 was confirmed by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. The mice were immunized orally with the recombinant L. acidophilus pMG36e-E0-LA-5. The serum IgG antibody and fecal sIgA antibody responses, expression levels of interleukin (IL)-12 (IL-12) and interferon gamma (IFN-γ) were detected respectively. On the 7th day after the last-immunization, the mice were inoculated with BVDV to evaluate the protective efficiency of the recombinant L. acidophilus pMG36e-E0-LA-5. The results showed that the expressed products protein E0 in the L. acidophilus LA-5 resulted in single band of 27kDa by SDS-PAGE and its strong reactivity with BVDV antibody was confirmed by Western blotting. The IgG and sIgA antibodies responses, IL-12 and IFN-γ expression levels in the vaccinated mice with recombinant L. acidophilus pMG36e-E0-LA-5 were significantly higher than those in the control mice. The protective rate of the vaccinated mice against BVDV increased significantly, and a 90.00% protection rate in virulent challenge was observed. These results indicated that the recombinant L. acidophilus pMG36e-E0-LA-5 strain was successfully constructed and it could effectively improve the immune response in mice and might provide protection against BVDV. Copyright © 2015 Elsevier B.V. All rights reserved.
Serological survey for antibodies against pestiviruses in Wyoming domestic sheep
USDA-ARS?s Scientific Manuscript database
Pestiviruses including Bovine Viral Diarrhea Virus type 1 (BVDV-1), BVDV-2 and Border Disease Virus (BDV) have been reported in both sheep and cattle populations, together with an emerging pestivirus, HoBi-like virus. Pestivirus control programs in the United States have focused on the control of BV...
Sorting out pestiviral phylogeny: A tale of viral swarms, red herrings, and sons of Bs
USDA-ARS?s Scientific Manuscript database
Initially three species, border disease virus (BDV), bovine viral diarrhea virus (BVDV), and classical swine fever virus (CSFV), were recognized in the pestivirus genus. These three species were defined by their host of origin, and to a lesser extent by clinical presentation. Subsequently, attempts ...
Serological survey for antibodies against pestiviruses in sheep in Wyoming
USDA-ARS?s Scientific Manuscript database
Pestiviruses including Bovine Viral Diarrhea Virus type 1 (BVDV1), BVDV-2 and Border Disease Virus (BDV) have been reported in sheep populations worldwide. These viruses are not strictly host specific and can also infect cattle, goats, swine and wild ruminants. In sheep, clinical signs are related t...
Real-time PCR for simultaneous detection and genotyping of bovine viral diarrhea virus.
Letellier, C; Kerkhofs, P
2003-12-01
Since two genotypes of bovine viral diarrhea viruses (BVDV) occur in Belgian herds, their differentiation is important for disease surveillance. A quantitative real-time PCR assay was developed to detect and classify bovine viral diarrhea viruses in genotype I and II. A pair of primers specific for highly conserved regions of the 5'UTR and two TaqMan probes were designed. The FAM and VIC-labeled probe sequences differed by three nucleotides, allowing the differentiation between genotype I and II. The assay detectability of genotype I and II real-time PCR assay was 1000 and 100 copies, respectively. Highly reproducible data were obtained as the coefficients of variation of threshold cycle values in inter-runs were less than 2.2%. The correct classification of genotype I and II viruses was assessed by using reference strains and characterized field isolates of both genotypes. The application to clinical diagnosis was evaluated on pooled blood samples by post run measurement of the FAM- and VIC-associated fluorescence. The 100% agreement with the conventional RT-PCR method confirmed that this new technique could be used for routine detection of persistently infected immunotolerant animals.
Kishimoto, Mai; Tsuchiaka, Shinobu; Rahpaya, Sayed Samim; Hasebe, Ayako; Otsu, Keiko; Sugimura, Satoshi; Kobayashi, Suguru; Komatsu, Natsumi; Nagai, Makoto; Omatsu, Tsutomu; Naoi, Yuki; Sano, Kaori; Okazaki-Terashima, Sachiko; Oba, Mami; Katayama, Yukie; Sato, Reiichiro; Asai, Tetsuo; Mizutani, Tetsuya
2017-03-18
Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets.
USDA-ARS?s Scientific Manuscript database
A beef producer purchased Angus crossbred cattle that were pregnant with nursing calves. The purchased cattle, their nursing calves, and subsequent born calves were not initially tested for BVDV. Bovine viral diarrhea virus subtype 2a (BVDV2a) was isolated from an aborted bovine fetus, 6.5 months,...
Immune evasion by pathogens of bovine respiratory disease complex.
Srikumaran, Subramaniam; Kelling, Clayton L; Ambagala, Aruna
2007-12-01
Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.
Cortez, Adriana; Araújo, João Pessoa; Flores, Eduardo Furtado; Ribeiro, Márcio Garcia; Megid, Jane; Paes, Antonio Carlos; de Oliveira Filho, José Paes; Ullmann, Leila Sabrina; Malossi, Camila Dantas
2017-01-01
ABSTRACT The Hobi-like virus presents antigenic and molecular differences in relation to bovine virus diarrhea virus 1 and 2. The description of the complete genome of the Hobi-like virus SV757/15, isolated from a Nelore cow with gastroenteric disease in Brazil, will help in understanding the evolution and diversity of pestiviruses. PMID:28818893
Mitra, Namita; Cernicchiaro, Natalia; Torres, Siddartha; Li, Feng; Hause, Ben M
2016-08-01
Bovine respiratory disease (BRD) is the most costly disease affecting the cattle industry. The pathogenesis of BRD is complex and includes contributions from microbial pathogens as well as host, environmental and animal management factors. In this study, we utilized viral metagenomic sequencing to explore the virome of nasal swab samples obtained from feedlot cattle with acute BRD and asymptomatic pen-mates at six and four feedlots in Mexico and the USA, respectively, in April-October 2015. Twenty-one viruses were detected, with bovine rhinitis A (52.7 %) and B (23.7 %) virus, and bovine coronavirus (24.7 %) being the most commonly identified. The emerging influenza D virus (IDV) tended to be significantly associated (P=0.134; odds ratio=2.94) with disease, whereas viruses commonly associated with BRD such as bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus and bovine parainfluenza 3 virus were detected less frequently. The detection of IDV was further confirmed using a real-time PCR assay. Nasal swabs from symptomatic animals had significantly more IDV RNA than those collected from healthy animals (P=0.04). In addition to known viruses, new genotypes of bovine rhinitis B virus and enterovirus E were identified and a newly proposed species of bocaparvovirus, Ungulate bocaparvovirus 6, was characterized. Ungulate tetraparvovirus 1 was also detected for the first time in North America to our knowledge. These results illustrate the complexity of the virome associated with BRD and highlight the need for further research into the contribution of other viruses to BRD pathogenesis.
Fulton, Robert W.; Hessman, Bill E.; Ridpath, Julia F.; Johnson, Bill J.; Burge, Lurinda J.; Kapil, Sanjay; Braziel, Barbara; Kautz, Kira; Reck, Amy
2009-01-01
Several tests for Bovine viral diarrhea virus (BVDV) were applied to samples collected monthly from December 20, 2005, through November 27, 2006 (day 0 to day 342) from 12 persistently infected (PI) cattle with BVDV subtypes found in US cattle: BVDV-1a, BVDV-1b, and BVDV-2a. The samples included clotted blood for serum, nasal swabs, and fresh and formalin-fixed ear notches. The tests were as follows: titration of infectious virus in serum and nasal swabs; antigen-capture (AC) enzyme-linked immunosorbent assay (ELISA), or ACE, on serum, nasal swabs, and fresh ear notches; gel-based polymerase chain reaction (PCR) testing of serum, nasal swabs, and fresh ear notches; immunohistochemical (IHC) testing of formalin-fixed ear notches; and serologic testing for BVDV antibodies in serum. Of the 12 animals starting the study, 3 died with mucosal disease. The ACE and IHC tests on ear notches had positive results throughout the study, as did the ACE and PCR tests on serum. There was detectable virus in nasal swabs from all the cattle throughout the study except for a few samples that were toxic to cell cultures. The serum had a virus titer ≥ log10 1.60 in all samples from all the cattle except for 3 collections from 1 animal. Although there were several equivocal results, the PCR test most often had positive results. The BVDV antibodies were due to vaccination or exposure to heterologous strains and did not appear to interfere with any BVDV test. These findings illustrate that PI cattle may be identified by several tests, but differentiation of PI cattle from cattle with acute BVDV infection requires additional testing, especially of blood samples and nasal swabs positive on initial testing. Also, calves PI with BVDV are continual shedders of infectious virus, as shown by the infectivity of nasal swabs over the 11-mo study. PMID:19436580
Genetic diversity of bovine viral diarrhea virus in cattle from Mexico
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) infects cattle populations worldwide causing significant economic losses though its impact in animal health. Previous studies have reported the prevalence of BVDV species and subgenotypes in cattle from the United States and Canada. In this study, we investigated t...
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea viruses (BVDV) are most commonly associated with infections of cattle. However, BVDV is often isolated from closely related ruminants with a number of BVDV-1b viruses being isolated from alpacas that were both acutely and persistently infected (PI). The complete nucleotide se...
USDA-ARS?s Scientific Manuscript database
Background: Substantial bovine viral diarrhea virus (BVDV)-related production losses in North American alpaca herds have been associated with BVDV type Ib infection. Objectives: To classify and differentiate the long-term clinicopathological characteristics of BVDV type Ib infection of alpaca crias,...
Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.
Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S
2017-03-01
Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.
Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.
Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James
2015-01-01
Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.
Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex
Gershwin, Laurel J.; Van Eenennaam, Alison L.; Anderson, Mark L.; McEligot, Heather A.; Toaff-Rosenstein, Rachel; Taylor, Jeremy F.; Neibergs, Holly L.; Womack, James
2015-01-01
Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea viruses (BVDV) can cause both acute and persistent infections in cattle. Exposure to BVDV persistently infected (PI) animal’s results in transmission of the virus to a naïve animal which causes a transient acute infection. While it is known that direct exposure to PI animals is...
Silim, A.; Elazhary, M.A.S.Y.
1983-01-01
Nasal epithelial cells were collected by cotton swabs for the diagnosis in experimental and field cases of infectious bovine rhinotracheitis and field cases of bovine viral diarrhea in calves. A portion of the cells was washed twice in phosphate buffered saline and a 25 µL drop was placed on microscope slides. The cells were dried, fixed and stained according to the direct fluorescent antibody technique. Another portion of the same specimen was inoculated onto primary bovine skin cell cultures for virus isolation. In the experimental studies for infectious bovine rhinotracheitis, 29/35 specimens were positive by fluorescent antibody technique and 32/35 by cell culture and in the field cases, 22/119 were positive by fluorescent antibody technique and 19/119 by cell culture. In the field cases of bovine viral diarrhea, 28/69 samples were positive by fluorescent antibody technique and 14/69 by cell culture. When fluorescent antibody technique was performed on inoculated cell cultures a total of 24/69 specimens were positive for bovine viral diarrhea. The sensitivity of fluorescent antibody technique was thus comparable to that of cell culture method for infectious bovine rhinotracheitis and bovine viral diarrhea. ImagesFig. 1.Fig. 2.Fig. 3. PMID:6299484
USDA-ARS?s Scientific Manuscript database
This paper identifies knowledge gaps that impact on the design of programs to control and or eradicate bovine viral diarrhea viruses (BVDV) in the United States. Currently there are several voluntary regional BVDV control programs in place. These control programs are aimed at the removal of animals ...
Genetic diversity and frequency of bovine viral diarrhea virus (BVDV) detected in cattle in Turkey
USDA-ARS?s Scientific Manuscript database
Rapid detection and culling of persistently infected animals and efficacious vaccination are key factors to control bovine viral diarrhea virus (BVDV) infections in cattle. The aim of this study was to investigate frequency of detection of persistently infected cattle and examine the diversity of bo...
USDA-ARS?s Scientific Manuscript database
Development of transplacental infection depends on the ability of the virus to cross the placenta and replicate within the fetus while counteracting maternal and fetal immune responses.Unfortunately, little is known about this complex process. Non-cytopathic (ncp) strains of bovine viral diarrhea vi...
Hypomyelination associated with bovine viral diarrhea virus type 2 infection in a longhorn calf.
Porter, B F; Ridpath, J F; Calise, D V; Payne, H R; Janke, J J; Baxter, D G; Edwards, J F
2010-07-01
A newborn Longhorn heifer calf presented with generalized tremors, muscle fasciculations, ataxia, and nystagmus. At necropsy, no gross central nervous system lesions were observed. Histologically, the brain and spinal cord had mild to moderate diffuse microgliosis and astrocytosis, minimal nonsuppurative encephalitis, and decreased myelin staining. Ultrastructural examination revealed thinning and absence of myelin sheaths. Various cell types were immunohistochemically positive for bovine viral diarrhea virus (BVDV). Noncytopathogenic BVDV was isolated from the brain and identified as BVDV type 2 by phylogenetic analysis. BVDV-induced hypomyelination is rare and analogous to lesions in neonates infected with border disease and classical swine fever viruses. This is the first documented case of hypomyelination in a calf specifically attributed to BVDV type 2 and the first description of the ultrastructural appearance of BVDV-induced hypomyelination.
HoBi-like viruses – the typical 'atypical bovine pestivirus'
USDA-ARS?s Scientific Manuscript database
HoBi-like viruses, also referred to as bovine viral diarrhea virus 3 (BVDV-3) and atypical pestivirus, have been proposed as a new putative bovine pestivirus species. These viruses were first identified in the last decade and are currently distributed in at least three continents. Published findings...
BVDV: Detection, Risk Management and Control
USDA-ARS?s Scientific Manuscript database
The terms bovine viral diarrhea (BVD) and bovine viral diarrhea viruses (BVDV) are difficult to define in simple straightforward statements because both are umbrella terms covering a wide range of observations and entities. While diarrhea is in the name, BVD, it is used in reference to a number of ...
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle that can also infect a wide range of domestic and wild species including sheep, goats, deer, camelids, and pigs. BVDV isolates are genetically highly diverse and previous work demonstrated that greater numbers of gene...
2004-01-01
Abstract Whipworms (Trichuris spp.) were identified in the colon of a recently purchased, 10-month-old dairy heifer that died suddenly. A skin test was positive for bovine viral diarrhea virus (BVDV). Signs of BVDV occurred in other heifers in the group, but fecal flotations were negative for whipworm eggs. PMID:15283522
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers (n = 366) that were challenge...
USDA-ARS?s Scientific Manuscript database
Case Description: 1,081 newborn calves from a commercial dairy were tested for bovine viral diarrhea virus antigen by pooled RT-PCR as part of a screening program. Ear tissue from twenty six calves initially tested positive and 14 confirmed positive with antigen capture ELISA two weeks later (1.3...
USDA-ARS?s Scientific Manuscript database
Evidence for bovine viral diarrhea virus (BVDV) infection was detected in 2009-10 during a pneumonia die-off in Rocky Mountain bighorn sheep (Ovis canadensis canadensis), and sympatric mountain goats (Oreamnos americanum) in adjacent mountain ranges in Elko County, Nevada. Seroprevalence to BVDV-1 ...
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is a member of the Flaviviradae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp) or non-cytopathic (ncp) effects in epithelial cell culture. In addition, BVDV isolates are further separated into species, BVDV1 and 2...
Cycluridine: A novel antiviral effective against flaviviruses
Galabov, Angel S; Mukova, Lucia; Abashev, Yuriy P; Wassilewa, Lilia; Tzvetkov, Petko; Minkov, Vassil; Barinskiy, Igor F; Rice, Charles M; Ouzounov, Sergey; Sidzhakova, Dorotea
2017-01-01
This review describes the contemporary state of research for antivirals effective against flaviviruses, especially focusing on inhibitors of the pestivirus causative agent of bovine viral diarrhoea virus. We highlight cycluridine, an originally synthesized Mannich’s base [a tetrahydro-2(1H)-pyrimidinones derivative], as a highly effective antiviral possessing a strong inhibitory effect on bovine viral diarrhoea virus replication. Cycluridine was active against replication of a wide variety of bovine viral diarrhoea virus strains in cell cultures. The drug-sensitive period in the bovine viral diarrhoea virus replication cycle included the latent period and the exponential phase; a 90-min delay in the peak of viral RNA synthesis was observed. Cycluridine administered orally manifested a pronounced protective effect in calves with natural mucosal disease/viral diarrhoea and calves experimentally infected with bovine viral diarrhoea virus. Its magnitude of activity and selectivity places cycluridine in the lead among all known substances with anti- bovine viral diarrhoea virus activity. Additionally, cycluridine applied subcutaneously showed anti-tick-born encephalitis virus activity, manifesting a marked protective effect in mice infected with tick-born encephalitis virus. Cycluridine could be a prospective antiviral in veterinary and medical practice for the treatment of bovine viral diarrhoea virus and other flavivirus infections. PMID:28768435
USDA-ARS?s Scientific Manuscript database
There is evidence that infections of the mammary gland or the uterus may stimulate immune responses that decrease the number of primordial follicles in the ovary in dairy cows. Beef heifers between 18 and 30 mo of age that were persistently infected with Bovine Viral Diarrhea Virus (BVDV) also had ...
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) causes clinical signs in cattle ranging from mild to severe acute infection which can lead to increased susceptibility to secondary bacteria. In this study we examined the effects of BVDV genotype 2 (BVDV2) infection on the ability of myeloid lineage cells derived...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S M; Danganan, L; Tammero, L
2007-08-06
Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnosticmore » test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV), bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitus virus (BHV-1), bluetongue virus (BTV), and the Parapox viruses (which are of two bovine types) bovine papular stomatitis virus (BPSV) and psuedocowpox (PCP). A timeline for this development is presented in Table 1. The development of the Version 1.0 panel for FMDV rule-out and the most current efforts aimed to designed species specific panels has spanned over 2 1/2 years with multiple collaborative partnerships. This document provides a summary of the development, testing and performance data at OIE Stage 1 Feasibility into Stage 2 Assay Development and Standardization1 (see Table 2), gathered as of June 30th, 2007 for the porcine and bovine MUX assay panels. We present an overview of the identification and selection of candidate genetic signatures, the assay development process, and preliminary performance data for each of the individual signatures as characterized in the multiplexed format for the porcine and bovine panels. The Stage 1 Feasibility data of the multiplexed panels is presented in this report also includes relevant data acquired from the Version 1.0 panel as supporting information where appropriate. In contrast to last years effort, the development of the bovine and porcine panels is pending additional work to complete analytical characterization of FMDV, VESV, SVD, RPV and MCF. The signature screening process and final panel composition impacts this effort. The unique challenge presented this year was having strict predecessor limitations in completing characterization, where efforts at LLNL must precede efforts at PIADC, such challenges were alleviated in the 2006 reporting by having characterization data from the interlaboratory comparison and at Plum Island under AgDDAP project. We will present an addendum at a later date with additional data on the characterization of the porcine and bovine multiplex assays when that data is available. As a summary report, this document does not provide the details of signature generation, evaluation, and testing, nor does it provide specific methods and materials used. This information has been provided in the separate 488 page Supplementary Materials document.« less
Walz, Paul H; Riddell, Kay P; Newcomer, Benjamin W; Neill, John D; Falkenberg, Shollie M; Cortese, Victor S; Scruggs, Daniel W; Short, Thomas H
2018-04-23
Bovine viral diarrhea virus (BVDV) is an important viral cause of reproductive disease, immune suppression and clinical disease in cattle. The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. BVDV negative beef heifers and cows (n = 122) were randomly assigned to one of four groups. Groups A-C (n = 34/group) received two pre-breeding doses of one of three commercially available multivalent vaccines containing inactivated fractions of BVDV 1 and BVDV 2, and Group D (n = 20) served as negative control and received two doses of saline prior to breeding. Animals were bred, and following pregnancy diagnosis, 110 cattle [Group A (n = 31); Group B (n = 32); Group C (n = 31); Group D (n = 16)] were subjected to a 28-day exposure to cattle persistently infected (PI) with BVDV (1a, 1b and 2a). Of the 110 pregnancies, 6 pregnancies resulted in fetal resorption with no material for testing. From the resultant 104 pregnancies, BVDV transplacental infections were demonstrated in 73 pregnancies. The BVDV fetal infection rate (FI) was calculated at 13/30 (43%) for Group A cows, 27/29 (93%) for Group B cows, 18/30 (60%) for Group C cows, and 15/15 (100%) for Group D cows. Statistical differences were observed between groups with respect to post-vaccination antibody titers, presence and duration of viremia in pregnant cattle, and fetal infection rates in offspring from BVDV-exposed cows. Group A vaccination resulted in significant protection against BVDV infection as compared to all other groups based upon outcome measurements, while Group B vaccination did not differ in protection against BVDV infection from control Group D. Ability of inactivated BVDV vaccines to provide protection against BVDV fetal infection varies significantly among commercially available products; however, in this challenge model, the inactivated vaccines provided unacceptable levels of BVDV FI protection. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Barber-Meyer, S. M.; White, P.J.; Mech, L.D.
2007-01-01
The restoration or conservation of predators could reduce seroprevalences of certain diseases in prey if predation selectively removes animals exhibiting clinical signs. We assessed disease seroprevalences and blood parameters of 115 adult female elk (Cervus elaphus) wintering on the northern range of Yellowstone National Park [YNP] during 2000-2005 and compared them to data collected prior to wolf (Canis lupus) restoration (WR) in 1995 and to two other herds in Montana to assess this prediction. Blood parameters were generally within two standard deviations of the means observed in other Montana herds (Gravelly-Snowcrest [GS] and Garnet Mountain [GM]), but Yellowstone elk had higher seroprevalences of parainfluenza-3 virus (95% CI YNP = 61.1-78.6, GS = 30.3-46.5) and bovine-virus-diarrhea virus type 1 (95% CI YNP = 15.9-31.9, GM = 0). In comparisons between pre-wolf restoration [pre-WR] (i.e., prior to 1995) seroprevalences with those post-wolf restoration [post-WR] in Yellowstone, we found lower seroprevalences for some disease-causing agents post-wolf restoration (e.g., bovine-virus-diarrhea virus type-1 [95% CI pre-WR = 73.1-86.3, post-WR = 15.9-31.9] and bovine-respiratory syncytial virus [95% CI pre-WR = 70.0-83.8, post-WR = 0]), but similar (e.g., Brucella abortus [95% CI pre-WR = 0-4.45, post-WR = 0-4.74] and epizootic hemorrhagic disease virus [95% CI pre-WR = 0, post-WR = 0]) or higher for others (e.g., Anaplasma marginale [95% CI pre-WR = 0, post-WR = 18.5-38.7] and Leptospira spp. [95% CI pre-WR = 0.5-6.5, post-WR = 9.5-23.5]). Though we did not detect an overall strong predation effect through reduced disease seroprevalence using retrospective comparisons with sparse data, our reference values will facilitate future assessments of this issue.
Fulton, Robert W; Blood, K Shawn; Panciera, Roger J; Payton, Mark E; Ridpath, Julia F; Confer, Anthony W; Saliki, Jeremiah T; Burge, Lurinda T; Welsh, Ronald D; Johnson, Bill J; Reck, Amy
2009-07-01
This study charted 237 fatal cases of bovine respiratory disease (BRD) observed from May 2002 to May 2003 in a single Oklahoma feed yard. Postmortem lung samples were used for agent identification and histopathology. Late in the study, 94 skin samples (ear notches) were tested for Bovine viral diarrhea virus (BVDV) by immunohistochemistry (IHC). Bovine respiratory disease morbidity was 14.7%, and the mortality rate of all causes was 1.3%, with more than half (53.8%) attributed to BRD (0.7% total of all causes). The agents isolated were the following: Mannheimia haemolytica (25.0%), Pasteurella multocida (24.5%), Histophilus somni (10.0%), Arcanobacterium pyogenes (35.0%), Salmonella spp. (0.5%), and Mycoplasma spp. (71.4%). Viruses recovered by cell culture were BVDV-1a noncytopathic (NCP; 2.7%), BVDV-1a cytopathic (CP) vaccine strain (1.8%), BVDV-1b NCP (2.7%), BVDV-2a NCP (3.2%), BVDV-2b CP (0.5%), and Bovine herpesvirus 1 (2.3%). Gel-based polymerase chain reaction (PCR) assays were 4.6% positive for Bovine respiratory syncytial virus and 10.8% positive for Bovine coronavirus. Bovine viral diarrhea virus IHC testing was positive in 5.3% of the animals. The mean values were determined for the treatment data: fatal disease onset (32.65 days), treatment interval (29.15 days), number of antibiotic treatments (2.65), number of different antibiotics (1.89), and day of death (61.81 days). Lesions included the following: 1) duration: acute (21%), subacute (15%), chronic (40.2%), healing (2.8%), normal (18.1%), and autolyzed (2.8%); 2) type of pneumonia: lobar bronchopneumonia (LBP; 27.1%), LBP with pleuritis (49.1%), interstitial pneumonia (5.1%), bronchointerstitial pneumonia (1.4%), septic (0.9%), embolic foci (0.5%), other (2.8%), normal (10.3%), and autolyzed (2.8%); and 3) bronchiolar lesions: bronchiolitis obliterans (39.7%), bronchiolar necrosis (26.6%), bronchiolitis obliterans/bronchiolar necrosis (1.4%), other bronchiolar lesions (6.5%), and bronchiolar lesion negative (25.7%). Statistically significant relationships were present among the agents, lesions, and the animal treatment, disease onset, and mortality data. Clinical illnesses observed in this study were lengthier than those reported 16-20 years ago, based on fatal disease onset, treatment interval, and day of death.
Mortality of live export cattle on long-haul voyages: pathologic changes and pathogens.
Moore, S Jo; O'Dea, Mark A; Perkins, Nigel; Barnes, Anne; O'Hara, Amanda J
2014-03-01
The cause of death in 215 cattle on 20 long-haul live export voyages from Australia to the Middle East, Russia, and China was investigated between 2010 and 2012 using gross, histologic, and/or molecular pathology techniques. A quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was used to detect nucleic acids from viruses and bacteria known to be associated with respiratory disease in cattle: Bovine coronavirus (Betacoronavirus 1), Bovine herpesvirus 1, Bovine viral diarrhea virus 1 and 2, Bovine respiratory syncytial virus, Bovine parainfluenza virus 3, Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida. The most commonly diagnosed cause of death was respiratory disease (107/180, 59.4%), followed by lameness (n = 22, 12.2%), ketosis (n = 12, 6.7%), septicemia (n = 11, 6.1%), and enteric disease (n = 10, 5.6%). Two thirds (130/195) of animals from which lung samples were collected had histologic changes and/or positive qRT-PCR results indicative of infectious lung disease: 93 out of 130 (72%) had evidence of bacterial infection, 4 (3%) had viral infection, and 29 (22%) had mixed bacterial and viral infections, and for 4 (3%) the causative organism could not be identified. Bovine coronavirus was detected in up to 13% of cattle tested, and this finding is likely to have important implications for the management and treatment of respiratory disease in live export cattle. Results from the current study indicate that although overall mortality during live export voyages is low, further research into risk factors for developing respiratory disease is required.
Reproductive losses caused by bovine viral diarrhea virus and leptospirosis.
Grooms, Daniel L
2006-08-01
Bovine viral diarrhea virus and Leptospira spp. are two of the common pathogenic organisms responsible for reproductive losses in cattle worldwide. Both can be come endemic in herds resulting in chronic low-grade reproductive losses or they can be introduced into relatively naïve herds, resulting in substantial reproductive losses over a short period of time. Both organisms are a differential diagnoses for common reproductive losses that veterinarians investigate, including low conception rates and abortions.
Davidson, W R; Crow, C B
1983-10-01
In July 1981, investigations on parasites, diseases, and herd health status were conducted on sympatric populations of sika deer (Cervus nippon) and white-tailed deer (Odocoileus virginianus) from Blackwater National Wildlife Refuge (Maryland) and Chincoteague National Wildlife Refuge (Virginia) on the Delmarva Peninsula. Five adult deer of each species were collected from each location and subjected to thorough necropsy examinations and laboratory tests. White-tailed deer at both locations harbored protozoan, helminth, and arthropod parasites typically associated with this species throughout the southeastern United States. In contrast, sika deer at both locations harbored only light burdens of ticks, chiggers, and sarcocysts. Serologic tests for antibodies to seven infectious disease agents revealed evidence of exposure to bovine virus diarrhea (BVD) virus, infectious bovine rhinotracheitis virus, and parainfluenza3 virus in white-tailed deer, but only BVD virus in sika deer. At both locations the general health status of sika deer was superior to that of white-tailed deer.
Headley, Selwyn A; Okano, Werner; Balbo, Luciana C; Marcasso, Rogério A; Oliveira, Thalita E; Alfieri, Alice F; Negri Filho, Luiz C; Michelazzo, Mariana Z; Rodrigues, Silvio C; Baptista, Anderson L; Saut, João Paulo E; Alfieri, Amauri A
2018-03-01
We investigated the occurrence of infectious pathogens during an outbreak of bovine respiratory disease (BRD) in a beef cattle feedlot in southern Brazil that has a high risk of developing BRD. Nasopharyngeal swabs were randomly collected from steers ( n = 23) and assessed for the presence of infectious agents of BRD by PCR and/or RT-PCR assays. These included: Histophilus somni, Mannheimia haemolytica, Pasteurella multocida, Mycoplasma bovis, bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCoV), bovine viral diarrhea virus (BVDV), bovine alphaherpesvirus 1 (BoHV-1), and bovine parainfluenza virus 3 (BPIV-3). Pulmonary sections of one steer that died with clinical BRD were submitted for pathology and molecular testing. The frequencies of the pathogens identified from the nasopharyngeal swabs were: H. somni 39% (9 of 23), BRSV 35% (8 of 23), BCoV 22% (5 of 23), and M. haemolytica 13% (3 of 23). PCR or RT-PCR assays did not identify P. multocida, M. bovis, BoHV-1, BVDV, or BPIV-3 from the nasopharyngeal swabs. Single and concomitant associations of infectious agents of BRD were identified. Fibrinous bronchopneumonia was diagnosed in one steer that died; samples were positive for H. somni and M. haemolytica by PCR. H. somni, BRSV, and BCoV are important disease pathogens of BRD in feedlot cattle in Brazil, but H. somni and BCoV are probably under-reported.
The indirect fluorescent antibody technique as a method for detecting antibodies in aborted fetuses.
Miller, R B; Wilkie, B N
1979-01-01
In this investigation the indirect fluorescent antibody technique was used to titrate antibodies in bovine sera to parainfluenza 3, infectious bovine rhinotracheitis virus and bovine viral diarrhea virus. These results were compared to those determined on the same samples by hemagglutination inhibition for parainfluenza 3 virus and serum neutralization for bovine virus diarrhea and infectious bovine rhinotracheitis virus. The results of the serological methods agreed closely. The indirect fluorescent antibody technique is a rapid and sensitive method for detecting antibodies and the procedure lends itself to use in diagnostic laboratories. In addition to the above viruses the presence or absence of antibodies to bovine coronavirus and bovine adenovirus 3 were determined by the indirect fluorescent antibody technique in thoracic fluids from 100 aborted fetuses and 50 nonaborted fetuses. Results on these samples were not compared to hemagglutination inhibition or serum neutralization as the condition of fluid samples from aborted fetuses renders interpretation of such tests unreliable. Antibodies to one or more viruses were detected in 30 of the 100 aborted fetuses and in seven of the 50 nonaborted fetuses. Antibodies to more than one agent were detected in eleven of the 100 aborted and in one of the 50 nonaborted fetuses. Reasons for this occurrence and application of the test in determination of causes of abortion are discussed. PMID:226243
The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors?
Taylor, Jared D.; Fulton, Robert W.; Lehenbauer, Terry W.; Step, Douglas L.; Confer, Anthony W.
2010-01-01
Bovine respiratory disease (BRD) is the most costly disease of beef cattle in North America. It is multi-factorial, with a variety of physical and physiological stressors combining to predispose cattle to pneumonia. However, efforts to discern which factors are most important have frequently failed to establish definitive answers. Calves are at highest risk shortly after transport. Risk factors include purchasing from sale barns and commingling. It is unclear whether or not these practices increase susceptibility, increase exposure, or are proxies for poor management. Lighter-weight calves appear to be at greater risk, although this has not been consistent. Persistent infection (PI) with bovine virus diarrhea virus increases BRD occurrence, but it is unclear if PI calves affect other cattle in the feedlot. The complexity of BRD has made it difficult to define involvement of individual factors. Stressors may play a role as “necessary but not sufficient” components, requiring additive effects to cause disease. PMID:21197200
Immortalized sheep microglial cells are permissive to a diverse range of ruminant viruses.
Stanton, James B; Swanson, Beryl; Orozco, Edith; Muñoz-Gutiérrez, Juan F; Evermann, James F; Ridpath, Julia F
2017-12-01
Ruminants, including sheep and goats (small ruminants), are key agricultural animals in many parts of the world. Infectious diseases, including many viral diseases, are significant problems to efficient production of ruminants. Unfortunately, reagents tailored to viruses of ruminants, and especially small ruminants, are lacking compared to other animals more typically used for biomedical research. The purpose of this study was to determine the permissibility of a stably immortalized, sheep microglial cell line to viruses that are reported to infect ruminants: bovine viral diarrhea virus (BVDV), bovine herpesvirus 1 (BoHV-1), small ruminant lentiviruses (SRLV), and bovine respiratory syncytial virus (BRSV). Sublines A and H of previously isolated, immortalized, and characterized (CD14-positive) ovine microglial cells were used. Bovine turbinate cells and goat synovial membrane cells were used for comparison. Cytopathic changes were used to confirm infection of individual wells, which were then counted and used to calculate the 50% tissue culture infectious dose. Uninoculated cells served as negative controls and confirmed that the cells were not previously infected with these viruses using polymerase chain reaction (PCR). Inoculation of the two microglial cell sublines with laboratory and field isolates of BVDV, BoHV-1, and BRSV resulted in viral infection in a manner similar to bovine turbinate cells. Immortalized microglia cells are also permissive to SRLV, similar to goat synovial membrane cells. These immortalized sheep microglial cells provide a new tool for the study of ruminant viruses in ruminant microglial cell line.
Corsi, Steven R.; Borchardt, M. A.; Spencer, S. K.; Hughes, Peter E.; Baldwin, Austin K.
2014-01-01
To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing human exposure and disease transmission.
Bovine viral diarrhea virus 1b fetal infection with extensive hemorrhage.
Fulton, Robert W; Confer, Anthony W; Sorensen, Nicholas J; Ridpath, Julia F; Burge, Lurinda J
2017-11-01
Bovine viral diarrhea virus (BVDV) 1b was isolated from tissues of a term bovine fetus with petechial hemorrhages noted throughout the body and placenta at autopsy. Fresh lung, kidney, thymus, and liver tissues were examined by direct fluorescent antibody testing and were positive for BVDV antigen and negative for bovine herpesvirus 1 antigen. An organ pool of fresh tissues was positive for noncytopathic (NCP) BVDV-1 by virus isolation. BVDV-1b was identified by sequencing of the 5'-UTR region of the genome. Fixed brain, placenta, thymus, lymph node, lung, kidney, skeletal muscle, liver, and bone marrow were positive for BVDV antigen by immunohistochemistry. Although BVDV hemorrhage and/or thrombocytopenia has been associated historically with NCP strains of BVDV-2, this case adds to more recent reports of BVDV-1 infections and hemorrhage in cattle. This BVDV-1b isolate should be investigated for its potential to cause hemorrhage in postnatal cattle.
USDA-ARS?s Scientific Manuscript database
Clinical presentation following uncomplicated acute infection with bovine viral diarrhea viruses (BVDV) ranges from clinically unapparent to severe (including hemorrhagic disease and death) depending on the strain virulence. Regardless of clinical presentation, BVDV infection of cattle results in i...
Diseases and pathogens associated with mortality in Ontario beef feedlots.
Gagea, Mihai I; Bateman, Kenneth G; van Dreumel, Tony; McEwen, Beverly J; Carman, Susy; Archambault, Marie; Shanahan, Rachel A; Caswell, Jeff L
2006-01-01
This study determined the prevalence of diseases and pathogens associated with mortality or severe morbidity in 72 Ontario beef feedlots in calves that died or were euthanized within 60 days after arrival. Routine pathologic and microbiologic investigations, as well as immunohistochemical staining for detection of bovine viral diarrhea virus (BVDV) antigen, were performed on 99 calves that died or were euthanized within 60 days after arrival. Major disease conditions identified included fibrinosuppurative bronchopneumonia (49%), caseonecrotic bronchopneumonia or arthritis (or both) caused by Mycoplasma bovis (36%), viral respiratory disease (19%), BVDV-related diseases (21%), Histophilus somni myocarditis (8%), ruminal bloat (2%), and miscellaneous diseases (8%). Viral infections identified were BVDV (35%), bovine respiratory syncytial virus (9%), bovine herpesvirus-1 (6%), parainfluenza-3 virus (3%), and bovine coronavirus (2%). Bacteria isolated from the lungs included M. bovis (82%), Mycoplasma arginini (72%), Ureaplasma diversum (25%), Mannheimia haemolytica (27%), Pasteurella multocida (19%), H. somni (14%), and Arcanobacterium pyogenes (19%). Pneumonia was the most frequent cause of mortality of beef calves during the first 2 months after arrival in feedlots, representing 69% of total deaths. The prevalence of caseonecrotic bronchopneumonia caused by M. bovis was similar to that of fibrinosuppurative bronchopneumonia, and together, these diseases were the most common causes of pneumonia and death. M. bovis pneumonia and polyarthritis has emerged as an important cause of mortality in Ontario beef feedlots.
Saidi, Radhwane; Bessas, Amina; Bitam, Idir; Ergün, Yaşar; Ataseven, Veysel Soydal
2018-03-01
This study was performed to investigate the presence of bovine herpesvirus-1 (BHV-1), bovine leukemia virus (BLV) and bovine viral diarrhea virus (BVDV) infections in dromedary camels (Camelus dromaderius) kept in mixed herds with sheep and goats in Algeria, since the prevalence of BHV-1, BVDV, and BLV infections among dromedary camels in Algeria is unknown. Totally, 111 camel sera were collected from two provinces (Laghouat and Ghardaia) in Algeria. The sera were analyzed for BHV-1 specific antibodies, BVDV specific antibodies and BVDV antigen using the ELISA, and BLV nucleic acid using PCR. The seropositivity rate was 9.0% for BVDV-specific antibody, although 41.4% of camels tested were positive for BVDV antigen. Moreover, there was no evidence of BHV-1 and BLV infections. The results indicated that camels might represent an important source for BVDV infection in all ruminants, including cattle, sheep, and goats bred in mixed herds in Algeria, since they had a higher BVDV prevalence rates. Therefore, the prevention and control measures for BVDV infection should put in place in camel populations to limit the spread of BVDV infection to ruminant populations in Algeria.
Diagnosis of viral agents associated with neonatal calf diarrhea.
Marsolais, G; Assaf, R; Montpetit, C; Marois, P
1978-01-01
During this study, 134 samples have been examined for the detection of the viruses associated with neonatal calf diarrhea. The presence of Nebraska viruses (rotavirus and coronavirus) has been demonstrated by using the electron microscope and the fluorescent antibody techniques while the presence of other viruses has been detected by the observation of a cytopathic effect on monolayer cells of calf testis. The Nebraska viruses have been demonstrated in 107 (80%) out of 134 field case specimens. An association of rotaviruses and coronaviruses was found in 58 cases (54%) whilst the coronaviruses and the rotavirus were found singly in 34 cases (53%) and in 15 cases (14%) respectively. Four bovine virus diarrhea viruses, two infectious bovine rhinotracheitis viruses and two enteroviruses have also been isolated in the preceding 107 Nebraska positive specimens. For the detection of the Nebraska viruses, the fluorescent antibody techniques were more sensitive than the electron microscopy. However, those two techniques must be used simultaneously for a better detection of a greatest possible number of cases. Images Fig. 1. Fig. 2. PMID:208735
Survey on vertical infection of bovine viral diarrhea virus from fetal bovine sera in the field.
Nagayama, Kumiko; Oguma, Keisuke; Sentsui, Hiroshi
2015-11-01
Bovine viral diarrhea virus (BVDV) isolation and antibody survey were performed using 2,758 fetal bovine sera (FBS) collected from slaughterhouses in New Zealand, Australia and the Dominican Republic, and then sent to Japan to manufacture commercial serum for cell culture use. FBS in the Dominican Republic were pooled for each several individuals, and those collected in other countries were separated according to each individual and subjected to the tests. BVDV was isolated from 25 (0.91%) FBS, and the BVDV antibody was detected in 44 (1.60%) FBS. The survey on 139 sets of paired sera of a dam and her fetus revealed that neither the BVDV antibody nor BVDV was detected in all FBS from BVDV antibody-positive dams.
Jeffrey, M
1992-10-10
Bovine spongiform encephalopathy was not confirmed histologically in 225 of 829 bovine brains submitted for diagnosis. Several previously described disorders of the central nervous system were observed in these brains as well as disorders not previously recognised in Britain, including bilateral vacuolation of the substantia nigra, hippocampal sclerosis with brainstem neuronal chromatolysis and necrosis, focal symmetrical encephalomalacia and meningio-angiomatosis. Severe cerebellar dysplasia consistent with pre-natal bovine viral diarrhoea--mucosal disease virus infection or mineralisation of the blood vessels of the basal ganglia were interpreted respectively as congenital changes or changes due to ageing and were considered to be of no clinical significance.
USDA-ARS?s Scientific Manuscript database
Currently, American Type Culture Collection (ATCC) makes available two cell lines derived from the same lymphoblast-like suspension cell that have been confirmed by next-generation sequencing and RT-PCR to have either a single contaminate of BVDV2a (CRL-8037) or dual contaminates of both BVDV and BL...
Grooms, Daniel L; Bolin, Steven R; Coe, Paul H; Borges, Rafael J; Coutu, Christopher E
2007-12-01
To evaluate the efficacy of a commercially available killed bovine viral diarrhea virus (BVDV) vaccine to protect against fetal infection in pregnant cattle continually exposed to cattle persistently infected with the BVDV. 60 crossbred beef heifers and 4 cows persistently infected with BVDV. Beef heifers were allocated to 2 groups. One group was vaccinated twice (21-day interval between the initial and booster vaccinations) with a commercially available vaccine against BVDV, and the other group served as nonvaccinated control cattle. Estrus was induced, and the heifers were bred. Pregnancy was confirmed by transrectal palpation. Four cows persistently infected with BVDV were housed with 30 pregnant heifers (15 each from the vaccinated and nonvaccinated groups) from day 52 to 150 of gestation. Fetuses were then harvested by cesarean section and tested for evidence of BVDV infection. 1 control heifer aborted after introduction of the persistently infected cows. Bovine viral diarrhea virus was isolated from 14 of 14 fetuses obtained via cesarean section from control heifers but from only 4 of 15 fetuses obtained via cesarean section from vaccinated heifers; these proportions differed significantly. A commercially available multivalent vaccine containing an inactivated BVDV fraction significantly reduced the risk of fetal infection with BVDV in heifers continually exposed to cattle persistently infected with BVDV. However, not all vaccinated cattle were protected, which emphasizes the need for biosecurity measures and elimination of cattle persistently infected with BVDV in addition to vaccination within a herd.
Grissett, G P; White, B J; Larson, R L
2015-01-01
Bovine respiratory disease (BRD) is an economically important disease of cattle and continues to be an intensely studied topic. However, literature summarizing the time between pathogen exposure and clinical signs, shedding, and seroconversion is minimal. A structured literature review of the published literature was performed to determine cattle responses (time from pathogen exposure to clinical signs, shedding, and seroconversion) in challenge models using common BRD viral and bacterial pathogens. After review a descriptive analysis of published studies using common BRD pathogen challenge studies was performed. Inclusion criteria were single pathogen challenge studies with no treatment or vaccination evaluating outcomes of interest: clinical signs, shedding, and seroconversion. Pathogens of interest included: bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), parainfluenza-3 virus, bovine respiratory syncytial virus, Mannheimia haemolytica, Mycoplasma bovis, Pastuerella multocida, and Histophilus somni. Thirty-five studies and 64 trials were included for analysis. The median days to the resolution of clinical signs after BVDV challenge was 15 and shedding was not detected on day 12 postchallenge. Resolution of BHV-1 shedding resolved on day 12 and clinical signs on day 12 postchallenge. Bovine respiratory syncytial virus ceased shedding on day 9 and median time to resolution of clinical signs was on day 12 postchallenge. M. haemolytica resolved clinical signs 8 days postchallenge. This literature review and descriptive analysis can serve as a resource to assist in designing challenge model studies and potentially aid in estimation of duration of clinical disease and shedding after natural pathogen exposure. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Liang, Xiao; Chigerwe, Munashe; Hietala, Sharon K; Crossley, Beate M
2014-06-01
In order to improve the analytic quality of respiratory specimens collected from cattle for nucleic acid-based diagnosis, a study was undertaken to verify realtime PCR efficiency of specimens collected and stabilized on FTA Cards™, filter paper which is treated chemically. Nucleic acids collected using FTA Cards without the need for a cold-chain or special liquid media handling provided realtime PCR results consistent (96.8% agreement, kappa 0.923 [95% CI=0.89-0.96]) with the same specimens collected using traditional viral transport media and shipped on ice using the U.S. Department of Transportation mandated liquid handling requirements. Nucleic acid stabilization on FTA Cards was evaluated over a temperature range (-27 °C to +46 °C) for up to 14 days to mimic environmental conditions for diagnostic sample handling between collection and processing in a routine veterinary laboratory. No significant difference (P≥0.05) was observed in realtime PCR cycle threshold values over the temperature range and time storage conditions for Bovine Viral Diarrhea virus, Bovine Respiratory Syncytial virus, Bovine Coronavirus, and Bovine Herpesvirus I. The four viruses evaluated in the study are associated with Bovine Respiratory Disease Complex where improvements in ease and reliability of specimen collection and shipping would enhance the diagnostic quality of specimens collected in the field, and ultimately improve diagnostic efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
Zimpel, Cristina Kraemer; Grazziotin, Ana Laura; de Barros Filho, Ivan Roque; Guimaraes, Ana Marcia de Sa; dos Santos, Leonilda Correia; de Moraes, Wanderlei; Cubas, Zalmir Silvino; de Oliveira, Marcos Jose; Pituco, Edviges Maristela; Lara, Maria do Carmo Custódio de Souza Hunold; Villalobos, Eliana Monteforte Cassaro; Silva, Lília Marcia Paulin; Cunha, Elenice Maria Sequetin; Castro, Vanessa; Biondo, Alexander Welker
2015-01-01
A large number of Brazilian zoos keep many endangered species of deer, however, very few disease surveillance studies have been conducted among captive cervids. Blood samples from 32 Brazilian deer (Blastocerus dichotomus, Mazama nana and Mazama americana) kept in captivity at Bela Vista Biological Sanctuary (Foz do Iguaçu, Brazil) were investigated for 10 ruminant pathogens, with the aims of monitoring deer health status and evaluating any potential zoonotic risk. Deer serum samples were tested for Brucella abortus, Leptospira (23 serovars), Toxoplasma gondii, Neospora caninum, bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, foot-and-mouth disease virus, western equine encephalitis virus, eastern equine encephalitis virus and Venezuelan equine encephalitis virus. Antibodies against T. gondii (15.6%), N. caninum (6.2%) and L. interrogans serogroup Serjoe (3.1%) were detected. The serological results for all other infectious agents were negative. The deer were considered to be clinically healthy and asymptomatic regarding any disease. Compared with studies on free-ranging deer, the prevalences of the same agents tested among the captive deer kept at the Sanctuary were lower, thus indicating good sanitary conditions and high-quality management practices at the zoo.
Ridpath, Julia F; Neill, John D; Chiang, Yu-Wei; Waldbillig, Jill
2014-01-01
Infection of pregnant cattle with both species of Bovine viral diarrhea virus (BVDV) can result in reproductive disease that includes fetal reabsorption, mummification, abortion, stillbirths, congenital defects affecting structural, neural, reproductive, and immune systems, and the birth of calves persistently infected with BVDV. Accurate diagnosis of BVDV-associated reproductive disease is important to control BVDV at the production unit level and assessment of the cost of BVDV infections in support of BVDV control programs. The purpose of the current study was to examine the stability of viral nucleic acid in fetal tissues exposed to different conditions, as measured by detection by polymerase chain reaction. Five different types of fetal tissue, including brain, skin and muscle, ear, and 2 different pooled organ samples, were subjected to conditions that mimicked those that might exist for samples collected after abortions in production settings or possible storage conditions after collection and prior to testing. In addition, tissues were archived for 36 months at -20°C and then retested, to mimic conditions that might occur in the case of retrospective surveillance studies. Brain tissue showed the highest stability under the conditions tested. The impact of fecal contamination was increased following archiving in all tissue types suggesting that, for long-term storage, effort should be made to reduce environmental contaminants before archiving.
Bovine viral diarrhea virus (BVDV) infection in dairy cattle herds in northeast Thailand.
Nilnont, Theerakul; Aiumlamai, Suneerat; Kanistanont, Kwankate; Inchaisri, Chaidate; Kampa, Jaruwan
2016-08-01
Bovine viral diarrhea virus causes a wide range of clinical manifestation with subsequent economic losses in dairy production worldwide. Our study of a population of dairy cattle in Thailand based on 933 bulk tank milk samples from nine public milk collection centers aimed to monitor infective status and to evaluate the effect of the infection in cows as well as to examine the reproductive performance of heifers to provide effective recommendations for disease control in Thailand. The results showed a moderate antibody-positive prevalence in the herd (62.5 %), with the proportion of class-3 herd, actively infected stage, being 17.3 %. Fourteen persistently infected (PI) animals were identified among 1196 young animals from the class-3 herds. Most of the identified PI animals, 11/14, were born in one sub-area where bovine viral diarrhea virus (BVDV) investigation has not been performed to date. With respect to reproductive performance, class-3 herds also showed higher median values of reproductive indices than those of class-0 herds. Cows and heifers in class-3 herds had higher odds ratio of calving interval (CI) and age at first service (AFS) above the median, respectively, compared to class-0 herds (OR = 1.29; P = 0.02 and OR = 1.63; P = 0.02). Our study showed that PI animals were still in the area that was previously studied. Furthermore, a newly studied area had a high prevalence of BVDV infection and the infection affected the reproductive performance of cows and heifers. Although 37.5 % of the population was free of BVDV, the lack of official disease prevention and less awareness of herd biosecurity may have resulted in continuing viral spread and silent economic losses have potentially occurred due to BVDV. We found that BVDV is still circulating in the region and, hence, a national control program is required.
Evaluation of bovine viral diarrhea virus in New World camelids.
Wentz, Philip A; Belknap, Ellen B; Brock, Kenneth V; Collins, James K; Pugh, David G
2003-07-15
To determine the effect of experimental infection with bovine viral diarrhea virus (BVDV) on llamas and their fetuses, evaluate seroprevalence of BVDV in llamas and alpacas, and genetically characterize BVDV isolates from llamas. Prospective study. 4 pregnant llamas for the experimental infection study and 223 llamas and alpacas for the seroprevalence study. Llamas (seronegative to BVDV) were experimentally infected with a llama isolate of BVDV via nasal aerosolization. After inoculation, blood samples were collected every other day for 2 weeks; blood samples were obtained from crias at birth and monthly thereafter. For the seroprevalence study, blood was collected from a convenience sample of 223 camelids. Isolates of BVDV were characterized by reverse transcription-polymerase chain reaction assay. Viremia and BVDV-specific antibody response were detected in the experimentally infected llamas, but no signs of disease were observed. No virus was detected in the crias or aborted fetus, although antibodies were evident in crias after colostrum consumption. Seroprevalence to BVDV was 0.9% in llamas and alpacas. Sequences of the llama BVDV isolates were comparable to known bovine isolates. Findings suggest that llamas may be infected with BVDV but have few or no clinical signs. Inoculation of llamas during gestation did not result in fetal infection or persistent BVDV infection of crias. Seroprevalence to BVDV in llamas and alpacas is apparently low. The most likely source for BVDV infection in camelids may be cattle.
BVDV: past, present, and future
USDA-ARS?s Scientific Manuscript database
The term bovine viral diarrhea (BVD) has come to refer to a collection of diverse clinical presentations that include respiratory, enteric and reproductive diseases accompanied by immunosuppression. BVD may be caused by one of three different species of bovine pestivirus, bovine viral diarrhea viru...
Ribeiro, Juliane; Lorenzetti, Elis; Alfieri, Alice Fernandes; Alfieri, Amauri Alcindo
2016-03-01
Worldwide diarrhea outbreaks in cattle herds are more frequently detected in calves being that diarrhea outbreaks in adult cattle are not common. Winter dysentery (WD) is a bovine coronavirus (BCoV) enteric infection that is more reported in Northern hemisphere. Seasonal outbreaks of WD in adult cattle occur mainly in dairy cows. WD has not been described in beef cattle herds of tropical countries. This study describes the molecular detection of BCoV in a diarrhea outbreak in beef cattle steers (Nellore) raised on pasture in Parana, southern Brazil. During the outbreak, the farm had about 600 fattening steers. Watery and bloody diarrhea unresponsive to systemic broad-spectrum antibiotic therapy reveals a morbidity rate of approximately 15 %. The BCoV N gene was identified in 42.9 % (6/14) of the diarrheic fecal samples evaluated by semi-nested polymerase chain reaction (SN-PCR) technique. Other enteric microorganisms occasionally identified in adult cattle and evaluated in this study such as bovine groups A, B, and C rotavirus, bovine viral diarrhea virus, bovine torovirus, aichivirus B, and Eimeria sp. were not identified in the fecal samples. To the best knowledge of the authors, this is the first description of the BCoV diagnosis in fecal samples collected in a diarrhea outbreak in adult beef cattle grazing in the grass in a tropical country.
Vaccination of cattle against bovine viral diarrhea virus.
Newcomer, Benjamin W; Chamorro, Manuel F; Walz, Paul H
2017-07-01
Bovine viral diarrhea virus (BVDV) is responsible for significant losses to the cattle industry. Currently, modified-live viral (MLV) and inactivated viral vaccines are available against BVDV, often in combination with other viral and bacterial antigens. Inactivated and MLV vaccines provide cattle producers and veterinarians safe and efficacious options for herd immunization to limit disease associated with BVDV infection. Vaccination of young cattle against BVDV is motivated by prevention of clinical disease and limiting viral spread to susceptible animals. For reproductive-age cattle, vaccination to prevent viremia and birth of persistently infected offspring is considered more important, while also more difficult to achieve than prevention of clinical disease. Recent advances have been made in the understanding of BVDV vaccine efficacy. In terms of preventing clinical disease, current BVDV vaccines have been demonstrated to have a rapid onset of immunity and MLV vaccines can be effectively utilized in calves possessing maternal immunity. For reproductive protection, more recent studies using multivalent MLV vaccines have demonstrated consistent fetal protection rates in the range of 85-100% in experimental studies. Proper timing and administration of BVDV vaccines can be utilized to maximize vaccine efficacy to provide an important contribution to reducing risks associated with BVDV infection. With improvements in vaccine formulations and increased understanding of the protective immune response following vaccination, control of BVDV through vaccination can be enhanced. Copyright © 2017. Published by Elsevier B.V.
Persistent bovine viral diarrhea virus (BVDV) infection in cattle herds
Khodakaram-Tafti, A.; Farjanikish, GH.
2017-01-01
Bovine viral diarrhea virus (BVDV) is a significant pathogen associated with gastrointestinal, respiratory, and reproductive diseases of cattle worldwide. It causes continuous economic losses to the cattle industry primarily due to decreased reproductive performance. The ability of virus to cross the placenta during early pregnancy can result in the birth of persistently infected (PI) calves. Persistently infected animals are generally much more efficient transmitters of BVDV than transiently or acutely infected animals because they are capable of shedding large quantities of virus throughout their lives and are considered the primary reservoirs for BVDV. Due to the nature of viral infections, there is no treatment to fully cure an animal of a viral infection. All control programs which are in use in many countries of the world, mainly depend upon the detection of PI animals, eliminating them and preventing their return into the herds. Detection of PI animals at early stage, particularly soon after birth is of significant benefit to implement BVDV control programs. Available diagnostic tests such as virus isolation (VI), immunohistochemistry (IHC), Antigen-Capture ELISA (ACE), and reverse transcriptase polymerase chain reaction (RT-PCR) are used for detection of PI cattle. Each method to detect BVDV has advantages, disadvantages, and applicability for different diagnostic situations. The reliability of diagnostic tests is optimized by choosing the appropriate sampling strategy on the basis of animal age. PMID:29163643
Bovine viral diarrhea virus (BVDV) 1b: predominant BVDV subtype in calves with respiratory disease
Fulton, Robert W.; Ridpath, Julia F.; Saliki, Jeremiah T.; Briggs, Robert E.; Confer, Anthony W.; Burge, Lurinda J.; Purdy, C. W.; Loan, Raymond W.; Duff, Glenn C.; Payton, Mark E.
2002-01-01
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in 2 groups of stocker calves with acute respiratory disease. Both studies used calves assembled after purchase from auction markets by an order buyer and transported to feedyards, where they were held for approximately 30 d. In 1 study, the calves were mixed with fresh ranch calves from a single ranch. During the studies, at day 0 and at weekly intervals, blood was collected for viral antibody testing and virus isolation from peripheral blood leukocytes (PBLs), and nasal swabs were taken for virus isolation. Samples from sick calves were also collected. Serum was tested for antibodies to bovine herpesvirus-1 (BHV-1), BVDV1a, 1b, and 2, parainfluenza 3 virus (PI3V), and bovine respiratory syncytial virus (BRSV). The lungs from the calves that died during the studies were examined histopathologically, and viral and bacterial isolation was performed on lung homogenates. BVDV was isolated from calves in both studies; the predominant biotype was noncytopathic (NCP). Differential polymerase chain reaction (PCR) and nucleic acid sequencing showed the predominant subtype to be BVDV1b in both studies. In 1999, NCP BVDV1b was detected in numerous samples over time from 1 persistently infected calf; the calf did not seroconvert to BVDV1a or BVDV2. In both studies, BVDV was isolated from the serum, PBLs, and nasal swabs of the calves, and in the 1999 study, it was isolated from lung tissue at necropsy. BVDV was demonstrated serologically and by virus isolation to be a contributing factor in respiratory disease. It was isolated more frequently from sick calves than healthy calves, by both pen and total number of calves. BVDV1a and BVDV2 seroconversions were related to sickness in selected pens and total number of calves. In the 1999 study, BVDV-infected calves were treated longer than noninfected calves (5.643 vs 4.639 d; P = 0.0902). There was a limited number of BVDV1a isolates and, with BVDV1b used in the virus neutralization test for antibodies in seroconverting calves' serum, BVDV1b titers were higher than BVDV1a titers. This study indicates that BVDV1 strains are involved in acute respiratory disease of calves with pneumonic Mannheimia haemolytica and Pasteurella multocida disease. The BVDV2 antibodies may be due to cross-reactions, as typing of the BVDV strains revealed BVDV1b or 1a but not BVDV2. The BVDV1b subtype has considerable implications, as, with 1 exception, all vaccines licensed in the United States contain BVDV1a, a strain with different antigenic properties. BVDV1b potentially could infect BVDV1a-vaccinated calves. PMID:12146890
Moore, S Jo; O'Dea, Mark A; Perkins, Nigel; O'Hara, Amanda J
2015-01-01
The prevalence of organisms known to be associated with bovine respiratory disease (BRD) was investigated in cattle prior to export. A quantitative reverse transcription polymerase chain reaction assay was used to detect nucleic acids from the following viruses and bacteria in nasal swab samples: Bovine coronavirus (BoCV; Betacoronavirus 1), Bovine herpesvirus 1 (BoHV-1), Bovine viral diarrhea virus 1 (BVDV-1), Bovine respiratory syncytial virus (BRSV), Bovine parainfluenza virus 3 (BPIV-3), Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida. Between 2010 and 2012, nasal swabs were collected from 1,484 apparently healthy cattle destined for export to the Middle East and Russian Federation. In addition, whole blood samples from 334 animals were tested for antibodies to BoHV-1, BRSV, BVDV-1, and BPIV-3 using enzyme-linked immunosorbent assay. The nasal prevalence of BoCV at the individual animal level was 40.1%. The nasal and seroprevalence of BoHV-1, BRSV, BVDV-1, and BPIV-3 was 1.0% and 39%, 1.2% and 46%, 3.0% and 56%, and 1.4% and 87%, respectively. The nasal prevalence of H. somni, M. bovis, M. haemolytica, and P. multocida was 42%, 4.8%, 13.4%, and 26%, respectively. Significant differences in nasal and seroprevalence were detected between groups of animals from different geographical locations. The results of the current study provide baseline data on the prevalence of organisms associated with BRD in Australian live export cattle in the preassembly period. This data could be used to develop strategies for BRD prevention and control prior to loading. © 2014 The Author(s).
The effect of bovine viral diarrhea virus infections on health and performance of feedlot cattle
Booker, Calvin W.; Abutarbush, Sameeh M.; Morley, Paul S.; Guichon, P. Timothy; Wildman, Brian K.; Jim, G. Kee; Schunicht, Oliver C.; Pittman, Tom J.; Perrett, Tye; Ellis, John A.; Appleyard, Greg; Haines, Deborah M.
2008-01-01
The aim of this study was to investigate the effect of bovine viral diarrhea virus (BVDV) infections (unapparent acute infections and persistent infections) on the overall health and performance of feedlot cattle. Calves from 25 pens (7132 calves) were enrolled in the study. Overall and infectious disease mortality rates were significantly higher (P < 0.05) in pens categorized at arrival as positive for type I BVDV and lower in pens that were positive for type II BVDV than in negative pens. Mortality attributed to BVDV infection or enteritis was significantly more common (P < 0.05) in the pens containing persistently infected (PI) calves than in pens not containing PI calves (non-PI pens). There were no statistically detectable (P ≥ 0.05) differences in morbidity, overall mortality, average daily gain, or the dry matter intake to gain ratio between PI and non-PI pens. Although type-I BVDV infections in feedlots appear to contribute to higher mortality rates, the presence of PI calves alone does not appear to have a strong impact on pen-level animal health and feedlot performance. PMID:18390097
Wernike, Kerstin; Schirrmeier, Horst; Strebelow, Heinz-Günter; Beer, Martin
2017-09-01
Bovine viral diarrhea (BVD) causes high economic losses in the cattle population worldwide. In Germany, an obligatory control program with detection and removal of persistently infected animals is in force since 2011. For molecular tracing of virus transmission, a comprehensive sequence data base of the currently circulating BVD viruses was established. Partial sequences of 1007 samples collected between 2008 and 2016 were generated. As dominant viruses, subtypes 1b (47.0%) and 1d (26.5%) could be identified with no marked geographic or sampling year effect, a much higher amount of BVDV-2c was detected in 2013 compared to other years, predominantly in Western Germany. In addition, subtypes 1a, 1e, 1f, 1h, 1g, 1k, and 2a were found. Interestingly, besides field-viruses, two different live-vaccine viruses were detected in tissue samples of newborn calves (n=37) whose mothers were immunized during pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.
What variables are important in predicting bovine viral diarrhea virus? A random forest approach.
Machado, Gustavo; Mendoza, Mariana Recamonde; Corbellini, Luis Gustavo
2015-07-24
Bovine viral diarrhea virus (BVDV) causes one of the most economically important diseases in cattle, and the virus is found worldwide. A better understanding of the disease associated factors is a crucial step towards the definition of strategies for control and eradication. In this study we trained a random forest (RF) prediction model and performed variable importance analysis to identify factors associated with BVDV occurrence. In addition, we assessed the influence of features selection on RF performance and evaluated its predictive power relative to other popular classifiers and to logistic regression. We found that RF classification model resulted in an average error rate of 32.03% for the negative class (negative for BVDV) and 36.78% for the positive class (positive for BVDV).The RF model presented area under the ROC curve equal to 0.702. Variable importance analysis revealed that important predictors of BVDV occurrence were: a) who inseminates the animals, b) number of neighboring farms that have cattle and c) rectal palpation performed routinely. Our results suggest that the use of machine learning algorithms, especially RF, is a promising methodology for the analysis of cross-sectional studies, presenting a satisfactory predictive power and the ability to identify predictors that represent potential risk factors for BVDV investigation. We examined classical predictors and found some new and hard to control practices that may lead to the spread of this disease within and among farms, mainly regarding poor or neglected reproduction management, which should be considered for disease control and eradication.
Gao, Yugang; Zhao, Xueliang; Zang, Pu; Liu, Qun; Wei, Gongqing; Zhang, Lianxue
2014-01-01
The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR), transcription was verified by reverse transcription- (RT-) PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine.
Gao, Yugang; Zang, Pu; Liu, Qun; Wei, Gongqing
2014-01-01
The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR), transcription was verified by reverse transcription- (RT-) PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine. PMID:24963321
USDA-ARS?s Scientific Manuscript database
The use of vaccination to control bovine viral diarrhea virus (BVDV) infections presents exceptional challenges due to the nature of the virus, the unique interaction of the virus with the immune system, and its ability to establish persistent infections. The lack of proof reading function during th...
Using Bovine Viral Diarrhea Virus (BVDV) As Surrogate for Human Hepatitis C Virus
This test is designed to validate virucidal effectiveness claims for a product to be registered as a virucide. It determines the potential of the test agent to disinfect hard surfaces contaminated with human Hepatitis C virus (HCV).
Kaiser, V; Nebel, L; Schüpbach-Regula, G; Zanoni, R G; Schweizer, M
2017-01-13
In 2008, a program to eradicate bovine virus diarrhea (BVD) in cattle in Switzerland was initiated. After targeted elimination of persistently infected animals that represent the main virus reservoir, the absence of BVD is surveilled serologically since 2012. In view of steadily decreasing pestivirus seroprevalence in the cattle population, the susceptibility for (re-) infection by border disease (BD) virus mainly from small ruminants increases. Due to serological cross-reactivity of pestiviruses, serological surveillance of BVD by ELISA does not distinguish between BVD and BD virus as source of infection. In this work the cross-serum neutralisation test (SNT) procedure was adapted to the epidemiological situation in Switzerland by the use of three pestiviruses, i.e., strains representing the subgenotype BVDV-1a, BVDV-1h and BDSwiss-a, for adequate differentiation between BVDV and BDV. Thereby the BDV-seroprevalence in seropositive cattle in Switzerland was determined for the first time. Out of 1,555 seropositive blood samples taken from cattle in the frame of the surveillance program, a total of 104 samples (6.7%) reacted with significantly higher titers against BDV than BVDV. These samples originated from 65 farms and encompassed 15 different cantons with the highest BDV-seroprevalence found in Central Switzerland. On the base of epidemiological information collected by questionnaire in case- and control farms, common housing of cattle and sheep was identified as the most significant risk factor for BDV infection in cattle by logistic regression. This indicates that pestiviruses from sheep should be considered as a source of infection of domestic cattle and might well impede serological BVD surveillance.
Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing
2017-10-25
Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p < 0.05) in the immune response levels were observed between probiotics expressing the COE-DCpep fusion protein and COE antigen alone, suggesting better immune efficiency of the probiotics vaccine expressing the DC-targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.
Seago, Julian; Hilton, Louise; Reid, Elizabeth; Doceul, Virginie; Jeyatheesan, Janan; Moganeradj, Kartykayan; McCauley, John; Charleston, Bryan; Goodbourn, Stephen
2007-11-01
Classical swine fever virus (CSFV) is a member of the genus Pestivirus in the family Flaviviridae. The N(pro) product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N(pro) protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN-beta promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N(pro) overexpression. Moreover, IFN-alpha stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.
Animal Viruses Probe dataset (AVPDS) for microarray-based diagnosis and identification of viruses.
Yadav, Brijesh S; Pokhriyal, Mayank; Vasishtha, Dinesh P; Sharma, Bhaskar
2014-03-01
AVPDS (Animal Viruses Probe dataset) is a dataset of virus-specific and conserve oligonucleotides for identification and diagnosis of viruses infecting animals. The current dataset contain 20,619 virus specific probes for 833 viruses and their subtypes and 3,988 conserved probes for 146 viral genera. Dataset of virus specific probe has been divided into two fields namely virus name and probe sequence. Similarly conserved probes for virus genera table have genus, and subgroup within genus name and probe sequence. The subgroup within genus is artificially divided subgroups with no taxonomic significance and contains probes which identifies viruses in that specific subgroup of the genus. Using this dataset we have successfully diagnosed the first case of Newcastle disease virus in sheep and reported a mixed infection of Bovine viral diarrhea and Bovine herpesvirus in cattle. These dataset also contains probes which cross reacts across species experimentally though computationally they meet specifications. These probes have been marked. We hope that this dataset will be useful in microarray-based detection of viruses. The dataset can be accessed through the link https://dl.dropboxusercontent.com/u/94060831/avpds/HOME.html.
van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew
2013-02-01
Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.
Klima, Cassidy L.; Zaheer, Rahat; Cook, Shaun R.; Booker, Calvin W.; Hendrick, Steve
2014-01-01
In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD. PMID:24478472
Klima, Cassidy L; Zaheer, Rahat; Cook, Shaun R; Booker, Calvin W; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A
2014-02-01
In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.
Xue, Wenzhi; Mattick, Debra; Smith, Linda; Umbaugh, Jerry; Trigo, Emilio
2010-12-10
Vaccination plays a significant role in the control of bovine viral diarrhea virus (BVDV) infection and spread. Recent studies revealed that type 1b is the predominant BVDV type 1 subgenotype, representing more than 75% of field isolates of BVDV-1. However, nearly all current, commercially available BVDV type 1 vaccines contain BVDV-1a strains. Previous studies have indicated that anti-BVDV sera, induced by BVDV-1a viruses, show less neutralization activity to BVDV-1b isolates than type 1a. Therefore, it is critically important to evaluate BVDV-1a vaccines in their ability to prevent BVDV-1b infection in calves. In current studies, calves were vaccinated subcutaneously, intradermally or intranasally with a single dose of a multivalent, modified-live viral vaccine containing a BVDV-1a strain, and were challenged with differing BVDV-1b strains to determine the efficacy and duration of immunity of the vaccine against these heterologous virus strains. Vaccinated calves, in all administration routes, were protected from respiratory disease caused by the BVDV-1b viruses, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding and greater white blood cell counts than non-vaccinated control animals. The BVDV-1a vaccine elicited efficacious protection in calves against each BVDV-1b challenge strain, with a duration of immunity of at least 6 months. Copyright © 2010 Elsevier Ltd. All rights reserved.
Huang, Yanyun; Haines, Deborah M; Harding, John C S
2013-04-01
The current study tested the benefit of commercially available spray-dried bovine colostrum (The Saskatoon Colostrum Company, Saskatoon, Saskatchewan) in raising snatch-farrowed, porcine-colostrum-deprived (SF-pCD) pigs. In experiment 1, 12 SF-pCD pigs received a liquid diet composed mainly of bovine colostrum from birth to day 10; 6 remained on the same liquid diet (COL), and the other 6 were fed a diet composed mainly of milk replacer (RPL) until weaning. In experiment 2, 12 SF-pCD pigs were fed mainly bovine colostrum before weaning; after weaning, 6 were fed a starter diet containing 20% (w/w) bovine colostrum powder (STARTER-COL), and the other 6 were fed a starter diet without any bovine colostrum (STARTER-CTRL) until termination (day 42 or day 49). In experiment 1 the COL pigs had significantly fewer fever-days than did the RPL pigs. In experiment 2 diarrhea, typhlocolitis, and pancreatic degeneration developed in 4 of the STARTER-COL pigs after weaning. In both experiments all the pigs fed mainly bovine colostrum before weaning survived until termination. All pigs tested free of swine influenza virus H1N1 and H3N2, Porcine reproductive and respiratory syndrome virus, and Porcine parvovirus. In experiment 2 all the pigs tested free of Porcine circovirus type 2 (PCV2), but some in both groups tested positive for Torque teno virus genogroups 1 and 2. In conclusion, with the use of snatch-farrowing and bovine colostrum, pigs can be raised in the absence of porcine maternal antibodies with 100% survival and freedom from most porcine pathogens of biologic relevance. This model is potentially suitable for animal disease research.
Huang, Yanyun; Haines, Deborah M.; Harding, John C.S.
2013-01-01
The current study tested the benefit of commercially available spray-dried bovine colostrum (The Saskatoon Colostrum Company, Saskatoon, Saskatchewan) in raising snatch-farrowed, porcine-colostrum-deprived (SF-pCD) pigs. In experiment 1, 12 SF-pCD pigs received a liquid diet composed mainly of bovine colostrum from birth to day 10; 6 remained on the same liquid diet (COL), and the other 6 were fed a diet composed mainly of milk replacer (RPL) until weaning. In experiment 2, 12 SF-pCD pigs were fed mainly bovine colostrum before weaning; after weaning, 6 were fed a starter diet containing 20% (w/w) bovine colostrum powder (STARTER-COL), and the other 6 were fed a starter diet without any bovine colostrum (STARTER-CTRL) until termination (day 42 or day 49). In experiment 1 the COL pigs had significantly fewer fever-days than did the RPL pigs. In experiment 2 diarrhea, typhlocolitis, and pancreatic degeneration developed in 4 of the STARTER-COL pigs after weaning. In both experiments all the pigs fed mainly bovine colostrum before weaning survived until termination. All pigs tested free of swine influenza virus H1N1 and H3N2, Porcine reproductive and respiratory syndrome virus, and Porcine parvovirus. In experiment 2 all the pigs tested free of Porcine circovirus type 2 (PCV2), but some in both groups tested positive for Torque teno virus genogroups 1 and 2. In conclusion, with the use of snatch-farrowing and bovine colostrum, pigs can be raised in the absence of porcine maternal antibodies with 100% survival and freedom from most porcine pathogens of biologic relevance. This model is potentially suitable for animal disease research. PMID:24082397
Al-Busadah, Khaled A; El-Bahr, Sabry M; Khalafalla, Abdelmalik I
2017-05-01
Detection of pathogens in the semen of camels has not been completely elucidated. Therefore, the current study aimed to determine the association of some economically important pathogens with infertility in 94 male infertile camels through molecular detection and estimation of selected biochemical parameters in serum of these animals compared with a control non infected fertile animals (n=40). PCR analysis of semen samples of infertile camels indicated that, four potential pathogens namely Mycoplasma spp., Leptospira spp., Brucella melitensis, and Bovine viral diarrhea virus (BVDV) were detected in 50 semen samples of infertile camels whereas, 44 semen samples of infertile camels were free of pathogens and all tested semen samples were negative for bovine herpes virus 1, Salmonella spp. and Trypanosoma evansi. Single and mixed infection was detected in 88% and 12% of the infected semen samples, respectively. Mycoplasma spp., Leptospira spp., Brucella and Bovine viral diarrhea virus infection represented 66%, 27.2%, 4.5% and 2.3% of the single infected semen samples. Mycoplasma spp.+Leptospira spp. and Mycoplasma spp.+Brucella spp. were detected in 83.3% and 16.7% of mixed infected semen samples, respectively. Testosterone concentration decreased significantly in infertile infected camels compare to both control and infertile non infected animals that remained comparable. The current findings reported the molecular detection of mixed infection in camel semen for the first time. Mycoplasma spp. is the most widely recognized microorganism in the present study and together with Leptospira spp., Brucella spp. and Bovine viral diarrhea virus, might be associated with infertility in dromedary camels. Copyright © 2017 Elsevier B.V. All rights reserved.
Leyh, Randy D; Fulton, Robert W; Stegner, Jacob E; Goodyear, Mark D; Witte, Steven B; Taylor, Lucas P; Johnson, Bill J; Step, Douglas L; Ridpath, Julia F; Holland, Ben P
2011-03-01
To determine efficacy of a modified-live virus (MLV) vaccine containing bovine viral diarrhea virus (BVDV) 1a and 2a against fetal infection in heifers exposed to cattle persistently infected (PI) with BVDV subtype 1 b. 50 heifers and their fetuses. Susceptible heifers received a placebo vaccine administered IM or a vaccine containing MLV strains of BVDV1a and BVDV2a administered IM or SC. On day 124 (64 to 89 days of gestation), 50 pregnant heifers (20 vaccinated SC, 20 vaccinated IM, and 10 control heifers) were challenge exposed to 8 PI cattle. On days 207 to 209, fetuses were recovered from heifers and used for testing. 2 control heifers aborted following challenge exposure; both fetuses were unavailable for testing. Eleven fetuses (8 control heifers and 1 IM and 2 SC vaccinates) were positive for BVDV via virus isolation (VI) and for BVDV antigen via immunohistochemical analysis in multiple tissues. Two additional fetuses from IM vaccinates were considered exposed to BVDV (one was seropositive for BVDV and the second was positive via VI in fetal tissues). A third fetus in the SC vaccinates was positive for BVDV via VI from serum alone. Vaccination against BVDV provided fetal protection in IM vaccinated (17/20) and SC vaccinated (17/20) heifers, but all control heifers (10/10) were considered infected. 1 dose of a BVDV1a and 2a MLV vaccine administered SC or IM prior to breeding helped protect against fetal infection in pregnant heifers exposed to cattle PI with BVDV1b.
Johnson, Bill J.; Briggs, Robert E.; Ridpath, Julia F.; Saliki, Jeremiah T.; Confer, Anthony W.; Burge, Lurinda J.; Step, Douglas L.; Walker, Derek A.; Payton, Mark E.
2006-01-01
Abstract Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves. PMID:16639944
Katz, J B; Hanson, S K
1987-02-01
A competitive blocking enzyme-linked immunoassay (CELIA) was developed to detect bovine viral diarrhea virus (BVDV) antibodies in undiluted fetal bovine serum (FBS). The CELIA was based on competition of serum BVDV antibodies with biotin-labelled anti-BVDV immunoglobulins (Ig) for a limited quantity of solid-phase BVDV antigen. Antigen preparation was simple, FBS could be tested undiluted, and detergent-containing washes were unnecessary. A series of dilutions of postnatal bovine BVDV antiserum prepared in FBS and a set of 147 undiluted abbatoir FBS samples were tested by both CELIA and serum neutralization tests (SNT). CELIA results on both sets of specimens correlated positively with SNT titers (r = 0.99 and r = 0.85). Relative to the SNT, CELIA sensitivity was 100%; specificity was 76%. CELIA detected a level of BVDV antibody below the 1:2-titer threshold detectable with the SNT. Advantages, limitations, and theoretical differences between the CELIA and SNT are discussed. A similar comparison of CELIA with non-competitive enzyme-linked immunoassay approaches to BVDV serodiagnosis is made. It is concluded that the CELIA is valuable in selecting only BVDV-seronegative FBS for use in virologic cell culture media.
Tizioto, Polyana C; Kim, JaeWoo; Seabury, Christopher M; Schnabel, Robert D; Gershwin, Laurel J; Van Eenennaam, Alison L; Toaff-Rosenstein, Rachel; Neibergs, Holly L; Taylor, Jeremy F
2015-01-01
Susceptibility to bovine respiratory disease (BRD) is multi-factorial and is influenced by stress in conjunction with infection by both bacterial and viral pathogens. While vaccination is broadly used in an effort to prevent BRD, it is far from being fully protective and cases diagnosed from a combination of observed clinical signs without any attempt at identifying the causal pathogens are usually treated with antibiotics. Dairy and beef cattle losses from BRD are profound worldwide and genetic studies have now been initiated to elucidate host loci which underlie susceptibility with the objective of enabling molecular breeding to reduce disease prevalence. In this study, we employed RNA sequencing to examine the bronchial lymph node transcriptomes of controls and beef cattle which had individually been experimentally challenged with bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea virus, Pasteurella multocida, Mannheimia haemolytica or Mycoplasma bovis to identify the genes that are involved in the bovine immune response to infection. We found that 142 differentially expressed genes were located in previously described quantitative trait locus regions associated with risk of BRD. Mutations affecting the expression or amino acid composition of these genes may affect disease susceptibility and could be incorporated into molecular breeding programs. Genes involved in innate immunity were generally found to be differentially expressed between the control and pathogen-challenged animals suggesting that variation in these genes may lead to a heritability of susceptibility that is pathogen independent. However, we also found pathogen-specific expression profiles which suggest that host genetic variation for BRD susceptibility is pathogen dependent.
Effects of interferon-tau on cattle persistently infected with bovine viral diarrhea virus.
Kohara, Junko; Nishikura, Yumiko; Konnai, Satoru; Tajima, Motoshi; Onuma, Misao
2012-08-01
In this study, the antiviral effects of bovine interferon-tau (boIFN-tau) on bovine viral diarrhea virus (BVDV) were examined in vitro and in vivo. In the in vitro experiments, the replication of cytopathic and non-cytopathic BVDV was inhibited in the bovine cells treated with boIFN-tau. The replication of BVDV was completely suppressed by boIFN-tau at a concentration higher than 10(2) U/ml. In order to examine the effect of boIFN-tau on virus propagation in cattle persistently infected (PI) with non-cytopathic BVDV, boIFN-tau was subcutaneously administered to PI cattle at 10(5) U/kg or 10(6) U/kg body weight 5 times per week for 2 weeks. No physical abnormality such as depression was observed in the cattle during the experiment. The mean BVDV titers in the serum of the PI cattle decreased slightly during the boIFN-tau administration period with the dose of 10(6) U/kg. However, the BVDV titers in the serum returned to the pre-administration level after the final boIFN-tau administration. These results suggest that boIFN-tau demonstrates an anti-BVDV effect, reducing the BVDV level in serum transiently when injected into PI cattle.
Experimental infection of pregnant goats with bovine viral diarrhea virus (BVDV) 1 or 2
2014-01-01
Infections with bovine viral diarrhea virus (BVDV) of the genus pestivirus, family Flaviviridae, are not limited to cattle but occur in various artiodactyls. Persistently infected (PI) cattle are the main source of BVDV. Persistent infections also occur in heterologous hosts such as sheep and deer. BVDV infections of goats commonly result in reproductive disease, but viable PI goats are rare. Using 2 BVDV isolates, previously demonstrated to cause PI cattle and white-tailed deer, this study evaluated the outcome of experimental infection of pregnant goats. Pregnant goats (5 goats/group) were intranasally inoculated with BVDV 1b AU526 (group 1) or BVDV 2 PA131 (group 2) at approximately 25–35 days of gestation. The outcome of infection varied considerably between groups. In group 1, only 3 does became viremic, and 1 doe gave birth to a stillborn fetus and a viable PI kid, which appeared healthy and shed BVDV continuously. In group 2, all does became viremic, 4/5 does aborted, and 1 doe gave birth to a non-viable PI kid. Immunohistochemistry demonstrated BVDV antigen in tissues of evaluated fetuses, with similar distribution but reduced intensity as compared to cattle. The genetic sequence of inoculated viruses was compared to those from PI kids and their dam. Most nucleotide changes in group 1 were present during the dam’s acute infection. In group 2, a similar number of mutations resulted from fetal infection as from maternal acute infection. Results demonstrated that BVDV may cause reproductive disease but may also be maintained in goats. PMID:24708266
Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system
USDA-ARS?s Scientific Manuscript database
E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. Howev...
Isolation and identification of a bovine viral diarrhea virus from sika deer in china.
Gao, Yugang; Wang, Shijie; Du, Rui; Wang, Quankai; Sun, Changjiang; Wang, Nan; Zhang, Pengju; Zhang, Lianxue
2011-02-25
Bovine viral diarrhea virus (BVDV) infections continue to cause significantly losses in the deer population. Better isolation and identification of BVDV from sika deer may contribute significantly to the development of prophylactic therapeutic, and diagnostic reagents as well as help in prevention and control of BVDV. However, isolation and identification of BVDV from sika deer is seldom reported in literature. In this study, we collected some samples according to clinical sign of BVDV to isolation and identification of BVDV from sika deer. we isolated a suspected BVDV strain from livers of an aborted fetus from sika deer in Changchun (China) using MDBK cell lines, named as CCSYD strain, and identified it by cytopathic effect (CPE), indirect immunoperoxidase test (IPX) and electron microscopy(EM). The results indicated that this virus was BVDV by a series of identification. The structural proteins E0 gene was cloned and sequenced. The obtained E0 gene sequence has been submitted to GenBank with the accession number: FJ555203. Alignment with other 9 strains of BVDV, 7 strains of classical swine fever virus (CSFV) and 3 strains of border disease virus(BDV) in the world, showed that the homology were 98.6%-84.8%, 76.0%-74.7%, 76.6%-77.0% for nucleotide sequence, respectively. The phylogenetic analysis indicated that new isolation and identification CCSYD strain belonged to BVDV1b. To the best of our knowledge, this is the first report that BVDV was isolated and identified in sika deer. This current research contributes development new BVDV vaccine to prevent and control of BVD in sika deer.
Zhai, Yougang; Zhong, Zhenyu; Zariffard, Mohammadreza; Spear, Gregory T.; Qiao, Liang
2013-01-01
Two conserved epitopes, located in the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 (HIV-1) gp41, are recognized by two HIV-1 broadly neutralizing antibodies 2F5 and 4E10, and are promising targets for vaccine design in efforts to elicit anti-HIV-1 broadly neutralizing antibodies. Since most HIV-1 infections initiate at mucosal surfaces, induction of mucosal neutralizing antibodies is necessary and of utmost importance to counteract HIV-1 infection. Here, we utilized a mucosal vaccine vector, bovine papillomavirus (BPV) virus-like particles (VLPs), as a platform to present HIV-1 neutralizing epitopes by inserting the extended 2F5 or 4E10 epitope or the MPER domain into D-E loop of BPV L1 respectively. The chimeric VLPs presenting MPER domain resembled the HIV-1 natural epitopes better than the chimeric VLPs presenting single epitopes. Oral immunization of mice with the chimeric VLPs displaying the 2F5 epitope or MPER domain elicited epitope-specific serum IgGs and mucosal secretory IgAs. The induced antibodies specifically recognized the native conformation of MPER in the context of HIV-1 envelope protein. The antibodies induced by chimeric VLPs presenting MPER domain are able to partially neutralize HIV-1 viruses from clade B and clade C. PMID:24055348
Givens, M Daniel; Marley, M Shonda D; Jones, Craig A; Ensley, Douglas T; Galik, Patricia K; Zhang, Yijing; Riddell, Kay P; Joiner, Kellye S; Brodersen, Bruce W; Rodning, Soren P
2012-08-15
To determine whether administration of 2 doses of a multivalent, modified-live virus vaccine prior to breeding of heifers would provide protection against abortion and fetal infection following exposure of pregnant heifers to cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) and cattle with acute bovine herpesvirus 1 (BHV1) infection. Randomized controlled clinical trial. 33 crossbred beef heifers, 3 steers, 6 bulls, and 25 calves. 20 of 22 vaccinated and 10 of 11 unvaccinated heifers became pregnant and were commingled with 3 steers PI with BVDV type 1a, 1b, or 2 for 56 days beginning 102 days after the second vaccination (administered 30 days after the first vaccination). Eighty days following removal of BVDV-PI steers, heifers were commingled with 3 bulls with acute BHV1 infection for 14 days. After BVDV exposure, 1 fetus (not evaluated) was aborted by a vaccinated heifer; BVDV was detected in 0 of 19 calves from vaccinated heifers and in all 4 fetuses (aborted after BHV1 exposure) and 6 calves from unvaccinated heifers. Bovine herpesvirus 1 was not detected in any fetus or calf and associated fetal membranes in either treatment group. Vaccinated heifers had longer gestation periods and calves with greater birth weights, weaning weights, average daily gains, and market value at weaning, compared with those for calves born to unvaccinated heifers. Prebreeding administration of a modified-live virus vaccine to heifers resulted in fewer abortions and BVDV-PI offspring and improved growth and increased market value of weaned calves.
Hou, Peili; Zhao, Guimin; Wang, Hongmei; He, Chengqiang; Huan, Yanjun; He, Hongbin
2018-04-01
Bovine ephemeral fever virus (BEFV), identified as the causative pathogen of bovine ephemeral fever (BEF), is responsible for increasing numbers of epidemics/outbreaks and has a significant harmful effect on the livestock industry. Therefore, a rapid detection assay is imperative for BEFV diagnosis. In this study, we described the development of lateral-flow dipstick isothermal recombinase polymerase amplification (LFD-RPA) assays for detection of BEFV. RPA primers and LF probes were designed by targeting the specific G gene, and the amplification product can be visualized on a simple lateral flow dipstick with the naked eyes. The amplification reaction was performed at 38 °C for 20 min and LFD incubation time within 5 min. The detection limit of this assay was 8 copies per reaction, and there was no cross-reactivity with other bovine infectious viruses such as bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, bovine respiratory syncytial virus, bovine coronavirus, bovine parainfluenza virus type 3, bovine vesicular stomatitis virus. In addition, the assay was performed with total 128 clinical specimens and the diagnostic results were compared with conventional RT-PCR, real-time quantative(q) PCR. The result showed that the coincidence rate of BEFV LFD-RPA and real-time qPCR was 96.09% (123/128), which was higher than conventional RT-PCR. The RPA combined with LFD assay probably provides a rapid and sensitive alternative for diagnosis of BEFV infections outbreak. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lee, Kwang-Il; Lee, Jung-Soo; Jung, Hong-Hee; Lee, Hwa-Yong; Moon, Seong-Hwan; Kang, Kyoung-Tak; Shim, Young-Bock; Jang, Ju-Woong
2012-01-01
Xenografts, unlike other grafting products, cannot be commercialized unless they conform to stringent safety regulations. Particularly with bovine-derived materials, it is essential to remove viruses and inactivate infectious factors because of the possibility that raw materials are imbrued with infectious viruses. The removal of the characteristics of infectious viruses from the bovine bone grafting materials need to be proved and inactivation process should satisfy the management provision of the Food and Drug Administration (FDA). To date, while most virus inactivation studies were performed in human allograft tissues, there have been almost no studies on bovine bone. To evaluate the efficacy of virus inactivation after treatment of bovine bone with 70% ethanol, 4% sodium hydroxide, and gamma irradiation, we selected a variety of experimental model viruses that are known to be associated with bone pathogenesis, including bovine parvovirus (BPV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza-3 virus (BPIV-3). The cumulative virus log clearance factor or cumulative virus log reduction factor for the manufacturing process was obtained by calculating the sum of the individual virus log clearance factors or log reduction factors determined for individual process steps with different physicochemical methods. The cumulative log clearance factors achieved by three different virus inactivation processes were as follows: BPV ≥ 17.73, BHV ≥ 20.53, BVDV ≥ 19.00, and BPIV-3 ≥ 16.27. On the other hand, the cumulative log reduction factors achieved were as follows: BPV ≥ 16.95, BHV ≥ 20.22, BVDV ≥ 19.27, and BPIV-3 ≥ 15.58. Treatment with 70% ethanol, 4% sodium hydroxide, or gamma irradiation was found to be very effective in virus inactivation, since all viruses were at undetectable levels during each process. We have no doubt that application of this established process to bovine bone graft manufacture will be effective and essential. © 2012 John Wiley & Sons A/S.
Gethmann, Jörn; Schirrmeier, Horst; Schröder, Ronald; Conraths, Franz J.; Beer, Martin
2017-01-01
Bovine viral diarrhea (BVD) is one of the most important infectious diseases in cattle, causing major economic losses worldwide. Therefore, control programs have been implemented in several countries. In Germany, an obligatory nationwide eradication program has been in force since 2011. Its centerpiece is the detection of animals persistently infected (PI) with BVD virus, primarily based on the testing of ear tissue samples of all newborn calves for viral genome or antigen, and their removal from the cattle population. More than 48,000 PI animals have so far been detected and removed. Between the onset of the program and the end of 2016, the prevalence of these animals among all newborn calves decreased considerably, from 0.5% to less than 0.03%. The number of cattle holdings with PI animals likewise decreased from 3.44% in 2011 to only 0.16% in 2016. Since a large number of naïve, fully susceptible animals are now confronted with BVD virus, which is still present in the German cattle population, the challenge of the coming years will be the identification of remaining PI animals as quickly and efficiently as possible, and the efficient protection of BVD-free farms from reinfection. PMID:29057796
Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus
USDA-ARS?s Scientific Manuscript database
Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...
Damman, Alix; Viet, Anne-France; Arnoux, Sandie; Guerrier-Chatellet, Marie-Claude; Petit, Etienne; Ezanno, Pauline
2015-02-24
Bovine viral diarrhea virus (BVDV) is a common pathogen of cattle herds that causes economic losses due to reproductive disorders in breeding cattle and increased morbidity and mortality amongst infected calves. Our objective was to evaluate the impact of BVDV spread on the productivity of a beef cow-calf herd using a stochastic model in discrete time that accounted for (1) the difference in transmission rates when animals are housed indoors versus grazing on pasture, (2) the external risk of disease introductions through fenceline contact with neighboring herds and the purchase of infected cattle, and (3) the risk of individual pregnant cattle generating persistently infected (PI) calves based on their stage in gestation. The model predicted the highest losses from BVDV during the first 3 years after disease was introduced into a naive herd. During the endemic phase, the impact of BVDV on the yearly herd productivity was much lower due to herd immunity. However, cumulative losses over 10 years in an endemic situation greatly surpassed the losses that occurred during the acute phase. A sensitivity analysis of key model parameters revealed that herd size, the duration of breeding, grazing, and selling periods, renewal rate of breeding females, and the level of numerical productivity expected by the farmer had a significant influence on the predicted losses. This model provides a valuable framework for evaluating the impact of BVDV and the efficacy of different control strategies in beef cow-calf herds.
Palomares, Roberto A; Marley, Shonda M; Givens, M Daniel; Gallardo, Rodrigo A; Brock, Kenny V
2013-05-01
The objective was to determine whether a multivalent modified-live virus vaccine containing noncytopathic bovine viral diarrhea virus (BVDV) administered off-label to pregnant cattle can result in persistently infected fetuses and to assess whether vaccinal strains can be shed to unvaccinated pregnant cattle commingling with vaccinates. Nineteen BVDV-naïve pregnant heifers were randomly assigned to two groups: cattle vaccinated near Day 77 of gestation with modified-live virus vaccine containing BVDV-1a (WRL strain), bovine herpes virus-1, parainfluenza 3, and bovine respiratory syncytial virus (Vx group; N = 10) or control unvaccinated cattle (N = 9). During the course of the study a voluntary stop-sale/recall was conducted by the manufacturer because of the presence of a BVDV contaminant in the vaccine. At Day 175 of gestation, fetuses were removed by Cesarean section and fetal tissues were submitted for virus isolation, and quantitative reverse transcription polymerase chain reaction using BVDV-1- and BVDV-2-specific probes. Nucleotide sequencing of viral RNA was performed for quantitative reverse transcription polymerase chain reaction-positive samples. Two vaccinated and two control heifers aborted their pregnancies, but their fetuses were unavailable for BVDV testing. Virus was isolated from all eight fetuses in the Vx group heifers and from 2 of 7 fetuses in the control unvaccinated heifers. Only BVDV-2 was detected in fetuses from the Vx group, and only BVDV-1 was detected in the two fetuses from the control group. Both BVDV-1 and BVDV-2 were detected in the vaccine. In conclusion, vaccination of pregnant heifers with a contaminated modified-live BVDV vaccine resulted in development of BVDV-2 persistently infected fetuses in all tested vaccinated animals. Furthermore, BVDV was apparently shed to unvaccinated heifers causing fetal infections from which only BVDV-1 was detected. Published by Elsevier Inc.
Luo, Yugang; Yuan, Ying; Ankenbauer, Robert G; Nelson, Lynn D; Witte, Steven B; Jackson, James A; Welch, Siao-Kun W
2012-06-06
Bovine viral diarrhea virus (BVDV) infections are enzootic in the cattle population and continue to cause significant economic losses to the beef and dairy industries worldwide. Extent of the damages has stimulated increasing interest in control programs directed at eradicating BVDV infections. Use of a BVDV marker vaccine would facilitate eradication efforts as a negatively marked vaccine would enable differentiation of infected from vaccinated animals (DIVA). We describe here the construction of three chimeric BVDVs containing glycoprotein E(rns) of heterologous pestiviruses and the evaluation of the chimera viruses as potential marker vaccines against BVDV infections. Chimeric NADL/G-E(rns), NADL/R-E(rns), and NADL/P-E(rns) were constructed by replacing the E(rns) gene of the full-length BVDV (NADL strain) genome with the E(rns) genes of giraffe (G-E(rns)), reindeer (R-E(rns)), or pronghorn antelope (P-E(rns)) pestiviruses, respectively. Each chimeric NADL virus was viable and infectious in RD 420 (bovine testicular) and BK-6 (bovine kidney) cells. By immunohistochemistry assays, NADL/G-E(rns) and NADL/R-E(rns) chimeric viruses reacted to BVDV E(rns) specific monoclonal antibody (mAb) 15C5, whereas the NADL/P-E(rns) chimeric virus did not. In an animal vaccination study, inactivated vaccines made from two chimeric viruses and the wild type NADL BVDV induced similar neutralizing antibody responses. NADL/P-E(rns)-vaccinated animals were distinguished from animals vaccinated with the wild type virus by means of a companion serological DIVA assay. These results show that chimeric NADL/P-E(rns) virus containing the E(rns) gene of pronghorn antelope pestivirus could be a potential marker vaccine candidate for use in a BVDV control and eradication program. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neill, John D; Dubovi, Edward J; Ridpath, Julia F
2015-09-30
Bovine viral diarrhea viruses (BVDV) are most commonly associated with infections of cattle. However, BVDV are often isolated from closely related ruminants with a number of BVDV-1b viruses being isolated from alpacas that were both acutely and persistently infected. The complete nucleotide sequence of the open reading frame of eleven alpaca-adapted BVDV isolates and the region encoding the envelope glycoproteins of an additional three isolates were determined. With the exception of one, all alpaca isolates were >99.2% similar at the nucleotide level. The Hercules isolate was more divergent, with 95.7% sequence identity to the other viruses. Sequence similarity of the 14 viruses indicated they were isolates of a single BVDV strain that had adapted to and were circulating through alpaca herds. Hercules was a more distantly related strain that has been isolated only once in Canada and represented a separate adaptation event that possessed the same adaptive changes. Comparison of amino acid sequences of alpaca and bovine-derived BVDV strains revealed three regions with amino acid sequences unique to all alpaca isolates. The first contained two small in-frame deletions near the N-terminus of the E2 glycoprotein. The second was found near the C-terminus of the E2 protein where four altered amino acids were located within a 30 amino acid domain that participates in E2 homodimerization. The third region contained three variable amino acids in the C-terminus of the E(rns) within the amphipathic helix membrane anchor. These changes were found in the polar side of the amphipathic helix and resulted in an increased charge within the polar face. Titration of bovine and alpaca viruses in both bovine and alpaca cells indicated that with increased charge in the amphipathic helix, the ability to infect alpaca cells also increased. Published by Elsevier B.V.
González Altamiranda, E A; Kaiser, G G; Mucci, N C; Verna, A E; Campero, C M; Odeón, A C
2013-08-30
The aim of this study was to study the effect of Bovine Viral Diarrhea Virus on the reproductive female tract by means of analyzing the ovarian follicular population of persistently infected (PI) heifers, and evaluating the performance of oocytes procured form those heifers in in vitro fertilization procedures. Seven BVDV PI Aberdeen Angus and British crossbred heifers ranging from 18 to 36 months of age were spayed and their ovaries used for viral isolation, microscopic examination, and in vitro fertilization procedures. Bovine Viral Diarrhea Virus was detected from the follicular fluid and sera of all PI heifers. Microscopic examination of the ovaries from PI heifers showed a significant drop in the number of follicles cortical regions, compared with controls. A comparative analysis of the stages of follicular development showed a significant decrease in the number of primordial and tertiary follicles in the cortical regions of ovaries from PI heifers. Viral antigen was detected by immunohistochemistry, and was widely distributed throughout the ovarian tissues. There were differences in the rate of cleavage and embryo development between oocytes obtained from the ovaries of control animals and PI heifers. Furthermore, two developed embryos obtained from oocytes from one of the PI heifers were positive to BVDV, as well as two media from in vitro fertilization (IVF) procedures. The results of this study demonstrate that BVDV PI heifers exhibit alterations in follicular population through of the early interaction between the virus and germ cell line affecting directly the mechanisms involved in the ontogenesis of the ovary. Copyright © 2013 Elsevier B.V. All rights reserved.
Isolation and identification of a bovine viral diarrhea virus from sika deer in china
2011-01-01
Background Bovine viral diarrhea virus (BVDV) infections continue to cause significantly losses in the deer population. Better isolation and identification of BVDV from sika deer may contribute significantly to the development of prophylactic therapeutic, and diagnostic reagents as well as help in prevention and control of BVDV. However, isolation and identification of BVDV from sika deer is seldom reported in literature. In this study, we collected some samples according to clinical sign of BVDV to isolation and identification of BVDV from sika deer. Results we isolated a suspected BVDV strain from livers of an aborted fetus from sika deer in Changchun (China) using MDBK cell lines, named as CCSYD strain, and identified it by cytopathic effect (CPE), indirect immunoperoxidase test (IPX) and electron microscopy(EM). The results indicated that this virus was BVDV by a series of identification. The structural proteins E0 gene was cloned and sequenced. The obtained E0 gene sequence has been submitted to GenBank with the accession number: FJ555203. Alignment with other 9 strains of BVDV, 7 strains of classical swine fever virus (CSFV) and 3 strains of border disease virus(BDV) in the world, showed that the homology were 98.6%-84.8%, 76.0%-74.7%, 76.6%-77.0% for nucleotide sequence, respectively. The phylogenetic analysis indicated that new isolation and identification CCSYD strain belonged to BVDV1b. Conclusion To the best of our knowledge, this is the first report that BVDV was isolated and identified in sika deer. This current research contributes development new BVDV vaccine to prevent and control of BVD in sika deer. PMID:21352530
Snider, Marlene; Garg, Ravendra; Brownlie, Robert; van den Hurk, Jan V; van Drunen Littel-van den Hurk, Sylvia
2014-11-28
Bovine viral diarrhea virus (BVDV) is still one of the most serious pathogens in cattle, meriting the development of improved vaccines. Recently, we developed a new adjuvant consisting of poly[di(sodium carboxylatoethylphenoxy)]-phosphazene (PCEP), either CpG ODN or poly(I:C), and an immune defense regulator (IDR) peptide. As this adjuvant has been shown to mediate the induction of robust, balanced immune responses, it was evaluated in an E2 subunit vaccine against BVDV in lambs and calves. The BVDV type 2 E2 protein was produced at high levels in a mammalian expression system and purified. When formulated with either CpG ODN or poly(I:C), together with IDR and PCEP, the E2 protein elicited high antibody titers and production of IFN-γ secreting cells in lambs. As the immune responses were stronger when poly(I:C) was used, the E2 protein with poly(I:C), IDR and PCEP was subsequently tested in cattle. Robust virus neutralizing antibodies as well as cell-mediated immune responses, including CD8(+) cytotoxic T cell (CTL) responses, were induced. The fact that CTL responses were demonstrated in calves vaccinated with an E2 protein subunit vaccine indicates that this adjuvant formulation promotes cross-presentation. Furthermore, upon challenge with a high dose of virulent BVDV-2, the vaccinated calves showed almost no temperature response, weight loss, leukopenia or virus replication, in contrast to the control animals, which had severe clinical disease. These data suggest that this E2 subunit formulation induces significant protection from BVDV-2 challenge, and thus is a promising BVDV vaccine candidate; in addition, the adjuvant platform has applications in bovine vaccines in general. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stalder, Hanspeter; Hug, Corinne; Zanoni, Reto; Vogt, Hans-Rudolf; Peterhans, Ernst; Schweizer, Matthias; Bachofen, Claudia
2016-06-15
Pestiviruses infect a wide variety of animals of the order Artiodactyla, with bovine viral diarrhea virus (BVDV) being an economically important pathogen of livestock globally. BVDV is maintained in the cattle population by infecting fetuses early in gestation and, thus, by generating persistently infected (PI) animals that efficiently transmit the virus throughout their lifetime. In 2008, Switzerland started a national control campaign with the aim to eradicate BVDV from all bovines in the country by searching for and eliminating every PI cattle. Different from previous eradication programs, all animals of the entire population were tested for virus within one year, followed by testing each newborn calf in the subsequent four years. Overall, 3,855,814 animals were tested from 2008 through 2011, 20,553 of which returned an initial BVDV-positive result. We were able to obtain samples from at least 36% of all initially positive tested animals. We sequenced the 5' untranslated region (UTR) of more than 7400 pestiviral strains and compiled the sequence data in a database together with an array of information on the PI animals, among others, the location of the farm in which they were born, their dams, and the locations where the animals had lived. To our knowledge, this is the largest database combining viral sequences with animal data of an endemic viral disease. Using unique identification tags, the different datasets within the database were connected to run diverse molecular epidemiological analyses. The large sets of animal and sequence data made it possible to run analyses in both directions, i.e., starting from a likely epidemiological link, or starting from related sequences. We present the results of three epidemiological investigations in detail and a compilation of 122 individual investigations that show the usefulness of such a database in a country-wide BVD eradication program. Copyright © 2015 Elsevier B.V. All rights reserved.
Letellier, C; Kerkhofs, P; Wellemans, G; Vanopdenbosch, E
1999-01-01
A reverse-transcription polymerase chain reaction (RT-PCR) was developed to differentiate the bovine diarrhea virus (BVDV) from other pestiviruses, and to determine the genotype of the BVDV isolates. For this purpose, primer pairs were selected in the 5' untranslated region (5'UTR). The primers BE and B2 were located in highly conserved regions and were pestivirus-specific. Two primer pairs named B3B4 and B5B6 were specific of BVDV genotypes I and II, respectively. With this technique, an amplification product of the expected size was obtained with either the B3B4 or the B5B6 primer pairs for the 107 BVDV isolates tested but not for BDV or CSFV. For some isolates that were grouped in the genotype II, sequence analysis of the PCR fragments confirmed their classification into this genotype.
Enterocytozoon bieneusi in Bovine Viral Diarrhea Virus (BVDV) infected and noninfected cattle herds.
Juránková, J; Kamler, M; Kovařčík, K; Koudela, B
2013-02-01
Enterocytozoon bieneusi known as a causative agent of opportunistic infections instigating diarrhoea in AIDS patients was identified also in a number of immunocompetent patients and in a wide range of animals, including cattle. In the present study we tested if the Bovine Viral Diarrhea Virus (BVDV), the most common pathogen underlying immunosuppressive Bovine Viral Diarrhoea (BVD), can enhance the occurrence of opportunistic infections with E. bieneusi in cattle. Six dairy farms were investigated using ELISA to detect antibodies against or antigens arising from BVDV in collected sera. A total of 240 individual faecal samples from four age groups were examined for the presence of E. bieneusi by nested PCR. Sequence analysis of six E. bieneusi positive samples revealed the presence of the genotype I of E. bieneusi, previously described in cattle. The hypothesis expecting higher prevalence of E. bieneusi in BVDV positive cattle herds was not confirmed in this study; however this is the first description about E. bieneusi in cattle in the Czech Republic. Copyright © 2012 Elsevier Ltd. All rights reserved.
Torres, J F; Lyerly, D M; Hill, J E; Monath, T P
1995-01-01
Clostridium difficile produces toxins that cause inflammation, necrosis, and fluid in the intestine and is the most important cause of nosocomial antibiotic-associated diarrhea and colitis. We evaluated C. difficile antigens as vaccines to protect against systemic and intestinal disease in a hamster model of clindamycin colitis. Formalin-inactivated culture filtrates from a highly toxigenic strain were administered by mucosal routes (intranasal, intragastric, and rectal) with cholera toxin as a mucosal adjuvant. A preparation of culture filtrate and killed whole cells was also tested rectally. The toxoid was also tested parenterally (subcutaneously and intraperitoneally) and by a combination of three intranasal immunizations followed by a combined intranasal-intraperitoneal boost. Serum antibodies against toxins A and B and whole-cell antigen were measured by enzyme-linked immunosorbent assay, neutralization of cytotoxic activity, and bacterial agglutination. The two rectal immunization regimens induced low antibody responses and protected only 20% of hamsters against death and 0% against diarrhea. The intragastric regimen induced high antibody responses but low protection, 40% against death and 0% against diarrhea. Hamsters immunized by the intranasal, intraperitoneal, and subcutaneous routes were 100% protected against death and partially protected (40, 40, and 20%, respectively) against diarrhea. Among the latter groups, intraperitoneally immunized animals had the highest serum anticytotoxic activity and the highest agglutinating antibody responses. Hamsters immunized intranasally and revaccinated intraperitoneally were 100% protected against both death and diarrhea. Protection against death and diarrhea correlated with antibody responses to all antigens tested. The results indicate that optimal protection against C. difficile disease can be achieved with combined parenteral and mucosal immunization. PMID:7591115
Demonstration of systemic infection of BVDV Vaccine virus after vaccination in presence of PI calves
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) was detected during routine necropsy of calves, from a well vaccinated, large Jersey/Holstein dairy herd (n=10,000) in California, that succumbed to ill thrift. According to herd management, BVDV has not been considered a problem in the past. The herd had been exte...
Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola
2016-03-01
HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Human respiratory syncytial virus (HRSV) is a leading cause of severe acute lower respiratory tract infection in infants and children worldwide. Bovine RSV (BRSV) is closely related to HRSV and a significant cause of morbidity in young cattle. BRSV infection in calves displays many similarities to R...
Enteric disease in postweaned beef calves associated with a Bovine coronavirus clade 2
USDA-ARS?s Scientific Manuscript database
Bovine coronavirus (BoCV) infections are associated with varied clinical presentations including neonatal diarrhea, winter dysentery in dairy cattle, and respiratory disease in various ages of cattle. This report presents information on BoCV infections associated with enteric disease of postweaned b...
Foot & Mouth Disease & Ulcerative/Vesicular Rule-outs: Challenges Encountered in Recent Outbreaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hullinger, P
2008-01-28
Foot and mouth disease (FMD) is a highly infectious and contagious viral disease affecting bovidae (cattle, zebus, domestic buffaloes, yaks), sheep, goats, swine, all wild ruminants and suidae. Camelidae (camels, dromedaries, llamas, vicunas) have low susceptibility. Foot and mouth disease is caused by a RNS virus of the family Picornaviridae, genus Aphthovirus. There are seven immunologically distinct serotypes: A, O, C, SAT1, SAT2, SAT3, Asia 1. Foot and mouth disease causes significant economic loss both to countries who manage it as an endemic disease (with or without vaccination), as well as those FMD free countries which may become infected. Themore » mortality rate is low in adult animals, but often higher in young due to myocarditis. Foot and mouth disease is endemic in parts of Asia, Africa, the Middle East and South America (sporadic outbreaks in free areas). The Office of International Epizootics (OIE), also referred to the World Organization for Animal Health maintains an official list of free countries and zones.1 The OIE Terrestrial Code (Chapter 2.2.10) provides detailed information on the categories of freedom that can be allocated to a country as well as guidelines for the surveillance for foot and mouth disease (Appendix 3.8.7). In short, countries may be completely free of FMD, free with vaccination or infected with foot and mouth disease virus (FMDV). Source of FMDV include incubating and clinically affected animals with virus present in breath, saliva, faeces, urine, milk and semen. In experimental settings virus has been detected in milk several days before the onset of clinical signs2. Additional sources of virus are meat and by-products in which pH has remained above 6.0 as well as persistently infected carrier animals. Carrier animals may include cattle and water buffalo; convalescent animals and exposed vaccinates (virus persists in the oropharynx for up to 30 months in cattle or longer in buffalo, 9 months in sheep). Pigs do not become carriers. It has been shown that the African Cape buffalo are the major maintenance host of SAT serotypes. FMDV transmission can occur by either direct or indirect contact. Indirect transmission can occur via contaminated animate vectors (humans, etc.), inanimate vectors (vehicles, implements) or airborne transmission. Indirect disease transmission via animate or inanimate vectors can play a major role in disease transmission. Good biosecurity can significantly reduce this type of transmission. Airborne transmission is often debated and is known to be serotype and species specific as well as require specific environmental conditions to occur. Airborne transmission is favored in temperate zones and has been postulated to occur over distances of up to 60 km overland and 300 km by sea. Foot and mouth disease virus is an unenveloped virus which is preserved by refrigeration and freezing and progressively inactivated by temperatures above 50 C. FMDV is highly sensitive to pH change and is inactivated by pH < 6.0 or > 9.0. There are many disinfectants which are effective against FMDV including sodium hydroxide (2%), sodium carbonate (4%), and citric acid (0.2%). FMDV is resistant to iodophores, quaternary ammonium compounds, hypochlorite and phenol, especially in the presence of organic matter. The virus can survive in lymph nodes and bone marrow at neutral pH, but is destroyed in muscle when is pH < 6.0 i.e. after rigor mortis. FMDV can persist in contaminated feed/commodities and the environment for over to 1 month, depending on the temperature and pH conditions. The incubation period for FMD is 2-14 days. Animals transition through latent (infected but not infectious), subclinically infected (infectious but lacking clinical signs) clinically infected and recovered disease states. In cattle clinical signs include pyrexia, reluctance to eat, bruxism, drooling, lameness, treading or stamping of the feet and decreased milk production. Most clinical signs are related to the development and subsequent rupturing of vesicles at the coronary band and in the oral cavity. Vesicles and ulcerations can also occur on the mammary gland. Recovery in adult animals usually occurs in 8-15 days. Clinical signs for most serotypes are less dramatic in sheep and goats. Swine can develop very severe coronary band lesions and high mortality in piglets has been observed. One of the challenges of diagnosing FMD is that it may be clinically similar to several other vesicular or ulcerative diseases. FMD is clinically indistinguishable from Vesicular stomatitis, Swine vesicular disease and Vesicular exanthema of swine. It may also resemble Bovine viral diarrhea, Mucosal disease, Infectious bovine rhinotracheitis, Bluetongue, Bovine papular stomatitis, Bovine mammillitis and Rinderpest.« less
Kramer, L M; Mayes, M S; Fritz-Waters, E; Williams, J L; Downey, E D; Tait, R G; Woolums, A; Chase, C; Reecy, J M
2017-11-01
Although vaccination is an effective measure in reducing the risk of bovine respiratory disease complex (BRDC) in cattle, BRDC losses remain significant. Increasing the efficacy of vaccination depends on elucidating the protective immune response to different antigens included in vaccines, determining the best timing for vaccination, and understanding the impact of the age of the calf on vaccination. This study measured the serum antibodies present in calves following vaccination against 4 viruses commonly associated with BRDC: bovine viral diarrhea virus type 1 and 2 (BVDV1 and BVDV2), bovine respiratory syncytial virus (BRSV), and bovine herpesvirus 1 (BHV1). Serum antibody titers were measured in more than 1,600 calves at 3-wk intervals starting at the time of the first vaccination. This first vaccination occurred at weaning for approximately half of the individuals and 3 wk before weaning for the other half. Dam age (years), time of weaning (initial vaccination or booster vaccination), and age of calf within year-season (days within year-season) classification all were found to have a significant effect on measured traits such as the initial titer and overall response. An increased initial titer was negatively correlated with each response trait (initial, booster, and overall response). Calves that were weaned at initial vaccination had greater overall antibody response to BVDV1 and BVDV2 compared with calves weaned 3 wk before initial vaccination. In contrast, calves given their initial vaccination 3 wk before weaning had greater overall antibody response to BRSV and BHV1 compared with calves that were vaccinated at weaning. Furthermore, the circulating antibody titer at which each virus needed to be below for an individual calf to positively respond to vaccination was determined (log titer of 0.38 for BVDV1, 1.5 for BVDV2, 3.88 for BRSV, and 1.5 for BHV1). This information can be used to improve vaccination protocols to allow for a greater response rate of individuals to vaccination and, hopefully, improved protection.
USDA-ARS?s Scientific Manuscript database
Human respiratory syncytial virus (HRSV) is a leading cause of severe acute lower respiratory tract infection in infants and children worldwide. Bovine RSV (BRSV) is closely related to HRSV and a significant cause of morbidity in young cattle. BRSV infection in calves displays many similarities to R...
Frolov, I; McBride, M S; Rice, C M
1998-01-01
Pestiviruses, such as bovine viral diarrhea virus (BVDV), share many similarities with hepatitis C virus (HCV) yet are more amenable to virologic and genetic analysis. For both BVDV and HCV, translation is initiated via an internal ribosome entry site (IRES). Besides IRES function, the viral 5' nontranslated regions (NTRs) may also contain cis-acting RNA elements important for viral replication. A series of chimeric RNAs were used to examine the function of the BVDV 5' NTR. Our results show that: (1) the HCV and the encephalomyocarditis virus (EMCV) IRES element can functionally replace that of BVDV; (2) two 5' terminal hairpins in BVDV genomic RNA are important for efficient replication; (3) replacement of the entire BVDV 5' NTR with those of HCV or EMCV leads to severely impaired replication; (4) such replacement chimeras are unstable and efficiently replicating pseudorevertants arise; (5) pseudorevertant mutations involve deletion of 5' sequences and/or acquisition of novel 5' sequences such that the 5' terminal 3-4 bases of BVDV genome RNA are restored. Besides providing new insight into functional elements in the BVDV 5' NTR, these chimeras may prove useful as pestivirus vaccines and for screening and evaluation of anti-HCV IRES antivirals. PMID:9814762
Baillargeon, Paul; Arango-Sabogal, Juan C; Wellemans, Vincent; Fecteau, Gilles
2017-04-01
The objective of this study was to determine if precolostral blood samples are useful to detect apparent fetal infections with bovine viral diarrhea (BVD) and infectious bovine rhinotracheitis (IBR) viruses. A convenience sample of 317 sera from 50 Canadian herds was used in the study. Antibody level was measured using 2 commercial IBR and BVD ELISA kits. Precolostral status of sera was confirmed on 304 samples using serum gamma-glutamyl transferase activity. Postcolostral serum samples yielded a higher proportion of positive results to IBR (OR = 86; 95% CI: 17.8 to 415.7) and BVD (OR = 199.3; 95% CI: 41.7 to 952.3) than did precolostral samples. All positive precolostral serum samples ( n = 7 of 304) originated from calves born to vaccinated cows. Postcolostral positive serum samples ( n = 11 of 13) originated mostly (60%) from calves born to non-vaccinated cows. Precolostral serum sampling can detect apparent fetal infections in a herd.
Molecular Characterization of a Novel Bovine Viral Diarrhea Virus Isolate SD-15
Zhu, Lisai; Lu, Haibing; Cao, Yufeng; Gai, Xiaochun; Guo, Changming; Liu, Yajing; Liu, Jiaxu; Wang, Xinping
2016-01-01
As one of the major pathogens, bovine viral diarrhea virus caused a significant economic loss to the livestock industry worldwide. Although BVDV infections have increasingly been reported in China in recent years, the molecular aspects of those BVDV strains were barely characterized. In this study, we reported the identification and characterization of a novel BVDV isolate designated as SD-15 from cattle, which is associated with an outbreak characterized by severe hemorrhagic and mucous diarrhea with high morbidity and mortality in Shandong, China. SD-15 was revealed to be a noncytopathic BVDV, and has a complete genomic sequence of 12,285 nucleotides that contains a large open reading frame encoding 3900 amino acids. Alignment analysis showed that SD-15 has 93.8% nucleotide sequence identity with BVDV ZM-95 isolate, a previous BVDV strain isolated from pigs manifesting clinical signs and lesions resembling to classical swine fever. Phylogenetic analysis clustered SD-15 to a BVDV-1m subgenotype. Analysis of the deduced amino acid sequence of glycoproteins revealed that E2 has several highly conserved and variable regions within BVDV-1 genotypes. An additional N-glycosylation site (240NTT) was revealed exclusively in SD-15-encoded E2 in addition to four potential glycosylation sites (Asn-X-Ser/Thr) shared by all BVDV-1 genotypes. Furthermore, unique amino acid and linear epitope mutations were revealed in SD-15-encoded Erns glycoprotein compared with known BVDV-1 genotype. In conclusion, we have isolated a noncytopathic BVDV-1m strain that is associated with a disease characterized by high morbidity and mortality, revealed the complete genome sequence of the first BVDV-1m virus originated from cattle, and found a unique glycosylation site in E2 and a linear epitope mutation in Erns encoded by SD-15 strain. Those results will broaden the current understanding of BVDV infection and lay a basis for future investigation on SD-15-related pathogenesis. PMID:27764206
Booker, Calvin W; Abutarbush, Sameeh M; Morley, Paul S; Jim, G Kee; Pittman, Tom J; Schunicht, Oliver C; Perrett, Tye; Wildman, Brian K; Fenton, R Kent; Guichon, P Timothy; Janzen, Eugene D
2008-05-01
The aim of this study was to describe the microbiologic agents and pathologic processes in fatal bovine respiratory disease (BRD) of feedlot cattle and to investigate associations between agents and pathologic processes. Ninety feedlot calves diagnosed at necropsy with BRD and 9 control calves without BRD were examined, using immunohistochemical (IHC) staining and histopathologic studies. Mannheimia haemolytica (MH) (peracute, acute, and subacute cases) and Mycoplasma bovis (MB) (subacute, bronchiolar, and chronic cases) were the most common agents identified in fatal BRD cases. Significant associations (P < 0.10) were detected between microbiologic agents and between agents and pathologic processes. When IHC staining was used, 25/26 (96%) of animals that were positive for bovine viral diarrhea virus (BVDV) were also positive for MH; 12/15 (80 %) of animals that were positive for Histophilus somni (HS) were also positive for MB; and all of the animals that were positive for HS were negative for MH and BVDV. This quantitative pathological study demonstrates that several etiologic agents and pathologic processes are involved in fatal BRD of feedlot cattle.
Booker, Calvin W.; Abutarbush, Sameeh M.; Morley, Paul S.; Jim, G. Kee; Pittman, Tom J.; Schunicht, Oliver C.; Perrett, Tye; Wildman, Brian K.; Fenton, R. Kent; Guichon, P. Timothy; Janzen, Eugene D.
2008-01-01
The aim of this study was to describe the microbiologic agents and pathologic processes in fatal bovine respiratory disease (BRD) of feedlot cattle and to investigate associations between agents and pathologic processes. Ninety feedlot calves diagnosed at necropsy with BRD and 9 control calves without BRD were examined, using immunohistochemical (IHC) staining and histopathologic studies. Mannheimia haemolytica (MH) (peracute, acute, and subacute cases) and Mycoplasma bovis (MB) (subacute, bronchiolar, and chronic cases) were the most common agents identified in fatal BRD cases. Significant associations (P < 0.10) were detected between microbiologic agents and between agents and pathologic processes. When IHC staining was used, 25/26 (96%) of animals that were positive for bovine viral diarrhea virus (BVDV) were also positive for MH; 12/15 (80 %) of animals that were positive for Histophilus somni (HS) were also positive for MB; and all of the animals that were positive for HS were negative for MH and BVDV. This quantitative pathological study demonstrates that several etiologic agents and pathologic processes are involved in fatal BRD of feedlot cattle. PMID:18512458
Wolff, Peregrine L.; Schroeder, Cody; McAdoo, Caleb; Cox, Mike; Nelson, Danielle D.; Evermann, James F.; Ridpath, Julia F.
2016-01-01
Evidence for bovine viral diarrhea virus (BVDV) infection was detected in 2009–2010 while investigating a pneumonia die-off in Rocky Mountain bighorn sheep (Ovis canadensis, canadensis), and sympatric mountain goats (Oreamnos americanum) in adjacent mountain ranges in Elko County, Nevada. Seroprevalence to BVDV-1 was 81% (N = 32) in the bighorns and 100% (N = 3) in the mountain goats. Serosurveillance from 2011 to 2015 of surviving bighorns and mountain goats as well as sympatric mule deer (Odocoileus hemionus), indicated a prevalence of 72% (N = 45), 45% (N = 51), and 51% (N = 342) respectively. All species had antibody titers to BVDV1 and BVDV2. BVDV1 was isolated in cell culture from three bighorn sheep and a mountain goat kid. BVDV2 was isolated from two mule deer. Six deer (N = 96) sampled in 2013 were positive for BVDV by antigen-capture ELISA on a single ear notch. Wild ungulates and cattle concurrently graze public and private lands in these two mountain ranges, thus providing potential for interspecies viral transmission. Like cattle, mule deer, mountain goats, and bighorn sheep can be infected with BVDV and can develop clinical disease including immunosuppression. Winter migration patterns that increase densities and species interaction during the first and second trimester of gestation may contribute to the long term maintenance of the virus in these wild ungulates. More studies are needed to determine the population level impacts of BVDV infection on these three species. PMID:27014215
Falkenberg, Shollie M; Bauermann, Fernando V; Ridpath, Julia F
2017-11-01
Naïve pregnant cattle exposed to pestiviruses between 40-125 days of gestation can give birth to persistently infected (PI) calves. Clinical presentation and survivability, in PI cattle, is highly variable even with the same pestivirus strain whereas the clinical presentation in acute infections is more uniform with severity of symptoms being primarily a function of virulence of the infecting virus. The aim of this study was to compare thymic depletion, as measured by comparing the area of the thymic cortex to the medulla (corticomedullary ratio), in acute and persistent infections of the same pestivirus isolate. The same general trends were observed with each pestivirus isolate. Thymic depletion was observed in both acutely and persistently infected calves. The average thymic depletion observed in acutely infected calves was greater than that in age matched PI calves. PI calves, regardless of infecting virus, revealed a greater variability in amount of depletion compared to acutely infected calves. A trend was observed between survivability and depletion of the thymus, with PI calves surviving less than 5 weeks having lower corticomedullary ratios and greater depletion. This is the first study to compare PI and acutely infected calves with the same isolates as well as to evaluate PI calves based on survivability. Further, this study identified a quantifiable phenotype associated with potential survivability.
Otto, Peter H.; Clarke, Ian N.; Lambden, Paul R.; Salim, Omar; Reetz, Jochen; Liebler-Tenorio, Elisabeth M.
2011-01-01
The experimental infection of newborn calves with bovine norovirus was used as a homologous large animal model to study the pathogenesis of norovirus infection and to determine target cells for viral replication. Six newborn calves were inoculated orally with Jena virus (JV), a bovine norovirus GIII.1 strain, and six calves served as mock-inoculated controls. Following infection, calves were euthanized before the onset of diarrhea (12 h postinoculation [hpi]), shortly after the onset of diarrhea (18 to 21 hpi), and postconvalescence (4 days pi [dpi]). Calves inoculated with JV developed severe watery diarrhea at 14 to 16 hpi, and this symptom lasted for 53.5 to 67.0 h. Intestinal lesions were characterized by severe villus atrophy together with loss and attenuation of villus epithelium. Viral capsid antigen (JV antigen) was detected by immunohistochemistry in the cytoplasm of epithelial cells on villi. In addition, granular material positive for JV antigen was detected in the lamina propria of villi. Lesions first appeared at 12 hpi and were most extensive at 18 to 19 hpi, extending from midjejunum to ileum. The intestinal mucosa had completely recovered at 4 dpi. There was no indication of systemic infection as described for norovirus infection in mice. JV was found in intestinal contents by reverse transcription-PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) as early as 12 hpi. Fecal shedding of the virus started at 13 hpi and stopped at 23 hpi or at necropsy (4 dpi), respectively. Throughout the trial, none of the control calves tested positive for JV by ELISA or RT-PCR. PMID:21880760
Peters, Iain R; Helps, Chris R; Calvert, Emma L; Hall, Edward J; Day, Michael J
2005-01-01
To examine the difference in expression of messenger RNA (mRNA) transcripts for polymeric immunoglobulin receptor (plgR), alpha-chain, and J-chain determined by use of quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) assays in duodenal biopsy specimens obtained from dogs with and without chronic diarrhea. Biopsy specimens of the proximal portion of the duodenum were obtained endoscopically from 39 dogs evaluated because of chronic diarrhea (12 German Shepherd Dogs and 27 non-German Shepherd Dog breeds); specimens were also obtained from a control group of 7 dogs evaluated because of other gastrointestinal tract diseases and 2 dogs that were euthanatized as a result of nongastrointestinal tract disease. Dogs were anesthetized, and multiple mucosal biopsy specimens were obtained endoscopically at the level of the caudal duodenal flexure by use of biopsy forceps; in 2 control dogs, samples were obtained from the descending duodenum within 5 minutes of euthanasia. One-step QRT-PCR was used to quantify the level of expression of transcripts for the housekeeper gene glyceraldehyde-3-phosphate dehydrogenase, plgR, alpha-chain, and J-chain in duodenal mucosal tissue. There was no significant difference in the level of expression of any transcript among non-German Shepherd Dog breeds without diarrhea (control group), non-German Shepherd Dog breeds with chronic diarrhea, and German Shepherd Dogs with chronic diarrhea. Conclusions and Clinical Relevance-Results indicated that the susceptibility of German Shepherd Dogs to chronic diarrhea is not a result of simple failure of transcription of the key genes that encode molecules involved in mucosal IgA secretion.
Survival of viral pathogens in animal feed ingredients under transboundary shipping models
Bauermann, Fernando V.; Niederwerder, Megan C.; Singrey, Aaron; Clement, Travis; de Lima, Marcelo; Long, Craig; Patterson, Gilbert; Sheahan, Maureen A.; Stoian, Ana M. M.; Petrovan, Vlad; Jones, Cassandra K.; De Jong, Jon; Ji, Ju; Spronk, Gordon D.; Minion, Luke; Christopher-Hennings, Jane; Zimmerman, Jeff J.; Rowland, Raymond R. R.; Nelson, Eric; Sundberg, Paul; Diel, Diego G.
2018-01-01
The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (“high-risk combinations”) under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels. PMID:29558524
USDA-ARS?s Scientific Manuscript database
The objective of this research was to compare clinical presentation following acute infection of cattle with either a high virulence (HV) BVDV or a low virulence (LV) BVDV to clinical presentation following infection with a viral strain that belongs to an emerging species of pestivirus. The viral st...
Breshears, M A; Johnson, B J
2008-09-01
Unusual proliferative intravascular lesions were seen in multiple organs of a 2-year-old Corriente steer presumed to be persistently infected with bovine viral diarrhea virus (BVDV), based on widespread immunohistochemical detection of BVDV antigen. Proliferations of spindle cells, which were immunohistochemically positive for von Willebrand factor-related antigen, partially-to-completely occluded vessel lumens and were supported by cells that were immunohistochemically positive for smooth muscle actin. Distribution and character of the intraluminal proliferations are strikingly similar to those described in feline systemic reactive angioendotheliomatosis, a rare entity of unknown cause. The presence of occasional intravascular thrombi suggests that the proliferative vasculopathy was associated with an underlying thrombotic process with immunohistochemical similarities to thrombotic thrombocytopenic purpura of humans. Death of the steer was due to hemorrhage from a castration wound, which may indicate thrombocytopenia or platelet dysfunction. The role of persistent BVDV infection in the formation of the intravascular lesions is unknown.
Herd-level risk factors for bovine viral diarrhea infection in cattle of Tamil Nadu.
Kumar, Subbiah Krishna; Palanivel, K M; Sukumar, K; Ronald, B Samuel Masilamoni; Selvaraju, G; Ponnudurai, G
2018-04-01
A cross-sectional study was carried out to identify risk factors for bovine viral diarrhea virus (BVDV) infection in 62 randomly selected dairy herds which were tested for BVD serum antibodies by using an indirect ELISA kit (IDEXX). Results from the chi-square test analysis were interpreted by analyzing by chi-square test. A sum of 500 sera samples were screened and 66 animals (13.20%) showed positive for BVDV antibody. Within herd, BVD seroprevalence was 12-65%. This study concluded that epidemiological risk factors like location, herd size, housing patterns like, tail to tail system, roofing pattern, distance between the manure pit and farm, and distance between farms were significantly associated with BVDV serological status (P < 0.05).
Ohkura, Takashi; Minakuchi, Moeko; Sagai, Mami; Kokuho, Takehiro; Konishi, Misako; Kameyama, Ken-Ichiro; Takeuchi, Kaoru
2015-02-01
Bovine parainfluenza virus type 3 (BPIV3) is an important pathogen associated with bovine respiratory disease complex (BRDC). We have generated a recombinant BPIV3 expressing enhanced green fluorescent protein (rBPIV3-EGFP) based on the BN-1 strain isolated in Japan. After intranasal infection of hamsters with rBPIV3-EGFP, EGFP fluorescence was detected in the upper respiratory tract including the nasal turbinates, pharynx, larynx, and trachea. In the nasal turbinates, rBPIV3-EGFP attained high titers (>10(6) TCID50/g of tissue) 2-4 days after infection. Ciliated epithelial cells in the nasal turbinates and trachea were infected with rBPIV3-EGFP. Histopathological analysis indicated that mucosal epithelial cells in bronchi were shed by 6 days after infection, leaving non-ciliated cells, which may have increased susceptibility to bacterial infection leading to the development of BRDC. These data indicate that rBPIV3-EGFP infection of hamsters is a useful small animal model for studying the development of BPIV3-associated BRDC. Copyright © 2014 Elsevier Inc. All rights reserved.
Control of pestivirus infections in the management of wildlife populations
USDA-ARS?s Scientific Manuscript database
The lack of host-specificity allow pestiviruses to infect domestic livestock as well as captive and free-ranging wildlife, posing unique challenges to different stakeholders. While current control measures for bovine viral diarrhea virus (BVDV) are focused only on cattle, increased attention on the ...
Collagenous mucosal inflammatory diseases of the gastrointestinal tract.
Freeman, Hugh J
2005-07-01
Collagenous mucosal inflammatory diseases involve the columnar-lined gastric and intestinal mucosa and have become recognized increasingly as a significant cause of symptomatic morbidity, particularly in middle-aged and elderly women, especially with watery diarrhea. Still, mechanisms involved in the pathogenesis of this diarrhea remain poorly understood and require further elucidation. The prognosis and long-term outcome of these disorders has been documented only to a limited extent. Recent clinical and pathologic studies have indicated that collagenous mucosal inflammatory disease is a more extensive pathologic process that concomitantly may involve several sites in the gastric and intestinal mucosa. The dominant pathologic lesion is a distinct subepithelial hyaline-like deposit that has histochemical and ultrastructural features of collagen overlying a microscopically defined inflammatory process. An intimate relationship with other autoimmune connective tissue disorders is evident, particularly celiac disease. This is intriguing because these collagenous disorders have not been shown to be gluten dependent. Collagenous mucosal inflammatory disorders may represent a relatively unique but generalized inflammatory response to a multitude of causes, including celiac disease, along with a diverse group of pharmacologic agents. Some recent reports have documented treatment success but histopathologic reversal has been more difficult to substantiate owing to the focal, sometimes extensive nature, of this pathologic process.
Maternal and fetal response to fetal persistent infection with bovine viral diarrhea virus.
Hansen, Thomas R; Smirnova, Natalia P; Van Campen, Hana; Shoemaker, Megan L; Ptitsyn, Andrey A; Bielefeldt-Ohmann, Helle
2010-10-01
Infection of naïve pregnant cows with non-cytopathic (ncp) bovine viral diarrhea virus (BVDV) results in transplacental infection of the fetus. Infection of the pregnant cow with ncp BVDV late in gestation (after day 150) results in transient infection (TI), as both the dam and fetus can mount an immune response to the virus. In contrast, if the fetus is infected with ncp BVDV early in gestation (before day 150), the fetal immune system is undeveloped and unable to recognize the virus as foreign. This results in induction of immune tolerance to the infecting BVDV strain and persistent infection (PI). Infection of naïve pregnant heifers with ncp BVDV2 on day 75 was hypothesized to induce differential gene expression in white blood cells of the dams and their fetuses, adversely affecting development and antiviral immune responses in PI fetuses. Gene expression differed in maternal blood cells in the presence of PI versus uninfected fetuses. PI adversely affected fetal development and antiviral responses, despite protective immune responses in the dam. Fetal PI with BVDV alters maternal immune function, compromises fetal growth and immune responses, and results in expression of maternal blood biomarkers that can be used to identify cows carrying PI fetuses.
Bovine Viral Diarrhea Virus (BVDV) in White-Tailed Deer (Odocoileus virginianus)
Passler, Thomas; Ditchkoff, Stephen S.; Walz, Paul H.
2016-01-01
Bovine viral diarrhea virus (BVDV) is the prototypic member of the genus Pestivirus in the family Flaviviridae. Infections with BVDV cause substantial economic losses to the cattle industries, prompting various organized control programs in several countries. In North America, these control programs are focused on the identification and removal of persistently infected (PI) cattle, enhancement of BVDV-specific immunity through vaccination, and the implementation of biosecure farming practices. To be successful, control measures must be based on complete knowledge of the epidemiology of BVDV, including the recognition of other potential sources of the virus. BVDV does not possess strict host-specificity, and infections of over 50 species in the mammalian order Artiodactyla have been reported. Over 50 years ago, serologic surveys first suggested the susceptibility of white-tailed deer (Odocoileus virginianus), the most abundant free-ranging ruminant in North America, to BVDV. However, susceptibility of white-tailed deer to BVDV infection does not alone imply a role in the epidemiology of the virus. To be a potential wildlife reservoir, white-tailed deer must: (1) be susceptible to BVDV, (2) shed BVDV, (3) maintain BVDV in the population, and (4) have sufficient contact with cattle that allow spillback infections. Based on the current literature, this review discusses the potential of white-tailed deer to be a reservoir for BVDV. PMID:27379074
Ilha, Marcia R S; Coarsey, Michele; Whittington, Lisa; Rajeev, Sreekumari; Ramamoorthy, Sheela
2012-11-01
The prevalence of Bovine viral diarrhea virus (BVDV) in free-ranging white-tailed deer (WTD, Odocoileus virginianus) in the state of Georgia was evaluated using ear notches collected from hunter-harvested deer during the hunting season of 2010-2011. From September to December 2010, 367 ear samples from WTD were collected from 37 counties in Georgia. The samples were from 178 (48.5%) female deer, 187 (51%) male deer, and 2 (0.5%) of unknown sex. The age of the animals varied from 6 months to 6.5 years. The age was not recorded in 34 animals (9.3%). Of the animals with known ages, 42% were under 2 years. Screening of 367 samples for BVDV using an antigen-capture enzyme-linked immunosorbent assay (AgELISA) resulted in 364 negative samples and 3 suspect samples. The 3 suspect samples were negative for BVDV reverse transcription polymerase chain reaction (RT-PCR), virus isolation, and immunohistochemistry. A subpopulation of samples (n = 89) selected from various geographical regions also tested negative for BVDV RT-PCR. In conclusion, although a few of the samples were suspect for the presence of BVDV by AgELISA, the presence of the virus within the deer population studied could not be confirmed further.
Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus.
Yeşilbağ, Kadir; Alpay, Gizem; Becher, Paul
2017-05-26
Bovine viral diarrhea virus (BVDV) is a globally-distributed agent responsible for numerous clinical syndromes that lead to major economic losses. Two species, BVDV-1 and BVDV-2, discriminated on the basis of genetic and antigenic differences, are classified in the genus Pestivirus within the Flaviviridae family and distributed on all of the continents. BVDV-1 can be segregated into at least twenty-one subgenotypes (1a-1u), while four subgenotypes have been described for BVDV-2 (2a-2d). With respect to published sequences, the number of virus isolates described for BVDV-1 (88.2%) is considerably higher than for BVDV-2 (11.8%). The most frequently-reported BVDV-1 subgenotype are 1b, followed by 1a and 1c. The highest number of various BVDV subgenotypes has been documented in European countries, indicating greater genetic diversity of the virus on this continent. Current segregation of BVDV field isolates and the designation of subgenotypes are not harmonized. While the species BVDV-1 and BVDV-2 can be clearly differentiated independently from the portion of the genome being compared, analysis of different genomic regions can result in inconsistent assignment of some BVDV isolates to defined subgenotypes. To avoid non-conformities the authors recommend the development of a harmonized system for subdivision of BVDV isolates into defined subgenotypes.
Viruses Causing Gastroenteritis: The Known, The New and Those Beyond.
Oude Munnink, Bas B; van der Hoek, Lia
2016-02-08
The list of recently discovered gastrointestinal viruses is expanding rapidly. Whether these agents are actually involved in a disease such as diarrhea is the essential question, yet difficult to answer. In this review a summary of all viruses found in diarrhea is presented, together with the current knowledge about their connection to disease.
Bovine virus diarrhea virus in free-living deer from Denmark.
Nielsen, S S; Roensholt, L; Bitsch, V
2000-07-01
Free-living deer are suggested as a possible source of infection of cattle with bovine virus diarrhea (BVD) virus. To examine this hypothesis blood samples from 476 free-living deer were collected during two different periods and tested for BVD virus and antibody in Denmark. In 1995-96, 207 animals were tested. These included 149 roe deer (Capreolus capreolus), 29 fallow deer (Dama dama), 20 red deer (Cervus elaphus) and one sika deer (Cervus sika). For the remaining eight animals no species information was available. In 1998-99, 269 animals were tested including 212 roe deer and 57 red deer. The animals were selected from areas with a relatively high prevalence of cattle herds with a BVD persistent infection status in 1997 and 1998. All 207 samples from 1995-96 were found antibody-negative except two samples from red deer. Only 158 of the 207 samples were tested for virus and were all found negative. Of the 269 samples from 1998-99 all but one were antibody negative. The positive sample was from a red deer. All samples were virus-negative. It appears that BVD infection does not occur in roe deer in Denmark. The presence of antibody in a few red deer from various districts in Jutland probably results from cattle to deer transmission, rather than spread among deer. Hence, the possibility of free-living deer as a source of infection for cattle in Denmark seems to be remote.
Hypomyelination Associated with Bovine Viral Diarrhea Virus Type 2 Infection in a Longhorn Calf
USDA-ARS?s Scientific Manuscript database
A newborn Longhorn heifer calf presented to the Veterinary Medical Teaching Hospital at Texas A&M University with generalized tremors, muscle fasciculations, ataxia, and nystagmus. At necropsy, gross central nervous system lesions were not observed. Histopathologic evaluation of the brain and spin...
Preventive strategy for BVDV infection in North America
USDA-ARS?s Scientific Manuscript database
Despite control efforts, bovine viral diarrhea virus (BVDV) infections remain a source of significant economic loss for producers in the United States. The success of control efforts in Scandinavia has demonstrated that BVDV eradication is possible. However, it is not possible to take a “one size fi...
Mao, Li; Li, Wenliang; Yang, Leilei; Wang, Jianhui; Cheng, Suping; Wei, Yong; Wang, Qiusheng; Zhang, Wenwen; Hao, Fei; Ding, Yonglong; Sun, Yinhua; Jiang, Jieyuan
2016-09-05
Bovine viral diarrhea virus (BVDV) is a pathogen of domestic and wildlife animals worldwide and is associated with several diseases. In China, there are many reports about genotyping of BVDV strains originated from cattle and pigs, and some of them focused on the geographical distributions of BVDV. Currently, the goat industry in Jiangsu province of China is under going a rapid expansion. Most of these goat farms are backyard enterprises and in close proximity to pig and cattle farms. However, there was very limited information about BVDV infections in goats. The objective of this study was to assess the frequency of BVDV infections of goats, the relationship of these infections to clinical signs and determine what BVDV genotypes are circulating in Jiangsu province. From 236 goat sera collected from six regions in Jiangsu province between 2011 and 2013, BVDV-1 was identified in 29 samples from the five regions by RT-PCR. The BVDV-1 infections occurred with/without clinical signs. Eight different BVDV-1 strains were identified from these positive samples based on the 5'-untranslated region (5'-UTR) sequences, and further clustered into four BVDV-1 subtypes on the phylogenetic analysis. Three were BVDV-1b, two BVDV-1m, two BVDV-1o, and one BVDV-1p, respectively. To our knowledge, this is the first report to investigate the occurrence of BVDV and the genotypes of BVDV infecting goats in China. The results indicated that BVDV-1 infections were indeed present and the viruses were with genetic variations in Chinese goat herds. The information would be very useful for prevention and control of BVDV-1 infections in China.
Hyde, R L
1986-01-01
Efforts are being made at the National Veterinary Services Laboratories to reduce in vivo testing of USDA licensed veterinary vaccines. A hemagglutination test for determining potency of killed parvovirus vaccine is currently being used for canine and swine adjuvanted and nonadjuvanted products; a serum neutralization inhibition test (SNIT) is being developed for potency testing of killed adjuvanted infectious bovine rhinotracheitis (IBR), bovine virus diarrhea (BVD) and parainfluenza (PI3) vaccines: and a tissue culture titration method for live avian encephalomyelitis virus vaccine is being pursued as a replacement for the old hatch-out chick embryo titration method. Difficulties in separating the antigen from oil emulsion products are preventing significant advances in developing in vitro testing procedures for poultry killed-virus vaccines.
USDA-ARS?s Scientific Manuscript database
Bovine rhinitis viruses (BRV) cause mild respiratory disease of cattle. In this study, a near full length genome sequence of a virus named RS3X, formerly classified as bovine rhinovirus type 1, isolated from infected cattle from the United Kingdom in the 1960s, was obtained and analyzed. Phylogeneti...
Parapoxviral vulvovaginitis in Holstein cows.
Moeller, Robert B; Crossley, Beate; Adaska, John M; Hsia, Gary; Kahn, Richard; Blanchard, Patricia C
2018-05-01
A group of Holstein first-calved heifers developed small pustules and ulcers on the vulva and in the vagina during the first 1-4 wk postpartum. The lesions varied from small red pinpoint foci to pustules and ulcers, 3-5 mm diameter. Some ulcers coalesced to form large ulcerated areas up to 15 mm diameter. In some animals, these ulcers progressed to become deep ulceration of the vaginal and vulvar mucosa with >50% of the mucosa involved. Vaginal biopsies from 4 heifers and vaginal individual swabs from 8 heifers for a combined sampling of 9 heifers were taken for clinical assessment. Six of the 9 heifers had parapoxvirus based on histopathology and/or PCR. Histologic examination of the biopsies of the pustules identified ballooning degeneration of the epithelium with degenerate epithelium containing eosinophilic intracytoplasmic inclusions consistent with a parapoxvirus in 3 of 4 biopsies. Testing for bovine herpesvirus 1, 2, and 4, bovine viral diarrhea virus, bovine papular stomatitis virus, and orf virus remained negative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindson, B J; Reid, S M; Baker, B R
2007-07-26
A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouthmore » disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.« less
An overview of calf diarrhea - infectious etiology, diagnosis, and intervention
Cho, Yong-il
2014-01-01
Calf diarrhea is a commonly reported disease in young animals, and still a major cause of productivity and economic loss to cattle producers worldwide. In the report of the 2007 National Animal Health Monitoring System for U.S. dairy, half of the deaths among unweaned calves was attributed to diarrhea. Multiple pathogens are known or postulated to cause or contribute to calf diarrhea development. Other factors including both the environment and management practices influence disease severity or outcomes. The multifactorial nature of calf diarrhea makes this disease hard to control effectively in modern cow-calf operations. The purpose of this review is to provide a better understanding of a) the ecology and pathogenesis of well-known and potential bovine enteric pathogens implicated in calf diarrhea, b) describe diagnostic tests used to detect various enteric pathogens along with their pros and cons, and c) propose improved intervention strategies for treating calf diarrhea. PMID:24378583
Cibulski, Samuel Paulo; Silveira, Fernando; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; dos Santos, Helton Fernandes; Yendo, Anna Carolina; de Costa, Fernanda; Fett-Neto, Arthur Germano; Gosmann, Grace; Roehe, Paulo Michel
2016-04-01
A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aragaw, Kassaye; Sibhat, Berhanu; Ayelet, Gelagay; Skjerve, Eystein; Gebremedhin, Endrias Z; Asmare, Kassahun
2018-05-31
This work was conducted to estimate the seroprevalence, to identify potential factors that influence seroprevalence of bovine viral diarrhea virus (BVDV), and to investigate the association between BVDV serostatus and occurrence of reproductive disorders in dairy cattle in three milksheds in Ethiopia. A total of 1379 serum samples were obtained from cattle randomly selected from 149 herds from three milksheds representing central, southern, and western Ethiopia. Sera samples were examined for bovine viral diarrhea virus (BVDV) antibodies using commercial competitive enzyme-linked immunosorbent assay (ELISA) kit. Logistic regression analysis was employed to investigate associations between risk factors and the risk of BVDV seroprevalence, and BVDV serostatus and reproductive disorders. Seroreaction to BVDV antigens was detected in 32.6% of the 1379 cattle and 69.8% of the 149 herds sampled. Factors associated with BVDV seroplevalence were age, breed, and herd size (P < 0.05). Adult cattle ≥ 18 months old had 2.1 (95% CI 1.5, 3.1) times the odds of BVDV seroreaction than younger cattle. Holstein-Friesian (HF) local crosses (OR = 2.1, 95% CI 1.3, 3.4) and HFs (OR = 1.3, 95% CI 0.9, 1.9) were more likely to be seropositive than Jersey and the odds of seropositivity in cattle in large herds with 11 or more animals were higher (OR = 1.8, 95% CI 1.3, 2.5) than the odds of BVDV seropositivity in smaller herds. Seroprevalence was not associated with geographical region (P > 0.05). Risk of reproductive disorders was not affected by BVDV serostatus, except for repeat breeding (P > 0.05). The present study demonstrated that BVDV has wide distribution in the country being detected in all the 15 conurbations and 69.8% of herds involved in the study.
Evidence of pestivirus RNA in human virus vaccines.
Harasawa, R; Tomiyama, T
1994-01-01
We examined live virus vaccines against measles, mumps, and rubella for the presence of pestivirus RNA or of pestiviruses by reverse transcription PCR. Pestivirus RNA was detected in two measles-mumps-rubella combined vaccines and in two monovalent vaccines against mumps and rubella. Nucleotide sequence analysis of the PCR products indicated that a modified live vaccine strain used for immunization of cattle against bovine viral diarrhea is not responsible for the contamination of the vaccines. Images PMID:8077414
Defining Key Entry Events for Crimean-Congo Hemorrhagic Fever Virus in Mammalian Cells
2012-08-10
illness with severe fever, headache, nausea, diarrhea, muscle aches, photophobia, and other non-specific flu -like symptoms [3, 5, 32]. Soon after the...with 10% fetal bovine serum (FBS)(ThermoScientific/Hyclone, Logan, UT). HEK 293T (ATCC# HB-8065), HepG2 (ATCC# CRL-11268), chicken embryo related...USAMRIID collection), and Ebola Zaire virus expressing eGFP (EBOV- eGFP)(USAMRIID collection) [166]. The CCHFV seed was propagated in chicken embryo
Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis
2015-01-01
Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection. PMID:26579205
Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis
2015-01-01
Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.
Geographic variation in the eukaryotic virome of human diarrhea
Holtz, Lori R.; Cao, Song; Zhao, Guoyan; Bauer, Irma K.; Denno, Donna M.; Klein, Eileen J.; Antonio, Martin; Stine, O. Colin; Snelling, Thomas L.; Kirkwood, Carl D.; Wang, David
2014-01-01
Little is known about the population of eukaryotic viruses in the human gut (“virome”) or the potential role it may play in disease. We used a metagenomic approach to define and compare the eukaryotic viromes in pediatric diarrhea cohorts from two locations (Melbourne and Northern Territory, Australia). We detected viruses known to cause diarrhea, non-pathogenic enteric viruses, viruses not associated with an enteric reservoir, viruses of plants, and novel viruses. Viromes from Northern Territory children contained more viral families per sample than viromes from Melbourne, which could be attributed largely to an increased number of sequences from the families Adenoviridae and Picornaviridae (genus enterovirus). qRT-PCR/PCR confirmed the increased prevalence of adenoviruses and enteroviruses. Testing of additional diarrhea cohorts by qRT-PCR/PCR demonstrated statistically different prevalences in different geographic sites. These findings raise the question of whether the virome plays a role in enteric diseases and conditions that vary with geography. PMID:25262473
Pujols, Joan; Segalés, Joaquim
2014-12-05
Bovine plasma was inoculated with porcine epidemic diarrhea virus (PEDV) at an average final titer of 4.2 log10 TCID50/mL to determine the effect of spray drying on viral inactivation. Using a laboratory scale drier, inoculated plasma was spray dried at 200 °C inlet temperature and either 70 or 80 °C throughout substance. Both liquid and dried samples were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. Results indicated liquid samples contained infective virus, but none of the spray dried samples were infectious. Also, survivability of PEDV inoculated on spray dried bovine plasma (SDBP) and stored at 4, 12 or 22 °C was determined for 7, 14 and 21 days. Commercial SDBP powder was inoculated with PEDV to an average final titer of 2.8 log10 TCID50/g. Five samples per time and temperature conditions were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. The virus was non-infectious for all samples stored at 22 °C at 7, 14 and 21 days. PEDV was infective in 1 out of 5 samples stored at 12 °C at 7 days, but none of the samples stored for 14 and 21 days were infectious in cell culture. For samples stored at 4 °C, 4 out of 5 samples were infectious at 7 days, 1 out of 5 samples were infectious at 14 days, but none were infectious at 21 days. In summary, PEDV was not infectious on cell culture within 7 days when stored at room temperature and within 21 days when stored at refrigerated temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindson, B J; Baker, B R; Bentley Tammero, L F
2007-09-18
A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspectmore » cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.« less
USDA-ARS?s Scientific Manuscript database
Although most commonly associated with the infection of domestic livestock, the replication of pestiviruses, in particular bovine viral diarrhea virus (BVDV), occurs in a wide range of free ranging cervids including white-tailed deer, mule deer, fallow deer, elk, red deer, roe deer, eland and moused...
Whole Genome Analysis of Response to BVDV2 Vaccinations in Angus Calves Using Bayesian Models
USDA-ARS?s Scientific Manuscript database
This study was designed to evaluate the impact of environmental factors and genetic controls on response to vaccination against bovine viral diarrhea virus type 2 (BVDV2) in Purebred American Angus beef cattle. This study utilized 245 Angus calves born in the spring (n = 139) and fall (n = 106) of 2...
USDA-ARS?s Scientific Manuscript database
This study identified genome regions associated with variation in immune response to vaccination against bovine viral diarrhea virus type 2 (BVDV 2) in American Angus calves. Calves were born in the spring or fall of 2006-2008 (n = 620). Two doses of modified live vaccine were administered three wee...
USDA-ARS?s Scientific Manuscript database
Aim. Bovine viral diarrhea viruses (BVDV) are economically important pathogens of cattle. Most new acute infections of BVDV are acquired from an animal persistently infected (PI) with BVDV. Surveillance programs typically rely on blood or skin biopsies for detection of PI cattle. PI animals have ...
USDA-ARS?s Scientific Manuscript database
Background: Bovine parainfluenza 3 viruses (BPI3V) are respiratory pathogens of cattle that cause disease singly but are often associated with bovine respiratory disease complex (BRDC) in conjunction with other viral and bacterial agents. Bovine vaccines currently contain BPI3V to provide protection...
Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs
USDA-ARS?s Scientific Manuscript database
Clinical disease associated with porcine epidemic diarrhea virus (PEDV) infection in naïve pigs is well chronicled; however, information on endemic PEDV infection is limited. To characterize chronic PEDV infection, the duration of infectious virus shedding and development of protective immunity was ...
Duck virus enteritis (duck plague) - a comprehensive update.
Dhama, Kuldeep; Kumar, Naveen; Saminathan, Mani; Tiwari, Ruchi; Karthik, Kumaragurubaran; Kumar, M Asok; Palanivelu, M; Shabbir, Muhammad Zubair; Malik, Yashpal Singh; Singh, Raj Kumar
2017-12-01
Duck virus enteritis (DVE), also called duck plague, is one of the major contagious and fatal diseases of ducks, geese and swan. It is caused by duck enteritis virus (DEV)/Anatid herpesvirus-1 of the genus Mardivirus, family Herpesviridae, and subfamily Alpha-herpesvirinae. Of note, DVE has worldwide distribution, wherein migratory waterfowl plays a crucial role in its transmission within and between continents. Furthermore, horizontal and/ or vertical transmission plays a significant role in disease spread through oral-fecal discharges. Either of sexes from varying age groups of ducks is vulnerable to DVE. The disease is characterized by sudden death, vascular damage and subsequent internal hemorrhage, lesions in lymphoid organs, digestive mucosal eruptions, severe diarrhea and degenerative lesions in parenchymatous organs. Huge economic losses are connected with acute nature of the disease, increased morbidity and mortality (5%-100%), condemnations of carcasses, decreased egg production and hatchability. Although clinical manifestations and histopathology can provide preliminary diagnosis, the confirmatory diagnosis involves virus isolation and detection using serological and molecular tests. For prophylaxis, both live-attenuated and killed vaccines are being used in broiler and breeder ducks above 2 weeks of age. Since DEV is capable of becoming latent as well as shed intermittently, recombinant subunit and DNA vaccines either alone or in combination (polyvalent) are being targeted for its benign prevention. This review describes DEV, epidemiology, transmission, the disease (DVE), pathogenesis, and advances in diagnosis, vaccination and antiviral agents/therapies along with appropriate prevention and control strategies.
Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling.
Zhang, Qingzhan; Yoo, Dongwan
2016-12-02
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are emerged and reemerging viruses in pigs, and together with transmissible gastroenteritis virus (TGEV), pose significant economic concerns to the swine industry. These viruses infect epithelial cells of the small intestine and cause watery diarrhea, dehydration, and a high mortality in neonatal piglets. Type I interferons (IFN-α/β) are major antiviral cytokines forming host innate immunity, and in turn, these enteric coronaviruses have evolved to modulate the host innate immune signaling during infection. Accumulating evidence however suggests that IFN induction and signaling in the intestinal epithelial cells differ from other epithelial cells, largely due to distinct features of the gut epithelial mucosal surface and commensal microflora, and it appears that type III interferon (IFN-λ) plays a key role to maintain the antiviral state in the gut. This review describes the recent understanding on the immune evasion strategies of porcine enteric coronaviruses and the role of different types of IFNs for intestinal antiviral innate immunity. Copyright © 2016 Elsevier B.V. All rights reserved.
Agricultural policy, food policy, and communicable disease policy.
Grant, Wyn
2012-12-01
Food and agricultural policy is an essential element of a communicable disease policy. The European Union has developed a more systematic and broadly based interest in questions of food safety and animal health and welfare linked to modernization of the Common Agricultural Policy, reflected in a new treaty obligation on animal welfare. Following the bovine spongiform encephalopathy crisis, moves were made to create a European competency, but implementation and enforcement resources reside with the member states. The European Animal Health Strategy is meant to lead to an EU animal health law, but this has already been constrained by fiscal austerity. The development of such a law may lead to a lowest common denominator formula that does little to enhance consumer protection or improve animal welfare. This is an inherent risk with top-down forms of Europeanization; more attention should be paid to lessons to be learned from bottom-up initiatives of the type used to counteract the bovine diarrhea virus. There will always be a tension among what is good policy for reducing the incidence of communicable disease, policy that is popular with EU citizens, and policy that is acceptable to member states.
Vincent, Simi; Slease, R Bradley; Rocca, Peter V
2002-12-01
Rheumatoid arthritis (RA) is an autoimmune disease associated with altered immunoregulation and resulting in a deforming polyarthritis. Methotrexate (MTX) is a commonly used second line agent for RA, and there have been several recent reports of Epstein-Barr virus (EBV)-associated polyclonal B cell lymphoproliferative disorder in MTX-treated RA patients. The patient in this report had long standing RA treated with MTX and had recently begun taking a cyclooxygenase-2 (COX-2) inhibitor. She developed a febrile illness associated with severe pancytopenia and leukocytoclastic vasculitic rash followed by diffuse adenopathy, with serologic and pathologic evidence of EBV infection. Previous studies have demonstrated the interaction of MTX and a variety of non-steroidal, anti-inflammatory drugs (NSAIDs) with various clinical manifestations including acute renal failure, pancytopenia, vomiting, diarrhea, elevated liver transaminases, jaundice, mucosal ulcerations, and pyrexia. However, we have not identified previous reports suggesting interaction between MTX and COX-2 inhibitors. We hypothesize that decreased renal elimination of MTX induced by the COX-2 inhibitor resulted in enhanced hematopoietic toxicity and immunosuppression causing the EBV-associated lymphoproliferative disease.
USDA-ARS?s Scientific Manuscript database
There are concerns about antagonisms between immunity and animal productivity in livestock production. The objective of this study was to evaluate the effect of antibody levels through a response to vaccination protocol, weaning timing, and their interaction on performance and carcass quality traits...
Wang, Jinghui; Yang, Yinfeng; Li, Yan; Wang, Yonghua
2016-07-27
Bovine viral diarrhea virus (BVDV) infections are prevailing in cattle populations on a worldwide scale. The BVDV RNA-dependent RNA polymerase (RdRp), as a promising target for new anti-BVDV drug development, has attracted increasing attention. To explore the interaction mechanism of 65 benzimidazole scaffold-based derivatives as BVDV inhibitors, presently, a computational study was performed based on a combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations. The resultant optimum CoMFA and CoMSIA models present proper reliabilities and strong predictive abilities (with Q(2) = 0. 64, R(2)ncv = 0.93, R(2)pred = 0.80 and Q(2) = 0. 65, R(2)ncv = 0.98, R(2)pred = 0.86, respectively). In addition, there was good concordance between these models, molecular docking, and MD results. Moreover, the MM-PBSA energy analysis reveals that the major driving force for ligand binding is the polar solvation contribution term. Hopefully, these models and the obtained findings could offer better understanding of the interaction mechanism of BVDV inhibitors as well as benefit the new discovery of more potent BVDV inhibitors.
Alterations in the Colonic Microbiota in Response to Osmotic Diarrhea
Trajanoski, Slave; Lackner, Stefan; Stocker, Gernot; Hinterleitner, Thomas; Gülly, Christian; Högenauer, Christoph
2013-01-01
Background & Aims Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. Methods We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. Results Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. Conclusions Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used. PMID:23409050
Virus-host interactions in persistently FMDV-infected cells derived from bovine pharynx
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease virus (FMDV) produces a disease in cattle characterized by vesicular lesions and a persistent infection with asymptomatic low-level production of virus. Here we describe the establishment of a persistently infected primary cell culture derived from bovine pharynx tissue (PBPT)...
Ciarlet, Max; Conner, Margaret E.; Finegold, Milton J.; Estes, Mary K.
2002-01-01
Group A rotaviruses are major pathogens causing acute gastroenteritis in children and animals. To determine if group A rotavirus replicates and induces disease in rats, antibody-negative Lewis neonatal or adult rats were inoculated orally with tissue culture-adapted human (Wa, WI61, and HAL1166), simian (rhesus rotavirus [RRV] and SA11), bovine (WC3), lapine (ALA), or porcine (OSU) rotavirus strains, wild-type murine (ECwt) rotavirus strain, or phosphate-buffered saline (PBS). Rotavirus infection in rats was evaluated by (i) clinical findings, (ii) virus antigen shedding or infectious virus titers in the feces or intestinal contents measured by enzyme-linked immunosorbent assay or fluorescent-focus assay, (iii) histopathological changes in the small intestine, (iv) distribution of rotavirus antigen in small-intestine sections by immunofluorescence, and (v) growth rate. Rotavirus infection of 5-day-old but not ≥21-day-old rats resulted in diarrhea that lasted from 1 to 10 days postinoculation. The severity of disease and spread of infection to naÏve littermates differed depending on the virus strain used for inoculation. The duration of virus antigen shedding following infection was considerably prolonged (up to 10 days) in neonatal rats compared to that in 21-day-old rats (1 or 2 days). Based on lack of virus antigen shedding and disease induction, the murine ECwt rotavirus was the only strain tested that did not infect rats. Histopathological changes in the small-intestine mucosa of 5-day-old RRV-inoculated rats but not of PBS-inoculated rats was limited to extensive enterocyte vacuolation in the ileum. In RRV-inoculated neonatal rats, rotavirus antigen was detected in the epithelial cells on the upper half of the intestinal villi of the jejunum and ileum. In addition, infection of neonatal rats with RRV but not with PBS resulted in reduced weight gain. Rats infected with group A rotaviruses provide a new animal model with unique features amenable to investigate rotavirus pathogenesis and the molecular mechanisms of intestinal development, including physiological factors that may regulate age-dependent rotavirus-induced diarrhea. PMID:11739670
Bovine maternal, fetal and neonatal responses to bovine viral diarrhea virus infections.
Kelling, Clayton L; Topliff, Christina L
2013-01-01
Due to the affinity of BVDV for the fetus and for cells of lymphatic organs of infected cattle, reproductive failure or immunosuppression, respectively, are likely consequences of BVDV infections of susceptible cattle. Infection of susceptible pregnant cattle with noncytopathic (ncp) BVDV results in transplacental infection with induction of maternal and fetal innate and adaptive immune responses. Differences in maternal innate and adaptive immune responses are evident in late gestation between cows carrying fetuses persistently-infected (PI) with BVDV and cows with fetuses transiently-infected with BVDV. Fetal innate and adaptive immune responses to ncp BVDV infection are defined by fetal age and developmental stage of the fetal immune system. Since a functional fetal adaptive immune response does not occur in the early fetus, immunotolerance to ncp BVDV is established, virus replicates unrestricted in fetal tissues and calves are born immunotolerant and PI with the virus. In the last trimester of gestation, the fetal immune system is adequately developed to respond in an efficacious manner, most commonly resulting in the birth of a clinically normal calf with pre-colostral antibodies. Immunosuppression due to postnatal acute ncp BVDV infections of susceptible calves may contribute to the occurrence and severity of multi-factorial respiratory tract and enteric diseases. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Photodynamic Effect of some Phthalocyanines on Enveloped and Naked Viruses.
Nikolaeva-Glomb, L; Mukova, L; Nikolova, N; Kussovski, V; Doumanova, L; Mantareva, V; Angelov, I; Wöhrle, D; Galabov, A S
Activity of three photosensitizing phthalocyanine derivatives was tested for photodynamic inactivation towards two coated and two non-enveloped viruses - bovine viral diarrhea virus (BVDV), influenza virus A(H3N2), poliovirus type 1 (PV-1) and human adenovirus type 5 (HAdV5). In the case of coated viruses, a combination of virucidal and irradiation effects was registered by octa-methylpyridyloxy-substituted Ga phthalocyanine (Ga8) toward BVDV, whereas tetra-methylpyridyloxy-substituted Ga phthalocyanine (Ga4) revealed a marked photoinactivation only. No such effect was observed towards influenza A virus. In contrast, the photoinactivating potential of Ga4 and Ga8 marked very high values on naked viruses, especially on HAdV5, at which both the virucidal as well as the irradiation effects became combined.
Walz, Paul H; Newcomer, Benjamin W; Riddell, Kay P; Scruggs, Daniel W; Cortese, Victor S
2017-09-01
We evaluated duration of PCR-positive results following administration of modified-live viral (MLV) vaccines to beef calves. Twenty beef calves were randomly assigned to either group 1 and vaccinated intranasally with a MLV vaccine containing bovine alphaherpesvirus 1 (BoHV-1), bovine respiratory syncytial virus (BRSV), and bovine parainfluenza virus 3 (BPIV-3), or to group 2 and vaccinated subcutaneously with a MLV vaccine containing bovine viral diarrhea virus 1 and 2 (BVDV-1, -2), BoHV-1, BRSV, and BPIV-3. Deep nasopharyngeal swabs (NPS) and transtracheal washes (TTW) were collected from all calves, and whole blood was collected from group 2 calves and tested by PCR. In group 1, the proportions of calves that tested PCR-positive to BVDV, BoHV-1, BRSV, and BPIV-3 on any sample at any time were 0%, 100%, 100%, and 10%, respectively. In group 1 calves, 100% of calves became PCR-positive for BoHV-1 by day 3 post-vaccination and 100% of calves became PCR-positive for BRSV by day 7 post-vaccination. In group 2, the proportions of calves that tested positive to BVDV, BoHV-1, BRSV, and BPIV-3 on any sample at any time were 50%, 40%, 10%, and 0%, respectively. All threshold cycle (Ct) values were >30 in group 2 calves, irrespective of virus; however, Ct values <25 were observed in group 1 calves from PCR-positive results for BoHV-1 and BRSV. All calves were PCR-negative for all viruses after day 28. Following intranasal MLV viral vaccination, PCR results and Ct values for BRSV and BoHV-1 suggest that attempts to differentiate vaccine virus from natural infection is unreliable.
USDA-ARS?s Scientific Manuscript database
Our recent study has shown that bovine rhinovirus type 2 (BRV2), a new member of the Aphthovirus genus, shares many motifs and sequence similarities with foot-and-mouth disease virus (FMDV). Despite low sequence conservation (36percent amino acid identity) and N- and C-terminus folding differences,...
Jordão, Ricardo Spacagna; Ribeiro, Cláudia Pestana; Pituco, Edviges Maristela; Okuda, Líria Hiromi; Del Fava, Cláudia; Stefano, Eliana de; Filho, Moacir Marchiori; Mehnert, Dolores Ursula
2011-10-01
Bovine Viral Diarrhea Virus (BVDV) is widespread in cattle in Brazil and research shows its large antigenic variability. Available vaccines are produced with virus strains isolated in other countries and may not be effective. In this study, inactivated vaccines containing the Brazilian BVDV-Ib IBSP11 isolate were developed and tested on 6 groups of 10 guinea pigs (Cavia porcellus). Animals in groups A and C received an aqueous vaccine (aluminum hydroxide); B and D groups received an oily vaccine (Montanide ISA50); Group E positive-control animals were given an imported commercial vaccine with BVDV-Ia Singer; Group F animals were sham vaccinated (negative control). Groups A, B and E received two doses, and Groups C and D, three, every 21 days. Twelve blood samples were taken, at 21-day intervals over 231 days, and evaluated for antibody titer through virus-neutralization (VN), using a homologous strain (IBSP11), and a heterologous strain (BVDV-Ia NADL). Most animals, 42 days following the first dose, seroconverted to both strains and, after the second dose, there was a significant increase of titers in all groups. The oily formulation induced greater response after the third administration. This increase was not observed with the aqueous vaccines, regardless of the virus used in the VN. Antibody decline was more rapid in animals that received aqueous vaccines. The results showed the importance of studying the influence of endemic strains of commercial vaccines, to improve the efficacy of BVD vaccination. Use of the endemic strain in vaccine formulation presented promising results, as well as the use of guinea pigs as a laboratory model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stuyver, Lieven J.; Whitaker, Tony; McBrayer, Tamara R.; Hernandez-Santiago, Brenda I.; Lostia, Stefania; Tharnish, Phillip M.; Ramesh, Mangala; Chu, Chung K.; Jordan, Robert; Shi, Junxing; Rachakonda, Suguna; Watanabe, Kyoichi A.; Otto, Michael J.; Schinazi, Raymond F.
2003-01-01
A base-modified nucleoside analogue, β-d-N4-hydroxycytidine (NHC), was found to have antipestivirus and antihepacivirus activities. This compound inhibited the production of cytopathic bovine viral diarrhea virus (BVDV) RNA in a dose-dependant manner with a 90% effective concentration (EC90) of 5.4 μM, an observation that was confirmed by virus yield assays (EC90 = 2 μM). When tested for hepatitis C virus (HCV) replicon RNA reduction in Huh7 cells, NHC had an EC90 of 5 μM on day 4. The HCV RNA reduction was incubation time and nucleoside concentration dependent. The in vitro antiviral effect of NHC was additive with recombinant alpha interferon-2a and could be prevented by the addition of exogenous cytidine and uridine but not of other natural ribo- or 2′-deoxynucleosides. When HCV RNA replicon cells were cultured in the presence of increasing concentrations of NHC (up to 40 μM) for up to 45 cell passages, no resistant replicon was selected. Similarly, resistant BVDV could not be selected after 20 passages. NHC was phosphorylated to the triphosphate form in Huh7 cells, but in cell-free HCV NS5B assays, synthetic NHC-triphosphate (NHC-TP) did not inhibit the polymerization reaction. Instead, NHC-TP appeared to serve as a weak alternative substrate for the viral polymerase, thereby changing the mobility of the product in polyacrylamide electrophoresis gels. We speculate that incorporated nucleoside analogues with the capacity of changing the thermodynamics of regulatory secondary structures (with or without introducing mutations) may represent an important class of new antiviral agents for the treatment of RNA virus infections, especially HCV. PMID:12499198
Dong, Yulan; Wang, Zixu; Qin, Zhuoming; Cao, Jing; Chen, Yaoxing
2018-02-01
Stress-induced diarrhea is a frequent and challenging threat to humans and domestic animals. Serotonin (5-HT) has been shown to be involved in the pathological process of stress-induced diarrhea. However, the role of 5-HT in stress-induced diarrhea remains unclear. A stress-induced diarrhea model was established in 21-day-old ICR weaning mice through an intragastric administration of 0.25 mL of 0.4 g/mL folium sennae and restraint of the hind legs with adhesive tape for 4 h to determine whether 5-HT regulates the mucosal barrier to cause diarrhea. Mice with decreased levels of 5-HT were pretreated with an intraperitoneal injection of 300 mg/kg p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor. After 5 days of treatment, the stress level, body weight and intestinal mucosal morphology indexes were measured. Compared to the controls, the mice with stress-induced diarrhea displayed a stress reaction, with increased corticosterone levels, as well as increased 5-HT-positive cells. However, the mice with stress-induced diarrhea exhibited decreased body weights, villus height to crypt depth ratios (V/C), and Occludin and Claudin1 expression. The PCPA injection reversed these effects in mice with different degrees of stress-induced diarrhea. Based on these findings, inhibition of 5-HT synthesis relieved the stress response and improved the health of the intestinal tract, including both the intestinal absorption capacity, as determined by the villus height and crypt depth, and the mucosal barrier function, as determined by the tight junction proteins of epithelial cell.
Gonzalez, A M; Arnaiz, I; Eiras, C; Camino, F; Sanjuán, M L; Yus, E; Diéguez, F J
2014-01-01
This study was designed to determine long-term responses in dairy herds after vaccination with 1 of 3 inactivated bovine viral diarrhea virus (BVDV) vaccines with regard to antibodies against p80 protein in bulk tank milk samples, as detected by ELISA. In the present study, 29 dairy herds were vaccinated with Bovilis BVD (MSD Animal Health, Milton Keynes, UK), 11 with Hiprabovis Balance (Laboratorios Hipra, Amer, Spain), and 9 with Pregsure BVD (Zoetis, Florham Park, NJ). In these herds, bulk tank milk samples were collected and examined at the time of the first vaccination and every 6 mo during a 3-yr period. Samples were analyzed with a commercial ELISA test for the p80 protein of BVDV. The results demonstrated that vaccination affected the level of antibodies against p80. Hence, vaccination status should be taken into consideration when interpreting bulk tank milk antibody tests. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Saa, Luis Rodrigo; Perea, Anselmo; García-Bocanegra, Ignacio; Arenas, Antonio José; Jara, Diego Vinicio; Ramos, Raul; Carbonero, Alfonso
2012-03-01
A cross-sectional study was carried out to determine the seroprevalence and risk factors associated with Bovine viral diarrhea virus (BVDV) infection in non-vaccinated dairy and dual-purpose cattle herds from Ecuador. A total of 2,367 serum samples from 346 herds were collected from June 2008 through February 2009. A questionnaire, which included variables related to cattle, health, management measures, and the environment, was filled out in each herd. A commercial indirect enzyme-linked immunosorbent assay test was used to determine the seropositivity. A logistic regression model was used to determine risk factors at herd level. The individual seroprevalence for BVDV in non-vaccinated herds in Ecuador was 36.2% (857/2,367; CI(95%), 34.3-38.1%). The herd prevalence was 74% (256/346; CI(95%), 69.4-78.6%) and the intra-herd prevalence ranged between 11.1% and 100% (mean = 51.6%). The logistic regression model showed that the density of cattle farms in the area (more than 70%; OR, 1.94; CI(95%), 1.21-3.2) and the altitude (higher than 2,338 m above sea level; 2.33; CI(95%), 1.4-3.9) are potential risk factors associated with BVDV infection.
Fulton, Robert W.; Whitley, Evan M.; Johnson, Bill J.; Ridpath, Julia F.; Kapil, Sanjay; Burge, Lurinda J.; Cook, Billy J.; Confer, Anthony W.
2009-01-01
The prevalence of bovine viral diarrhea virus (BVDV) in persistently infected (PI) cattle in beef breeding herds was determined using 30 herds with 4530 calves. The samples were collected by ear notches and tested for BVDV antigens using immunohistochemistry (IHC) and antigen capture enzyme-linked immunosorbent assay (ACE). Animals with initial positives on both IHC and ACE were sampled again using both tests and serums were collected for viral propagation and sequencing of a viral genomic region, 5′-untranslated region (5′-UTR) for viral subtyping. Samples were also collected from the dams of PI calves. There were 25 PI calves from 4530 samples (0.55%) and these PI calves were from 5 of the 30 herds (16.7%). Two herds had multiple PI calves and 3 herds had only 1 PI calf. Only 1 of the 25 dams with a PI calf was also PI (4.0%). The subtype of all the PI isolates was BVDV1b. Histories of the ranches indicated 23 out of 30 had herd additions of untested breeding females. Twenty-four of the 30 herds had adult cowherd vaccinations against BVDV, primarily using killed BVDV vaccines at pregnancy examination. PMID:20046630
NASA Astrophysics Data System (ADS)
Bollini, Mariela; Leal, Emilse S.; Adler, Natalia S.; Aucar, María G.; Fernández, Gabriela A.; Pascual, María J.; Merwaiss, Fernando; Alvarez, Diego E.; Cavasotto, Claudio N.
2018-03-01
Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus within the family Flaviviridae. BVDV causes both acute and persistent infections in cattle, leading to substantial financial losses to the livestock industry each year. The global prevalence of persistent BVDV infection and the lack of a highly effective antiviral therapy have spurred intensive efforts to discover and develop novel anti-BVDV therapies in the pharmaceutical industry. Antiviral targeting of virus envelope proteins is an effective strategy for therapeutic intervention of viral infections. We performed prospective small-molecule high-throughput docking to identify molecules that likely bind to the region delimited by domains I and II of the envelope protein E2 of BVDV. Several structurally different compounds were purchased or synthesized, and assayed for antiviral activity against BVDV. Five of the selected compounds were active displaying IC50 values in the low- to mid-micromolar range. For these compounds, their possible binding determinants were characterized by molecular dynamics simulations. A common pattern of interactions between active molecules and aminoacid residues in the binding site in E2 was observed. These findings could offer a better understanding of the interaction of BVDV E2 with these inhibitors, as well as benefit the discovery of novel and more potent BVDV antivirals.
USDA-ARS?s Scientific Manuscript database
Morbidity, mortality, and loss of productivity from enteric diseases in neonatal piglets cost swine producers millions of dollars annually. In 2013-2014, the porcine epidemic diarrhea virus (PEDV) outbreak led to $900 million to $1.8 billion in annual losses to US swine producers. Passive lactogeni...
Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada
USDA-ARS?s Scientific Manuscript database
In 2013, porcine epidemic diarrhea virus (PEDV) emerged in the United States as a rapidly spreading epidemic causing dramatic death losses in suckling piglets. Neonatal piglets are most vulnerable to clinical disease and their only protection is passive immunity from their dam. At the end of the thi...
Recombinant poxviruses as mucosal vaccine vectors.
Gherardi, M Magdalena; Esteban, Mariano
2005-11-01
The majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against Mycobacterium tuberculosis. The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.
Abalo, R; Uranga, J A; Pérez-García, I; de Andrés, R; Girón, R; Vera, G; López-Pérez, A E; Martín-Fontelles, M I
2017-03-01
The antineoplastic drug 5-fluoruracil (5-FU) is a pirimidine analog, which frequently induces potentially fatal diarrhea and mucositis. Cannabinoids reduce gastrointestinal motility and secretion and might prevent 5-FU-induced gut adverse effects. Here, we asked whether cannabinoids may prevent diarrhea and mucositis induced by 5-FU in the rat. Male Wistar rats received vehicle or the non-selective cannabinoid agonist WIN 55,212-2 (WIN; 0.5 mg kg -1 injection -1 , 1 injection day -1 , 4 consecutive days) by intraperitoneal (ip) route; on the first 2 days, animals received also saline or 5-FU (150 mg kg -1 injection -1 , cumulative dose of 300 mg kg -1 ). Gastrointestinal motor function was radiographically studied after barium contrast intragastric administration on experimental days 1 and 4. Structural alterations of the stomach, small intestine and colon were histologically studied on day 4. PAS staining and immunohistochemistry for Ki67, chromogranin A and CD163 were used to detect secretory, proliferating, and endocrine cells, and activated macrophages respectively. As shown radiographically, 5-FU induced significant gastric emptying delay (on days 1 and 4) and diarrhea (on day 4). WIN did not significantly alter the motility curves obtained for either control or 5-FU-treated animals but tended to reduce the severity of 5-FU-induced diarrhea and increased permanence of barium from day 1 to the beginning of day 4 in 5-FU-treated animals. 5-FU-induced mucositis was severe and not counteracted by WIN. 5-FU-induced diarrhea, but not mucositis, was partly prevented by WIN at a low dose. Cannabinoids might be useful to prevent chemotherapy-induced diarrhea. © 2016 John Wiley & Sons Ltd.
Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.
2015-01-01
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695
Protection of calves by a prefusion-stabilized bovine RSV F vaccine.
Zhang, Baoshan; Chen, Lei; Silacci, Chiara; Thom, Michelle; Boyington, Jeffrey C; Druz, Aliaksandr; Joyce, M Gordon; Guzman, Efrain; Kong, Wing-Pui; Lai, Yen-Ting; Stewart-Jones, Guillaume B E; Tsybovsky, Yaroslav; Yang, Yongping; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R; Corti, Davide; Lanzavecchia, Antonio; Taylor, Geraldine; Kwong, Peter D
2017-03-08
Bovine respiratory syncytial virus, a major cause of respiratory disease in calves, is closely related to human RSV, a leading cause of respiratory disease in infants. Recently, promising human RSV-vaccine candidates have been engineered that stabilize the metastable fusion (F) glycoprotein in its prefusion state; however, the absence of a relevant animal model for human RSV has complicated assessment of these vaccine candidates. Here, we use a combination of structure-based design, antigenic characterization, and X-ray crystallography to translate human RSV F stabilization into the bovine context. A "DS2" version of bovine respiratory syncytial virus F with subunits covalently fused, fusion peptide removed, and pre-fusion conformation stabilized by cavity-filling mutations and intra- and inter-protomer disulfides was recognized by pre-fusion-specific antibodies, AM14, D25, and MPE8, and elicited bovine respiratory syncytial virus-neutralizing titers in calves >100-fold higher than those elicited by post-fusion F. When challenged with a heterologous bovine respiratory syncytial virus, virus was not detected in nasal secretions nor in respiratory tract samples of DS2-immunized calves; by contrast bovine respiratory syncytial virus was detected in all post-fusion- and placebo-immunized calves. Our results demonstrate proof-of-concept that DS2-stabilized RSV F immunogens can induce highly protective immunity from RSV in a native host with implications for the efficacy of prefusion-stabilized F vaccines in humans and for the prevention of bovine respiratory syncytial virus in calves.
Coronavirus infection in intensively managed cattle with respiratory disease.
Hick, P M; Read, A J; Lugton, I; Busfield, F; Dawood, K E; Gabor, L; Hornitzky, M; Kirkland, P D
2012-10-01
A detailed laboratory investigation identified bovine coronavirus (BCoV) as the aetiological agent in an outbreak of respiratory disease at a semi-intensive beef cattle feedlot in south-east Australia. The outbreak caused 30% morbidity in the resident population and also affected two cohorts of cattle that were newly introduced to the property. At slaughter, pulmonary consolidation and inflammatory lesions in the trachea were identified in 15 of 49 animals. Pasteurella multocida or Histophilus somni was cultured from 3 of 7 animals with lesions. Histopathological examination revealed multifocal non-suppurative bronchointerstitial pneumonia with formation of epithelial syncytial cells, sometimes associated with suppurative bronchopneumonia. BCoV was detected in nasal swabs and pulmonary lesions using real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay and virus isolation. There was serological evidence of previous exposure to bovine viral diarrhoea virus, bovine respiratory syncytial virus and bovine parainfluenza virus type 3, but not to bovine herpesvirus type 1. None of these viral pathogens or Mycoplasma bovis was identified by qRT-PCR. This is believed to be the first report of BCoV in association with bovine respiratory disease complex in Australia. © 2012 The Authors. Australian Veterinary Journal © 2012 Australian Veterinary Association.
Malacari, Dario Amilcar; Pécora, Andrea; Pérez Aguirreburualde, Maria Sol; Cardoso, Nancy Patricia; Odeón, Anselmo Carlos; Capozzo, Alejandra Victoria
2018-01-01
Non-cytopathic (ncp) type 2 bovine viral diarrhea virus (BVDV-2) is widely prevalent in Argentina causing high mortality rates in cattle herds. In this study, we characterized an Argentinean ncp BVDV-2 field isolate (98-124) compared to a high-virulence reference strain (NY-93), using in silico analysis, in vitro assays, and in vivo infections of colostrum-deprived calves (CDC) to compare pathogenic characters and virulence. In vitro infection of bovine peripheral blood mononuclear cells (PBMC) with BVDV 98-124 induced necrosis shortly after infection while NY-93 strain increased the apoptotic rate in infected cells. Experimental infection of CDC (n = 4 each) with these strains caused an enteric syndrome. High pyrexia was detected in both groups. Viremia and shedding were more prolonged in the CDC infected with the NY-93 strain. In addition, NY-93 infection elicited a severe lymphopenia that lasted for 14 days, whereas 98-124 strain reduced the leukocyte counts for 5 days. All infected animals had a diminished lymphoproliferation activity in response to a mitogen. Neutralizing and anti-NS3 antibodies were detected 3 weeks after infection in all infected calves. Virulence was associated with a more severe clinical score, prolonged immune-suppression, and a greater window for transmission. Studies of apoptosis/necrosis performed after in vitro PBMC infection also revealed differences between both strains that might be correlated to the in vivo pathogenesis. Our results identified 98-124 as a low-virulence strain. PMID:29707546
USDA-ARS?s Scientific Manuscript database
Porcine epidemic diarrhea virus (PEDV) was detected for the first time in US swine in April 2013 and has caused significant economic loss. Obtaining a US PEDV isolate that can grow efficiently in cell culture is critical for PEDV pathogenesis study, diagnostic assays and vaccine development. It was ...
Schepens, Marloes A A; Schonewille, Arjan J; Vink, Carolien; van Schothorst, Evert M; Kramer, Evelien; Hendriks, Thijs; Brummer, Robert-Jan; Keijer, Jaap; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J
2009-08-01
We have shown in several controlled rat and human infection studies that dietary calcium improves intestinal resistance and strengthens the mucosal barrier. Reinforcement of gut barrier function may alleviate inflammatory bowel disease (IBD). Therefore, we investigated the effect of supplemental calcium on spontaneous colitis development in an experimental rat model of IBD. HLA-B27 transgenic rats were fed a purified high-fat diet containing either a low or high calcium concentration (30 and 120 mmol CaHPO4/kg diet, respectively) for almost 7 wk. Inert chromium EDTA (CrEDTA) was added to the diets to quantify intestinal permeability by measuring urinary CrEDTA excretion. Relative fecal wet weight was determined to quantify diarrhea. Colonic inflammation was determined histologically and by measuring mucosal interleukin (IL)-1beta. In addition, colonic mucosal gene expression of individual rats was analyzed using whole-genome microarrays. The calcium diet significantly inhibited the increase in intestinal permeability and diarrhea with time in HLA-B27 rats developing colitis compared with the control transgenic rats. Mucosal IL-1beta levels were lower in calcium-fed rats and histological colitis scores tended to be lower (P = 0.08). Supplemental calcium prevented the colitis-induced increase in the expression of extracellular matrix remodeling genes (e.g. matrix metalloproteinases, procollagens, and fibronectin), which was confirmed by quantitative real-time PCR and gelatin zymography. In conclusion, dietary calcium ameliorates several important aspects of colitis severity in HLA-B27 transgenic rats. Reduction of mucosal irritation by luminal components might be part of the mechanism. These results show promise for supplemental calcium as effective adjunct therapy for IBD.
Ma, Jian-Gang; Cong, Wei; Zhang, Fu-Heng; Feng, Sheng-Yong; Zhou, Dong-Hui; Wang, Yi-Ming; Zhu, Xing-Quan; Yin, Hong; Hu, Gui-Xue
2016-12-01
Bovine viral diarrhoea virus (BVDV), a member of the Pestivirus genus, is an important pathogen of cattle worldwide, causing reproductive disorders in adult cattle and mucosal disease in calves. However, limited information about BVDV infection in yaks (Bos grunniens) in China is available, especially in white yaks which is a unique yak breed that only lives in Tianzhu Tibetan Autonomous County (TTAC), Gansu Province, northwest China. Therefore, we conducted a cross-sectional study to estimate the seroprevalence and risk factors associated with BVDV infection in 1584 yaks in Gansu province, northwest China, between April 2013 and March 2014 using an indirect ELISA test. The overall seroprevalence of BVDV in yaks was 37.56 % (595/1584), with 45.08 % (275/610) in black yaks and 32.85 % (320/974) in white yaks. Moreover, positive yaks were found in all four regions, varied from 33.22 to 40.31 %. Male yaks had a similar seroprevalence (37.84 %) with that of the female yaks (37.11 %). Season, species and geographical origins of yaks were considered as risk factors analyzed by logistic regression model. To our knowledge, this is the first report of seroprevalence and risk factors associated with BVDV infection in white yaks in China.
Gelatin tannate and tyndallized probiotics: a novel approach for treatment of diarrhea.
Lopetuso, L; Graziani, C; Guarino, A; Lamborghini, A; Masi, S; Stanghellini, V
2017-02-01
Intestinal permeability impairment is implicated in many gastrointestinal (GI) diseases. Chronic diarrhea, defined as the presence of diarrhea for more than 3 weeks in adults and 2 weeks in children, requires a different diagnostic and therapeutic work-up than acute diarrhea. Gelatin tannate, by reducing the clinical activity of acute colitis and the proinflammatory effects of lipopolysaccharide (LPS), is emerging as a mucosal barrier protector. New therapeutic strategies focusing on the physiological function of the intestinal barrier, may offer an innovative approach for the clinical improvement of highly debilitating chronic GI diseases. We review the available data on the role of gelatin tannate and tyndallized probiotics in the treatment of diarrhea. Gelatin tannate and tyndallized probiotics can be used to re-establish the physiological functions of the gut barrier, as well as for preventing dysbiosis. There is evidence that due to their particular properties, gelatin tannate and tyndallized probiotics are highly effective in the treatment of acute gastroenteritis and may be especially indicated in the management of moderate and prolonged diarrhea. Gelatin tannate and tyndallized probiotics may be effective in the management of chronic diarrhea. Further clinical trials are necessary to further explore their effects in clinical practice.
BVD: A disease with many faces
USDA-ARS?s Scientific Manuscript database
This is a review, written for a lay publication whose core audience in dairy producers. A brief history of bovine viral diarrhea (BVD) research is given as well as a review of recent research discoveries. National efforts to reduce antibiotic use have led to a greater emphasis on disease prevention ...
Bauermann, Fernando V; Flores, Eduardo F; Falkenberg, Shollie M; Weiblen, Rudi; Ridpath, Julia F
2014-01-01
The detection of an emerging pestivirus species, "HoBi-like virus," in fetal bovine serum (FBS) labeled as U.S. origin, but packaged in Europe, raised concerns that HoBi-like virus may have entered the United States. In the current study, 90 lots of FBS originating in North America (NA) were screened for pestivirus antigen and antibodies. Lots in group 1 (G1, 72 samples) and group 2 (G2, 9 samples) originated in NA and were packaged in the United States. Group 3 (G3) was composed of 9 lots collected in NA and processed in Europe. Lots in G1 were claimed negative for Bovine viral diarrhea virus (BVDV), while lots in G2 and G3 were claimed positive by the commercial processor. All lots in G1 and G2 tested negative by reverse transcription polymerase chain reaction (RT-PCR) using HoBi-like-specific primers. Two G1 lots tested positive by BVDV RT-PCR. One of these was also positive by virus isolation. All G2 lots were positive by BVDV RT-PCR. In addition, four G2 lots were VI positive while 1 lot was antigen-capture enzyme-linked immunosorbent assay (ELISA) positive. Two G3 lots were positive by HoBi-like-specific RT-PCR tests. All lots were negative for HoBi_D32/00 neutralizing antibodies. Seven lots (4 G1; 1 G2; 2 G3) had antibodies against BVDV by virus neutralization and/or antigen-capture ELISA. While there is no evidence of HoBi-like viruses in NA based on tested samples, further studies are required to validate HoBi-like virus-free status and develop means to prevent the spread of HoBi-like virus into NA.
Woods, G. T.; Mansfield, M. E.; Webb, R. J.
1973-01-01
During 1969 to 1971, 78 preconditioned (PC) and 79 non-preconditioned (NPC) beef calves were purchased at the same auction and mixed in a feedlot. Preconditioned calves were weaned 30 days before the sale, used to drinking from a tank, and vaccinated against blackleg, malignant edema, infectious bovine rhinotracheitis (IBR), parainfluenza-3 (PI3) and bovine virus diarrhea (BVD) in 1970 and 1971, and Pasteurella hemolytica and multocida in 1971. All vaccinations were completed two to three weeks before the sale. PC calves were given thiabenzadole. PC calves had significantly less shrink after shipment and in 1971 significantly more rapid daily gain during the first weeks of the feeding period. In 1969 more PC calves were treated for acute respiratory disease than NPC calves during an outbreak of PI3 and BVD infection. In 1970 and 1971 fewer PC than NPC calves were treated for acute respiratory tract disease during outbreaks of PI3 infection. The differences in clinical respiratory disease were significant in 1971. Inclusion of two doses of P. hemolytica and P. multocida bacterin before the sale in 1971 and use of an intranasal PI3 vaccine was considered to improve the PC program. Fecal egg counts for gastrointestinal nematodes were much lower in PC calves treated with thiabenzadole than untreated NPC calves. PMID:4355470
Castro, Eliana F.; Fabian, Lucas E.; Caputto, María E.; Gagey, Dolores; Finkielsztein, Liliana M.; Moltrasio, Graciela Y.; Moglioni, Albertina G.; Campos, Rodolfo H.; Cavallaro, Lucía V.
2011-01-01
In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV). PMID:21430053
Castro, Eliana F; Fabian, Lucas E; Caputto, María E; Gagey, Dolores; Finkielsztein, Liliana M; Moltrasio, Graciela Y; Moglioni, Albertina G; Campos, Rodolfo H; Cavallaro, Lucía V
2011-06-01
In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV).
Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K
2015-10-01
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Neill, John D; Newcomer, Benjamin W; Marley, Shonda D; Ridpath, Julia F; Givens, M Daniel
2012-08-06
Bovine viral diarrhea virus (BVDV) strains circulating in livestock herds show significant sequence variation. Conventional wisdom states that most sequence variation arises during acute infections in response to immune or other environmental pressures. A recent study showed that more nucleotide changes were introduced into the BVDV genomic RNA during the establishment of a single fetal persistent infection than following a series of acute infections of naïve cattle. However, it was not known if nucleotide changes were introduce when the virus crossed the placenta and infected the fetus or during the acute infection of the dam. The sequence of the open reading frame (ORF) from viruses isolated from four acutely infected pregnant heifers following exposure to persistently infected (PI) calves was compared to the sequences of the virus from the progenitor PI calf and the virus from the resulting progeny PI calf to determine when genetic change was introduced. This was compared to genetic change found in viruses isolated from a pregnant PI cow and its PI calf, and in three viruses isolated from acutely infected, non-pregnant cattle exposed to PI calves. Most genetic changes previously identified between the progenitor and progeny PI viruses were in place in the acute phase viruses isolated from the dams six days post-exposure to the progenitor PI calf. Additionally, each progeny PI virus had two to three unique nucleotide substitutions that were introduced in crossing the placenta and infection of the fetus. The nucleotide sequence of two acute phase viruses isolated from steers exposed to PI calves revealed that six and seven nucleotide changes were introduced during the acute infection. The sequence of the BVDV-2 virus isolated from an acute infection of a PI calf (BVDV-1a) co-housed with a BVDV-2 PI calf had ten nucleotides that were different from the progenitor PI virus. Finally, twenty nucleotide changes were identified in the PI virus of a calf born to a PI dam. These results demonstrate that nucleotide changes are introduced into the BVDV infecting pregnant cattle at rates of 2.3 to 8 fold higher then during the acute infection of non-pregnant animals.
Why get vaccinated?Rotavirus is a virus that causes diarrhea, mostly in babies and young children. The diarrhea can be severe, and lead ... and fever are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common ...
Curry, Patricia S; Ribble, Carl; Sears, William C; Hutchins, Wendy; Orsel, Karin; Godson, Dale; Lindsay, Robbin; Dibernardo, Antonia; Kutz, Susan J
2014-04-01
We compared Nobuto filter paper (FP) whole-blood samples to serum for detecting antibodies to seven pathogens in reindeer (Rangifer tarandus tarandus). Serum and FP samples were collected from captive reindeer in 2008-2009. Sample pairs (serum and FP eluates) were assayed in duplicate at diagnostic laboratories with the use of competitive enzyme-linked immunosorbent assays (cELISAs) for Neospora caninum and West Nile virus (WNV); indirect ELISA (iELISAs) for bovine herpesvirus type 1 (BHV-1), parainfluenza virus type 3 (PI-3), and bovine respiratory syncytial virus (BRSV); and virus neutralization (VN) for bovine viral diarrhea virus (BVDV) types I and II. Assay thresholds were evidence-based values employed by each laboratory. Comparable performance to serum was defined as FP sensitivity and specificity ≥ 80%. Filter-paper specificity estimates ranged from 92% in the cELISAs for N. caninum and WNV to 98% in the iELISAs for PI-3 and BRSV. Sensitivity was >85% for five tests (most ≥ 95%) but was insufficient (71-82%) for the PI-3 and BRSV iELISAs. Lowering the threshold for FP samples in these two ELISAs raised sensitivity to ≥ 87% and reduced specificity slightly (≥ 90% in three of the four test runs). Sample size limited the precision of some performance estimates. Based on the criteria of sensitivity and specificity ≥ 80%, and using adjusted FP thresholds for PI-3 and BRSV, FP sensitivity and specificity were comparable to serum in all seven assays. A potential limitation of FP is reduced sensitivity in tests that require undiluted serum (i.e., N. caninum cELISA and BVDV VNs). Possible toxicity to the assay cell layer in VN requires investigation. Results suggested that cELISA is superior to iELISA for detecting antibodies in FP samples from reindeer and other Rangifer tarandus subspecies. Our findings expand the potential utility of FP sampling from wildlife.
Del Medico Zajac, María Paula; Zanetti, Flavia Adriana; Esusy, María Soledad; Federico, Carlos Rodolfo; Zabal, Osvaldo; Valera, Alejandro Rafael; Calamante, Gabriela
In this study, we evaluated the immunogenicity and efficacy of mucosal delivery of a recombinant modified vaccinia Ankara virus (MVA) expressing the secreted version of bovine herpesvirus type 1 (BoHV-1) glycoprotein D (MVA-gDs) without addition of adjuvant in two animal models. First, we demonstrated the capability of MVA-gDs of inducing both local and systemic anti-gD humoral immune response after intranasal immunization of mice. Then, we confirmed that two doses of MVA-gDs administered intranasally to rabbits induced systemic anti-gD antibodies and conferred protection against BoHV-1 challenge. Our results show the potential of using MVA as a vector for the rational design of veterinary vaccines capable of inducing specific and protective immune responses both at local and systemic level.
Agricultural Bioterrorism: A Federal Strategy to Meet the Threat
2002-01-01
sickness* Anthrax Avian influenza* Foot and mouth disease* Bluetongue* Hog cholera/classical swine fever* Bovine spongiform encephalopathy* Ornithosis...Psittacocis Contagious bovine pleuropneumonia* Rinderpest* Lumpy skin disease* Trypanosomiasis Newcastle disease* Poxvirus Paratuberculosis/Johne’s...including the animal diseases Bovine Spongi- form Encephalopathy, as well as Hendrah and Nipah viruses.154 An ex- panded research initiative should
Naggar, Heba M. El; Madkour, Mohamed Sayed; Hussein, Hussein Ali
2017-01-01
Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND) and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2) based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles Montanide™ adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2) viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses. PMID:28344402
Topliff, Christina L; Alkheraif, Abdulrahman A; Kuszynski, Charles A; Davis, William C; Steffen, David J; Schmitz, Jack A; Eskridge, Kent M; Charleston, Bryan; Henningson, Jamie N; Kelling, Clayton L
2017-03-01
Bovine viral diarrhea virus (BVDV) is a pathogen in cattle and alpacas ( Vicugna pacos), causing acute and persistent BVDV infections. We characterized the effect of acute BVDV infection on the immune system of alpacas by determining lymphocyte subpopulations in peripheral blood and gut-associated lymphoid tissues (GALT) as well as serum interferon levels. Alpacas were experimentally infected with BVDV-1b (strain CO-06). Peripheral blood leukocytes were isolated at 0, 3, 6, and 9 d postinfection (dpi), and leukocytes of GALT at 9 dpi, and evaluated using flow cytometry. Serum interferon levels were determined daily. Flow cytometric analyses of peripheral blood leukocytes showed a significant decrease in CD4+, CD8+, and αβ T-lymphocytes at 3 dpi. CD8+ lymphocytes were significantly increased, and activated lymphocytes were significantly decreased in the C3-stomach region in BVDV-infected alpacas. Serum interferon concentrations significantly increased in BVDV-infected alpacas at 3-6 dpi, peaking at 3 dpi. Our study confirms that BVDV can be a primary acute pathogen in alpacas and that it induces an interferon response and alters leukocyte subset populations. The changes in the proportion of T-lymphocytes during the early stages of BVDV infection may result in transient immunosuppression that may contribute to secondary bacterial and viral infections, similar to cattle.
Hirotani, Yoshihiko; Mikajiri, Kyoko; Ikeda, Kenji; Myotoku, Michiaki; Kurokawa, Nobuo
2008-09-01
Peptide YY (PYY) is produced by endocrine cells in the lower gastrointestinal tract. The main functions of PYY are antisecretory effects in the colon and inhibition of gastrointestinal motility. We chose PYY as an index of the intrinsic factor in diarrhea and examined the influence of changes induced in a diarrhea rat model by administration of 4 types of laxative and loperamide hydrochloride (loperamide) as an agent for the treatment of diarrhea. A specific radioimmunoassay was performed to determine plasma and intestinal mucosal PYY concentrations. PYY in the rat intestinal tissue extract was distributed at a high density in the lower intestinal mucosa. In the diarrhea rat model, multiple changes in PYY concentrations in the intestinal mucosa and plasma were observed. In rats administered castor oil and sodium picosulfate, the intestinal mucosal PYY levels significantly decreased in a dose-dependent manner. Plasma PYY levels significantly decreased only in rats administered magnesium citrate. Next, we examined the influence of loperamide administration on the intestinal mucosa and plasma PYY concentrations in these rats. Loperamide administration resulted in multiple changes in plasma and intestinal mucosa PYY concentrations, along with an improvement in the diarrhea. Our research showed that the endocrine hormone PYY is involved in the onset of diarrhea, the course of the condition, and the manifestation of medicinal effects in the lower intestine.
Melo, Maria Luisa P; Brito, Gerly A C; Soares, Rudy C; Carvalho, Sarah B L M; Silva, Johan V; Soares, Pedro M G; Vale, Mariana L; Souza, Marcellus H L P; Cunha, Fernando Q; Ribeiro, Ronaldo A
2008-04-01
Irinotecan (CPT-11) is an inhibitor of DNA topoisomerase I and is clinically effective against several cancers. A major toxic effect of CPT-11 is delayed diarrhea; however, the exact mechanism by which the drug induces diarrhea has not been established. Elucidate the mechanisms of induction of delayed diarrhea and determine the effects of the cytokine production inhibitor pentoxifylline (PTX) and thalidomide (TLD) in the experimental model of intestinal mucositis, induced by CPT-11. Intestinal mucositis was induced in male Swiss mice by intraperitoneal administration of CPT-11 (75 mg/kg) daily for 4 days. Animals received subcutaneous PTX (1.7, 5 and 15 mg/kg) or TLD (15, 30, 60 mg/kg) or 0.5 ml of saline daily for 5 and 7 days, starting 1 day before the first CPT-11 injection. The incidence of delayed diarrhea was monitored by scores and the animals were sacrificed on the 5th and 7th experimental day for histological analysis, immunohistochemistry for TNF-alpha and assay of myeloperoxidase (MPO) activity, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and KC ELISA. CPT-11 caused significant diarrhea, histopathological alterations (inflammatory cell infiltration, loss of crypt architecture and villus shortening) and increased intestinal tissue MPO activity, TNF-alpha, IL-1beta and KC level and TNF-alpha immuno-staining. PTX inhibited delayed diarrhea of mice submitted to intestinal mucositis and reduced histopathological damage, intestinal MPO activity, tissue level of TNF-alpha, IL-1beta and KC and TNF-alpha immuno-staining. TLD significantly reduced the lesions induced by CPT-11 in intestinal mucosa, decreased MPO activity, TNF-alpha tissue level and TNF-alpha immuno-staining, but did not reduce the severity of diarrhea. These results suggest an important role of TNF-alpha, IL-1beta and KC in the pathogenesis of intestinal mucositis induced by CPT-11.
Herd factors associated with dairy cow mortality.
McConnel, C; Lombard, J; Wagner, B; Kopral, C; Garry, F
2015-08-01
Summary studies of dairy cow removal indicate increasing levels of mortality over the past several decades. This poses a serious problem for the US dairy industry. The objective of this project was to evaluate associations between facilities, herd management practices, disease occurrence and death rates on US dairy operations through an analysis of the National Animal Health Monitoring System's Dairy 2007 survey. The survey included farms in 17 states that represented 79.5% of US dairy operations and 82.5% of the US dairy cow population. During the first phase of the study operations were randomly selected from a sampling list maintained by the National Agricultural Statistics Service. Only farms that participated in phase I and had 30 or more dairy cows were eligible to participate in phase II. In total, 459 farms had complete data for all selected variables and were included in this analysis. Univariable associations between dairy cow mortality and 162 a priori identified operation-level management practices or characteristics were evaluated. Sixty of the 162 management factors explored in the univariate analysis met initial screening criteria and were further evaluated in a multivariable model exploring more complex relationships. The final weighted, negative binomial regression model included six variables. Based on the incidence rate ratio, this model predicted 32.0% less mortality for operations that vaccinated heifers for at least one of the following: bovine viral diarrhea, infectious bovine rhinotracheitis, parainfluenza 3, bovine respiratory syncytial virus, Haemophilus somnus, leptospirosis, Salmonella, Escherichia coli or clostridia. The final multivariable model also predicted a 27.0% increase in mortality for operations from which a bulk tank milk sample tested ELISA positive for bovine leukosis virus. Additionally, an 18.0% higher mortality was predicted for operations that used necropsies to determine the cause of death for some proportion of dead dairy cows. The final model also predicted that increased proportions of dairy cows with clinical mastitis and infertility problems were associated with increased mortality. Finally, an increase in mortality was predicted to be associated with an increase in the proportion of lame or injured permanently removed dairy cows. In general terms, this model identified that mortality was associated with reproductive problems, non-infectious postpartum disease, infectious disease and infectious disease prevention, and information derived from postmortem evaluations. Ultimately, addressing excessive mortality levels requires a concerted effort that recognizes and appropriately manages the numerous and diverse underlying risks.
Pierra, Claire; Amador, Agnès; Benzaria, Samira; Cretton-Scott, Erika; D'Amours, Marc; Mao, John; Mathieu, Steven; Moussa, Adel; Bridges, Edward G; Standring, David N; Sommadossi, Jean-Pierre; Storer, Richard; Gosselin, Gilles
2006-11-02
In our search for new therapeutic agents against chronic hepatitis C, a ribonucleoside analogue, 2'-C-methylcytidine, was discovered to be a potent and selective inhibitor in cell culture of a number of RNA viruses, including the pestivirus bovine viral diarrhea virus, a surrogate model for hepatitis C virus (HCV), and three flaviviruses, namely, yellow fever virus, West Nile virus, and dengue-2 virus. However, pharmacokinetic studies revealed that 2'-C-methylcytidine suffers from a low oral bioavailability. To overcome this limitation, we have synthesized the 3'-O-l-valinyl ester derivative (dihydrochloride form, valopicitabine, NM283) of 2'-C-methylcytidine. We detail herein for the first time the chemical synthesis and physicochemical characteristics of this anti-HCV prodrug candidate, as well as a comparative study of its pharmacokinetic parameters with those of its parent nucleoside analogue, 2'-C-methylcytidine.
Evaluation of Animal and Plant Pathogens as Terrorism and Warfare Agents, Vectors and Pests
2001-09-01
fever virus Bluetongue virus African horse sickness virus Nipah swine encephalitis virus Lumpy skin disease virus Camel pox virus Bacteria Bacillus...anthracis Bulkholderia (Pseudomonas) mallei Brucella spp. Mycoplasmas Contagious bovine (pleuropneum.) (M. mycoides var. mycoides type SC) (CBPP...virus Newcastle disease virus Rinderpest virus Pest des petits ruminants virus Bluetongue virus Teschen disease virus (Porcine enterovirus type 1) Rift
USDA-ARS?s Scientific Manuscript database
Objective- Determine how levels of serum antibody to bovine coronavirus (BCV) are related to virus shedding patterns and respiratory disease incidence in beef calves at various production stages. Animals- 890 crossbred beef calves from four separately managed herds at the U.S. Meat Animal Research C...
USDA-ARS?s Scientific Manuscript database
Bovine parainfluenza 3 virus (BPI3V) is a member of the Respirovirus genus in the Paramyxoviridae family. Infection with BPI3V often results in mild or subclinical disease but can also result in acute respiratory disease either alone, or in conjunction with other respiratory pathogens in the develop...
Gillet, Nicolas; Florins, Arnaud; Boxus, Mathieu; Burteau, Catherine; Nigro, Annamaria; Vandermeers, Fabian; Balon, Hervé; Bouzar, Amel-Baya; Defoiche, Julien; Burny, Arsène; Reichert, Michal; Kettmann, Richard; Willems, Luc
2007-01-01
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far. PMID:17362524
Kirchgessner, Megan S; Dubovi, Edward J; Porter, William F; Zylich, Nancy C; Whipps, Christopher M
2012-09-01
Significant pathogens of domestic livestock and public-health related pathogens, such as bovine viral diarrhea virus (BVDV) and Coxiella burnetii, are commonly diagnosed in some wildlife species. BVDV is an economically important pathogen of domestic bovids and Coxiella burnetii is a highly infectious zoonotic bacterium. As a result of recent shifting patterns of disease, it is critical that baseline information regarding the status of both significant pathogens of domestic livestock and public-health related pathogens are established for commonly encountered wildlife such as white-tailed deer (Odocoileus virginianus). White-tailed deer are susceptible to both BVDV and C. burnetii infection, and the purpose of this study was to investigate for the presence of antibodies to these two pathogens in New York and Pennsylvania white-tailed deer. Exposure to BVDV and C. burnetii was determined using sera collected from 333 (219 males and 114 females) wild white-tailed deer in New York and 291 (130 males and 161 females) wild white-tailed deer from Pennsylvania. Samples were collected from hunter-harvested deer in central New York State in 2009 and live-captured deer in Pennsylvania in 2010. Sera were screened for anti-BVDV antibodies via a commercial blocking BVDV enzyme-linked immunosorbent assay. Coxiella burnetii phase II whole-cell antigen-coated slides were used to screen sera via an indirect microimmunofluorescence assay. Antibody prevalence was compared by sex class and location of collection. Deer in New York had higher antibody prevalence to BVDV (6.01%) than did deer in Pennsylvania (0.34%). Conversely, C. burnetii phase II antibodies were more common in Pennsylvania (20.96%) than in New York (14.41%). No statistically significant difference between locations was observed in either BVDV or C. burnetii antibody prevalence when data were analyzed by sex-class. Overall, C. burnetii seroprevalence was not significantly higher in Pennsylvania than in New York.
Walz, Paul H; Givens, M Daniel; Rodning, Soren P; Riddell, Kay P; Brodersen, Bruce W; Scruggs, Daniel; Short, Thomas; Grotelueschen, Dale
2017-02-15
The objective of this study was to compare reproductive protection in cattle against bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) provided by annual revaccination with multivalent modified-live viral (MLV) vaccine or multivalent combination viral (CV) vaccine containing temperature-sensitive modified-live BoHV-1 and killed BVDV when MLV vaccines were given pre-breeding to nulliparous heifers. Seventy-five beef heifers were allocated into treatment groups A (n=30; two MLV doses pre-breeding, annual revaccination with MLV vaccine), B (n=30; two MLV doses pre-breeding, annual revaccination with CV vaccine) and C (n=15; saline in lieu of vaccine). Heifers were administered treatments on days 0 (weaning), 183 (pre-breeding), 366 (first gestation), and 738 (second gestation). After first calving, primiparous cows were bred, with pregnancy assessment on day 715. At that time, 24 group A heifers (23 pregnancies), 23 group B heifers (22 pregnancies), and 15 group C heifers (15 pregnancies) were commingled with six persistently infected (PI) cattle for 16days. Ninety-nine days after PI removal, cows were intravenously inoculated with BoHV-1. All fetuses and live offspring were assessed for BVDV and BoHV-1. Abortions occurred in 3/23 group A cows, 1/22 group B cows, and 11/15 group C cows. Fetal infection with BVDV or BoHV-1 occurred in 4/23 group A offspring, 0/22 group B offspring, and 15/15 group C offspring. This research demonstrates efficacy of administering two pre-breeding doses of MLV vaccine with annual revaccination using CV vaccine to prevent fetal loss due to exposure to BVDV and BoHV-1. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tugizov, Sharof
2016-01-01
Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187
Ichiki, Masao; Wataya, Hiroshi; Yamada, Kazuhiko; Tsuruta, Nobuko; Takeoka, Hiroaki; Okayama, Yusuke; Sasaki, Jun; Hoshino, Tomoaki
2017-01-01
Purpose Diarrhea and oral mucositis induced by afatinib can cause devastating quality of life issues for patients undergoing afatinib treatment. Several studies have shown that hangeshashin-to (TJ-14) might be useful for chemotherapy-induced diarrhea and oral mucositis. In this study, we investigated the prophylactic effects of TJ-14 for afatinib-induced diarrhea and oral mucositis and minocycline for afatinib-induced skin rash. Patients and methods First- and second-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors have become the standard first-line treatment in patients with EGFR-mutated non-small cell lung cancer. The incidence of diarrhea was higher with afatinib than with gefitinib, and we conducted a single-arm Phase II study with afatinib. Patients who had previously undergone treatment with afatinib were ineligible. Both TJ-14 (7.5 g/day) and minocycline (100 mg/day) were administered simultaneously from the start of afatinib administration. The primary end point was the incidence of ≥ grade 3 (G3) diarrhea (increase of ≥7 stools/day over baseline) during the first 4 weeks of treatment. The secondary end points were the incidence of ≥ G3 oral mucositis (severe pain interfering with oral intake) and $ G3 skin toxicity (severe or medically significant but not immediately life-threatening). Results A total of 29 patients (nine men and 20 women; median age, 66 years; performance status, 0/1/2: 18/10/1) were enrolled from four centers. Four patients had undergone prior treatment with chemotherapy, including gefitinib or erlotinib. In all, 20 (68.9%) patients and one (3.4%) patient had diarrhea of any grade and ≥ G3, respectively. One (3.4%) patient had ≥ G3 oral mucositis; no patients had ≥ G3 skin rash. A total of 18 (62%) of the 29 patients achieved a partial response. Conclusion The present study indicated a trend in which TJ-14 reduced the risk of afatinib-induced diarrhea and minocycline reduced the risk of afatinib-induced skin rash. PMID:29123409
Respiratory syncytial virus infection in cattle.
Sacco, R E; McGill, J L; Pillatzki, A E; Palmer, M V; Ackermann, M R
2014-03-01
Bovine respiratory syncytial virus (RSV) is a cause of respiratory disease in cattle worldwide. It has an integral role in enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV infection can predispose calves to secondary bacterial infection by organisms such as Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, resulting in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Even in cases where animals do not succumb to bovine respiratory disease complex, there can be long-term losses in production performance. This includes reductions in feed efficiency and rate of gain in the feedlot, as well as reproductive performance, milk production, and longevity in the breeding herd. As a result, economic costs to the cattle industry from bovine respiratory disease have been estimated to approach $1 billion annually due to death losses, reduced performance, and costs of vaccinations and treatment modalities. Human and bovine RSV are closely related viruses with similarities in histopathologic lesions and mechanisms of immune modulation induced following infection. Therefore, where appropriate, we provide comparisons between RSV infections in humans and cattle. This review article discusses key aspects of RSV infection of cattle, including epidemiology and strain variability, clinical signs and diagnosis, experimental infection, gross and microscopic lesions, innate and adaptive immune responses, and vaccination strategies.
USDA-ARS?s Scientific Manuscript database
Bovine respiratory syncytial virus (BRSV) is a leading cause of bovine respiratory disease in cattle worldwide. MicroRNAs have been suggested to play a role in viral infections via their regulation of cellular molecules involved in either viral replication or in host innate immunity to infection. Th...
Kern, Bryant; Mahoney, Kathleen; Norton, Andrew; Patnayak, Devi; Van Deelen, Timothy
2015-01-01
White-tailed deer (Odocoileus virginianus) are commonly exposed to disease agents that affect livestock but environmental factors that predispose deer to exposure are unknown for many pathogens. We trapped deer during winter months on two study areas (Northern Forest and Eastern Farmland) in Wisconsin from 2010 to 2013. Deer were tested for exposure to six serovars of Leptospira interrogans (grippotyphosa, icterohaemorrhagiae, canicola, bratislava, pomona, and hardjo), bovine viral diarrhea virus (BVDV-1 and BVDV-2), infectious bovine rhinotracheitis virus (IBR), and parainfluenza 3 virus (PI3). We used logistic regression to model potential intrinsic (e.g., age, sex) and extrinsic (e.g., land type, study site, year, exposure to multiple pathogens) variables we considered biologically meaningful to exposure of deer to livestock pathogens. Deer sampled in 2010–2011 did not demonstrate exposure to BVDV, so we did not test for BVDV in subsequent years. Deer had evidence of exposure to PI3 (24.7%), IBR (7.9%), Leptospira interrogans serovar pomona (11.7%), L. i. bratislava (1.0%), L. i. grippotyphosa (2.5%) and L. i. hardjo (0.3%). Deer did not demonstrate exposure to L. interrogans serovars canicola and icterohaemorrhagiae. For PI3, we found that capture site and year influenced exposure. Fawns (n = 119) were not exposed to L. i. pomona, but land type was an important predictor of exposure to L. i. pomona for older deer. Our results serve as baseline exposure levels of Wisconsin white-tailed deer to livestock pathogens, and helped to identify important factors that explain deer exposure to livestock pathogens. PMID:26030150
Dubay, Shelli; Jacques, Christopher; Golden, Nigel; Kern, Bryant; Mahoney, Kathleen; Norton, Andrew; Patnayak, Devi; Van Deelen, Timothy
2015-01-01
White-tailed deer (Odocoileus virginianus) are commonly exposed to disease agents that affect livestock but environmental factors that predispose deer to exposure are unknown for many pathogens. We trapped deer during winter months on two study areas (Northern Forest and Eastern Farmland) in Wisconsin from 2010 to 2013. Deer were tested for exposure to six serovars of Leptospira interrogans (grippotyphosa, icterohaemorrhagiae, canicola, bratislava, pomona, and hardjo), bovine viral diarrhea virus (BVDV-1 and BVDV-2), infectious bovine rhinotracheitis virus (IBR), and parainfluenza 3 virus (PI3). We used logistic regression to model potential intrinsic (e.g., age, sex) and extrinsic (e.g., land type, study site, year, exposure to multiple pathogens) variables we considered biologically meaningful to exposure of deer to livestock pathogens. Deer sampled in 2010-2011 did not demonstrate exposure to BVDV, so we did not test for BVDV in subsequent years. Deer had evidence of exposure to PI3 (24.7%), IBR (7.9%), Leptospira interrogans serovar pomona (11.7%), L. i. bratislava (1.0%), L. i. grippotyphosa (2.5%) and L. i. hardjo (0.3%). Deer did not demonstrate exposure to L. interrogans serovars canicola and icterohaemorrhagiae. For PI3, we found that capture site and year influenced exposure. Fawns (n = 119) were not exposed to L. i. pomona, but land type was an important predictor of exposure to L. i. pomona for older deer. Our results serve as baseline exposure levels of Wisconsin white-tailed deer to livestock pathogens, and helped to identify important factors that explain deer exposure to livestock pathogens.
Bradley, J. A.
1985-01-01
Infectious bovine rhinotracheitis virus was eradicated from a 150 cow beef herd at the Animal Diseases Research Institute, Lethbridge, Alberta. Tests used to accomplish this included standard and modified serum-virus neutralization tests and an enzymelinked immunosorbent assay. These results and those of preliminary pilot studies in the herd and in a nonvaccinated, infectious bovine rhinotracheitis-infected 450 cow beef herd suggest that eradication of infectious bovine rhinotracheitis infection can be considered as a practical control alternative to vaccination, and that young animals in purebred herds could be monitored serologically and isolated, to enhance their eligibility for entry into artificial insemination studs or for export. PMID:17422544
Mushi, E Z; Karstad, L; Jessett, D M; Rossiter, P B
1979-07-01
Spontaneous vulvovaginitis erupted in wildebeest (Connochaetes taurinus) after betamethasone inoculation. Infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV) is probably a venereal disease because virgin wildebeest did not develop vulvovaginitis after betamethasone injections, nor was the virus transmitted to these virgin wildebeest and steers which were in pen contact with the affected animals. A domestic bovine heifer developed mild IPV and became a virus carrier, when exposed to the wildebeest IPV virus by vaginal instillation.
Unterer, S; Busch, K; Leipig, M; Hermanns, W; Wolf, G; Straubinger, R K; Mueller, R S; Hartmann, K
2014-01-01
Etiology of hemorrhagic gastroenteritis (HGE) syndrome in dogs is unknown and histopathologic and microbial investigations have only been performed post mortem. To identify characteristic intra vitam endoscopic and histologic mucosal lesions, as well as bacterial species, within the mucosa of dogs with HGE. Ten dogs diagnosed with HGE were included. Eleven dogs with gastroduodenoscopy and different intestinal diseases were used as controls for microbial changes. Dogs pretreated with antibiotics or diagnosed with any disease known to cause bloody diarrhea were excluded from the study. In this prospective study, gastrointestinal biopsies were collected from 10 dogs with HGE. Endoscopic and histologic changes were assessed according to WSAVA guidelines. Biopsies from the stomach, duodenum, ileum, and colon were investigated by histology and by immunohistochemistry for the presence of Clostridium spp. and parvovirus. The first duodenal biopsy taken with a sterile forceps was submitted for bacterial culture. Acute mucosal lesions were only found in the intestines, not in the stomach. Clostridium spp., identified as Clostridium perfringens in 6/9 cases, were detected on the small intestinal mucosa in all dogs with HGE, either by culture or immunohistopathology. In the control group, C. perfringens could only be cultured in one of 11 dogs. The results of this study demonstrate an apparent association between C. perfringens and the occurrence of acute hemorrhagic diarrhea. The term "HGE," which implies the involvement of the stomach, should be renamed as "acute hemorrhagic diarrhea syndrome." Copyright © 2013 by the American College of Veterinary Internal Medicine.
Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections
Chentoufi, Aziz Alami; BenMohamed, Lbachir
2012-01-01
Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed. PMID:23320014
Pascual, María José; Merwaiss, Fernando; Leal, Emilse; Quintana, María Eugenia; Capozzo, Alejandra V; Cavasotto, Claudio N; Bollini, Mariela; Alvarez, Diego E
2018-01-01
Antiviral targeting of virus envelope proteins is an effective strategy for therapeutic intervention of viral infections. Here, we took a computer-guided approach with the aim of identifying new antivirals against the envelope protein E2 of bovine viral diarrhea virus (BVDV). BVDV is an enveloped virus with an RNA genome responsible for major economic losses of the cattle industry worldwide. Based on the crystal structure of the envelope protein E2, we defined a binding site at the interface of the two most distal domains from the virus membrane and pursued a hierarchical docking-based virtual screening search to identify small-molecule ligands of E2. Phenyl thiophene carboxamide derivative 12 (PTC12) emerged as a specific inhibitor of BVDV replication from in vitro antiviral activity screening of candidate molecules, displaying an IC 50 of 0.30 μM against the reference NADL strain of the virus. Using reverse genetics we constructed a recombinant BVDV expressing GFP that served as a sensitive reporter for the study of the mechanism of action of antiviral compounds. Time of drug addition assays showed that PTC12 inhibited an early step of infection. The mechanism of action was further dissected to find that the compound specifically acted at the internalization step of virus entry. Interestingly, we demonstrated that similar to PTC12, the benzimidazole derivative 03 (BI03) selected in the virtual screen also inhibited internalization of BVDV. Furthermore, docking analysis of PTC12 and BI03 into the binding site revealed common interactions with amino acid residues in E2 suggesting that both compounds could share the same molecular target. In conclusion, starting from a targeted design strategy of antivirals against E2 we identified PTC12 as a potent inhibitor of BVDV entry. The compound can be valuable in the design of antiviral strategies in combination with already well-characterized polymerase inhibitors of BVDV. Copyright © 2017 Elsevier B.V. All rights reserved.
Alfieri, Amauri Alcindo; Ribeiro, Juliane; de Carvalho Balbo, Luciana; Lorenzetti, Elis; Alfieri, Alice Fernandes
2018-04-18
Dairy calf rearing unit is a management system that is only recently being implemented by some milk producer's cooperatives in southern Brazil. However, aspects related to the health profile of the heifer calves that arrive in the rearing unit as well as about biosecurity practices and microbiological challenges have not yet been evaluated in this rearing system in a tropical country. Diarrhea is the main and most frequent consequence of enteric infections in newborn calves. This study, through some etiological and epidemiological characteristics of an outbreak of neonatal diarrhea, has the aim to alert to the possibility of pathogenic microorganism spread in a dairy heifer calf rearing unit. The diarrhea outbreak presented some non-regular characteristics observed in bovine coronavirus (BCoV) enteric infections in dairy calves. The spread of infection was extremely rapid (1 week); the attack rate (> 50%) was much higher than that observed in calves subjected to conventional rearing; and the age range (5 to 90 days) of the affected heifer calves was much broader than that often observed in the BCoV diarrhea worldwide. These unusual epidemiological characteristics observed in this BCoV diarrhea outbreak raise awareness of the health threat present in calf rearing units as well as of the easy and rapid viral spread in a population of young animals from different dairy herds and, therefore, with very distinct immunological status.
Mucosal and systemic adjuvant activity of alphavirus replicon particles
NASA Astrophysics Data System (ADS)
Thompson, Joseph M.; Whitmore, Alan C.; Konopka, Jennifer L.; Collier, Martha L.; Richmond, Erin M. B.; Davis, Nancy L.; Staats, Herman F.; Johnston, Robert E.
2006-03-01
Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines. vaccine vector | Venezuelan equine encephalitis virus | viral immunology | RNA virus
Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective.
Renukaradhya, Gourapura J; Dwivedi, Varun; Manickam, Cordelia; Binjawadagi, Basavaraj; Benfield, David
2012-06-01
Porcine reproductive and respiratory syndrome (PRRS) is an economically important infectious disease of swine. Constant emergence of variant strains of PRRS virus (PPRSV) and virus-mediated immune evasion followed by viral persistence result in increased incidence and recurrence of PRRS in swine herds. Current live and killed PRRSV vaccines administered by a parenteral route are ineffective in inducing complete protection. Thus, new approaches in design and delivery of PRRSV vaccines are needed to reduce the disease burden of the swine industry. Induction of an effective mucosal immunity to several respiratory pathogens by direct delivery of a vaccine to mucosal sites has proven to be effective in a mouse model. However, there are challenges in eliciting mucosal immunity to PRRS due to our limited understanding of safe and potent mucosal adjuvants, which could potentiate the mucosal immune response to PRRSV. The purpose of this review is to discuss methods for induction of protective mucosal immune responses in the respiratory tract of pigs. The manuscript also discusses how PRRSV modulates innate, adaptive and immunoregulatory responses at both mucosal and systemic sites of infected and/or vaccinated pigs. This information may help in the design of innovative mucosal vaccines to elicit superior cross-protective immunity against divergent field strains of PRRSV.
Thimmasandra Narayanappa, Athmaram; Sooryanarain, Harini; Deventhiran, Jagadeeswaran; Cao, Dianjun; Ammayappan Venkatachalam, Backiyalakshmi; Kambiranda, Devaiah; LeRoith, Tanya; Heffron, Connie Lynn; Lindstrom, Nicole; Hall, Karen; Jobst, Peter; Sexton, Cary; Meng, Xiang-Jin; Elankumaran, Subbiah
2015-05-19
Since May 2013, outbreaks of porcine epidemic diarrhea have devastated the U.S. swine industry, causing immense economic losses. Two different swine enteric coronaviruses (porcine epidemic diarrhea virus and Delta coronavirus) have been isolated from the affected swine population. The disease has been reported from at least 32 states of the United States and other countries, including Mexico, Peru, Dominican Republic, Canada, Columbia, Ecuador, and Ukraine, with repeated outbreaks in previously infected herds. Here we report the isolation and characterization of a novel mammalian orthoreovirus 3 (MRV3) from diarrheic feces of piglets from these outbreaks in three states and ring-dried swine blood meal from multiple sources. MRV3 could not be isolated from healthy or pigs that had recovered from epidemic diarrhea from four states. Several MRV3 isolates were obtained from chloroform-extracted pig feces or blood meal in cell cultures or developing chicken embryos. Biological characterization of two representative isolates revealed trypsin resistance and thermostability at 90°C. NextGen sequencing of ultrapurified viruses indicated a strong homology of the S1 segment to mammalian and bat MRV3. Neonatal piglets experimentally infected with these viruses or a chloroform extract of swine blood meal developed severe diarrhea and acute gastroenteritis with 100% mortality within 3 days postinfection. Therefore, the novel porcine MRV3 may contribute to enteric disease along with other swine enteric viruses. The role of MRV3 in the current outbreaks of porcine epidemic diarrhea in the United States remains to be determined, but the pathogenic nature of the virus warrants further investigations on its epidemiology and prevalence. Porcine orthoreoviruses causing diarrhea have been reported in China and Korea but not in the United States. We have isolated and characterized two pathogenic reassortant MRV3 isolates from swine fecal samples from porcine epidemic diarrhea outbreaks and ring-dried swine blood meal in the United States. These fecal and blood meal isolates or a chloroform extract of blood meal induced severe diarrhea and mortality in experimentally infected neonatal pigs. Genetic and phylogenetic analyses of two MRV3 isolates revealed that they are identical but differed significantly from nonpathogenic mammalian orthoreoviruses circulating in the United States. The present study provides a platform for immediate development of suitable vaccines and diagnostics to prevent and control porcine orthoreovirus diarrhea. Copyright © 2015 Thimmasandra Narayanappa et al.
Toftaker, Ingrid; Toft, Nils; Stokstad, Maria; Sølverød, Liv; Harkiss, Gordon; Watt, Neil; O' Brien, Amanda; Nødtvedt, Ane
2018-06-01
Bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCV) are responsible for respiratory disease and diarrhea in cattle worldwide. The Norwegian control program against these infections is based on herd-level diagnosis using a new multiplex immunoassay. The objective of this study was to estimate sensitivity and specificity across different cut-off values for the MVD-Enferplex BCV/BRSV multiplex, by comparing them to a commercially available ELISA, the SVANOVIR ® BCV-Ab and SVANOVIR ® BRSV-Ab, respectively. We analyzed bulk tank milk samples from 360 herds in a low- and 360 herds in a high-prevalence area. As none of the tests were considered perfect, estimation of test characteristics was performed using Bayesian latent class models. At the manufacturers' recommended cut-off values, the median sensitivity for the BRSV multiplex and the BRSV ELISA was 94.4 [89.8-98.7 95% Posterior Credibility Interval (PCI)] and 99.8 [98.7-100 95% PCI], respectively. The median specificity for the BRSV multiplex was 90.6 [85.5-94.4 95% PCI], but only 57.4 [50.5-64.4 95% PCI] for the BRSV ELISA. However, increasing the cut-off of the BRSV ELISA increased specificity without compromising sensitivity. For the BCV multiplex we found that by using only one of the three antigens included in the test, the specificity increased, without concurrent loss in sensitivity. At the recommended cut-off this resulted in a sensitivity of 99.9 [99.3-100 95% PCI] and specificity of 93.7 [88.8-97.8 95% PCI] for the multiplex and a sensitivity of 99.5 [98.1-100 95% PCI] and a specificity of 99.6 [97.6-100 95% PCI] for the BCV ELISA. Copyright © 2018 Elsevier B.V. All rights reserved.
Hessman, Bill E; Fulton, Robert W; Sjeklocha, David B; Murphy, Timothy A; Ridpath, Julia F; Payton, Mark E
2009-01-01
To evaluate economic effects and health and performance of the general cattle population after exposure to cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) in a feedlot. 21,743 high-risk calves from the southeastern United States. PI status was determined by use of an antigen-capture ELISA (ACE) and confirmed by use of a second ACE, reverse transcriptase-PCR assay of sera, immunohistochemical analysis, and virus isolation from sera. Groups with various amounts of exposure to BVDV PI cattle were used. After being placed in the feedlot, identified PI cattle were removed from 1 section, but PI cattle remained in another section of the feedlot. Exposure groups for cattle lots arriving without PI animals were determined by spatial association to cattle lots, with PI animals remaining or removed from the lot. 15,348 cattle maintained their exposure group. Performance outcomes improved slightly among the 5 exposure groups as the risk for exposure to BVDV PI cattle decreased. Health outcomes had an association with exposure risk that depended on the exposure group. Comparing cattle lots with direct exposure with those without direct exposure revealed significant improvements in all performance outcomes and in first relapse percentage and mortality percentage in the health outcomes. Economic analysis revealed that fatalities accounted for losses of $5.26/animal and performance losses were $88.26/animal. This study provided evidence that exposure of the general population of feedlot cattle to BVDV PI animals resulted in substantial costs attributable to negative effects on performance and increased fatalities.
9 CFR 121.9 - Responsible official.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: African horse sickness virus, African swine fever virus, avian influenza virus (highly pathogenic), Bacillus anthracis, bovine spongiform encephalopathy agent, Brucella melitensis, classical swine fever... Valley fever virus, rinderpest virus, swine vesicular disease virus, and Venezuelan equine encephalitis...
9 CFR 121.9 - Responsible official.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: African horse sickness virus, African swine fever virus, avian influenza virus (highly pathogenic), Bacillus anthracis, bovine spongiform encephalopathy agent, Brucella melitensis, classical swine fever... Valley fever virus, rinderpest virus, swine vesicular disease virus, and Venezuelan equine encephalitis...
Xu, J; Mendez, E; Caron, P R; Lin, C; Murcko, M A; Collett, M S; Rice, C M
1997-01-01
Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication. PMID:9188600
Soraires Santacruz, María C; Fabiani, Matías; Castro, Eliana F; Cavallaro, Lucía V; Finkielsztein, Liliana M
2017-08-01
A series of N 4 -arylsubstituted thiosemicarbazones derived from 1-indanones and a set of compounds lacking such substitution in the N 4 position of the thiosemicarbazone moiety were synthesized and evaluated for their anti-bovine viral diarrhea virus (BVDV) activity. Among these, derivatives 2 and 15 displayed high activity (EC 50 =2.7±0.4 and 0.7±0.1µM, respectively) as inhibitors of BVDV replication. Novel key structural features related to the anti-BVDV activity were identified by structure-activity relationship (SAR) analysis. In a previous study, the thiosemicarbazone of 5,6-dimethoxy-1-indanone (5,6-TSC) was characterized as a non-nucleoside inhibitor (NNI) of the BVDV RNA-dependent RNA polymerase. In the present work, cross-resistance assays were performed with the most active compounds. Such studies were carried out on 5,6-TSC resistant BVDV (BVDV-TSC r T1) carrying mutations in the viral polymerase. This BVDV mutant was also resistant to compound 15. Molecular docking studies and MM/PBSA calculations were performed to assess the most active derivatives at the 5,6-TSC viral polymerase binding site. The differences in the interaction pattern and the binding affinity of derivative 15 either to the wild type or BVDV-TSC r T1 polymerase were key factors to define the mode of action of this compound. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Study of the Immunologic Response to Second Heterotypic Bluetongue Virus Infection in Mice
1983-05-01
Bluetongue disease. Adv Vet Sci Comp Med 15: 1, 1971 24. Breckon RD, Luedke AJ, Walton TE: Bluetongue virus in bovine semen: Viral isolation. AM J Vet Res...Intervirology 3: 47, 1974 40. DuToit RM: Bluetongue --Recent advances in research. The role played by bovines in the transmission of bluetongue in sheep...AJ, Walton TE, Jones RE: Detection of bluetongue virus in bovine semen. Proc 20th World Vet Cong 3: 2039, 1975 154 99. Luedke AJ, Jochim MM, Jones RH
Overview of the causes of chronic diarrhea in children
USDA-ARS?s Scientific Manuscript database
The major causes and the prevalence of chronic diarrhea differ between developed and developing countries. In the developing world, chronic diarrhea is typically associated with serial enteric infections and malnutrition; it is manifested by a chronic enteropathy, with impaired mucosal healing, and ...
2013-01-01
Bovine reproductive disease attributable to bovine herpes virus-1 (BoHV-1) was first described in Germany in the 19th century, being recognised primarily as the cause of infectious vulvovaginitis and balanoposthitis until the mid-1950s when a more virulent strain of the virus (BoHV-1.1) associated with respiratory disease (infectious bovine rhinotracheitis; IBR) emerged in the western United States. Subsequently, IBR emerged as a clinical condition in Europe, from the 1970s onward. While the ability of BoHV-1 to produce respiratory disease is now well recognised, the potential negative outcomes of infection on fertility and reproduction are less frequently considered. This review was conducted against the background of the prioritization of disease caused by BoHV-1 as one of several diseases to be addressed by Animal Health Ireland, with the twin goals of summarizing the published literature on the potential outcomes of infection at different stages of breeding and pregnancy, and of describing the emergence of BoHV-1 as a significant pathogen in Ireland and the UK. PMID:23916092
ASLAN, Muhammet Eren; AZKUR, Ahmet Kursat; GAZYAGCI, Serkal
2015-01-01
The aim of the study was to determine the epidemiological data of bovine viral diarrhea virus (BVDV), bovine herpesvirus-1 (BHV-1), bovine herpesvirus-4 (BHV-4), bovine herpesvirus-5 (BHV-5) and Brucella–associated cattle that were previously reported to have abortion and infertility problems in Ankara, Corum, Kirikkale and Yozgat provinces, Turkey. Whole blood and sera samples were obtained from 656 cattle, and antibodies against Brucella spp. were detected in 45 (6.86%) and 41 (6.25%) animals by Rose Bengal plate and serum tube agglutination tests, respectively. The seropositivity rates against BVDV, BHV-1 and BHV-4 were 70.89%, 41.3% and 28.78%, respectively. RT-PCR and PCR were performed to detect RNA and DNA viruses in blood samples, respectively. The BVDV 5′-untranslated region and BHV-1 gB gene detected in this study were phylogenetically analyzed. The BVDV strains analyzed in this study were closely related to those previously reported from Turkey. The nucleotide sequence from the BHV-1 strain detected in this study is the first nucleotide sequence of BHV-1 circulating in this area of Turkey deposited in the GenBank. The presence of Brucella spp. and prevalence of BHV-1, BHV-4 and BVDV in cattle should be further investigated throughout these regions. PMID:26096964
USDA-ARS?s Scientific Manuscript database
Bovine coronavirus (BCV) is associated with respiratory tract infections in cattle of all ages; however, a temporal study to evaluate the effect of BCV immunity on virus shedding and bovine respiratory disease (BRD) incidence in pre-weaned beef calves has not been reported. Thus, we report here a pr...
Franceschi, Valentina; Jacca, Sarah; Sassu, Elena L.; Stellari, Fabio F.; van Santen, Vicky L.; Donofrio, Gaetano
2014-01-01
Raising of alpacas as exotic livestock for wool and meat production and as companion animals is growing in importance in the United States, Europe and Australia. Furthermore the alpaca, as well as the rest of the camelids, possesses the peculiarity of producing single-chain antibodies from which nanobodies can be generated. Nanobodies, due to their structural simplicity and reduced size, are very versatile in terms of manipulation and bio-therapeutic exploitation. In fact the biotech companies involved in nanobody production and application continue to grow in number and size. Hence, the development of reagents and tools to assist in the further growth of this new scientific and entrepreneurial reality is becoming a necessity. These are needed mainly to address alpaca disease diagnosis and prophylaxis, and to develop alpaca immunization strategies for nanobody generation. For instance an immortalized alpaca cell line would be extremely valuable. In the present work the first stabilized alpaca cell line from alpaca skin stromal cells (ASSCs) was generated and characterized. This cell line was shown to be suitable for replication of viruses bovine herpesvirus-1, bovine viral diarrhea virus and caprine herpesvirus-1 and the endocellular parasite Neospora caninum. Moreover ASSCs were easy to transfect and transduce by several methods. These two latter characteristics are extremely useful when recombinant antigens need to be produced in a host homologous system. This work could be considered as a starting point for the expansion of the biotechnologies linked to alpaca farming and industry. PMID:25140515
Franceschi, Valentina; Jacca, Sarah; Sassu, Elena L; Stellari, Fabio F; van Santen, Vicky L; Donofrio, Gaetano
2014-01-01
Raising of alpacas as exotic livestock for wool and meat production and as companion animals is growing in importance in the United States, Europe and Australia. Furthermore the alpaca, as well as the rest of the camelids, possesses the peculiarity of producing single-chain antibodies from which nanobodies can be generated. Nanobodies, due to their structural simplicity and reduced size, are very versatile in terms of manipulation and bio-therapeutic exploitation. In fact the biotech companies involved in nanobody production and application continue to grow in number and size. Hence, the development of reagents and tools to assist in the further growth of this new scientific and entrepreneurial reality is becoming a necessity. These are needed mainly to address alpaca disease diagnosis and prophylaxis, and to develop alpaca immunization strategies for nanobody generation. For instance an immortalized alpaca cell line would be extremely valuable. In the present work the first stabilized alpaca cell line from alpaca skin stromal cells (ASSCs) was generated and characterized. This cell line was shown to be suitable for replication of viruses bovine herpesvirus-1, bovine viral diarrhea virus and caprine herpesvirus-1 and the endocellular parasite Neospora caninum. Moreover ASSCs were easy to transfect and transduce by several methods. These two latter characteristics are extremely useful when recombinant antigens need to be produced in a host homologous system. This work could be considered as a starting point for the expansion of the biotechnologies linked to alpaca farming and industry.
Detection and phylogenetic analysis of a new adenoviral polymerase gene in reptiles in Korea.
Bak, Eun-Jung; Jho, Yeonsook; Woo, Gye-Hyeong
2018-06-01
Over a period of 7 years (2004-2011), samples from 34 diseased reptiles provided by local governments, zoos, and pet shops were tested for viral infection. Animals were diagnosed based on clinical signs, including loss of appetite, diarrhea, rhinorrhea, and unexpected sudden death. Most of the exotic animals had gastrointestinal problems, such as mucosal redness and ulcers, while the native animals had no clinical symptoms. Viral sequences were found in seven animals. Retroviral genes were amplified from samples from five Burmese pythons (Python molurus bivittatus), an adenovirus was detected in a panther chameleon (Furcifer pardalis), and an adenovirus and a paramyxovirus were detected in a tropical girdled lizard (Cordylus tropidosternum). Phylogenetic analysis of retroviruses and paramyxoviruses showed the highest sequence identity to both a Python molurus endogenous retrovirus and a Python curtus endogenous retrovirus and to a lizard isolate, respectively. Partial sequencing of an adenoviral DNA polymerase gene from the lizard isolate suggested that the corresponding virus was a novel isolate different from the reference strain (accession no. AY576677.1). The virus was not isolated but was detected, using molecular genetic techniques, in a lizard raised in a pet shop. This animal was also coinfected with a paramyxovirus.
Dash, Pradyot; Barnett, Paul V; Denyer, Michael S; Jackson, Terry; Stirling, Catrina M A; Hawes, Philippa C; Simpson, Jennifer L; Monaghan, Paul; Takamatsu, Haru-H
2010-09-01
Three-dimensional (3D) porcine nasal mucosal and tracheal mucosal epithelial cell cultures were developed to analyze foot-and-mouth disease virus (FMDV) interactions with mucosal epithelial cells. The cells in these cultures differentiated and polarized until they closely resemble the epithelial layers seen in vivo. FMDV infected these cultures predominantly from the apical side, primarily by binding to integrin alphav beta6, in an Arg-Gly-Asp (RGD)-dependent manner. However, FMDV replicated only transiently without any visible cytopathic effect (CPE), and infectious progeny virus could be recovered only from the apical side. The infection induced the production of beta interferon (IFN-beta) and the IFN-inducible gene Mx1 mRNA, which coincided with the disappearance of viral RNA and progeny virus. The induction of IFN-beta mRNA correlated with the antiviral activity of the supernatants from both the apical and basolateral compartments. IFN-alpha mRNA was constitutively expressed in nasal mucosal epithelial cells in vitro and in vivo. In addition, FMDV infection induced interleukin 8 (IL-8) protein, granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES mRNA in the infected epithelial cells, suggesting that it plays an important role in modulating the immune response.
Barrett, Damien; Parr, Mervyn; Fagan, John; Johnson, Alan; Tratalos, Jamie; Lively, Francis; Diskin, Michael; Kenny, David
2018-01-06
There are limited data available, in Ireland or elsewhere, to determine the extent of exposure to various endemic diseases among beef cows and factors associated with exposure to causative pathogens. The objectives of this study were to determine the herd and within herd prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Leptospirosis and Neosporosis in a large scale study of commercial beef herds on the island of Ireland, and to examine herd level factors associated with exposure to these pathogens in these herds. The average number of cows tested per herd was 35.5 (median 30). Herd level seroprevalence to Bovine Herpesvirus-1(BHV-1), Bovine Viral-Diarrhoea Virus (BVDV), Leptospirosis and Neosporosis was 90%, 100%, 91% and 67%, respectively, while the mean within herd prevalence for the these pathogens was 40%, 77.7%, 65.7% and 5.7%, respectively. The study confirms that the level of seroconversion for the four pathogens of interest increases with herd size. There was also evidence that exposure to one pathogen may increase the risk of exposure to another pathogen. Herd level seroprevalences were in excess of 90% for BVDV, BHV-1 and Leptosporosis. Larger herds were subject to increased exposure to disease pathogens. This study suggests that exposure to several pathogens may be associated with the further exposure to other pathogens.
A thiopurine drug inhibits West Nile virus production in cell culture, but not in mice.
Lim, Pei-Yin; Keating, Julie A; Hoover, Spencer; Striker, Rob; Bernard, Kristen A
2011-01-01
Many viruses within the Flavivirus genus cause significant disease in humans; however, effective antivirals against these viruses are not currently available. We have previously shown that a thiopurine drug, 6-methylmercaptopurine riboside (6MMPr), inhibits replication of distantly related viruses within the Flaviviridae family in cell culture, including bovine viral diarrhea virus and hepatitis C virus replicon. Here we further examined the potential antiviral effect of 6MMPr on several diverse flaviviruses. In cell culture, 6MMPr inhibited virus production of yellow fever virus, dengue virus-2 (DENV-2) and West Nile virus (WNV) in a dose-dependent manner, and DENV-2 was significantly more sensitive to 6MMPr treatment than WNV. We then explored the use of 6MMPr as an antiviral against WNV in an immunocompetent mouse model. Once a day treatment of mice with 0.5 mg 6MMPr was just below the toxic dose in our mouse model, and this dose was used in subsequent studies. Mice were treated with 6MMPr immediately after subcutaneous inoculation with WNV for eight consecutive days. Treatment with 6MMPr exacerbated weight loss in WNV-inoculated mice and did not significantly affect mortality. We hypothesized that 6MMPr has low bioavailability in the central nervous system (CNS) and examined the effect of pre-treatment with 6MMPr on viral loads in the periphery and CNS. Pre-treatment with 6MMPr had no significant effect on viremia or viral titers in the periphery, but resulted in significantly higher viral loads in the brain, suggesting that the effect of 6MMPr is tissue-dependent. In conclusion, despite being a potent inhibitor of flaviviruses in cell culture, 6MMPr was not effective against West Nile disease in mice; however, further studies are warranted to reduce the toxicity and/or improve the bioavailability of this potential antiviral drug.
Optimal management of collagenous colitis: a review
O’Toole, Aoibhlinn
2016-01-01
Collagenous colitis (CC) is an increasingly recognized cause of chronic inflammatory bowel disease characterized by watery non-bloody diarrhea. As a lesser studied inflammatory bowel disease, many aspects of the CC’s natural history are poorly understood. This review discusses strategies to optimally manage CC. The goal of therapy is to induce clinical remission, <3 stools a day or <1 watery stool a day with subsequent improved quality of life (QOL). Antidiarrheal can be used as monotherapy or with other medications to control diarrhea. Budesonide therapy has revolutionized treatment and is superior to prednisone, however, the treatment is associated with high-relapse rates and the management of refractory disease is challenging. Ongoing trials will address the safety and efficacy of low-dose maintenance therapy. For those with refractory disease, case reports and case series support the role of biologic agents. Diversion of the fecal stream normalizes colonic mucosal changes and ileostomy may be considered where anti-tumor necrosis factor (TNF)-α agents are contraindicated. Underlying celiac disease, bile salt diarrhea, and associated thyroid dysfunction should be ruled out. The author recommends smoking cessation as well as avoidance of nonsteroidal anti-inflammatories as well as other associated medications. PMID:26929656
Bok, M; Miño, S; Rodriguez, D; Badaracco, A; Nuñes, I; Souza, S P; Bilbao, G; Louge Uriarte, E; Galarza, R; Vega, C; Odeon, A; Saif, L J; Parreño, V
2015-12-31
Bovine coronavirus (BCoV) is an important viral pathogen associated with neonatal calf diarrhea. Our aim was to investigate the incidence of BCoV in diarrhea outbreaks in beef and dairy herds from Argentina during 1994-2010. A total of 5.365 fecal samples from diarrheic calves were screened for BCoV diagnosis by ELISA. The virus was detected in 1.71% (92/5365) of the samples corresponding to 5.95% (63/1058) of the diarrhea cases in 239 beef and 324 dairy farms. The detection rate of BCoV was significantly higher in dairy than in beef herds: 12.13% (29/239) vs. 4.32% (14/324) respectively. Phylogenetic analysis of the hypervariable S1 region of seven representative samples (from different husbandry systems, farm locations and years of sampling) indicated that BCoV strains circulating in Argentinean beef and dairy herds formed a cluster distinct from other geographical regions. Interestingly, Argentinean strains are distantly related (at both the nucleotide and amino acid levels) with the Mebus historic reference BCoV strain included in the vaccines currently available in Argentina. However, Mebus-induced antibodies were capable of neutralizing the BCoV Arg95, a field strain adapted to grow in vitro, and vice versa, indicating that both strains belong to the same CoV serotype reported in cattle. This work represents the first large survey describing BCoV circulation in Argentinean cattle. Copyright © 2015. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
This is the third installment of a 3 part series on bovine viral diarrhea (BVD), written for a lay publication whose core audience in dairy producers. Control of BVD in any dairy operation must rely on the implementation of an organized strategy combining biosecurity, surveillance and increased herd...
Kalenyak, Katja; Isaiah, Anitha; Heilmann, Romy M; Suchodolski, Jan S; Burgener, Iwan A
2018-02-01
We report the first study to evaluate the intestinal mucosal microbiota of dogs with inflammatory bowel disease (IBD) and dogs with food-responsive diarrhea (FRD) before and after treatment. It was hypothesized that differences in the microbial composition exist between both disease groups and within groups pre- vs. post-treatment. Duodenal and colonic biopsies were obtained endoscopically from 24 dogs (15 FRD, 9 IBD) before and after treatment. The intestinal microbiota was evaluated by Illumina sequencing of the bacterial 16S rRNA gene. The global bacterial composition did not differ between IBD and FRD dogs, nor between treatment status. However, several bacterial taxa showed a difference in abundance. Comparing disease groups, an unclassified genus of Neisseriaceae was abundant in the duodenum in the IBD group, whereas Bilophila occurred more frequently in the duodenum and Burkholderia in the colon of FRD dogs. Comparing the microbiota pre- and post-treatment revealed Enterococcus, Corynebacterium and Proteobacteria to be enriched in the duodenum of FRD dogs pre-treatment, while Bacteroides was abundant in the colon post-treatment. In dogs with IBD, Bacteroides also reached significant abundance in the colon post-treatment. In conclusion, some differences in individual bacterial taxa were identified between IBD and FRD dogs and between treatment status. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Circulating MicroRNAs in Serum from Cattle Challenged with Bovine Viral Diarrhea Virus.
Taxis, Tasia M; Bauermann, Fernando V; Ridpath, Julia F; Casas, Eduardo
2017-01-01
Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopathic field strain of BVDV. Five colostrum deprived neonate Holstein calves were inoculated with BVDV (challenged) and 4 were mock challenged (control). Serum from all calves was collected at four different times: prior to challenge (day 0) and at 4, 9, and 16 days post-challenge. RNA was extracted from sera, and expression, via read counts, of small non-coding RNAs were obtained using next-generation sequencing. A total of 905,861 sequences identified 427 microRNAs. Sixty-two microRNAs had >1,000 total reads across all samples. Bta-miR-339a, bta-miR-185, bta-miR-486, Bta-miR-92a, bta-miR-30e-5p, bta-let-7c, and bta-miR-2284x were significantly different ( P < 0.05) across time regardless of challenge status. Bta-miR-423-5p ( P = 0.008) and bta-miR-151-3p ( P = 0.005) were significantly different between challenged and control animals across time. In challenged animals, bta-miR-423-5p peaked in number of reads by day 4 and steadily declined from day 4 to day 16. In control animals, bta-miR-423-5p declined from day 0 to day 9 and increased in number by day 16. By day 16, both challenged and control animals had similar levels of bta-miR-423-5p, and these levels were similar to day 0 levels. Bta-miR-151-3p peaked at day 9 in challenged animals, while control animals decreased across time. By day 16, the number of reads of bta-miR-151-3p were similar between challenged and control animals. The level in challenged animals had returned to day 0 levels by day 16, whereas the levels for control animals was significantly lower ( P = 0.006) than day 0. Further studies are needed to establish if bta-miR-423-5p or bta-miR-151-3p could be used as a biomarker for exposure to BVDV.
Larsen, Alejandra; Gonzalez, Ester Teresa; Serena, María Soledad; Echeverría, María Gabriela; Mortola, Eduardo
2013-06-01
Bovine leukemia is a common retroviral infection of cattle. The disease is characterized by a strong immunological response to several viral proteins, but the antibodies against p24 and gp51 are predominant. In this study, a recombinant baculovirus containing the gag gene p24 was constructed and the protein, used as antigen, analyzed by western blot and an indirect in-house rp24-ELISA test. This allowed detecting the presence of antibodies for bovine leukemia virus in a panel of cattle sera. The authentication of the protein expands its potential use for different medical applications, from improved diagnosis of the disease to source of antigens to be included in a subunit vaccine.
Ma, Xueqing; Li, Pinghua; Bai, Xingwen; Sun, Pu; Bao, Huifang; Lu, Zengjun; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin
2014-10-13
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals. During 2010 and 2011, there was an epidemic of the Mya-98 lineage of the Southeast Asia (SEA) topotype in East Asia, including China. Changes in the FMDV 3A protein have been previously reported to be associated with the inability of FMDV to grow in bovine cells and cause disease in cattle. In this paper, we report the generation of a full-length infectious cDNA clone of FMDV O/SEA/Mya-98 strain O/GZSB/2011 for the first time along with two genetically modified viruses with deletion at positions 93-102 and 133-143 in 3A based on the established infectious clone. All the recombinant viruses grew well and displayed growth properties and plaque phenotypes similar to those of the parental virus in baby hamster kidney (BHK-21) cells, porcine kidney (PK-15) cells, and primary fetal porcine kidney (FPK) cells. While the recombinant viruses rvGZSB and rvSBΔ133-143 exhibited similar growth properties and plaque phenotypes with the parental virus in primary fetal bovine kidney (FBK) cells, the recombinant virus rvSBΔ93-102, containing deletion at positions 93-102 in 3A, grew at a slower rate and had a smaller plaque size phenotype in FBK cells than that of the parental virus. Therefore, the results suggest that the deletion at positions 93-102 of 3A protein does not affect FMDV replication efficiency in BHK-21, PK-15 and FPK cells, but affects virus replication efficiency in FBK cells, although, cannot alone account for the inability to replicate in bovine cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Serological survey for antibodies against pestiviruses in Wyoming domestic sheep.
Silveira, S; Falkenberg, S M; Elderbrook, M J; Sondgeroth, K S; Dassanayake, R P; Neill, J D; Ridpath, J F; Canal, C W
2018-06-01
Pestiviruses including Bovine viral diarrhea virus type 1 (BVDV-1), BVDV-2 and Border disease virus (BDV) have been reported in both sheep and cattle populations, together with the HoBi-like, an emerging group of pestiviruses. Pestivirus control programs in the United States have focused on the control of BVDV-1 and 2. The incidence of pestivirus infection in sheep in the United States and the risk of transmission between cattle and sheep populations are unknown. The aim of this study was to perform serological surveillance for pestivirus exposure in sheep from an important sheep producing state in the Unites States, Wyoming. For this, sera from 500 sheep, collected across the state of Wyoming (US) in 2015-2016, were examined by comparative virus neutralization assay against four species/proposed species of pestiviruses: BVDV-1, BVDV-2, BDV and HoBi-like virus. Rates of exposure varied between geographic regions within the state. The overall pestivirus prevalence of antibodies was 5.6%. Antibodies were most frequently detected against BVDV-1 (4%), and the highest antibody titers were also against BVDV-1. Data from this study highlights understanding of the dynamics of sheep pestivirus exposure, consideration of reference strains used for VN assays, transmission patterns, and potential vaccination history should be taken into account in implementation of control measures against pestiviruses in sheep and for successful BVDV control programs in cattle. Published by Elsevier B.V.
The National Bio- and Agro-Defense Facility: Issues for Congress
2007-11-15
and mouth disease (FMD), classical swine fever , African swine fever , Rift Valley fever , Nipah virus, Hendra virus, contagious bovine pleuropneumonia...Preparedness, by Jim Monke. 2 Examples include influenza, plague, West Nile Virus, and Rift Valley Fever . 3 These diseases are sometimes referred to as
Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus.
Ma, Xueqing; Li, Pinghua; Sun, Pu; Bai, Xingwen; Bao, Huifang; Lu, Zengjun; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin
2015-04-01
Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein. Copyright © 2015 Elsevier B.V. All rights reserved.
Isolation and characterization of a new enterovirus F in yak feces in the Qinghai-Tibetan Plateau.
He, Huan; Tang, Cheng; Chen, Xinnuo; Yue, Hua; Ren, Yupeng; Liu, Yan; Zhang, Bin
2017-02-01
An enterovirus (EV) strain, designated as SWUN-AB001, was isolated in the Qinghai-Tibetan Plateau from a yak with severe diarrheal disease. The complete genome of strain SWUN-AB001 was 7,382 bp in length and shared 35.1-68.5% nt identities with bovine EVs belonging to a candidate new type EV-F7. Using the sequence difference values in the VP1 gene as a criterion for demarcating a new serotype/genotype in the Enterovirus genus, strain SWUN-AB001 had only a 71.1% nt and a 79.2% aa identity, in the VP1 region, with the most closely matched EV, further indicating that a new type of EV had been identified. Phylogenetic analysis of the nt sequence of the viral polyprotein and of VP1 genes demonstrated that the virus fell within the EV-F cluster, but was located in a unique lineage. Furthermore, a large-scale surveillance study indicated that the prevalence of this EV in yaks was 31.05% (95% CI = 25.5-37.6%) in 235 animals with diarrhea and 24.13% (95% CI = 17.4-32.4%) in 116 healthy yaks. However, there was no significant difference in virus prevalence between diarrheal and healthy samples. Interestingly, in the Tibet region, diarrheal feces had a higher incidence of EVs than feces of healthy yaks (odd ratios = 6.03, 95% CI = 1.93-18.86), indicating that the incidence of EV was potentially correlated with the clinical symptom of diarrhea in yaks.
Favier, P A; Marin, M S; Pérez, S E
2012-01-01
Bovine herpesvirus type 5 (BoHV-5) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. This virus is a major causative agent of non-suppurative meningoencephalitis in young cattle. It was first isolated in 1962 from a neurological disease outbreak in Australia. BoHV-5 is genetically and antigenically related to bovine herpesvirus type 1 (BoHV-1), a highly prevalent virus responsible for respiratory and genital disease in cattle. Initially, BoHV-5 was considered a subtype of BoHV-1 (BoHV-1.3). However, the exclusive presentation of outbreaks of neurological disease suggested that the virus was a new agent with characteristics of neuropathogenicity. Even though both are neurotropic viruses, only BoHV-5 is capable of replicating extensively in the central nervous system and inducing neurological disease. Occasionally, encephalitis caused by BoHV-1 has been reported. Like other alpha-herpesviruses, BoHV-5 can establish latency in nervous ganglia and, by stress factors or glucocorticoid treatment, latent virus can be reactivated. During episodes of reactivation, the virus is excreted in nasal, ocular and genital secretions and transmitted to other susceptible hosts. Recently, BoHV-5 has been associated with infection of the reproductive tract. The virus has been isolated and the presence of viral DNA has been demonstrated in semen samples from Brazil and Australia and natural transmission of the virus through contaminated semen has also been described. Embryos and oocytes are permissive for BoHV-5 infection and BoHV-5 DNA has been detected in the central nervous system of aborted fetuses. The objective of this review is to compile the limited information on the recent association between BoHV-5 and reproductive disorders in cattle.
Favier, P.A.; Marin, M.S.; Pérez, S.E.
2012-01-01
Bovine herpesvirus type 5 (BoHV-5) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. This virus is a major causative agent of non-suppurative meningoencephalitis in young cattle. It was first isolated in 1962 from a neurological disease outbreak in Australia. BoHV-5 is genetically and antigenically related to bovine herpesvirus type 1 (BoHV-1), a highly prevalent virus responsible for respiratory and genital disease in cattle. Initially, BoHV-5 was considered a subtype of BoHV-1 (BoHV-1.3). However, the exclusive presentation of outbreaks of neurological disease suggested that the virus was a new agent with characteristics of neuropathogenicity. Even though both are neurotropic viruses, only BoHV-5 is capable of replicating extensively in the central nervous system and inducing neurological disease. Occasionally, encephalitis caused by BoHV-1 has been reported. Like other alpha-herpesviruses, BoHV-5 can establish latency in nervous ganglia and, by stress factors or glucocorticoid treatment, latent virus can be reactivated. During episodes of reactivation, the virus is excreted in nasal, ocular and genital secretions and transmitted to other susceptible hosts. Recently, BoHV-5 has been associated with infection of the reproductive tract. The virus has been isolated and the presence of viral DNA has been demonstrated in semen samples from Brazil and Australia and natural transmission of the virus through contaminated semen has also been described. Embryos and oocytes are permissive for BoHV-5 infection and BoHV-5 DNA has been detected in the central nervous system of aborted fetuses. The objective of this review is to compile the limited information on the recent association between BoHV-5 and reproductive disorders in cattle. PMID:26623291
Serosurveillance for Livestock Pathogens in Free-Ranging Mule Deer (Odocoileus hemionus)
Roug, Annette; Swift, Pamela; Torres, Steven; Jones, Karen; Johnson, Christine K.
2012-01-01
Routine disease surveillance has been conducted for decades in mule deer (Odocoileus hemionus) in California for pathogens shared between wildlife and domestic ruminants that may have implications for the animal production industry and wildlife health. Deer sampled from 1990 to 2007 (n = 2,619) were tested for exposure to six pathogens: bluetongue virus (BTV), epizootic hemorrhagic disease virus (EHDV), bovine viral diarrhea virus (BVDV), Leptospira spp., Anaplasma spp. and Brucella spp. We evaluated the relationship between exposure to these pathogens and demographic risk factors to identify broad patterns in seroprevalence across a large temporal and spatial scale. The overall seroprevalence for the entire study period was 13.4% for BTV, 16.8% for EHDV, 17.1% for BVDV, 6.5% for Leptospira spp., 0.2% for Brucella spp., and 17% for Anaplasma spp. Antibodies against BTV and EHDV were most prevalent in the deer populations of southern California. Antibodies against Leptospira spp. and Anaplasma spp. were most prevalent in coastal and central northern California whereas antibodies against BVDV were most prevalent in central-eastern and northeastern California. The overall seroprevalence for Anaplasma spp. was slightly lower than detected in previous studies. North and central eastern California contains large tracts of federal land grazed by livestock; therefore, possible contact between deer and livestock could explain the high BVDV seroprevalence found in these areas. Findings from this study will help to establish baseline values for future comparisons of pathogen exposure in deer, inform on long-term trends in deer population health and provide relevant information on the distribution of diseases that are shared between wildlife and livestock. PMID:23209790
Tam, Ka Ian; Roner, Michael R.
2011-01-01
Rotavirus is the leading cause of severe diarrhea disease in newborns and young children worldwide with approximately 300,000 pre-adolescent deaths each year. Quillaja saponins are a natural aqueous extract obtained from the Chilean soapbark tree. The extract is approved for use in humans by the FDA for use in beverages as a food addictive. We have demonstrated that Quillaja extracts have strong antiviral activities in vitro against six different viruses. In this study, we evaluated the in vivo antiviral activity of these extracts against rhesus rotavirus (RRV) using a mouse model. We established that at a dosage of 0.015 mg/mouse of saponin extract, RRV induced diarrhea can be significantly reduced from 79% to 11% when mice are exposed to 500 plaque-forming-units (PFU) for each of five consecutive days. Additionally, while a reduction of RRV induced diarrhea depended both on the concentration of virus introduced and on the amount of Quillaja extract given to each mouse, the severity and interval of diarrhea under a variety of conditions tested, in all the treated mice were greatly reduced when compared to those that did not receive the Quillaja extracts. Mechanistically, there is strong evidence that the Quillaja extracts are able to “block” rotavirus infection by inhibiting virus-host attachment through disruption of cellular membrane proteins and/or virus receptors. We believe that Quillaja extracts have promise as antivirals to reduce rotavirus infection and the severity of the disease in humans. PMID:21549151
Discovery of a bovine enterovirus in alpaca.
McClenahan, Shasta D; Scherba, Gail; Borst, Luke; Fredrickson, Richard L; Krause, Philip R; Uhlenhaut, Christine
2013-01-01
A cytopathic virus was isolated using Madin-Darby bovine kidney (MDBK) cells from lung tissue of alpaca that died of a severe respiratory infection. To identify the virus, the infected cell culture supernatant was enriched for virus particles and a generic, PCR-based method was used to amplify potential viral sequences. Genomic sequence data of the alpaca isolate was obtained and compared with sequences of known viruses. The new alpaca virus sequence was most similar to recently designated Enterovirus species F, previously bovine enterovirus (BEVs), viruses that are globally prevalent in cattle, although they appear not to cause significant disease. Because bovine enteroviruses have not been previously reported in U.S. alpaca, we suspect that this type of infection is fairly rare, and in this case appeared not to spread beyond the original outbreak. The capsid sequence of the detected virus had greatest homology to Enterovirus F type 1 (indicating that the virus should be considered a member of serotype 1), but the virus had greater homology in 2A protease sequence to type 3, suggesting that it may have been a recombinant. Identifying pathogens that infect a new host species for the first time can be challenging. As the disease in a new host species may be quite different from that in the original or natural host, the pathogen may not be suspected based on the clinical presentation, delaying diagnosis. Although this virus replicated in MDBK cells, existing standard culture and molecular methods could not identify it. In this case, a highly sensitive generic PCR-based pathogen-detection method was used to identify this pathogen.
Discovery of a Bovine Enterovirus in Alpaca
McClenahan, Shasta D.; Scherba, Gail; Borst, Luke; Fredrickson, Richard L.; Krause, Philip R.; Uhlenhaut, Christine
2013-01-01
A cytopathic virus was isolated using Madin-Darby bovine kidney (MDBK) cells from lung tissue of alpaca that died of a severe respiratory infection. To identify the virus, the infected cell culture supernatant was enriched for virus particles and a generic, PCR-based method was used to amplify potential viral sequences. Genomic sequence data of the alpaca isolate was obtained and compared with sequences of known viruses. The new alpaca virus sequence was most similar to recently designated Enterovirus species F, previously bovine enterovirus (BEVs), viruses that are globally prevalent in cattle, although they appear not to cause significant disease. Because bovine enteroviruses have not been previously reported in U.S. alpaca, we suspect that this type of infection is fairly rare, and in this case appeared not to spread beyond the original outbreak. The capsid sequence of the detected virus had greatest homology to Enterovirus F type 1 (indicating that the virus should be considered a member of serotype 1), but the virus had greater homology in 2A protease sequence to type 3, suggesting that it may have been a recombinant. Identifying pathogens that infect a new host species for the first time can be challenging. As the disease in a new host species may be quite different from that in the original or natural host, the pathogen may not be suspected based on the clinical presentation, delaying diagnosis. Although this virus replicated in MDBK cells, existing standard culture and molecular methods could not identify it. In this case, a highly sensitive generic PCR-based pathogen-detection method was used to identify this pathogen. PMID:23950875
Diagnostic gap in Bovine viral diarrhea virus serology during the periparturient period in cattle.
Bachofen, Claudia; Bollinger, Barbara; Peterhans, Ernst; Stalder, Hanspeter; Schweizer, Matthias
2013-09-01
Detection of antibodies against Bovine viral diarrhea virus (BVDV) in serum and milk by enzyme-linked immunosorbent assay (ELISA) is a crucial part of all ongoing national schemes to eradicate this important cattle pathogen. Serum and milk are regarded as equally suited for antibody measurement. However, when retesting a seropositive cow 1 day after calving, the serum was negative in 6 out of 9 different ELISAs. To further investigate this diagnostic gap around parturition, pre- and postcalving serum and milk samples of 5 cows were analyzed by BVDV antibody ELISA and serum neutralization test (SNT). By ELISA, 3 out of the 5 animals showed a diagnostic gap in the serum for up to 12 days around calving but all animals remained positive in SNT. In milk, the ELISA was strongly positive after birth but antibody levels decreased considerably within the next few days. Because of the immunoglobulin G (IgG)1-specific transport of serum antibodies into the mammary gland for colostrum production, the IgG subclass specificity of the total and the BVDV-specific antibodies were determined. Although all 5 animals showed a clear decrease in the total and BVDV-specific IgG1 antibody levels at parturition, the precalving IgG1-to-IgG2 ratios of the BVDV-specific antibodies were considerably lower in animals that showed the diagnostic gap. Results showed that BVDV seropositive cows may become "false" negative in several ELISAs in the periparturient period and suggest that the occurrence of this diagnostic gap is influenced by the BVDV-specific IgG subclass response of the individual animal.
Geelhaar, Anika; Moos, Verena; Schinnerling, Katina; Allers, Kristina; Loddenkemper, Christoph; Fenollar, Florence; LaScola, Bernard; Raoult, Didier; Schneider, Thomas
2010-01-01
Whipple's disease is a chronic multisystemic infection caused by Tropheryma whipplei that is characterized by arthritis, weight loss, and diarrhea. The immunological defects in the duodenal mucosa, the site of major replication of the agent underlying the pathogenesis of Whipple's disease, are poorly understood. Mucosal immunoglobulins are essential for the defense against intestinal pathogens; therefore, we analyzed the B-cell response in duodenal specimens and sera of Whipple's disease patients. Whereas systemic immunoglobulin production was affected only marginally, duodenal biopsy specimens of Whipple's disease patients contained reduced numbers of immunoglobulin-positive plasma cells and secreted less immunoglobulin compared to healthy controls but showed a weak secretory IgA response toward T. whipplei. This T. whipplei-specific intestinal immune response was not observed in controls. Thus, we were able to demonstrate that general mucosal immunoglobulin production in Whipple's disease patients is impaired. However, this deficiency does not completely abolish T. whipplei-specific secretory IgA production that nonetheless does not protect from chronic infection. PMID:20696822
Prevalence, transmission and impact of bovine leukosis in Michigan dairies
USDA-ARS?s Scientific Manuscript database
Bovine leukosis, caused by infection with the retrovirus bovine leukemia virus (BLV), has been characterized as a contagious, but practically benign disease of the immune system. National Animal Health Monitoring Surveys in 1996 and 2007 indicate complacency has resulted in high prevalence of infect...
Transmission of Oropouche Virus from Man to Hamster by the Midge ’Culicoides Paraensis’,
1981-11-01
with 0.75% bovine albumin, and frozen at 70*C for subsequent virus titration. Viremia values were calculated by the method of Reed and Muench (9...were immediately frozen at -70°C pending virus assay. Engorged midges were later triturated, suspended in PBS containing bovine albumin and the...certain arboviruses responsible for serious diseases of domestic animals such as bluetongue , African horse sickness, and Akabane fever (11-17). Among
Khattar, Sunil K; Samal, Sweety; Devico, Anthony L; Collins, Peter L; Samal, Siba K
2011-10-01
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.
Fecal calprotectin concentrations in adult dogs with chronic diarrhea.
Grellet, Aurélien; Heilmann, Romy M; Lecoindre, Patrick; Feugier, Alexandre; Day, Michael J; Peeters, Dominique; Freiche, Valérie; Hernandez, Juan; Grandjean, Dominique; Suchodolski, Jan S; Steiner, Jorg M
2013-05-01
To evaluate fecal calprotectin concentrations in healthy dogs and dogs with chronic diarrhea, to identify cutoff values for fecal calprotectin concentrations for use in differentiating dogs with chronic diarrhea and a canine chronic enteropathy clinical activity index (CCECAI) < 12 from dogs with chronic diarrhea and a CCECAI ≥ 12, and to evaluate the association between histologic evidence of intestinal mucosal changes and fecal calprotectin concentrations in dogs with chronic diarrhea. Fecal samples from 96 adult dogs (27 dogs with chronic diarrhea and 69 healthy control dogs). Severity of clinical signs was evaluated on the basis of the CCECAI scoring system. Endoscopy was performed in all dogs with chronic diarrhea, and mucosal biopsy specimens were evaluated histologically. Fecal calprotectin concentration was quantified via radioimmunoassay. Fecal calprotectin concentrations were significantly higher in dogs with chronic diarrhea than in healthy control dogs. Fecal calprotectin concentrations were also significantly higher in dogs with a CCECAI ≥ 12, compared with concentrations for dogs with a CCECAI between 4 and 11. Fecal calprotectin concentrations were significantly higher in dogs with chronic diarrhea associated with histologic lesions, compared with concentrations in control dogs, and were significantly correlated with the severity of histologic intestinal lesions. Among dogs with chronic diarrhea, the best cutoff fecal calprotectin concentration for predicting a CCECAI ≥ 12 was 48.9 μg/g (sensitivity, 53.3%; specificity, 91.7%). Fecal calprotectin may be a useful biomarker in dogs with chronic diarrhea, especially dogs with histologic lesions.
Wang, Aiping; Ling, Zongxin; Yang, Zhixiang; Kiela, Pawel R; Wang, Tao; Wang, Cheng; Cao, Le; Geng, Fang; Shen, Mingqiang; Ran, Xinze; Su, Yongping; Cheng, Tianmin; Wang, Junping
2015-01-01
Fatigue and diarrhea are the most frequent adverse effects of pelvic radiotherapy, while their etiologies are largely unknown. The aim of this study is to investigate the correlations between fatigue, diarrhea, and alterations in gut microbiota induced by pelvic radiotherapy. During the 5-week treatment of pelvic radiotherapy in 11 cancer patients, the general fatigue score significantly increased and was more prominent in the patients with diarrhea. The fatigue score was closely correlated with the decrease of serum citrulline (an indicator of the functional enterocyte mass) and the increases of systemic inflammatory proteins, including haptoglobin, orosomuoid, α1-antitrypsin and TNF-α. Serum level of lipopolysaccharide (LPS) was also elevated, especially in the patients with diarrhea indicating epithelial barrier breach and endotoxemia. Pyrosequencing analysis of 16S rRNA gene revealed that microbial diversity, richness, and the Firmicutes/Bacteroidetes ratio were significantly altered prior to radiotherapy in patients who later developed diarrhea. Pelvic radiotherapy induced further changes in fecal microbial ecology, some of which were specific to the patients with or without diarrhea. Our results indicate that gut microbial dysbiosis prior to radiation therapy may be exploited to predict development of diarrhea and to guide preventive treatment options. Radiation-induced dysbiosis may contribute to pelvic radiation disease, including mucositis, diarrhea, systemic inflammatory response, and pelvic radiotherapy-associated fatigue in cancer patients.
Detection of BVDV persistently infected animals in Belgium: evaluation of the strategy implemented.
Letellier, C; De Meulemeester, L; Lomba, M; Mijten, E; Kerkhofs, P
2005-11-15
Until now, no official bovine virus diarrhea virus (BVDV) control program has been implemented in Belgium. The only legislation dealing with the detection of BVDV-infected animals concerns the purchase of animals. A strategy of control, based on the identification and elimination of persistently infected (PI) animals and the vaccination of cows before insemination has been designed in both the Northern and the Southern part of the country. The strategy of detection of PI animals relies on PCR testing of pools of blood. Individual blood samples corresponding to the positive pools are then tested by BVDV-antigen ELISA. A first evaluation of the measures already applied in Belgium is presented. Data obtained in 2003 are presented and discussed regarding the validation of the laboratory strategy, the prevalence of positive herds, the genotype of circulating viruses, the outcome of antigen positive animals and the need for improvement of the current legislation.
A serologic survey of viral infections in captive ungulates in Turkish zoos.
Yeşilbağ, Kadir; Alpay, Gizem; Karakuzulu, Hatice
2011-03-01
Zoos and zoologic gardens make optimal environments for interspecies transmission of viral infections. There are seven zoos and several small zoologic collections in Turkey. This study aimed to determine the current status of viral infections in captive ungulates living in these environments. Blood samples were taken from 163 captive animals from two zoos. There were 39 Cameroon sheep (Ovis ammon f aries), 11 Barbary sheep (Ammotragus lervia), 57 pygmy goats (Capra hircus), 9 Angora goats (Capra hircus), 21 mountain goats (Capra aegagrus-aegagrus), 7 llamas (Lama glama), 8 Persian goitred gazelle (Gazella subgutturosa subgutturosa), 7 Caspian red deer (Cervus elaphus maral), 2 fallow deer (Dama dama), and 2 camels (Camelus dromedarius). Antibodies against bovine viral diarrhea virus (BVDV), bovine herpesvirus-1 (BHV-1), bovine adenoviruses (BAV-1 and -3), parainfluenzavirus 3 (PI-3), and bluetongue viruses (BTV-4 and -9) were investigated using the virus neutralization test, and malignant catarrhal fever (MCF) antibodies were screened by ELISA. All animals were negative for BVDV and BHV-1 antibodies. Seroprevalence of BAV-1, BAV-3, PI-3, BRSV, BT-4, BT-9, and MCF were detected as follows: 46.6%, 60.1%, 0.6%, 7.3%, 1.8%, 1.2%, and 51.6%, respectively. Seroprevalence of BAVs and MCF were more common than all other viruses (P < 0.0001). Ten sheep (37.0%), 48 goats (84.2), and 1 Ilama (14.2%) were the only species positive for MCF antibodies. Prevalence of BRSV and MCF antibodies were found to be significantly higher in goats than in sheep. BTV antibodies were detected both in Cameroon sheep and mountain goats and suggest that zoo animals are at risk for BTV in endemic regions.
Liu, Baoming; Li, Nan L.; Wang, Jie; Shi, Pei-Yong; Wang, Tianyi; Miller, Mark A.
2014-01-01
ABSTRACT The tripartite motif-containing (TRIM) proteins have emerged as a new class of host antiviral restriction factors, with several demonstrating roles in regulating innate antiviral responses. Of >70 known TRIMs, TRIM56 inhibits replication of bovine viral diarrhea virus, a ruminant pestivirus of the family Flaviviridae, but has no appreciable effect on vesicular stomatitis virus (VSV), a rhabdovirus. Yet the antiviral spectrum of TRIM56 remains undefined. In particular, how TRIM56 impacts human-pathogenic viruses is unknown. Also unclear are the molecular determinants governing the antiviral activities of TRIM56. Herein, we show that TRIM56 poses a barrier to infections by yellow fever virus (YFV), dengue virus serotype 2 (DENV2), and human coronavirus virus (HCoV) OC43 but not encephalomyocarditis virus (EMCV). Moreover, by engineering cell lines conditionally expressing various TRIM56 mutants, we demonstrated that TRIM56's antiflavivirus effects required both the E3 ligase activity that lies in the N-terminal RING domain and the integrity of its C-terminal portion, while the restriction of HCoV-OC43 relied upon the TRIM56 E3 ligase activity alone. Furthermore, TRIM56 was revealed to impair YFV and DENV2 propagation by suppressing intracellular viral RNA accumulation but to compromise HCoV-OC43 infection at a later step in the viral life cycle, suggesting that distinct TRIM56 domains accommodate differing antiviral mechanisms. Altogether, TRIM56 is a versatile antiviral host factor that confers resistance to YFV, DENV2, and HCoV-OC43 through overlapping and distinct molecular determinants. IMPORTANCE We previously reported tripartite motif protein 56 (TRIM56) as a host restriction factor of bovine viral diarrhea virus, a ruminant pathogen. However, the impact of TRIM56 on human-pathogenic RNA viruses is unknown. Herein, we demonstrate that TRIM56 restricts two medically important flaviviruses, yellow fever virus (YFV) and dengue virus serotype 2 (DENV2), and a human coronavirus, HCoV-OC43, but not encephalomyocarditis virus, a picornavirus. Further, we show that TRIM56-mediated inhibition of HCoV-OC43 multiplication depends solely on its E3 ligase activity, whereas its restriction of YFV and DENV2 requires both the E3 ligase activity and integrity of the C-terminal portion. The differing molecular determinants appear to accommodate distinct antiviral mechanisms TRIM56 adopts to target different families of viruses; while TRIM56 curbs intracellular YFV/DENV2 RNA replication, it acts at a later step in HCoV-OC43 life cycle. These novel findings illuminate the molecular basis of the versatility and specificity of TRIM56's antiviral activities against positive-strand RNA viruses. PMID:25253338
Liu, Baoming; Li, Nan L; Wang, Jie; Shi, Pei-Yong; Wang, Tianyi; Miller, Mark A; Li, Kui
2014-12-01
The tripartite motif-containing (TRIM) proteins have emerged as a new class of host antiviral restriction factors, with several demonstrating roles in regulating innate antiviral responses. Of >70 known TRIMs, TRIM56 inhibits replication of bovine viral diarrhea virus, a ruminant pestivirus of the family Flaviviridae, but has no appreciable effect on vesicular stomatitis virus (VSV), a rhabdovirus. Yet the antiviral spectrum of TRIM56 remains undefined. In particular, how TRIM56 impacts human-pathogenic viruses is unknown. Also unclear are the molecular determinants governing the antiviral activities of TRIM56. Herein, we show that TRIM56 poses a barrier to infections by yellow fever virus (YFV), dengue virus serotype 2 (DENV2), and human coronavirus virus (HCoV) OC43 but not encephalomyocarditis virus (EMCV). Moreover, by engineering cell lines conditionally expressing various TRIM56 mutants, we demonstrated that TRIM56's antiflavivirus effects required both the E3 ligase activity that lies in the N-terminal RING domain and the integrity of its C-terminal portion, while the restriction of HCoV-OC43 relied upon the TRIM56 E3 ligase activity alone. Furthermore, TRIM56 was revealed to impair YFV and DENV2 propagation by suppressing intracellular viral RNA accumulation but to compromise HCoV-OC43 infection at a later step in the viral life cycle, suggesting that distinct TRIM56 domains accommodate differing antiviral mechanisms. Altogether, TRIM56 is a versatile antiviral host factor that confers resistance to YFV, DENV2, and HCoV-OC43 through overlapping and distinct molecular determinants. We previously reported tripartite motif protein 56 (TRIM56) as a host restriction factor of bovine viral diarrhea virus, a ruminant pathogen. However, the impact of TRIM56 on human-pathogenic RNA viruses is unknown. Herein, we demonstrate that TRIM56 restricts two medically important flaviviruses, yellow fever virus (YFV) and dengue virus serotype 2 (DENV2), and a human coronavirus, HCoV-OC43, but not encephalomyocarditis virus, a picornavirus. Further, we show that TRIM56-mediated inhibition of HCoV-OC43 multiplication depends solely on its E3 ligase activity, whereas its restriction of YFV and DENV2 requires both the E3 ligase activity and integrity of the C-terminal portion. The differing molecular determinants appear to accommodate distinct antiviral mechanisms TRIM56 adopts to target different families of viruses; while TRIM56 curbs intracellular YFV/DENV2 RNA replication, it acts at a later step in HCoV-OC43 life cycle. These novel findings illuminate the molecular basis of the versatility and specificity of TRIM56's antiviral activities against positive-strand RNA viruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Ma, Xueqing; Li, Pinghua; Sun, Pu; Lu, Zengjun; Bao, Huifang; Bai, Xingwen; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin
2016-07-15
The deletion of residues 93-102 in non-structure protein 3A of foot-and-mouth disease virus (FMDV) is associated with the inability of FMDV to grow in bovine cells and attenuated virulence in cattle.Whereas, a previously reported FMDV strain O/HKN/21/70 harboring 93-102 deletion in 3A protein grew equally well in bovine and swine cells. This suggests that changes inFMDV genome sequence, in addition to 93-102 deletion in 3A, may also affectthe viral growth phenotype in bovine cellsduring infection and replication.However, it is nuclear that changes in which region (inside or outside of 3A region) influences FMDV growth phenotype in bovine cells.In this study, to determine the region in FMDV genomeaffecting viral growth phenotype in bovine cells, we constructed chimeric FMDVs, rvGZSB-HKN3A and rvHN-HKN3A, by introducing the 3A coding region of O/HKN/21/70 into the context of O/SEA/Mya-98 strain O/GZSB/2011 and O Cathay topotype strain O/HN/CHA/93, respectively, since O/GZSB/2011 containing full-length 3A protein replicated well in bovine and swine cells, and O/HN/CHA/93 harboring 93-102 deletion in 3A protein grew poorly in bovine cells.The chimeric virusesrvGZSB-HKN3A and rvHN-HKN3A displayed growth properties and plaque phenotypes similar to those of the parental virus rvGZSB and rv-HN in BHK-21 and primary fetal porcine kidney (FPK) cells. However, rvHN-HKN3A and rv-HN replicated poorly in primary fetal bovine kidney (FBK) cells with no visible plaques, and rvGZSB-HKN3A exhibited lower growth rate and smaller plaque size phenotypes than those of the parental virus in FBK cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the difference present in FMDV genome sequence outside the 3A coding region also have influence on FMDV replication ability in bovine cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Ting-ting; Li, Wei; Zhao, Yan; Zhang, Feng-qiang; Wu, Jin; Cui, Xianlan; Wang, Yun-Feng
2012-01-01
Background Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine. Methodology/Principal Findings A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9. Conclusions/Significance NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles. PMID:23285276
Gordon, Shari N.; Klatt, Nichole R.; Bosinger, Steven E.; Brenchley, Jason M.; Milush, Jeffrey M.; Engram, Jessica C.; Dunham, Richard M.; Paiardini, Mirko; Klucking, Sara; Danesh, Ali; Strobert, Elizabeth A.; Apetrei, Cristian; Pandrea, Ivona V.; Kelvin, David; Douek, Daniel C.; Staprans, Silvija I.; Sodora, Donald L.; Silvestri, Guido
2008-01-01
HIV-infected humans and SIV-infected rhesus macaques experience a rapid and dramatic loss of mucosal CD4+ T cells that is considered to be a key determinant of AIDS pathogenesis. In this study, we show that nonpathogenic SIV infection of sooty mangabeys (SMs), a natural host species for SIV, is also associated with an early, severe, and persistent depletion of memory CD4+ T cells from the intestinal and respiratory mucosa. Importantly, the kinetics of the loss of mucosal CD4+ T cells in SMs is similar to that of SIVmac239-infected rhesus macaques. Although the nonpathogenic SIV infection of SMs induces the same pattern of mucosal target cell depletion observed during pathogenic HIV/SIV infections, the depletion in SMs occurs in the context of limited local and systemic immune activation and can be reverted if virus replication is suppressed by antiretroviral treatment. These results indicate that a profound depletion of mucosal CD4+ T cells is not sufficient per se to induce loss of mucosal immunity and disease progression during a primate lentiviral infection. We propose that, in the disease-resistant SIV-infected SMs, evolutionary adaptation to both preserve immune function with fewer mucosal CD4+ T cells and attenuate the immune activation that follows acute viral infection protect these animals from progressing to AIDS. PMID:17709517
Gordon, Shari N; Klatt, Nichole R; Bosinger, Steven E; Brenchley, Jason M; Milush, Jeffrey M; Engram, Jessica C; Dunham, Richard M; Paiardini, Mirko; Klucking, Sara; Danesh, Ali; Strobert, Elizabeth A; Apetrei, Cristian; Pandrea, Ivona V; Kelvin, David; Douek, Daniel C; Staprans, Silvija I; Sodora, Donald L; Silvestri, Guido
2007-09-01
HIV-infected humans and SIV-infected rhesus macaques experience a rapid and dramatic loss of mucosal CD4+ T cells that is considered to be a key determinant of AIDS pathogenesis. In this study, we show that nonpathogenic SIV infection of sooty mangabeys (SMs), a natural host species for SIV, is also associated with an early, severe, and persistent depletion of memory CD4+ T cells from the intestinal and respiratory mucosa. Importantly, the kinetics of the loss of mucosal CD4+ T cells in SMs is similar to that of SIVmac239-infected rhesus macaques. Although the nonpathogenic SIV infection of SMs induces the same pattern of mucosal target cell depletion observed during pathogenic HIV/SIV infections, the depletion in SMs occurs in the context of limited local and systemic immune activation and can be reverted if virus replication is suppressed by antiretroviral treatment. These results indicate that a profound depletion of mucosal CD4+ T cells is not sufficient per se to induce loss of mucosal immunity and disease progression during a primate lentiviral infection. We propose that, in the disease-resistant SIV-infected SMs, evolutionary adaptation to both preserve immune function with fewer mucosal CD4+ T cells and attenuate the immune activation that follows acute viral infection protect these animals from progressing to AIDS.
Radiation sensitivity of bacteria and virus in porcine xenoskin for dressing agent
NASA Astrophysics Data System (ADS)
Jo, Eu-Ri; Jung, Pil-Mun; Choi, Jong-il; Lee, Ju-Woon
2012-08-01
In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106-107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105-106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.
Jung, Kwonil; Saif, Linda J
2015-05-01
Porcine epidemic diarrhea virus (PEDV), a member of the genera Alphacoronavirus in the family Coronaviridae, causes acute diarrhea/vomiting, dehydration and high mortality in seronegative neonatal piglets. For the last three decades, PEDV infection has resulted in significant economic losses in the European and Asian pig industries, but in 2013-2014 the disease was also reported in the US, Canada and Mexico. The PED epidemic in the US, from April 2013 to the present, has led to the loss of more than 10% of the US pig population. The disappearance and re-emergence of epidemic PED indicates that the virus is able to escape from current vaccination protocols, biosecurity and control systems. Endemic PED is a significant problem, which is exacerbated by the emergence (or potential importation) of multiple PEDV variants. Epidemic PEDV strains spread rapidly and cause a high number of pig deaths. These strains are highly enteropathogenic and acutely infect villous epithelial cells of the entire small and large intestines although the jejunum and ileum are the primary sites. PEDV infections cause acute, severe atrophic enteritis accompanied by viremia that leads to profound diarrhea and vomiting, followed by extensive dehydration, which is the major cause of death in nursing piglets. A comprehensive understanding of the pathogenic characteristics of epidemic or endemic PEDV strains is needed to prevent and control the disease in affected regions and to develop an effective vaccine. This review focuses on the etiology, epidemiology, disease mechanisms and pathogenesis as well as immunoprophylaxis against PEDV infection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Newcastle disease in poultry (Avian pneumoencephalitis, Exotic or velogenic Newcastle disease)
USDA-ARS?s Scientific Manuscript database
Newcastle disease (ND) is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (vNDV). It is a worldwide problem that presents primarily as an acute respiratory disease, but depression, nervous manifestations, or diarrhea may be the predominant clinical form...
Disposal of Hospital Wastes Containing Pathogenic Organisms
1979-09-01
virus African swine fever virus Besnoitia besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus...Sindbis virus Tensaw virus Turlock virus Vaccinia virus Varicella virus Vole rickettsia Yellow fever virus, 17D vaccinL strain 163 Class 3 AlastruLn...Rickettsia - all species except Vole rickettsia when used for transmission or animal inoculation experiments Vesicular stomatitis virus Yellow fever virus
Ohlson, Anna; Blanco-Penedo, Isabel; Fall, Nils
2014-01-01
Bovine coronavirus (BCV; Betacoronavirus 1) and Bovine respiratory syncytial virus (BRSV) are significant causes of enteric and respiratory disease in beef and dairy cattle throughout the world. Indirect enzyme-linked immunosorbent assays are widely used to detect serum antibodies for herd monitoring and prevalence studies. In dairy herds, milk is more readily collected than serum. Hence, in order to investigate the test agreement between serum and milk, both serum and milk samples from 105 cows in 27 dairy herds were analyzed in parallel for presence of immunoglobulin G antibodies to BCV and BRSV. The Bland-Altman analyses of data demonstrated good agreement between serum and milk antibody titers for both viruses. The results indicate milk samples are sufficient for surveillance of antibodies to BCV and BRSV.
Pritchard, G C; Banks, M; Vernon, R E
2003-07-26
Infectious bovine rhinotracheitis (IBR) virus infection was detected by an antibody ELISA in the bulk milk of a large closed dairy herd of high health status in an area of low cattle density in East Anglia. The herd was managed under high standards of biosecurity and was known to have been serologically free of IBR virus for the previous 13 years. Although over 70 per cent of the cows had seroconverted to IBR virus no clinical signs were observed apart from a slight bilateral watery ocular discharge in a few cows, and their performance and productivity were unaffected. The causal virus, which was isolated after it had been reactivated with corticosteroid, had the DNA profile of a bovine herpesvirus type 1 strain normally associated with clinically severe respiratory disease. In spite of extensive enquiries and seroepidemiological investigations the source of the infection was not determined.
Chung, Yao-Chi; Shen, Hsiu-Yen; Cheng, Li-Ting; Liu, Shyh-Shyan; Chu, Chun-Yen
2016-12-01
Bovine herpesvirus type 1 (BHV-1) causes acute febrile respiratory diseases (infectious bovine rhinotracheitis, IBR), decreased milk production, weight loss and abortion. Bovine ephemeral fever virus (BEFV) causes acute febrile respiratory disease, with pulmonary emphysema and pulmonary edema as the main signs. These viruses infect domesticated herds and lead to significant economic losses. In our previous study, an inactivated BHV-1 and BEFV bivalent vaccine was formulated with water-in-oil-in-water adjuvant, and vaccine efficacy was evaluated in guinea pigs. In this study, we evaluated the efficacy of the bivalent vaccine in cattle. Results showed that immunized cattle had a significantly higher level of total anti-BHV-1 antibody response (S/P ratio of 12.7) than the control group (S/P ratio of 0.07) 32weeks post-vaccination. The immunized group also showed higher neutralizing antibody levels against BHV-1 (SN=2 3.8 ) and BEFV (SN=2 4.6 ) than the control group (SN<2) 4 to 32weeks post-vaccination (p<0.05). In a BHV-1 challenge experiment, immunized cattle showed low virus shedding (10 1.2 TCID 50 /mL) and a significant reduction in pathological lesion scores (p<0.01). In conclusion, the BHV-1+BEFV+w/o/w vaccine not only improved long-term antibody immune response but also significantly reduced clinical signs in a BHV-1 challenge experiment. Our approach may be feasible for developing an effective vaccine against bovine herpesvirus type 1 and bovine ephemeral fever virus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Miao; Pan, Li; Zhou, Peng; Lv, Jianliang; Zhang, Zhongwang; Wang, Yonglu; Zhang, Yongguang
2015-01-01
Mucosal vaccination is an effective strategy for generating antigen-specific immune responses against mucosal infections of foot-and-mouth disease virus (FMDV). In this study, Lactobacillus plantarum strains NC8 and WCFS1 were used as oral delivery vehicles containing a pSIP411-VP1 recombinant plasmid to initiate mucosal and systemic immune responses in guinea pigs. Guinea pigs were orally vaccinated (three doses) with NC8-pSIP411, NC8-pSIP411-VP1, WCFS1-pSIP411, WCFS1-pSIP411-VP1 or milk. Animals immunized with NC8-pSIP411-VP1 and WCFS1-pSIP411-VP1 developed high levels of antigen-specific serum IgG, IgA, IgM, mucosal secretory IgA (sIgA) and neutralizing antibodies, and revealed stronger cell-mediated immune responses and enhanced protection against FMDV challenge compared with control groups. The recombinant pSIP411-VP1 effectively improved immunoprotection against FMDV in guinea pigs. PMID:26629822
Nickell, Jason S; White, Brad J; Larson, Robert L; Renter, David G; Sanderson, Mike W
2011-03-01
Although numerous diagnostic tests are available to identify cattle persistently infected (PI) with Bovine viral diarrhea virus (BVDV) in cow-calf herds, data are sparse when evaluating the economic viability of individual tests or diagnostic strategies. Multiple factors influence BVDV testing in determining if testing should be performed and which strategy to use. A stochastic model was constructed to estimate the value of implementing various whole-herd BVDV cow-calf testing protocols. Three common BVDV tests (immunohistochemistry, antigen-capture enzyme-linked immunosorbent assay, and polymerase chain reaction) performed on skin tissue were evaluated as single- or two-test strategies. The estimated testing value was calculated for each strategy at 3 herd sizes that reflect typical farm sizes in the United States (50, 100, and 500 cows) and 3 probabilities of BVDV-positive herd status (0.077, 0.19, 0.47) based upon the literature. The economic value of testing was the difference in estimated gross revenue between simulated cow-calf herds that either did or did not apply the specific testing strategy. Beneficial economic outcomes were more frequently observed when the probability of a herd being BVDV positive was 0.47. Although the relative value ranking of many testing strategies varied by each scenario, the two-test strategy composed of immunohistochemistry had the highest estimated value in all but one herd size-herd prevalence permutation. These data indicate that the estimated value of applying BVDV whole-herd testing strategies is influenced by the selected strategy, herd size, and the probability of herd BVDV-positive status; therefore, these factors should be considered when designing optimum testing strategies for cow-calf herds.
Composting as a biosecure disposal method for PEDv-infected pig carcasses
USDA-ARS?s Scientific Manuscript database
Porcine epidemic diarrhea virus (PEDV), an enteric disease of swine, has emerged as a worldwide threat to swine health and production. Little is known about virus persistence in PEDV-infected carcasses and effective disposal methods thereof. Two studies were conducted to quantify the persistence of ...
Epidemiological study of pestiviruses in South American camelids in Switzerland.
Mudry, M; Meylan, M; Regula, G; Steiner, A; Zanoni, R; Zanolari, P
2010-01-01
In the context of the ongoing eradication campaign for bovine viral diarrhea virus (BVDV) in cattle in Switzerland, the role of South American camelids (SAC) as a possible virus reservoir needed to be evaluated. To assess and characterize the prevalence of pestivirus infections in SAC in Switzerland. Serum samples collected from 348 animals (40 herds) in 2008 and from 248 animals (39 herds) in 2000 were examined for antibodies against pestiviruses and for the presence of BVDV viral RNA. Cross-sectional study using stratified, representative herd sampling. An indirect BVDV-ELISA was used to analyze serum samples for pestivirus antibodies, and positive samples underwent a serum neutralization test (SNT). Real-time RT-PCR to detect pestiviral RNA was carried out in all animals from herds with at least 1 seropositive animal. In 2008, the overall prevalence of animals positive for antibodies (ELISA) and pestiviral RNA or was 5.75 and 0%, respectively. In 2000, the corresponding prevalences were 3.63 and 0%, respectively. The seroprevalences (SNT) for BVDV, border disease virus or undetermined pestiviruses were estimated to be 0, 1.73, and 4.02% in 2008, and 0.40, 1.21, and 2.02% in 2000, respectively. At the present time, SAC appear to represent a negligible risk of re-infection for the BVDV eradication program in cattle in Switzerland. Copyright © 2010 by the American College of Veterinary Internal Medicine.
Steukers, Lennert; Weyers, Steven; Yang, Xiaoyun; Vandekerckhove, Annelies P; Glorieux, Sarah; Cornelissen, Maria; Van den Broeck, Wim; Temmerman, Marleen; Nauwynck, Hans J
2014-07-15
We developed and morphologically characterized a human genital mucosa explant model (endocervix and ectocervix/vagina) to mimic genital herpes infections caused by herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequent analysis of HSV entry receptor expression throughout the menstrual cycle in genital tissues was performed, and the evolution of HSV-1/-2 mucosal spread over time was assessed. Nectin-1 and -2 were expressed in all tissues during the entire menstrual cycle. Herpesvirus entry mediator expression was limited mainly to some connective tissue cells. Both HSV-1 and HSV-2 exhibited a plaque-wise mucosal spread across the basement membrane and induced prominent epithelial syncytia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Expression of 144 distinct bovine microRNAs (miRNAs) was quantified in bovine serum harvested during different phases of infection with foot-and-mouth disease virus (FMDV). There were marked differences in miRNA expression between acute, persistent, and convalescent phases of infection. During acu...
2014-01-01
Background Bovine respiratory syncytial virus (BRSV) is one of the major pathogens involved in the bovine respiratory disease (BRD) complex. The seroprevalence to BRSV in Norwegian cattle herds is high, but its role in epidemics of respiratory disease is unclear. The aims of the study were to investigate the etiological role of BRSV and other respiratory viruses in epidemics of BRD and to perform phylogenetic analysis of Norwegian BRSV strains. Results BRSV infection was detected either serologically and/or virologically in 18 (86%) of 21 outbreaks and in most cases as a single viral agent. When serology indicated that bovine coronavirus and/or bovine parainfluenza virus 3 were present, the number of BRSV positive animals in the herd was always higher, supporting the view of BRSV as the main pathogen. Sequencing of the G gene of BRSV positive samples showed that the current circulating Norwegian BRSVs belong to genetic subgroup II, along with other North European isolates. One isolate from an outbreak in Norway in 1976 was also investigated. This strain formed a separate branch in subgroup II, clearly different from the current Scandinavian sequences. The currently circulating BRSV could be divided into two different strains that were present in the same geographical area at the same time. The sequence variations between the two strains were in an antigenic important part of the G protein. Conclusion The results demonstrated that BRSV is the most important etiological agent of epidemics of BRD in Norway and that it often acts as the only viral agent. The phylogenetic analysis of the Norwegian strains of BRSV and several previously published isolates supported the theory of geographical and temporal clustering of BRSV. PMID:24423030
How much helpful is the capsule endoscopy for the diagnosis of small bowel lesions?
Ersoy, Osman; Sivri, Bulent; Arslan, Serap; Batman, Figen; Bayraktar, Yusuf
2006-01-01
AIM: To assess the practically usefulness and diagnostic yield of this new method in a group of patients with suspected small bowel lesions. METHODS: Capsule endoscopic (CE) examination by using M2A capsule endoscope TM (Given Imaging, Yoqneam, Israel) was performed in thirty nine patients (26 males, 13 females) with suspected small intestinal lesions. The composing of the patients was as follows: obscure gastrointestinal bleeding in twenty three patients, known Crohn’s disease in 6 patients, in whom CE was used to evaluate the severity and extension of the diseases, chronic diarrhea in 8 patients, abdominal pain in one patient and malignancy in one patient with unknown origin. RESULTS: In two patients CE failed. Different abnormalities were revealed in 26 patients overall. Detection rate of abnormalities was highest among patients with obscure gastrointestinal bleeding and the source of bleeding was demonstrated in 17 of 23 patients with obscure bleeding (73.9%). Entero-Behcet was diagnosed in two patients by CE as a source of obscure gastrointestinal bleeding. In 6 patients with known Crohn's disease, CE revealed better evaluation of the disease extension. In 3 of 8 (37.5%) patients with chronic diarrhea; CE revealed some mucosal abnormalities as the cause of chronic diarrhea. In a patient with unexplained abdominal pain and in a cancer patient with unknown origin, CE examination was normal. CONCLUSION: In our relatively small series, we found that capsule endoscopy is a useful diagnostic tool particularly in diagnosis of obscure gastrointestinal bleeding, chronic diarrhea and in estimating the extension of Crohn’s disease. PMID:16804980
Capsule endoscopy in the diagnosis of Crohn's disease.
Niv, Yaron
2013-01-01
Crohn's disease is a chronic inflammatory disorder affecting any part of the gastrointestinal tract, but frequently involves the small and large bowel. Typical presenting symptoms include abdominal pain and diarrhea. Patients with this disorder may also have extraintestinal manifestations, including arthritis, uveitis, and skin lesions. The PillCam™SB capsule is an ingestible disposable video camera that transmits high quality images of the small intestinal mucosa. This enables the small intestine to be readily accessible to physicians investigating for the presence of small bowel disorders, such as Crohn's disease. Four meta-analyses have demonstrated that capsule endoscopy identifies Crohn's disease when other methods are not helpful. It should be noted that it is the best noninvasive procedure for assessing mucosal status, but is not superior to ileocolonoscopy, which remains the gold standard for assessment of ileocolonic disease. Mucosal healing along the small bowel can only be demonstrated by an endoscopic procedure such as capsule endoscopy. Achievement of long-term mucosal healing has been associated with a trend towards a decreased need for hospitalization and a decreased requirement for corticosteroid treatment in patients with Crohn's disease. Recently, we have developed and validated the Capsule Endoscopy Crohn's Disease Activity Index (also known as the Niv score) for Crohn's disease of the small bowel. The next step is to expand our score to the colon, and to determine the role and benefit of a capsule endoscopy activity score in patients suffering from Crohn's ileocolitis and/or colitis. This scoring system will also serve to improve our understanding of the impact of capsule endoscopy, and therefore treatment, on the immediate outcome of this disorder. As the best procedure available for assessing mucosal status, capsule endoscopy will provide important information about the course and outcome of Crohn's disease.
Salomonsen, Charlotte M; Breum, Solvej Ø; Larsen, Lars E; Jakobsen, Jeanette; Høiby, Niels; Hammer, Anne S
2012-11-26
Hemorrhagic pneumonia is a disease of farmed mink (Neovison vison) caused by Pseudomonas aeruginosa. The disease is highly seasonal in Danish mink with outbreaks occurring almost exclusively in the autumn. Human respiratory syncytial virus (RSV) has been shown to augment infection with P. aeruginosa in mice and to promote adhesion of P. aeruginosa to human respiratory cells. We tested 50 lung specimens from mink with hemorrhagic pneumonia for bovine RSV by reverse transcriptase polymerase chain reaction (PCR) and for human RSV by a commercial real-time PCR. RSV was not found. This study indicates that human and bovine RSV is not a major co-factor for development of hemorrhagic pneumonia in Danish mink.
Tsunekuni, Ryota; Hikono, Hirokazu; Saito, Takehiko
2014-08-15
Newcastle disease virus (NDV), also known as avian paramyxovirus (APMV) serotype 1, is used as a vaccine vector to express the hemagglutinin protein of avian influenza (AI) virus. However, use of live NDV recombinant vaccines expressing AI virus hemagglutinin is not desirable in emergency vaccination programs to control severe AI outbreaks in chickens, because commercial chickens often possess pre-existing NDV immunity induced by routine vaccination. Therefore, a novel vaccine vector is required for emergency vaccination of chickens to control AI during outbreaks. We investigated whether candidate APMV strains could be used as vaccine vectors that could evade the pre-existing immunity acquired by chickens through NDV vaccination and that would replicate in the mucosal tissues where AI virus primarily replicates. To this end, we examined strains of APMV serotypes 2 to 10 for their immunogenicity and replication in chickens with pre-existing immunity to NDV. APMV serotypes 2, 6, and 10 were the least cross-reactive to antibodies to NDV in hemagglutination inhibition and/or virus neutralization tests. Virus replication in mucosal tissues, as well as antibody response after oculonasal inoculation, was observed when 7-week-old chickens were challenged with APMV of serotype 2, 6, or 10. The APMV also replicated in mucosal tissues and induced antibody responses in chickens that had been vaccinated twice with NDV before challenge. These results warrant further study to develop vaccine vectors based on APMV serotype 2, 6, or 10 for emergency vaccination of chickens against AI. Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Immunohistochemical (IHC) and immunofluorescent (IF) techniques were optimized for the detection of foot-and-mouth disease virus (FMDV) structural and non-structural proteins in frozen and paraformaldehyde-fixed paraffin embedded (PFPE) tissues of bovine and porcine origin. Immunohistochemical local...
Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun
2016-01-01
Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles. PMID:27170532
NASA Astrophysics Data System (ADS)
Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun
2016-05-01
Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles.
Zhang, Hewei; Xia, Mingqi; Ju, Decai; Wu, Bai; Ning, Chen; Song, Ni; Feng, Teng; Chen, Feng; Wang, Xin; Wu, Ying; Wang, Wei; Cheng, Shipeng; Jin, Wenjie; Zhang, Shucheng; Zhang, Chunjie; Cheng, Xiangchao; Ding, Ke; Wu, Hua
2017-12-01
Porcine epidemic diarrhea virus (PEDV) is a causative agent of porcine intestinal disease, which causes vomiting, diarrhea, and dehydration in piglets. PEDV is associated with the most severe pathogenesis in one-week-old piglets, with mortality rates reaching 100%. A PEDV strain was isolated from the intestinal tract of diarrheic piglets from a pig farm in Jiangsu Province in March 2016, termed the JS201603 isolate. The isolated virus was confirmed to be PEDV via RT-PCR, electron microscopy, a cytopathic effect assay and sequence analysis. The S and ORF3 genes of the JS201603 isolate were sequenced, revealing that the S gene was associated with a 15-base insertion at 167 nt, 176 - 186 nt, and 427 - 429 nt, as well as a six-base deletion in 487 - 492 nt, indicating that it was a current epidemic variant compared with the classical strain, CV777. No deletion occurred between 245 - 293 nt of the ORF3 gene in the JS201603 isolate compared with the vaccine isolates YY2013 and SQ2014. An experimental infection model indicated that the piglets in the challenge group successively developed diarrhea, exhibiting yellow-colored loose stools with a foul odor. The piglets in the JS201603 isolate challenge group displayed reduced food consumption, lost weight, and in severe cases even died. No abnormalities were observed in the control group. The JS201603 variant isolated in this study contributes to the evolutionary analysis of diarrhea virus. The experimental infection model has established a foundation for further studies on vaccine development.
Development of a Sensitive DNA Assay for the AIDS Virus, HTLV-III/LAV
1989-11-19
lylphadenopathy syndrome, acquired immuno- deficiency disease syndrome (AIDS)-related complex (ARC) (including night sweats, fever, diarrhea, weight loss, oral ... candidiasis ), or AIDS (including neurological disease, opportunistic infections, or malignancies) (1). A signifi- cant number of infected individuals
The National Bio- and Agro-Defense Facility: Issues for Congress
2008-05-19
classical swine fever , African swine fever , Rift Valley fever , Nipah virus, Hendra virus, contagious bovine pleuropneumonia, and Japanese...Preparedness, by Jim Monke. 2 Examples include influenza, plague, West Nile Virus, and Rift Valley Fever . 3 These diseases are sometimes referred to as foreign
Steinmann, Eike; Gravemann, Ute; Friesland, Martina; Doerrbecker, Juliane; Müller, Thomas H; Pietschmann, Thomas; Seltsam, Axel
2013-05-01
Contamination of blood products with hepatitis C virus (HCV) can cause infections resulting in acute and chronic liver diseases. Pathogen reduction methods such as photodynamic treatment with methylene blue (MB) plus visible light as well as irradiation with shortwave ultraviolet (UVC) light were developed to inactivate viruses and other pathogens in plasma and platelet concentrates (PCs), respectively. So far, their inactivation capacities for HCV have only been tested in inactivation studies using model viruses for HCV. Recently, a HCV infection system for the propagation of infectious HCV in cell culture was developed. Inactivation studies were performed with cell culture-derived HCV and bovine viral diarrhea virus (BVDV), a model for HCV. Plasma units or PCs were spiked with high titers of cell culture-grown viruses. After treatment of the blood units with MB plus light (Theraflex MB-Plasma system, MacoPharma) or UVC (Theraflex UV-Platelets system, MacoPharma), residual viral infectivity was assessed using sensitive cell culture systems. HCV was sensitive to inactivation by both pathogen reduction procedures. HCV in plasma was efficiently inactivated by MB plus light below the detection limit already by 1/12 of the full light dose. HCV in PCs was inactivated by UVC irradiation with a reduction factor of more than 5 log. BVDV was less sensitive to the two pathogen reduction methods. Functional assays with human HCV offer an efficient tool to directly assess the inactivation capacity of pathogen reduction procedures. Pathogen reduction technologies such as MB plus light treatment and UVC irradiation have the potential to significantly reduce transfusion-transmitted HCV infections. © 2012 American Association of Blood Banks.
1998-12-16
Coxsackie A virus (CAV) Coxsackie B virus (CBV) Bovine enterovirus (BEV) Apbthoviruses Foot and mouth disease virus ( FMDV ) Cardioviruses Mengovirus...disease viruses ( FMDV ) contain a stretch ofpoly (C), of unknown function, located within the 5’ UTRs. To determine whether the 5’ UIR ofEMCV...human rhinovirus. Type 2 IRES elements are found in EMCV, TMEV, and FMDV . Type 3 IRES elements are found in hepatitis A virus. There is very little
Pathogenesis of human papillomavirus-associated mucosal disease.
Groves, Ian J; Coleman, Nicholas
2015-03-01
Human papillomaviruses (HPVs) are a necessary cause of carcinoma of the cervix and other mucosal epithelia. Key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells and genomic instability causing secondary host genomic imbalances. There are multiple mechanisms by which deregulated virus early gene expression may be achieved. Integration of virus DNA into host chromosomes is observed in the majority of cervical squamous cell carcinomas (SCCs), although in ∼15% of cases the virus remains extrachromosomal (episomal). Interestingly, not all integration events provide a growth advantage to basal cervical epithelial cells or lead to increased levels of the virus oncogenes E6 and E7, when compared with episome-containing basal cells. The factors that provide a competitive advantage to some integrants, but not others, are complex and include virus and host contributions. Gene expression from integrated and episomal HRHPV is regulated through host epigenetic mechanisms affecting the virus long control region (LCR), which appear to be of functional importance. New approaches to treating HRHPV-associated mucosal neoplasia include knockout of integrated HRHPV DNA, depletion of virus transcripts and inhibition of virus early gene transcription through targeting or use of epigenetic modifiers. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Ciccocioppo, Rachele; Racca, Francesca; Paolucci, Stefania; Campanini, Giulia; Pozzi, Lodovica; Betti, Elena; Riboni, Roberta; Vanoli, Alessandro; Baldanti, Fausto; Corazza, Gino Roberto
2015-02-14
To evaluate the best diagnostic technique and risk factors of the human Cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) infection in inflammatory bowel disease (IBD). A cohort of 40 IBD patients (17 refractory) and 40 controls underwent peripheral blood and endoscopic colonic mucosal sample harvest. Viral infection was assessed by quantitative real-time polymerase chain reaction and immunohistochemistry, and correlations with clinical and endoscopic indexes of activity, and risk factors were investigated. All refractory patients carried detectable levels of HCMV and/or EBV mucosal load as compared to 13/23 (56.5%) non-refractory and 13/40 (32.5%) controls. The median DNA value was significantly higher in refractory (HCMV 286 and EBV 5.440 copies/10(5) cells) than in non-refractory (HCMV 0 and EBV 6 copies/10(5) cells; P < 0.05 and < 0.001) IBD patients and controls (HCMV and EBV 0 copies/10(5) cells; P < 0.001 for both). Refractory patients showed DNA peak values ≥ 10(3) copies/10(5) cells in diseased mucosa in comparison to non-diseased mucosa (P < 0.0121 for HCMV and < 0.0004 for EBV), while non-refractory patients and controls invariably displayed levels below this threshold, thus allowing us to differentiate viral colitis from mucosal infection. Moreover, the mucosal load positively correlated with the values found in the peripheral blood, whilst no correlation with the number of positive cells at immunohistochemistry was found. Steroid use was identified as a significant risk factor for both HCMV (P = 0.018) and EBV (P = 0.002) colitis. Finally, a course of specific antiviral therapy with ganciclovir was successful in all refractory patients with HCMV colitis, whilst refractory patients with EBV colitis did not show any improvement despite steroid tapering and discontinuation of the other medications. Viral colitis appeared to contribute to mucosal lesions in refractory IBD, and its correct diagnosis and management require quantitative real-time polymerase chain reaction assay of mucosal specimens.
Management of children with prolonged diarrhea
Giannattasio, Antonietta; Guarino, Alfredo; Lo Vecchio, Andrea
2016-01-01
Prolonged diarrhea is usually defined as acute-onset diarrhea lasting 7 days or more, but less than 14 days. Its trend has been declining in recent years because of improvement in the management of acute diarrhea, which represents the ideal strategy to prevent prolonged diarrhea. The pathogenesis of prolonged diarrhea is multifactorial and essentially based on persistent mucosal damage due to specific infections or sequential infections with different pathogens, host-related factors including micronutrient and/or vitamin deficiency, undernutrition and immunodeficiency, high mucosal permeability due to previous infectious processes and nutrient deficiency with consequential malabsorption, and microbiota disruption. Infections seem to play a major role in causing prolonged diarrhea in both developing and developed areas. However, single etiologic pathogens have not been identified, and the pattern of agents varies according to settings, host risk factors, and previous use of antibiotics and other drugs. The management of prolonged diarrhea is complex. Because of the wide etiologic spectrum, diagnostic algorithms should take into consideration the age of the patient, clinical and epidemiological factors, and the nutritional status and should always include a search for enteric pathogens. Often, expensive laboratory evaluations are of little benefit in guiding therapy, and an empirical approach may be effective in the majority of cases. The presence or absence of weight loss is crucial for driving the initial management of prolonged diarrhea. If there is no weight loss, generally there is no need for further evaluation. If weight loss is present, empiric anti-infectious therapy or elimination diet may be considered once specific etiologies have been excluded. PMID:26962439
Management of children with prolonged diarrhea.
Giannattasio, Antonietta; Guarino, Alfredo; Lo Vecchio, Andrea
2016-01-01
Prolonged diarrhea is usually defined as acute-onset diarrhea lasting 7 days or more, but less than 14 days. Its trend has been declining in recent years because of improvement in the management of acute diarrhea, which represents the ideal strategy to prevent prolonged diarrhea. The pathogenesis of prolonged diarrhea is multifactorial and essentially based on persistent mucosal damage due to specific infections or sequential infections with different pathogens, host-related factors including micronutrient and/or vitamin deficiency, undernutrition and immunodeficiency, high mucosal permeability due to previous infectious processes and nutrient deficiency with consequential malabsorption, and microbiota disruption. Infections seem to play a major role in causing prolonged diarrhea in both developing and developed areas. However, single etiologic pathogens have not been identified, and the pattern of agents varies according to settings, host risk factors, and previous use of antibiotics and other drugs. The management of prolonged diarrhea is complex. Because of the wide etiologic spectrum, diagnostic algorithms should take into consideration the age of the patient, clinical and epidemiological factors, and the nutritional status and should always include a search for enteric pathogens. Often, expensive laboratory evaluations are of little benefit in guiding therapy, and an empirical approach may be effective in the majority of cases. The presence or absence of weight loss is crucial for driving the initial management of prolonged diarrhea. If there is no weight loss, generally there is no need for further evaluation. If weight loss is present, empiric anti-infectious therapy or elimination diet may be considered once specific etiologies have been excluded.
1981-08-01
besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus Fowl plague virus Goat pox virus Hog...Varicella virus Vole rickettsia Yellow fever virus, 17D vaccine strain 69 Class 3 Alastrun, smallpox, monkeypox, and whitepox, when used in vitro Arbovirus...animal inoculation experiments Vesicular stomatitis virus Yellow fever virus - wild when used in vitro Class 4 Alastrun, smallpox, monkeypox, and
Sun, Wu-Wen; Meng, Qing-Feng; Cong, Wei; Shan, Xiao-Feng; Wang, Chun-Feng; Qian, Ai-Dong
2015-11-01
Although the seroprevalence of Toxoplasma gondii, Neospora caninum, Chlamydia abortus and bovine viral diarrhea virus infection in cattle have been reported in some areas in China, most of them were conducted with small number of cattle samples and very limited districts and neglected the assessment of herd management factors associated with herd-level prevalence of these pathogen infections. Thus, from September 2013 to December 2014, a large-scale seroprevalence study was conducted to determine the animal-level and herd-level seroprevalence and identify herd-level risk factors associated with these pathogen infections in 4487 cattle from 134 herds in five provinces (Heilongjiang, Jilin, Liaoning, Shandong, Hebei) and Inner Mongolia Autonomous Region of China. At animal level, the true prevalence of antibodies against T. gondii, N. caninum, C. abortus and bovine viral diarrhoea virus (BVDV) was 10.48, 17.14, 11.92 and 50.10%, respectively. At herd level, the true prevalence of antibodies against T. gondii, N. caninum, C. abortus and BVDV was 27.16, 29.10, 37.31 and 40.30%, respectively. Multivariate analysis of these characteristics showed that source of water and presence of felids were significantly associated with T. gondii infection in the studied cattle herds. Source of water was significantly associated with N. caninum infection in the studied cattle herds. While herd size and management system were significantly associated with BVDV infection in the studied cattle herds, this is the first report of herd-level prevalence and associated risk factors of T. gondii, N. caninum, C. abortus and BVDV infection in cattle in China.
The National Bio- and Agro-Defense Facility: Issues for Congress
2007-09-04
example, research on Nipah virus must be performed in a BSL-4 laboratory. diagnostic capabilities for foreign animal and zoonotic diseases.”4 The...fever, African swine fever, Rift Valley fever, Nipah virus, Hendra virus, contagious bovine pleuropneumonia, and Japanese encephalitis.9 The DHS plans
The National Bio- and Agro-Defense Facility: Issues for Congress
2008-04-03
focus on foot and mouth disease (FMD), classical swine fever , African swine fever , Rift Valley fever , Nipah virus, Hendra virus, contagious bovine...Report RL32521, Agroterrorism: Threats and Preparedness, by Jim Monke. 2 Examples include influenza, plague, West Nile Virus, and Rift Valley Fever . 3
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help preve...
Enteric disease in broiler chickens following experimental infection with chicken parvovirus
USDA-ARS?s Scientific Manuscript database
Day-old broiler chickens were inoculated orally with the chicken parvovirus strain, chicken parvovirus-P1. In four independent experiments, characteristic clinical signs of enteric disease including watery, mustard color diarrhea and growth retardation were observed following infection. The virus wa...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosley, Ralph T.; Edwards, Thomas E.; Murakami, Eisuke
The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory {beta}-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesismore » at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory {beta}-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.« less
Complete genome sequences of two novel European clade bovine foamy viruses from Germany and Poland.
Hechler, Torsten; Materniak, Magdalena; Kehl, Timo; Kuzmak, Jacek; Löchelt, Martin
2012-10-01
Bovine foamy virus (BFV), or bovine spumaretrovirus, is an infectious agent of cattle with no obvious disease association but high prevalence in its host. Here, we report two complete BFV sequences, BFV-Riems, isolated in 1978 in East Germany, and BFV100, isolated in 2005 in Poland. Both new BFV isolates share the overall genetic makeup of other foamy viruses (FV). Although isolated almost 25 years apart and propagated in either bovine (BFV-Riems) or nonbovine (BFV100) cells, both viruses are highly related, forming the European BFV clade. Despite clear differences, BFV-Riems and BFV100 are still very similar to BFV isolates from China and the United States, comprising the non-European BFV clade. The genomic sequences presented here confirm the concept of high sequence conservation across most of the FV genome. Analyses of cell culture-derived genomes reveal that proviral DNA may specifically lack introns in the env-bel coding region. The spacing of the splice sites in this region suggests that BFV has developed a novel mode to express a secretory but nonfunctional Env protein.
Complete Genome Sequences of Two Novel European Clade Bovine Foamy Viruses from Germany and Poland
Hechler, Torsten; Materniak, Magdalena; Kehl, Timo; Kuzmak, Jacek
2012-01-01
Bovine foamy virus (BFV), or bovine spumaretrovirus, is an infectious agent of cattle with no obvious disease association but high prevalence in its host. Here, we report two complete BFV sequences, BFV-Riems, isolated in 1978 in East Germany, and BFV100, isolated in 2005 in Poland. Both new BFV isolates share the overall genetic makeup of other foamy viruses (FV). Although isolated almost 25 years apart and propagated in either bovine (BFV-Riems) or nonbovine (BFV100) cells, both viruses are highly related, forming the European BFV clade. Despite clear differences, BFV-Riems and BFV100 are still very similar to BFV isolates from China and the United States, comprising the non-European BFV clade. The genomic sequences presented here confirm the concept of high sequence conservation across most of the FV genome. Analyses of cell culture-derived genomes reveal that proviral DNA may specifically lack introns in the env-bel coding region. The spacing of the splice sites in this region suggests that BFV has developed a novel mode to express a secretory but nonfunctional Env protein. PMID:22966195
Chen, D; Periwal, S B; Larrivee, K; Zuleger, C; Erickson, C A; Endres, R L; Payne, L G
2001-09-01
Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.
Circulating MicroRNAs in Serum from Cattle Challenged with Bovine Viral Diarrhea Virus‡
Taxis, Tasia M.; Bauermann, Fernando V.; Ridpath, Julia F.; Casas, Eduardo
2017-01-01
Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopathic field strain of BVDV. Five colostrum deprived neonate Holstein calves were inoculated with BVDV (challenged) and 4 were mock challenged (control). Serum from all calves was collected at four different times: prior to challenge (day 0) and at 4, 9, and 16 days post-challenge. RNA was extracted from sera, and expression, via read counts, of small non-coding RNAs were obtained using next-generation sequencing. A total of 905,861 sequences identified 427 microRNAs. Sixty-two microRNAs had >1,000 total reads across all samples. Bta-miR-339a, bta-miR-185, bta-miR-486, Bta-miR-92a, bta-miR-30e-5p, bta-let-7c, and bta-miR-2284x were significantly different (P < 0.05) across time regardless of challenge status. Bta-miR-423-5p (P = 0.008) and bta-miR-151-3p (P = 0.005) were significantly different between challenged and control animals across time. In challenged animals, bta-miR-423-5p peaked in number of reads by day 4 and steadily declined from day 4 to day 16. In control animals, bta-miR-423-5p declined from day 0 to day 9 and increased in number by day 16. By day 16, both challenged and control animals had similar levels of bta-miR-423-5p, and these levels were similar to day 0 levels. Bta-miR-151-3p peaked at day 9 in challenged animals, while control animals decreased across time. By day 16, the number of reads of bta-miR-151-3p were similar between challenged and control animals. The level in challenged animals had returned to day 0 levels by day 16, whereas the levels for control animals was significantly lower (P = 0.006) than day 0. Further studies are needed to establish if bta-miR-423-5p or bta-miR-151-3p could be used as a biomarker for exposure to BVDV. PMID:28702050
Structure of Hepatitis C Virus Polymerase in Complex with Primer-Template RNA
Murakami, Eisuke; Lam, Angela M.; Grice, Rena L.; Du, Jinfa; Sofia, Michael J.; Furman, Philip A.; Otto, Michael J.
2012-01-01
The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus. PMID:22496223
USDA-ARS?s Scientific Manuscript database
Viruses are the cause of many waterborne diseases contracted from fecal-contaminated waters. Collection of samples that properly represent virus concentrations throughout relevant hydrologic periods has historically been difficult due to the large water volume collection and filtration required for ...
Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo
2017-12-01
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro . These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.
Khattar, Sunil K; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C; Montefiori, David C; Samal, Siba K
2015-07-21
Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. A safe and effective vaccine that can induce both systemic and mucosal immune responses is needed to control HIV-1. In this study, we showed that coexpression of Env and Gag proteins of HIV-1 performed using a single Newcastle disease virus (NDV) vector led to the formation of HIV-1 virus-like particles (VLPs). Immunization of guinea pigs with recombinant NDVs (rNDVs) elicited potent long-lasting systemic and mucosal immune responses to HIV. Additionally, the rNDVs were efficient in inducing cellular immune responses to HIV and protective immunity to challenge with vaccinia viruses expressing HIV Env and Gag in mice. These results suggest that the use of a single NDV expressing Env and Gag proteins simultaneously is a novel strategy to develop a safe and effective vaccine against HIV. Copyright © 2015 Khattar et al.
New 1-indanone thiosemicarbazone derivatives active against BVDV.
Finkielsztein, Liliana M; Castro, Eliana F; Fabián, Lucas E; Moltrasio, Graciela Y; Campos, Rodolfo H; Cavallaro, Lucía V; Moglioni, Albertina G
2008-08-01
Identification of new therapeutic agents for the treatment of viral diseases represents an area of active investigation. In an effort to develop new antiviral compounds, a series of 1-indanone thiosemicarbazone derivatives were synthesized. These derivatives were structurally characterized using several spectroscopic techniques and evaluated against bovine viral diarrhoea virus as a surrogate model for hepatitis C virus. Thiosemicarbazone 2m showed potent anti-bovine viral diarrhoea virus activity with a higher selectivity index (SI=80.29) than that of ribavirin (SI=11.64). This result determines the potentiality of these thiosemicarbazones as antiviral agents for the treatment of infections caused by other highly related members of Flaviviridae family, as hepatitis C virus.
Immune cell populations within the duodenal mucosa of dogs with enteropathies.
German, A J; Hall, E J; Day, M J
2001-01-01
The mucosal immune system may play a critical role in the pathogenesis of small intestinal enteropathies. The aim of the current study was to assess mucosal immune cell populations in dogs with inflammatory bowel disease (IBD), idiopathic antibiotic-responsive diarrhea (ARD), and adverse reactions to food (FR). Endoscopic biopsies were performed of the duodenum of dogs with these conditions and from a group of dogs without enteric disease. Additional control samples were collected after death from other dogs that did not have evidence of enteric disease. Immunohistochemistry and computer-aided morphometry were used to assess the distribution of immune cell subsets in both lamina propria and intestinal epithelium. Compared with controls, dogs with ARD had increased numbers of lamina propria immunoglobulin (Ig) A- plasma cells and CD4+ cells. More marked alterations were noted in dogs with IBD, with significant increases in lamina propria IgG+ plasma cells, T cells (CD3+), CD4+ cells, macrophages, and neutrophils, but with reduced mast cell numbers. Increased intraepithelial CD3+ T cells were also present in the dogs with IBD, compared with controls. However, lamina propria and epithelial populations were unaltered in dogs with FR when compared with controls. The altered mucosal immune cell populations observed in dogs with ARD or IBD may reflect an underlying immunologic pathogenesis in these disorders.
USDA-ARS?s Scientific Manuscript database
Characteristic clinical signs associated with viral enteritis in young poultry include diarrhea, anorexia, litter eating, ruffled feathers, and poor growth. Intestines may have lesions; intestines are typically dilated and are filled with fluid and gaseous contents. The sequela to clinical disease...
9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...
9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...
9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...
9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...
9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...
Khattar, Sunil K; DeVico, Anthony L; LaBranche, Celia C; Panda, Aruna; Montefiori, David C; Samal, Siba K
2016-02-01
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
A genomic window into the virulence of Histophilus somni.
Sandal, Indra; Inzana, Thomas J
2010-02-01
Histophilus somni is an obligate inhabitant of the respiratory and genital mucosal surfaces of bovines and ovines. An individual strain can be a primary pathogen, an opportunistic pathogen, or a commensal, but can also move between these classifications if introduced into an appropriate site (e.g. the lungs) under conditions that favor bacterial persistence. H. somni is one of the bacterial agents responsible for bovine respiratory disease complex and can also cause a variety of systemic diseases in cattle and sheep. Isolates from disease sites, such as the lungs, heart, and brain, express a wide array of virulence factors (including biofilm formation) designed to evade host defense mechanisms. By contrast, some isolates from the healthy genital tract often lack many of these virulence factors. The genomic sequences of two bovine isolates, one from pneumonic lung and the other from healthy prepuce, have aided in deciphering the differences in phenotype and virulence between the two strains, and reveal their striking genetic similarity to Haemophilus influenzae and other members of the Pasteurellaceae. (c) 2009 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vac...
USDA-ARS?s Scientific Manuscript database
Originally isolated from swine, the proposed influenza D virus has since been shown to be common in cattle. Inoculation of IDV to naïve calves resulted in mild respiratory disease histologically characterized by tracheitis. As several studies have associated the presence of IDV with acute bovine r...
USDA-ARS?s Scientific Manuscript database
Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...
Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran.
Hemmatzadeh, Farhid; Boardman, Wayne; Alinejad, Arezo; Hematzade, Azar; Moghadam, Majid Kharazian
2016-01-01
A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis), 22 wild goat (Capra aegagrus), nine Indian gazelle (Gazella bennettii) and eight Goitered gazelle (Gazella subgutturosa) during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV), Pestiviruses [Border Disease virus (BVD) and Bovine Viral Diarrhoea virus (BVDV)], Bluetongue virus (BTV), Bovine herpesvirus type 1 (BHV-1), and Parainfluenza type 3 (PI3). Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs) were tested using polymerase chain reaction (PCR) for PPRV, Foot and Mouth Disease virus (FMDV), Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2) and BHV-1. Serologic tests were positive for antibodies against PPRV (17%), Pestiviruses (2%) and BTV (2%). No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%), FMDV (11%), BTV (3%), OvHV-2 (31%) and BHV-1 (1.5%). None of the samples were positive for Pestiviruses.
Danuser, R; Vogt, H-R; Kaufmann, Th; Peterhans, E; Zanoni, R
2009-03-01
The seroprevalence of pestivirus infections in small ruminants and new world camelids in Switzerland was determined. In 5'059 sera of sheep from 382 herds, 503 sera of goats from 54 herds and 109 sera of alpacas and lamas from 53 herds, population prevalences of 16.1% (sheep), 25.4% (goats) and 4.6% (new world camelids), respectively, were found. In order to determine the source of infection, the serological reactions were further characterized by cross-neutralization against two pestiviruses representing the genotypes BVDV (Bovine Virus Diarrhea Virus)-1 and BDV (Border Disease Virus)-1. Based on the ratio of respective antibody titres, 56.1% of the infections in sheep were induced by a BDV-1, 12.9% by a BVDV-1 and 31.0% by an unresolved pestivirus. In goats, the corresponding proportions were 23.4%, 10.2% and 66.4%, respectively. In Alpacas and Lamas, the source of infection of 1 animal was BDV-1 and that of 4 seropositive animals remained unresolved. In view of the phylogenetic relationship between pestiviruses, the unresolved source of infection is most probably attributable to other pestivirus genotypes circulating in small ruminants and new world camelids. Due to the predominance of pestiviral genotypes other than BVDV-1, the risk of transmission of BVDV from persistently infected small ruminants and new world camelids to cattle appears to be moderate, apart from close direct contact in mixed animal husbandry, communal pasturing and grazing in the Alps.
Zhao, Z-P; Yang, Z; Lin, W-D; Wang, W-Y; Yang, J; Jin, W-J; Qin, A-J
2016-03-01
Piglet diarrhea epidemics result in major economic losses for the swine industry. Four viruses are closely linked to porcine diarrhea: porcine kobuvirus (PKV), porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and porcine rotavirus (PRoV). We have conducted an epidemiology study to determine the frequency of infection and co-infection with these viruses in China, and characterized the genetic variation of the isolated PEDV and PKV strains. Stool and intestinal samples (n = 314) were collected from piglets with diarrhea in China from years 2012 to 2014. RT-PCR was used to detect PKV, PEDV, TGEV, and PRoV. Phylogenetic relationships between reference strains and the isolated PEDV and PKV strains were determined based on the M and 3D gene sequence. The rates of infection with PKV, PEDV, TGEV and PRoV were 29.9%, 24.2%, 1.91%, and 0.31%, respectively. Co-infections with PKV and the other three viruses were very common. Co-infection of PKV and PEDV was detected in 15.0% (47/314) of the samples. Phylogenetic analysis of the PKV 3D gene indicated that there were some phylogenetic differences in the PKV strains across regions within China. However, according to the PEDV M gene, strains clustered into three groups and the primary group was distinct from the vaccine strain CV777. This study provides insights in to the prevalence of diarrhea viruses and their prevention and control in China.
Ito, Marcos Massayuki; Catanhêde, Lilian Motta; Katsuragawa, Tony Hiroshi; Silva Junior, Cipriano Ferreira da; Camargo, Luis Marcelo Aranha; Mattos, Ricardo de Godoi; Vilallobos-Salcedo, Juan Miguel
2015-01-01
Mucosal leishmaniosis (ML) is a severe clinical form of leishmaniosis. Complex factors related to the parasite and the host are attributed to the development of mucosal lesions. Leishmania RNA virus 1 (LRV1) can disrupt immune response, and may be the main determinant of severity of the disease; it should be investigated. To study the existence of clinical differences between patients with ML with endosymbiosis by LRV1 and. those without it. A cross-sectional cohort study with clinical evaluation, polymerase chain reaction (PCR) detection of Leishmania, species classification, and search of LRV1 was performed. Only patients with confirmed diagnosis of ML by positive PCR and with nasal mucosa injuries were included in this analysis. Out of 37 patients, 30 (81.1%) were diagnosed with Leishmania braziliensis, five (13.5%) with Leishmania guyanensis, and two (5.4%) with mixed infection of L. braziliensis and L. guyanensis. LVR1 virus was present in 26 (70.3%) of the cases. Correlation between clinical phenotype and presence of LRV1 was not observed, although the frequency of the virus is two-fold higher in mucosal lesions than that found in the literature on skin lesions in the same geographical area. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Pathogenicity of 2 Porcine Deltacoronavirus Strains in Gnotobiotic Pigs
Hu, Hui; Eyerly, Bryan; Lu, Zhongyan; Chepngeno, Juliet
2015-01-01
To verify whether porcine deltacoronavirus infection induces disease, we inoculated gnotobiotic pigs with 2 virus strains (OH-FD22 and OH-FD100) identified by 2 specific reverse transcription PCRs. At 21–120 h postinoculation, pigs exhibited severe diarrhea, vomiting, fecal shedding of virus, and severe atrophic enteritis. These findings confirm that these 2 strains are enteropathogenic in pigs. PMID:25811229
2012-01-01
Background In the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. Results Thirty-two sera out of 1’877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. Conclusions To our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois. Nevertheless, our results suggest that BVDV infections are only sporadic in Swiss wild ruminants, despite regular occurrence of interactions with potentially infected livestock. Overall, serological, virological and ethological data indicate that wildlife is currently an incidental spill-over host and not a reservoir for BVDV in Switzerland. PMID:23107231
Castro, Eliana F; Campos, Rodolfo H; Cavallaro, Lucía V
2014-01-01
Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1-5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1-5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1-5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.
Casaubon, Julien; Vogt, Hans-Rudolf; Stalder, Hanspeter; Hug, Corinne; Ryser-Degiorgis, Marie-Pierre
2012-10-29
In the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. Thirty-two sera out of 1'877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. To our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois. Nevertheless, our results suggest that BVDV infections are only sporadic in Swiss wild ruminants, despite regular occurrence of interactions with potentially infected livestock. Overall, serological, virological and ethological data indicate that wildlife is currently an incidental spill-over host and not a reservoir for BVDV in Switzerland.
Ipilimumab for Patients With Advanced Mucosal Melanoma
Postow, Michael A.; Luke, Jason J.; Bluth, Mark J.; Ramaiya, Nikhil; Panageas, Katherine S.; Lawrence, Donald P.; Ibrahim, Nageatte; Flaherty, Keith T.; Sullivan, Ryan J.; Ott, Patrick A.; Callahan, Margaret K.; Harding, James J.; D'Angelo, Sandra P.; Dickson, Mark A.; Schwartz, Gary K.; Chapman, Paul B.; Gnjatic, Sacha; Wolchok, Jedd D.; Hodi, F. Stephen
2013-01-01
The outcome of patients with mucosal melanoma treated with ipilimumab is not defined. To assess the efficacy and safety of ipilimumab in this melanoma subset, we performed a multicenter, retrospective analysis of 33 patients with unresectable or metastatic mucosal melanoma treated with ipilimumab. The clinical characteristics, treatments, toxicities, radiographic assessment of disease burden by central radiology review at each site, and mutational profiles of the patients' tumors were recorded. Available peripheral blood samples were used to assess humoral immunity against a panel of cancer-testis antigens and other antigens. By the immune-related response criteria of the 30 patients who underwent radiographic assessment after ipilimumab at approximately week 12, there were 1 immune-related complete response, 1 immune-related partial response, 6 immune-related stable disease, and 22 immune-related progressive disease. By the modified World Health Organization criteria, there were 1 immune-related complete response, 1 immune-related partial response, 5 immune-related stable disease, and 23 immune-related progressive disease. Immune-related adverse events (as graded by Common Terminology Criteria for Adverse Events version 4.0) consisted of six patients with rash (four grade 1, two grade 2), three patients with diarrhea (one grade 1, two grade 3), one patient with grade 1 thyroiditis, one patient with grade 3 hepatitis, and 1 patient with grade 2 hypophysitis. The median overall survival from the time of the first dose of ipilimumab was 6.4 months (range: 1.8–26.7 months). Several patients demonstrated serologic responses to cancer-testis antigens and other antigens. Durable responses to ipilimumab were observed, but the overall response rate was low. Additional investigation is necessary to clarify the role of ipilimumab in patients with mucosal melanoma. PMID:23716015
Ipilimumab for patients with advanced mucosal melanoma.
Postow, Michael A; Luke, Jason J; Bluth, Mark J; Ramaiya, Nikhil; Panageas, Katherine S; Lawrence, Donald P; Ibrahim, Nageatte; Flaherty, Keith T; Sullivan, Ryan J; Ott, Patrick A; Callahan, Margaret K; Harding, James J; D'Angelo, Sandra P; Dickson, Mark A; Schwartz, Gary K; Chapman, Paul B; Gnjatic, Sacha; Wolchok, Jedd D; Hodi, F Stephen; Carvajal, Richard D
2013-06-01
The outcome of patients with mucosal melanoma treated with ipilimumab is not defined. To assess the efficacy and safety of ipilimumab in this melanoma subset, we performed a multicenter, retrospective analysis of 33 patients with unresectable or metastatic mucosal melanoma treated with ipilimumab. The clinical characteristics, treatments, toxicities, radiographic assessment of disease burden by central radiology review at each site, and mutational profiles of the patients' tumors were recorded. Available peripheral blood samples were used to assess humoral immunity against a panel of cancer-testis antigens and other antigens. By the immune-related response criteria of the 30 patients who underwent radiographic assessment after ipilimumab at approximately week 12, there were 1 immune-related complete response, 1 immune-related partial response, 6 immune-related stable disease, and 22 immune-related progressive disease. By the modified World Health Organization criteria, there were 1 immune-related complete response, 1 immune-related partial response, 5 immune-related stable disease, and 23 immune-related progressive disease. Immune-related adverse events (as graded by Common Terminology Criteria for Adverse Events version 4.0) consisted of six patients with rash (four grade 1, two grade 2), three patients with diarrhea (one grade 1, two grade 3), one patient with grade 1 thyroiditis, one patient with grade 3 hepatitis, and 1 patient with grade 2 hypophysitis. The median overall survival from the time of the first dose of ipilimumab was 6.4 months (range: 1.8-26.7 months). Several patients demonstrated serologic responses to cancer-testis antigens and other antigens. Durable responses to ipilimumab were observed, but the overall response rate was low. Additional investigation is necessary to clarify the role of ipilimumab in patients with mucosal melanoma.
Crawshaw, Timothy R; Brown, Ian H; Essen, Steve C; Young, Stuart C L
2008-10-01
Sporadic cases of an acute fall in milk production, "milk drop", were investigated in a Holstein Friesian dairy herd in Devon. The investigation was a case control study with two controls per case. Paired blood samples demonstrated that rising antibody titres to human influenza A/England/333/80 (H1N1) and human influenza A/Eng/427/88 (H3N2) were associated with an acute fall in milk production. Rising titres to bovine respiratory syncytial virus (BRSV), bovine virus diarrhoea virus (BVD), infectious bovine rhinotracheitis (IBR) and parainfluenza virus 3 (PI3) were not associated with an acute fall in milk production. Cases with rises in antibody to influenza A had significantly higher respiratory scores and rectal temperatures than their controls. The mean loss of milk production for the cases with rises in antibody to influenza A compared to their controls was 159.9L. This study provides further evidence that influenza A persists in cattle and causes clinical disease.
Epidemiology of Oral and Maxillofacial Infections.
Rajendra Santosh, Arvind Babu; Ogle, Orrett E; Williams, Dwight; Woodbine, Edward F
2017-04-01
Dental caries and periodontal disease are the most common dental infections and are constantly increasing worldwide. Distribution, occurrence of dental caries, gingivitis, periodontitis, odontogenic infections, antibiotic resistance, oral mucosal infections, and microbe-related oral cancer are important to understand the public impact and methods of controlling such disease. Distribution of human papilloma virus and human immunodeficiency virus -related oral cancers in the US population is presented. Copyright © 2016 Elsevier Inc. All rights reserved.
Wotzka, Sandra Y; Nguyen, Bidong D; Hardt, Wolf-Dietrich
2017-04-12
Despite decades of research, efficient therapies for most enteropathogenic bacteria are still lacking. In this review, we focus on Salmonella enterica Typhimurium (S. Typhimurium), a frequent cause of acute, self-limiting food-borne diarrhea and a model that has revealed key principles of enteropathogen infection. We review the steps of gut infection and the mucosal innate-immune defenses limiting pathogen burdens, and we discuss how inflammation boosts gut luminal S. Typhimurium growth. We also discuss how S. Typhimurium-induced inflammation accelerates the transfer of plasmids and phages, which may promote the transmission of antibiotic resistance and facilitate emergence of pathobionts and pathogens with enhanced virulence. The targeted manipulation of the microbiota and vaccination might offer strategies to prevent this evolution. As gut luminal microbes impact various aspects of the host's physiology, improved strategies for preventing enteropathogen infection and disease-inflicted DNA exchange may be of broad interest well beyond the acute infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Savarino, Stephen J; McKenzie, Robin; Tribble, David R; Porter, Chad K; O'Dowd, Aisling; Cantrell, Joyce A; Sincock, Stephanie A; Poole, Steven T; DeNearing, Barbara; Woods, Colleen M; Kim, Hye; Grahek, Shannon L; Brinkley, Carl; Crabb, Joseph H; Bourgeois, A Louis
2017-07-01
Tip-localized adhesive proteins of bacterial fimbriae from diverse pathogens confer protection in animal models, but efficacy in humans has not been reported. Enterotoxigenic Escherichia coli (ETEC) commonly elaborate colonization factors comprising a minor tip adhesin and major stalk-forming subunit. We assessed the efficacy of antiadhesin bovine colostral IgG (bIgG) antibodies against ETEC challenge in volunteers. Adults were randomly assigned (1:1:1) to take oral hyperimmune bIgG raised against CFA/I minor pilin subunit (CfaE) tip adhesin or colonization factor I (CFA/I) fimbraie (positive control) or placebo. Two days before challenge, volunteers began a thrice-daily, 7-day course of investigational product administered in sodium bicarbonate 15 minutes after each meal. On day 3, subjects drank 1 × 109 colony-forming units of colonization factor I (CFA/I)-ETEC strain H10407 with buffer. The primary efficacy endpoint was diarrhea within 120 hours of challenge. After enrollment and randomization, 31 volunteers received product, underwent ETEC challenge, and were included in the per protocol efficacy analysis. Nine of 11 placebos developed diarrhea, 7 experiencing moderate to severe disease. Protective efficacy of 63% (P = .03) and 88% (P = .002) was observed in the antiadhesin bIgG and positive control groups, respectively. Oral administration of anti-CFA/I minor pilin subunit (CfaE) antibodies conferred significant protection against ETEC, providing the first clinical evidence that fimbrial tip adhesins function as protective antigens. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Monini, Marina; Di Bartolo, Ilaria; Ianiro, Giovanni; Angeloni, Giorgia; Magistrali, Chiara Francesca; Ostanello, Fabio; Ruggeri, Franco Maria
2015-10-01
Gastrointestinal disease is frequent in pigs, and among the different etiological agents involved, viruses are considered the leading cause of infection in this animal species. Furthermore, about half of the newly identified swine pathogens are viruses, many of which may be transmitted to humans by direct contact or by indirect transmission pathways. In this study, the prevalence of astrovirus (AstV), group A rotavirus (RVA), norovirus (NoV) and hepatitis E virus (HEV) infections in pigs was investigated. During 2012-2014, 242 fecal samples were collected from pigs at different production stages (5 to 220 days old) on eight swine farms located in northern, central and southern Italy. Seven out of eight farms analyzed were positive for AstV, which was detected in 163 out of 242 (67.4%) samples and was the most prevalent virus; 61 of the 163 AstV-positive animals (37.4%) had diarrhea. HEV was detected on six farms and in 45 (18.6%) of the 242 samples analyzed. Twenty-three HEV-infected pigs had diarrhea (51.1%). A lower prevalence was observed for RVA, which was found in 10 of the 242 samples (4.1%) from three positive farms, and diarrhea was present only in six infected pigs (60.0%). No swine samples were found to be positive for NoV. Genetic diversity and phylogenetic relationships of some strains representative of the different viruses detected were investigated, confirming a wide heterogeneity of viral strains circulating among pigs.
Alejo, Diana M; Moraes, Mauro P; Liao, Xiaofen; Dias, Camila C; Tulman, Edan R; Diaz-San Segundo, Fayna; Rood, Debra; Grubman, Marvin J; Silbart, Lawrence K
2013-04-26
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E. coli heat-labile enterotoxin (LT) has been described as one of the few molecules that have adjuvant activity at mucosal surfaces. The objective of this study was to evaluate the efficacy of replication-defective adenovirus 5 (Ad5) vectors encoding either of two LT-based mucosal adjuvants, LTB or LTR72. These vectored adjuvants were delivered intranasally to mice concurrent with an Ad5-FMDV vaccine (Ad5-A24) to assess their ability to augment mucosal and systemic humoral immune responses to Ad5-A24 and protection against FMDV. Mice receiving Ad5-A24 plus Ad5-LTR72 had higher levels of mucosal and systemic neutralizing antibodies than those receiving Ad5-A24 alone or Ad5-A24 plus Ad5-LTB. The vaccine plus Ad5-LTR72 group also demonstrated 100% survival after intradermal challenge with a lethal dose of homologous FMDV serotype A24. These results suggest that Ad5-LTR72 could be used as an important tool to enhance mucosal and systemic immunity against FMDV and potentially other pathogens with a common route of entry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Karayel, Ilke; Fehér, Enikő; Marton, Szilvia; Coskun, Nüvit; Bányai, Krisztián; Alkan, Feray
2017-03-01
Group A rotaviruses (RVA) are regarded as major enteric pathogens of large ruminants, including cattle. Rotavirus vaccines administered to pregnant cows are commonly used to provide passive immunity that protects newborn calves from the clinical disease. In this study we report the detection of RVA from calves with severe diarrhea in a herd regularly vaccinated to prevent enteric infections including RVA. Diarrheic disease was observed in newborn calves aged 4-15days, with high morbidity and mortality rates, but no diarrhea was seen in adult animals. Rotavirus antigen was detected by enzyme-immunoassay in the intestinal content or the fecal samples of all examined animals. Besides RVA, bovine coronavirus and bovine enteric calicivirus were detected in some samples. Selected RVA strains were characterized by whole genome sequencing. Two strains, RVA/Cow-wt/TUR/Amasya-1/2015/G8P[5] and RVA/Cow-wt/TUR/Amasya-2/2015/G8P[5] were genotyped as G8-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and showed >99% nucleotide sequence identity among themselves. This genomic constellation is fairly common among bovine RVA strains; however, phylogenetic analysis of the G8 VP7 gene showed close genetic relationship to some European human RVA strains (up to 98.4% nt identity). Our findings is the first indication regarding the circulation of G8 RVA strains in Turkey. Given that the administered RVA vaccines contained type G6 and G10 VP7 antigens some concerns raised with regard to the level of heterotypic protection elicited by the vaccine strains against circulating bovine G8 RVA strains. Enhancement of surveillance of circulating RVA strains in calves across Turkey is needed to support ongoing vaccination programs. Copyright © 2016 Elsevier B.V. All rights reserved.
Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112.
Lee, Sunhee; Kim, Youngnam; Lee, Changhee
2015-10-02
Severe outbreaks of porcine epidemic diarrhea virus (PEDV) have re-emerged in Korea and rapidly swept across the country, causing tremendous economic losses to producers and customers. Despite the availability of PEDV vaccines in the domestic market, the disease continues to plague the Korean pork industry, raising issues regarding their protective efficacy and new vaccine development. Therefore, PEDV isolation in cell culture is urgently needed to develop efficacious vaccines and diagnostic assays and to conduct further studies on the virus biology. In the present study, one Korean PEDV strain, KOR/KNU-141112/2014, was successfully isolated and serially propagated in Vero cells for over 30 passages. The in vitro and in vivo characteristics of the Korean PEDV isolate were investigated. Virus production in cell culture was confirmed by cytopathology, immunofluorescence, and real-time RT-PCR. The infectious virus titers of the viruses during the first 30 passages ranged from 10(5.1) to 10(8.2) TCID50 per ml. The inactivated KNU-141112 virus was found to mediate potent neutralizing antibody responses in immunized guinea pigs. Animal studies showed that KNU-141112 virus causes severe diarrhea and vomiting, fecal shedding, and acute atrophic enteritis, indicating that strain KNU-141112 is highly enteropathogenic in the natural host. In addition, the entire genomes or complete S genes of KNU-141112 viruses at selected cell culture passages were sequenced to assess the genetic stability and relatedness. Our genomic analyses indicated that the Korean isolate KNU-141112 is genetically stable during the first 30 passages in cell culture and is grouped within subgroup G2b together with the recent re-emergent Korean strains. Copyright © 2015 Elsevier B.V. All rights reserved.
Capsule endoscopy in the diagnosis of Crohn’s disease
Niv, Yaron
2013-01-01
Crohn’s disease is a chronic inflammatory disorder affecting any part of the gastrointestinal tract, but frequently involves the small and large bowel. Typical presenting symptoms include abdominal pain and diarrhea. Patients with this disorder may also have extraintestinal manifestations, including arthritis, uveitis, and skin lesions. The PillCam™SB capsule is an ingestible disposable video camera that transmits high quality images of the small intestinal mucosa. This enables the small intestine to be readily accessible to physicians investigating for the presence of small bowel disorders, such as Crohn’s disease. Four meta-analyses have demonstrated that capsule endoscopy identifies Crohn’s disease when other methods are not helpful. It should be noted that it is the best noninvasive procedure for assessing mucosal status, but is not superior to ileocolonoscopy, which remains the gold standard for assessment of ileocolonic disease. Mucosal healing along the small bowel can only be demonstrated by an endoscopic procedure such as capsule endoscopy. Achievement of long-term mucosal healing has been associated with a trend towards a decreased need for hospitalization and a decreased requirement for corticosteroid treatment in patients with Crohn’s disease. Recently, we have developed and validated the Capsule Endoscopy Crohn’s Disease Activity Index (also known as the Niv score) for Crohn’s disease of the small bowel. The next step is to expand our score to the colon, and to determine the role and benefit of a capsule endoscopy activity score in patients suffering from Crohn’s ileocolitis and/or colitis. This scoring system will also serve to improve our understanding of the impact of capsule endoscopy, and therefore treatment, on the immediate outcome of this disorder. As the best procedure available for assessing mucosal status, capsule endoscopy will provide important information about the course and outcome of Crohn’s disease. PMID:23818810
Jones, Clinton
2013-01-01
α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776
Engram, Jessica C; Dunham, Richard M; Makedonas, George; Vanderford, Thomas H; Sumpter, Beth; Klatt, Nichole R; Ratcliffe, Sarah J; Garg, Seema; Paiardini, Mirko; McQuoid, Monica; Altman, John D; Staprans, Silvija I; Betts, Michael R; Garber, David A; Feinberg, Mark B; Silvestri, Guido
2009-07-01
Our limited understanding of the interaction between primate lentiviruses and the host immune system complicates the design of an effective HIV/AIDS vaccine. To identify immunological correlates of protection from SIV disease progression, we immunized two groups of five rhesus macaques (RMs) with either modified vaccinia Ankara (MVA) or MVADeltaudg vectors that expressed SIVmac239 Gag and Tat. Both vectors raised a SIV-specific CD8(+) T cell response, with a magnitude that was greater in mucosal tissues than in peripheral blood. After challenge with SIVmac239, all vaccinated RMs showed mucosal and systemic CD8(+) T cell recall responses that appeared faster and were of greater magnitude than those in five unvaccinated control animals. All vaccinated RMs showed a approximately 1-log lower peak and early set-point SIV viral load than the unvaccinated animals, and then, by 8 wk postchallenge, exhibited levels of viremia similar to the controls. We observed a significant direct correlation between the magnitude of postchallenge SIV-specific CD8(+) T cell responses and SIV viral load. However, vaccinated RMs showed no protection from either systemic or mucosal CD4(+) T cell depletion and no improved survival. The observation that vaccine-induced, SIV-specific CD8(+) T cells that partially control SIVmac239 virus replication fail to protect from immunological or clinical progression of SIV infection underscores both the complexity of AIDS pathogenesis and the challenges of properly assessing the efficacy of candidate AIDS vaccines.
ISODA, Norikazu; ASANO, Akihiro; ICHIJO, Michiru; WAKAMORI, Shiho; OHNO, Hiroshi; SATO, Kazuhiko; OKAMOTO, Hirokazu; NAKAO, Shigeru; KATO, Hajime; SAITO, Kazuma; ITO, Naoki; USUI, Akira; TAKAYAMA, Hiroaki; SAKODA, Yoshihiro
2017-01-01
A scenario tree model was developed to propose efficient bovine viral diarrhea (BVD) control measures. The model used field data in eastern Hokkaido where the risk of BVDV infection in cattle has been reduced by an eradication program including mass vaccination, individual tests prior to communal pasture grazing, herd screening tests using bulk milk, and outbreak investigations of newly infected herds. These four activities were then used as hypothesized control measures in the simulation. In each simulation, the numbers of cattle infected persistently and transiently with BVDV detected by clinical manifestations and diagnosis tests and of missed by all of the diagnosis tests were calculated, and the numbers were used as indicators to be compared for the efficacy of the control measures. The model outputs indicated that the adoption of mass vaccination decreased the number of missed BVD cattle, although it did not increase the number of detected BVD cattle. Under implementation of mass vaccination, the efficacy of individual tests on selected 20% of the young and adult cattle was equal to that of the herd screening test performed in all the herds. When the virus prevalence or the number of sensitive animals becomes low, the efficacy of herd screening test was superior to one of individual tests. Considering the model outputs together, the scenario tree model developed in the present study was useful to compare the efficacy of the control measures for BVD. PMID:28539533
Isoda, Norikazu; Asano, Akihiro; Ichijo, Michiru; Wakamori, Shiho; Ohno, Hiroshi; Sato, Kazuhiko; Okamoto, Hirokazu; Nakao, Shigeru; Kato, Hajime; Saito, Kazuma; Ito, Naoki; Usui, Akira; Takayama, Hiroaki; Sakoda, Yoshihiro
2017-07-07
A scenario tree model was developed to propose efficient bovine viral diarrhea (BVD) control measures. The model used field data in eastern Hokkaido where the risk of BVDV infection in cattle has been reduced by an eradication program including mass vaccination, individual tests prior to communal pasture grazing, herd screening tests using bulk milk, and outbreak investigations of newly infected herds. These four activities were then used as hypothesized control measures in the simulation. In each simulation, the numbers of cattle infected persistently and transiently with BVDV detected by clinical manifestations and diagnosis tests and of missed by all of the diagnosis tests were calculated, and the numbers were used as indicators to be compared for the efficacy of the control measures. The model outputs indicated that the adoption of mass vaccination decreased the number of missed BVD cattle, although it did not increase the number of detected BVD cattle. Under implementation of mass vaccination, the efficacy of individual tests on selected 20% of the young and adult cattle was equal to that of the herd screening test performed in all the herds. When the virus prevalence or the number of sensitive animals becomes low, the efficacy of herd screening test was superior to one of individual tests. Considering the model outputs together, the scenario tree model developed in the present study was useful to compare the efficacy of the control measures for BVD.
Wang, Hongyin; Kotler, Donald P
2014-07-01
Despite decreases in morbidity and mortality as a result of antiretroviral therapy, gastrointestinal dysfunction remains common in HIV infection. Treated patients are at risk for complications of 'premature' aging, such as cardiovascular disease, osteopenia, neurocognitive decline, malignancies, and frailty. This review summarizes recent observations in this field. Mucosal CD4 lymphocytes, especially Th17 cells, are depleted in acute HIV and simian immune deficiency virus (SIV) infections, although other cell types also are affected. Reconstitution during therapy often is incomplete, especially in mucosa. Mucosal barrier function is affected by both HIV infection and aging and includes paracellular transport via tight junctions and uptake through areas of apoptosis; other factors may affect systemic antigen exposure. The resultant microbial translocation is associated with systemic immune activation in HIV and SIV infections. There is evidence of immune activation and microbial translocation in the elderly. The immune phenotypes of immunosenescence in HIV infection and aging appear similar. There are several targets for intervention; blockage of residual mucosal virus replication, preventing antigen uptake, modulating the microbiome, improving T cell recovery, combining therapies aimed at mucosal integrity, augmenting mucosal immunity, and managing traditional risk factors for premature aging in the general population. Aging may interact with HIV enteropathy to enhance microbial translocation and immune activation.
Yang, Xingdong; Wen, Ke; Tin, Christine; Li, Guohua; Wang, Haifeng; Kocher, Jacob; Pelzer, Kevin; Ryan, Elizabeth; Yuan, Lijuan
2014-10-01
Rice bran (RB) contains a distinct stoichiometry of phytochemicals that can promote gut mucosal immune responses against enteric pathogens. The effects of RB on rotavirus diarrhea and immunogenicity of an attenuated human rotavirus (HRV) vaccine were evaluated in gnotobiotic pigs. The four treatment groups studied were RB plus vaccine, vaccine only, RB only, and mock control. Pigs in the RB groups were fed the amount of RB that replaced 10% of the pigs' total daily calorie intake from milk starting from 5 days of age until they were euthanized. Pigs in the vaccine groups were orally inoculated with two doses of the attenuated HRV vaccine. A subset of pigs from each group was orally challenged with the homologous virulent HRV on postinoculation day 28. Diarrhea and virus shedding were monitored daily from postchallenge day 0 to day 7. RB feeding significantly protected against diarrhea upon virulent HRV challenge and enhanced the protective rate of the vaccine against rotavirus diarrhea. Consistent with protection, RB significantly increased gamma interferon (IFN-γ)-producing CD4(+) and CD8(+) T cell responses in intestinal and systemic lymphoid tissues. Furthermore, RB also increased the number of total IgM- and IgA-secreting cells, total serum IgM, IgG, and IgA titers, and HRV-specific IgA titers in intestinal contents. RB reduced the numbers of intestinal and systemic HRV-specific IgA and IgG antibody-secreting cells and reduced serum HRV-specific IgA and IgG antibody titers before the challenge. These results demonstrate clear beneficial effects of RB in protection against rotavirus diarrhea and stimulation of nonspecific and HRV-specific immune responses, as well as its biased Th1-type adjuvant effect for the vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Tyzzer's disease in a red panda (Ailurus fulgens fulgens).
Langan, J; Bemis, D; Harbo, S; Pollock, C; Schumacher, J
2000-12-01
A debilitated 9-yr-old female red panda (Ailurus fulgens fulgens) with a recent history of corticosteroid administration displayed anorexia, depression, and diarrhea for 2 days. Blood work revealed a moderate nonregenerative anemia, leukocytosis, hypokalemia, hyperbilirubinemia, and mildly elevated alanine aminotransferase and aspartate aminotransferase. Serology was negative for occult heartworm, Toxoplasma gondii, feline leukemia virus, feline infectious peritonitis, feline immunodeficiency virus, and canine distemper virus. Electron microscopy of the feces demonstrated corona-like virus particles. The panda died 3 days after initial presentation. Histologic findings included multifocal, acute, hepatic necrosis and diffuse, necrotizing colitis. Liver and colon lesions contained intracellular, curved, spore-forming, gram-negative, silver-positive rods morphologically consistent with Clostridium piliforme. This panda most likely contracted Tyzzer's disease subsequent to having a compromised immune system after corticosteroid administration and concurrent disease.
Seroprevalence of bovine viral diarrhea virus in crossbred dairy cattle in Bangladesh
Uddin, Mohammed Arif; Ahasan, A. S. M. Lutful; Islam, Kamrul; Islam, Md. Zohorul; Mahmood, Altaf; Islam, Ariful; Islam, Kazi Muhammad Fakhrul; Ahad, Abdul
2017-01-01
Aim: The study was conducted to determine the seroprevalence of bovine viral diarrhea virus (BVDV) and hematological features in crossbred dairy cattle in Chittagong, Bangladesh. Materials and Methods: The antibody against BVDV in crossbred dairy cattle serum was detected by indirect enzyme-linked immunosorbent assay. The association of different categorical variables in the prevalence of BVDV has been studied. Blood samples were collected and analyzed to know the hematological variations in the study population. Results: The overall seroprevalence of BVDV in the study area was 51.1% (95% confidence interval [CI], 40.5-61.5). Among different physiological stages of animals, the highest 57.1% (95% CI, 42.2-71.2) prevalence was in case of non-pregnant animals. Aborted cows were found to be significantly (p<0.05) more seropositive 77.8% (95% CI, 52.4-93.6) than the non-aborted cows (77.8%, 95% CI, 52.4-93.6, compared to 44.7%, 95% CI, 33.3-56.6, respectively). Cows having the history of retained placenta were found more positive than without the history of retained placenta (63.2%, 95% CI, 38.4-83.7, compared to 54.7%, 95% CI, 40.4-68.4, respectively). Among the animals of different age groups, BVDV seroprevalence was higher 61.3% (95% CI, 42.2-78.2) in animals of more than 3 years up to 5 years, whereas 32% was in case of 0-1-year-old. Significant variation found in different geographical areas of the study area. Hematological analyses have shown variation between the BVDV positive and negative animals. Conclusion: Seroprevalence of BVDV found to be high in the study area is also economically important and cause significant damage to the production industry. Therefore, it is necessary to conduct effective control measures to reduce the burden of BVDV. PMID:28919681
Breed, Matthew W.; Jordan, Andrea P. O.; Aye, Pyone P.; Lichtveld, Cornelis F.; Midkiff, Cecily C.; Schiro, Faith R.; Haggarty, Beth S.; Sugimoto, Chie; Alvarez, Xavier; Sandler, Netanya G.; Douek, Daniel C.; Kuroda, Marcelo J.; Pahar, Bapi; Piatak, Michael; Lifson, Jeffrey D.; Keele, Brandon F.; Hoxie, James A.
2013-01-01
A hallmark of pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections is the rapid and near-complete depletion of mucosal CD4+ T lymphocytes from the gastrointestinal tract. Loss of these cells and disruption of epithelial barrier function are associated with microbial translocation, which has been proposed to drive chronic systemic immune activation and disease progression. Here, we evaluate in rhesus macaques a novel attenuated variant of pathogenic SIVmac239, termed ΔGY, which contains a deletion of a Tyr and a proximal Gly from a highly conserved YxxØ trafficking motif in the envelope cytoplasmic tail. Compared to SIVmac239, ΔGY established a comparable acute peak of viremia but only transiently infected lamina propria and caused little or no acute depletion of mucosal CD4+ T cells and no detectable microbial translocation. Nonetheless, these animals developed T-cell activation and declining peripheral blood CD4+ T cells and ultimately progressed with clinical or pathological features of AIDS. ΔGY-infected animals also showed no infection of macrophages or central nervous system tissues even in late-stage disease. Although the ΔGY mutation persisted, novel mutations evolved, including the formation of new YxxØ motifs in two of four animals. These findings indicate that disruption of this trafficking motif by the ΔGY mutation leads to a striking alteration in anatomic distribution of virus with sparing of lamina propria and a lack of microbial translocation. Because these animals exhibited wild-type levels of acute viremia and immune activation, our findings indicate that these pathological events are dissociable and that immune activation unrelated to gut damage can be sufficient for the development of AIDS. PMID:23152518
Smirnova, Natalia P; Webb, Brett T; Bielefeldt-Ohmann, Helle; Van Campen, Hana; Antoniazzi, Alfredo Q; Morarie, Susan E; Hansen, Thomas R
2012-08-01
Transplacental viral infections are dependent upon complex interactions between feto-placental and maternal immune responses and the stage of fetal development at which the infection occurs. Bovine viral diarrhea virus (BVDV) has the ability to cross the placenta and infect the fetus. Infection early in gestation with non-cytopathic (ncp) BVDV leads to persistent infection. Establishment of fetal persistent infection results in life-long viremia, virus-specific immunotolerance, and may have detrimental developmental consequences. We have previously shown that heifers infected experimentally with ncp BVDV type 2 on d. 75 of gestation had transient robust up-regulation of the type I interferon (IFN) stimulated genes (ISGs) 3-15 days after viral inoculation. Blood from persistently infected (PI) fetuses, collected 115 days post maternal infection, demonstrated moderate chronic up-regulation of ISGs. This infection model was used to delineate timing of the development of innate immune responses in the fetus and placenta during establishment of persistent infection. It was hypothesized that: (i) chronic stimulation of innate immune responses occurs following infection of the fetus and (ii) placental production of the type I IFN contributes to up-regulation of ISGs in PI fetuses. PI fetuses, generated by intranasal inoculation of pregnant heifers with ncp BVDV, and control fetuses from uninfected heifers, were collected via Cesarean sections on d. 82, 89, 97, 192, and 245 of gestation. Fetal viremia was confirmed starting on d. 89. Significant up-regulation of mRNA encoding cytosolic dsRNA sensors -RIG-I and MDA5 - was detected on d. 82-192. Detection of viral dsRNA by cytosolic sensors leads to the stimulation of ISGs, which was reflected in significant up-regulation of ISG15 mRNA in fetal blood on d. 89, 97, and 192. No difference in IFN-α and IFN-β mRNA concentration was found in fetal blood or caruncular tissue, while a significant increase in both IFN-α and IFN-β mRNA was seen in cotyledons from PI fetuses on d. 192. It is concluded that fetuses respond to early gestational ncp BVDV infection by induction of the type I IFN pathway, resulting in chronic up-regulation of ISGs. Cotyledonary tissue contributes to up-regulation of ISGs by increased production of IFNs. The innate immune response might partially curtail viral replication in PI fetuses, but is not able to eliminate the virus in the absence of a virus-specific adaptive immune response. Copyright © 2012 Elsevier B.V. All rights reserved.
Cynomolgus Macaque as an Animal Model for Severe Acute Respiratory Syndrome
2006-05-01
two viruses . Both icSARS-CoV-challenged animals devel- oped radiographic disease. Of the two animals infected with wild-type virus by a mucosal route...J Virol 78: 11416–11421. 12. Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, et al. (2003) Virology: SARS virus infection of cats and...was discovered quite quickly—a new virus known as SARS-associated coronavirus (SARS-CoV) ( corona being a description of the virus’s spiky, crown-like
EFFICACY AND SAFETY OF BAN HUANG ORAL LIQUID FOR TREATING BOVINE RESPIRATORY DISEASES
Li, Bing; Zhou, Xu-Zheng; Niu, Jian-Rong; Wei, Xiao-Juan; Li, Jian-Yong; Yang, Ya-Jun; Liu, Xi-Wang; Cheng, Fu-Sheng; Zhang, Ji-Yu
2017-01-01
Background: Ban Huang oral liquid was developed as a veterinary compound preparation by the Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences (CAAS). The purpose of this study was to determine whether the oral liquid preparation of traditional Chinese medicine, Ban Huang, is safe and effective for treating respiratory diseases in cattle. Materials and Methods: Acute oral toxicity experiments were conducted in Wistar rats and Kunming mice via oral administration. The minimum inhibitory concentration of the drug against Mycoplasma bovis in vitro with the double dilution method was 500 mg/mL, indicating good sensitivity. The results of laboratory pathogen testing, analysis of clinical symptoms, and analysis of pathological anatomy were combined to diagnose bovine respiratory diseases in 147 Simmental cattle caused by mixed infections of M. bovis, bovine respiratory syncytial virus, bovine parainfluenza virus type 3, and Mannheimia haemolytica. These cattle were randomly divided into three groups: drug treatment group 1 (treated via Tilmicosin injection), drug treatment group 2 (treated with Shuang Huang Lian oral liquid combined with Tilmicosin injection), and drug treatment group 3 (treated with Ban Huang oral liquid combined with Tilmicosin injection). Treatment effects were observed within 7 days. Results: The results showed no toxicity and a maximum tolerated dose greater than 20 g/kg BW. For the 87 cattle in drug-treatment group, the cure rate was 90.80%, whereas the response rate was 94.25%. The cure rate of drug treatment group was increased by 14.13% in comparison with that of drug control group 1 and by 7.47% in comparison with that of drug control group 2 (both P < 0.05). Conclusion: This study demonstrates that Ban Huang oral liquid is a safe and effective treatment for bovine respiratory diseases, especially for mixed infection caused by M. bovis, bacteria, and viruses. PMID:28573221
Cromwell, Mandy A.; Veazey, Ronald S.; Altman, John D.; Mansfield, Keith G.; Glickman, Rhona; Allen, Todd M.; Watkins, David I.; Lackner, Andrew A.; Johnson, R. Paul
2000-01-01
Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8+ lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor α4β7 and traffic to the intestinal mucosa. SIV-specific CD8+ T cells expressing α4β7 were detected in peripheral blood and intestine of macaques infected with attenuated SIV. In contrast, virus-specific T cells in blood of animals immunized cutaneously by a combined DNA-modified vaccinia virus Ankara regimen did not express α4β7. These results demonstrate the selective induction of SIV-specific CD8+ T lymphocytes expressing α4β7 by a vaccine approach that replicates in mucosal tissue and suggest that induction of virus-specific lymphocytes that are able to home to mucosal sites may be an important characteristic of a successful AIDS vaccine. PMID:10954580
Kempf, C; Schulz, B S; Strauch, C; Sauter-Louis, C; Truyen, U; Hartmann, K
2010-01-01
The study evaluated which viruses can be detected in dogs with acute hemorrhagic diarrhea and compared signalment, clinical signs, and laboratory abnormalities among groups of dogs infected with different viruses and those that tested virus-negative. Fecal samples from 935 dogs with acute hemorrhagic diarrhea were examined by electron microscopy. The medical records of these patients were retrospectively evaluated for clinical and laboratory parameters. Virus was detected in 44.2% of the dogs presented with acute bloody diarrhea. The highest prevalence for a virus infection was demonstrated for canine parvovirus (19.9%), followed by coronavirus (17.3%), and paramyxovirus (13.9%). More than one virus species was detected in 6.5% of all fecal samples. Dogs with a virus-positive fecal sample were significantly younger than dogs that tested negative on electron microscopy. Among virus-positive dogs, dogs with parvovirus infection were significantly younger when compared to dogs infected with other enteric viruses. Parvovirus-infected patients also showed significantly lower leukocyte and erythrocyte counts as well as hematocrit, total protein, and albumin levels compared to all other groups. No significant differences were seen when evaluating sex, clinical parameters, character of diarrhea or vomiting among all groups. Young dogs are more likely to suffer from viral enteritis. Based on clinical parameters it is not possible to differentiate a virus-positive from a virus-negative dog or to diagnose a certain virus species. Besides the young age, parvovirus infection is associated with typical changes in laboratory parameters, but not with specific clinical signs. A virologic fecal examination is always indicated.
Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran
Hemmatzadeh, Farhid; Boardman, Wayne; Alinejad, Arezo; ...
2016-12-20
A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis), 22 wild goat (Capra aegagrus), nine Indian gazelle (Gazella bennettii) and eight Goitered gazelle (Gazella subgutturosa) during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV), Pestiviruses [Border Disease virus (BVD) and Bovine Viral Diarrhoea virus (BVDV)], Bluetongue virus (BTV), Bovine herpesvirus type 1 (BHV-1), and Parainfluenza typemore » 3 (PI3). Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs) were tested using polymerase chain reaction (PCR) for PPRV, Foot and Mouth Disease virus (FMDV), Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2) and BHV-1. Serologic tests were positive for antibodies against PPRV (17%), Pestiviruses (2%) and BTV (2%). No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%), FMDV (11%), BTV (3%), OvHV-2 (31%) and BHV-1 (1.5%). Finally, none of the samples were positive for Pestiviruses.« less
Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran
Hemmatzadeh, Farhid; Boardman, Wayne; Alinejad, Arezo; Hematzade, Azar; Moghadam, Majid Kharazian
2016-01-01
A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis), 22 wild goat (Capra aegagrus), nine Indian gazelle (Gazella bennettii) and eight Goitered gazelle (Gazella subgutturosa) during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV), Pestiviruses [Border Disease virus (BVD) and Bovine Viral Diarrhoea virus (BVDV)], Bluetongue virus (BTV), Bovine herpesvirus type 1 (BHV-1), and Parainfluenza type 3 (PI3). Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs) were tested using polymerase chain reaction (PCR) for PPRV, Foot and Mouth Disease virus (FMDV), Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2) and BHV-1. Serologic tests were positive for antibodies against PPRV (17%), Pestiviruses (2%) and BTV (2%). No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%), FMDV (11%), BTV (3%), OvHV-2 (31%) and BHV-1 (1.5%). None of the samples were positive for Pestiviruses. PMID:27997620
Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmatzadeh, Farhid; Boardman, Wayne; Alinejad, Arezo
A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis), 22 wild goat (Capra aegagrus), nine Indian gazelle (Gazella bennettii) and eight Goitered gazelle (Gazella subgutturosa) during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV), Pestiviruses [Border Disease virus (BVD) and Bovine Viral Diarrhoea virus (BVDV)], Bluetongue virus (BTV), Bovine herpesvirus type 1 (BHV-1), and Parainfluenza typemore » 3 (PI3). Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs) were tested using polymerase chain reaction (PCR) for PPRV, Foot and Mouth Disease virus (FMDV), Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2) and BHV-1. Serologic tests were positive for antibodies against PPRV (17%), Pestiviruses (2%) and BTV (2%). No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%), FMDV (11%), BTV (3%), OvHV-2 (31%) and BHV-1 (1.5%). Finally, none of the samples were positive for Pestiviruses.« less
Li, Maoqing; Fu, Linchun; Hu, Yinjie; Zhang, Miaomiao; He, Jinyang; Chen, Zhixi; Chen, Jinyan
2012-12-01
To investigate the traditional Chinese Medicine (TCM) etiology and pathogenesis of acquired immune deficiency syndrome (AIDS) by 18-month observation of Chinese rhesus macaques infected with simian immunodeficiency virus (SIV) mac239. Thirty-five healthy Chinese rhesus macaques were divided into a model group (n = 30) and a control group (n = 5). The model was established by inoculating monkeys intravenously with SIVmac239. Changes in TCM symptoms after SIV infection within 18 months were then observed and recorded. Routine blood tests, SIV viral load, T-lymphocyte subsets, plasma triiodothyronine (T3), tetraiodothyronine (T4), adrenocorticotropic hormone (ACTH) and cortisol (Cor) were tested periodically during the experiment. During the acute infection period of SIV, model monkeys temporarily showed clinical symptoms such as diarrhea, dysphoria and slight weight loss. Decrease percentages of CD4+ T-lymphocytes were observed but levels of T3, T4, Cor, and ACTH were relatively unchanged. Monkeys in the model group during the early and middle periods of infection showed no obvious symptoms, except few monkeys exhibited transient diarrhea and reduced food intake. All variables at this stage showed normal fluctuations. In the middle period model group monkeys showed chronic and persistent diarrhea, weight loss, reduced food intake and low levels of T3 and Cor. In the late period, symptoms including emaciation, weight loss, listlessness, crouching in corners and low levels of T3 appeared. The results suggest that the rhesus monkey SIV/SAIDS model can be applied to research on TCM etiology and pathogenesis of AIDS. According to this model, the etiology of disease is the SIV virus. The pathogenesis manifests as the invasion of SIV virus, incubation of the virus, balance between virus and healthy "Qi", damage to spleen and kidney as the disease progressed, exhaustion of vitality and finally the failure of five zang and six fu organs.
Koreeda, Terunori; Kawakami, Tomo; Okada, Ayako; Hirashima, Yoshimasa; Imai, Naoto; Sasai, Kazumi; Tanaka, Shogo; Matsubayashi, Makoto; Shibahara, Tomoyuki
2017-11-01
Bovine intranuclear coccidiosis is caused by the protozoans Eimeria alabamensis and Cyclospora spp. Here, we characterized the disease and genetically identified the causative species in Japanese black calves with chronic and refractory watery diarrhea. Histologic examinations revealed atrophy of the jejunal villi and numerous parasites in the nucleus of epithelial cells in the jejunum. Based on molecular analyses using 18S ribosomal RNA gene-specific primers that we designed, the parasites were found to be formed in the same cluster as Eimeria subspherica in the phylogenetic tree, which was separated from those of other related Eimeria spp. These results constitute the first report of E. subspherica as a cause of bovine intranuclear coccidiosis.
Singasa, Kanokwan; Songserm, Taweesak; Lertwatcharasarakul, Preeda; Arunvipas, Pipat
2017-10-01
Bovine coronavirus (BCoV) is involved mainly in enteric infections in cattle. This study reports the first molecular detection of BCoV in a diarrhea outbreak in dairy cows in the Central Region, Thailand. BCoV was molecularly detected from bloody diarrheic cattle feces by using nested PCR. Agarose gel electrophoresis of three diarrheic fecal samples yielded from the 25 samples desired amplicons that were 488 base pairs and sequencing substantiated that have BCoV. The sequence alignment indicated that nucleotide and amino acid sequences, the three TWD isolated in Thailand, were more quite homologous to each other (amino acid at position 39 of TWD1, TWD3 was proline, but TWD2 was serine) and closely related to OK-0514-3strain (virulent respiratory strain; RBCoV).The amino acid sequencing identities among TWD1, TWD2,TWD3, and OK-0514-3 strain were 96.0 to 96.6%, those at which T3I, H65N, D87G, H127Y, andQ136R were changed. In addition, the phylogenetic tree of the hypervariable region S1subunit spike glycoprotein BCoV gene was composed of three major clades by using the 54 sequences generated and showed that the evolutionally distance, TWD1, TWD2, and TWD3 were the isolated group together and most similar to OK-0514-3 strain (98.2 to 98.5% similarity). Further study will develop ELISA assay for serologic detection of winter dysentery disease.
Growth of Foot-and-Mouth Disease Virus in Dispersed Tissue Cells
Patty, R. E.; Tozzini, F.; Seibold, H. R.; Callis, J. J.
1962-01-01
Methods are described for rapid and economical production of large quantities of foot-and-mouth disease virus in stationary cultures of trypsin-dispersed bovine kidney cells in a simple medium. Yields of between 107 and 108 plaque-forming units per milliliter were obtained from serum-free cultures containing approximately a million and a half viable trypsin-dispersed cells per milliliter. Some of the advantages and disadvantages of these methods of virus production are discussed. ImagesFig. 1Fig. 2Fig. 3 PMID:17649388
RAHMAN, Md. Masudur; UYANGAA, Erdenebelig; HAN, Young Woo; HUR, Jin; PARK, Sang-Youel; LEE, John Hwa; KIM, Koanhoi; EO, Seong Kug
2014-01-01
Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to limitations in the efficacy against currently circulating ND viruses, existing vaccination strategies require improvements, and incorporating immunomodulatory cytokines with existing vaccines might be a novel approach. Here, we investigated the systemic and mucosal immunomodulatory properties of oral co-administration of chicken interleukin-18 (chIL-18) and chicken interferon-α (chIFN-α) using attenuated Salmonella enterica serovar Typhimurium on an inactivated ND vaccine. Our results demonstrate that oral administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α provided enhanced systemic and mucosal immune responses, as determined by serum hemagglutination inhibition antibody and NDV Ag-specific IgG as well as NDV Ag-specific IgA in lung and duodenal lavages of chickens immunized with inactivated ND vaccine via the intramuscular or intranasal route. Notably, combined oral administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α significantly enhanced systemic and mucosal immunity in ND-vaccinated chickens, compared to single administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α. In addition, oral co-administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α provided enhanced NDV Ag-specific proliferation of peripheral blood mononuclear cells and Th1-biased cell-mediated immunity, compared to single administration of either construct. Therefore, our results provide valuable insight into the modulation of systemic and mucosal immunity by incorporation of immunomodulatory chIL-18 and chIFN-α using Salmonella vaccines into existing ND vaccines. PMID:25502364
Thür, B; Caplazi, P; Hilbe, M; Zlinszky, K; Strasser, M; Corboz, L; Ehrensperger, F
1998-04-01
The causal involvement of bovine viral diarrhoea virus (BVDV) and border disease virus (BDV) infection in bovine and ovine abortion and perinatal mortality remain unclear. From 1992 until 1994, 213 bovine and 31 ovine foetuses as well as 36 calves and 25 lambs which had died perinatally were investigated. Tissue samples were tested for the presence of pestiviruses and serum or fluid from the body cavities were analysed for the presence of pestivirus antibodies. Detection of pestiviruses was performed by (i) cell culture isolation, (ii) antigen ELISA and (iii) immunohistochemical staining for viral antigen. For antibody-testing an indirect ELISA was used. In nine bovine foetuses and in two calves BVDV was isolated. Pestiviruses, most likely BDV were detected in one ovine foetus and three lambs. In 6% of the bovine and 11% of the ovine foetuses anti-pestivirus antibodies were detected. However, clinical features and history of bovine cases did not show a correlation with the diagnostic results, In contrast, the presence of central nervous system signs in neonatal lambs and the detection of BDV was correlated.
Respiratory syncytial virus infection in cattle
USDA-ARS?s Scientific Manuscript database
Bovine respiratory syncytial virus (bRSV) is a cause of respiratory disease in cattle world-wide. It has an integral role in enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bRSV infection can predispose calves to secondary bacterial infection by org...
Antiviral activity of bovine type III interferon against foot-and-mouth disease virus
USDA-ARS?s Scientific Manuscript database
Interferons (IFN) are the first line of defense against viral infections. Recently a new family of IFNs, type III, has been identified in humans, mice, swine and chickens. Here we report the identification and characterization of a member of the bovine type III IFN family, boIFN-lambda3, also known...
Manure treatment and natural inactivation of porcine epidemic diarrhea virus in soils
USDA-ARS?s Scientific Manuscript database
The outbreak of porcine epidemic diarrhea virus (PEDv) in North America has substantially impacted U.S. swine production in recent years. The virus it is easily transmitted among pigs and causes nearly 100% mortality in pre-weaned piglets. Because PEDv is an enteric virus spread via fecal-oral conta...
DISEASE COMPLEXITY IN A DECLINING ALASKAN MUSKOX (OVIBOS MOSCHATUS) POPULATION.
Afema, Josephine A; Beckmen, Kimberlee B; Arthur, Stephen M; Huntington, Kathy Burek; Mazet, Jonna A K
2017-04-01
The muskox ( Ovibos moschatus ) population inhabiting the eastern North Slope (ENS) of Alaska, US declined dramatically during 1999-2006, whereas populations in western Alaska (WA) were stable or increasing. To understand morbidity and mortality factors contributing to the decline, Alaska Department of Fish and Game conducted pathologic investigations of carcasses from 2005 until 2008. Additionally, archived sera from both ENS and WA muskoxen collected during 1984-92, before the documented beginning of the ENS decline; sera collected during 2000, near the beginning of the decline; and contemporary sera (from live capture-release, adult females) collected during 2006, 2007, and 2008 were analyzed to determine whether prevalence of antibody to potential pathogens differed in the two areas or changed over time. The pathogens investigated were those that were believed could cause lameness or poor reproduction or adversely affect general health. Furthermore, trace mineral levels, hemograms, and gastrointestinal parasites were evaluated in live adult females captured 2006-08. Pathologic investigations identified several comorbid conditions, including predation, polyarthritis caused by or consistent with Chlamydophila spp. infection, hoof lesions, copper deficiency, contagious ecthyma, verminous pneumonia, hepatic lipidosis suggestive of negative energy balance, and bacterial bronchopneumonia due to Trueperella pyogenes and Bibersteinia trehalosi . Pathogens suspected to be newly introduced in the ENS muskox population on the basis of serologic detection include bovine viral diarrhea, respiratory syncytial virus, Chlamydophila spp., Brucella spp., Coxiella burnetii , and Leptospira spp., whereas parainfluenza virus-3 antibody prevalence has increased in the WA population. Although multiple disease syndromes were identified that contributed to mortality and, in combination, likely limited the ENS muskox population, further holistic investigations of disease agents, trace mineral status, and nutritional factors in conjunction with intensive demographic and environmental analyses would provide a better understanding of factors that influence Alaskan muskox populations.
Health evaluation of a pronghorn antelope population in Oregon
Dunbar, M.R.; Velarde, Roser; Gregg, M.A.; Bray, M.
1999-01-01
During 1996 and 1997, the U.S. Fish and Wildlife Service conducted a study to determine the cause(s) of population decline and low survival of pronghorn antelope (Antilocapra americana) fawns on Hart Mountain National Antelope Refuge (HMNAR) located in southeastern Oregon (USA). As part of that study, blood, fecal, and tissue samples from 104 neonatal fawns, 40 adult does, and nine adult male pronghorns were collected to conduct a health evaluation of the population. Physiological parameters related to nutrition and/or disease were studied. No abnormalities were found in the complete blood cell counts of adults (n = 40) or fawns (n = 44 to 67). Serum total protein and blood urea nitrogen (BUN) levels were lower compared to other pronghorn populations. Does had mean BUN values significantly lower (P < 0.001) in December 1996 than March 1997. Serum copper (Cu) levels in does (range 0.39 to 0.74 ppm) were considered marginal when compared to domestic animals and other wild ungulates. Fawns had low (0.28 ppm) Cu levels at birth and reached the does' marginal values in about 3 days Whole blood, serum and liver selenium (Se) levels were considered marginal to low in most segments of the pronghorn population. However, serum levels of vitamin E (range 1.98 to 3.27 ??g/ml), as determined from the does captured in March, were apparently sufficient to offset any signs of Se deficiency. No clinical signs of Cu or Se deficiency were observed. Fifty-five of 87 dead fawns were necropsied. Trauma, due to predation by coyotes (Canis latrans), accounted for 62% of the mortality during mid-May to mid-July of each year. Other causes included predation by golden eagles (Aquila chrysaetos) (4%), dystocia (2%), septicemic pasteurellosis (4%), starvation (5%), and unknown (23%). Adult females were tested for serum neutralizing antibodies to Brucella spp. (n = 20, negative), Leptospira interrogans (n = 20, negative), bluetongue virus (n = 20, 35% positive), epizootic hemorrhagic disease virus (n = 20, 30% positive), respiratory syncytial virus (n = 18, negative), parainfluenza virus type 3 (n = 18, 67% positive), infectious bovine rhinotracheitis (n = 18, negative), and bovine viral diarrhea (n = 18, negative). Considering the parameters examined, we found no apparent predisposing factors to mortality including those killed by coyotes, but some nutritional parameters suggest that pronghorns on HMNAR exist on a diet low in protein and Se and marginal in Cu. The effect these factors have on the population is not known.
Dunbar, Michael R.; Velarde, Roser
1998-01-01
One hundred four neonatal (fawns) and 40 adult female (does) pronghorn antelope (pronghorns) (Antilocapra americana) were captured on the Hart Mountain National Antelope Refuge (HMNAR) in Lake County, southeastern Oregon, between 13 May 1996 and 26 May 1997. Blood and fecal samples were taken for an investigation of low fawn survival that may be due to disease and/or poor nutrition. No abnormalities were found in hematological parameters of adult does (n = 40) or fawns (n = 44 to 67). In general, there were lower serum total proteins (TP) and Blood Urea Nitrogen (BUN) concentrations in this population than in other populations from Alberta, Canada; Idaho; and Baker City, Oregon. Mean BUN values in does were significantly lower (p < 0.001) in December than March. The duration of this apparently low protein content of the December diet may affect the weight of the newborn and consequent survivability if it should continue into late gestation (March-May). Serum copper (Cu) levels in does (range 0.39 to 0.74 ppm) were considered marginal when compared to domestic animals and some wild ungulates. Fawns had low but apparently normal Cu levels at birth and reached the does' marginal values in about three days. Whole blood and serum Selenium (Se) levels (<100 ng/ml) were considered to be marginal to low in most segments of the pronghorn population in this study. However, serum levels of vitamin E (range 1.98 - 3.27 pg/ml), as determined from the does captured in March, are apparently sufficient to offset any signs of deficiency due to low Se levels. No clinical signs of Cu or Se deficiency were observed. Does captured in December 1996 were tested for neutralizing antibodies to Brucella spp. (n = 20, neg.), Leptospira spp. (n = 20, neg.), bluetongue virus (n = 20, 35% pos.), epizootic hemorrhagic disease virus (n = 20, 30% pos.), respiratory syncytial virus (n = 18, neg.), parainfluenza virus type 3 (n = 18, 67% pos.), infectious bovine rhinotracheitis (n = 18, neg.), and bovine viral diarrhea (n = 18, neg.). Seventeen fawns (9F,8M), nine in 1996 and eight in 1997, survived until at least mid-July each year. Fifty-five of 87 dead fawns were necropsied. Predation by coyotes (Canis latrans) accounted for the majority of fawn mortality (62%), as determined by necropsy, during the two combined summer periods. Other causes of mortality for the combined years included predation by eagle (4%), dystocia (2%), septicemic pasteurellosis (5%), starvation/weak fawn syndrome
The chasm between public health and reproductive research: what history tells us about Zika virus.
Burd, Irina; Griffin, Diane
2016-04-01
Zika transmission from mother to fetus and its possible sexual transmission have become a media focus in the past months as a major public health concern. While mother-to-fetus transmission, fetal neurologic manifestations or sexual transmission have never been documented for this virus before, other viruses that belong to the same family are very well known to reproductive health workers, clinicians, and researchers. As a member of Flaviviridae family, including hepatitis C and bovine viral diarrhea virus (BVDV), Zika's pathogenesis may have some parallels with these infections which may pose future questions for public health and research. Vertical transmission of hepatitis C virus from mother to child is known to occur in up to 10 % of pregnancies. BVDV, a member of Pestivirus genus of Flaviviridae family is not known to be transmitted to humans but is known for its vertical transmission in cattle. BVDV infection at different stages of gestation may lead to a spectrum of adverse pregnancy outcomes, including pregnancy loss and neurologic manifestations (including deformations such as hydrocephalus and microcephaly) in the offspring. Similar to hepatitis C, which is a virus of Hepacivirus genus, BVDV is capable of persistent infection, meaning that virus may stay in mother and future generations of calves may be infected as well, which may, in turn, result in persistence of infection in offspring. Would this be a case with Zika virus? Along with mother-to-fetus transmission, sexual transmission is a concerning implication for Zika virus. Would woman become a persistent career or male be able to persistently carry virus with its sperm is yet unknown; yet, there is a concern for the reservoir of infection. Animal models of the disease are urgently needed not only to demonstrate the mother-to-fetus transmission and confirm the fetal neurologic manifestations but also to address the effects of virus on life-long host's immunity and reproductive health. Along those lines, women desiring pregnancies who are identified to travel, have a partner traveling to, or living in the areas of Zika infections should be encouraged to have a preconception consultation with maternal-fetal medicine.
Citrullus colocynthis as the Cause of Acute Rectorrhagia
Javadzadeh, Hamid Reza; Davoudi, Farnoush; Valizadegan, Ghasem; Goodarzi, Hasan; Mahmoodi, Sadrollah; Ghane, Mohammad Reza; Faraji, Mehrdad
2013-01-01
Introduction. Citrullus colocynthis Schrad. is a commonly used medicinal plant especially as a hypoglycemic agent. Case Presentation. Four patients with colocynth intoxication are presented. The main clinical feature was acute rectorrhagia preceeded by mucosal diarrhea with tenesmus, which gradually progressed to bloody diarrhea and overt rectorrhagia within 3 to 4 hours. The only colonoscopic observation was mucosal erosion which was completely resolved in follow-up colonoscopy after 14 days. Conclusion. The membranolytic activity of some C. colocynthis ingredients is responsible for the intestinal damage. Patients and herbalists should be acquainted with the proper use and side effects of the herb. Clinicians should also be aware of C. colocynthis as a probable cause of lower GI bleeding in patients with no other suggestive history, especially diabetics. PMID:23819072
Vaccines against human diarrheal pathogens
Böhles, Nathalie; Böhles, Nathalie; Busch, Kim; Busch, Kim; Hensel, Michael; Hensel, Michael
2014-01-01
Worldwide, nearly 1.7 billion people per year contract diarrheal infectious diseases (DID) and almost 760 000 of infections are fatal. DID are a major problem in developing countries where poor sanitation prevails and food and water may become contaminated by fecal shedding. Diarrhea is caused by pathogens such as bacteria, protozoans and viruses. Important diarrheal pathogens are Vibrio cholerae, Shigella spp. and rotavirus, which can be prevented with vaccines for several years. The focus of this review is on currently available vaccines against these three pathogens, and on development of new vaccines. Currently, various types of vaccines based on traditional (killed, live attenuated, toxoid or conjugate vaccines) and reverse vaccinology (DNA/mRNA, vector, recombinant subunit, plant vaccines) are in development or already available. Development of new vaccines demands high levels of knowledge, experience, budget, and time, yet promising new vaccines often fail in preclinical and clinical studies. Efficacy of vaccination also depends on the route of delivery, and mucosal immunization in particular is of special interest for preventing DID. Furthermore, adjuvants, delivery systems and other vaccine components are essential for an adequate immune response. These aspects will be discussed in relation to the improvement of existing and development of new vaccines against DID. PMID:24861668
... traveler's diarrhea. It is caused by consuming contaminated food or water. What causes diarrhea? The most common causes of diarrhea include Bacteria from contaminated food or water Viruses such as the flu, norovirus, ...
USDA-ARS?s Scientific Manuscript database
Porcine epidemic diarrhea virus (PEDV) is a pathogen of swine that causes severe diarrhea and dehydration resulting in substantial morbidity and mortality in newborn piglets. Phage display is a technique with wide application, in particular, the identification of key antigen epitopes for the develop...
BVDV vaccination in North America: risks versus benefits.
Griebel, Philip J
2015-06-01
The control and prevention of bovine viral diarrhea virus (BVDV) infections has provided substantial challenges. Viral genetic variation, persistent infections, and viral tropism for immune cells have complicated disease control strategies. Vaccination has, however, provided an effective tool to prevent acute systemic infections and increase reproductive efficiency through fetal protection. There has been substantial controversy about the safety and efficacy of BVDV vaccines, especially when comparing killed versus modified-live viral (MLV) vaccines. Furthermore, numerous vaccination protocols have been proposed to protect the fetus and ensure maternal antibody transfer to the calf. These issues have been further complicated by reports of immune suppression during natural infections and following vaccination. While killed BVDV vaccines provide the greatest safety, their limited immunogenicity makes multiple vaccinations necessary. In contrast, MLV BVDV vaccines induce a broader range of immune responses with a longer duration of immunity, but require strategic vaccination to minimize potential risks. Vaccination strategies for breeding females and young calves, in the face of maternal antibody, are discussed. With intranasal vaccination of young calves it is possible to avoid maternal antibody interference and induce immune memory that persists for 6-8 months. Thus, with an integrated vaccination protocol for both breeding cows and calves it is possible to maximize disease protection while minimizing vaccine risks.
Ekeowa-Anderson, A. L.; Harwood, C. A.; Perrett, C. M.; Sahota, A.; Annan, H.; Ran, H.; Leigh, I. M.; Gibbon, K. L.
2008-01-01
Summary Human papillomavirus (HPV) infection is associated with genital malignancy and specific cutaneous malignancies. We report a case of an HPV-associated concurrent vulval intraepithelial neoplasia and periungual Bowen's disease in a young immunocompetent Afro-Caribbean woman with no known risk factors for either disease. HPV genotyping studies detected multiple α and β papillomaviruses with concordance for HPV-34 [a high-risk (HR) mucosal type], and HPV-21 [an epidermodyslasia verruciformis (EV) type] in both vulval and finger tissue. Although the HR-mucosal viruses detected are likely to have a pathogenic role in vulval intraepithelial neoplasia, this is the first report of concordance for EV HPV types in both genital and nongenital skin premalignancies. This case, in the context of accumulating epidemiological and experimental data in cutaneous SCC, raises the question of whether EV HPV may contribute to vulval malignancy, and further study is merited. PMID:17362236
Economic evaluation of the eradication program for bovine viral diarrhea in the Swiss dairy sector.
Thomann, B; Tschopp, A; Magouras, I; Meylan, M; Schüpbach-Regula, G; Häsler, B
2017-09-15
Since 2008, the Swiss veterinary service has been running a mandatory eradication program for Bovine Viral Diarrhea (BVD) that is focused on detecting and eliminating persistently infected (PI) animals. Detection was initially based on antigen testing from ear tag samples of the entire cattle population, followed by antigen testing of all newborn calves until 2012. Since then, bulk milk serology (dairy herds) and blood sample serology (beef herds) have been used for the surveillance of disease-free herds. From 2008 to 2012, the proportion of newborn PI calves decreased from 1.4% to less than 0.02%. However, this success was associated with substantial expenditures. The aim of this study was to conduct an economic evaluation of the BVD eradication program in the Swiss dairy sector. The situation before the start of the program (herd-level prevalence: 20%) served as a baseline scenario. Production models for three dairy farm types were used to estimate gross margins as well as net production losses and expenditures caused by BVD. The total economic benefit was estimated as the difference in disease costs between the baseline scenario and the implemented eradication program and was compared to the total eradication costs in a benefit-cost analysis. Data on the impact of BVD virus (BVDV) infection on animal health, fertility and production parameters were obtained empirically in a retrospective epidemiological case-control study in Swiss dairy herds and complemented by literature. Economic and additional production parameters were based on benchmarking data and published agricultural statistics. The eradication costs comprised the cumulative expenses for sampling and diagnostics. The economic model consisted of a stochastic simulation in @Risk for Excel with 20,000 iterations and was conducted for a time period of 14 years (2008-2021). The estimated annual financial losses in BVDV infected herds were CHF 85-89 per dairy cow and CHF 1337-2535 for an average farm, depending on the production type. The median net present value (NPV) was estimated at CHF 44.9 million (90% central range: CHF 13.4 million-69.4 million) and the break-even point to have been reached in 2015. Overall, the outcomes demonstrate that the Swiss BVD eradication program results in a net benefit for the dairy sector. These findings are relevant for planning similar BVD control programs in other countries. Copyright © 2017. Published by Elsevier B.V.
Heise, C.; Vogel, P.; Miller, C. J.; Halsted, C. H.; Dandekar, S.
1993-01-01
Gastrointestinal dysfunction and wasting are frequent complications of human immunodeficiency virus (HIV) infection. Nutrient malabsorption, decreased digestive enzymes and HIV transcripts have been documented in jejunal mucosa of HIV-infected patients; however, the pathogenesis of this enteropathy is not understood. Rhesus macaques infected with simian immunodeficiency virus (SIV) also exhibit diarrhea and weight loss; therefore, we investigated the use of this animal model to study HIV-associated intestinal abnormalities. A retrospective study of intestinal tissues from 15 SIV-infected macaques was performed to determine the cellular targets of the virus and examine the effect of SIV infection on jejunal mucosal morphology and function. Pathological and morphological changes included inflammatory infiltrates, villus blunting, and crypt hyperplasia. SIV-infected cells were detected by in situ hybridization in stomach, duodenum, jejunum, ileum, cecum, and colon. Using combined immunohistochemistry and in situ hybridization, the cellular targets were identified as T lymphocytes and macrophages. The jejunum of SIV-infected animals had depressed digestive enzyme activities and abnormal morphometry, suggestive of a maturational defect in proliferating epithelial cells. Our results suggest that SIV infection of mononuclear inflammatory cells in intestinal mucosa may alter development and function of absorptive epithelial cells and lead to jejunal dysfunction. Images Figure 1 Figure 2 Figure 5 PMID:8506946
Gallei, Andreas; Rümenapf, Till; Thiel, Heinz-Jürgen; Becher, Paul
2005-01-01
Molecular analyses revealed that most cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In contrast to bovine viral diarrhea virus (BVDV), cp classical swine fever virus (CSFV) field isolates were rarely detected and always represented helper virus-dependent subgenomes. To investigate RNA recombination in more detail, we recently established an in vivo system allowing the efficient generation of recombinant cp BVDV strains in cell culture after transfecting a synthetic subgenomic and nonreplicatable transcript into cells being infected with noncp BVDV (A. Gallei, A. Pankraz, H.-J. Thiel, and P. Becher, J. Virol. 78:6271-6281, 2004). Using an analogous approach, the first helper virus-independent cp CSFV strain (CP G1) has now been generated by RNA recombination. Accordingly, this study demonstrates the applicability of RNA recombination for designing new viral RNA genomes. The genomic RNA of CP G1 has a calculated size of 18.139 kb, almost 6 kb larger than all previously described CSFV genomes. It contains cellular sequences encoding a polyubiquitin fragment directly upstream of the nonstructural protein NS3 coding gene together with a duplication of viral sequences. CP G1 induces a cytopathic effect on different tissue culture cell lines from pigs and cattle. Subsequent analyses addressed growth kinetics, expression of NS3, and genetic stability of CP G1. PMID:15681445
Schutz, J S; Carroll, J A; Gasbarre, L C; Shelton, T A; Nordstrom, S T; Hutcheson, J P; Van Campen, H; Engle, T E
2012-06-01
Thirty-three colostrum-deprived Holstein bull calves (initial BW of 131 ± 4 kg) were used to determine the effect of timing of anthelmintic administration relative to vaccination on antibody titer response to vaccine component antigens. When calves were at least 3 mo of age, they were sorted randomly into individual pens and assigned to 1 of 3 treatment groups, treatments consisted of 1) dewormed 2 wk before vaccination (DPV), 2) dewormed at the time of vaccination (DV), or 3) control, vaccinated but not dewormed (CONT). All calves were inoculated with infective larvae of brown stomach worms (Ostertagia ostertagi) and intestinal worms (Cooperia spp.) on d 1, 7, 10, 14, and 18 for a total dose of 235,710 infective larvae per calf. Calves (DPV and DV) were dewormed on d 21 or 35 with a 10% fenbendazole suspension at 5 mg/kg of BW. On d 35, all calves were vaccinated with a modified-live virus respiratory vaccine containing IBRV (infectious bovine rhinotracheitis virus), BVDV-1 (bovine viral diarrhea virus genotype 1), BVDV-2 (BVDV genotype 2), PI-3 (parainfluenza-3), and BRSV (bovine respiratory syncytial virus). During the 103-d experiment, weekly fecal egg counts, blood, and rectal temperatures were collected and health status was recorded daily. Blood samples were obtained weekly to determine serum neutralizing (SN) antibody titers to IBRV, BVDV-1, BVDV-2, and PI-3 and cytokine levels for IL-4, IL-6, TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-gamma). There was a tendency (P < 0.09) for CONT calves to have greater IL-4 concentrations. By design, control calves had greater (P < 0.01) fecal egg counts during the experiment. All calves developed antibody titers to IBRV, BVDV-1, BVDV-2, and PI-3 by d 15 postvaccination. On d 88, all calves were challenged with IBRV and blood samples were obtained on d 88, 89, 90, 93, 95, 98, 99, and 103. All calves had increased rectal temperatures during the final 7 d of the IBRV challenge. However, the CONT group had greater (P < 0.01) rectal temperatures on each sampling day except d 90 compared with the DPV and DV treatments. Therefore, deworming before or at vaccination reduced parasite burden and decreased rectal temperature increase after an IBRV challenge. Deworming strategy had no effect on antibody response to vaccination or IBRV challenge.
Fatal winter dysentery with severe anemia in an adult cow.
Natsuaki, Sumiko; Goto, Keiichi; Nakamura, Kikuyasu; Yamada, Manabu; Ueo, Hiroshi; Komori, Toshihiro; Shirakawa, Hitomi; Uchinuno, Yukinori
2007-09-01
An adult dairy cow fatally affected with winter dysentery was investigated pathologically and virologically. The cow had severe anemia and diarrhea with massive blood. Pathologically, the loss of surface epithelial cells and necrosis of crypt epithelial cells in the large intestine were observed. Bovine coronavirus (BCV) antigen was observed in necrotic crypt epithelial cells of the large intestine. Virus particles were found in the necrotic epithelial cells of the large intestine. Virologically, BCV was isolated from the feces of the dead cow. The dead cow had no serum antibody against BCV although the co-habitants did. These suggest that severe infection of BCV in the cow without the BCV antibody accompanied by severe hemorrhagic anemia resulted in the cow's death.
Systematic review and meta-analysis of Saccharomyces boulardii in adult patients.
McFarland, Lynne V
2010-05-14
This article reviews the evidence for efficacy and safety of Saccharomyces boulardii (S. boulardii) for various disease indications in adults based on the peer-reviewed, randomized clinical trials and pre-clinical studies from the published medical literature (Medline, Clinical Trial websites and meeting abstracts) between 1976 and 2009. For meta-analysis, only randomized, blinded controlled trials unrestricted by language were included. Pre-clinical studies, volunteer studies and uncontrolled studies were excluded from the review of efficacy and meta-analysis, but included in the systematic review. Of 31 randomized, placebo-controlled treatment arms in 27 trials (encompassing 5029 study patients), S. boulardii was found to be significantly efficacious and safe in 84% of those treatment arms. A meta-analysis found a significant therapeutic efficacy for S. boulardii in the prevention of antibiotic-associated diarrhea (AAD) (RR = 0.47, 95% CI: 0.35-0.63, P < 0.001). In adults, S. boulardii can be strongly recommended for the prevention of AAD and the traveler's diarrhea. Randomized trials also support the use of this yeast probiotic for prevention of enteral nutrition-related diarrhea and reduction of Helicobacter pylori treatment-related symptoms. S. boulardii shows promise for the prevention of C. difficile disease recurrences; treatment of irritable bowel syndrome, acute adult diarrhea, Crohn's disease, giardiasis, human immunodeficiency virus-related diarrhea; but more supporting evidence is recommended for these indications. The use of S. boulardii as a therapeutic probiotic is evidence-based for both efficacy and safety for several types of diarrhea.
Systematic review and meta-analysis of Saccharomyces boulardii in adult patients
McFarland, Lynne V
2010-01-01
This article reviews the evidence for efficacy and safety of Saccharomyces boulardii (S. boulardii) for various disease indications in adults based on the peer-reviewed, randomized clinical trials and pre-clinical studies from the published medical literature (Medline, Clinical Trial websites and meeting abstracts) between 1976 and 2009. For meta-analysis, only randomized, blinded controlled trials unrestricted by language were included. Pre-clinical studies, volunteer studies and uncontrolled studies were excluded from the review of efficacy and meta-analysis, but included in the systematic review. Of 31 randomized, placebo-controlled treatment arms in 27 trials (encompassing 5029 study patients), S. boulardii was found to be significantly efficacious and safe in 84% of those treatment arms. A meta-analysis found a significant therapeutic efficacy for S. boulardii in the prevention of antibiotic-associated diarrhea (AAD) (RR = 0.47, 95% CI: 0.35-0.63, P < 0.001). In adults, S. boulardii can be strongly recommended for the prevention of AAD and the traveler’s diarrhea. Randomized trials also support the use of this yeast probiotic for prevention of enteral nutrition-related diarrhea and reduction of Heliobacter pylori treatment-related symptoms. S. boulardii shows promise for the prevention of C. difficile disease recurrences; treatment of irritable bowel syndrome, acute adult diarrhea, Crohn’s disease, giardiasis, human immunodeficiency virus-related diarrhea; but more supporting evidence is recommended for these indications. The use of S. boulardii as a therapeutic probiotic is evidence-based for both efficacy and safety for several types of diarrhea. PMID:20458757
USDA-ARS?s Scientific Manuscript database
Bovine herpes virus 1 (BoHV-1) causes respiratory infections and abortions in cattle, and is an important component of Bovine respiratory disease complex (BRDC). BoHV-1 has also been isolated from sheep with respiratory disorder. Experimentally, sheep and goats are infected productively with BoHV-1...
Kurosaki, Yohei; Okada, Sayaka; Nakamae, Sayuri; Yasuda, Jiro
2016-12-01
Bovine papular stomatitis virus (BPSV) causes pustular cutaneous disease in cattle worldwide. This paper describes the development of a specific loop-mediated isothermal amplification (LAMP) assay to detect BPSV which did not cross-react with other parapoxviruses. To assess analytical sensitivity of this LAMP assay, DNA was extracted from serially diluted BPSV from which the infectious titer was determined by a novel assay based on calf kidney epithelial cells. The LAMP assay had equivalent analytical sensitivity to quantitative PCR, and could detect as few as 86 copies of viral DNA per reaction. These results suggest that the assay is a specific and sensitive technique to rapidly diagnose bovine papular stomatitis in domestic animals. Copyright © 2016 Elsevier B.V. All rights reserved.
Lime application to manure as a management strategy for Porcine Epidemic Diarrhea virus
USDA-ARS?s Scientific Manuscript database
Arrival of Porcine Epidemic Diarrhea virus (PEDv) in 2013 resulted in billions of dollars in losses in the United States. Currently, increased on-farm biosecurity and mortality management help limit the virus spread. Managing PEDv infections requires mandatory reporting to the United States Depart...
Alkaline stabilization of manure slurry inactivates porcine epidemic diarrhea virus
USDA-ARS?s Scientific Manuscript database
The porcine epidemic diarrhea virus (PEDv) outbreak in North America has substantially impacted swine production since it causes nearly 100% mortality in infected pre-weaned piglets. The PED virus is transmitted via the fecal oral route and manure may remain a source of reinfection; therefore, prop...
Langerhans Cells and Their Role in Oral Mucosal Diseases
Upadhyay, Juhi; Upadhyay, Ram B; Agrawal, Pankaj; Jaitley, Shweta; Shekhar, Rhitu
2013-01-01
Dendritic cells are arguably the most potent antigen-presenting cells and may be the only cells capable of initiating the adaptive immune response. The epithelial residents of dendritic cells are Langerhans cells, which serve as the “sentinels” of the mucosa, altering the immune system not only to pathogen entry but also of tolerance to self antigen and commensal microbes. Oral mucosal Langerhans cells are capable of engaging and internalizing a wide variety of pathogens and have been found responsive to nickel in patients with nickel allergies, oral Candida species, oral lichen planus, lichenoid drug eruptions, graft versus host diseases, periodontal diseases median rhomboid glossitis, human immunodeficiency virus infection, hairy leukoplakia of the tongue, and oral squamous cell carcinoma. Review focuses on the role of antigen-presenting cells in particular Langerhans cells to better understand the mechanisms underlying immune responses. In this review, comprehensive detail about mucosal diseases has been compiled using the PubMed database and through textbooks. PMID:24251267
USDA-ARS?s Scientific Manuscript database
Porcine epidemic diarrhea virus (PEDV) emerged in the U.S. in April 2013 and caused significant losses to the swine industry. The purpose of this investigation was to determine tissue localization, shedding patterns, virus carriage, antibody response, and aerosol transmission of PEDV following inocu...
An infant with acute gastroenteritis caused by a secondary infection with a Rotarix-derived strain.
Sakon, Naomi; Miyamoto, Ryohei; Komano, Jun
2017-09-01
Rotavirus vaccines have been successful in controlling severe diarrhea and have decreased deaths of young children globally. Rotarix and RotaTeq are the two currently available live-attenuated rotavirus vaccines. The vaccine virus can grow in a recipient's gut and spread from the vaccinee to naïve individuals. The potential for the emergence of revertant viruses is a concern with live-attenuated vaccines. We identified a previously healthy infant with severe acute gastroenteritis that was positive for rotavirus in a non-endemic season. A whole genome sequencing revealed that all of the viral genome segments were highly similar to those of the Rotarix virus, with the exception of five amino acid mutations in viral genes that could be associated with virulence. The younger sibling of this patient was administered Rotarix before the onset of disease in this patient, although no gastrointestinal symptoms were reported. Epidemiological data, circumstantial evidence, and the genome analysis suggest that the vaccine virus was transmitted from the vaccinee to the patient. This is a severe acute gastroenteritis case most probably attributed to the secondary infection of Rotarix-related virus without underlying diseases. The importance of molecular surveillance of rotavirus infections is discussed. What is Known: • The live-attenuated rotavirus vaccines, Rotarix and RotaTeq, have been successful in controlling severe diarrhea and have decreased deaths of young children globally. • Attenuated vaccine virus can grow in a recipient's gut and spread to naïve individuals and may revert to cause secondary symptomatic infections. What is New: • This is the first report describing a Rotarix-associated secondary infection resulting in severe acute gastroenteritis in an infant without underlying diseases. • Amino acid mutations that might contribute to viral pathogenesis were identified by whole genome sequencing.
Ridpath, Julia F.; Neill, John D.
2016-01-01
Although most commonly associated with the infection of domestic livestock, the replication of pestiviruses, in particular the two species of bovine viral diarrhea virus (BVDV), occurs in a wide range of free ranging cervids including white-tailed deer, mule deer, fallow deer, elk, red deer, roe deer, eland and mousedeer. While virus isolation and serologic analyses indicate that pestiviruses are circulating in these populations, little is known regarding their impact. The lack of regular surveillance programs, challenges in sampling wild populations, and scarcity of tests and vaccines compound the difficulties in detecting and controlling pestivirus infections in wild cervids. Improved detection rests upon the development and validation of tests specific for use with cervid samples and development and validation of tests that reliably detect emerging pestiviruses. Estimation of impact of pestivirus infections on herd health will require the integration of several disciplines including epidemiology, cervid natural history, veterinary medicine, pathology and microbiology. PMID:27379051
Bovine petechial fever (Ondiri disease).
Davies, G
1993-02-01
Bovine petechial fever is a Rickettsial disease of cattle, which has been diagnosed, only in Kenya, East Africa. Other countries in the region share some of the biotopes in which the disease occurs, and may well have the infection. The disease is characterised by widespread petechial and ecchymotic haemorrhages on the mucosal surfaces, and throughout the serosal and subserosal surfaces of the body organs and cavities. It may be fatal in up to 50% of untreated cases. The causal organism may be demonstrated most readily in the cytoplasm of polymorphonuclear granulocytes of the peripheral blood, as well as other leucocytes, and has been classified as Cytoecetes ondirii, a member of the tribe Ehrlichiae. Circumstantial and other evidence suggests that the disease is transmitted by an arthropod vector, which has yet to be identified. The blood of a naturally infected wild ruminant, the bushbuck, Tragelaphus scriptus has been shown to remain infective for at least 2 years, and other species such as the African buffalo, Syncercus caffer for at least 5 weeks. These and possibly other species, may serve as the amplifying and reservoir hosts.
Sinha, Anuradha; Dey, Ayan; Saletti, Giulietta; Samanta, Pradip; Chakraborty, Partha Sarathi; Bhattacharya, M. K.; Ghosh, Santanu; Ramamurthy, T.; Kim, Jae-Ouk; Yang, Jae Seung; Kim, Dong Wook
2016-01-01
Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains. We examined blood and stool specimens from 37 diarrheal patients admitted to the Infectious Diseases & Beliaghata General Hospital, Kolkata, India. The etiological agent of diarrhea was investigated in stool specimens by microbiological methods and real-time PCR. Gut-homing (α4β7+) antibody-secreting cells (ASCs) were isolated from patient blood by means of combined magnetic cell sorting and two-color enzyme-linked immunosorbent spot (ELISPOT) assay. Overall, 57% (21 of 37) and 65% (24 of 37) of the patients were positive for Shigella infection by microbiological and real-time PCR assays, respectively. The frequency of α4β7+ IgG ASC responders against Ipas was higher than that observed against PSSP1 or PSSP2, regardless of the Shigella serotype isolated from these patients. Thus, α4β7+ ASC responses to Ipas may be considered an indirect marker of Shigella infection. The apparent weakness of ASC responses to PSSP1 is consistent with the lack of cross-protection induced by natural Shigella infection. The finding that ASC responses to IpaD develop in patients with recent-onset shigellosis indicates that such responses may not be protective or may wane too rapidly and/or be of insufficient magnitude. PMID:27193041
Brown, Timothy J; Gentry, Cathy; Hammer, Suntrea T G; Hwang, Christine S; Vusirikala, Madhuri; Patel, Prapti A; Matevosyan, Karén; Tujios, Shannan R; Mufti, Arjmand R; Collins, Robert H
2017-01-01
A 48-year-old man with hepatitis C virus (HCV) cirrhosis complicated by hepatocellular carcinoma underwent liver transplantation. His course was complicated by fever, diarrhea, abdominal pain, and pancytopenia. He developed a diffuse erythematous rash, which progressed to erythroderma. Biopsies of the colon and skin were consistent with acute graft-versus-host disease. Donor-derived lymphocytes were present in the peripheral blood. The patient was treated with corticosteroids and cyclosporine; however, he had minimal response to intensive immunosuppressive therapy. Extracorporeal photopheresis was initiated as a salvage therapy. He had a dramatic response, and his rash, diarrhea, and pancytopenia resolved. He is maintained on minimal immunosuppression 24 months later.
Adam, Birgit; Koldehoff, Michael; Ditschkowski, Markus; Gromke, Tanja; Hlinka, Michal; Trenschel, Rudolf; Kordeals, Lambros; Steckel, Nina K; Beelen, Dietrich W; Liebregts, Tobias
2016-07-01
Gastrointestinal graft-versus-host-disease (GI-GVHD) is a major cause of nonrelapse mortality after hematopoietic stem cell transplantation (HSCT) necessitating endoscopic examinations and biopsies for diagnosis. Fecal calprotectin (CPT) has been widely used in gastrointestinal inflammation, but comprehensive data in GI-GVHD are lacking. We aimed to identify an association of CPT with endoscopic findings, mucosal damage and symptoms for diagnosing and monitoring acute GI-GVHD. Symptoms were prospectively evaluated in 110 consecutive HSCT recipients by standardized questionnaires and Bristol Stool Scale (BSS). CPT was assayed by ELISA. Symptom assessment and CPT were performed weekly and with onset of first symptoms. GVHD was diagnosed according to the Glucksberg criteria and by endoscopic biopsies. Patients with GI-GVHD received standard high-dose corticosteroid therapy and follow-up CPT, and symptom evaluation was performed after 28 days. Patients not responding to steroid treatment were re-evaluated by colonoscopy. GI-GVHD was diagnosed in 40 patients. Twelve patients with GI symptoms and CMV colitis and 24 patients with isolated skin GVHD were included as control subjects. CPT was significantly higher in GI-GVHD compared to skin GVHD and CMV colitis. Endoscopic findings, histological grading, abdominal cramps, diarrhea, urgency and BSS correlated with CPT. At follow-up, CPT correlated with abdominal cramps, diarrhea, urgency and BSS. In steroid refractory patients, CPT level was still significantly associated with severity of mucosal damage. CPT predicts endoscopic and histological findings in GI-GVHD and correlates with lower GI symptoms. It enables to discriminate GVHD from CMV colitis and to monitor therapeutic success.
Serological detection systems for identification of cows shedding bovine foamy virus via milk.
Romen, Fabian; Backes, Perdita; Materniak, Magda; Sting, Reinhard; Vahlenkamp, Thomas W; Riebe, Roland; Pawlita, Michael; Kuzmak, Jacek; Löchelt, Martin
2007-07-20
The biology of foamy viruses, their mode of transmission and disease potential in their natural host and after interspecies transmission are largely unknown. To gain insights into the prevalence of bovine foamy virus (BFV) and its zoonotic potential, enzyme-linked immunosorbent assays (ELISAs) were established to determine antibody responses against Gag, Env, and the non-structural protein Bet in bovine serum and milk. In Polish cattle, strong Gag reactivity was most frequent (41.5%) and strongly associated with Bet antibodies, Env antibodies were less frequent. German cattle showed a low overall BFV antibody prevalence of 6.8%. Besides clearly BFV-positive animals, a substantial number of weakly reacting cattle were identified. BFV-specific antibodies were also detectable in milk. BFV was isolated from PBLs and milk cells of BFV-positive cattle but not from antibody-negative or weakly reacting animals. The implications of these findings for the potential interspecies transmission of BFV to humans will be discussed.
Global issues in pediatric nutrition: AIDS.
Ball, C S
1998-10-01
Nutrition is a final common pathway in chronic disease, and weight loss is a major manifestation of acquired immunodeficiency syndrome (AIDS). In sub-Saharan Africa, studies have shown that 25% of children with malnutrition have human immunodeficiency virus (HIV) infection, although patterns of malnutrition are indistinguishable from those who are HIV negative. Breast-feeding increases the risk of vertical transmission, and the overall risk versus benefit needs continuing careful consideration in relation to local mortality from gastroenteritis and malnutrition. Chronic diarrhea is much more common in HIV-infected children in Africa and may have a multiplicity of causes, including infection with adherent forms of Escherichia coli, protozoa, and even direct HIV infection of intestinal mucosal cells. The HIV wasting syndrome produces reduction in bioelectrical impedence, fat, lean body mass, and body cell mass, but the changes can be predicted from equations used in starvation states. Micronutrients may be important, but observed changes may be due to immune mediator activation, rather than malnutrition. Calorie supplementation is beneficial when delivered by any route, but is likely to produce the greatest positive change when CD4 counts are highest in relation to calorie intake. Paradoxically, HIV-infected children may be obese early in the disease until AIDS develops. There is an inextricable link between disease and nutritional status. In children with AIDS wasting syndrome, a low CD4 count and high viral load are likely so that effective antiviral treatment may ultimately produce the greatest improvement in health, including nutritional status.
Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration.
Sinno, Maria Hamze; Coquerel, Quentin; Boukhettala, Nabile; Coëffier, Moïse; Gallas, Syrine; Terashi, Mutsumi; Ibrahim, Ayman; Breuillé, Denis; Déchelotte, Pierre; Fetissov, Sergueï O
2010-12-02
Cancer chemotherapy is accompanied by anorexia and mucositis. To clarify the mechanisms of chemotherapy-induced anorexia, we studied the expression of c-fos and appetite-regulating neuropeptidergic and inflammatory mediators in the hypothalamus of rats treated with methotrexate (MTX). Sprague-Dawley rats received MTX (2.5mg/kg, subcutaneously) on three consecutive days and were compared with ad libitum- and pair-fed control rats five days after the first injection. MTX administration inhibited food and water intake and induced lean and fat mass losses. MTX also induced mucositis and diarrhea without changes in plasma osmolality. Pair-fed rats lost a similar amount of body weight but had no mucositis or diarrhea. Increased number of c-fos positive hypothalamic vasopressin neurosecretory neurons as well as numerous c-fos positive cells in the subfornical organ and in the organum vasculosum of the lamina terminalis were found in MTX-treated as compared to control or pair-fed rats. In both MTX and pair-fed rats, a decrease of hypothalamic proopiomelanocortin mRNA expression and low plasma levels of interleukin-1β (IL-1β) were found reflecting probably the energy deficit. No significant changes of IL-1β mRNA expression and intensity of microglial staining in the hypothalamus were found in MTX-treated rats. The pattern of c-fos expression in the hypothalamus during MTX treatment is similar to that seen with systemic dehydration, which is known to cause anorexia. No evidence of inflammatory origin of anorexia was found, suggesting that chemotherapy accompanied by mucositis and diarrhea may cause anorexia associated with systemic dehydration. Copyright © 2010 Elsevier Inc. All rights reserved.
Lopes, Priscila Diniz; Okino, Cintia Hiromi; Fernando, Filipe Santos; Pavani, Caren; Casagrande, Viviane Mariguela; Lopez, Renata F V; Montassier, Maria de Fátima Silva; Montassier, Helio José
2018-05-03
Avian infectious bronchitis virus (IBV) is one of the most important viral diseases of poultry. The mucosa of upper respiratory tract, specially the trachea, is the primary replication site for this virus. However, conventional inactivate IBV vaccines usually elicit reduced mucosal immune responses and local protection. Thus, an inactivated IBV vaccine containing BR-I genotype strain encapsulated in chitosan nanoparticles (IBV-CS) was produced by ionic gelation method to be administered by oculo-nasal route to chickens. IBV-CS vaccine administered alone resulted in markedly mucosal immune responses, characterized by high levels of anti-IBV IgA isotype antibodies and IFNγ gene expression at 1dpi. The association of live attenuated Massachusetts IBV and IBV-CS vaccine also induced strong mucosal immune responses, though a switch from IgA isotype to IgG was observed, and IFNγ gene expression peak was late (at 5 dpi). Efficacy of IBV-CS was evaluated by tracheal ciliostasis analysis, histopathology examination, and viral load determination in the trachea and kidney. The results indicated that IBV-CS vaccine administered alone or associated with a live attenuated heterologous vaccine induced both humoral and cell-mediated immune responses at the primary site of viral replication, and provided an effective protection against IBV infection at local (trachea) and systemic (kidney) sites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yates, W D
1982-01-01
Unanswered questions on the etiology and prevention of shipping fever pneumonia have allowed this disease to remain one of the most costly to the North American cattle industry. Research in this area has indirected that while Pasteurella haemolytica and, to a lesser extent, P. multocida are involved in most cases, they seem to require additional factors to help initiate the disease process. Bovine herpes virus 1 has been shown experimentally to be one such factor. This review examines in some detail the topics of infectious bovine rhinotracheitis, shipping fever, and viral-bacterial interactions in the production of respiratory disease in various species. It deals with history, definitions, etiologies, clinical signs and lesions, and considers exposure levels, transmission and various pathogenetic mechanisms that are postulated or known to occur. PMID:6290011
USDA-ARS?s Scientific Manuscript database
Respiratory syncytial virus (RSV) is the most common viral cause of childhood acute lower respiratory tract infections. It is estimated that RSV infections result in more than 100,000 deaths annually worldwide. Bovine RSV is a cause of enzootic pneumonia in young dairy calves and summer pneumonia in...
USDA-ARS?s Scientific Manuscript database
Respiratory syncytial virus (RSV) is the most common viral cause of childhood acute lower respiratory tract infections. It is estimated that RSV infections result in more than 100,000 deaths annually worldwide. Bovine RSV is a cause of enzootic pneumonia in young dairy calves and summer pneumonia ...
Kumar, Jitendra; Yadav, Viveka Nand; Phulera, Swastik; Kamble, Ashish; Gautam, Avneesh Kumar; Panwar, Hemendra Singh
2017-01-01
ABSTRACT Poxviruses display species tropism—variola virus is a human-specific virus, while vaccinia virus causes repeated outbreaks in dairy cattle. Consistent with this, variola virus complement regulator SPICE (smallpox inhibitor of complement enzymes) exhibits selectivity in inhibiting the human alternative complement pathway and vaccinia virus complement regulator VCP (vaccinia virus complement control protein) displays selectivity in inhibiting the bovine alternative complement pathway. In the present study, we examined the species specificity of VCP and SPICE for the classical pathway (CP). We observed that VCP is ∼43-fold superior to SPICE in inhibiting bovine CP. Further, functional assays revealed that increased inhibitory activity of VCP for bovine CP is solely due to its enhanced cofactor activity, with no effect on decay of bovine CP C3-convertase. To probe the structural basis of this specificity, we utilized single- and multi-amino-acid substitution mutants wherein 1 or more of the 11 variant VCP residues were substituted in the SPICE template. Examination of these mutants for their ability to inhibit bovine CP revealed that E108, E120, and E144 are primarily responsible for imparting the specificity and contribute to the enhanced cofactor activity of VCP. Binding and functional assays suggested that these residues interact with bovine factor I but not with bovine C4(H2O) (a moiety conformationally similar to C4b). Mapping of these residues onto the modeled structure of bovine C4b-VCP-bovine factor I supported the mutagenesis data. Taken together, our data help explain why the vaccine strain of vaccinia virus was able to gain a foothold in domesticated animals. IMPORTANCE Vaccinia virus was used for smallpox vaccination. The vaccine-derived virus is now circulating and causing outbreaks in dairy cattle in India and Brazil. However, the reason for this tropism is unknown. It is well recognized that the virus is susceptible to neutralization by the complement classical pathway (CP). Because the virus encodes a soluble complement regulator, VCP, we examined whether this protein displays selectivity in targeting bovine CP. Our data show that it does exhibit selectivity in inhibiting the bovine CP and that this is primarily determined by its amino acids E108, E120, and E144, which interact with bovine serine protease factor I to inactivate bovine C4b—one of the two subunits of CP C3-convertase. Of note, the variola complement regulator SPICE contains positively charged residues at these positions. Thus, these variant residues in VCP help enhance its potency against the bovine CP and thereby the fitness of the virus in cattle. PMID:28724763
2016-07-01
both humans and non-human primates (NHP) causing severe hemorrhagic fevers with symptoms of disease including sudden onset of fever , chills, headache...and anorexia followed by sore throat, vomiting, diarrhea, hemorrhaging, and the appearance of a petechial rash1-3. Filoviruses are categorized as...hemorrhagic fever . Clinics in laboratory medicine 30, 161-177 (2010). 6. Parren, P.W., et al., Pre- and postexposure prophylaxis of Ebola virus
Interaction of CSFV E2 Protein with Swine Host Factors as Detected by Yeast Two-Hybrid System
Gladue, Douglas P.; Baker-Bransetter, Ryan; Holinka, Lauren G.; Fernandez-Sainz, Ignacio J.; O’Donnell, Vivian; Fletcher, Paige; Lu, Zhiqiang; Borca, Manuel V.
2014-01-01
E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle. PMID:24416391
Clarke, E; Desselberger, U
2015-01-01
Rotaviruses (RV) are the leading cause of gastroenteritis in infants and children worldwide and are associated with high mortality predominately in low-income settings. The virus is classified into G and P serotypes and further into P genotypes based on differences in the surface-exposed proteins VP7 and VP4, respectively. Infection results in a variable level of protection from subsequent reinfection and disease. This protection is predominantly homotypic in some settings, whereas broader heterotypic protection is reported in other cohorts. Two antigenically distinct oral RV vaccines are licensed and are being rolled out widely, including in resource-poor setting, with funding provided by the GAVI alliance. First is a monovalent vaccine derived from a live-attenuated human RV strain, whereas the second is a pentavalent bovine-human reassortment vaccine. Both vaccines are highly efficacious in high-income settings, but greatly reduced levels of protection are reported in low-income countries. Here, the current challenges facing mucosal immunologists and vaccinologists aiming to define immunological correlates and to understand the variable levels of protection conferred by these vaccines in humans is considered. Such understanding is critical to maximize the public health impact of the current vaccines and also to the development of the next generation of RV vaccines, which are needed.
Monitoring for bovine arboviruses in the most southwestern islands in Japan between 1994 and 2014.
Kato, Tomoko; Yanase, Tohru; Suzuki, Moemi; Katagiri, Yoshito; Ikemiyagi, Kazufumi; Takayoshi, Katsunori; Shirafuji, Hiroaki; Ohashi, Seiichi; Yoshida, Kazuo; Yamakawa, Makoto; Tsuda, Tomoyuki
2016-06-24
In Japan, epizootic arboviral infections have severely impacted the livestock industry for a long period. Akabane, Aino, Chuzan, bovine ephemeral fever and Ibaraki viruses have repeatedly caused epizootic abnormal births and febrile illness in the cattle population. In addition, Peaton, Sathuperi, Shamonda and D'Aguilar viruses and epizootic hemorrhagic virus serotype 7 have recently emerged in Japan and are also considered to be involved in abnormal births in cattle. The above-mentioned viruses are hypothesized to circulate in tropical and subtropical Asia year round and to be introduced to temperate East Asia by long-distance aerial dispersal of infected vectors. To watch for arbovirus incursion and assess the possibility of its early warning, monitoring for arboviruses was conducted in the Yaeyama Islands, located at the most southwestern area of Japan, between 1994 and 2014. Blood sampling was conducted once a year, in the autumn, in 40 to 60 healthy cattle from the Yaeyama Islands. Blood samples were tested for arboviruses. A total of 33 arboviruses including Akabane, Peaton, Chuzan, D' Aguilar, Bunyip Creek, Batai and epizootic hemorrhagic viruses were isolated from bovine blood samples. Serological surveillance for the bovine arboviruses associated with cattle diseases in young cattle (ages 6-12 months: had only been alive for one summer) clearly showed their frequent incursion into the Yaeyama Islands. In some cases, the arbovirus incursions could be detected in the Yaeyama Islands prior to their spread to mainland Japan. We showed that long-term surveillance in the Yaeyama Islands could estimate the activity of bovine arboviruses in neighboring regions and may provide a useful early warning for likely arbovirus infections in Japan. The findings in this study could contribute to the planning of prevention and control for bovine arbovirus infections in Japan and cooperative efforts among neighboring countries in East Asia.
Mohan, Mahesh; Aye, Pyone P.; Borda, Juan T.; Alvarez, Xavier; Lackner, Andrew A.
2007-01-01
Gastrointestinal disease and inflammation are common sequelae of human and simian immunodeficiency virus (SIV) infection. Nevertheless, the molecular mechanisms that lead to gastrointestinal dysfunction remain unclear. We investigated regulation of the interleukin (IL)-6-JAK-STAT3 pathway in jejunum and colon, collected at necropsy, from 10 SIV-infected macaques with diarrhea (group 1), 10 non-SIV-infected macaques with diarrhea (group 2), and 7 control uninfected macaques (group 3). All group 1 and 2 macaques had chronic diarrhea, wasting, and colitis, but group 1 animals had more frequent and severe lesions in the jejunum. A significant increase in IL-6 and SOCS-3 gene expression along with constitutive STAT3 activation was observed in the colon of all group 1 and 2 macaques and in the jejunum of only group 1 macaques compared to controls. Further, in colon, histopathology severity scores correlated significantly with IL-6 (groups 1 and 2) and SOCS-3 (group 2) gene expression. In jejunum, a similar correlation was observed only in group 1 animals. Phosphorylated STAT3 (p-STAT3) was localized to lymphocytes (CD3+) and macrophages (CD68+), with fewer CD3+ lymphocytes expressing p-STAT3 in group 1 macaques. Despite high SOCS-3 expression, STAT3 remained constitutively active, providing a possible explanation for persistent intestinal inflammation and immune activation that may favor viral replication and disease progression. PMID:18055558
Smirnova, Natalia P; Webb, Brett T; McGill, Jodi L; Schaut, Robert G; Bielefeldt-Ohmann, Helle; Van Campen, Hana; Sacco, Randy E; Hansen, Thomas R
2014-04-01
Development of transplacental infection depends on the ability of the virus to cross the placenta and replicate within the fetus while counteracting maternal and fetal immune responses. Unfortunately, little is known about this complex process. Non-cytopathic (ncp) strains of bovine viral diarrhea virus (BVDV), a pestivirus in the Flaviviridae family, cause persistent infection in early gestational fetuses (<150 days; persistently infected, PI), but are cleared by immunocompetent animals and late gestational fetuses (>150 days; transiently infected, TI). Evasion of innate immune response and development of immunotolerance to ncp BVDV have been suggested as possible mechanisms for the establishment of the persistent infection. Previously we have observed a robust temporal induction of interferon (IFN) type I (innate immune response) and upregulation of IFN stimulated genes (ISGs) in BVDV TI fetuses. Modest chronic upregulation of ISGs in PI fetuses and calves reflects a stimulated innate immune response during persistent BVDV infection. We hypothesized that establishing persistent fetal BVDV infection is also accompanied by the induction of IFN-gamma (IFN-γ). The aims of the present study were to determine IFN-γ concentration in blood and amniotic fluid from control, TI and PI fetuses during BVDV infection and analyze induction of the IFN-γ downstream pathways in fetal lymphoid tissues. Two experiments with in vivo BVDV infections were completed. In Experiment 1, pregnant heifers were infected with ncp BVDV type 2 on day 75 or 175 of gestation or kept naïve to generate PI, TI and control fetuses, respectively. Fetuses were collected by Cesarean section on day 190. In Experiment 2, fetuses were collected on days 82, 89, 97, 192 and 245 following infection of pregnant heifers on day 75 of gestation. The results were consistent with the hypothesis that ncp BVDV infection induces IFN-γ secretion during acute infection in both TI and PI fetuses and that lymphoid tissues such as spleen, liver and thymus, serve both as possible sources of IFN-γ and target organs for its effects. Notably, induction of IFN-γ coincides with a decrease in BVDV RNA concentrations in PI fetal blood and tissues. This is the first report indicating the possible presence of an adaptive immune response in persistent BVDV infections, which may be contributing to the observed reduction of viremia in PI fetuses. Copyright © 2014 Elsevier B.V. All rights reserved.
Mahan, Suman M; Sobecki, Brian; Johnson, John; Oien, Nancee L; Meinert, Todd R; Verhelle, Sarah; Mattern, Sally J; Bowersock, Terry L; Leyh, Randy D
2016-06-01
OBJECTIVE To evaluate efficacy and duration of immunity of the bovine herpesvirus type 1 (BHV-1) fraction of a trivalent vaccine also containing parainfluenza virus-3 and bovine respiratory syncytial virus fractions administered intranasally (IN) for protection of calves against infectious bovine rhinotracheitis (IBR). DESIGN Controlled challenge study. ANIMALS 120 dairy calves (3 to 8 days old) seronegative for antibody against BHV-1 (experiments 1 and 2) or seropositive for maternally derived antibody against BHV-1 (experiment 3). PROCEDURES In 3 separate experiments, calves were vaccinated IN via 2 nostrils (experiment 1) or 1 nostril (experiments 2 and 3) with a vaccine containing or not containing a BHV-1 fraction. For seronegative calves, the test vaccine contained a minimum immunizing dose of BHV-1; for seropositive calves, it contained a commercial dose of BHV-1. Calves were challenged IN with virulent BHV-1 on day 28 or 193 (seronegative calves) or day 105 (seropositive calves) after vaccination to evaluate vaccine efficacy. Frequency and duration of clinical signs, rectal temperatures, virus shedding, and serologic responses were compared between treatment groups within experiments. RESULTS In all experiments, BHV-1 vaccinated calves had lower frequencies or shorter durations of clinical signs of IBR than did control calves. Following viral challenge, peak rectal temperatures and degrees of virus shedding were lower and serologic responses were higher in vaccinated versus control calves. CONCLUSIONS AND CLINICAL RELEVANCE IN vaccination against BHV-1 protected all calves against clinical IBR disease, regardless of serologic status at the time of vaccination, and suppressed virus shedding. A single dose of this IN vaccine has the potential to protect seronegative calves for at least 193 days and override maternally derived antibody to protect seropositive calves for at least 105 days.
The role of virus dose in experimental bovine leukemia virus infection in sheep.
Stirtzinger, T; Valli, V E; Miller, J M
1988-04-01
Twenty-four, six month old lambs were assembled into four groups of five animals each and one group of four animals. All groups were inoculated with lymphocytes from a single donor lamb infected with bovine leukemia virus. The inoculum varied from 250 to 250,000 lymphocytes, in tenfold increments. Animals were exposed by intradermal injection in the neck region immediately anterior to the left shoulder joint. All groups were monitored at 0, 3, 7 and 12 weeks after inoculation using the following procedures: a. Syncytia induction assay for detection of bovine leukemia virus in peripheral blood lymphocytes. b. Agar gel immunodiffusion against the gp51 antigen of bovine leukemia virus for the detection of antibovine leukemia virus gp51 antibody. c. Lymphocyte stimulation test for the assessment of cell-mediated immunity using mitogen, nonfractionated bovine leukemia virus antigen, and partially purified bovine lymphoma tumor-associated antigen for the in vitro activation of lymphocytes from bovine leukemia virus-inoculated and sham-inoculated, control animals. d. Routine hematological techniques for the assessment of total leukocyte and lymphocyte counts. The median infectious dose for lymphocytes from the single bovine leukemia virus-infected donor used in this study was determined to be 2000 cells. The syncytia induction assay detected more infected individuals (13/23) at an earlier time than did the agar gel immunodiffusion assay (10/23). Using either serological or virus isolation techniques, infected animals were first detected at three weeks postinoculation in the group receiving the high-dose inoculum and at seven weeks postinoculation in groups receiving low- or medium-dose inocula.(ABSTRACT TRUNCATED AT 250 WORDS)
Gao, Yan; Su, Qiudong; Yi, Yao; Jia, Zhiyuan; Wang, Hao; Lu, Xuexin; Qiu, Feng; Bi, Shengli
2015-01-01
Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368-607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1-198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection.
Hugh-Jones, M E; Moorhouse, P; Seger, C L
1984-01-01
Ninety-seven sera collected from 21 animals that had been repeatedly sampled more than 17 years before and stored at -18 degrees C were tested for bovine leukemia virus antibodies using the agar gel immunodiffusion test. The prevalences for the different ages matched current prevalences in the same herd. The consistency of these results over a prolonged period suggests the validity of long-term retrospective seroepidemiological studies of this disease. Because the original titers could not be determined and some indications of a possible loss of activity, the results must be interpreted with a measure of caution. PMID:6095978
Yeh, Jung-Yong; Lee, Ji-Hye; Seo, Hyun-Ji; Park, Jee-Yong; Moon, Jin-San; Cho, In-Soo; Choi, In-Soo; Park, Seung-Yong; Song, Chang-Seon; Lee, Joong-Bok
2011-01-01
The aim of this study was to develop a highly sensitive and specific one-step multiplex reverse transcriptase PCR assay for the simultaneous and differential detection of Rift Valley Fever virus (RVFV), bluetongue virus (BTV), rinderpest virus (RPV), and Peste des petits ruminants virus (PPRV). These viruses cause mucosal lesions in cattle, sheep, and goats, and they are difficult to differentiate from one another based solely on their clinical presentation in suspected disease cases. In this study, we developed a multiplex reverse transcriptase PCR to detect these viruses using a novel dual-priming oligonucleotide (DPO). The DPO contains two separate priming regions joined by a polydeoxyinosine linker, which blocks extension of nonspecifically primed templates and consistently allows high PCR specificity even under less-than-optimal PCR conditions. A total of 19 DPO primers were designed to detect and discriminate between RVFV, BTV, RPV, and PPRV by the generation of 205-, 440-, 115-, and 243-bp cDNA products, respectively. The multiplex reverse transcriptase PCR described here enables the early diagnosis of these four viruses and may also be useful as part of a testing regime for cattle, sheep, or goats exhibiting similar clinical signs, including mucosal lesions. PMID:21307219
Kocher, Jacob; Bui, Tammy; Giri-Rachman, Ernawati; Wen, Ke; Li, Guohua; Yang, Xingdong; Liu, Fangning; Tan, Ming; Xia, Ming; Zhong, Weiming; Jiang, Xi; Yuan, Lijuan
2014-09-01
Noroviruses (NoVs) are the leading cause of nonbacterial acute gastroenteritis worldwide in people of all ages. The P particle is a novel vaccine candidate derived from the protruding (P) domain of the NoV VP1 capsid protein. This study utilized the neonatal gnotobiotic pig model to evaluate the protective efficacies of primary infection, P particles, and virus-like particles (VLPs) against NoV infection and disease and the T cell responses to these treatments. Pigs either were vaccinated intranasally with GII.4/1997 NoV (VA387)-derived P particles or VLPs or were inoculated orally with a GII.4/2006b NoV variant. At postinoculation day (PID) 28, pigs either were euthanized or were challenged with the GII.4/2006b variant and monitored for diarrhea and virus shedding for 7 days. The T cell responses in intestinal and systemic lymphoid tissues were examined. Primary NoV infection provided 83% homologous protection against diarrhea and 49% homologous protection against virus shedding, while the P particle and VLP vaccines provided cross-variant protection (47% and 60%, respectively) against diarrhea. The protection rates against diarrhea are significantly inversely correlated with T cell expansion in the duodenum and are positively correlated with T cell expansion in the ileum and spleen. The P particle vaccine primed for stronger immune responses than VLPs, including significantly higher numbers of activated CD4+ T cells in all tissues, gamma interferon-producing (IFN-γ+) CD8+ T cells in the duodenum, regulatory T cells (Tregs) in the blood, and transforming growth factor β (TGF-β)-producing CD4+ CD25- FoxP3+ Tregs in the spleen postchallenge, indicating that P particles are more immunogenic than VLPs at the same dose. In conclusion, the P particle vaccine is a promising vaccine candidate worthy of further development. The norovirus (NoV) P particle is a vaccine candidate derived from the protruding (P) domain of the NoV VP1 capsid protein. P particles can be easily produced in Escherichia coli at high yields and thus may be more economically viable than the virus-like particle (VLP) vaccine. This study demonstrated, for the first time, the cross-variant protection (46.7%) of the intranasal P particle vaccine against human NoV diarrhea and revealed in detail the intestinal and systemic T cell responses by using the gnotobiotic pig model. The cross-variant protective efficacy of the P particle vaccine was comparable to that of the VLP vaccine in pigs (60%) and to the homologous protective efficacy of the VLP vaccine in humans (47%). NoV is now the leading cause of pediatric dehydrating diarrhea, responsible for approximately 1 million hospital visits for U.S. children and 218,000 deaths in developing countries. The P particle vaccine holds promise for reducing the disease burden and mortality. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
USDA-ARS?s Scientific Manuscript database
Porcine epidemic diarrhea virus (PEDV) causes enteric disease in pigs and is known to spread rapidly after entering naïve pig populations. The objectives were to 1) compare the disease course following inoculation with PEDV isolate US/Colorado/2013 in naïve 10-day and 8-week-old pigs, and 2) contras...
USDA-ARS?s Scientific Manuscript database
Vesicular stomatitis virus (VSV) is an important vector-borne pathogen of bovine and equine species, causing a reportable vesicular disease. The matrix (M) protein of VSV is multifunctional and plays a key role in cytopathogenesis, apoptosis, host protein shut-off, and virion assembly/budding. Our ...
Pedersen, A M; Andersen, Torpet L; Reibel, J; Holmstrup, P; Nauntofte, B
2002-03-01
Bovine colostrum is rich in antimicrobial substances and growth factors. The purpose of this open study was to examine and compare the interventory effects of daily use of bovine colostrum-containing oral hygiene products (CHP) on oral symptoms and findings in 20 patients with primary Sjogren's syndrome (pSS) and 20 age-matched patients with oral lichen planus (OLP). Objective oral measures and self-assessment of oral symptoms and general health were conducted before and after 90 days' use of CHP. The pSS patients had more systemic diseases, medication intake, oral dryness, poorer general health and lower salivary secretion than the OLP patients, who had the highest plaque index (PI) and the most mucosal soreness. Oral dryness and soreness were correlated to general health. In both patient groups. unstimulated whole saliva flow rate (UWS) had increased, PI and periodontal pocket depth (PPD) were reduced, and general health and oral dryness and soreness had improved after using CHP. A decrease in hyphae was found in candida smears from both groups and in blastospores in OLP smears. A reduction in the extension of the mucosal lesions was observed in 15 OLP patients. Results suggested beneficial effects of intervention with CHP on oral symptoms, general health, UWS, PI, PPD and candidal load in two patient groups--pSS and OLP--representing different oral symptomatology.
Rebamipide attenuates 5-Fluorouracil-induced small intestinal mucositis in a mouse model.
Kim, Hyun Jin; Kim, Jin Hyun; Moon, Won; Park, Jongha; Park, Seun Ja; Song, Geun Am; Han, Seung Hee; Lee, Jong Hun
2015-01-01
5-Fluorouracil (5-FU)-induced intestinal mucositis is one of the most common morbidities in chemotherapy and involves the reactive oxygen species (ROS) system, apoptosis, and inflammatory cytokines. Rebamipide exerts a mucosal-protective effect, mediated through several mechanisms. The aim of this study was to evaluate the effects of rebamipide in 5-FU-induced mouse small-intestinal mucositis. BALB/c mice were assigned randomly to four groups; (1) control group (n=10; receiving saline orally for 6 d), (2) rebamipide group (n=10; 150 mg/kg rebamipide for 6 d orally), (3) 5-FU group (n=10; 30 mg/kg 5-FU for 5 d, intraperitoneally (i.p.)), and (4) rebamipide +5-FU group (n=10; 150 mg/kg rebamipide for 6 d orally and 30 mg/kg 5-FU for 5 d, i.p.). Body weights and diarrhea scales were assessed. At day 5, the mice were sacrificed. Small intestinal tissue was used for: (1) hematoxylin and eosin (HE) staining for determination of small intestinal villi height, (2) terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay, (3) immunohistochemistry for inducible nitric oxide synthase (iNOS), F4/80, and transforming growth factor (TGF)-β1, (4) measurement of serum and tissue GSH levels, and (5) measurement of serum tumor necrosis factor (TNF)-α levels. Rebamipide attenuated the severity of mucosal injury reflected by body weight changes, degrees of diarrhea, and heights of villi. Rebamipide reduced the expression of iNOS and TGF-β1, apoptosis, macrophage accumulation, serum TNF-α levels, and prevented reductions in serum and tissue glutathione (GSH) levels by 5-FU administration. These results suggest that rebamipide promotes several mechanisms of mucosal protection and attenuated the 5-FU-induced mucosal injury. In conclusion, administration of rebamipide may have significant protective effects against 5-FU-induced intestinal mucositis.
Prions: Protein Rebels with a Cause!
ERIC Educational Resources Information Center
Marshall, Karen E.; Serpell, Louise C.
2017-01-01
Traditionally we consider infection to arise from viruses, bacteria and parasites. Prions are infectious proteins without any nucleic acids, and therefore do not represent living things. Despite this, they have the ability to replicate themselves and cause diseases such as mad cow disease (bovine spongiform encepthalopathy) and human…
Hanke, Dennis; Pohlmann, Anne; Sauter-Louis, Carola; Höper, Dirk; Stadler, Julia; Ritzmann, Mathias; Steinrigl, Adi; Schwarz, Bernd-Andreas; Akimkin, Valerij; Fux, Robert; Blome, Sandra; Beer, Martin
2017-07-06
Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by the eponymous virus (PEDV) which belongs to the genus Alphacoronavirus within the Coronaviridae virus family. Following the disastrous outbreaks in Asia and the United States, PEDV has been detected also in Europe. In order to better understand the overall situation, the molecular epidemiology, and factors that might influence the most variable disease impact; 40 samples from swine feces were collected from different PED outbreaks in Germany and other European countries and sequenced by shot-gun next-generation sequencing. A total of 38 new PEDV complete coding sequences were generated. When compared on a global scale, all investigated sequences from Central and South-Eastern Europe formed a rather homogeneous PEDV S INDEL cluster, suggesting a recent re-introduction. However, in-detail analyses revealed two new clusters and putative ancestor strains. Based on the available background data, correlations between clusters and location, farm type or clinical presentation could not be established. Additionally, the impact of secondary infections was explored using the metagenomic data sets. While several coinfections were observed, no correlation was found with disease courses. However, in addition to the PEDV genomes, ten complete viral coding sequences from nine different data sets were reconstructed each representing new virus strains. In detail, three pasivirus A strains, two astroviruses, a porcine sapelovirus, a kobuvirus, a porcine torovirus, a posavirus, and an enterobacteria phage were almost fully sequenced.
Xu, Xiao-juan; Liu, Liang; Yao, Shu-kun
2016-01-01
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort associated with abnormal bowel habits. Diarrhea-predominant IBS (IBS-D) is a major subtype of IBS, the predominant manifestations of which are abdominal pain and diarrhea. The pathogenesis of IBS-D remained unknown until recently. The effects of psychosocial stress, central hypervigilance, neuroendocrine abnormality, disturbed gastrointestinal motility, mucosal immune activation, intestinal barrier dysfunction, visceral hypersensitivity (VH), altered gut flora, and genetic susceptibility may be involved in its development. Recently, increased attention has been placed on the neural-immune-endocrine network mechanism in IBS-D, especially the role of various neuroendocrine mediators. As a member of the neurotrophin family, nerve growth factor (NGF) has diverse biological effects, and participates in the pathogenesis of many diseases. Basic studies have demonstrated that NGF is associated with inflammatory- and stress-related VH, as well as stress-related intestinal barrier dysfunction. The aim of this study is to summarize recent literature and discuss the role of NGF in the pathophysiology of IBS-D, especially in VH and intestinal barrier dysfunction, as well as its potential as a therapeutic target in IBS-D.
Do viruses use vectors to penetrate mucus barriers?
Ribbeck, Katharina
2010-01-01
I propose a mechanism by which viruses successfully infect new individuals, despite being immotile particles with no ability for directed movement. Within cells, viral particle movements are directed by motors and elements of the cytoskeleton, but how viruses cross extracellular barriers, like mucus, remains a mystery. I propose that viruses cross these barriers by hitch-hiking on bacteria or sperm cells which can transport themselves across mucosal layers designed to protect the underlying cells from pathogen attack. An important implication of this hypothesis is that agents that block interactions between viruses and bacteria or sperm may be new tools for disease prevention. PMID:20190864
Serologic and mucosal immune response to rotavirus infection in the rabbit model.
Conner, M E; Gilger, M A; Estes, M K; Graham, D Y
1991-01-01
We examined the humoral immune response to rotavirus infection in specific pathogen-free rabbits inoculated and challenged orally with rabbit Ala rotavirus (7.5 x 10(5) to 1 x 10(7) PFU). The humoral immune response in both serologic and mucosal samples was monitored by using total antibody enzyme-linked immunosorbent assays (ELISAs), isotype-specific ELISAs, and plaque reduction neutralization assays. Following a primary infection, all rabbits shed virus and serologic and mucosal antibody responses were initially detected by 1 week postinoculation. Intestinal immunoglobulin M was detected by 3 days postinoculation, and secretory immunoglobulin A was detected by 6 days postinoculation. Following challenge, rabbits were protected (no detectable virus shedding) from infection. An anamnestic immune response was observed only with mucosal neutralizing antibodies, and all serologic and mucosal immune responses persisted at high levels until at least 175 days postchallenge (204 days postinoculation). Detection of neutralization responses was influenced by the virus strain used in the neutralization assay; all inoculated rabbits developed detectable serum and intestinal neutralizing antibodies against the infecting (Ala) virus strain. Neutralization activity in both serum and mucosal samples was generally, but not exclusively, homotypic (VP7 serotype 3) after both primary and challenge inoculations with Ala virus. Heterotypic serum neutralization activity was observed with serotype 8 (9 of 12 rabbits) and 9 (12 of 12 rabbits) viruses and may be based on reactivity with the outer capsid protein VP4 or on a shared epitope in the C region of VP7. Comparisons of heterologous (serotype 3) and heterotypic neutralizing responses in mucosal and serologic samples revealed that 43% (21 of 49) of the responses were discordant. In 19 of 49 (39%) of these cases, a heterotypic serologic response was seen in the absence of a heterotypic mucosal response, but in 2 of 49 (4%) instances, a heterotypic mucosal response was seen in the absence of a concomitant serologic response. These results provide insight into factors which may affect detection of heterotypic responses. PMID:1850029