Science.gov

Sample records for brachytherapy seed reconstruction

  1. Detection and correction of patient movement in prostate brachytherapy seed reconstruction

    NASA Astrophysics Data System (ADS)

    Lam, Steve T.; Cho, Paul S.; Marks, Robert J., II; Narayanan, Sreeram

    2005-05-01

    Intraoperative dosimetry of prostate brachytherapy can help optimize the dose distribution and potentially improve clinical outcome. Evaluation of dose distribution during the seed implant procedure requires the knowledge of 3D seed coordinates. Fluoroscopy-based seed localization is a viable option. From three x-ray projections obtained at different gantry angles, 3D seed positions can be determined. However, when local anaesthesia is used for prostate brachytherapy, the patient movement during fluoroscopy image capture becomes a practical problem. If uncorrected, the errors introduced by patient motion between image captures would cause seed mismatches. Subsequently, the seed reconstruction algorithm would either fail to reconstruct or yield erroneous results. We have developed an algorithm that permits detection and correction of patient movement that may occur between fluoroscopy image captures. The patient movement is decomposed into translational shifts along the tabletop and rotation about an axis perpendicular to the tabletop. The property of spatial invariance of the co-planar imaging geometry is used for lateral movement correction. Cranio-caudal movement is corrected by analysing the perspective invariance along the x-ray axis. Rotation is estimated by an iterative method. The method can detect and correct for the range of patient movement commonly seen in the clinical environment. The algorithm has been implemented for routine clinical use as the preprocessing step for seed reconstruction.

  2. Clinical implementation of a digital tomosynthesis-based seed reconstruction algorithm for intraoperative postimplant dose evaluation in low dose rate prostate brachytherapy

    SciTech Connect

    Brunet-Benkhoucha, Malik; Verhaegen, Frank; Lassalle, Stephanie; Beliveau-Nadeau, Dominic; Reniers, Brigitte; Donath, David; Taussky, Daniel; Carrier, Jean-Francois

    2009-11-15

    Purpose: The low dose rate brachytherapy procedure would benefit from an intraoperative postimplant dosimetry verification technique to identify possible suboptimal dose coverage and suggest a potential reimplantation. The main objective of this project is to develop an efficient, operator-free, intraoperative seed detection technique using the imaging modalities available in a low dose rate brachytherapy treatment room. Methods: This intraoperative detection allows a complete dosimetry calculation that can be performed right after an I-125 prostate seed implantation, while the patient is still under anesthesia. To accomplish this, a digital tomosynthesis-based algorithm was developed. This automatic filtered reconstruction of the 3D volume requires seven projections acquired over a total angle of 60 deg. with an isocentric imaging system. Results: A phantom study was performed to validate the technique that was used in a retrospective clinical study involving 23 patients. In the patient study, the automatic tomosynthesis-based reconstruction yielded seed detection rates of 96.7% and 2.6% false positives. The seed localization error obtained with a phantom study is 0.4{+-}0.4 mm. The average time needed for reconstruction is below 1 min. The reconstruction algorithm also provides the seed orientation with an uncertainty of 10 deg. {+-}8 deg. The seed detection algorithm presented here is reliable and was efficiently used in the clinic. Conclusions: When combined with an appropriate coregistration technique to identify the organs in the seed coordinate system, this algorithm will offer new possibilities for a next generation of clinical brachytherapy systems.

  3. Improving photoacoustic imaging contrast of brachytherapy seeds

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  4. Photoacoustic imaging of prostate brachytherapy seeds with transurethral light delivery

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2014-03-01

    We present a novel approach to photoacoustic imaging of prostate brachytherapy seeds utilizing an existing urinary catheter for transurethral light delivery. Two canine prostates were surgically implanted with brachyther- apy seeds under transrectal ultrasound guidance. One prostate was excised shortly after euthanasia and fixed in gelatin. The second prostate was imaged in the native tissue environment shortly after euthanasia. A urinary catheter was inserted in the urethra of each prostate. A 1-mm core diameter optical fiber coupled to a 1064 nm Nd:YAG laser was inserted into the urinary catheter. Light from the fiber was either directed mostly parallel to the fiber axis (i.e. end-fire fire) or mostly 90° to the fiber axis (i.e. side-fire fiber). An Ultrasonix SonixTouch scanner, transrectal ultrasound probe with curvilinear (BPC8-4) and linear (BPL9-5) arrays, and DAQ unit were utilized for synchronized laser light emission and photoacoustic signal acquisition. The implanted brachytherapy seeds were visualized at radial distances of 6-16 mm from the catheter. Multiple brachytherapy seeds were si- multaneously visualized with each array of the transrectal probe using both delay-and-sum (DAS) and short-lag spatial coherence (SLSC) beamforming. This work is the first to demonstrate the feasibility of photoacoustic imaging of prostate brachytherapy seeds using a transurethral light delivery method.

  5. Microfocus X-ray imaging of the internal geometry of brachytherapy seeds.

    PubMed

    Hasegawa, Tomoyuki; Hanada, Takashi; Yorozu, Atsunori; Ito, Hidetaka; Masuda, Shinji; Kawahara, Maki; Yogo, Katsunori; Hayakawa, Kazushige

    2014-04-01

    Precise and reliable geometrical data on the internal structure of seeds are indispensable for dosimetric calculation in brachytherapy. We used a novel microfocus X-ray imaging technique for observing the internal structure of brachytherapy seeds. Two popular (125)I seed models were evaluated. Obtained high precision images enabled us to observe the internal structure of seeds qualitatively. Geometrical size parameters were evaluated quantitatively with uncertainty of 0.01-0.04 mm (k=2).

  6. Preparation of (103)Pd brachytherapy seeds by electroless plating of (103)Pd onto carbon bars.

    PubMed

    Li, Zhong-Yong; Gao, Hui-Bo; Deng, Xue-Song; Zhou, Leng; Zhang, Wen-Hui; Han, Lian-Ge; Jin, Xiao-Hai; Cui, Hai-Ping

    2015-09-01

    A method for preparing (103)Pd brachytherapy seeds is reported. The key of the method was to deposit (103)Pd onto carbon bars by electroless plating so as to prepare source cores. After each carbon bar with (103)Pd was sealed in a titanium capsule, the (103)Pd seeds were fabricated. This paper provides valuable experiences and data for the preparation of (103)Pd brachytherapy seeds.

  7. CT-simulator based brachytherapy planner: seed localization and incorporation of biological considerations.

    PubMed

    Mayer, R; Fong, W; Frankel, T; Simons, S; Kleinberg, L; Lee, D J

    1998-01-01

    Radiation dose prescription, interpretation, and planning can be problematic for brachytherapy due to high spatial heterogeneity, varying and various dose rates, absence of superimposed calculated isodose distributions onto affected tissues, and lack of dose volume histograms. A new treatment planner has been developed to reduce these limitations in brachytherapy planning. The PC-based planning system uses a CT-simulator to sequentially scan the patient to generate orthogonal images (to localize seed positions) and subsequently axially scan the patient. This sequential scanning procedure avoids using multiple independent patient scans, templates, external frames, or fiducial markers to register the reconstructed seed positions with patient contours. Dose is computed after assigning activity to (low dose rate) Ir192, linear Cs137, or I125 seeds or dwell times (high dose rate) to the Ir192 source. The planar isodose distribution is superimposed onto axial, coronal, or sagittal views of the tissues following image reconstruction. The treatment plan computes (1) direct and cumulative volume dose histograms for individual tissues, (2) the average, standard deviation, and coefficient of skewness of the dose distribution within individual tissues, (3) an average (over all tissue pixels) survival probability (S) and average survival dose DASD for a given radiation treatment, (4) normal tissue complication probability (NTCP) delivered to a given tissue. All four computed quantities account for dose heterogeneity. These estimates of the biological response to radiation from laboratory-based studies may help guide the evaluation of the prescribed low- or high-dose rate therapy in retrospective and prospective clinical studies at a number of treatment sites.

  8. Highly efficient method for production of radioactive silver seed cores for brachytherapy.

    PubMed

    Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti

    2017-02-01

    A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy.

  9. Praseodymium-142 glass seeds for the brachytherapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Jung, Jae Won

    A beta-emitting glass seed was proposed for the brachytherapy treatment of prostate cancer. Criteria for seed design were derived and several beta-emitting nuclides were examined for suitability. 142Pr was selected as the isotope of choice. Seeds 0.08 cm in diameter and 0.9 cm long were manufactured for testing. The seeds were activated in the Texas A&M University research reactor. The activity produced was as expected when considering the meta-stable state and epi-thermal neutron flux. The MCNP5 Monte Carlo code was used to calculate the quantitative dosimetric parameters suggested in the American Association of Physicists in Medicine (AAPM) TG-43/60. The Monte Carlo calculation results were compared with those from a dose point kernel code. The dose profiles agree well with each other. The gamma dose of 142Pr was evaluated. The gamma dose is 0.3 Gy at 1.0 cm with initial activity of 5.95 mCi and is insignificant to other organs. Measurements were performed to assess the 2-dimensional axial dose distributions using Gafchromic radiochromic film. The radiochromic film was calibrated using an X-ray machine calibrated against a National Institute of Standards and Technology (NIST) traceable ion chamber. A calibration curve was derived using a least squares fit of a second order polynomial. The measured dose distribution agrees well with results from the Monte Carlo simulation. The dose was 130.8 Gy at 6 mm from the seed center with initial activity of 5.95 mCi. AAPM TG-43/60 parameters were determined. The reference dose rate for 2 mm and 6 mm were 0.67 and 0.02 cGy/s/mCi, respectively. The geometry function, radial dose function and anisotropy function were generated.

  10. Brachytherapy seed and applicator localization via iterative forward projection matching algorithm using digital X-ray projections

    NASA Astrophysics Data System (ADS)

    Pokhrel, Damodar

    Interstitial and intracavitary brachytherapy plays an essential role in management of several malignancies. However, the achievable accuracy of brachytherapy treatment for prostate and cervical cancer is limited due to the lack of intraoperative planning and adaptive replanning. A major problem in implementing TRUS-based intraoperative planning is an inability of TRUS to accurately localize individual seed poses (positions and orientations) relative to the prostate volume during or after the implantation. For the locally advanced cervical cancer patient, manual drawing of the source positions on orthogonal films can not localize the full 3D intracavitary brachytherapy (ICB) applicator geometry. A new iterative forward projection matching (IFPM) algorithm can explicitly localize each individual seed/applicator by iteratively matching computed projections of the post-implant patient with the measured projections. This thesis describes adaptation and implementation of a novel IFPM algorithm that addresses hitherto unsolved problems in localization of brachytherapy seeds and applicators. The prototype implementation of 3-parameter point-seed IFPM algorithm was experimentally validated using a set of a few cone-beam CT (CBCT) projections of both the phantom and post-implant patient's datasets. Geometric uncertainty due to gantry angle inaccuracy was incorporated. After this, IFPM algorithm was extended to 5-parameter elongated line-seed model which automatically reconstructs individual seed orientation as well as position. The accuracy of this algorithm was tested using both the synthetic-measured projections of clinically-realistic Model-6711 125I seed arrangements and measured projections of an in-house precision-machined prostate implant phantom that allows the orientations and locations of up to 100 seeds to be set to known values. The seed reconstruction error for simulation was less than 0.6 mm/3o. For the physical phantom experiments, IFPM absolute accuracy for

  11. Methodology for characterizing seeds under development for brachytherapy by means of radiochromic and photographic films.

    PubMed

    Meira-Belo, L C; Rodrigues, E J T; Grynberg, S E

    2013-04-01

    The development of new medical devices possess a number of challenges, including designing, constructing, and assaying prototypes. In the case of new brachytherapy seeds, this is also true. In this paper, a methodology for rapid dosimetric characterization of (125)I brachytherapy seeds during the early stages of their development is introduced. The characterization methodology is based on the joint use of radiochromic and personal monitoring photographic films in order to determine the planar anisotropy due to the radiation field produced by the seed under development, by means of isodose curves. To evaluate and validate the process, isodose curves were obtained with both types of films after irradiation with a commercial (125)I brachytherapy seed.

  12. Effect of implanted brachytherapy seeds on optical fluence distribution: preliminary ex vivo study

    NASA Astrophysics Data System (ADS)

    Hetzel, Fred W.; Chen, Qun; Ding, Meisong; Newman, Francis; Dole, Kenneth C.; Huang, Zheng; Blanc, Dominique

    2007-02-01

    Photodynamic therapy (PDT) has gradually found its place in the treatment of malignant and non-malignant human diseases. Currently, interstitial PDT is being explored as an alternative modality for newly diagnosed and recurrent organ-confined prostate cancer. The interstitial PDT for the treatment of prostate cancer might be considered to treat prostates with permanent radioactive seeds implantation. However, the effect of implanted brachytherapy seeds on the optical fluence distribution of PDT light has not been studied before. This study investigated, for the first time, the effect of brachytherapy seed on the optical fluence distribution of 760 nm light in ex vivo models (meat and canine prostate).

  13. A Prospective Quasi-Randomized Comparison of Intraoperatively Built Custom-Linked Seeds Versus Loose Seeds for Prostate Brachytherapy

    SciTech Connect

    Ishiyama, Hiromichi; Satoh, Takefumi; Kawakami, Shogo; Tsumura, Hideyasu; Komori, Shouko; Tabata, Ken-ichi; Sekiguchi, Akane; Takahashi, Ryo; Soda, Itaru; Takenaka, Kouji; Iwamura, Masatsugu; Hayakawa, Kazushige

    2014-09-01

    Purpose: To compare dosimetric parameters, seed migration rates, operation times, and acute toxicities of intraoperatively built custom-linked (IBCL) seeds with those of loose seeds for prostate brachytherapy. Methods and Materials: Participants were 140 patients with low or intermediate prostate cancer prospectively allocated to an IBCL seed group (n=74) or a loose seed group (n=66), using quasirandomization (allocated by week of the month). All patients underwent prostate brachytherapy using an interactive plan technique. Computed tomography and plain radiography were performed the next day and 1 month after brachytherapy. The primary endpoint was detection of a 5% difference in dose to 90% of prostate volume on postimplant computed tomography 1 month after treatment. Seed migration was defined as a seed position >1 cm from the cluster of other seeds on radiography. A seed dropped into the seminal vesicle was also defined as a migrated seed. Results: Dosimetric parameters including the primary endpoint did not differ significantly between groups, but seed migration rate was significantly lower in the IBCL seed group (0%) than in the loose seed group (55%; P<.001). Mean operation time was slightly but significantly longer in the IBCL seed group (57 min) than in the loose seed group (50 min; P<.001). No significant differences in acute toxicities were seen between groups (median follow-up, 9 months). Conclusions: This prospective quasirandomized control trial showed no dosimetric differences between IBCL seed and loose seed groups. However, a strong trend toward decreased postimplant seed migration was shown in the IBCL seed group.

  14. [Brachytherapy].

    PubMed

    Itami, Jun

    2014-12-01

    Brachytherapy do require a minimal expansion of CTV to obtain PTV and it is called as ultimate high precision radiation therapy. In high-dose rate brachytherapy, applicators will be placed around or into the tumor and CT or MRI will be performed with the applicators in situ. With such image-guided brachytherapy (IGBT) 3-dimensional treatment planning becomes possible and DVH of the tumor and organs at risk can be obtained. It is now even possible to make forward planning satisfying dose constraints. Traditional subjective evaluation of brachytherapy can be improved to the objective one by IGBT. Brachytherapy of the prostate cancer, cervical cancer, and breast cancer with IGBT technique was described.

  15. Survival of patients with advanced pancreatic cancer after iodine125 seeds implantation brachytherapy

    PubMed Central

    Han, Quanli; Deng, Muhong; Lv, Yao; Dai, Guanghai

    2017-01-01

    Abstract Background: Brachytherapy with iodine125-labeled seeds (125I-seeds) implantation is increasingly being used to treat tumors because of its positional precision, minimal invasion, least damage to noncancerous tissue due to slow and continuous release of radioactivity and facilitation with modern medical imaging technologies. This study evaluates the survival and pain relief outcomes of the 125I-seeds implantation brachytherapy in advanced pancreatic cancer patients. Methods: Literature search was carried out in multiple electronic databases (Google Scholar, Embase, Medline/PubMed, and Ovid SP) and studies reporting I125 seeds implantation brachytherapy in pancreatic cancer patients with unresectable tumor were selected by following predetermined eligibility criteria. Random effects meta-analysis was performed to achieve inverse variance weighted effect size of the overall survival rate after the intervention. Sensitivity and subgroups analyses were also carried out. Results: Twenty-three studies (824 patients’ data) were included in the meta-analysis. 125I-seeds implantation brachytherapy alone was associated with 8.98 [95% confidence interval (CI): 6.94, 11.03] months (P < 0.00001) overall survival with 1-year survival of 25.7 ± 9.3% (mean ± standard deviation; SD) and 2-year survival was 17.9 ± 8.6% (mean ± SD). In stage IV pancreatic cancer patients, overall survival was 7.13 [95% CI: 4.75, 9.51] months (P < 0.00001). In patients treated with 125I-seeds implantation along with 1 or more therapies, overall survival was 11.75 [95% CI: 9.84, 13.65] months (P < 0.00001) with 1-year survival of 47.4 ± 22.75% (mean ± SD) and 2-year survival was 16.97 ± 3.1% (mean ± SD). 125I-seeds brachytherapy was associated with relief of pain in 79.7 ± 9.9% (mean ± SD) of the patients. Conclusions: Survival of pancreatic cancer patients after 125I-seeds implantation brachytherapy is found to be 9 months

  16. Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Kuo, Nathanael; Kang, Hyun Jae; Song, Danny Y.; Kang, Jin U.; Boctor, Emad M.

    2012-06-01

    Prostate brachytherapy is a popular prostate cancer treatment option that involves the permanent implantation of radioactive seeds into the prostate. However, contemporary brachytherapy procedure is limited by the lack of an imaging system that can provide real-time seed-position feedback. While many other imaging systems have been proposed, photoacoustic imaging has emerged as a potential ideal modality to address this need, since it could easily be incorporated into the current ultrasound system used in the operating room. We present such a photoacoustic imaging system built around a clinical ultrasound system to achieve the task of visualizing and localizing seeds. We performed several experiments to analyze the effects of various parameters on the appearance of brachytherapy seeds in photoacoustic images. We also imaged multiple seeds in an ex vivo dog prostate phantom to demonstrate the possibility of using this system in a clinical setting. Although still in its infancy, these initial results of a photoacoustic imaging system for the application of prostate brachytherapy seed localization are highly promising.

  17. Brachytherapy

    MedlinePlus

    ... Who will be involved in this procedure? The delivery of brachytherapy requires a treatment team, including a ... are specially trained technologists who may assist in delivery of the treatments. The radiation therapy nurse provides ...

  18. Brachytherapy

    MedlinePlus

    ... care for brachytherapy catheters. top of page What equipment is used? For permanent implants, radioactive material (which ... the tumor. top of page Who operates the equipment? The equipment is operated by a medical physicist, ...

  19. WE-A-17A-11: Implanted Brachytherapy Seed Movement Due to Transrectal Ultrasound Probe-Induced Prostate Deformation

    SciTech Connect

    Liu, D; Usmani, N; Sloboda, R; Meyer, T; Husain, S; Angyalfi, S; Kay, I

    2014-06-15

    Purpose: To characterize the movement of implanted brachytherapy seeds due to transrectal ultrasound probe-induced prostate deformation and to estimate the effects on prostate dosimetry. Methods: Implanted probe-in and probe-removed seed distributions were reconstructed for 10 patients using C-arm fluoroscopy imaging. The prostate was delineated on ultrasound and registered to the fluoroscopy seeds using a visible subset of seeds and residual needle tracks. A linear tensor and shearing model correlated the seed movement with position. The seed movement model was used to infer the underlying prostate deformation and to simulate the prostate contour without probe compression. Changes in prostate and surrogate urethra dosimetry were calculated. Results: Seed movement patterns reflecting elastic decompression, lateral shearing, and rectal bending were observed. Elastic decompression was characterized by anterior-posterior expansion and superior-inferior and lateral contractions. For lateral shearing, anterior movement up to 6 mm was observed for extraprostatic seeds in the lateral peripheral region. The average intra-prostatic seed movement was 1.3 mm, and the residual after linear modeling was 0.6 mm. Prostate D90 increased by 4 Gy on average (8 Gy max) and was correlated with elastic decompression. For selected patients, lateral shearing resulted in differential change in D90 of 7 Gy between anterior and posterior quadrants, and increase in whole prostate D90 of 4 Gy. Urethra D10 increased by 4 Gy. Conclusion: Seed movement upon probe removal was characterized. The proposed model captured the linear correlation between seed movement and position. Whole prostate dose coverage increased slightly, due to the small but systematic seed movement associated with elastic decompression. Lateral shearing movement increased dose coverage in the anterior-lateral region, at the expense of the posterior-lateral region. The effect on whole prostate D90 was smaller due to the subset

  20. Automatic segmentation of radiographic fiducial and seeds from X-ray images in prostate brachytherapy.

    PubMed

    Kuo, Nathanael; Deguet, Anton; Song, Danny Y; Burdette, Everette C; Prince, Jerry L; Lee, Junghoon

    2012-01-01

    Prostate brachytherapy guided by transrectal ultrasound is a common treatment option for early stage prostate cancer. Prostate cancer accounts for 28% of cancer cases and 11% of cancer deaths in men with 217,730 estimated new cases and 32,050 estimated deaths in 2010 in the United States alone. The major current limitation is the inability to reliably localize implanted radiation seeds spatially in relation to the prostate. Multimodality approaches that incorporate X-ray for seed localization have been proposed, but they require both accurate tracking of the imaging device and segmentation of the seeds. Some use image-based radiographic fiducials to track the X-ray device, but manual intervention is needed to select proper regions of interest for segmenting both the tracking fiducial and the seeds, to evaluate the segmentation results, and to correct the segmentations in the case of segmentation failure, thus requiring a significant amount of extra time in the operating room. In this paper, we present an automatic segmentation algorithm that simultaneously segments the tracking fiducial and brachytherapy seeds, thereby minimizing the need for manual intervention. In addition, through the innovative use of image processing techniques such as mathematical morphology, Hough transforms, and RANSAC, our method can detect and separate overlapping seeds that are common in brachytherapy implant images. Our algorithm was validated on 55 phantom and 206 patient images, successfully segmenting both the fiducial and seeds with a mean seed segmentation rate of 96% and sub-millimeter accuracy.

  1. Automatic segmentation of radiographic fiducial and seeds from X-ray images in prostate brachytherapy

    PubMed Central

    Kuo, Nathanael; Deguet, Anton; Song, Danny Y.; Burdette, Everette C.; Prince, Jerry L.; Lee, Junghoon

    2011-01-01

    Prostate brachytherapy guided by transrectal ultrasound is a common treatment option for early stage prostate cancer. Prostate cancer accounts for 28% of cancer cases and 11% of cancer deaths in men with 217,730 estimated new cases and 32,050 estimated deaths in 2010 in the United States alone. The major current limitation is the inability to reliably localize implanted radiation seeds spatially in relation to the prostate. Multimodality approaches that incorporate X-ray for seed localization have been proposed, but they require both accurate tracking of the imaging device and segmentation of the seeds. Some use image-based radiographic fiducials to track the X-ray device, but manual intervention is needed to select proper regions of interest for segmenting both the tracking fiducial and the seeds, to evaluate the segmentation results, and to correct the segmentations in the case of segmentation failure, thus requiring a significant amount of extra time in the operating room. In this paper, we present an automatic segmentation algorithm that simultaneously segments the tracking fiducial and brachytherapy seeds, thereby minimizing the need for manual intervention. In addition, through the innovative use of image processing techniques such as mathematical morphology, Hough transforms, and RANSAC, our method can detect and separate overlapping seeds that are common in brachytherapy implant images. Our algorithm was validated on 55 phantom and 206 patient images, successfully segmenting both the fiducial and seeds with a mean seed segmentation rate of 96% and sub-millimeter accuracy. PMID:21802975

  2. Prostate brachytherapy postimplant dosimetry: Seed orientation and the impact of dosimetric anisotropy in stranded implants

    SciTech Connect

    Chng, Nicholas; Spadinger, Ingrid; Rasoda, Rosey; Morris, W. James; Salcudean, Septimiu

    2012-02-15

    Purpose: In postimplant dosimetry for prostate brachytherapy, dose is commonly calculated using the TG-43 1D formalism, because seed orientations are difficult to determine from CT images, the current standard for the procedure. However, the orientation of stranded seeds soon after implantation is predictable, as these seeds tend to maintain their relative spacing, and orient themselves along the implant trajectory. The aim of this study was to develop a method for determining seed orientations from reconstructed strand trajectories, and to use this information to investigate the dosimetric impact of applying the TG-43 2D formalism to clinical postimplant analysis. Methods: Using in-house software, the preplan to postimplant seed correspondence was determined for a cohort of 30 patients during routine day-0 CT-based postimplant dosimetry. All patients were implanted with stranded-seed trains. Spline curves were fit to each set of seeds composing a strand, with the requirement that the distance along the spline between seeds be equal to the seed spacing within the strand. The orientations of the seeds were estimated by the tangents to the spline at each seed centroid. Dose distributions were then determined using the 1D and 2D TG-43 formalisms. These were compared using the TG-137 recommended dose metrics for the prostate, prostatic urethra, and rectum. Results: Seven hundred and sixty one strands were analyzed in total. Defining the z-axis to be cranial-positive and the x-axis to be left-lateral positive in the CT coordinate system, the average seed had an inclination of 21 deg. {+-} 10 deg. and an azimuth of -81 deg. {+-} 57 deg. These values correspond to the average strand rising anteriorly from apex to base, approximately parallel to the midsagittal plane. Clinically minor but statistically significant differences in dose metrics were noted. Compared to the 2D calculation, the 1D calculation underestimated prostate V100 by 1.1% and D90 by 2.3 Gy, while

  3. Radiofrequency ablation versus 125I-seed brachytherapy for painful metastases involving the bone

    PubMed Central

    Jiao, Dechao; Wu, Gang; Ren, Jianzhuang; Han, Xinwei

    2016-01-01

    This retrospective study aimed to demonstrate and compare the safety and effectiveness of computed tomography-guided radiofrequency ablation (RFA) and 125I-seed brachytherapy for painful bone metastases after failure of external beam radiotherapy (EBRT). From June 2013 to October 2015, 79 patients with moderate-to-severe pain caused by metastatic bone lesions who underwent either RFA (n = 41) or 125I-seed brachytherapy (n = 38) were enrolled. Pain in patients was measured using the brief pain inventory (BPI) before treatment, 1 week after treatment, and 3 months after treatment. Response rates were assessed by measuring the changes in pain and incorporation of changes in the analgesic requirements. At baseline, 1 week, and 3 months, the mean worst pain scores of BPI were 7.8, 5.4, and 2.7, respectively, for the RFA group and 7.7, 6.1, and 2.8, respectively, for the brachytherapy group. At 1 week, the complete and partial response rates were 12% and 59%, respectively, in the RFA group compared with 3% and 45%, respectively, in the brachytherapy group. At 3 months, the complete and partial response rates were 23% and 58%, respectively, in the RFA group compared with 24% and 52% in the brachytherapy group (p = 0.95). The response rates in the RFA group were significantly higher than those in the brachytherapy group at 1 week (p = 0.32), but comparable at 3 weeks (p = 0.95). Both groups had low rates of complications and no treatment-related mortality. In conclusion, the short-term curative efficiency of RFA was better than that of brachytherapy, but the log-term efficiency of both treatments was equal. PMID:27636995

  4. Comparison of template-matching and singular-spectrum-analysis methods for imaging implanted brachytherapy seeds.

    PubMed

    Alam, S Kaisar; Mamou, Jonathan; Feleppa, Ernest J; Kalisz, Andrew; Ramachandran, Sarayu

    2011-11-01

    Brachytherapy using small implanted radioactive seeds is becoming an increasingly popular method for treating prostate cancer, in which a radiation oncologist implants seeds in the prostate transperineally under ultrasound guidance. Dosimetry software determines the optimal placement of seeds for achieving the prescribed dose based on ultrasonic determination of the gland boundaries. However, because of prostate movement and distortion during the implantation procedure, some seeds may not be placed in the desired locations; this causes the delivered dose to differ from the prescribed dose. Current ultrasonic imaging methods generally cannot depict the implanted seeds accurately. We are investigating new ultrasonic imaging methods that show promise for enhancing the visibility of seeds and thereby enabling real-time detection and correction of seed-placement errors during the implantation procedure. Real-time correction of seed-placement errors will improve the therapeutic radiation dose delivered to target tissues. In this work, we compare the potential performance of a template-matching method and a previously published method based on singular spectrum analysis for imaging seeds. In particular, we evaluated how changes in seed angle and position relative to the ultrasound beam affect seed detection. The conclusion of the present study is that singular spectrum analysis has better sensitivity but template matching is more resistant to false positives; both perform well enough to make seed detection clinically feasible over a relevant range of angles and positions. Combining the information provided by the two methods may further reduce ambiguities in determining where seeds are located.

  5. SU-E-P-08: Alarming Range of Seed Activities Ordered for I-125 Plaque Brachytherapy

    SciTech Connect

    Merz, B

    2014-06-01

    Purpose: To investigate the variation in I-125 seed activities ordered by various clinics for their plaque brachytherapy cases under a standardized set of assumptions. Methods: A majority of the plaque programs in North America were contacted and a survey was designed to give a few standardized cases to allow inter-comparison of seed activities ordered. Tumor dose, treatment duration, number of seeds, plaque, and tumor apex were held constant in order to reveal differences in prescription point, seed type, and seed activity. Results: While the survey is presently underway, preliminary results show alarmingly wide variations between centers. Differences up to 45% have been found with 15% differences being common. Conclusion: Though knowledge of the TG-43 dose calculation formalism is common, a number of factors in the field of plaque brachytherapy lead to alarming differences in activity of I-125 seeds being ordered for a given tumor. Knowledge of the present reality of widely varying treatment activities, and thus doses to tumor and normal structures, should serve as motivation for centers involved in this modality to review their programs with others in the community and share their experiences.

  6. Fast radioactive seed localization in intraoperative cone beam CT for low-dose-rate prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Hu, Yu-chi; Xiong, Jian-ping; Cohan, Gilad; Zaider, Marco; Mageras, Gig; Zelefsky, Michael

    2013-03-01

    A fast knowledge-based radioactive seed localization method for brachytherapy was developed to automatically localize radioactive seeds in an intraoperative volumetric cone beam CT (CBCT) so that corrections, if needed, can be made during prostate implant surgery. A transrectal ultrasound (TRUS) scan is acquired for intraoperative treatment planning. Planned seed positions are transferred to intraoperative CBCT following TRUS-to-CBCT registration using a reference CBCT scan of the TRUS probe as a template, in which the probe and its external fiducial markers are pre-segmented and their positions in TRUS are known. The transferred planned seeds and probe serve as an atlas to reduce the search space in CBCT. Candidate seed voxels are identified based on image intensity. Regions are grown from candidate voxels and overlay regions are merged. Region volume and intensity variance is checked against known seed volume and intensity profile. Regions meeting the above criteria are flagged as detected seeds; otherwise they are flagged as likely seeds and sorted by a score that is based on volume, intensity profile and distance to the closest planned seed. A graphical interface allows users to review and accept or reject likely seeds. Likely seeds with approximately twice the seed volume are automatically split. Five clinical cases are tested. Without any manual correction in seed detection, the method performed the localization in 5 seconds (excluding registration time) for a CBCT scan with 512×512×192 voxels. The average precision rate per case is 99% and the recall rate is 96% for a total of 416 seeds. All false negative seeds are found with 15 in likely seeds and 1 included in a detected seed. With the new method, updating of calculations of dose distribution during the procedure is possible and thus facilitating evaluation and improvement of treatment quality.

  7. Verification and source-position error analysis of film reconstruction techniques used in the brachytherapy planning systems.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Chui, Chen-Shou; Du, Yi-Chun; Chen, Tainsong

    2009-09-01

    A method was presented that employs standard linac QA tools to verify the accuracy of film reconstruction algorithms used in the brachytherapy planning system. Verification of reconstruction techniques is important as suggested in the ESTRO booklet 8: "The institution should verify the full process of any reconstruction technique employed clinically." Error modeling was also performed to analyze seed-position errors. The "isocentric beam checker" device was used in this work. It has a two-dimensional array of steel balls embedded on its surface. The checker was placed on the simulator couch with its center ball coincident with the simulator isocenter, and one axis of its cross marks parallel to the axis of gantry rotation. The gantry of the simulator was rotated to make the checker behave like a three-dimensional array of balls. Three algorithms used in the ABACUS treatment planning system: orthogonal film, 2-films-with-variable-angle, and 3-films-with-variable-angle were tested. After exposing and digitizing the films, the position of each steel ball on the checker was reconstructed and compared to its true position, which can be accurately calculated. The results showed that the error is dependent on the object-isocenter distance, but not the magnification of the object. The averaged errors were less than 1 mm within the tolerance level defined by Roué et al. ["The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy," Radiother. Oncol. 78, 78-83 (2006)]. However, according to the error modeling, the theoretical error would be greater than 2 mm if the objects were located more than 20 cm away from the isocenter with a 0.5 degrees reading error of the gantry and collimator angles. Thus, in addition to carefully performing the QA of the gantry and collimator angle indicators, it is suggested that the patient, together with the applicators or seeds inside, should be placed close to the isocenter as much as possible. This method could be used to

  8. Verification and source-position error analysis of film reconstruction techniques used in the brachytherapy planning systems

    SciTech Connect

    Chang Liyun; Ho, Sheng-Yow; Chui, Chen-Shou; Du, Yi-Chun; Chen Tainsong

    2009-09-15

    A method was presented that employs standard linac QA tools to verify the accuracy of film reconstruction algorithms used in the brachytherapy planning system. Verification of reconstruction techniques is important as suggested in the ESTRO booklet 8: ''The institution should verify the full process of any reconstruction technique employed clinically.'' Error modeling was also performed to analyze seed-position errors. The ''isocentric beam checker'' device was used in this work. It has a two-dimensional array of steel balls embedded on its surface. The checker was placed on the simulator couch with its center ball coincident with the simulator isocenter, and one axis of its cross marks parallel to the axis of gantry rotation. The gantry of the simulator was rotated to make the checker behave like a three-dimensional array of balls. Three algorithms used in the ABACUS treatment planning system: orthogonal film, 2-films-with-variable-angle, and 3-films-with-variable-angle were tested. After exposing and digitizing the films, the position of each steel ball on the checker was reconstructed and compared to its true position, which can be accurately calculated. The results showed that the error is dependent on the object-isocenter distance, but not the magnification of the object. The averaged errors were less than 1 mm within the tolerance level defined by Roueet al. [''The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy,'' Radiother. Oncol. 78, 78-83 (2006)]. However, according to the error modeling, the theoretical error would be greater than 2 mm if the objects were located more than 20 cm away from the isocenter with a 0.5 deg. reading error of the gantry and collimator angles. Thus, in addition to carefully performing the QA of the gantry and collimator angle indicators, it is suggested that the patient, together with the applicators or seeds inside, should be placed close to the isocenter as much as possible. This method could be used

  9. Automated localization of implanted seeds in 3D TRUS images used for prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2006-07-15

    An algorithm has been developed in this paper to localize implanted radioactive seeds in 3D ultrasound images for a dynamic intraoperative brachytherapy procedure. Segmentation of the seeds is difficult, due to their small size in relatively low quality of transrectal ultrasound (TRUS) images. In this paper, intraoperative seed segmentation in 3D TRUS images is achieved by performing a subtraction of the image before the needle has been inserted, and the image after the seeds have been implanted. The seeds are searched in a 'local' space determined by the needle position and orientation information, which are obtained from a needle segmentation algorithm. To test this approach, 3D TRUS images of the agar and chicken tissue phantoms were obtained. Within these phantoms, dummy seeds were implanted. The seed locations determined by the seed segmentation algorithm were compared with those obtained from a volumetric cone-beam flat-panel micro-CT scanner and human observers. Evaluation of the algorithm showed that the rms error in determining the seed locations using the seed segmentation algorithm was 0.98 mm in agar phantoms and 1.02 mm in chicken phantoms.

  10. ROPES eye plaque brachytherapy dosimetry for two models of (103)Pd seeds.

    PubMed

    Saidi, Pooneh; Sadeghi, Mahdi; Shirazi, Alireza; Tenreiro, Claudio

    2011-06-01

    Brachytherapy dose distributions are calculated for 15 mm ROPES eye plaque loaded with model Theragenics200 and IR06-(103)Pd seeds. The effects of stainless steel backing and Acrylic insert on dose distribution along the central axis of the eye plaque and at critical ocular structure are investigated. Monte Carlo simulation was carried out with the Version 5 of the MCNP. The dose at critical ocular structure by considering the eye composition was calculated. Results are compared with the calculated data for COMS eye plaque loaded with Theragenics200 palladium-103 seeds and model 6711 iodine-125 seed. The air kerma strength of the IR06-(103)Pd seed to deliver 85 Gy in apex of tumor in water medium was calculated to be 4.10 U/seed. Along the central axis of stainless steel plaque loaded with new (103)Pd seeds in Acrylic insert, the dose reduction relative to water is 6.9% at 5 mm (apex). Removal of the Acrylic insert from the plaque (replacing with water) did not make significantly difference in dose reduction results (~0.2%). The presence of the stainless steel backing results in dose enhancement near the plaque relative to water. Doses at points of interest are higher for ROPES eye plaque when compared to COMS eye plaque. The dosimetric parameters calculated in this work for the new palladium seed, showed that in dosimetry point of view, the IR06-(103)Pd seed is suitable for use in brachytherapy. The effect of Acrylic insert on dose distribution is negligible and the main effect on dose reduction is due to the presence of stainless steel plaque backing.

  11. SU-E-T-378: Evaluation of An Analytical Model for the Inter-Seed Attenuation Effect in 103-Pd Multi-Seed Implant Brachytherapy

    SciTech Connect

    Safigholi, H; Soliman, A; Song, W; Meigooni, A Soleimani; Han, D

    2015-06-15

    Purpose: Brachytherapy treatment planning systems based on TG-43 protocol calculate the dose in water and neglects the heterogeneity effect of seeds in multi-seed implant brachytherapy. In this research, the accuracy of a novel analytical model that we propose for the inter-seed attenuation effect (ISA) for 103-Pd seed model is evaluated. Methods: In the analytical model, dose perturbation due to the ISA effect for each seed in an LDR multi-seed implant for 103-Pd is calculated by assuming that the seed of interest is active and the other surrounding seeds are inactive. The cumulative dosimetric effect of all seeds is then summed using the superposition principle. The model is based on pre Monte Carlo (MC) simulated 3D kernels of the dose perturbations caused by the ISA effect. The cumulative ISA effect due to multiple surrounding seeds is obtained by a simple multiplication of the individual ISA effect by each seed, the effect of which is determined by the distance from the seed of interest. This novel algorithm is then compared with full MC water-based simulations (FMCW). Results: The results show that the dose perturbation model we propose is in excellent agreement with the FMCW values for a case with three seeds separated by 1 cm. The average difference of the model and the FMCW simulations was less than 8%±2%. Conclusion: Using the proposed novel analytical ISA effect model, one could expedite the corrections due to the ISA dose perturbation effects during permanent seed 103-Pd brachytherapy planning with minimal increase in time since the model is based on multiplications and superposition. This model can be applied, in principle, to any other brachytherapy seeds. Further work is necessary to validate this model on a more complicated geometry as well.

  12. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle

    NASA Astrophysics Data System (ADS)

    Singh, Mithun Kuniyil Ajith; Parameshwarappa, Vinay; Hendriksen, Ellen; Steenbergen, Wiendelt; Manohar, Srirang

    2016-12-01

    An important problem in minimally invasive photoacoustic (PA) imaging of brachytherapy seeds is reflection artifacts caused by the high signal from the optical fiber/needle tip reflecting off the seed. The presence of these artifacts confounds interpretation of images. In this letter, we demonstrate a recently developed concept called photoacoustic-guided focused ultrasound (PAFUSion) for the first time in the context of interstitial illumination PA imaging to identify and remove reflection artifacts. In this method, ultrasound (US) from the transducer is focused on the region of the optical fiber/needle tip identified in a first step using PA imaging. The image developed from the US diverging from the focus zone at the tip region visualizes only the reflections from seeds and other acoustic inhomogeneities, allowing identification of the reflection artifacts of the first step. These artifacts can then be removed from the PA image. Using PAFUSion, we demonstrate reduction of reflection artifacts and thereby improved interstitial PA visualization of brachytherapy seeds in phantom and ex vivo measurements on porcine tissue.

  13. Reconstructing metastatic seeding patterns of human cancers

    PubMed Central

    Reiter, Johannes G.; Makohon-Moore, Alvin P.; Gerold, Jeffrey M.; Bozic, Ivana; Chatterjee, Krishnendu; Iacobuzio-Donahue, Christine A.; Vogelstein, Bert; Nowak, Martin A.

    2017-01-01

    Reconstructing the evolutionary history of metastases is critical for understanding their basic biological principles and has profound clinical implications. Genome-wide sequencing data has enabled modern phylogenomic methods to accurately dissect subclones and their phylogenies from noisy and impure bulk tumour samples at unprecedented depth. However, existing methods are not designed to infer metastatic seeding patterns. Here we develop a tool, called Treeomics, to reconstruct the phylogeny of metastases and map subclones to their anatomic locations. Treeomics infers comprehensive seeding patterns for pancreatic, ovarian, and prostate cancers. Moreover, Treeomics correctly disambiguates true seeding patterns from sequencing artifacts; 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumour heterogeneity among distinct samples. In silico benchmarking on simulated tumour phylogenies across a wide range of sample purities (15–95%) and sequencing depths (25-800 × ) demonstrates the accuracy of Treeomics compared with existing methods. PMID:28139641

  14. Permanent Iodine-125 Interstitial Planar Seed Brachytherapy for Close or Positive Margins for Thoracic Malignancies

    SciTech Connect

    Mutyala, Subhakar; Stewart, Alexandra; Khan, Atif J.; Cormack, Robert A.; O'Farrell, Desmond; Sugarbaker, David; Devlin, Phillip M.

    2010-03-15

    Purpose: To assess toxicity and outcome following permanent iodine-125 seed implant as an adjunct to surgical resection in cases of advanced thoracic malignancy. Methods and Materials: An institutional review board-approved retrospective review was performed. Fifty-nine patients were identified as having undergone thoracic brachytherapy seed implantation between September 1999 and December 2006. Data for patient demographics, tumor details, and morbidity and mortality were recorded. Results: Fifty-nine patients received 64 implants. At a median follow-up of 17 months, 1-year and 2-year Kaplan-Meier rates of estimated overall survival were 94.1% and 82.0%, respectively. The 1-year and 2-year local control rates were 80.1% and 67.4%, respectively. The median time to develop local recurrence was 11 months. Grades 3 and 4 toxicity rates were 12% at 1 year. Conclusions: This review shows relatively low toxicity for interstitial planar seed implantation after thoracic surgical resection. The high local control results suggest that an incomplete oncologic surgery plus a brachytherapy implant for treating advanced thoracic malignancy merit further investigation.

  15. Interactive tool for visualization and segmentation of permanent radioactive seeds in postoperative prostate brachytherapy CT images

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Stoknes, Kevin; Grimm, Peter D.; Estlund, Jacque; Chalana, Vikram; Kim, Yongmin

    1999-05-01

    Implantation of radioactive isotopes within the prostate for the treatment of early stage localized prostate cancer is becoming a popular treatment option. Postoperative calculation of the dose delivered to the prostate requires accurate verification of the number and location of seeds within the prostate. Current post operative dosimetry technique requires the dosimetrist to manually count and record the position of each seed from x-ray computed tomography (CT) images. This procedure is operator-dependent and time-consuming, thus limiting the ability of different brachytherapy centers to compare results and create a standard methodology. Seed identification is performed by thresholding the CT images interactively, using a graphical user interface, followed by mathematical morphology to remove noise. Segmented seeds are grouped into regions via connected-component analysis. Regions are then classified into seeds using a prior knowledge of the seed dimensions and their relative positions in the consecutive CT images. Unresolved regions, which can indicate the presence of more than one seed, are corrected manually. The efficiency of this tool was evaluated by comparing the time to manually count the seeds to the time required to do the same task using the automated program. For 15 sets of images from 15 patients, the average time for manually counting the seeds was 45 minutes per patient versus 6.4 minutes on average per patients, the average time for manually counting the seeds was 45 minutes per patient versus 6.4 minutes on average per patient when the software was used to perform the same task. Using the interactive visualization and segmentation algorithm, the time required to count the seeds during post- implant dosimetry has been reduced by a factor of 7 compared to the existing manual technique.

  16. Inverse planning optimization for hybrid prostate permanent-seed implant brachytherapy plans using two source strengths.

    PubMed

    Cunha, J Adam M; Pickett, Barby; Pouliot, Jean

    2010-06-03

    The purpose is to demonstrate the ability to generate clinically acceptable prostate permanent seed implant plans using two seed types which are identical except for their activity. The IPSA inverse planning algorithms were modified to include multiple dose matrices for the calculation of dose from different sources, and a selection algorithm was implemented to allow for the swapping of source type at any given source position. Five previously treated patients with a range of prostate volumes from 20-48 cm3 were re-optimized under two hybrid scenarios: (1) using 0.32 and 0.51 mGy m2 / h 125I, and (2) using 0.64 and 0.76 mGy m2 / h 125I. Isodose lines were generated and dosimetric indices , V150Prostate, D90Prostate, V150Urethra, V125Urethra, V120Urethra,V100Urethra, and D10Urethra were calculated. The algorithm allows for the generation of single-isotope, multi-activity hybrid brachytherapy plans. By dealing with only one radionuclide, but of different activity, the biology is unchanged from a standard plan. All V100Prostate were within 2.3 percentage points for every plan and always above the clinically desirable 95%. All V150Urethra were identically zero, and V120Urethra is always below the clinically acceptable value of 1.0 cm3. Clinical optimization times for the hybrid plans are still under one minute, for most cases. It is possible to generate clinically advantageous brachytherapy plans (i.e. obtain the same quality dose distribution as a standard single-activity plan) while incorporating leftover seeds from a previous patient treatment. This method will allow a clinic to continue to provide excellent patient care, but at a reduced cost. Multi-activity hybrid plans were equal in quality (as measured by the standard dosimetric indices) to plans with seeds of a single activity. Despite the expanded search space, optimization times for these studies were still under two minutes on a modern day laptop and can be reduced to below one minute in a clinical setting

  17. Seed Implant Retention Score Predicts the Risk of Prolonged Urinary Retention After Prostate Brachytherapy

    SciTech Connect

    Lee, Hoon K.; Adams, Marc T.; Shi, Qiuhu; Basillote, Jay; LaMonica, Joanne; Miranda, Luis; Motta, Joseph

    2010-04-15

    Purpose: To risk-stratify patients for urinary retention after prostate brachytherapy according to a novel seed implant retention score (SIRS). Patients and Methods: A total of 835 patients underwent transperineal prostate seed implant from March 1993 to January 2007; 197 patients had {sup 125}I and 638 patients had {sup 103}Pd brachytherapy. Four hundred ninety-four patients had supplemental external-beam radiation. The final downsized prostate volume was used for the 424 patients who had neoadjuvant hormone therapy. Retention was defined as reinsertion of a Foley catheter after the implant. Results: Retention developed in 7.4% of patients, with an average duration of 6.7 weeks. On univariate analysis, implant without supplemental external-beam radiation (10% vs. 5.6%; p = 0.02), neoadjuvant hormone therapy (9.4% vs. 5.4%; p = 0.02), baseline alpha-blocker use (12.5% vs. 6.3%; p = 0.008), and increased prostate volume (13.4% vs. 6.9% vs. 2.9%, >45 cm{sup 3}, 25-45 cm{sup 3}, <25 cm{sup 3}; p = 0.0008) were significantly correlated with increased rates of retention. On multivariate analysis, implant without supplemental external-beam radiation, neoadjuvant hormone therapy, baseline alpha-blocker use, and increased prostate volume were correlated with retention. A novel SIRS was modeled as the combined score of these factors, ranging from 0 to 5. There was a significant correlation between the SIRS and retention (p < 0.0001). The rates of retention were 0, 4%, 5.6%, 9%, 20.9%, and 36.4% for SIRS of 0 to 5, respectively. Conclusions: The SIRS may identify patients who are at high risk for prolonged retention after prostate brachytherapy. A prospective validation study of the SIRS is planned.

  18. Dosimetric study of Cs-131, I-125, and Pd-103 seeds for permanent prostate brachytherapy.

    PubMed

    Yang, Ruijie; Wang, Junjie; Zhang, Hongzhi

    2009-12-01

    As a well-established single-modality approach for early-stage prostate cancer, transperineal interstitial permanent prostate brachytherapy (TIPPB) has gained increasing popularity due to its favorable clinical results. Currently, three isotopes, namely Cs-131, I-125, and Pd-103, are commercially available for TIPPB. This is the first study to systematically explore the dosimetric difference of these three isotopes for TIPPB. In total, 25 patients with T1-T2c prostate cancer previously implanted with I-125 seeds were randomly selected and replanned with Cs-131, I-125, and Pd-103 seeds to the prescription doses of 115, 145, and 125 Gy, respectively. The planning goals attempted were prostate V(p)100 approximately 95%, D(p)90 >or= 100%, and prostatic urethra D(u)10 seeds and needles required, were analyzed and compared. The mean homogeneity index (HI) was 0.59, 0.56, and 0.46 for Cs-131, I-125, and Pd-103 plans, respectively. The average D(u)10 was 124.6%, 125.7%, and 129.7%, respectively. The average rectum V(r)100 was 0.19, 0.22, and 0.31 cc, respectively. In addition, the average number of seeds was 57.9, 63.0, and 63.7, and the average number of needles required was 31.6, 32.9, and 33.6 for Cs-131, I-125, and Pd-103 seeds, respectively. This study demonstrates that TIPPB, utilizing Cs-131 seeds, allows for better dose homogeneity, while providing comparable prostate coverage and sparing of the urethra and rectum, with a comparable number of, or fewer, seeds and needles required, compared to I-125 or Pd-103 seeds. Further biological and clinical studies associated with Cs-131 are warranted.

  19. SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images

    SciTech Connect

    Mashouf, S; Fatemi-Ardekani, A; Song, W

    2015-06-15

    Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequence with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.

  20. Localization of linked {sup 125}I seeds in postimplant TRUS images for prostate brachytherapy dosimetry

    SciTech Connect

    Xue Jinyu . E-mail: Jinyu.Xue@mail.tju.edu; Waterman, Frank; Handler, Jay; Gressen, Eric

    2005-07-01

    Purpose: To demonstrate that {sup 125}I seeds can be localized in transrectal ultrasound (TRUS) images obtained with a high-resolution probe when the implant is performed with linked seeds and spacers. Adequate seed localization is essential to the implementation of TRUS-based intraoperative dosimetry for prostate brachytherapy. Methods and Materials: Thirteen preplanned peripherally loaded prostate implants were performed using {sup 125}I seeds and spacers linked together in linear arrays that prevent seed migration and maintain precise seed spacing. A set of two-dimensional transverse images spaced at 0.50-cm intervals were obtained with a high-resolution TRUS probe at the conclusion of the procedure with the patient still under anesthesia. The image set extended from 1.0 cm superior to the base to 1.0 cm inferior to the apex. The visible echoes along each needle track were first localized and then compared with the known construction of the implanted array. The first step was to define the distal and proximal ends of each array. The visible echoes were then identified as seeds or spacers from the known sequence of the array. The locations of the seeds that did not produce a visible echo were interpolated from their known position in the array. A CT scan was obtained after implantation for comparison with the TRUS images. Results: On average, 93% (range, 86-99%) of the seeds were visible in the TRUS images. However, it was possible to localize 100% of the seeds in each case, because the locations of the missing seeds could be determined from the known construction of the arrays. Two factors complicated the interpretation of the TRUS images. One was that the spacers also produced echoes. Although weak and diffuse, these echoes could be mistaken for seeds. The other was that the number of echoes along a needle track sometimes exceeded the number of seeds and spacers implanted. This was attributed to the overall length of the array, which was approximately 0.5 cm

  1. Rectal-wall dose dependence on postplan timing after permanent-seed prostate brachytherapy

    SciTech Connect

    Taussky, Daniel; Yeung, Ivan; Williams, Theresa; Pearson, Shannon; McLean, Michael; Pond, Gregory; Crook, Juanita . E-mail: Juanita.crook@rmp.uhn.on.ca

    2006-06-01

    Purpose: Dose to rectal wall after permanent-seed prostate brachytherapy is dependent on distance between posterior prostatic seeds and anterior rectal wall and is influenced by postimplant periprostatic edema. We analyzed the effect of postplan timing on anterior rectal-wall dose. Methods and Materials: Twenty patients received permanent seed {sup 125}I brachytherapy as monotherapy (145 Gy). Implants were preplanned by use of transrectal ultrasound (TRUS) and carried out by use of preloaded needles. Postimplant dosimetry was calculated by use of magnetic resonance imaging-computed tomography fusion on Days 1, 8, and 30. The anterior rectal-wall dose is reported as the isodose enclosing 1.0 or 2.0 cc of rectal wall and as the RV100 in cc. Results: The dose to rectal wall increased progressively over time. The median increase in dose to 1.0 cc of rectal wall (RD [1 cc]) from Day 1 to 30 was 39.2 Gy (p < 0.001). RV100 increased from a median of 0.07 cc on Day 1 to 0.67 cc on Day 30. The most significant predictor of rectal-wall dose (RD [1 cc], RD [2 cc], or RV100) was the time of evaluation (p < 0.001). Conclusion: Although periprostatic edema cannot be quantified by postimplant imaging, the dose to the anterior rectal wall increases significantly over time as prostatic and periprostatic edema resolve. Critical-organ dose reporting and guidelines for minimizing toxicity must take into account the time of the assessment.

  2. SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds

    SciTech Connect

    Watt, E; Spencer, DP; Meyer, T

    2015-06-15

    Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empirical altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup 103}Pd and

  3. New National Air-Kerma-Strength Standards for (125)I and (103)Pd Brachytherapy Seeds.

    PubMed

    Seltzer, Stephen M; Lamperti, Paul J; Loevinger, Robert; Mitch, Michael G; Weaver, James T; Coursey, Bert M

    2003-01-01

    The new U.S. measurement standard for the air-kerma strength from low-energy photon-emitting brachytherapy seed sources is formally described in detail. This instrument-based standard was implemented on 1 January 1999, with its salient features and the implications of differences with the previous standard given only through a series of informal communications. The Wide-Angle Free-Air Chamber (WAFAC) is specially designed to realize air kerma from a single-seed source emitting photons with energies up to about 40 keV, and is now used to measure the wide variety of seeds used in prostate-cancer therapy that has appeared in the last few years. For the two (125)I seed models that have been subject to both the old and new standards, the new standard reduces the air-kerma strength by 10.3 %. This change is mainly due to the removal of the influence on the measurement of the Ti K x rays produced in the source encapsulation, a component with no clinical significance.

  4. Seed based registration for intraoperative brachytherapy dosimetry: a comparison of methods

    NASA Astrophysics Data System (ADS)

    Su, Yi; Davis, Brian J.; Herman, Michael G.; Robb, Richard A.

    2006-03-01

    Several approaches for registering a subset of imaged points to their true origins were analyzed and compared for seed based TRUS-fluoroscopy registration. The methods include the Downhill Simplex method (DS), the Powell's method (POW), the Iterative Closest Point (ICP) method, the Robust Point Matching method (RPM) and variants of RPM. Several modifications were made to the standard RPM method to improve its performance. One hundred simulations were performed for each combination of noise level, seed detection rate and spurious points and the registration accuracy was evaluated and compared. The noise level ranges from 0 to 5mm, the seed detection ratio ranges from 0.2 to 0.6, and the number of spurious points ranges from 0 to 20. An actual clinical post-implant dataset from permanent prostate brachytherapy was used for the simulation study. The experiments provided evidence that our modified RPM method is superior to other methods, especially when there are many outliers. The RPM based method produced the best results at all noise levels and seed detection rates. The DS based method performed reasonably well, especially at low noise levels without spurious points. There was no significant performance difference between the standard RPM and our modified RPM methods without spurious points. The modified RPM methods outperformed the standard RPM method with large number of spurious points. The registration error was within 2mm, even with 20 outlier points and a noise level of 3mm.

  5. Monte Carlo study of LDR seed dosimetry with an application in a clinical brachytherapy breast implant

    SciTech Connect

    Furstoss, C.; Reniers, B.; Bertrand, M. J.; Poon, E.; Carrier, J.-F.; Keller, B. M.; Pignol, J. P.; Beaulieu, L.; Verhaegen, F.

    2009-05-15

    A Monte Carlo (MC) study was carried out to evaluate the effects of the interseed attenuation and the tissue composition for two models of {sup 125}I low dose rate (LDR) brachytherapy seeds (Medi-Physics 6711, IBt InterSource) in a permanent breast implant. The effect of the tissue composition was investigated because the breast localization presents heterogeneities such as glandular and adipose tissue surrounded by air, lungs, and ribs. The absolute MC dose calculations were benchmarked by comparison to the absolute dose obtained from experimental results. Before modeling a clinical case of an implant in heterogeneous breast, the effects of the tissue composition and the interseed attenuation were studied in homogeneous phantoms. To investigate the tissue composition effect, the dose along the transverse axis of the two seed models were calculated and compared in different materials. For each seed model, three seeds sharing the same transverse axis were simulated to evaluate the interseed effect in water as a function of the distance from the seed. A clinical study of a permanent breast {sup 125}I implant for a single patient was carried out using four dose calculation techniques: (1) A TG-43 based calculation, (2) a full MC simulation with realistic tissues and seed models, (3) a MC simulation in water and modeled seeds, and (4) a MC simulation without modeling the seed geometry but with realistic tissues. In the latter, a phase space file corresponding to the particles emitted from the external surface of the seed is used at each seed location. The results were compared by calculating the relevant clinical metrics V{sub 85}, V{sub 100}, and V{sub 200} for this kind of treatment in the target. D{sub 90} and D{sub 50} were also determined to evaluate the differences in dose and compare the results to the studies published for permanent prostate seed implants in literature. The experimental results are in agreement with the MC absolute doses (within 5% for EBT

  6. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    SciTech Connect

    Buzurovic, I; Devlin, P; Hansen, J; O'Farrell, D; Bhagwat, M; Friesen, S; Damato, A; Lewis, J; Cormack, R

    2014-06-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curved surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high level

  7. Evaluation of an automated seed loader for seed calibration in prostate brachytherapy.

    PubMed

    Wan, Shuying; Joshi, Chandra P; Carnes, Greg; Schreiner, L John

    2006-01-01

    Automated seed loaders for permanent prostate implants are now commercially available. Besides improved radiation safety, these systems offer seed assay capability and ease of needle loading, making preplanned as well as intra-operative implant procedures more time-efficient. The Isoloader (Mentor Corp., CA) uses individual I125 seeds (SL-125 ProstaSeed) loaded in up to 199 chambers inside a shielded cartridge. The unit performs seed counting and calibration using a builtin solid-state detector. In order to evaluate the reproducibility and accuracy of the calibration process, two test cartridges were measured with the Isoloader itself and compared with a well-type ionization chamber (HDR-1000Plus, Standard Imaging). The air kerma strength measurements for all seeds using the Isoloader had a standard deviation of about 2.7%. For the eight seeds assayed more intensively using both the Isoloader and well chamber, the standard deviations of the measurements for each seed were in the range of 0.8% to 2.8% and 0.6% to 1.3%, respectively. The variation in the Isoloader calibration is attributed to small detector solid angle and bead geometry within seed capsules (verified by radiographs). The reproducibility of the air kerma strength measured by the Isoloader was comparable to that from the well chamber and was clinically acceptable. Seed strength measured with the Isoloader was on average 1% 2% larger than that measured with the well chamber, indicating that the accuracy of the Isoloader was clinically acceptable.

  8. CT-Guided 125I Seed Interstitial Brachytherapy as a Salvage Treatment for Recurrent Spinal Metastases after External Beam Radiotherapy

    PubMed Central

    Yao, Lihong; Cao, Qianqian; Yang, Jiwen; Meng, Na; Guo, Fuxin; Jiang, Yuliang; Tian, Suqing; Sun, Haitao

    2016-01-01

    The aim of this study is to evaluate the feasibility, safety, and clinical efficacy of CT-guided 125I seed interstitial brachytherapy in patients with recurrent spinal metastases after external beam radiotherapy (EBRT). Between August 2003 and September 2015, 26 spinal metastatic lesions (24 patients) were reirradiated by this salvage therapy modality. Treatment for all patients was preplanned using a three-dimensional treatment planning system 3–5 days before 125I seed interstitial brachytherapy; dosimetry verification was performed immediately after seed implantation. Median actual D90 was 99 Gy (range, 90–176), and spinal cord median Dmax was 39 Gy (range, 6–110). Median local control (LC) was 12 months (95% CI: 7.0–17.0). The 6- and 12-month LC rates were 52% and 40%, respectively. Median overall survival (OS) was 11 months (95% CI: 7.7–14.3); 6-month and 1-, 2-, and 3-year OS rates were 65%, 37%, 14%, and 9%, respectively. Pain-free survival ranged from 2 to 42 months (median, 6; 95% CI: 4.6–7.4). Treatment was well-tolerated, with no radiation-induced vertebral compression fractures or myelopathy reported. Reirradiation with CT-guided 125I seed interstitial brachytherapy appears to be feasible, safe, and effective as pain relief or salvage treatment for patients with recurrent spinal metastases after EBRT. PMID:28105434

  9. Prostate brachytherapy - discharge

    MedlinePlus

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, depending ...

  10. CT image artifacts from brachytherapy seed implants: A postprocessing 3D adaptive median filter

    SciTech Connect

    Basran, Parminder S.; Robertson, Andrew; Wells, Derek

    2011-02-15

    Purpose: To design a postprocessing 3D adaptive median filter that minimizes streak artifacts and improves soft-tissue contrast in postoperative CT images of brachytherapy seed implantations. Methods: The filter works by identifying voxels that are likely streaks and estimating more reflective voxel intensity by using voxel intensities in adjacent CT slices and applying a median filter over voxels not identified as seeds. Median values are computed over a 5x5x5 mm region of interest (ROI) within the CT volume. An acrylic phantom simulating a clinical seed implant arrangement and containing nonradioactive seeds was created. Low contrast subvolumes of tissuelike material were also embedded in the phantom. Pre- and postprocessed image quality metrics were compared using the standard deviation of ROIs between the seeds, the CT numbers of low contrast ROIs embedded within the phantom, the signal to noise ratio (SNR), and the contrast to noise ratio (CNR) of the low contrast ROIs. The method was demonstrated with a clinical postimplant CT dataset. Results: After the filter was applied, the standard deviation of CT values in streak artifact regions was significantly reduced from 76.5 to 7.2 HU. Within the observable low contrast plugs, the mean of all ROI standard deviations was significantly reduced from 60.5 to 3.9 HU, SNR significantly increased from 2.3 to 22.4, and CNR significantly increased from 0.2 to 4.1 (all P<0.01). The mean CT in the low contrast plugs remained within 5 HU of the original values. Conclusion: An efficient postprocessing filter that does not require access to projection data, which can be applied irrespective of CT scan parameters has been developed, provided the slice thickness and spacing is 3 mm or less.

  11. Staged reconstruction brachytherapy has lower overall cost in recurrent soft-tissue sarcoma

    PubMed Central

    Naghavi, Arash O.; Gonzalez, Ricardo J.; Scott, Jacob G.; Kim, Youngchul; Abuodeh, Yazan A.; Strom, Tobin J.; Echevarria, Michelle; Mullinax, John E.; Ahmed, Kamran A.; Harrison, Louis B.

    2017-01-01

    Purpose Adjuvant brachytherapy (AB) with immediate (IR) and staged reconstruction (SR) are distinct treatment modalities available for patients with recurrent soft tissue sarcoma (STS). Although SR may offer local control and toxicity benefit, it requires additional upfront procedures, and there is no evidence that it improves overall survival. With the importance of value-based care, our goal is to identify which technique is more cost effective. Material and methods A retrospective review of 22 patients with recurrent extremity STS treated with resection followed by AB alone. Hospital charges were used to compare the cost between SR and IR at the time of initial treatment, at 6-month intervals following surgery, and cumulative cost comparisons at 18 months. Results Median follow-up was 31 months. Staged reconstruction (n = 12) was associated with an 18-month local control benefit (85% vs. 42%, p = 0.034), compared to IR (n = 10). Staged reconstruction had a longer hospital stay during initial treatment (10 vs. 3 days, p = 0.002), but at 18 months, the total hospital stay was no longer different (11 vs. 11 days). Initially, there was no difference in the cost of SR and IR. With longer follow-up, cost eventually favored SR, which was attributed primarily to the costs associated with local failure (LF). On multivariate analysis, cost of initial treatment was associated with length of hospital stay (~$4.5K per hospital day, p < 0.001), and at 18 months, the cumulative cost was ~175K lower with SR (p = 0.005) and $58K higher with LF (p = 0.02). Conclusions In recurrent STS, SR has a longer initial hospital stay when compared to IR. At 18 months, SR had lower rates of LF, translating to lower total costs for the patient. SR is the more cost-effective brachytherapy approach in the treatment of STS, and should be considered as healthcare transitions into value-based medicine. PMID:28344600

  12. Sequential evaluation of prostate edema after permanent seed prostate brachytherapy using CT-MRI fusion

    SciTech Connect

    Taussky, Daniel; Austen, Lyn; Toi, Ants; Yeung, Ivan; Williams, Theresa; Pearson, Shannon; McLean, Michael; Pond, Gregory; Crook, Juanita . E-mail: juanita.crook@rmp.uhn.on.ca

    2005-07-15

    Purpose: To analyze the extent and time course of prostate edema and its effect on dosimetry after permanent seed prostate brachytherapy. Methods and Materials: Twenty patients scheduled for permanent seed {sup 125}I prostate brachytherapy agreed to a prospective study on postimplant edema. Implants were preplanned using transrectal ultrasonography. Postimplant dosimetry was calculated using computed tomography-magnetic resonance imaging (CT-MRI) fusion on the day of the implant (Day 1) and Days 8 and 30. The prostate was contoured on MRI, and the seeds were located on CT. Factors investigated for an influence on edema were the number of seeds and needles, preimplant prostate volume, transitional zone index (transition zone volume divided by prostate volume), age, and prostate-specific antigen level. Prostate dosimetry was evaluated by the percentage of the prostate volume receiving 100% of the prescribed dose (V{sub 100}) and percentage of prescribed dose received by 90% of the prostate volume (D{sub 90}). Results: Prostate edema was maximal on Day 1, with the median prostate volume 31% greater than preimplant transrectal ultrasound volume (range, 0.93-1.72; p < 0.001) and decreased with time. It was 21% greater than baseline at Day 8 (p = 0.013) and 5% greater on Day 30 (p < 0.001). Three patients still had a prostate volume greater than baseline by Day 30. The extent of edema depended on the transition zone volume (p = 0.016) and the preplan prostate volume (p 0.003). The median V{sub 100} on Day 1 was 93.6% (range, 86.0-98.2%) and was 96.3% (range, 85.7-99.5%) on Day 30 (p = 0.079). Patients with a Day 1 V{sub 100} >93% were less affected by edema resolution, showing a median increase in V{sub 100} of 0.67% on Day 30 compared with 2.77% for patients with a V{sub 100} <93 % on Day 1. Conclusion: Despite the extreme range of postimplant edema, the effect on dosimetry was less than expected. Dose coverage of the prostate was good for all patients during Days 1

  13. MAGNETIC RESONANCE IMAGING COMPATIBLE ROBOTIC SYSTEM FOR FULLY AUTOMATED BRACHYTHERAPY SEED PLACEMENT

    PubMed Central

    Muntener, Michael; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Bagga, Herman; Kavoussi, Louis; Cleary, Kevin; Stoianovici, Dan

    2011-01-01

    Objectives To introduce the development of the first magnetic resonance imaging (MRI)-compatible robotic system capable of automated brachytherapy seed placement. Methods An MRI-compatible robotic system was conceptualized and manufactured. The entire robot was built of nonmagnetic and dielectric materials. The key technology of the system is a unique pneumatic motor that was specifically developed for this application. Various preclinical experiments were performed to test the robot for precision and imager compatibility. Results The robot was fully operational within all closed-bore MRI scanners. Compatibility tests in scanners of up to 7 Tesla field intensity showed no interference of the robot with the imager. Precision tests in tissue mockups yielded a mean seed placement error of 0.72 ± 0.36 mm. Conclusions The robotic system is fully MRI compatible. The new technology allows for automated and highly accurate operation within MRI scanners and does not deteriorate the MRI quality. We believe that this robot may become a useful instrument for image-guided prostate interventions. PMID:17169653

  14. A comparative study of two reconstructive methods and different recommendations in intracavitary brachytherapy

    PubMed Central

    Ramanjappa, Thogata; Rao, C. Ramakrishna; Raju, A Krishnam; Muralidhar, KR

    2011-01-01

    Purpose Intracavitary brachytherapy (ICB) is a widely used technique in the treatment of cervical cancer. In our Institute, we use different reconstructive methods in the conventional planning procedure. The main aim of this study was to compare these methods using critical organ doses obtained in various treatment plans. There is a small difference in the recommendations in selecting bladder dose point between ICRU (International Commission on Radiation Units & Measurements) -38 and ABS (American Brachytherapy Society). The second objective of the study was to find the difference in bladder dose using both recommendations. Material and methods We have selected two methods: variable angle method (M1) and orthogonal method (M2). Two orthogonal sets of radiographs were taken into consideration using conventional simulator. All four radiographs were used in M1 and only two radiographs were used in M2. Bladder and rectum doses were calculated using ICRU-38 recommendations. For maximum bladder dose reference point as per the ABS recommendation, 4 to 5 reference points were marked on Foley’s balloon. Results 64% of plans were showing more bladder dose and 50% of plans presented more rectum dose in M1 compared to M2. Many of the plans reviled maximum bladder dose point, other than ICRU-38 bladder point in both methods. Variation was exceeded in 5% of considerable number of plans. Conclusions We observed a difference in critical organ dose between two studied methods. There is an advantage of using variable angle reconstruction method in identifying the catheters. It is useful to follow ABS recommendation to find maximum bladder dose. PMID:27853480

  15. Determination of dosimetric characteristics of OptiSeed(TM) a plastic brachytherapy (103)Pd source.

    PubMed

    Wang, Zhonglu; Hertel, Nolan E

    2005-09-01

    A new (103)Pd plastic brachytherapy source, OptiSeed(TM) Model 1032P, is being introduced by International Brachytherapy sa (IBt). Measurements of the dose distributions about the source were performed using LiF thermoluminescent dosimeters (TLD-100) in Virtual Water(TM). MCNP5 calculations were performed to determine the dose distributions in Virtual Water(TM) and liquid water. The source dose rate constant, radial dose function, anisotropy function and anisotropy factor have been determined following the updated AAPM TG-43 recommendations. The measured dose rate constant in the Virtual Water(TM) phantom was determined to be 0.727+/-6.9% cGyh(-1)U(-1), and the computed value is 0.716+/-2.1% cGyh(-1)U(-1). The Monte-Carlo simulation yielded a dose rate constant of 0.665+/-2.1% cGyh(-1)U(-1) in water. The measured dose rate constant in water is 0.675+/-7.5% cGyh(-1)U(-1). It is determined by multiplying the dose rate constant measured in the Virtual Water(TM) phantom with the ratio of the value calculated in water to that in Virtual Water(TM). The average of the measured and calculated dose rate constant is 0.670+/-5.5% cGyh(-1)U(-1). The radial dose functions of the new source were measured for distances ranging from 1 to 7 cm in a Virtual Water(TM) phantom. The anisotropy functions in Virtual Water(TM) phantom were measured for distances of 2, 3, 5, and 7 cm. The Monte-Carlo computed radial dose functions, anisotropy functions, and anisotropy factors in both Virtual Water(TM) phantom and water are reported.

  16. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  17. Evaluation of dosimetry and excess seeds in permanent brachytherapy using a modified hybrid method: a single-institution experience.

    PubMed

    Kobayashi, Kana; Okihara, Koji; Iwata, Tsuyoshi; Aibe, Norihiro; Kodani, Naohiro; Tsubokura, Takuji; Kamoi, Kazumi; Miki, Tsuneharu; Yamazaki, Hideya

    2013-05-01

    Permanent prostate brachytherapy is frequently performed worldwide, and many studies have demonstrated its favorable outcomes. Implant seeds used in this procedure contain a precise amount of radionuclide and are completely sealed. Because these seeds are not manufactured in Japan, they are expensive (6300 yen per seed) and therefore need careful management as a radioisotope. The proper implantation technique requires considerable procedure time, good dosimetric outcomes and simple radioactive isotope management. To evaluate the modified hybrid interactive technique based on these considerations, we assessed 313 patients who underwent hybrid interactive brachytherapy without additional external beam radiotherapy. We evaluated the duration of the procedure, dosimetric factors and the total number of excess seeds. The dosimetric results from computed tomography on Day 30 of follow-up were: 172 Gy (range 130-194 Gy) for pD90, 97.8% (83.5-100%) for pV100, 54.6% (27.5-82.4%) for pV150, 164 Gy (120-220 Gy) for uD90, 194 Gy (126-245 Gy) for uD30, 210 Gy (156-290 Gy) for uD5, 0.02 ml (0-1.2 ml) for rV100 and 0 ml (0-0.2 ml) for rV150. The number of excess seeds was determined by subtracting the number of implanted seeds from the expected number of seeds calculated from previously proposed nomograms. As per our method, nine excess seeds were used for two patients, whereas using the nomograms, the number of excess seeds was approximately eight per patient. Our modified hybrid interactive technique reduced the number of excess seeds while maintaining treatment quality.

  18. Polymer gel dosimetry close to an 125I interstitial brachytherapy seed

    NASA Astrophysics Data System (ADS)

    Pantelis, E.; Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.; Stiliaris, E.; Sandilos, P.; Seimenis, I.; Kozicki, M.; Rosiak, J. M.

    2005-09-01

    Despite its advantages, the polymer gel-magnetic resonance imaging (MRI) method has not, as yet, been successfully employed in dosimetry of low energy/low dose rate photon-emitting brachytherapy sources such as 125I or 103Pd interstitial seeds. In the present work, two commercially available 125I seed sources, each of approximately 0.5 U, were positioned at two different locations of a polymer gel filled vial. The gel vial was MR scanned with the sources in place 19 and 36 days after seed implantation. Calibration curves were acquired from the coupling of MRI measurements with accurate Monte Carlo dose calculations obtained simulating the exact experimental setup geometry and materials. The obtained gel response data imply that while linearity of response is sustained, sensitivity (calibration curve slope) is significantly increased (approximately 60%) compared to its typical value for the 192Ir (or 60Co and 6 MV LINAC) photon energies. Water equivalence and relative energy response corrections of the gel cannot account for more than 3-4% of this increase, which, therefore, has to be mainly attributed to physicochemical processes related to the low dose rate of the sources and the associated prolonged irradiation time. The calibration data obtained from one 125I source were used to provide absolute dosimetry results for the other 125I source, which were found to agree with corresponding Monte Carlo calculations within experimental uncertainties. It is therefore suggested that, regardless of the underlying factors accounting for the gel dose response to 125I irradiations, polymer gel dosimetry of new 125I or 103Pd sources should be carried out as originally proposed by Heard and Ibbot (2004 J. Phys.: Conf. Ser. 3 221-3), i.e., by irradiating the same gel sample with the new low dose rate source, as well as with a well-characterized low dose rate source which will provide the dose calibration curve for the same irradiation conditions.

  19. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  20. Pediatric peri-operative fractionated high-dose-rate brachytherapy for recurrent Wilms’ tumor using a reconstructed Freiburg flap

    PubMed Central

    Tran, Kathy Ngoc; Zanjani, Salman; Smith, Wayne; Karpelowsky, Jonathan; Summerhayes, Katie; Estoesta, Edgar; Chard, Jennifer

    2016-01-01

    Purpose To report peri-operative fractionated high-dose-rate (HDR) brachytherapy with a 3D customized Freiburg flap applicator to treat locally recurrent Wilms’ tumor, followed by immediate hyperthermic intraperitoneal chemotherapy for a 16-year-old with a second recurrence of nephroblastoma (Wilms’ tumor). Material and methods The tumor was excised and surgical bed was treated with fractionated HDR brachytherapy using a Freiburg flap applicator. Hyperthermic intraperitoneal chemotherapy was performed immediately after the removal of brachytherapy applicator. Results The Freiburg flap was successfully reconstructed to enable delivery of conformable peri-operative HDR brachytherapy. The clinical target volume (CTV) D90 was 26 Gy in 5 fractions. Conclusions Peri-operative fractionated HDR brachytherapy with a customized Freiburg flap applicator was delivered successfully across a large multi-disciplinary team. PMID:27895685

  1. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    SciTech Connect

    Genebes, Caroline; Filleron, Thomas; Graff, Pierre; Jonca, Frédéric; Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard; Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc

    2013-11-15

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes.

  2. Geometric error of cervical point A calculated through traditional reconstruction procedures for brachytherapy treatment.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Yeh, Shyh-An; Lee, Tsair-Fwu; Chen, Pang-Yu

    2015-09-08

    Brachytherapy used in local cervical cancer is still widely based on 2D standard dose planning with the prescription to point A, which is invisible on imaging and located at a high-dose gradient. In this study, the geometric location error of point A was investigated. It is traditionally reconstructed in the treatment planning system after carefully digitizing the point marks that were previously drawn on the orthogonal radiographs into the system. Two Cartesian coordinates of point A were established and compared. One was built up based on the geometric definition of point A and would be taken as the true coordinate, while the other was built up through traditional clinical treatment procedures and named as the practical coordinate. The orthogonal-film reconstruction technique was used and the location error between the practical and the true coordinate introduced from the variations of, first, the angle between the tandem and the simulator gantry-rotation-axis, and second, the interval between the tandem flange and the simulator isocenter, was analyzed. The location error of point A was higher if the tandem was rotated away from the gantry-rotation-axis or if the location of the tandem flange was set away from the isocenter. If a tandem with a 30-degree curvature was rotated away from the gantry-rotation-axis 10 degrees in the anterior-posterior (AP) view, and there was an 8.7 cm interval between the flange and the isocenter, the location error of point A would be greater than 3 mm without including other errors from simulator calibration, data input, patient setup and movements. To reduce the location error of point A calculated for traditional reconstruction procedures, it is suggested to move the couch or patient to make the mid-point of two points A near the isocenter and the tandem in the AP view parallel to the gantry-rotation-axis as much as possible.

  3. Geometric error of cervical point A calculated through traditional reconstruction procedures for brachytherapy treatment.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Yeh, Shyh-An; Lee, Tsair-Fwu; Chen, Pang-Yu

    2015-09-01

    Brachytherapy used in local cervical cancer is still widely based on 2D standard dose planning with the prescription to point A, which is invisible on imaging and located at a high-dose gradient. In this study, the geometric location error of point A was investigated. It is traditionally reconstructed in the treatment planning system after carefully digitizing the point marks that were previously drawn on the orthogonal radiographs into the system. Two Cartesian coordinates of point A were established and compared. One was built up based on the geometric definition of point A and would be taken as the true coordinate, while the other was built up through traditional clinical treatment procedures and named as the practical coordinate. The orthogonal film reconstruction technique was used and the location error between the practical and the true coordinate introduced from the variations of, first, the angle between the tandem and the simulator gantry rotation axis, and second, the interval between the tandem flange and the simulator isocenter, was analyzed. The location error of point A was higher if the tandem was rotated away from the gantry rotation axis or if the location of the tandem flange was set away from the isocenter. If a tandem with a 30° curvature was rotated away from the gantry rotation axis 10° in the anterior-posterior (AP) view, and there was an 8.7 cm interval between the flange and the isocenter, the location error of point A would be 3 mm without including other errors from simulator calibration, data input, patient setup, and movements. To reduce the location error of point A calculated for traditional reconstruction procedures, it is suggested to move the couch or patient to make the mid-point of two points A near the isocenter and the tandem in the AP view parallel to the gantry rotation axis as much as possible. PACS number: 87.55.km.

  4. Monte Carlo and thermoluminescence dosimetry of the new IsoSeed registered model I25.S17 {sup 125}I interstitial brachytherapy seed

    SciTech Connect

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.; Karaiskos, P.; Sandilos, P.; Przykutta, A.; Baltas, D.

    2005-11-15

    Monte Carlo simulation and experimental thermoluminescence dosimetry were utilized for the dosimetric characterization of the new IsoSeed registered model I25.S17 {sup 125}I interstitial brachytherapy seed. The new seed design is similar to that of the selectSeed and 6711 seeds, with the exception of its molybdenum marker. Full dosimetric data are presented following the recommendations in the Update of the AAPM Task Group 43 report (TG-43U1). A difference of 3.3% was found between Monte Carlo dose rate constant results calculated by air kerma strengths from simulations using a point detector and a detector resembling the solid angle subtended to the seed by the Wide Angle Free Air Chamber (WAFAC) in the primary standard calibration geometry. Following the TG-43U1 recommendations, an average value of {lambda}{sub MC}=(0.929{+-}0.014) cGy h{sup -1} U{sup -1} was adopted for the new seed. This value was then averaged with the measured value of {lambda}{sub EXP}=(0.951{+-}0.044) cGy h{sup -1} U{sup -1} to yield the proposed dose rate constant for the new seed that is equal to {lambda}=(0.940{+-}0.051) cGy h{sup -1} U{sup -1}. The Monte Carlo calculated radial dose function and two-dimensional (2-D) anisotropy function results for the new seed were found in agreement with experimental results to within statistical uncertainty of repeated measurements. Monte Carlo simulations were also performed for {sup 125}I seeds of similar geometry and dimensions for the purpose of comparison. The new seed presents dosimetric characteristics that are very similar to that of the selectSeed. In comparison to the most extensively studied Amersham 6711 seed, the new one presents similar dosimetric characteristics with a slightly reduced dose rate constant (1.5%)

  5. Clinical research on the treatment effects of radioactive (125)I seeds interstitial brachytherapy on children with primary orbital rhabdomyosarcoma.

    PubMed

    Ge, Xin; Ma, Jianmin; Dai, Haojie; Ren, Ling; Li, Quan; Shi, Jitong

    2014-09-01

    Rhabdomyosarcoma (RMS) is one of the most common primary orbital malignancies. However, orbital RMS is a very rare disease, especially in childhood, and the tumor has a high degree of malignancy and rapid development. The objective of the present study was to investigate the clinical treatment effects of radioactive (125)I seeds interstitial brachytherapy on children with primary orbital RMS, which may provide a new method for treating RMS in clinical applications. Radioactive (125)I seeds were used in the present study. Primary lesions from ten children with orbital RMS, including three male and seven female patients, were selected as the targeted areas. The activity, number and spatial location of the seeds were optimized and simulated by applying computer three-dimensional treatment planning system (TPS) software. The interstitial implantation of the radioactive (125)I seeds was conducted on children under general anesthesia according to the TPS simulation results. Quality verifications of the operation were conducted by orbital computed tomography and X-ray plain film at the early stage after operation, and the children were followed up. The patients were followed up by October 2012 with an average follow-up time of 57 ± 17.43 months and a median follow-up time of 55 months. Nine cases achieved complete remission, and one case achieved partial remission, resulting in a total efficiency and survival rate of 100.0 % (10/10). Most patients recovered after treatment or had no radiotherapy side effect after the operations, though 20.0 % of the patients (2/10) experienced corneal opacity, eyeball movement disorder, or loss of sight. Radioactive (125)I seeds interstitial brachytherapy was an effective treatment for children with primary orbital RMS. Results from this study may provide a new clinical approach for the treatment of child patients with primary orbital RMS.

  6. Urethra-Sparing, Intraoperative, Real-Time Planned, Permanent-Seed Prostate Brachytherapy: Toxicity Analysis

    SciTech Connect

    Zilli, Thomas; Taussky, Daniel; Donath, David; Le, Hoa Phong; Larouche, Renee-Xaviere; Beliveau-Nadeau, Dominique; Hervieux, Yannick; Delouya, Guila

    2011-11-15

    Purpose: To report the toxicity outcome in patients with localized prostate cancer undergoing {sup 125}I permanent-seed brachytherapy (BT) according to a urethra-sparing, intraoperative (IO), real-time planned conformal technique. Methods and Materials: Data were analyzed on 250 patients treated consecutively for low- or intermediate-risk prostate cancer between 2005 and 2009. The planned goal was urethral V{sub 150} = 0. Acute and late genitourinary (GU), gastrointestinal (GI), and erectile toxicities were scored with the International Prostate Symptom Score (IPSS) questionnaire and Common Terminology Criteria for Adverse Events (version 3.0). Median follow-up time for patients with at least 2 years of follow-up (n = 130) was 34.4 months (range, 24-56.9 months). Results: Mean IO urethra V{sub 150} was 0.018% {+-} 0.08%. Mean prostate D{sub 90} and V{sub 100} on day-30 computed tomography scan were 158.0 {+-} 27.0 Gy and 92.1% {+-} 7.2%, respectively. Mean IPSS peak was 9.5 {+-} 6.3 1 month after BT (mean difference from baseline IPSS, 5.3). No acute GI toxicity was observed in 86.8% of patients. The 3-year probability of Grade {>=}2 late GU toxicity-free survival was 77.4% {+-} 4.0%, with Grade 3 late GU toxicity encountered in only 3 patients. Three-year Grade 1 late GI toxicity-free survival was 86.1% {+-} 3.2%. No patient presented Grade {>=}2 late GI toxicity. Of patients with normal sexual status at baseline, 20.7% manifested Grade {>=}2 erectile dysfunction after BT. On multivariate analysis, elevated baseline IPSS (p = 0.016) and high-activity sources (median 0.61 mCi) (p = 0.033) predicted increased Grade {>=}2 late GU toxicity. Conclusions: Urethra-sparing IO BT results in low acute and late GU toxicity compared with the literature. High seed activity and elevated IPSS at baseline increased long-term GU toxicity.

  7. Monte Carlo dosimetry for {sup 125}I and {sup 103}Pd eye plaque brachytherapy with various seed models

    SciTech Connect

    Thomson, R. M.; Rogers, D. W. O.

    2010-01-15

    Purpose: Dose distributions are calculated for various models of {sup 125}I and {sup 103}Pd seeds in the standardized plaques of the Collaborative Ocular Melanoma Study (COMS). The sensitivity to seed model of dose distributions and dose distributions relative to TG-43 are investigated. Methods: Monte Carlo simulations are carried out with the EGSnrc user-code BrachyDose. Brachytherapy seeds and eye plaques are fully modeled. Simulations of one seed in the central slot of a 20 mm Modulay (gold alloy) plaque backing with and without the Silastic (silicone polymer) insert and of a 16 mm fully loaded Modulay/Silastic plaque are performed. Dose distributions are compared to those calculated under TG-43 assumptions, i.e., ignoring the effects of the plaque backing and insert and interseed attenuation. Three-dimensional dose distributions for different {sup 125}I and {sup 103}Pd seed models are compared via depth-dose curves, isodose contours, and tabulation of doses at points of interest in the eye. Results are compared to those of our recent BrachyDose study for COMS plaques containing model 6711 ({sup 125}I) or 200 ({sup 103}Pd) seeds [R. M. Thomson et al., Med. Phys. 35, 5530-5543 (2008)]. Results: Along the central axis of a plaque containing one seed, variations of less than 1% are seen in the effect of the Modulay backing alone for different seed models; for the Modulay/Silastic combination, variations are 2%. For a 16 mm plaque fully loaded with {sup 125}I ({sup 103}Pd) seeds, dose decreases relative to TG-43 doses are 11%-12% (19%-20%) and 14%-15% (20%) at distances of 0.5 and 1 cm from the inner sclera along the plaque's central axis, respectively. For the same prescription dose, doses at points of interest vary by up to 8% with seed model. Doses to critical normal structures are lower for all {sup 103}Pd seed models than for {sup 125}I with the possible exception of the sclera adjacent to the plaque; scleral doses vary with seed model and are not always higher

  8. Gamma spectrometry and chemical characterization of ceramic seeds with samarium-153 and holmium-166 for brachytherapy proposal.

    PubMed

    Valente, Eduardo S; Campos, Tarcísio P R

    2010-12-01

    Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy.

  9. Study of Dosimetric and Thermal Properties of a Newly Developed Thermo-brachytherapy Seed for Treatment of Solid Tumors

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj R.

    Studies on the curative effects of hyperthermia and radiation therapy on treatment of cancer show strong evidence of synergistic enhancement when both radiation and hyperthermia treatment modalities are applied simultaneously. A variety of tissue heating approaches developed to date still fail to overcome essential limitations such as inadequate temperature control, temperature non-uniformity, and prolonged time delay between hyperthermia and radiation treatments. We propose a new self-regulating Thermo-brachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent administration of brachytherapy and hyperthermia. The proposed seed is based on the BestRTM Iodine-125 seed model 2301, where the tungsten marker core and the air gap are replaced with ferromagnetic material. The ferromagnetic core produces heat when subjected to an alternating electromagnetic (EM) field and effectively shuts off after reaching the Curie temperature (TC) of the ferromagnetic material, thus establishing temperature self-regulation. The seed has a ferromagnetic Ni-Cu alloy core having a Curie transition at a temperature of 52 °C. This study summarizes the design and development of the self regulating ferromagnetic core TB seed for the concurrent hyperthermia and brachytherapy treatments. An experimental study of the magnetic properties of the Ni1-xCu x (0.28≤ x ≤0.3) alloys, and the simulation studies of radiation and thermal distribution properties of the seed have been performed. A preliminary experiment for the ferromagnetic induction heating of Ni-Cu needles has been carried out to ensure the practical feasibility of the induction heating. Radiation dose characterizing parameters (dose rate constant and other TG-43 factors) were calculated using the Monte Carlo method. For the thermal characteristics, we studied a model consisting of single or multiple seeds placed in the central region of a cylindrical phantom using a finite-element analysis method

  10. Evaluation of the new cesium-131 seed for use in low-energy x-ray brachytherapy.

    PubMed

    Murphy, Mark K; Piper, R Kim; Greenwood, Lawrence R; Mitch, Michael G; Lamperti, Paul J; Seltzer, Stephen M; Bales, Matt J; Phillips, Mark H

    2004-06-01

    Characterization measurements and calculations were performed on a new medical seed developed by IsoRay Inc. in Richland, Washington, that utilizes the short-lived isotope 131Cs. This model has recently received FDA 510(k) clearance. The objective of this work was to characterize the dosimetric properties of the new seed according to the AAPM Task Group 43 recommendations. Cesium-131 is a low-energy x-ray emitter, with the most prominent peaks in the 29 keV to 34 keV region. The intended application is brachytherapy for treating cancers in prostate, breast, head and neck, lung, and pancreas. The evaluations performed included air-kerma strength, radial dose function, anisotropy in phantom, half-life, energy spectra, and internal activity. The results indicate the CS-1 seeds have a dose-rate constant of 0.915 cGy hr(-1) U(-1) in water, dose penetration characteristics similar to 125I and 103Pd, anisotropy function values on the order of 0.71 at short distances and small angles, and an average anisotropy factor of 0.964. The overall dosimetric characteristics are similar to 125I and 103Pd seeds with the exception of half-life, which is 9.7 days, as compared to 17 days for 103Pd and 60 days for 125I. The shorter half-life may offer significant advantages in biological effectiveness.

  11. Multiple-estimate Monte Carlo calculation of the dose rate constant for a cesium-131 interstitial brachytherapy seed

    SciTech Connect

    Wittman, Richard S.; Fisher, Darrell R.

    2007-01-03

    The purpose of this study was to calculate a more accurate dose rate constant for the Cs-131 (model CS-1, IsoRay Medical, Inc., Richland, Washington) interstitial brachytherapy seed. Previous measurements of the dose rate constant for this seed have been reported by others with incongruity. Recent direct measurements by thermoluminescence dosimetry and by gamma-ray spectroscopy were about 15 percent greater than earlier thermoluminescence dosimetry measurements. Therefore, we set about to calculate independent values by a Monte Carlo approach that combined three estimates as a consistency check, and to quantify the computational uncertainty. The calculated dose rate constant for the Cs-131 seed was 1.040 cGy h^{-1} U^{-1} for an ionization chamber model and 1.032 cGy h^{-1} U^{-1} for a circular ring model. A formal value of 2.2% uncertainty was calculated for both values. The range of our multi-estimate values were from 1.032 cGy h^{-1} U^{-1} to 1.061 cGy h^{-1} U^{-1}. We also modeled three I-125 seeds with known dose rate constants to test the accuracy of this study's approach.

  12. Polymer gel dosimetry for the TG-43 dosimetric characterization of a new 125I interstitial brachytherapy seed.

    PubMed

    Papagiannis, P; Pantelis, E; Georgiou, E; Karaiskos, P; Angelopoulos, A; Sakelliou, L; Stiliaris, S; Baltas, D; Seimenis, I

    2006-04-21

    In this work, a polymer gel-magnetic resonance (MR) imaging method is employed for the dosimetric characterization of a new 125I low dose rate seed (IsoSeed model I25.S17). Two vials filled with PABIG gel were prepared in-house and one new seed as well as one commercially available 125I seed of similar dose rate and well-known dosimetric parameters (IsoSeed model I25.S06) were positioned in each vial. Both seeds in each vial were MR scanned simultaneously on days 11 and 26 after implantation. The data obtained from the known seed in each vial are used to calibrate the gel dose response which, for the prolonged irradiation duration necessitated by the investigated dose rates, depends on the overall irradiation time. Data for this study are presented according to the AAPM TG-43 dosimetric formalism. Polymer gel results concerning the new seed are compared to corresponding, published dosimetric results obtained, for the purpose of the new seed clinical implementation, by our group using the established methods of Monte Carlo (MC) simulation and thermo-luminescence dosimetry (TLD). Polymer gel dosimetry yields an average dose rate constant value of lambda = (0.921 +/- 0.031) cGy h(-1) U(-1) relative to (MC)lambda = (0.929 +/- 0.014) cGy h(-1) U(-1), (TLD)lambda = (0.951 +/- 0.044) cGy h(-1) U(-1) and the average value of Lambda = (0.940 +/- 0.051) cGy h(-1) U(-1) proposed for the clinical implementation of the new seed. Results for radial dose function, g(L)(r), and anisotropy function, F(r, theta), also agree with corresponding MC calculations within experimental uncertainties which are smaller for the polymer gel method compared to TLD. It is concluded that the proposed polymer gel-magnetic resonance imaging methodology could be used at least as a supplement to the established techniques for the dosimetric characterization of new low energy and low dose rate interstitial brachytherapy seeds.

  13. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    SciTech Connect

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A; Mashouf, S; Safigholi, H; Ravi, A; Morton, G; Song, WY; Han, D

    2015-06-15

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/ TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best identify

  14. On the feasibility of polyurethane based 3D dosimeters with optical CT for dosimetric verification of low energy photon brachytherapy seeds

    SciTech Connect

    Adamson, Justus Yang, Yun; Juang, Titania; Chisholm, Kelsey; Rankine, Leith; Yin, Fang Fang; Oldham, Mark; Adamovics, John

    2014-07-15

    Purpose: To investigate the feasibility of and challenges yet to be addressed to measure dose from low energy (effective energy <50 keV) brachytherapy sources (Pd-103, Cs-131, and I-125) using polyurethane based 3D dosimeters with optical CT. Methods: The authors' evaluation used the following sources: models 200 (Pd-103), CS-1 Rev2 (Cs-131), and 6711 (I-125). The authors used the Monte Carlo radiation transport code MCNP5, simulations with the ScanSim optical tomography simulation software, and experimental measurements with PRESAGE{sup ®} dosimeters/optical CT to investigate the following: (1) the water equivalency of conventional (density = 1.065 g/cm{sup 3}) and deformable (density = 1.02 g/cm{sup 3}) formulations of polyurethane dosimeters, (2) the scatter conditions necessary to achieve accurate dosimetry for low energy photon seeds, (3) the change in photon energy spectrum within the dosimeter as a function of distance from the source in order to determine potential energy sensitivity effects, (4) the optimal delivered dose to balance optical transmission (per projection) with signal to noise ratio in the reconstructed dose distribution, and (5) the magnitude and characteristics of artifacts due to the presence of a channel in the dosimeter. Monte Carlo simulations were performed using both conventional and deformable dosimeter formulations. For verification, 2.8 Gy at 1 cm was delivered in 92 h using an I-125 source to a PRESAGE{sup ®} dosimeter with conventional formulation and a central channel with 0.0425 cm radius for source placement. The dose distribution was reconstructed with 0.02 and 0.04 cm{sup 3} voxel size using the Duke midsized optical CT scanner (DMOS). Results: While the conventional formulation overattenuates dose from all three sources compared to water, the current deformable formulation has nearly water equivalent attenuation properties for Cs-131 and I-125, while underattenuating for Pd-103. The energy spectrum of each source is

  15. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    SciTech Connect

    Racine, E; Hautvast, G; Binnekamp, D; Beaulieu, L

    2014-06-15

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry

  16. Y-configured metallic stent combined with 125I seed strands cavity brachytherapy for a patient with type IV Klatskin tumor

    PubMed Central

    Dechao, Jiao; Yanli, Wang; Zhen, Li

    2016-01-01

    We report a case in an inoperable patient with type IV Klatskin tumor treated by the use of a novel, two piece, Y-configured self-expandable metallic stent (SEMS) combined with two 125I seed strands via bilateral approach. The placement of the Y-shaped SEMS was successful and resulted in adequate biliary drainage. After 2 months of intraluminal brachytherapy (ILBT), both 125I seed strands and temporary drainage catheter were removed after patency of the expanded stents was confirmed by the cholangiogram. This technique was feasible and could be considered for the treatment of patients with Bismuth type IV Klatskin tumors. PMID:27648091

  17. Layered mass geometry: a novel technique to overlay seeds and applicators onto patient geometry in Geant4 brachytherapy simulations

    NASA Astrophysics Data System (ADS)

    Enger, Shirin A.; Landry, Guillaume; D'Amours, Michel; Verhaegen, Frank; Beaulieu, Luc; Asai, Makoto; Perl, Joseph

    2012-10-01

    A problem faced by all Monte Carlo (MC) particle transport codes is how to handle overlapping geometries. The Geant4 MC toolkit allows the user to create parallel geometries within a single application. In Geant4 the standard mass-containing geometry is defined in a simulation volume called the World Volume. Separate parallel geometries can be defined in parallel worlds, that is, alternate three dimensional simulation volumes that share the same coordinate system with the World Volume for geometrical event biasing, scoring of radiation interactions, and/or the creation of hits in detailed readout structures. Until recently, only one of those worlds could contain mass so these parallel worlds provided no solution to simplify a complex geometric overlay issue in brachytherapy, namely the overlap of radiation sources and applicators with a CT based patient geometry. The standard method to handle seed and applicator overlay in MC requires removing CT voxels whose boundaries would intersect sources, placing the sources into the resulting void and then backfilling the remaining space of the void with a relevant material. The backfilling process may degrade the accuracy of patient representation, and the geometrical complexity of the technique precludes using fast and memory-efficient coding techniques that have been developed for regular voxel geometries. The patient must be represented by the less memory and CPU-efficient Geant4 voxel placement technique, G4PVPlacement, rather than the more efficient G4NestedParameterization (G4NestedParam). We introduce for the first time a Geant4 feature developed to solve this issue: Layered Mass Geometry (LMG) whereby both the standard (CT based patient geometry) and the parallel world (seeds and applicators) may now have mass. For any area where mass is present in the parallel world, the parallel mass is used. Elsewhere, the mass of the standard world is used. With LMG the user no longer needs to remove patient CT voxels that would

  18. Layered mass geometry: a novel technique to overlay seeds and applicators onto patient geometry in Geant4 brachytherapy simulations.

    PubMed

    Enger, Shirin A; Landry, Guillaume; D'Amours, Michel; Verhaegen, Frank; Beaulieu, Luc; Asai, Makoto; Perl, Joseph

    2012-10-07

    A problem faced by all Monte Carlo (MC) particle transport codes is how to handle overlapping geometries. The Geant4 MC toolkit allows the user to create parallel geometries within a single application. In Geant4 the standard mass-containing geometry is defined in a simulation volume called the World Volume. Separate parallel geometries can be defined in parallel worlds, that is, alternate three dimensional simulation volumes that share the same coordinate system with the World Volume for geometrical event biasing, scoring of radiation interactions, and/or the creation of hits in detailed readout structures. Until recently, only one of those worlds could contain mass so these parallel worlds provided no solution to simplify a complex geometric overlay issue in brachytherapy, namely the overlap of radiation sources and applicators with a CT based patient geometry. The standard method to handle seed and applicator overlay in MC requires removing CT voxels whose boundaries would intersect sources, placing the sources into the resulting void and then backfilling the remaining space of the void with a relevant material. The backfilling process may degrade the accuracy of patient representation, and the geometrical complexity of the technique precludes using fast and memory-efficient coding techniques that have been developed for regular voxel geometries. The patient must be represented by the less memory and CPU-efficient Geant4 voxel placement technique, G4PVPlacement, rather than the more efficient G4NestedParameterization (G4NestedParam). We introduce for the first time a Geant4 feature developed to solve this issue: Layered Mass Geometry (LMG) whereby both the standard (CT based patient geometry) and the parallel world (seeds and applicators) may now have mass. For any area where mass is present in the parallel world, the parallel mass is used. Elsewhere, the mass of the standard world is used. With LMG the user no longer needs to remove patient CT voxels that would

  19. CT-guided 125I seed implantation for inoperable retroperitoneal sarcoma: A technique for delivery of local tumor brachytherapy

    PubMed Central

    Yang, Biao; Guo, Wen-Hao; Lan, Ting; Yuan, Fang; Liu, Guan-Jian; Zan, Rui-Yu; You, Xin; Tan, Qiao-Yue; Liao, Zheng-Yin

    2016-01-01

    Radical surgery is currently the first treatment of choice for retroperitoneal soft tissue sarcoma (RSTS). However, the prognosis of RSTS remains poor due to ineffective local control and a high incidence of metastasis after surgical resection. Brachytherapy has been shown to safely provide local radiotherapy for numerous types of cancer when used alone or in combination with surgical resection, but has not been well characterized in the management of RSTS. The aim of this study was to evaluate CT-guided 125I seed implantation for local control and pain relief in the treatment of inoperable RSTS. A total of 23 patients with RSTS were treated with 125I implantation. Pain was assessed using a visual analog scale. Other endpoints were evaluated via computed tomography scan or phone call/e-mail records. The occurrence of complications was assessed preoperatively (baseline) and during postoperatively follow-up or until patient succumbed. All patients were successfully treated with 125I implantation. A mean number of 70.87 radioactive seeds were applied in each patient. During the follow-up, two patients were unaccounted for, local recurrence occurred in three patients, five succumbed and complications were observed in sixteen. The patient's VAS score changed from 7.4 preoperatively to 7.6, 2.3, 2.0, 1.2, 1.5, 1.4 and 2.5 at 24 h, 1, 3, 6, 12, 24 and 36 months after the procedure, respectively. Good local control and significant pain relief after 125I seed implantation was observed in patients with inoperable RSTS. Thus, the present results suggest that this method could be an effective treatment option for patients with inoperable RSTS. PMID:28101168

  20. The use of gel dosimetry to measure the 3D dose distribution of a 90Sr/90Y intravascular brachytherapy seed.

    PubMed

    Massillon-Jl, G; Minniti, R; Mitch, M G; Maryanski, M J; Soares, C G

    2009-03-21

    Absorbed dose distributions in 3D imparted by a single (90)Sr/(90)Y beta particle seed source of the type used for intravascular brachytherapy were investigated. A polymer gel dosimetry medium was used as a dosemeter and phantom, while a special high-resolution laser CT scanner with a spatial resolution of 100 microm in all dimensions was used to quantify the data. We have measured the radial dose function, g(L)(r), observing that g(L)(r) increases to a maximum value and then decreases as the distance from the seed increases. This is in good agreement with previous data obtained with radiochromic film and thermoluminescent dosemeters (TLDs), even if the TLDs underestimate the dose at distances very close to the seed. Contrary to the measurements, g(L)(r) calculated through Monte Carlo simulations and reported previously steadily decreases without a local maximum as a function of the distance from the seed. At distances less than 1.5 mm, differences of more than 20% are observed between the measurements and the Monte Carlo calculations. This difference could be due to a possible underestimation of the energy absorbed into the seed core and encapsulation in the Monte Carlo simulation, as a consequence of the unknown precise chemical composition of the core and its respective density for this seed. The results suggest that g(L)(r) can be measured very close to the seed with a relative uncertainty of about 1% to 2%. The dose distribution is isotropic only at distances greater than or equal to 2 mm from the seed and is almost symmetric, independent of the depth. This study indicates that polymer gel coupled with the special small format laser CT scanner are valid and accurate methods for measuring the dose distribution at distances close to an intravascular brachytherapy seed.

  1. Surface treatments of silver rods with enhanced iodide adsorption for I-125 brachytherapy seeds.

    PubMed

    Lee, Jin Hee; Choi, Kang Hyuk; Yu, Kook Hyun

    2014-02-01

    This study described an effective method to load (125)I on silver rods for the preparation of a brachytherapy source. We tested various ligands on the silver rod surface to screen the one with the highest adsorption and specific radioactivity. In addition, we investigated the effect of surface etching to increase the adsorption capability followed by the extended surface area. We also found that the use of an oxidant during iodide adsorption can increase the loading significantly. The maximum activity of 137.90MBq/rod (3.7269mCi/rod) was achieved on the etched silver rods with phosphate ligand and hydrogen peroxide as an oxidant. In addition, this is 4.5-fold higher than that of the conventional chloride treatment method.

  2. Comparison of Intraoperatively Built Custom Linked Seeds Versus Loose Seed Gun Applicator Technique Using Real-Time Intraoperative Planning for Permanent Prostate Brachytherapy

    SciTech Connect

    Zauls, A. Jason; Ashenafi, Michael S.; Onicescu, Georgiana; Clarke, Harry S.; Marshall, David T.

    2011-11-15

    Purpose: To report our dosimetric results using a novel push-button seed delivery system that constructs custom links of seeds intraoperatively. Methods and Materials: From 2005 to 2007, 43 patients underwent implantation using a gun applicator (GA), and from 2007 to 2008, 48 patientsunderwent implantation with a novel technique allowing creation of intraoperatively built custom links of seeds (IBCL). Specific endpoint analyses were prostate D90% (pD90%), rV100% > 1.3 cc, and overall time under anesthesia. Results: Final analyses included 91 patients, 43 GA and 48 IBCL. Absolute change in pD90% ({Delta}pD90%) between intraoperative and postoperative plans was evaluated. Using GA method, the {Delta}pD90% was -8.1Gy and -12.8Gy for I-125 and Pd-103 implants, respectively. Similarly, the IBCL technique resulted in a {Delta}pD90% of -8.7Gy and -9.8Gy for I-125 and Pd-103 implants, respectively. No statistically significant difference in {Delta}pD90% was found comparing methods. The GA method had two intraoperative and 10 postoperative rV100% >1.3 cc. For IBCL, five intraoperative and eight postoperative plans had rV100% >1.3 cc. For GA, the mean time under anesthesia was 75 min and 87 min for Pd-103 and I-125 implants, respectively. For IBCL, the mean time was 86 and 98 min for Pd-103 and I-125. There was a statistical difference between the methods when comparing mean time under anesthesia. Conclusions: Dosimetrically relevant endpoints were equivalent between the two methods. Currently, time under anesthesia is longer using the IBCL technique but has decreased over time. IBCL is a straightforward brachytherapy technique that can be implemented into clinical practice as an alternative to gun applicators.

  3. A comparative study of seed localization and dose calculation on pre- and post-implantation ultrasound and CT images for low-dose-rate prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Ali, Imad; Algan, Ozer; Thompson, Spencer; Sindhwani, Puneet; Herman, Terence; Cheng, Chih-Yao; Ahmad, Salahuddin

    2009-09-01

    This work investigates variation in the volume of the prostate measured at different stages through the prostate brachytherapy procedure for 30 patients treated with I-125 radioactive seeds. The implanted seeds were localized on post-implantation ultrasound (US) images and the effect of prostate enlargement due to edema on dose coverage for 15 patients was studied. The volume of the prostate was measured at four stages as follows: (a) 2-3 weeks prior to implantation using US imaging, (b) then at the start of the intra-operative prostate brachytherapy procedure on the day of the implant, (c) immediately post-implantation using US imaging in the operating room and (d) finally by CT imaging at nearly 4 weeks post-implantation. Comparative prostate volume studies were performed using US imaging stepper and twister modes. For the purpose of this study, the implanted seeds were localized successfully on post-implant ultrasound twister images, retrospectively. The plans using post-implant US imaging were compared with intra-operative plans on US and plans created on CT images. The prostate volume increases about 10 cm3 on average due to edema induced by needle insertion and seed loading during implantation. The visibility of the implanted seeds on US twister images acquired post-implantation is as good as those on CT images and can be localized and used for dose calculation. The dose coverage represented by parameters such as D90 (dose covering 90% of the volume) and V100 (volume covered by 100% dose) is poorer on plans performed on post-implantation twister US studies than on the intra-operative live plan or the CT scan performed 4 weeks post-operatively. For example, the mean D90 difference on post-implantation US is lower by more than 15% than that on pre-implantation US. The volume enlargement of the prostate due to edema induced by needle insertion and seed placement has a significant effect on the quality of dosimetric coverage in brachytherapy prostate seed

  4. Anisotropy characterization of I-125 seed with attached encapsulated cobalt chloride complex contrast agent markers for MRI-based prostate brachytherapy.

    PubMed

    Frank, Steven J; Tailor, Ramesh C; Kudchadker, Rajat J; Martirosyan, Karen S; Stafford, R Jason; Elliott, Andrew M; Swanson, David A; Sing, David; Choi, Jonathan; Mourtada, Firas; Ibbott, Geoffrey S

    2011-01-01

    We have developed a novel MRI marker for prostate brachytherapy. The purpose of this study was to evaluate the changes in anisotropy when cobalt chloride complex contrast agent encapsulated contrast agent markers (C4-ECAM) were placed adjacent to an iodine-125 (I-125) titanium seed, and to verify that the C4-ECAMs were visible on magnetic resonance imaging (MRI) after radiation exposure. Two C4-ECAMs were verified to be MRI visible in a phantom before radiation exposure. The C4-ECAMs were then attached to each end of a 12.7-U (10-mCi) I-125 titanium seed in a polymer tube. Anisotropy was measured and analyzed with the seed alone and with attached C4-ECAMs by suspending thermoluminescent dosimeters in a water phantom in 2 circles surrounding the radioactive source with radius of 1 or 2 cm. A T1-weighted MRI evaluation of C4-ECAMs was then performed after exposure to the amount of radiation typically delivered during 1 month of prostate brachytherapy. Measured values of the anisotropy function F(r, θ) for the I-125 seed with and without the C4-ECAMs were mutually statistically indistinguishable (standard error of the mean <4.2%) and agreed well with published TG-43 values for the bare seed. As expected, the anisotropy function ϕ(an)(r) for the 2 datasets (with and without C4-ECAMs) derived from the measured F(r, θ) did not exhibit statistically measurable difference. Both datasets showed agreement with the published TG-43 ϕ(an)(r) for the bare seed. The C4-ECAMs were well visualized by MRI after 1 month of radiation exposure. There were no changes in anisotropy when the C4-ECAMs were placed next to an I-125 radioactive seed, and the C4-ECAMs were visualized after radiation exposure.

  5. Anisotropy Characterization of I-125 Seed with Attached Encapsulated Cobalt Chloride Complex Contrast Agent Markers for MRI-Based Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J.; Tailor, Ramesh C.; Kudchadker, Rajat J.; Martirosyan, Karen S.; Stafford, R. Jason; Elliott, Andrew M.; Swanson, David A.; Sing, David; Choi, Jonathan; Mourtada, Firas; Ibbott, Geoffrey S.

    2011-07-01

    We have developed a novel MRI marker for prostate brachytherapy. The purpose of this study was to evaluate the changes in anisotropy when cobalt chloride complex contrast agent encapsulated contrast agent markers (C4-ECAM) were placed adjacent to an iodine-125 (I-125) titanium seed, and to verify that the C4-ECAMs were visible on magnetic resonance imaging (MRI) after radiation exposure. Two C4-ECAMs were verified to be MRI visible in a phantom before radiation exposure. The C4-ECAMs were then attached to each end of a 12.7-U (10-mCi) I-125 titanium seed in a polymer tube. Anisotropy was measured and analyzed with the seed alone and with attached C4-ECAMs by suspending thermoluminescent dosimeters in a water phantom in 2 circles surrounding the radioactive source with radius of 1 or 2 cm. A T1-weighted MRI evaluation of C4-ECAMs was then performed after exposure to the amount of radiation typically delivered during 1 month of prostate brachytherapy. Measured values of the anisotropy function F(r, {theta}) for the I-125 seed with and without the C4-ECAMs were mutually statistically indistinguishable (standard error of the mean <4.2%) and agreed well with published TG-43 values for the bare seed. As expected, the anisotropy function {phi}{sub an}(r) for the 2 datasets (with and without C4-ECAMs) derived from the measured F(r, {theta}) did not exhibit statistically measurable difference. Both datasets showed agreement with the published TG-43 {phi}{sub an}(r) for the bare seed. The C4-ECAMs were well visualized by MRI after 1 month of radiation exposure. There were no changes in anisotropy when the C4-ECAMs were placed next to an I-125 radioactive seed, and the C4-ECAMs were visualized after radiation exposure.

  6. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    SciTech Connect

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa; Alizad, Azra; Davis, Brian J.

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that

  7. A comparative study of radical prostatectomy and permanent seed brachytherapy for low- and intermediate-risk prostate cancer

    PubMed Central

    Taussky, Daniel; Ouellet, Véronique; Delouya, Guila; Saad, Fred

    2016-01-01

    Introduction: We sought to compare the outcomes between radical prostatectomy (RP) and permanent seed prostate brachytherapy (PB) in patients with low- and low-intermediate-risk prostate cancer from a single tertiary care centre. Methods: Patients were selected from our institute’s internal database based on preoperative selection criteria from the National Comprehensive Cancer Network (NCCN) guidelines (2015) for low- and intermediate-risk patients. No patient had received any neo-adjuvant androgen-deprivation therapy. The endpoint was biochemical recurrence (BCR) or any salvage treatment for both RP and PB at 48 ± 4 months after treatment. The biochemical relapse threshold was set at prostate-specific antigen (PSA) ≥0.5 ng/mL for PB and two PSA values of ≥0.2 ng/mL for RP. Patients from both treatment groups were compared using non-parametric tests. A binary logistic regression analysis was performed to determine an association of treatment and pretreatment factors with a BCR at 48 months. Results: A total of 575 patients were included in this study; 254 were treated with RP and 321 with PB. BCR was not different between both groups (p=0.84, Chi-square test), and occurred in 21.2% of patients treated with RP and in 20.6% with PB. Based on univariate and multivariate logistic regression analyses, younger age, higher percentage of positive biopsies, and initial PSA were predictive of BCR. Treatment modality was not predictive in either univariate (odds ratio [OR] 0.96, 95% confidence interval [CI] 0.64–1.44; p=0.84) or multivariate (OR 1.43, 95% CI 0.89–2.30; p=0.14) analyses. Conclusions: Using closely related cutoff values for BCR, both RP and PB did not have significantly different outcomes at four years post-treatment. A longer followup may be necessary to detect a difference between treatments. PMID:27878044

  8. Effect of improved TLD dosimetry on the determination of dose rate constants for {sup 125}I and {sup 103}Pd brachytherapy seeds

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2014-11-01

    Purpose: To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for {sup 125}I and {sup 103}Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values. Methods: The relative absorbed-dose energy dependence, f{sup rel}, for TLDs and the phantom correction, P{sub phant}, are calculated for {sup 125}I and {sup 103}Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced by calculated (f{sup rel}){sup −1} and P{sub phant} values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, k{sub bq}{sup rel}, is determined. The new P{sub phant} values and relative absorbed-dose sensitivities, S{sub AD}{sup rel}, calculated as the product of (f{sup rel}){sup −1} and (k{sub bq}{sup rel}){sup −1}, are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values. Results: In general, f{sup rel} is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among {sup 125}I and {sup 103}Pd seed models and common TLD shapes. P{sub phant} values depend primarily on the isotope used. Deduced (k{sub bq}{sup rel}){sup −1} values are 1.074 ± 0.015 and 1.084 ± 0.026 for {sup 125}I and {sup 103}Pd seeds, respectively. For (1 mm){sup 3} chips, this implies an overall absorbed-dose sensitivity relative to {sup 60}Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for {sup 125}I and {sup 103}Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of P{sub phant} calculated here have much lower statistical uncertainties than literature values, but

  9. Accurate and efficient detection of pulmonary seed embolization in prostate iodine-125 permanent brachytherapy with a collimated gamma scintillation survey meter.

    PubMed

    Chen, Qin-Sheng; Blair, Henry F

    2003-05-01

    Pulmonary seed embolization is frequently observed in permanent prostate brachytherapy. Postoperative chest radiographic examination does not always detect seed embolization. To overcome this deficiency, a low energy gamma scintillation survey meter was converted to a seed-migration detector by adding a cone-shaped single-hole collimation cap to the window end of the scintillation probe. The response functions of the seed-migration detector to iodine-125 (I-125) for different source-to-detector distances in air and in water were measured. The spatial discrimination power of the survey meter, represented by the full width at half maximum measured in water, is typically improved from more than 7 cm to about 3 cm. Seventy-nine patients with I-125 implantation were scanned with the seed-migration detector at the patients' 30-day postevaluation visit. Fifteen patients showed single-seed embolization to the chest region and four patients displayed two-seed embolization. In other words, 24% of the patients present with embolized seeds. The detection accuracy of each patient was validated by a comprehensive investigation procedure. The comprehensive investigation consists of reviewing the patient's treatment history, orally questioning the patient for possible seed loss via the urethra route outside the hospital, examining all available chest radiographs before and after the seed implantation, and counting the seeds on the postevaluation CT scans. In comparison, examinations relying only on the analysis of postoperative chest radiographs yielded a false-positive detection in four patients and a false-negative detection in two patients. Another advantage of the seed-migration detector is that multiple seed-migration scans can be performed without exposing the patient to any additional radiation, for this device is a passive detector. Our clinical implementation also demonstrated that the seed-migration detector is a convenient and cost-effective method. As a result of this

  10. Twelve-Month Prostate-Specific Antigen Values and Perineural Invasion as Strong Independent Prognostic Variables of Long-Term Biochemical Outcome After Prostate Seed Brachytherapy

    SciTech Connect

    Ding, William; Lee, John; Chamberlain, David; Cunningham, James; Yang Lixi; Tay, Jonathan

    2012-11-15

    Purpose: To determine whether post-treatment prostate-specific antigen (ptPSA) values at 12 months and other clinical parameters predict long-term PSA relapse-free survival (PRFS) following prostate seed brachytherapy. Methods and Materials: Records of 204 hormone-naieve patients with localized adenocarcinoma of the prostate treated at St. Mary's Regional Medical Center in Reno, NV, and at Carson Tahoe Regional Medical Center in Carson City, NV, between 1998 and 2003, using I-125 or Pd-103 seed brachytherapy, were retrospectively analyzed. Treatment planning was done using a preplanned, modified peripheral loading technique. A total of 185 of 204 patients had PSA records at 12 months after implant. Variables included were age, initial pretreatment PSA, Gleason score, T stage, National Comprehensive Cancer Network (NCCN) risk group (RG), perineural invasion (PNI), external beam boost, dose, and ptPSA levels at 12 months with cutpoints at {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml. Results: Median follow-up was 80 months, and median age was 69 years. The numbers of patients stratified by NCCN low, intermediate, and high RG were 110:65:10, respectively. Monotherapy and boost prescription doses were 145 Gy and 110 Gy for I-125, and 125 Gy and 100 Gy for Pd-103 seeds, respectively. The median dose (D90) was 95.4% of the prescribed dose. The 5-year PRFS at the 12-months ptPSA levels of {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml were 98.5%, 85.7%, 61.5%, and 22.2%, respectively. The 10-year PRFS at the 12-months ptPSA levels of {<=}1 and 1.01 to 2.00 ng/ml were 90.5% and 85.7%, respectively. In multivariate analysis, both ptPSA and PNI were significant independent predictors of PRFS. Hazard ratios (HR) for ptPSA levels at {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml at 12 months were 1, 4.96, 27.57, and 65.10, respectively. PNI had an HR of 6.1 (p = 0.009). Conclusions: Presence of PNI and ptPSA values at 12 months are strong prognostic variables for

  11. Dynamic dosimetry and edema detection in prostate brachytherapy: a complete system

    NASA Astrophysics Data System (ADS)

    Jain, A.; Deguet, A.; Iordachita, I.; Chintalapani, G.; Blevins, J.; Le, Y.; Armour, E.; Burdette, C.; Song, D.; Fichtinger, G.

    2008-03-01

    Purpose: Brachytherapy (radioactive seed insertion) has emerged as one of the most effective treatment options for patients with prostate cancer, with the added benefit of a convenient outpatient procedure. The main limitation in contemporary brachytherapy is faulty seed placement, predominantly due to the presence of intra-operative edema (tissue expansion). Though currently not available, the capability to intra-operatively monitor the seed distribution, can make a significant improvement in cancer control. We present such a system here. Methods: Intra-operative measurement of edema in prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical non-isocentric C-arm, and exported to a commercial brachytherapy delivery system. Technical obstacles for 3D reconstruction on a non-isocentric C-arm include pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. Results: In precision-machined hard phantoms with 40-100 seeds and soft tissue phantoms with 45-87 seeds, we correctly reconstructed the seed implant shape with an average 3D precision of 0.35 mm and 0.24 mm, respectively. In a DoD Phase-1 clinical trial on 6 patients with 48-82 planned seeds, we achieved intra-operative monitoring of seed distribution and dosimetry, correcting for dose inhomogeneities by inserting an average of 4.17 (1-9) additional seeds. Additionally, in each patient, the system automatically detected intra-operative seed migration induced due to edema (mean 3.84 mm, STD 2.13 mm, Max 16.19 mm). Conclusions: The proposed system is the first of a kind that makes intra-operative detection of edema (and subsequent re-optimization) possible on any typical non-isocentric C-arm, at negligible additional cost to the existing clinical installation. It achieves a significantly more homogeneous seed distribution, and has the potential to

  12. Intra-Operative Dosimetry in Prostate Brachytherapy

    DTIC Science & Technology

    2006-11-01

    phantoms and pre-recorded patient data. 15. SUBJECT TERMS Prostate Brachytherapy, X-ray reconstruction, C-arm, TRUS 16. SECURITY CLASSIFICATION...prostate brachytherapy system that provides dosimetry analysis (Aim-2), and evaluate the system experimentally on phantoms and pre-recorded patient data...prostate brachytherapy system to enable dosimetry calculation Aim-3: Experimental Validation: Evaluate the performance of the RUF system on phantoms and

  13. 3D Surface Reconstruction of Plant Seeds by Volume Carving: Performance and Accuracies

    PubMed Central

    Roussel, Johanna; Geiger, Felix; Fischbach, Andreas; Jahnke, Siegfried; Scharr, Hanno

    2016-01-01

    We describe a method for 3D reconstruction of plant seed surfaces, focusing on small seeds with diameters as small as 200 μm. The method considers robotized systems allowing single seed handling in order to rotate a single seed in front of a camera. Even though such systems feature high position repeatability, at sub-millimeter object scales, camera pose variations have to be compensated. We do this by robustly estimating the tool center point from each acquired image. 3D reconstruction can then be performed by a simple shape-from-silhouette approach. In experiments we investigate runtimes, theoretically achievable accuracy, experimentally achieved accuracy, and show as a proof of principle that the proposed method is well sufficient for 3D seed phenotyping purposes. PMID:27375628

  14. Monte Carlo investigation of I-125 interseed attenuation for standard and thinner seeds in prostate brachytherapy with phantom validation using a MOSFET

    SciTech Connect

    Mason, J.; Al-Qaisieh, B.; Bownes, P.; Henry, A.; Thwaites, D.

    2013-03-15

    Purpose: In permanent seed implant prostate brachytherapy the actual dose delivered to the patient may be less than that calculated by TG-43U1 due to interseed attenuation (ISA) and differences between prostate tissue composition and water. In this study the magnitude of the ISA effect is assessed in a phantom and in clinical prostate postimplant cases. Results are compared for seed models 6711 and 9011 with 0.8 and 0.5 mm diameters, respectively. Methods: A polymethyl methacrylate (PMMA) phantom was designed to perform ISA measurements in a simple eight-seed arrangement and at the center of an implant of 36 seeds. Monte Carlo (MC) simulation and experimental measurements using a MOSFET dosimeter were used to measure dose rate and the ISA effect. MC simulations of 15 CT-based postimplant prostate treatment plans were performed to compare the clinical impact of ISA on dose to prostate, urethra, rectum, and the volume enclosed by the 100% isodose, for 6711 and 9011 seed models. Results: In the phantom, ISA reduced the dose rate at the MOSFET position by 8.6%-18.3% (6711) and 7.8%-16.7% (9011) depending on the measurement configuration. MOSFET measured dose rates agreed with MC simulation predictions within the MOSFET measurement uncertainty, which ranged from 5.5% to 7.2% depending on the measurement configuration (k= 1, for the mean of four measurements). For 15 clinical implants, the mean ISA effect for 6711 was to reduce prostate D90 by 4.2 Gy (3%), prostate V100 by 0.5 cc (1.4%), urethra D10 by 11.3 Gy (4.4%), rectal D2cc by 5.5 Gy (4.6%), and the 100% isodose volume by 2.3 cc. For the 9011 seed the mean ISA effect reduced prostate D90 by 2.2 Gy (1.6%), prostate V100 by 0.3 cc (0.7%), urethra D10 by 8.0 Gy (3.2%), rectal D2cc by 3.1 Gy (2.7%), and the 100% isodose volume by 1.2 cc. Differences between the MC simulation and TG-43U1 consensus data for the 6711 seed model had a similar impact, reducing mean prostate D90 by 6 Gy (4.2%) and V100 by 0.6 cc (1

  15. Long-Term Results of Brachytherapy With Temporary Iodine-125 Seeds in Children With Low-Grade Gliomas

    SciTech Connect

    Korinthenberg, Rudolf; Neuburger, Daniela; Trippel, Michael; Ostertag, Christoph; Nikkhah, Guido

    2011-03-15

    Purpose: To retrospectively review the results of temporary I-125 brachytherapy in 94 children and adolescents with low-grade glioma. Methods and Materials: Treatment was performed in progressive tumors roughly spherical in shape with a diameter of up to 5 cm, including 79 astrocytomas, 5 oligodendrogliomas, 4 oligoastrocytomas, 1 ependymoma, and 5 other tumors. Location was suprasellar/chiasmal in 44, thalamic/basal ganglia in 18, hemispheric in 15, midbrain/pineal region in 13, and lower brainstem in 3. Initially, 8% of patients were free of symptoms, 47% were symptomatic but not disabled, and 30% were slightly, 6% moderately, and 3% severely disabled. Results: 5- and 10-year survival was 97% and 92%. The response to I-125 brachytherapy over the long term was estimated after a median observation period of 38.4 (range, 6.4-171.0) months. At that time, 4 patients were in complete, 27 in partial, and 18 in objective remission; 15 showed stable and 30 progressive tumors. Treatment results did not correlate with age, sex, histology, tumor size, location, or demarcation of the tumor. Secondary treatment became necessary in 36 patients, including 19 who underwent repeated I-125 brachytherapy. At final follow-up, the number of symptom-free patients had risen to 21%. Thirty-eight percent showed symptoms without functional impairment, 19% were slightly and 11% moderately disabled, and only 4% were severely disabled. Conclusions: Response rates similar to those of conventional radiotherapy or chemotherapy can be anticipated with I-125 brachytherapy in tumors of the appropriate size and shape. We believe it to be a useful contribution to the treatment of low-grade gliomas in children.

  16. A pipeline for neuron reconstruction based on spatial sliding volume filter seeding.

    PubMed

    Sui, Dong; Wang, Kuanquan; Chae, Jinseok; Zhang, Yue; Zhang, Henggui

    2014-01-01

    Neuron's shape and dendritic architecture are important for biosignal transduction in neuron networks. And the anatomy architecture reconstruction of neuron cell is one of the foremost challenges and important issues in neuroscience. Accurate reconstruction results can facilitate the subsequent neuron system simulation. With the development of confocal microscopy technology, researchers can scan neurons at submicron resolution for experiments. These make the reconstruction of complex dendritic trees become more feasible; however, it is still a tedious, time consuming, and labor intensity task. For decades, computer aided methods have been playing an important role in this task, but none of the prevalent algorithms can reconstruct full anatomy structure automatically. All of these make it essential for developing new method for reconstruction. This paper proposes a pipeline with a novel seeding method for reconstructing neuron structures from 3D microscopy images stacks. The pipeline is initialized with a set of seeds detected by sliding volume filter (SVF), and then the open curve snake is applied to the detected seeds for reconstructing the full structure of neuron cells. The experimental results demonstrate that the proposed pipeline exhibits excellent performance in terms of accuracy compared with traditional method, which is clearly a benefit for 3D neuron detection and reconstruction.

  17. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    SciTech Connect

    Poulin, E; Racine, E; Beaulieu, L; Binnekamp, D

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  18. Improved dose calculation accuracy for low energy brachytherapy by optimizing dual energy CT imaging protocols for noise reduction using sinogram affirmed iterative reconstruction.

    PubMed

    Landry, Guillaume; Gaudreault, Mathieu; van Elmpt, Wouter; Wildberger, Joachim E; Verhaegen, Frank

    2016-03-01

    The goal of this study was to evaluate the noise reduction achievable from dual energy computed tomography (CT) imaging (DECT) using filtered backprojection (FBP) and iterative image reconstruction algorithms combined with increased imaging exposure. We evaluated the data in the context of imaging for brachytherapy dose calculation, where accurate quantification of electron density ρe and effective atomic number Zeff is beneficial. A dual source CT scanner was used to scan a phantom containing tissue mimicking inserts. DECT scans were acquired at 80 kVp/140Sn kVp (where Sn stands for tin filtration) and 100 kVp/140Sn kVp, using the same values of the CT dose index CTDIvol for both settings as a measure for the radiation imaging exposure. Four CTDIvol levels were investigated. Images were reconstructed using FBP and sinogram affirmed iterative reconstruction (SAFIRE) with strength 1,3 and 5. From DECT scans two material quantities were derived, Zeff and ρe. DECT images were used to assign material types and the amount of improperly assigned voxels was quantified for each protocol. The dosimetric impact of improperly assigned voxels was evaluated with Geant4 Monte Carlo (MC) dose calculations for an (125)I source in numerical phantoms. Standard deviations for Zeff and ρe were reduced up to a factor ∼2 when using SAFIRE with strength 5 compared to FBP. Standard deviations on Zeff and ρe as low as 0.15 and 0.006 were achieved for the muscle insert representing typical soft tissue using a CTDIvol of 40 mGy and 3mm slice thickness. Dose calculation accuracy was generally improved when using SAFIRE. Mean (maximum absolute) dose errors of up to 1.3% (21%) with FBP were reduced to less than 1% (6%) with SAFIRE at a CTDIvol of 10 mGy. Using a CTDIvol of 40mGy and SAFIRE yielded mean dose calculation errors of the order of 0.6% which was the MC dose calculation precision in this study and no error was larger than ±2.5% as opposed to errors of up to -4% with FPB. This

  19. Living donor liver transplantation with abdominal wall reconstruction for hepatocellular carcinoma with needle track seeding

    PubMed Central

    Yang, Horng-Ren; Thorat, Ashok; Gesakis, Kanellos; Li, Ping-Chun; Kiranantawat, Kidakorn; Chen, Hung Chi; Jeng, Long-Bin

    2015-01-01

    Malignant cell seeding in subcutaneous tissues along the needle track and/or percutaneous biliary drainage catheters is rare complication, but pose various technical issues in planning surgical treatment of such patients. If underlying primary hepatic malignancy can be treated, an aggressive resection of subcutaneous tissue bearing cancer cell with subsequent abdominal wall reconstruction has been sporadically reported. But, when hepatic resection is not possible due to underlying advanced cirrhosis, liver transplantation along with abdominal wall resection and subsequent reconstruction remains only feasible option. Herein, we describe our successful experience of living donor liver transplantation for hepatocellular carcinoma with full-thickness abdominal wall resection bearing the tumor seeding followed by reconstruction in single stage surgery. PMID:26722665

  20. Image-based brachytherapy for cervical cancer

    PubMed Central

    Vargo, John A; Beriwal, Sushil

    2014-01-01

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of “grey zones” to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced

  1. Image-based brachytherapy for cervical cancer.

    PubMed

    Vargo, John A; Beriwal, Sushil

    2014-12-10

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of "grey zones" to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced cervical

  2. Calibration of the NPL secondary standard radionuclide calibrator for 125I seeds used for prostate brachytherapy. National Physical Laboratory.

    PubMed

    Baker, M; Bass, G A; Woods, M J

    2002-01-01

    In the therapeutic use of radionuclides, by far the most rapid growth in recent years is that of 125I seeds used for the treatment of prostate cancer. Large numbers of these seeds are used in each treatment and there is a need for a simple but accurate means of confirming their dose rates. This mechanism requires a transfer device for which the calibration factors are traceable to national standards. The NPL secondary standard radionuclide calibrator, because of its guaranteed reproducibility and traceable calibration procedure, is ideally suited for this purpose. A series of characterisation measurements have been performed on the NPL radionuclide calibrator in order to estimate the uncertainty levels that can be achieved and these are presented together with the relevant calibration factors for some typical seeds.

  3. An image-guidance system for dynamic dose calculation in prostate brachytherapy using ultrasound and fluoroscopy

    SciTech Connect

    Kuo, Nathanael Prince, Jerry L.; Dehghan, Ehsan; Deguet, Anton; Mian, Omar Y.; Le, Yi; Song, Danny Y.; Burdette, E. Clif; Fichtinger, Gabor; Lee, Junghoon

    2014-09-15

    Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.

  4. Reconstruction of protein networks from an atlas of maize seed proteotypes

    PubMed Central

    Walley, Justin W.; Shen, Zhouxin; Sartor, Ryan; Wu, Kevin J.; Osborn, Joshua; Smith, Laurie G.; Briggs, Steven P.

    2013-01-01

    A comprehensive knowledge of proteomic states is essential for understanding biological systems. Using mass spectrometry, we mapped an atlas of developing maize seed proteotypes comprising 14,165 proteins and 18,405 phosphopeptides (from 4,511 proteins), quantified across eight tissues. We found that many of the most abundant proteins are not associated with detectable levels of their mRNAs, and we provide evidence for three potential explanations: transport of proteins between tissues; diurnal, out-of-phase accumulation of mRNAs and cognate proteins; and differential lifetimes of mRNAs compared with proteins. Likewise, many of the most abundant mRNAs were not associated with detectable levels of their proteins. Across the entire dataset, protein abundance was poorly correlated with mRNA levels and was largely independent of phosphorylation status. Comparisons between proteotypes revealed the quantitative contribution of specific proteins and phosphorylation events to the spatially and temporally regulated starch and oil biosynthetic pathways. Reconstruction of signaling networks established associations of proteins and phosphoproteins with distinct biological processes acting during seed development. Additionally, a protein kinase substrate network was reconstructed, enabling the identification of 762 potential substrates of specific protein kinases. Finally, examination of 694 transcription factors revealed remarkable constraints on patterns of expression and phosphorylation within transcription factor families. These results provide a resource for understanding seed development in a crop that is the foundation of modern agriculture. PMID:24248366

  5. Direct reconstruction and associated uncertainties of 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients

    NASA Astrophysics Data System (ADS)

    Awunor, O. A.; Dixon, B.; Walker, C.

    2013-05-01

    This paper details a practical method for the direct reconstruction of high dose rate 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of brachytherapy cervix patients. It also details the uncertainties associated with such a process. Eight Nucletron interstitial ring applicators—Ø26 mm (×4), Ø30 mm (×3) and Ø34 mm (×1), and one 60 mm intrauterine tube were used in this study. RTQA2 and XRQA2 gafchromic films were irradiated at pre-programmed dwell positions with three successive 192Ir sources and used to derive the coordinates of the source dwell positions. The source was observed to deviate significantly from its expected position by up to 6.1 mm in all ring sizes. Significant inter applicator differences of up to 2.6 mm were observed between a subset of ring applicators. Also, the measured data were observed to differ significantly from commercially available source path models provided by Nucletron with differences of up to 3.7 mm across all ring applicator sizes. The total expanded uncertainty (k = 2) averaged over all measured dwell positions in the rings was observed to be 1.1 ± 0.1 mm (Ø26 mm and Ø30 mm rings) and 1.0 ± 0.3 mm (Ø34 mm ring) respectively, and when transferred to the treatment planning system, equated to maximum %dose changes of 1.9%, 13.2% and 1.5% at regions representative of the parametrium, lateral fornix and organs at risk respectively.

  6. Reevaluation of the AAPM TG-43 brachytherapy dosimetry parameters for an 125I seed, and the influence of eye plaque design on dose distributions and dose-volume histograms

    NASA Astrophysics Data System (ADS)

    Aryal, Prakash

    The TG-43 dosimetry parameters of the Advantage(TM) 125I model IAI-125A brachytherapy seed were studied. An investigation using modern MCNP radiation transport code with updated cross-section libraries was performed. Twelve different simulation conditions were studied for a single seed by varying the coating thickness, mass density, photon energy spectrum and cross-section library. The dose rate was found to be 6.3% lower at 1 cm in comparison to published results. New TG-43 dosimetry parameters are proposed. The dose distribution for a brachytherapy eye plaque, model EP917, was investigated, including the effects of collimation from high-Z slots. Dose distributions for 26 slot designs were determined using Monte Carlo methods and compared between the published literature, a clinical treatment planning system, and physical measurements. The dosimetric effect of the composition and mass density of the gold backing was shown to be less than 3%. Slot depth, width, and length changed the central axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the 125I-laden silver rod within the seed had the greatest impact on the CAX dose distribution, changing it by 14%, 9%, 4.3%, and 2.7% at 1, 2, 5, and 10 mm, respectively, from the inner scleral surface. The measured, full plaque slot geometry delivered 2.4% +/- 1.1% higher dose along the plaque's CAX than the geometry provided by the manufacturer and 2.2%+/-2.3% higher than Plaque Simulator(TM) (PS) treatment planning software (version 5.7.6). The D10 for the simulated tumor, inner sclera, and outer sclera for the measured slot plaque to manufacturer provided slot design was 9%, 10%, and 19% higher, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D 10 doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at --1, 0, 1, and 2 mm were also

  7. Brachytherapy dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  8. Cell-Seeded Tubularized Scaffolds for Reconstruction of Long Urethral Defects: A Preclinical Study

    PubMed Central

    Orabi, Hazem; AbouShwareb, Tamer; Zhang, Yuanyuan; Yoo, James J.; Atala, Anthony

    2012-01-01

    Background The treatment options for patients requiring repair of a long segment of the urethra are limited by the availability of autologous tissues. We previously reported that acellular collagen-based tubularized constructs seeded with cells are able to repair small urethral defects in a rabbit model. Objective We explored the feasibility of engineering clinically relevant long urethras for surgical reconstruction in a canine preclinical model. Design, setting, and participants Autologous bladder epithelial and smooth muscle cells from 15 male dogs were grown and seeded onto preconfigured collagen-based tubular matrices (6 cm in length). The perineal urethral segment was removed in 21 male dogs. Urethroplasties were performed with tubularized collagen scaffolds seeded with cells in 15 animals. Tubularized constructs without cells were implanted in six animals. Serial urethrography and three-dimensional computed tomography (CT) scans were performed pre- and postoperatively at 1, 3, 6, and 12 mo. The animals were euthanized at their predetermined time points (three animals at 1 mo, and four at 3, 6, and 12 mo) for analyses. Outcome measurements and statistical analysis Statistical analysis of CT imaging and histology was not needed. Results and limitations CT urethrograms showed wide-caliber urethras without strictures in animals implanted with cell-seeded matrices. The urethral segments replaced with acellular scaffolds collapsed. Gross examination of the urethral implants seeded with cells showed normal-appearing tissue without evidence of fibrosis. Histologically, an epithelial cell layer surrounded by muscle fiber bundles was observed on the cell-seeded constructs, and cellular organization increased over time. The epithelial and smooth muscle phenotypes were confirmed using antibodies to pancytokeratins AE1/AE3 and smooth muscle–specific desmin. Formation of an epithelial cell layer occurred in the unseeded constructs, but few muscle fibers formed

  9. Interstitial hyperthermia in combination with brachytherapy.

    PubMed

    Coughlin, C T; Douple, E B; Strohbehn, J W; Eaton, W L; Trembly, B S; Wong, T Z

    1983-07-01

    Flexible coaxial cables were modified to serve as microwave antennas operating at a frequency of 915 MHz. These antennas were inserted into nylon afterloading tubes that had been implanted in tumors using conventional interstitial implantation techniques for iridium-192 seed brachytherapy. The tumor volume was heated to 42-45 degrees C within 15 minutes and heating was continued for a total of 1 hour per treatment. Immediately following a conventional brachytherapy dose and removal of the iridium seeds the tumors were heated again in a second treatment. This interstitial technique for delivering local hyperthermia should be compatible with most brachytherapy methods. The technique has proved so far to be practical and without complications. Temperature distributions obtained in tissue phantoms and a patient are described.

  10. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    SciTech Connect

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O.; Poulin, E.; Hautvast, G.; Binnekamp, D.

    2014-08-15

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.

  11. Multi-institutional retrospective analysis of learning curves on dosimetry and operation time before and after introduction of intraoperatively built custom-linked seeds in prostate brachytherapy.

    PubMed

    Ishiyama, Hiromichi; Satoh, Takefumi; Yorozu, Atsunori; Saito, Shiro; Kataoka, Masaaki; Hashine, Katsuyoshi; Nakamura, Ryuji; Tanji, Susumu; Masui, Koji; Okihara, Koji; Ohashi, Toshio; Momma, Tetsuo; Aoki, Manabu; Miki, Kenta; Kato, Masako; Morita, Masashi; Katayama, Norihisa; Nasu, Yasutomo; Kawanaka, Takashi; Fukumori, Tomoharu; Ito, Fumitaka; Shiroki, Ryoichi; Baba, Yuji; Inadome, Akito; Yoshioka, Yasuo; Takayama, Hitoshi; Hayakawa, Kazushige

    2016-01-01

    This multi-institutional retrospective analysis examined learning curves for dosimetric parameters and operation time after introduction of intraoperatively built custom-linked (IBCL) seeds. Data from consecutive patients treated with seed implantation before and after introduction of IBCL seeds (loose seed, n = 428; IBCL seed, n = 426) were collected from 13 centers. Dose-volume histogram parameters, operation times, and seed migration rates were compared before and after introduction of IBCL seeds. At the 1-month CT analysis, no significant differences were seen in dose to 90% of prostate volume between before and after IBCL seed introduction. No learning curve for dosimetry was seen. Prostate and rectal volume receiving at least 150% of prescription dose (V150 and RV150) were higher in the loose-seed group than in the IBCL-seed group. Operation time was extended by up to 10 min when IBCL seeds were used, although there was a short learning curve of about five patients. The percentage of patients with seed migration in the IBCL-seed group was one-tenth that in the loose-seed group. Our study revealed no dosimetric demerits, no learning curve for dosimetry, and a slightly extended operation time for IBCL seeds. A significant reduction in the rate of seed migration was identified in the IBCL-seed group.

  12. Image guided Brachytherapy: The paradigm of Gynecologic and Partial Breast HDR Brachytherapy

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, S.; Kantemiris, I.; Konidari, A.; Zaverdinos, P.

    2015-09-01

    High dose rate (HDR) brachytherapy uses high strength radioactive sources and temporary interstitial implants to conform the dose to target and minimize the treatment time. The advances of imaging technology enable accurate reconstruction of the implant and exact delineation of high-risk CTV and the surrounding critical structures. Furthermore, with sophisticated treatment planning systems, applicator devices and stepping source afterloaders, brachytherapy evolved to a more precise, safe and individualized treatment. At the Radiation Oncology Department of Metropolitan Hospital Athens, MRI guided HDR gynecologic (GYN) brachytherapy and accelerated partial breast irradiation (APBI) with brachytherapy are performed routinely. Contouring and treatment planning are based on the recommendations of the GEC - ESTRO Working group. The task of this presentation is to reveal the advantages of 3D image guided brachytherapy over 2D brachytherapy. Thus, two patients treated at our department (one GYN and one APBI) will be presented. The advantage of having adequate dose coverage of the high risk CTV and simultaneous low doses to the OARs when using 3D image- based brachytherapy will be presented. The treatment techniques, equipment issues, as well as implantation, imaging and treatment planning procedures will be described. Quality assurance checks will be treated separately.

  13. [Prostate cancer brachytherapy].

    PubMed

    Pommier, P; Guérif, S; Peiffert, D; Créhange, G; Hannoun-Lévi, J-M; de Crevoisier, R

    2016-09-01

    Prostate brachytherapy techniques are described, concerning both Iodine 125 high dose rate brachytherapy. The following parts are presented: brachytherapy indications, technical description, immediate postoperative management and post-treatment evaluation, and 4 to 6 weeks as well as long-term follow-up.

  14. SU-D-BRF-07: Ultrasound and Fluoroscopy Based Intraoperative Image-Guidance System for Dynamic Dosimetry in Prostate Brachytherapy

    SciTech Connect

    Kuo, N; Le, Y; Deguet, A; Prince, J; Song, D; Lee, J; Dehghan, E; Burdette, E; Fichtinger, G

    2014-06-01

    Purpose: Prostate brachytherapy is a common treatment method for low-risk prostate cancer patients. Intraoperative treatment planning is known to improve the treatment procedure and the outcome. The current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. We developed an image-guidance system to fulfill this need to achieve intraoperative dynamic dosimetry in prostate brachytherapy. Methods: Our system is based on standard imaging equipments available in the operating room, including the transrectal ultrasound (TRUS) and the mobile C-arm. A simple fiducial is added to compute the C-arm pose. Three fluoroscopic images and an ultrasound volume of the seeds and the prostate are acquired and processed by four image processing algorithms: seed segmentation, fiducial detection with pose estimation, seed reconstruction, and seeds-to-TRUS registration. The updated seed positions allow the physician to assess the quality of implantation and dynamically adjust the treatment plan during the course of surgery to achieve improved exit dosimetry. Results: The system was tested on 10 phantoms and 37 patients. Seed segmentation resulted in a 1% false negative and 2% false positive rates. Fiducial detection with pose estimation resulted in a detection rate of 98%. Seed reconstruction had a mean reconstruction error of 0.4 mm. Seeds-to-TRUS registration had a mean registration error of 1.3 mm. The total processing time from image acquisition to registration was approximately 1 minute. Conclusion: We present an image-guidance system for intraoperative dynamic dosimetry in prostate brachytherapy. Using standard imaging equipments and a simple fiducial, our system can be easily adopted in any clinics. Robust image processing algorithms enable accurate and fast computation of the delivered dose. Especially, the system enables detection of possible hot/cold spots during the surgery, allowing the physician to address these

  15. Functional Reconstruction of Tracheal Defects by Protein-Loaded, Cell-Seeded, Fibrous Constructs in Rabbits

    PubMed Central

    Ott, Lindsey M.; Vu, Cindy H.; Farris, Ashley L.; Fox, Katrina D.; Galbraith, Richard A.; Weiss, Mark L.; Weatherly, Robert A.

    2015-01-01

    Tracheal stenosis is a life-threatening disease and current treatments include surgical reconstruction with autologous rib cartilage and the highly complex slide tracheoplasty surgical technique. We propose using a sustainable implant, composed of a tunable, fibrous scaffold with encapsulated chondrogenic growth factor (transforming growth factor-beta3 [TGF-β3]) or seeded allogeneic rabbit bone marrow mesenchymal stromal cells (BMSCs). In vivo functionality of these constructs was determined by implanting them in induced tracheal defects in rabbits for 6 or 12 weeks. The scaffolds maintained functional airways in a majority of the cases, with the BMSC-seeded group having an improved survival rate and the Scaffold-only group having a higher occurrence of more patent airways as determined by microcomputed tomography. The BMSC group had a greater accumulation of inflammatory cells over the graft, while also exhibiting normal epithelium, subepithelium, and cartilage formation. Overall, it was concluded that a simple, acellular scaffold is a viable option for tracheal tissue engineering, with the intraoperative addition of cells being an optional variation to the scaffolds. PMID:26094554

  16. Prostate brachytherapy

    MedlinePlus

    Implant therapy - prostate cancer; Radioactive seed placement; Internal radiation therapy - prostate; High dose radiation (HDR) ... minutes or more, depending on the type of therapy you have. Before the procedure, you will be ...

  17. {sup 106}Ruthenium Brachytherapy for Retinoblastoma

    SciTech Connect

    Abouzeid, Hana; Moeckli, Raphael; Gaillard, Marie-Claire; Beck-Popovic, Maja; Pica, Alessia; Zografos, Leonidas; Balmer, Aubin; Pampallona, Sandro; Munier, Francis L.

    2008-07-01

    Purpose: To evaluate the efficacy of {sup 106}Ru plaque brachytherapy for the treatment of retinoblastoma. Methods and Materials: We reviewed a retrospective, noncomparative case series of 39 children with retinoblastoma treated with {sup 106}Ru plaques at the Jules-Gonin Eye Hospital between October 1992 and July 2006, with 12 months of follow-up. Results: A total of 63 tumors were treated with {sup 106}Ru brachytherapy in 41 eyes. The median patient age was 27 months. {sup 106}Ru brachytherapy was the first-line treatment for 3 tumors (4.8%), second-line treatment for 13 (20.6%), and salvage treatment for 47 tumors (74.6%) resistant to other treatment modalities. Overall tumor control was achieved in 73% at 1 year. Tumor recurrence at 12 months was observed in 2 (12.5%) of 16 tumors for which {sup 106}Ru brachytherapy was used as the first- or second-line treatment and in 15 (31.9%) of 47 tumors for which {sup 106}Ru brachytherapy was used as salvage treatment. Eye retention was achieved in 76% of cases (31 of 41 eyes). Univariate and multivariate analyses revealed no statistically significant risk factors for tumor recurrence. Radiation complications included retinal detachment in 7 (17.1%), proliferative retinopathy in 1 (2.4%), and subcapsular cataract in 4 (9.7%) of 41 eyes. Conclusion: {sup 106}Ru brachytherapy is an effective treatment for retinoblastoma, with few secondary complications. Local vitreous seeding can be successfully treated with {sup 106}Ru brachytherapy.

  18. Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats.

    PubMed

    Song, Zhicheng; Peng, Zhiyou; Liu, Zhengni; Yang, Jianjun; Tang, Rui; Gu, Yan

    2013-07-01

    The repair of abdominal wall defects following surgery remains a difficult challenge. Although multiple methods have been described to restore the integrity of the abdominal wall, there is no clear consensus on the ideal material for reconstruction. This study explored the feasibility of in vivo reconstruction of a rat model of an abdominal wall defect with a composite scaffold of tenocytes and porcine small intestinal submucosa (SIS). In the current study, we created a 2×1.5 cm abdominal wall defect in the anterolateral abdominal wall of Sprague-Dawley rats, which were assigned into three groups: the cell-SIS construct group, the cell-free SIS scaffold group, and the abdominal wall defect group. Tenocytes were obtained from the tendons of rat limbs. After isolation and expansion, cells (2×10(7)/mL) were seeded onto the three-layer SIS scaffolds and cultured in vitro for 5 days. Cell-SIS constructs or cell-free constructs were implanted to repair the abdominal wall defects. The results showed that the tenocytes could grow on the SIS scaffold and secreted corresponding matrices. In addition, both scaffolds could repair the abdominal wall defects with no hernia recurrence. In comparison to the cell-free SIS scaffold, the composite scaffold exhibited increased vascular regeneration and mechanical strength. Furthermore, following increased time in vivo, the mechanical strength of the composite scaffold became stronger. The results indicate that the composite scaffold can provide increased mechanical strength that may be suitable for repairing abdominal wall defects.

  19. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    PubMed Central

    Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging. PMID:27895688

  20. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: A systematic review and meta-analysis

    PubMed Central

    Xue, Jing-Dong; Gao, Jing; Fu, Qiang; Feng, Chao

    2016-01-01

    We systematically reviewed published preclinical studies to evaluate the effectiveness of cell-seeded tissue engineering approach for urethral reconstruction in an animal model. The outcomes were summarized by success factors in the animal experiments, which evaluate the possibility and feasibility of a clinical application in the future. Preclinical studies of tissue engineering approaches for urethral reconstruction were identified through a systematic search in PubMed, Embase, and Biosis Previews (web of science SP) databases for studies published from 1 January 1980 to 23 November 2014. Primary studies were included if urethral reconstruction was performed using a tissue-engineered biomaterial in any animal species (with the experiment group being a cell-seeded scaffold and the control group being a cell-free scaffold) with histology and urethrography as the outcome measure. A total of 15 preclinical studies were included in our meta-analysis. The histology and urethrography outcome between the experimental and control groups were considered to be the most clinically relevant. Through this systematic approach, our outcomes suggested that applying the cell-seeded biomaterial in creating a neo-urethra was stable and effective. And multi-type cells including epithelial cells as well as smooth muscle cells or fibroblasts seemed to be a better strategy. Stem cells, especially after epithelial differentiation, could be a promising choice for future researches. PMID:27022134

  1. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: A systematic review and meta-analysis.

    PubMed

    Xue, Jing-Dong; Gao, Jing; Fu, Qiang; Feng, Chao; Xie, Hong

    2016-07-01

    We systematically reviewed published preclinical studies to evaluate the effectiveness of cell-seeded tissue engineering approach for urethral reconstruction in an animal model. The outcomes were summarized by success factors in the animal experiments, which evaluate the possibility and feasibility of a clinical application in the future. Preclinical studies of tissue engineering approaches for urethral reconstruction were identified through a systematic search in PubMed, Embase, and Biosis Previews (web of science SP) databases for studies published from 1 January 1980 to 23 November 2014. Primary studies were included if urethral reconstruction was performed using a tissue-engineered biomaterial in any animal species (with the experiment group being a cell-seeded scaffold and the control group being a cell-free scaffold) with histology and urethrography as the outcome measure. A total of 15 preclinical studies were included in our meta-analysis. The histology and urethrography outcome between the experimental and control groups were considered to be the most clinically relevant. Through this systematic approach, our outcomes suggested that applying the cell-seeded biomaterial in creating a neo-urethra was stable and effective. And multi-type cells including epithelial cells as well as smooth muscle cells or fibroblasts seemed to be a better strategy. Stem cells, especially after epithelial differentiation, could be a promising choice for future researches.

  2. Urethral toxicity after LDR brachytherapy: experience in Japan.

    PubMed

    Tanaka, Nobumichi; Asakawa, Isao; Hasegawa, Masatoshi; Fujimoto, Kiyohide

    2015-01-01

    Urinary toxicity is common after low-dose-rate (LDR) brachytherapy, and the resolution of urinary toxicity is a concern. In particular, urinary frequency is the most common adverse event among the urinary toxicities. We have previously reported that approximately 70% of patients experience urinary frequency during the first 6 months after seed implantation. Most urinary adverse events were classified as Grade 1, and Grade 2 or higher adverse events were rare. The incidence of urinary retention was approximately 2-4%. A high International Prostate Symptom Score before seed implantation was an independent predictor of acute urinary toxicity of Grade 2 or higher. Several previous reports from the United States also supported this trend. In Japan, LDR brachytherapy was legally approved in 2003. A nationwide prospective cohort study entitled Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation was initiated in July 2005. It is an important issue to limit urinary toxicities in patients who undergo LDR brachytherapy.

  3. Methods for prostate stabilization during transperineal LDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan

    2008-03-01

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  4. [Valorisation of brachytherapy and medico-economic considerations].

    PubMed

    Pommier, P; Morelle, M; Millet-Lagarde, F; Peiffert, D; Gomez, F; Perrier, L

    2013-04-01

    Economic data in the literature for brachytherapy are still sparse and heterogeneous, with few controlled prospective studies and a perspective most often limited to those of the provider (health insurances). Moreover, these observation and conclusions are difficult to generalize in France. The prospective health economic studies performed in France in the framework of a national program to sustain innovative and costly therapies (STIC program) launched by the French cancer national institute are therefore of most importance. With the exception of prostate brachytherapy with permanent seeds, the valorisation of the brachytherapy activity by the French national health insurance does not take into account the degree of complexity and the real costs supported by health institutions (i.e. no specific valorisation for 3D image-based treatment planning and dose optimization and for the use of pulsed dose rate brachytherapy).

  5. Advancements in brachytherapy.

    PubMed

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba; Lindegaard, Jacob Christian; Kirisits, Christian; Pötter, Richard

    2017-01-15

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherapy makes it attractive for boosting limited size target volumes to very high doses while sparing normal tissues. Significant developments over the last decades have increased the use of 3D image guided procedures with the utilization of CT, MRI, US and PET. This has taken brachytherapy to a new level in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications.

  6. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    PubMed

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  7. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy

    NASA Astrophysics Data System (ADS)

    Afsharpour, H.; Landry, G.; D'Amours, M.; Enger, S.; Reniers, B.; Poon, E.; Carrier, J.-F.; Verhaegen, F.; Beaulieu, L.

    2012-06-01

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  8. Automated intraoperative calibration for prostate cancer brachytherapy

    SciTech Connect

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-11-15

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 {+-} 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 {+-} 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 {+-} 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 {+-} 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  9. Intra-Operative Dosimetry in Prostate Brachytherapy

    DTIC Science & Technology

    2007-11-01

    phantoms and pre-recorded patient data. 15. SUBJECT TERMS Prostate Brachytherapy, X-ray reconstruction, C-arm, TRUS 16. SECURITY CLASSIFICATION...system experimentally on phantoms and pre-recorded patient data (Aim-3). Algorithmic design (Aim-1) and experimental evaluation (Aim-3), will progress...Evaluate the performance of the RUF system on phantoms and pre- recorded patient data. (Neither of which require an IRB approval) B.3 Progress

  10. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction.

    PubMed

    Pires, Mathias M; Galetti, Mauro; Donatti, Camila I; Pizo, Marco A; Dirzo, Rodolfo; Guimarães, Paulo R

    2014-08-01

    The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.

  11. A Novel MRI Marker for Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J. Stafford, R. Jason; Bankson, James A.; Li Chun; Swanson, David A.; Kudchadker, Rajat J.; Martirosyan, Karen S.

    2008-05-01

    Purpose: Magnetic resonance imaging (MRI) is the optimal imaging modality for the prostate and surrounding critical organ structures. However, on MRI, the titanium radioactive seeds used for brachytherapy appear as black holes (negative contrast) and cannot be accurately localized. We sought to develop an encapsulated contrast agent marker (ECAM) with high-signal intensity on MRI to permit accurate localization of radioactive seeds with MRI during and after prostate brachytherapy. Methods and Materials: We investigated several agents with paramagnetic and superparamagnetic properties. The agents were injected into titanium, acrylic, and glass seeds, which were linked together in various combinations and imaged with MRI. The agent with the greatest T1-weighted signal was tested further in a canine prostate and agarose phantom. Studies were performed on a 1.5-T clinical MRI scanner. Results: The cobalt-chloride complex contrast (C4) agent with stoichiometry (CoCl{sub 2}){sub 0.8}(C{sub 2}H{sub 5}NO{sub 2}){sub 0.2} had the greatest T1-weighted signal (positive contrast) with a relaxivity ratio >1 (r{sub 2}/r{sub 1} = 1.21 {+-} 0.29). Acrylic-titanium and glass-titanium seed strands were clearly visualized with the encapsulated contrast agent marker. Conclusion: We have developed a novel ECAM that permits positive identification of the radioactive seeds used for prostate brachytherapy on MRI. Preclinical in vitro phantom studies and in vivo canine studies are needed to further optimize MRI sequencing techniques to facilitate MRI-based dosimetry.

  12. Transurethral ultrasound of the prostrate for applications in prostrate brachytherapy: analysis of phantom and in-vivo data

    NASA Astrophysics Data System (ADS)

    Holmes, David R., III; Davis, Brian J.; Bruce, Charles; Wilson, Torrence; Robb, Richard A.

    2001-05-01

    3D Trans-Urethral Ultrasound (TUUS) imaging is a new imaging technique for the diagnosis and treatment of prostate disease. Our current research focuses on the potential of TUUS in therapy guidance during tansperineal interstitial permanent prostate brachytherapy (TIPPB). TUUS may complement of potentially replace x-ray fluoroscopy and TRUS in providing data for determining the prostate boundary and radiation source locations. Prostate boundary detection and source localization using TUUS were tested on an ultrasound- equivalent prostate phantom and ina patient during TIPPB. Data collection was conducted with a 10 French, 10 MHz ultrasound catheter controlled by an Acuson SequoiaTM workstation. 2D and 3D TUUS scans were acquired after radioactive seeds were placed in the phantom and in the patient. Data was reconstructed, processed, and analyzed using Analyze software. Segmentation of the prostate boundary was performed semi-automatically, and seed segmentation was performed manually. Image artifacts in TUUS data resulted in incorrect reconstruction of the seeds. Intelligent processing of the seed data improved reconstruction. Comparison to the CT data suggests that TUUS dat provides: 1) greater spatial resolution, 2) greater temporal resolution and 3) better contrast for soft tissue differentiation. The reconstructed source sizes and locations were measured and found accurate. Placement of the TUUS catheter into the urethra provides excellent 2D sections which can be used to acquire volumetric data for 3D analysis of the prostate and radioactive sources. Preliminary results suggest that TUUS will be useful for guidance of seed placement, post-implant seed localization, and intra-operative dosimetry.

  13. [Brachytherapy for sarcomas].

    PubMed

    Ducassou, A; Haie-Méder, C; Delannes, M

    2016-10-01

    The standard of care for local treatment for extremities soft tissue sarcomas relies on conservative surgery combined with external beam radiotherapy. Brachytherapy can be realized instead of external beam radiotherapy in selected cases, or more often used as a boost dose on a limited volume on the area at major risk of relapse, especially if a microscopic positive resection is expected. Close interaction and communication between radiation oncologists and surgeons are mandatory at the time of implantation to limit the risk of side effects. Long-term results are available for low-dose rate brachytherapy. Nowadays, pulsed dose rate or high-dose-rate brachytherapy are more often used. Brachytherapy for paediatric sarcomas is rare, and has to be managed in reference centres.

  14. Prostate brachytherapy in Ghana: our initial experience

    PubMed Central

    Yarney, Joel; Vanderpuye, Verna; Akpakli, Evans; Tagoe, Samuel; Sasu, Evans

    2016-01-01

    Purpose This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. Material and methods A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN) criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. Results The median patient age was 64.0 years (range 46-78 years). The median follow-up was 58 months (range 18-74 months). Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA) was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6%) experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2). One patient developed a recto urethral fistula (grade 3) following banding for hemorrhoids. Conclusions Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively performed in a

  15. Delivery systems for brachytherapy.

    PubMed

    de la Puente, Pilar; Azab, Abdel Kareem

    2014-10-28

    Brachytherapy is described as the short distance treatment of cancer with a radioactive isotope placed on, in, or near the lesions or tumor to be treated. The main advantage of brachytherapy compared with external beam radiation (EBR) is the improved localized delivery of dose to the target volume of interest, thus normal tissue irradiation is reduced. The precise and targeted nature of brachytherapy provides a number of key benefits for the effective treatment of cancer such as efficacy, minimized risk of side effects, short treatment times, and cost-effectiveness. Brachytherapy devices have yielded promising results in preclinical and clinical studies. However, brachytherapy can only be used in localized and relatively small tumors. Although the introduction of new delivery devices allows the treatment of more complex tumor sites, with wider range of dose rate for improving treatment efficacy and reduction of side effects, a better understanding about the safety, efficacy, and accuracy of these systems is required, and further development of new techniques is warranted. Therefore, this review focuses on the delivery devices for brachytherapy and their application in prostate, breast, brain, and other tumor sites.

  16. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    PubMed

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-11

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  <  0.05). Comparisons of smooth muscle content and endothelia density among the three groups revealed a significant increase at each time point (p  <  0.05). Our results demonstrated that 3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction.

  17. MRI-guided brachytherapy

    PubMed Central

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  18. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  19. [Permanent implant prostate cancer brachytherapy: 2013 state-of-the art].

    PubMed

    Cosset, J-M; Hannoun-Lévi, J-M; Peiffert, D; Delannes, M; Pommier, P; Pierrat, N; Nickers, P; Thomas, L; Chauveinc, L

    2013-04-01

    With an experience of more than 25 years for the pioneers (and more than 14 years in France), permanent implant brachytherapy using iodine 125 seeds (essentially) is now recognized as a valuable alternative therapy for localized low-risk prostate cancer patients. The possible extension of the indications of exclusive brachytherapy towards selected patients in the intermediate-risk group has now been confirmed by several studies. Moreover, for the other patients in the intermediate-risk group and for the patients in the high-risk group, brachytherapy, as an addition to external radiotherapy, could represent one of the best ways to escalate the dose. Different permanent implant brachytherapy techniques have been proposed; preplanning or real-time procedure, loose or stranded seeds (or both), manual or automatic injection of the seeds. The main point here is the ability to perfectly master the procedure and to comply with the dosimetric constraints, which have been recently redefined by the international societies, such as the GEC-ESTRO group. Mid- and long-term results, which are now available in the literature, indicate relapse-free survival rates of about 90% at 5-10 years, the best results being obtained with satisfactory dosimetric data. Comparative data have shown that the incontinence and impotence rates after brachytherapy seemed to be significantly inferior to what is currently observed after surgery. However, a risk of about 3 to 5% of urinary retention is usually reported after brachytherapy, as well as an irritative urinary syndrome, which may significantly alter the quality of life of the patients, and last several months. In spite of those drawbacks, with excellent long-term results, low rates of incontinence and impotence, and emerging new indications (focal brachytherapy, salvage brachytherapy after localized failure of an external irradiation), permanent implant prostate brachytherapy can be expected to be proposed to an increasing number of patients

  20. Feasibility of calibrating elongated brachytherapy sources using a well-type ionization chamber

    SciTech Connect

    Meigooni, Ali S.; Awan, Shahid B.; Dou, Kai

    2006-11-15

    Recently, elongated brachytherapy sources (active length >1 cm) have become commercially available for interstitial prostate implants. These sources were introduced to improve the quality of brachytherapy procedures by eliminating the migration and seed bunching associated with loose seed-type implants. However, the inability to calibrate elongated brachytherapy sources with the Wide-Angle Free-Air Chamber (WAFAC) used by the National Institute of Standards and Technology (NIST) hinders the experimental determination of dosimetric parameters of these source types. In order to resolve this shortcoming, an interim solution has been introduced for calibration of elongated brachytherapy sources using a commercially available well-type ionization chamber. The feasibility of this procedure was examined by calibrating RadioCoil{sup Tm} {sup 103}Pd sources with active lengths ranging from 1 to 7 cm.

  1. [Safety in brachytherapy].

    PubMed

    Marcié, S; Marinello, G; Peiffert, D; Lartigau, É

    2013-04-01

    No technique can now be used without previously considering the safety of patients, staff and public and risk management. This is the case for brachytherapy. The various aspects of brachytherapy are discussed for both the patient and the staff. For all, the risks must be minimized while achieving a treatment of quality. It is therefore necessary to establish a list as comprehensive as possible regardless of the type of brachytherapy (low, high, pulsed dose-rate). Then, their importance must be assessed with the help of their criticality. Radiation protection of personnel and public must take into account the many existing regulation texts. Four axes have been defined for the risk management for patients: organization, preparation, planning and implementation of treatment. For each axis, a review of risks is presented, as well as administrative, technical and medical dispositions for staff and the public.

  2. Brachytherapy in the treatment of recurrent aggressive falcine meningiomas.

    PubMed

    Abou Al-Shaar, Hussam; Almefty, Kaith K; Abolfotoh, Mohammad; Arvold, Nils D; Devlin, Phillip M; Reardon, David A; Loeffler, Jay S; Al-Mefty, Ossama

    2015-09-01

    Recurrent aggressive falcine meningiomas are uncommon tumors that recur despite receiving extensive surgery and radiation therapy (RT). We have utilized brachytherapy as a salvage treatment in two such patients with a unique implantation technique. Both patients had recurrence of WHO Grade II falcine meningiomas despite multiple prior surgical and RT treatments. Radioactive I-125 seeds were made into strands and sutured into a mesh implant, with 1 cm spacing, in a size appropriate to cover the cavity and region of susceptible falcine dura. Following resection the vicryl mesh was implanted and fixed to the margins of the falx. Implantation in this interhemispheric space provides good dose conformality with targeting of at-risk tissue and minimal radiation exposure to normal neural tissues. The patients are recurrence free 31 and 10 months after brachytherapy treatment. Brachytherapy was an effective salvage treatment for the recurrent aggressive falcine meningiomas in our two patients.

  3. Growth delay effect of combined interstitial hyperthermia and brachytherapy in a rat solid tumor model.

    PubMed

    Papadopoulos, D; Kimler, B F; Estes, N C; Durham, F J

    1989-01-01

    The rat mammary AC33 solid tumor model was used to investigate the efficacy of interstitial hyperthermia and/or brachytherapy. Subcutaneous flank tumors were heated with an interstitial microwave (915 MHz) antenna to a temperature of 43 +/- 0.5 degrees C for 45 min for two treatments, three days apart, and/or implanted with Ir-192 seeds for three days (-25 Gy tumor dose). Following treatments, tumors were measured 2 to 3 times per week. Hyperthermia alone produced a modest delay in tumor volume regrowth, while brachytherapy was substantially more effective. The combination produced a improvement in tumor regrowth delay compared to brachytherapy alone.

  4. Mathematical modelling of response of polymer gel dosimeters to brachytherapy radiation

    NASA Astrophysics Data System (ADS)

    Nasr, A. T.; Chain, J. N. M.; Schreiner, L. J.; McAuley, K. B.

    2010-11-01

    A dynamic partial differential equation (PDE) model is used to simulate effects of a single Ir192 brachytherapy seed on the amount and composition of polymer formed during polyacrylamide gel (PAG) dosimetry. Simulations are conducted for a point-source brachytherapy seed placed at the center of a 6%T 50% C anoxic PAG phantom. The seed is removed after one minute, but polymerization is simulated up to a final time of 24 hours. Simulation results indicate that changes occur in both the mass of polymer formed per unit dose and in the crosslink density as a function of the radial distance from the brachytherapy seed. For example, at a distance of 5 mm from the seed, 41 mg of polymer form per Gy of radiation absorbed (after 24 hours), whereas at a larger distance of 5 cm from the seed 75 mg of polymer form per Gy. The polymer that forms near the seed is predicted to have a higher level of crosslinking than the polymer that forms further away. These results suggest potential calibration problems that may occur during brachytherapy dosimetry using polymer gels.

  5. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  6. Review of advanced catheter technologies in radiation oncology brachytherapy procedures.

    PubMed

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented.

  7. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.

  8. Update on prostate brachytherapy: long-term outcomes and treatment-related morbidity.

    PubMed

    Kao, Johnny; Cesaretti, Jamie A; Stone, Nelson N; Stock, Richard G

    2011-06-01

    Current research in prostate brachytherapy focuses on five key concepts covered in this review. Transrectal ultrasound-guided prostate brachytherapy assisted by intraoperative treatment planning is the most advanced form of image-guided radiation delivery. Prostate brachytherapy alone for low-risk prostate cancer achieves lower prostate-specific antigen (PSA) nadirs than intensity-modulated radiotherapy (IMRT) or protons while maintaining durable biochemical control in about 90% of patients without late failures seen in surgically treated patients. As an organ-conserving treatment option, seed implant results in a lower rate of erectile dysfunction and urinary incontinence than surgery that has been validated in several recent prospective studies. Combined IMRT and seed implant has emerged as a rational and highly effective approach to radiation-dose escalation for intermediate- and high-risk prostate cancer. Preliminary results suggest that seed implantation may play a role in improving outcomes for historically poor-prognosis locally advanced and recurrent prostate cancers.

  9. Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Song, Danny Y.; Lee, Junghoon

    2016-03-01

    Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.

  10. Penile brachytherapy: Results for 49 patients

    SciTech Connect

    Crook, Juanita M. . E-mail: juanita.crook@rmp.uhn.on.ca; Jezioranski, John; Grimard, Laval; Esche, Bernd; Pond, G.

    2005-06-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  11. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar; Mason, Josh; Bownes, Peter; Henry, Ann; Dickinson, Louise; Ahmed, Hashim U.; Emberton, Mark; Langley, Stephen

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  12. Longitudinal Magnetic Resonance Imaging Features of Glioblastoma Multiforme Treated With Radiotherapy With or Without Brachytherapy

    SciTech Connect

    Aiken, Ashley H. Chang, Susan M.; Larson, David; Butowski, Nicholas; Cha, Soonmee

    2008-12-01

    Purpose: To compare temporal patterns of recurrent contrast enhancement in patients with glioblastoma multiforme (GBM) treated with brachytherapy plus external beam radiotherapy (EBRT) vs. EBRT alone. Methods and Materials: We evaluated serial MRI scans for 15 patients who received brachytherapy followed by EBRT (6000 cGy) and 20 patients who received standard EBRT alone (5940-6000 cGy). Brachytherapy consisted of permanent, low-activity {sup 125}I seeds placed around the resection cavity at the time of initial gross total resection. Contrast enhancement (linear, nodular, feathery, or solid), serial progression, and location of contrast enhancement were described. Results: In the EBRT group, 14 patients demonstrated focal nodular contrast enhancement along the resection cavity within 4 months. The 6 remaining EBRT patients developed either transient linear enhancement or no abnormal enhancement. In the brachytherapy plus EBRT group, 7 patients initially developed linear rim enhancement within 4 months that progressed to feathery contrast enhancement over the course of 1 to 2 years. Histopathology confirmed radiation necrosis in all 7 patients. The remaining 8 brachytherapy patients eventually developed focal nodular contrast enhancement along the resection cavity and tumor recurrence. Conclusions: Our data suggest that longitudinal MRI features differ between GBM patients treated with EBRT vs. brachytherapy plus EBRT. In both groups, nodular enhancement adjacent to or remote from the resection cavity strongly suggested tumor recurrence. Feathery enhancement, which progressed from linear rim enhancement immediately adjacent to the cavity, seen only in brachytherapy patients, strongly indicated radiation necrosis.

  13. Brachytherapy for clinically localized prostate cancer: optimal patient selection.

    PubMed

    Kollmeier, Marisa A; Zelefsky, Michael J

    2011-10-01

    The objective of this review is to present an overview of each modality and delineate how to best select patients who are optimal candidates for these treatment approaches. Prostate brachytherapy as a curative modality for clinically localized prostate cancer has become increasingly utilized over the past decade; 25% of all early cancers are now treated this way in the United States (1). The popularity of this treatment strategy lies in the highly conformal nature of radiation dose, low morbidity, patient convenience, and high efficacy rates. Prostate brachytherapy can be delivered by either a permanent interstitial radioactive seed implantation (low dose rate [LDR]) or a temporary interstitial insertion of iridium-192 (Ir192) afterloading catheters. The objective of both of these techniques is to deliver a high dose of radiation to the prostate gland while exposing normal surrounding tissues to minimal radiation dose. Brachytherapy techniques are ideal to achieve this goal given the close proximity of the radiation source to tumor and sharp fall off of the radiation dose cloud proximate to the source. Brachytherapy provides a powerful means of delivering dose escalation above and beyond that achievable with intensity-modulated external beam radiotherapy alone. Careful selection of appropriate patients for these therapies, however, is critical for optimizing both disease-related outcomes and treatment-related toxicity.

  14. A comparison study on various low energy sources in interstitial prostate brachytherapy

    PubMed Central

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Knaup, Courtney; Meigooni, Ali S.

    2016-01-01

    Purpose Low energy sources are routinely used in prostate brachytherapy. 125I is one of the most commonly used sources. Low energy 131Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125I, 103Pd, and 131Cs sources in interstitial brachytherapy of prostate. Material and methods ProstaSeed 125I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103Pd and 131Cs were simulated with the same geometry as the ProstaSeed 125I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103Pd source. Conclusions The higher initial absolute dose in cGy/(h.U) of 131Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103Pd source are advantages of this later brachytherapy source. Based on the total dose the 125I source has advantage over the others due to its longer half-life. PMID:26985200

  15. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

  16. Feasibility of salvage interstitial microwave thermal therapy for prostate carcinoma following failed brachytherapy: studies in a tissue equivalent phantom.

    PubMed

    McCann, Claire; Kumaradas, J Carl; Gertner, Mark R; Davidson, Sean R H; Dolan, Alfred M; Sherar, Michael D

    2003-04-21

    Thermal therapy is an experimental treatment to destroy solid tumours by heating them to temperatures ranging from 55 degrees C to 90 degrees C, inducing thermal coagulation and necrosis of the tumour. We are investigating the feasibility of interstitial microwave thermal therapy as a salvage treatment for prostate cancer patients with local recurrence following failed brachytherapy. Due to the electrical and thermal conductivity of the brachytherapy seeds, we hypothesized that the seeds could scatter the microwave energy and cause unpredictable heating. To investigate this, a 915 MHz helical antenna was inserted into a muscle-equivalent phantom with and without brachytherapy seeds. Following a 10 W, 5 s input to the antenna, the temperature rise was used to calculate absorbed power, also referred to as specific absorption rate (SAR). Plane wave models based on Maxwell's equations were also used to characterize the electromagnetic scattering effect of the seeds. In addition, the phantom was heated with 8 W for 5 min to quantify the effect of the seeds on the temperature distribution during extended heating. SAR measurements indicated that the seeds had no significant effect on the shape and size of the SAR pattern of the antenna. However, the plane wave simulations indicated that the seeds could scatter the microwave energy resulting in hot spots at the seed edges. Lack of experimental evidence of these hot spots was probably due to the complex polarization of the microwaves emitted by the helical antenna. Extended heating experiments also demonstrated that the seeds had no significant effect on the temperature distributions and rates of temperature rise measured in the phantom. The results indicate that brachytherapy seeds are not a technical impediment to interstitial microwave thermal therapy as a salvage treatment following failed brachytherapy.

  17. Feasibility of salvage interstitial microwave thermal therapy for prostate carcinoma following failed brachytherapy: studies in a tissue equivalent phantom

    NASA Astrophysics Data System (ADS)

    McCann, Claire; Kumaradas, J. Carl; Gertner, Mark R.; Davidson, Sean R. H.; Dolan, Alfred M.; Sherar, Michael D.

    2003-04-01

    Thermal therapy is an experimental treatment to destroy solid tumours by heating them to temperatures ranging from 55 °C to 90 °C, inducing thermal coagulation and necrosis of the tumour. We are investigating the feasibility of interstitial microwave thermal therapy as a salvage treatment for prostate cancer patients with local recurrence following failed brachytherapy. Due to the electrical and thermal conductivity of the brachytherapy seeds, we hypothesized that the seeds could scatter the microwave energy and cause unpredictable heating. To investigate this, a 915 MHz helical antenna was inserted into a muscle-equivalent phantom with and without brachytherapy seeds. Following a 10 W, 5 s input to the antenna, the temperature rise was used to calculate absorbed power, also referred to as specific absorption rate (SAR). Plane wave models based on Maxwell's equations were also used to characterize the electromagnetic scattering effect of the seeds. In addition, the phantom was heated with 8 W for 5 min to quantify the effect of the seeds on the temperature distribution during extended heating. SAR measurements indicated that the seeds had no significant effect on the shape and size of the SAR pattern of the antenna. However, the plane wave simulations indicated that the seeds could scatter the microwave energy resulting in hot spots at the seed edges. Lack of experimental evidence of these hot spots was probably due to the complex polarization of the microwaves emitted by the helical antenna. Extended heating experiments also demonstrated that the seeds had no significant effect on the temperature distributions and rates of temperature rise measured in the phantom. The results indicate that brachytherapy seeds are not a technical impediment to interstitial microwave thermal therapy as a salvage treatment following failed brachytherapy.

  18. Radiobiological evaluation of low dose-rate prostate brachytherapy implants

    NASA Astrophysics Data System (ADS)

    Knaup, Courtney James

    Low dose-rate brachytherapy is a radiation therapy treatment for men with prostate cancer. While this treatment is common, the use of isotopes with varying dosimetric characteristics means that the prescription level and normal organ tolerances vary. Additionally, factors such as prostate edema, seed loss and seed migration may alter the dose distribution within the prostate. The goal of this work is to develop a radiobiological response tool based on spatial dose information which may be used to aid in treatment planning, post-implant evaluation and determination of the effects of prostate edema and seed migration. Aim 1: Evaluation of post-implant prostate edema and its dosimetric and biological effects. Aim 2: Incorporation of biological response to simplify post-implant evaluation. Aim 3: Incorporation of biological response to simplify treatment plan comparison. Aim 4: Radiobiologically based comparison of single and dual-isotope implants. Aim 5: Determine the dosimetric and radiobiological effects of seed disappearance and migration.

  19. An overview of interstitial brachytherapy and hyperthermia

    SciTech Connect

    Brandt, B.B.; Harney, J.

    1989-11-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.

  20. Dosimetric characteristic of a new 125I brachytherapy source.

    PubMed

    Sadeghi, Mahdi; Khanmohammadi, Zahra

    2011-11-01

    A new brachytherapy (125)I source has been investigated at Iranian Agricultural, Medical and Industrial Research School. Dosimetric characteristics [dose-rate constant Λ, radial dose function g(l)(r) and anisotropy function F(r,)] of IRA-(125)I were theoretically determined in terms of the updated AAPM task group 43 (TG-43U1) recommendations. Versions 5 and 4C of the Monte Carlo radiation transport code were used to calculate the dosimetry parameters around the source. The Monte Carlo calculated dose-rate constant of the (125)I source in water was found to be 92×10(-4) Gy h(-1) U(-1) with an approximate uncertainty of ±3 %. Brachytherapy seed model, 6711-(125)I, carrying (125)I radionuclides, was modelled and benchmarked against previously published values. Finally, the calculated results were compared with the published results of those of other source manufacturers.

  1. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  2. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications.

    PubMed

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-07

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled (125)I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10(-6) simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  3. Intraoral angiosarcoma: treatment with a brachytherapy prosthesis.

    PubMed

    Rosen, Evan B; Ko, Eugene; Wolden, Suzanne; Huryn, Joseph M; Estilo, Cherry L

    2015-03-01

    Angiosarcomas are rare, malignant neoplasms of vascular origin that account for less than 1% of all soft tissue tumors. Angiosarcomas of the oral cavity are especially rare, and brachytherapy may be prescribed as a localized treatment to manage these malignancies. Intraoral brachytherapy requires collaboration between the radiation oncologist and a dental professional for the fabrication of the brachytherapy delivery prosthesis. This clinical report describes an intraoral angiosarcoma and the fabrication of an intraoral brachytherapy prosthesis to manage this malignancy.

  4. The Effects of Metallic Implants on Electroporation Therapies: Feasibility of Irreversible Electroporation for Brachytherapy Salvage

    SciTech Connect

    Neal, Robert E.; Smith, Ryan L.; Kavnoudias, Helen; Rosenfeldt, Franklin Ou, Ruchong; Mclean, Catriona A.; Davalos, Rafael V.; Thomson, Kenneth R.

    2013-12-15

    Purpose: Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. Materials and Methods: This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. Results: There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. Conclusion: This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.

  5. A Monte Carlo investigation of lung brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-07-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used in conjunction with sublobar resection to reduce the local recurrence of stage I non-small cell lung cancer compared with resection alone. Treatment planning for this procedure is typically performed using only a seed activity nomogram or look-up table to determine seed strand spacing for the implanted mesh. Since the post-implant seed geometry is difficult to predict, the nomogram is calculated using the TG-43 formalism for seeds in a planar geometry. In this work, the EGSnrc user-code BrachyDose is used to recalculate nomograms using a variety of tissue models for 125I and 131Cs seeds. Calculated prescription doses are compared to those calculated using TG-43. Additionally, patient CT and contour data are used to generate virtual implants to study the effects that post-implant deformation and patient-specific tissue heterogeneity have on perturbing nomogram-derived dose distributions. Differences of up to 25% in calculated prescription dose are found between TG-43 and Monte Carlo calculations with the TG-43 formalism underestimating prescription doses in general. Differences between the TG-43 formalism and Monte Carlo calculated prescription doses are greater for 125I than for 131Cs seeds. Dose distributions are found to change significantly based on implant deformation and tissues surrounding implants for patient-specific virtual implants. Results suggest that accounting for seed grid deformation and the effects of non-water media, at least approximately, are likely required to reliably predict dose distributions in lung brachytherapy patients.

  6. Urethral Reconstruction Using Mesothelial Cell-Seeded Autogenous Granulation Tissue Tube: An Experimental Study in Male Rabbits

    PubMed Central

    Jiang, Shiwei; Xu, Zhonghua; Zhao, Yuanyuan; Yan, Lei; Zhou, Zunlin

    2017-01-01

    Objective. This study was to evaluate the utility of the compound graft for tubularized urethroplasty by seeding mesothelial cells onto autogenous granulation tissue. Methods. Silastic tubes were implanted subcutaneously in 18 male rabbits, of which nine underwent omentum biopsies simultaneously for in vitro expansion of mesothelial cells. The granulation tissue covering the tubes was harvested 2 weeks after operation. Mesothelial cells were seeded onto and cocultured with the tissue for 7 days. A pendulous urethral segment of 1.5 cm was totally excised. Urethroplasty was performed with mesothelial cell-seeded tissue tubes in an end-to-end fashion in nine rabbits and with unseeded grafts in others as controls. Serial urethrograms were performed at 1, 2, and 6 months postoperatively. Meanwhile, the neourethra was harvested and analyzed grossly and histologically. Results. Urethrograms showed cell-seeded grafts maintained wide at each time point, while strictures formation was found in unseeded grafts. Histologically, layers of urothelium surrounded by increasingly organized smooth muscles were observed in seeded grafts. In contrast, myofibroblasts accumulation and extensive scarring occurred in unseeded grafts. Conclusions. Mesothelial cell-seeded granulation tissue tube can be successfully used for tubularized urethroplasty in male rabbits. PMID:28337443

  7. Magnetic resonance image guided brachytherapy.

    PubMed

    Tanderup, Kari; Viswanathan, Akila N; Kirisits, Christian; Frank, Steven J

    2014-07-01

    The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education.

  8. Apparatus and method for high dose rate brachytherapy radiation treatment

    DOEpatents

    Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James

    2005-01-25

    A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.

  9. Prostate cancer brachytherapy: guidelines overview

    PubMed Central

    Białas, Brygida

    2012-01-01

    Prostate cancer, due to wide availability of PSA tests, is very often diagnosed in early stage, nowadays. This makes management of this disease even harder in every day oncology care. There is a wide range of treatment options including surgery, radiotherapy and active surveillance, but essential question is which treatment patient and oncologist should decide for. Due to recent publication of Prostate Cancer Results Study Group, in which brachytherapy is one of supreme curative options for prostate cancer, we decided to overview most present european and north american recommendations. National Comprehensive Cancer Network, American Society for Radiation Oncology, American Brachytherapy Society, European Association of Urology and Groupe Européen de Curiethérapie of European Society for Therapeutic Radiation Oncology guidelines are overviewed, particularly focusing on HDR and LDR brachytherapy. PMID:23349655

  10. Prostate cancer brachytherapy: guidelines overview.

    PubMed

    Wojcieszek, Piotr; Białas, Brygida

    2012-06-01

    Prostate cancer, due to wide availability of PSA tests, is very often diagnosed in early stage, nowadays. This makes management of this disease even harder in every day oncology care. There is a wide range of treatment options including surgery, radiotherapy and active surveillance, but essential question is which treatment patient and oncologist should decide for. Due to recent publication of Prostate Cancer Results Study Group, in which brachytherapy is one of supreme curative options for prostate cancer, we decided to overview most present european and north american recommendations. National Comprehensive Cancer Network, American Society for Radiation Oncology, American Brachytherapy Society, European Association of Urology and Groupe Européen de Curiethérapie of European Society for Therapeutic Radiation Oncology guidelines are overviewed, particularly focusing on HDR and LDR brachytherapy.

  11. Prostate brachytherapy training with simulated ultrasound and fluoroscopy images.

    PubMed

    Goksel, Orcun; Sapchuk, Kirill; Morris, William J; Salcudean, Septimiu E

    2013-04-01

    In this paper, a novel computer-based virtual training system for prostate brachytherapy is presented. This system incorporates, in a novel way, prior methodologies of ultrasound image synthesis and haptic transrectal ultrasound (TRUS) transducer interaction in a complete simulator that allows a trainee to maneuver the needle and the TRUS, to see the resulting patient-specific images and feel the interaction forces. The simulated TRUS images reflect the volumetric tissue deformation and comprise validated appearance models for the needle and implanted seeds. Rendered haptic forces use validated models for needle shaft flexure and friction, tip cutting, and deflection due to bevel. This paper also presents additional new features that make the simulator complete, in the sense that all aspects of the brachytherapy procedure as practiced at many cancer centers are simulated, including simulations of seed unloading, fluoroscopy imaging, and transversal/sagittal TRUS plane switching. For real-time rendering, methods for fast TRUS-needle-seed image formation are presented. In addition, the simulator computes real-time dosimetry, allowing a trainee to immediately see the consequence of planning changes. The simulation is also patient specific, as it allows the user to import the treatment plan for a patient together with the imaging data in order for a physician to practice an upcoming procedure or for a medical resident to train using typical implant scenarios or rarely encountered cases.

  12. Dosimetry of two new interstitial brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Saidi, Pooneh; Sadeghi, Mahdi

    2011-01-01

    With increased demand for low 103Pd (palladium) seed sources, to treat prostate and eye cancers, new sources have been designed and introduced. This article presents the two new palladium brachytherapy sources, IR03-103Pd and IR04-103Pd that have been developed at Nuclear Science and Technology Research Institute. The dosimetry parameters such as the dose rate constant Λ, the radial dose function g(r), and the anisotropy function F(r,θ), around the sources have been characterized using Version 5 Monte Carlo radiation transport code in accordance with the update AAPM Task Group No. 43 report (TG-43U1). The results indicated the dose rate constant of 0.689±0.02 and 0.667±0.02 cGy h-1 U-1 for the IR03-103Pd and IR04-103Pd sources respectively, which are in acceptable agreement with other commercial seeds. The calculated results were compared with published results for those of other source manufacturers. However, they show an acceptable dose distribution, using for clinical applications is pending experimental dosimetry.

  13. Study of dose calculation on breast brachytherapy using prism TPS

    NASA Astrophysics Data System (ADS)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  14. Calibration of Photon Sources for Brachytherapy

    NASA Astrophysics Data System (ADS)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  15. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192

    SciTech Connect

    Podder, Tarun K.; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A.; Crass, Jostin B.; Dicker, Adam P.; Yu, Yan; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A.; Moerland, Marinus A.; Nath, Ravinder; Rivard, Mark J.; Salcudean, Tim; Song, Danny Y.; Thomadsen, Bruce R.

    2014-10-15

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3–6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests

  16. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192.

    PubMed

    Podder, Tarun K; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A; Crass, Jostin B; Dicker, Adam P; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A; Moerland, Marinus A; Nath, Ravinder; Rivard, Mark J; Salcudean, Tim; Song, Danny Y; Thomadsen, Bruce R; Yu, Yan

    2014-10-01

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3-6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests should

  17. Study of two different radioactive sources for prostate brachytherapy treatment

    SciTech Connect

    Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de; Caldas, Linda V.E.

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  18. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects

    PubMed Central

    Kornfeld, Tim; Vogt, Peter M.; Bucan, Vesna; Peck, Claas-Tido; Reimers, Kerstin; Radtke, Christine

    2016-01-01

    Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs) were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95%) throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction. PMID:27916868

  19. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects.

    PubMed

    Kornfeld, Tim; Vogt, Peter M; Bucan, Vesna; Peck, Claas-Tido; Reimers, Kerstin; Radtke, Christine

    2016-11-30

    Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs) were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95%) throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction.

  20. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment

    NASA Astrophysics Data System (ADS)

    Miksys, N.; Xu, C.; Beaulieu, L.; Thomson, R. M.

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  1. Tracheal reconstruction using chondrocytes seeded on a poly(L-lactic-co-glycolic acid)-fibrin/hyaluronan.

    PubMed

    Hong, Hyun Jun; Chang, Jae Won; Park, Ju-Kyeong; Choi, Jae Won; Kim, Yoo Suk; Shin, Yoo Seob; Kim, Chul-Ho; Choi, Eun Chang

    2014-11-01

    Reconstruction of trachea is still a clinical dilemma. Tissue engineering is a recent and promising concept to resolve this problem. This study evaluated the feasibility of allogeneic chondrocytes cultured with fibrin/hyaluronic acid (HA) hydrogel and degradable porous poly(L-lactic-co-glycolic acid) (PLGA) scaffold for partial tracheal reconstruction. Chondrocytes from rabbit articular cartilage were expanded and cultured with fibrin/HA hydrogel and injected into a 5 × 10 mm-sized, curved patch-shape PLGA scaffold. After 4 weeks in vitro culture, the scaffold was implanted on a tracheal defect in eight rabbits. Six and 10 weeks postoperatively, the implanted sites were evaluated by bronchoscope and radiologic and histologic analyses. Ciliary beat frequency (CBF) of regenerated epithelium was also evaluated. None of the eight rabbits showed any sign of respiratory distress. Bronchoscopic examination did not reveal stenosis of the reconstructed trachea and the defects were completely recovered with respiratory epithelium. Computed tomography scan showed good luminal contour of trachea. Histologic data showed that the implanted chondrocytes successfully formed neocartilage with minimal granulation tissue. CBF of regenerated epithelium was similar to that of normal epithelium. Partial tracheal defect was successfully reconstructed anatomically and functionally using allogeneic chondrocytes cultured with PLGA-fibrin/HA composite scaffold.

  2. Toward adaptive stereotactic robotic brachytherapy for prostate cancer: Demonstration of an adaptive workflow incorporating inverse planning and an MR stealth robot

    PubMed Central

    CUNHA, J. ADAM; HSU, I-CHOW; POULIOT, JEAN; ROACH, MACK; SHINOHARA, KATSUTO; KURHANEWICZ, JOHN; REED, GALEN; STOIANOVICI, DAN

    2011-01-01

    To translate any robot into a clinical environment, it is critical that the robot can seamlessly integrate with all the technology of a modern clinic. MRBot, an MR-stealth brachytherapy delivery device, was used in a closed-bore 3T MRI and a clinical brachytherapy cone beam CT suite. Targets included ceramic dummy seeds, MR-Spectroscopy-sensitive metabolite, and a prostate phantom. Acquired DICOM images were exported to planning software to register the robot coordinates in the imager’s frame, contour and verify target locations, create dose plans, and export needle and seed positions to the robot. The coordination of each system element (imaging device, brachytherapy planning system, robot control, robot) was validated with a seed delivery accuracy of within 2 mm in both a phantom and soft tissue. An adaptive workflow was demonstrated by acquiring images after needle insertion and prior to seed deposition. This allows for adjustment if the needle is in the wrong position. Inverse planning (IPSA) was used to generate a seed placement plan and coordinates for ten needles and 29 seeds were transferred to the robot. After every two needles placed, an image was acquired. The placed seeds were identified and validated prior to placing the seeds in the next two needles. The ability to robotically deliver seeds to locations determined by IPSA and the ability of the system to incorporate novel needle patterns were demonstrated. Shown here is the ability to overcome this critical step. An adaptive brachytherapy workflow is demonstrated which integrates a clinical anatomy-based seed location optimization engine and a robotic brachytherapy device. Demonstration of this workflow is a key element of a successful translation to the clinic of the MRI stealth robotic delivery system, MRBot. PMID:20642386

  3. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    SciTech Connect

    Francis, Jasmine H.; Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil; Gobin, Y. Pierre; Marr, Brian P.; Brodie, Scott E.; Dunkel, Ira J.; Abramson, David H.

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.

  4. Equivalent Biochemical Control and Improved Prostate-Specific Antigen Nadir After Permanent Prostate Seed Implant Brachytherapy Versus High-Dose Three-Dimensional Conformal Radiotherapy and High-Dose Conformal Proton Beam Radiotherapy Boost

    SciTech Connect

    Jabbari, Siavash; Weinberg, Vivian K.; Shinohara, Katsuto; Speight, Joycelyn L.; Gottschalk, Alexander R.; Hsu, I.-C.; Pickett, Barby; McLaughlin, Patrick W.; Sandler, Howard M.; Roach, Mack

    2010-01-15

    Purpose: Permanent prostate implant brachytherapy (PPI), three-dimensional conformal radiotherapy (3D-CRT), and conformal proton beam radiotherapy (CPBRT) are used in the treatment of localized prostate cancer, although no head-to-head trials have compared these modalities. We studied the biochemical control (biochemical no evidence of disease [bNED]) and prostate-specific antigen (PSA) nadir achieved with contemporary PPI, and evaluated it against 3D-CRT and CPBRT. Patients and Methods: A total of 249 patients were treated with PPI at the University of California, San Francisco, and the outcomes were compared with those from a 3D-CRT cohort and the published results of a high-dose CPBRT boost (CPBRTB) trial. For each comparison, subsets of the PPI cohort were selected with patient and disease criteria similar to those of the reference group. Results: With a median follow-up of 5.3 years, the bNED rate at 5 and 7 years achieved with PPI was 92% and 86%, respectively, using the American Society for Therapeutic Radiology and Oncology (ASTRO) definition, and 93% using the PSA nadir plus 2 ng/mL definition. Using the ASTRO definition, a 5-year bNED rate of 78% was achieved for the 3D-CRT patients compared with 94% for a comparable PPI subset and 93% vs. 92%, respectively, using the PSA nadir plus 2 ng/mL definition. The median PSA nadir for patients treated with PPI and 3D-CRT was 0.10 and 0.40 ng/mL, respectively (p < .0001). For the CPBRT comparison, the 5-year bNED rate after a CPBRTB was 91% using the ASTRO definition vs. 93% for a similar group of PPI patients. A greater proportion of PPI patients achieved a lower PSA nadir compared with those achieved in the CPBRTB trial (PSA nadir <=0.5 ng/mL, 91% vs. 59%, respectively). Conclusion: We have demonstrated excellent outcomes in low- to intermediate-risk patients treated with PPI, suggesting at least equivalent 5-year bNED rates and a greater proportion of men achieving lower PSA nadirs compared with 3D-CRT or

  5. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    SciTech Connect

    Joseph, F Maria; Podder, T; Yu, Y

    2015-06-15

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostate HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system

  6. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; Haas-Kock, Danielle de; Visser, Peter; Gils, Francis van; Verhaegen, Frank

    2012-03-15

    Purpose: The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. Methods: A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D{sub 90} was reported based on the post implant CT prostate contour. Results: Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although

  7. Afterloading: The Technique That Rescued Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  8. An innovative method to acquire the location of point A for cervical cancer treatment by HDR brachytherapy.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Yeh, Shyh-An; Lee, Tsair-Fwu; Chen, Pang-Yu

    2016-11-08

    Brachytherapy of local cervical cancer is generally accomplished through film-based treatment planning with the prescription directed to point A, which is invisible on images and is located at a high-dose gradient area. Through a standard reconstruction method by digitizing film points, the location error for point A would be 3mm with a condition of 30° curvature tandem, which is 10° away from the gantry rotation axis of a simulator, and has an 8.7 cm interval between the flange and the isocenter. To reduce the location error of the reconstructed point A, this paper proposes a method and demonstrates its accuracy. The Cartesian coordinates of point A were derived by acquiring the locations of the cervical os (tandem flange) and a dummy seed located in the tandem above the flange. To verify this analytical method, ball marks in a commercial "Isocentric Beam Checker" were selected to simulate the two points A, the os, and the dummies. The Checker was placed on the simulator couch with its center ball coincident with the simulator isocenter and its rotation axis perpendicular to the gantry rotation axis. With different combinations of the Checker and couch rotation angles, the orthogonal films were shot and all coor-dinates of the selected points were reconstructed through the treatment planning system and compared with that calculated through the analytical method. The position uncertainty and the deviation prediction of point A were also evaluated. With a good choice of the reference dummy point, the position deviations of point A obtained through this analytical method were found to be generally within 1 mm, with the standard uncertainty less than 0.5 mm. In summary, this new method is a practical and accurate tool for clinical usage to acquire the accurate location of point A for the treatment of cervical cancer patient.

  9. An innovative method to acquire the location of point A for cervical cancer treatment by HDR brachytherapy.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Yeh, Shyh-An; Lee, Tsair-Fwu; Chen, Pang-Yu

    2016-11-01

    Brachytherapy of local cervical cancer is generally accomplished through film-based treatment planning with the prescription directed to point A, which is invisible on images and is located at a high-dose gradient area. Through a standard reconstruction method by digitizing film points, the location error for point A would be 3 mm with a condition of 30° curvature tandem, which is 10° away from the gantry rotation axis of a simulator, and has an 8.7 cm interval between the flange and the isocenter. To reduce the location error of the reconstructed point A, this paper proposes a method and demonstrates its accuracy. The Cartesian coordinates of point A were derived by acquiring the locations of the cervical os (tandem flange) and a dummy seed located in the tandem above the flange. To verify this analytical method, ball marks in a commercial "Isocentric Beam Checker" were selected to simulate the two points A, the os, and the dummies. The Checker was placed on the simulator couch with its center ball coincident with the simulator isocenter and its rotation axis perpendicular to the gantry rotation axis. With different combinations of the Checker and couch rotation angles, the orthogonal films were shot and all coordinates of the selected points were reconstructed through the treatment planning system and compared with that calculated through the analytical method. The position uncertainty and the deviation prediction of point A were also evaluated. With a good choice of the reference dummy point, the position deviations of point A obtained through this analytical method were found to be generally within 1 mm, with the standard uncertainty less than 0.5 mm. In summary, this new method is a practical and accurate tool for clinical usage to acquire the accurate location of point A for the treatment of cervical cancer patient. PACS number(s): 87.55.km.

  10. Testicular shielding in penile brachytherapy

    PubMed Central

    Bindal, Arpita; Tambe, Chandrashekhar M.; Ghadi, Yogesh; Murthy, Vedang; Shrivastava, Shyam Kishore

    2015-01-01

    Purpose Penile cancer, although rare, is one of the common genitourinary cancers in India affecting mostly aged uncircumcised males. For patients presenting with small superficial lesions < 3 cm restricted to glans, surgery, radical external radiation or brachytherapy may be offered, the latter being preferred as it allows organ and function preservation. In patients receiving brachytherapy, testicular morbidity is not commonly addressed. With an aim to minimize and document the doses to testis after adequate shielding during radical interstitial brachytherapy for penile cancers, we undertook this study in 2 patients undergoing brachytherapy and forms the basis of this report. Material and methods Two patients with early stage penile cancer limited to the glans were treated with radical high-dose-rate (HDR) brachytherapy using interstitial implant. A total of 7-8 tubes were implanted in two planes, parallel to the penile shaft. A total dose of 44-48 Gy (55-60 Gy EQD2 doses with α/β = 10) was delivered in 11-12 fractions of 4 Gy each delivered twice daily. Lead sheets adding to 11 mm (4-5 half value layer) were interposed between the penile shaft and scrotum. The testicular dose was measured using thermoluminescent dosimeters. For each patient, dosimetry was done for 3 fractions and mean calculated. Results The cumulative testicular dose to left and right testis was 31.68 cGy and 42.79 cGy for patient A, and 21.96 cGy and 23.28 cGy for patient B. For the same patients, the mean cumulative dose measured at the posterior aspect of penile shaft was 722.15 cGy and 807.72 cGy, amounting to 16.4% and 16.8% of the prescribed dose. Hence, the application of lead shield 11 mm thick reduced testicular dose from 722-808 cGy to 21.96-42.57 cGy, an “absolute reduction” of 95.99 ± 1.5%. Conclusions With the use of a simple lead shield as described, we were able to effectively reduce testicular dose from “spermicidal” range to “oligospermic” range with possible

  11. Dynamic rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  12. Dosimetry of the 198Au Source used in Interstitial Brachytherapy

    SciTech Connect

    Dauffy, L; Braby, L; Berner, B

    2004-05-18

    The American Association of Physicists in Medicine Task Group 43 report, AAPM TG-43, provides an analytical model and a dosimetry protocol for brachytherapy dose calculations, as well as documentation and results for some sealed sources. The radionuclide {sup 198}Au (T{sub 1/2} = 2.70 days, E{gamma} = 412 keV) has been used in the form of seeds for brachytherapy treatments including brain, eye, and prostate tumors. However, the TG-43 report has no data for {sup 198}Au seeds, and none have previously been obtained. For that reason, and because of the conversion of most treatment planning systems to TG-43 based methods, both Monte Carlo calculations (MCNP 4C) and thermoluminescent dosimeters (TLDs) are used in this work to determine these data. The geometric variation in dose is measured using an array of TLDs in a solid water phantom, and the seed activity is determined using both a well ion chamber and a High Purity Germanium detector (HPGe). The results for air kerma strength, S{sub k}, per unit apparent activity, are 2.06 (MCNP) and 2.09 (measured) U mCi{sup -1}. The former is identical to what was published in 1991 in the AAPM Task Group 32 report. The dose rate constant results, {Lambda}, are 1.12 (MCNP) and 1.10 (measured), cGy h{sup -1} U{sup -1}. The radial dose function, g(r), anisotropy function, F(r,{theta}), and anisotropy factor, {psi}{sub an}(r), are given. The anisotropy constant values are 0.973 (MCNP) and 0.994 (measured) and are consistent with both source geometry and the emitted photon energy.

  13. Study of dose calculation on breast brachytherapy using prism TPS

    SciTech Connect

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  14. {beta}-Ray brachytherapy with {sup 106}Ru plaques for retinoblastoma

    SciTech Connect

    Schueler, Andreas O. . E-mail: andreas.schueler@uni-essen.de; Fluehs, Dirk; Anastassiou, Gerassimos; Jurklies, Christine; Neuhaeuser, Markus; Schilling, Harald; Bornfeld, Norbert; Sauerwein, Wolfgang

    2006-07-15

    Purpose: A retrospective analysis of 134 patients who received {sup 106}Ru brachytherapy for retinoblastomas (175 tumors in 140 eyes). Treatment and follow-up were analyzed with special emphasis on tumor control organ, preservation, and late complications. Results: Treated tumors had a mean height and diameter of 3.7 {+-} 1.4 mm and 5.0 {+-} 2.8 disk diameters, respectively. The radiation dose values were recalculated according to the calibration standard recently introduced by the National Institute of Standards and Technology. The recalculation revealed a mean applied dose of 419 Gy at the sclera (SD, 207 Gy) and 138 Gy (SD, 67 Gy) at the tumor apex. The 5-year tumor control rate was 94.4%. Tumor recurrence was more frequent in eyes with vitreous tumor cell seeding or fish-flesh regression. The estimated 5-year eye preservation rate was 86.5%. Previous treatment by brachytherapy or external beam radiotherapy, as well as a large tumor diameter, were significant factors for enucleation. The radiotherapy-induced complications after 5 years of follow-up were retinopathy (22%), optic neuropathy (21%), and cataract (17%). These complications were significantly more frequent after prior brachytherapy or external beam radiotherapy. Conclusion: Brachytherapy using {sup 106}Ru plaques is a highly efficient therapy with excellent local tumor control and an acceptable incidence of side effects.

  15. SU-E-J-263: Dosimetric Analysis On Breast Brachytherapy Based On Deformable Image Registration

    SciTech Connect

    Chen, T; Nie, K; Narra, V; Zou, J; Zhang, M; Khan, A; Haffty, B; Yue, N

    2014-06-01

    Purpose: To quantitatively compare and evaluate the dosimetry difference between breast brachytherapy protocols with different fractionation using deformable image registration. Methods: The accumulative dose distribution for multiple breast brachytherapy patients using four different applicators: Contura, Mammosite, Savi, and interstitial catheters, under two treatment protocols: 340cGy by 10 fractions in 5 days and 825cGy by 3 fractions in 2days has been reconstructed using a two stage deformable image registration approach. For all patients, daily CT was acquired with the same slice thickness (2.5mm). In the first stage, the daily CT images were rigidly registered to the initial planning CT using the registration module in Eclipse (Varian) to align the applicators. In the second stage, the tissues surrounding the applicator in the rigidly registered daily CT image were non-rigidly registered to the initial CT using a combination of image force and the local constraint that enforce zero normal motion on the surface of the applicator, using a software developed in house. We calculated the dose distribution in the daily CTs and deformed them using the final registration to convert into the image domain of the initial planning CT. The accumulative dose distributions were evaluated by dosimetry parameters including D90, V150 and V200, as well as DVH. Results: Dose reconstruction results showed that the two day treatment has a significant dosimetry improvement over the five day protocols. An average daily drop of D90 at 1.3% of the prescription dose has been observed on multiple brachytherapy patients. There is no significant difference on V150 and V200 between those two protocols. Conclusion: Brachytherapy with higher fractional dose and less fractions has an improved performance on being conformal to the dose distribution in the initial plan. Elongated brachytherapy treatments need to consider the dose uncertainty caused by the temporal changes of the soft tissue.

  16. Surface coating for prevention of metallic seed migration in tissues

    SciTech Connect

    Lee, Hyunseok; Park, Jong In; Lee, Won Seok; Park, Min; Son, Kwang-Jae; Bang, Young-bong; Choy, Young Bin E-mail: sye@snu.ac.kr; Ye, Sung-Joon E-mail: sye@snu.ac.kr

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  17. A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy

    NASA Astrophysics Data System (ADS)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2013-03-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.

  18. A Fully Actuated Robotic Assistant for MRI-Guided Prostate Biopsy and Brachytherapy.

    PubMed

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M; Fischer, Gregory S

    2013-03-12

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.

  19. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    SciTech Connect

    Reed, J. L. Micka, J. A.; Culberson, W. S.; DeWerd, L. A.; Rasmussen, B. E.; Davis, S. D.

    2014-12-15

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  20. Application of a diamond detector to brachytherapy dosimetry.

    PubMed

    Rustgi, S N

    1998-08-01

    The feasibility of using a diamond detector for the dosimetry of brachytherapy sources has been investigated. A high-activity 192Ir source was selected for this purpose. The dosimetric characteristics measured included the photon fluence anisotropy in air, transverse dose profiles in planes parallel to the plane containing the HDR source and isodose distributions. The 'in-air' anisotropy of the photon fluence relative to seed orientation was measured at 5 and 10 cm from the source centre and compared with TLD measurements. Transverse dose distributions in planes parallel to the plane containing the source long axis were measured in a water phantom and compared with calculations performed with a treatment planning system. Isodose distributions were also measured in several planes around the 192Ir source. Measurements on two sources indicate that the 'in-air' photon fluence anisotropy measured by the diamond detector and the TLDs is very similar. Dose profiles measured at several distances from the source are also found to be in good agreement with the calculated dose profiles and isodose distributions. Results of this feasibility study indicate that the diamond detector, with its excellent spatial resolution and nearly tissue equivalent and isotropic radiation response, is an appropriate detector for dose measurements around brachytherapy sources.

  1. Observations on rotating needle insertions using a brachytherapy robot

    NASA Astrophysics Data System (ADS)

    Meltsner, M. A.; Ferrier, N. J.; Thomadsen, B. R.

    2007-09-01

    A robot designed for prostate brachytherapy implantations has the potential to greatly improve treatment success. Much of the research in robotic surgery focuses on measuring accuracy. However, there exist many factors that must be optimized before an analysis of needle placement accuracy can be determined. Some of these parameters include choice of the needle type, insertion velocity, usefulness of the rotating needle and rotation speed. These parameters may affect the force at which the needle interacts with the tissue. A reduction in force has been shown to decrease the compression of the prostate and potentially increase the accuracy of seed position. Rotating the needle as it is inserted may reduce frictional forces while increasing accuracy. However, needle rotations are considered to increase tissue damage due to the drilling nature of the insertion. We explore many of the factors involved in optimizing a brachytherapy robot, and the potential effects each parameter may have on the procedure. We also investigate the interaction of rotating needles in gel and suggest the rotate-cannula-only method of conical needle insertion to minimize any tissue damage while still maintaining the benefits of reduced force and increased accuracy.

  2. Conformal Brachytherapy Planning for Cervical Cancer Using Transabdominal Ultrasound

    SciTech Connect

    Van Dyk, Sylvia Narayan, Kailash; Fisher, Richard; Bernshaw, David

    2009-09-01

    Purpose: To determine if transabdominal ultrasound (US) can be used for conformal brachytherapy in cervical cancer patients. Materials and Methods: Seventy-one patients with locoregionally advanced cervix cancer treated with chemoradiation and brachytherapy were included in this study. The protocol consisted of US-assisted tandem insertion and conformal US-based planning. Orthogonal films for applicator reconstruction were also taken. A standard plan was modified to suit the US-based volume and treatment was delivered. The patient then underwent a magnetic resonance imaging (MRI) scan with the applicators in situ. Retrospectively, individual standard (STD), US, and MRI plans were extrapolated for five fractions and superimposed onto the two-dimensional sagittal MRI images for comparison. Doses to Point A, target volume, International Commission on Radiation Units and Measurements (ICRU) 38 bladder and rectal points, and individualized bowel points were calculated on original implant geometry on Plato for each planning method. Results: STD (high-dose-rate) plans reported higher doses to Point A, target volume, ICRU 38 bladder and rectal points, and individualized bowel point compared with US and MRI plans. There was a statistically significant difference between standard plans and image-based plans-STD vs. US, STD vs. MRI, and STD vs. Final-having consistent (p {<=} 0.001) respectively for target volume, Point A, ICRU 38 bladder, and bowel point. US plan assessed on two-dimensional MRI image was comparable for target volume (p = 0.11), rectal point (p = 0.8), and vaginal mucosa (p = 0.19). Local control was 90%. Late bowel morbidity (G3, G4) was <2%. Conclusions: Transabdominal ultrasound offers an accurate, quick, accessible, and cost-effective method of conformal brachytherapy planning.

  3. Poster — Thur Eve — 77: Implanted Brachythearpy Seed Movement due to Transrectal Ultrasound Probe-Induced Prostate Deformation

    SciTech Connect

    Liu, D; Usmani, N; Sloboda, R; Meyer, T; Husain, S; Angyalfi, S; Kay, I

    2014-08-15

    The study investigated the movement of implanted brachytherapy seeds upon transrectal US probe removal, providing insight into the underlying prostate deformation and an estimate of the impact on prostate dosimetry. Implanted seed distributions, one obtained with the prostate under probe compression and another with the probe removed, were reconstructed using C-arm fluoroscopy imaging. The prostate, delineated on ultrasound images, was registered to the fluoroscopy images using seeds and needle tracks identified on ultrasound. A deformation tensor and shearing model was developed to correlate probe-induced seed movement with position. Changes in prostate TG-43 dosimetry were calculated. The model was used to infer the underlying prostate deformation and to estimate the location of the prostate surface in the absence of probe compression. Seed movement patterns upon probe removal reflected elastic decompression, lateral shearing, and rectal bending. Elastic decompression was characterized by expansion in the anterior-posterior direction and contraction in the superior-inferior and lateral directions. Lateral shearing resulted in large anterior movement for extra-prostatic seeds in the lateral peripheral region. Whole prostate D90 increased up to 8 Gy, mainly due to the small but systematic seed movement associated with elastic decompression. For selected patients, lateral shearing movement increased prostate D90 by 4 Gy, due to increased dose coverage in the anterior-lateral region at the expense of the posterior-lateral region. The effect of shearing movement on whole prostate D90 was small compared to elastic decompression due to the subset of peripheral seeds involved, but is expected to have greater consequences for local dose coverage.

  4. Tissue modeling schemes in low energy breast brachytherapy

    NASA Astrophysics Data System (ADS)

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-01

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D90 metric is used for the analysis and is based on the dose to water (D90(w,m)). D90(m,m) is also reported for comparison to D90(w,m). The two-month post-implant D90(w,m) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D90(w,m) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this report. This

  5. Differential dose contributions on total dose distribution of 125I brachytherapy source

    PubMed Central

    Camgöz, B.; Yeğin, G.; Kumru, M.N.

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  6. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; O'Keeffe, S.

    2016-05-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is presented, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 250μm of a 500μm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for brachytherapy, in prostate cancer treatment, providing oncologists with real-time information of the radiation dose to the target area and/or nearby critical structures. The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to Iodine-125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  7. HDR brachytherapy for anal cancer

    PubMed Central

    Kovács, Gyoergy

    2014-01-01

    The challenge of treating anal cancer is to preserve the anal sphincter function while giving high doses to the tumor and sparing the organ at risk. For that reason there has been a shift from radical surgical treatment with colostomy to conservative treatment. Radiotherapy combined with chemotherapy has an important role in the treatment of anal cancer patients. New techniques as intensity modulated radiotherapy (IMRT) have shown reduced acute toxicity and high rates of local control in combination with chemotherapy compared to conventional 3-D radiotherapy. Not only external beam radio-chemotherapy treatment (EBRT) is an established method for primary treatment of anal cancer, brachytherapy (BT) is also an approved method. BT is well known for boost irradiation in combination with EBRT (+/– chemotherapy). Because of technical developments like modern image based 3D treatment planning and the possibility of intensity modulation in brachytherapy (IMBT), BT today has even more therapeutic potential than it had in the era of linear sources. The combination of external beam radiotherapy (EBRT) and BT allows the clinician to deliver higher doses to the tumor and to reduce dose to the normal issue. Improvements in local control and reductions in toxicity therefore become possible. Various BT techniques and their results are discussed in this work. PMID:24982770

  8. SU-E-T-397: Include Organ Deformation Into Dose Calculation of Prostate Brachytherapy

    SciTech Connect

    Shao, Y; Shen, D; Chen, R; Wang, A; Lian, J

    2014-06-01

    Purpose: Prostate brachytherapy is an important curative treatment for patients with localized prostate cancer. In brachytherapy, rectal balloon is generally needed to adjust for unfavorable prostate position for seed placement. However, rectal balloon causes prostate deformation, which is not accounted for in dosimetric planning. Therefore, it is possible that brachytherapy dosimetry deviates significantly from initial plan when prostate returns to its non-deformed state (after procedure). The goal of this study is to develop a method to include prostate deformation into the treatment planning of brachytherapy dosimetry. Methods: We prospectively collected ultrasound images of prostate pre- and post- rectal balloon inflation from thirty five consecutive patients undergoing I-125 brachytherapy. Based on the cylinder coordinate systems, we learned the initial coordinate transformation parameters between the manual segmentations of both deformed and non-deformed prostates of each patient in training set. With the nearest-neighbor interpolation, we searched the best transformation between two coordinate systems to maximum the mutual information of deformed and non-deformed images. We then mapped the implanted seeds of five selected patients from the deformed prostate into non-deformed prostate. The seed position is marked on original pre-inflation US image and it is imported into VariSeed software for dose calculation. Results: The accuracy of image registration is 87.5% as quantified by Dice Index. The prostate coverage V100% dropped from 96.5±0.5% of prostate deformed plan to 91.9±2.6% (p<0.05) of non-deformed plan. The rectum V100% decreased from 0.44±0.26 cc to 0.10±0.18 cc (p<0.05). The dosimetry of the urethra showed mild change but not significant: V150% changed from 0.05±0.10 cc to 0.14±0.15 cc (p>0.05) and D1% changed from 212.9±37.3 Gy to 248.4±42.8 Gy (p>0.05). Conclusion: We have developed a deformable image registration method that allows

  9. Dosimetric characterization of a {sup 131}Cs brachytherapy source by thermoluminescence dosimetry in liquid water

    SciTech Connect

    Tailor, Ramesh; Ibbott, Geoffrey; Lampe, Stephanie; Bivens Warren, Whitney; Tolani, Naresh

    2008-12-15

    Dosimetry measurements of a {sup 131}Cs brachytherapy source have been performed in liquid water employing thermoluminescence dosimeters. A search of the literature reveals that this is the first time a complete set of dosimetric parameters for a brachytherapy ''seed'' source has been measured in liquid water. This method avoids the medium correction uncertainties introduced by the use of water-equivalent plastic phantoms. To assure confidence in the results, four different sources were employed for each parameter measured, and measurements were performed multiple times. The measured dosimetric parameters presented here are based on the AAPM Task Group 43 formalism. The dose-rate constant measured in liquid water was (1.063{+-}0.023) cGy h{sup -1} U{sup -1} and was based on the air-kerma strength standard for this source established by the National Institute of Standards and Technology. Measured values for the 2D anisotropy function and the radial dose function are presented.

  10. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  11. Online gamma-camera imaging of 103Pd seeds (OGIPS) for permanent breast seed implantation

    NASA Astrophysics Data System (ADS)

    Ravi, Ananth; Caldwell, Curtis B.; Keller, Brian M.; Reznik, Alla; Pignol, Jean-Philippe

    2007-09-01

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq 103Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  12. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  13. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  14. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  15. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  16. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  17. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  18. In vivo dosimetry in brachytherapy

    SciTech Connect

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E.; Kertzscher, Gustavo; Cygler, Joanna E.

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  19. Monte Carlo aided design of an improved well-type ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Bohm, Tim D.; Micka, John A.; De Werd, Larry A.

    2007-04-15

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well-type ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, an improved well-type ionization chamber for low energy, low dose rate brachytherapy sources is designed using Monte Carlo transport calculations to aid in the design process. The design improvements are the elimination of the air density induced over-response effect seen in other air-communicating chambers for low energy photon sources, and a larger signal strength (response or current) for {sup 103}Pd and {sup 125}I based seeds. A prototype well chamber based on the Monte Carlo aided design but using graphite coated acrylic walls rather than the design basis air equivalent plastic (C-552) walls was constructed and experimentally evaluated. The prototype chamber produced an 85% stronger signal when measuring a commonly used {sup 103}Pd seed and a 26% stronger signal when measuring a commonly used {sup 125}I seed when compared to another commonly used well chamber. The normalized P{sub TP} corrected chamber response is, at most, 1.3% and 2.4% over unity for air densities/pressures corresponding to an elevation of 3048 m (10 000 feet) above sea level for the commonly used {sup 103}Pd and {sup 125}I based seeds respectively. Comparing calculated and measured chamber responses for common {sup 103}Pd and {sup 125}I based brachytherapy seeds show agreement within 0.6% and 0.2%, respectively. We conclude that Monte Carlo transport calculations accurately model the response of this new well chamber and in general can be used to predict the response of well chambers. The prototype chamber built in this work responds as predicted by the Monte Carlo calculations.

  20. Brachytherapy in the Treatment of Cholangiocarcinoma

    SciTech Connect

    Shinohara, Eric T.; Guo Mengye; Mitra, Nandita; Metz, James M.

    2010-11-01

    Purpose: To examine the role of brachytherapy in the treatment of cholangiocarcinomas in a relatively large group of patients. Methods and Materials: Using the Surveillance, Epidemiology and End Results database, a total of 193 patients with cholangiocarcinoma treated with brachytherapy were identified for the period 1988-2003. The primary analysis compared patients treated with brachytherapy (with or without external-beam radiation) with those who did not receive radiation. To try to account for confounding variables, propensity score and sensitivity analyses were used. Results: There was a significant difference between patients who received radiation (n = 193) and those who did not (n = 6859) with regard to surgery (p < 0.0001), race (p < 0.0001), stage (p < 0.0001), and year of diagnosis (p <0.0001). Median survival for patients treated with brachytherapy was 11 months (95% confidence interval [CI] 9-13 months), compared with 4 months for patients who received no radiation (p < 0.0001). On multivariable analysis (hazard ratio [95% CI]) brachytherapy (0.79 [0.66-0.95]), surgery (0.50 [0.46-0.53]), year of diagnosis (1998-2003: 0.66 [0.60-0.73]; 1993-1997: (0.96 [0.89-1.03; NS], baseline 1988-1992), and extrahepatic disease (0.84 [0.79-0.89]) were associated with better overall survival. Conclusions: To the authors' knowledge, this is the largest dataset reported for the treatment of cholangiocarcinomas with brachytherapy. The results of this retrospective analysis suggest that brachytherapy may improve overall survival. However, because of the limitations of the Surveillance, Epidemiology and End Results database, these results should be interpreted cautiously, and future prospective studies are needed.

  1. Cervix cancer brachytherapy: high dose rate.

    PubMed

    Miglierini, P; Malhaire, J-P; Goasduff, G; Miranda, O; Pradier, O

    2014-10-01

    Cervical cancer, although less common in industrialized countries, is the fourth most common cancer affecting women worldwide and the fourth leading cause of cancer death. In developing countries, these cancers are often discovered at a later stage in the form of locally advanced tumour with a poor prognosis. Depending on the stage of the disease, treatment is mainly based on a chemoradiotherapy followed by uterovaginal brachytherapy ending by a potential remaining tumour surgery or in principle for some teams. The role of irradiation is crucial to ensure a better local control. It has been shown that the more the delivered dose is important, the better the local results are. In order to preserve the maximum of organs at risk and to allow this dose escalation, brachytherapy (intracavitary and/or interstitial) has been progressively introduced. Its evolution and its progressive improvement have led to the development of high dose rate brachytherapy, the advantages of which are especially based on the possibility of outpatient treatment while maintaining the effectiveness of other brachytherapy forms (i.e., low dose rate or pulsed dose rate). Numerous innovations have also been completed in the field of imaging, leading to a progress in treatment planning systems by switching from two-dimensional form to a three-dimensional one. Image-guided brachytherapy allows more precise target volume delineation as well as an optimized dosimetry permitting a better coverage of target volumes.

  2. Data fusion for planning target volume and isodose prediction in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2015-03-01

    In low-dose prostate brachytherapy treatment, a large number of radioactive seeds is implanted in and adjacent to the prostate gland. Planning of this treatment involves the determination of a Planning Target Volume (PTV), followed by defining the optimal number of seeds, needles and their coordinates for implantation. The two major planning tasks, i.e. PTV determination and seed definition, are associated with inter- and intra-expert variability. Moreover, since these two steps are performed in sequence, the variability is accumulated in the overall treatment plan. In this paper, we introduce a model based on a data fusion technique that enables joint determination of PTV and the minimum Prescribed Isodose (mPD) map. The model captures the correlation between different information modalities consisting of transrectal ultrasound (TRUS) volumes, PTV and isodose contours. We take advantage of joint Independent Component Analysis (jICA) as a linear decomposition technique to obtain a set of joint components that optimally describe such correlation. We perform a component stability analysis to generate a model with stable parameters that predicts the PTV and isodose contours solely based on a new patient TRUS volume. We propose a framework for both modeling and prediction processes and evaluate it on a dataset of 60 brachytherapy treatment records. We show PTV prediction error of 10:02+/-4:5% and the V100 isodose overlap of 97+/-3:55% with respect to the clinical gold standard.

  3. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  4. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images.

    PubMed

    Mashouf, S; Lechtman, E; Lai, P; Keller, B M; Karotki, A; Beachey, D J; Pignol, J P

    2014-09-21

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 [Formula: see text] formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  5. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-10-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, 169Yb and 103Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for 103Pd, 125I, 131Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  6. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy.

    PubMed

    Bakht, Mohamadreza K; Sadeghi, Mahdi

    2011-10-01

    Radionuclides of rare earth elements are gaining importance as emerging therapeutic agents in nuclear medicine. β(-)-particle emitter 142Pr [T (1/2) = 19.12 h, E(-)β = 2.162 MeV (96.3%), Eγ = 1575 keV (3.7%)] is one of the praseodymium-141 (100% abundant) radioisotopes. Production routes and therapy aspects of 142Pr will be reviewed in this paper. However, 142Pr produces via 141Pr(n, γ) 142Pr reaction by irradiation in a low-fluence reactor; 142Pr cyclotron produced, could be achievable. 142Pr due to its high β(-)-emission and low specific gamma γ-emission could not only be a therapeutic radionuclide, but also a suitable radionuclide in order for biodistribution studies. Internal radiotherapy using 142Pr can be classified into two sub-categories: (1) unsealed source therapy (UST), (2) brachytherapy. UST via 142Pr-HA and 142Pr-DTPA in order for radiosynovectomy have been proposed. In addition, 142Pr Glass seeds and 142Pr microspheres have been utilized for interstitial brachytherapy of prostate cancer and intraarterial brachytherapy of arteriovenous malformation, respectively.

  7. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    SciTech Connect

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-04-15

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters ({alpha}=0.15 Gy{sup -1} and {alpha}/{beta}=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD{sub 2}) with respect to three effects: edema, RBE, and dose heterogeneity for {sup 125}I and {sup 103}Pd implants. The EUD{sub 2} analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V{sub 100} (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D{sub 90} (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for {sup 125}I and {sup 103}Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for {sup 125}I and 1.3-1.6 for {sup 103}Pd implants. These RBE values are consistent with the RBE data published in the

  8. Complications associated with preoperative radiation therapy and Iodine-125 brachytherapy for localized prostatic carcinoma

    SciTech Connect

    Flanigan, R.C.; Patterson, J.; Mendiondo, O.A.; Gee, W.F.; Lucas, B.A.; McRoberts, J.W.

    1983-08-01

    Twenty-five consecutive patients with localized adenocarcinoma of the prostate treated with 1,050 rad preoperative radiation therapy and Iodine-125 seed brachytherapy are reviewed. Significant long-term postoperative complications included radiation cystitis (12%), radiation proctitis (4%), genital and leg edema (12%), stress incontinence (8%), total incontinence (4%), and impotence (26%). Complications occurred in 75 per cent of patients who received additional postoperative radiation. Improved staging with CT scan, lymphangiography, and Chiba needle biopsy of any possibly abnormal lymph nodes provided excellent preoperative staging with only 1 patient (6%) upstaged at surgery to Stage D1.

  9. Overview: Five decades of brachytherapy

    SciTech Connect

    Ellis, F.

    1986-01-01

    Brachytherapy started in 1930. Ra-226 was the radioisotope for cancer therapy at that time and much has been learned about its properties since then. One of the major findings at that time was output. When the author started, there was no T factor. People did not know how many R units were produced by 1.0 mg of radium filtered by 0.5 mm of platinum at 1.0 cm. So one was in a bit of chaos from that point of view. Eventually, that was settled in the 1930's. It was very exciting to find out that, although the national laboratories of the U.S., England, France and Germany had had values of this T factor varying from about five to seven (when they're only supposed to have less than 1% error); the value was really 8.3 and it was quite a landmark. This led to an improved knowledge of dose and effects. Developments over the next five decades are discussed in detail.

  10. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    PubMed

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to <10 cGy h(-1) and involve multiple patients to detect patient variability. Results may suggest a preference for high dose rate brachytherapy or LDR brachytherapy without permanent retention of the implant seeds (hence the dose rates in peripheral tissues and organs remain above IDRE thresholds).

  11. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4.

    PubMed

    Pope, D J; Cutajar, D L; George, S P; Guatelli, S; Bucci, J A; Enari, K E; Miller, S; Siegele, R; Rosenfeld, A B

    2015-06-07

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences.Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  12. Evaluation of PC-ISO for customized, 3D Printed, gynecologic 192-Ir HDR brachytherapy applicators.

    PubMed

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-08

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. 

  13. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators.

    PubMed

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-01

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. PACS number: none.

  14. TU-AB-201-11: A Novel Theoretical Framework for MRI-Only Image Guided LDR Prostate and Breast Brachytherapy Implant Dosimetry

    SciTech Connect

    Soliman, A; Elzibak, A; Fatemi, A; Safigholi, H; Ravi, A; Morton, G; Song, W; Han, D

    2015-06-15

    Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) of calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate patient

  15. Investigating the dosimetric and tumor control consequences of prostate seed loss and migration

    SciTech Connect

    Knaup, Courtney; Mavroidis, Panayiotis; Esquivel, Carlos; Stathakis, Sotirios; Swanson, Gregory; Baltas, Dimos; Papanikolaou, Nikos

    2012-06-15

    Purpose: Low dose-rate brachytherapy is commonly used to treat prostate cancer. However, once implanted, the seeds are vulnerable to loss and movement. The goal of this work is to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. Methods: Five patients were used in this study. For each patient three treatment plans were created using Iodine-125, Palladium-103, and Cesium-131 seeds. The three seeds that were closest to the urethra were identified and modeled as the seeds lost through the urethra. The three seeds closest to the exterior of prostatic capsule were identified and modeled as those lost from the prostate periphery. The seed locations and organ contours were exported from Prowess and used by in-house software to perform the dosimetric and radiobiological evaluation. Seed loss was simulated by simultaneously removing 1, 2, or 3 seeds near the urethra 0, 2, or 4 days after the implant or removing seeds near the exterior of the prostate 14, 21, or 28 days after the implant. Results: Loss of one, two or three seeds through the urethra results in a D{sub 90} reduction of 2%, 5%, and 7% loss, respectively. Due to delayed loss of peripheral seeds, the dosimetric effects are less severe than for loss through the urethra. However, while the dose reduction is modest for multiple lost seeds, the reduction in tumor control probability was minimal. Conclusions: The goal of this work was to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. The results presented show that loss of multiple seeds can cause a substantial reduction of D{sub 90} coverage. However, for the patients in this study the dose reduction was not seen to reduce tumor control probability.

  16. The American Brachytherapy Society Treatment Recommendations for Locally Advanced Carcinoma of the Cervix Part II: High Dose-Rate Brachytherapy

    PubMed Central

    Viswanathan, Akila N.; Beriwal, Sushil; De Los Santos, Jennifer; Demanes, D. Jeffrey; Gaffney, David; Hansen, Jorgen; Jones, Ellen; Kirisits, Christian; Thomadsen, Bruce; Erickson, Beth

    2012-01-01

    Purpose This report presents the 2011 update to the American Brachytherapy Society (ABS) high-dose-rate (HDR) brachytherapy guidelines for locally advanced cervical cancer. Methods Members of the American Brachytherapy Society (ABS) with expertise in cervical cancer brachytherapy formulated updated guidelines for HDR brachytherapy using tandem and ring, ovoids, cylinder or interstitial applicators for locally advanced cervical cancer were revised based on medical evidence in the literature and input of clinical experts in gynecologic brachytherapy. Results The Cervical Cancer Committee for Guideline Development affirms the essential curative role of tandem-based brachytherapy in the management of locally advanced cervical cancer. Proper applicator selection, insertion, and imaging are fundamental aspects of the procedure. Three-dimensional imaging with magnetic resonance or computed tomography or radiographic imaging may be used for treatment planning. Dosimetry must be performed after each insertion prior to treatment delivery. Applicator placement, dose specification and dose fractionation must be documented, quality assurance measures must be performed, and follow-up information must be obtained. A variety of dose/fractionation schedules and methods for integrating brachytherapy with external-beam radiation exist. The recommended tumor dose in 2 Gray (Gy) per fraction radiobiologic equivalence (EQD2) is 80–90 Gy, depending on tumor size at the time of brachytherapy. Dose limits for normal tissues are discussed. Conclusion These guidelines update those of 2000 and provide a comprehensive description of HDR cervical cancer brachytherapy in 2011. PMID:22265437

  17. MO-D-BRD-00: Electronic Brachytherapy

    SciTech Connect

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  18. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    SciTech Connect

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.

  19. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  20. Patterns of care study for brachytherapy: results of the questionnaire for the years 2002 and 2007 in The Netherlands

    PubMed Central

    Slotman, Ben J.; Guedea, Ferran; Ventura, Montse; Londres, Bradley; Francois, Guy

    2011-01-01

    Purpose The goal of the ESTRO Patterns of Care study for Brachytherapy in Europe (PCBE) 2002 was to develop an aid to analyse brachytherapy practices. A 2nd version of the PCB questionnaire was created for 2007. Data over 2007 were collected at the radiotherapy institutions in The Netherlands and compared with those from 2002. The aim of this study is to describe national brachytherapy practices, to demonstrate trends, and to provide data for rational health care planning. Material and methods Data were collected using a web-based questionnaire. For each centre, a local coordinator, responsible for coordinating the questionnaires and support of the further analysis was assigned. Data from the national cancer incidence registry was used for comparison with the data from the 21 Dutch departments. Results There was a decrease in low-dose rate equipment in parallel to an increase in both pulsed-dose rate and high-dose rate equipment. The use of 3D CT and MR based imaging techniques showed a slow rise. The most common clinical procedures were for prostate, gynaecological, and oesophageal tumours. A large increase (146%) in permanent implant prostate applications using 125I seeds was observed. The numbers of oesophageal and gynaecological treatments remained stable. There is concern on the low numbers of cases treated in some institutions for a few complex treatment sites. For head and neck, anal canal, paediatrics, bladder and eye interventions it ranged from 3-20 patients per year per institution. Conclusions The increase in number of patient treated with brachytherapy is in accordance with the increases in cancer incidence. The percentage of all radiotherapy patients treated with brachytherapy (approximately 5%) remained stable. The survey identified certain trends in resources and techniques, as well as areas of expected improvement and possible gain in clinical outcome. Data reported from this survey can be used for further planning of resources, facilities and

  1. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-15

    Purpose: The goal of this work is to compare D{sub m,m} (radiation transported in medium; dose scored in medium) and D{sub w,m} (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether applying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Methods: Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: {sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds, as well as an EBS operating at 50 kV. Ratios of D{sub w,m} over D{sub m,m} are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using {sup 103}Pd) and prostate (using {sup 125}I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D{sub 90} values are compared for D{sub w,m} and D{sub m,m}. Results: (1) Differences (D{sub w,m}/D{sub m,m}-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D{sub w,m}/D{sub m,m} is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D{sub 90(w

  2. A Phase III Randomized Trial of the Timing of Meloxicam With Iodine-125 Prostate Brachytherapy

    SciTech Connect

    Crook, Juanita; Patil, Nikhilesh; Wallace, Kris; Borg, Jette; Zhou, David; Ma, Clement; Pond, Greg

    2010-06-01

    Purpose: Nonsteroidal anti-inflammatory medication is used to reduce prostate edema and urinary symptoms following prostate brachytherapy. We hypothesized that a cyclooxygenase-2 (COX-2) inhibitor regimen started 1 week prior to seed implant might diminish the inflammatory response, thus reducing edema, retention rates, and symptom severity. Methods and Materials: From March 2004 to February 2008, 316 men consented to an institutional review board-approved randomized study of a 4-week course of meloxicam, 7.5 mg orally twice per day, starting either on the day of implant or 1 week prior to implant. Brachytherapy was performed using iodine-125 seeds and was preplanned and performed under transrectal ultrasound (TRUS) and fluoroscopic guidance. Prostate volume obtained by MR imaging at 1 month was compared to baseline prostate volume obtained by TRUS planimetry and expressed as an edema factor. The trial endpoints were prostate edema at 1 month, International Prostate Symptom Score (IPSS) questionnaire results at 1 and 3 months, and any need for catheterization. Results: Results for 300 men were analyzed. Median age was 61 (range, 45-79 years), and median TRUS prostate volume was 35.7 cc (range, 18.1-69.5 cc). Median IPSS at baseline was 5 (range, 0-24) and was 15 at 1 month, 16 at 3 months, and 10 at 6 months. Catheterization was required for 7% of patients (6.2% day 0 arm vs. 7.9% day -7 arm; p = 0.65). The median edema factor at 1 month was 1.02 (range, 0.73-1.7). 1.01 day 0 arm vs. 1.05 day -7 arm. Baseline prostate volume remained the primary predictor of postimplant urinary retention. Conclusions: Starting meloxicam 1 week prior to brachytherapy compared to starting immediately after the procedure did not reduce 1-month edema, improve IPSSs at 1 or 3 months, or reduce the need for catheterization.

  3. Archaeobotanical reconstructions of vegetation and report of mummified apple seeds found in the cellar of a first-century Roman villa on Elba Island.

    PubMed

    Milanesi, Claudio; Scali, Monica; Vignani, Rita; Cambi, Franco; Dugerdil, Lucas; Faleri, Claudia; Cresti, Mauro

    In the late Roman Republic period (2nd-1st century BC), in the area of San Giovanni on Elba Island, previously subject to intense extraction of iron ore, a rustic villa was established by Marco Valerio Messalla, a supreme Roman magistrate. The foundations of the walls were discovered and excavated by an archaeological mission. Palaeobotanical analysis of a set of stratigraphic layers was performed. Palynological slides showed remains of palynomorphic and non-pollen objects, while data combined with anthracological investigations confirmed the hypothesis that in the 1st century AD the villa was destroyed by a fire that created a compact crust under which were discovered four broken Roman amphorae containing about five hundred apple seeds. Comparisons of archaeological and fresh seeds from reference collections showed discontinuous morphology except for one group of archaeological samples. DNA was isolated from seeds that had well-preserved embryos in all groups. DNA extracts from archaeological, wild and modern domestic seeds (controls) were amplified by PCR and tested with SSR molecular markers, followed by genome analysis.

  4. State-of-the-art: prostate LDR brachytherapy.

    PubMed

    Voulgaris, S; Nobes, J P; Laing, R W; Langley, S E M

    2008-01-01

    This article on low dose rate (LDR) prostate brachytherapy reviews long-term results, patient selection and quality of life issues. Mature results from the United States and United Kingdom are reported and issues regarding definitions of biochemical failure are discussed. Latest data comparing brachytherapy with radical prostatectomy or no definitive treatment and also the risk of secondary malignancies after prostate brachytherapy are presented. Urological parameters of patient selection and quality of life issues concerning urinary, sexual and bowel function are reviewed. The position of prostate brachytherapy next to surgery as a first-line treatment modality is demonstrated.

  5. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M.; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-01

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  6. Spectroscopic output of {sup 125}I and {sup 103}Pd low dose rate brachytherapy sources

    SciTech Connect

    Usher-Moga, Jacqueline; Beach, Stephen M.; DeWerd, Larry A.

    2009-01-15

    The spectroscopic output of low dose rate (LDR) brachytherapy sources is dependent on the physical design and construction of the source. Characterization of the emitted photons from 12 {sup 125}I and 3 {sup 103}Pd LDR brachytherapy source models is presented. Photon spectra, both along the transverse bisector and at several polar angles, were measured in air with a high-purity reverse electrode germanium (REGe) detector. Measured spectra were corrected to in vacuo conditions via Monte Carlo and analytical methods. The tabulated and plotted spectroscopic data provide a more complete understanding of each source model's output characteristics than can be obtained with other measurement techniques. The variation in fluorescence yield of the {sup 125}I sources containing silver caused greater differences in the emitted spectra and average energies among these seed models than was observed for the {sup 103}Pd sources or the {sup 125}I sources that do not contain silver. Angular spectroscopic data further highlighted the effects of source construction unique to each model, as well as the asymmetric output of many seeds. These data demonstrate the need for the incorporation of such physically measured output characteristics in the Monte Carlo modeling process.

  7. Dosimetric parameters of the new design (103)Pd brachytherapy source based on Monte Carlo study.

    PubMed

    Saidi, Pooneh; Sadeghi, Mahdi; Shirazi, Alireza; Tenreiro, Claudio

    2012-01-01

    In this study version 5 of the MCNP photon transport simulation was used to calculate the dosimetric parameters for new palladium brachytherapy source design following AAPM Task Group No. 43U1 report. The internal source components include four resin beads of 0.6 mm diameters with (103)Pd uniformly absorbed inside and one cylindrical copper marker with 1.5 mm length. The resin beads and marker are then encapsulated within 0.8 mm in diameter and 4.5 mm long cylindrical capsule of titanium. The dose rate constant, Λ, line and point-source radial dose function, g(L)(r) and g(P)(r), and the anisotropy function, F(r,θ) of the IR01-(103)Pd seed have been calculated at distances from 0.25 to 5 cm. All the results are in good agreement with previously published thermoluminescence-dosimeter measured values [3] for the source. The dosimetric parameters calculated in this work showed that in dosimetry point of view, the IR01-(103)Pd seed is suitable for use in brachytherapy of prostate cancer.

  8. Low-Dose Prostate Cancer Brachytherapy with Radioactive Palladium-Gold Nanoparticles.

    PubMed

    Laprise-Pelletier, Myriam; Lagueux, Jean; Côté, Marie-France; LaGrange, Thomas; Fortin, Marc-André

    2017-02-01

    Prostate cancer (PCa) is one of the leading causes of death among men. Low-dose brachytherapy is an increasingly used treatment for PCa, which requires the implantation of tens of radioactive seeds. This treatment causes discomfort; these implants cannot be removed, and they generate image artifacts. In this study, the authors report on intratumoral injections of radioactive gold nanoparticles (Au NPs) as an alternative to seeds. The particles ((103) Pd:Pd@Au-PEG and (103) Pd:Pd@(198) Au:Au-PEG; 10-14 nm Pd@Au core, 36-48 nm hydrodynamic diameter) are synthesized by a one-pot process and characterized by electron microscopy. Administrated as low volume (2-4 µL) single doses (1.6-1.7 mCi), the particles are strongly retained in PCa xenograft tumors, impacting on their growth rate. After 4 weeks, a tumor volume inhibition of 56% and of 75%, compared to the controls, is observed for (103) Pd:Pd@Au-PEG NPs and (103) Pd:Pd@(198) Au:Au-PEG NPs, respectively. Skin necrosis is observed with (198) Au; therefore, Au NPs labeled with (103) Pd only are a more advisable choice. Overall, this is the first study confirming the impact of (103) Pd@Au NPs on tumor growth. This new brachytherapy procedure could allow tunable doses of radioactivity, administered with smaller needles than with the current technologies, and leading to fewer image artifacts.

  9. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  10. Monte Carlo dosimetry for {sup 125}I and {sup 103}Pd eye plaque brachytherapy

    SciTech Connect

    Thomson, R. M.; Taylor, R. E. P.; Rogers, D. W. O.

    2008-12-15

    A Monte Carlo study of dosimetry for eye plaque brachytherapy is performed. BrachyDose, an EGSnrc user code which makes use of Yegin's multi-geometry package, is used to fully model {sup 125}I (model 6711) and {sup 103}Pd (model 200) brachytherapy seeds and the standardized plaques of the Collaborative Ocular Melanoma Study (COMS). Three-dimensional dose distributions in the eye region are obtained. In general, dose to water is scored; however, the implications of replacing water with eye tissues are explored. The effect of the gold alloy (Modulay) backing is investigated and the dose is found to be sensitive to the elemental composition of the backing. The presence of the silicone polymer (Silastic) seed carrier results in substantial dose decreases relative to water, particularly for {sup 103}Pd. For a 20 mm plaque with a Modulay backing and Silastic insert, fully loaded with 24 seeds, the dose decrease relative to water is of the order of 14% for {sup 125}I and 20% for {sup 103}Pd at a distance of 1 cm from the inner sclera along the plaque's central axis. For the configurations of seeds used in COMS plaques, interseed attenuation is a small effect within the eye region. The introduction of an air interface results in a dose reduction in its vicinity which depends on the plaque's position within the eye and the radionuclide. Introducing bone in the eye's vicinity also causes dose reductions. The dose distributions in the eye for the two different radionuclides are compared and, for the same prescription dose, {sup 103}Pd generally offers a lower dose to critical normal structures. BrachyDose is sufficiently fast to allow full Monte Carlo dose calculations for routine clinical treatment planning.

  11. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  12. Sequential Comparison of Seed Loss and Prostate Dosimetry of Stranded Seeds With Loose Seeds in {sup 125}I Permanent Implant for Low-Risk Prostate Cancer

    SciTech Connect

    Saibishkumar, Elantholi P.; Borg, Jette; Yeung, Ivan; Cummins-Holder, Cheryl; Landon, Angela; Crook, Juanita

    2009-01-01

    Purpose: To compare stranded seeds (SSs) with loose seeds (LSs) in terms of prostate edema, dosimetry, and seed loss after {sup 125}I brachytherapy. Methods and Materials: Two prospective cohorts of 20 men participated in an institutional review board-approved protocols to study postimplant prostate edema and its effect on dosimetry. The LS cohort underwent brachytherapy between September 2002 and July 2003 and the SS cohort between April 2006 and January 2007. Both cohorts were evaluated sequentially using computed tomography-magnetic resonance imaging fusion-based dosimetry on Days 0, 7, and 30. No hormonal therapy or supplemental beam radiotherapy was used. Results: Prostate edema was less in the SS cohort at all points (p = NS). On Day 0, all the prostate dosimetric factors were greater in the LS group than in the SS group (p = 0.003). However, by Days 7 and 30, the dosimetry was similar between the two cohorts. No seeds migrated to the lung in the SS cohort compared with a total of five seeds in 4 patients in the LS cohort. However, the overall seed loss was greater in the SS cohort (24 seeds in 6 patients; 1.1% of total vs. 0.6% for LSs), with most seeds lost through urine (22 seeds in 5 patients). Conclusion: Despite elimination of venous seed migration, greater seed loss was observed with SSs compared with LSs, with the primary site of loss being the urinary tract. Modification of the technique might be necessary to minimize this. Prostate dosimetry on Days 7 and 30 was similar between the SS and LS cohorts.

  13. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  14. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  15. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  16. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  17. Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

    PubMed Central

    2014-01-01

    Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients. PMID:25834586

  18. TOPICAL REVIEW: Intravascular brachytherapy of the coronary arteries

    NASA Astrophysics Data System (ADS)

    Fox, R. A.

    2002-02-01

    This is a review of the relatively recently developed field of intravascular brachytherapy of coronary arteries. It presents a brief overview of the discipline of coronary angioplasty describing the problem of restenosis and discusses the potential for ionizing radiation to overcome this problem. It examines the various methods that have been used to irradiate the coronary arteries comparing their advantages and disadvantages. Special consideration is given to seeds and wires in the artery, radioactive liquids in the angioplasty balloon and radioactive stents. Passing reference is made to a number of other methods that have also been proposed, but which are not commonly used to irradiate the coronary arteries at present. The dosimetry of each of the major techniques is discussed and the data from different laboratories compared. Specific consideration is given to the need for centring of the radioactive source and the factors affecting the selection of a dose prescription. A brief review of recent clinical trials is followed by an examination of possible future directions in this field including the use of intravascular ultrasound to improve dosimetry, the use of gas-filled balloons to enhance the penetration of beta-emitting sources and the use of gamma-emitting stents to overcome the problems associated with edge restenosis.

  19. SU-F-BRA-03: Integrating Novel Electromagnetic Tracking Hollow Needle Assistance in Permanent Implant Brachytherapy Procedures

    SciTech Connect

    Racine, E; Hautvast, G; Binnekamp, D; Beaulieu, L

    2015-06-15

    Purpose: To report on the results of a complete permanent implant brachytherapy procedure assisted by an electromagnetic (EM) hollow needle possessing both 3D tracking and seed drop detection abilities. Methods: End-to-end in-phantom EM-assisted LDR procedures were conducted. The novel system consisted of an EM tracking apparatus (NDI Aurora V2, Planar Field Generator), a 3D US scanner (Philips CX50), a hollow needle prototype allowing 3D tracking and seed drop detection and a specially designed treatment planning software (Philips Healthcare). A tungsten-doped 30 cc spherical agarose prostate immersed in gelatin was used for the treatment. A cylindrical shape of 0.8 cc was carved along its diameter to mimic the urethra. An initial plan of 26 needles and 47 seeds was established with the system. The plan was delivered with the EM-tracked hollow needle, and individual seed drop locations were recorded on the fly. The phantom was subsequently imaged with a CT scanner from which seed positions and contour definitions were obtained. The DVHs were then independently recomputed and compared with those produced by the planning system, both before and after the treatment. Results: Of the 47 seeds, 45 (96%) were detected by the EM technology embedded in the hollow needle design. The executed plan (from CT analysis) differed from the initial plan by 2%, 14% and 8% respectively in terms of V100, D90 and V150 for the prostate, and by 8%, 7% and 10% respectively in terms of D5, V100 and V120 for the urethra. Conclusion: The average DVH deviations between initial and executed plans were within a 5% tolerance imposed for this proof-of-concept assessment. This relatively good concordance demonstrates the feasibility and potential benefits of combining EM tracking and seed drop detection for real-time dosimetry validation and assistance in permanent implant brachytherapy procedures. This project has been entirely funded by Philips Healthcare.

  20. SU-E-T-55: Biological Equivalent Dose (BED) Comparison Between Permanent Interstitial Brachytherapy and Conventional External Beam Radiotherapy for Prostate Cancer

    SciTech Connect

    Liu, X; Rahimian, J; Cosmatos, H; Goy, B; Heywood, C; Qian, Y

    2014-06-01

    Purpose: The goal of this research is to calculate and compare the Biological Equivalent Dose (BED) between permanent prostate Iodine-125 implant brachytherapy as monotherapy with the BED of conventional external beam radiation therapy (EBRT). Methods: A retrospective study of 605 patients treated with Iodine-125 seed implant was performed in which physician A treated 274 patients and physician B treated 331 patients. All the Brachytherapy treatment plans were created using VariSeed 8 planning system. The Iodine-125 seed source activities and loading patterns varied slightly between the two physicians. The prescription dose is 145 Gy to PTV for each patient. The BED and Tumor Control Probability (TCP) were calculated based on the TG 137 formulas. The BED for conventional EBRT of the prostate given in our institution in 2Gy per fraction for 38 fractions was calculated and compared. Results: Physician A treated 274 patients with an average BED of 123.92±0.87 Gy and an average TCP of 99.20%; Physician B treated 331 patients with an average BED of 124.87±1.12 Gy and an average TCP of 99.30%. There are no statistically significant differences (T-Test) between the BED and TCP values calculated for these two group patients.The BED of the patients undergoing conventional EBRT is calculated to be 126.92Gy. The BED of the patients treated with permanent implant brachytherapy and EBRT are comparable. Our BED and TCP values are higher than the reported values by TG 137 due to higher Iodine-125 seed activity used in our institution. Conclusion: We calculated the BED,a surrogate of the biological response to a permanent prostate brachytherapy using TG 137 formulas and recommendation. The TCP of better than 99% is calculated for these patients. A clinical outcome study of these patients correlating the BED and TCP values with PSA and Gleason Levels as well as patient survival is warranted.

  1. Erectile Function Durability Following Permanent Prostate Brachytherapy

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Kurko, Brian S.; Anderson, Richard; Lief, Jonathan H.

    2009-11-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 >= 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  2. Rotating-shield brachytherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Yang, Wenjun; Kim, Yusung; Wu, Xiaodong; Song, Qi; Liu, Yunlong; Bhatia, Sudershan K.; Sun, Wenqing; Flynn, Ryan T.

    2013-06-01

    In this treatment planning study, the potential benefits of a rotating shield brachytherapy (RSBT) technique based on a partially-shielded electronic brachytherapy source were assessed for treating cervical cancer. Conventional intracavitary brachytherapy (ICBT), intracavitary plus supplementary interstitial (IS+ICBT), and RSBT treatment plans for azimuthal emission angles of 180° (RSBT-180) and 45° (RSBT-45) were generated for five patients. For each patient, high-risk clinical target volume (HR-CTV) equivalent dose in 2 Gy fractions (EQD2) (α/β = 10 Gy) was escalated until bladder, rectum, or sigmoid colon tolerance EQD2 values were reached. External beam radiotherapy dose (1.8 Gy × 25) was accounted for, and brachytherapy was assumed to have been delivered in 5 fractions. IS+ICBT provided a greater HR-CTV D90 (minimum EQD2 to the hottest 90%) than ICBT. D90 was greater for RSBT-45 than IS+ICBT for all five patients, and greater for RSBT-180 than IS+ICBT for two patients. When the RSBT-45/180 plan with the lowest HR-CTV D90 that was greater than the D90 the ICBT or IS+ICBT plan was selected, the average (range) of D90 increases for RSBT over ICBT and IS+ICBT were 16.2 (6.3-27.2)and 8.5 (0.03-20.16) Gy, respectively. The average (range) treatment time increase per fraction of RSBT was 34.56 (3.68-70.41) min over ICBT and 34.59 (3.57-70.13) min over IS+ICBT. RSBT can increase D90 over ICBT and IS+ICBT without compromising organ-at-risk sparing. The D90 and treatment time improvements from RSBT depend on the patient and shield emission angle.

  3. Decline in urinary retention incidence in 805 patients after prostate brachytherapy: The effect of learning curve?

    SciTech Connect

    Keyes, Mira . E-mail: mkeyes@bccancer.bc.ca; Schellenberg, Devin; Moravan, Veronika M.Sc.; McKenzie, Michael; Agranovich, Alexander; Pickles, Tom; Wu, Jonn; Liu, Mitchell; Bucci, Joseph M.B.B.S.; Morris, W. James

    2006-03-01

    Purpose: To evaluate the incidence and factors predictive of acute urinary retention (AUR) in 805 consecutive patients treated with prostate brachytherapy monotherapy and to examine the possible effect of a learning curve. Methods and Materials: Between July 1998 and November 2002, 805 patients were treated with prostate brachytherapy. Low-risk patients (Gleason Score (GS) {<=}6; prostate specific antigen (PSA) {<=}10, and {<=} T2b [UICC 1997]) received implant alone. Patients with prostate volume of 50 cc or more, GS = 7, or PSA = 10 to 15 received 6 months of androgen suppression (AS) with brachytherapy. Patient, treatment, and dosimetric factors examined include baseline prostate symptom score (IPSS), diabetes, vascular disease, PSA, Gleason score, clinical stage, AS, ultrasound planning target volume (PUTV), postimplant prostate volume (obtained with 'Day 30' postimplant CT), CT:PUTV ratio (surrogate for postimplant edema), number of seeds, number of needles, number of seeds per needle, dosimetric parameters (V100, V150, and D90), date of implant (learning curve), and implanting oncologists. Univariate and multivariate analyses were carried out. Results: Acute urinary retention in the first 200 patients was 17% vs. 6.3% in the most recently treated 200 patients (p = 0.002). Overall AUR was 12.7%, and prolonged urinary obstruction incidence (>20 days) was 5%. On multivariate analysis, factors predictive of any AUR include baseline IPSS (p = < 0.004), CT:PUTV ratio (p = < 0.001), PUTV (p = < 0.001), and implant order (learning curve) (p = 0.001). Factors predictive for 'prolonged' catheterization (>20 days) on multivariate analysis include IPSS (p < 0.01), number of needles (p < 0.001), diabetes mellitus (p = 0.048), and CT:PUTV ratio (p < 0.001) Conclusion: Over the years, our AUR rate has fallen significantly (from 17% to 6.3%). On multivariate analysis, highly significant factors include IPSS, PUTV, CT:PUTV ratio (i.e., degree of prostate edema), and order of

  4. Brachytherapy for the treatment of prostate cancer.

    PubMed

    Cesaretti, Jamie A; Stone, Nelson N; Skouteris, Vassilios M; Park, Janelle L; Stock, Richard G

    2007-01-01

    Low-dose rate brachytherapy has become a mainstream treatment option for men diagnosed with prostate cancer because of excellent long-term treatment outcomes in low-, intermediate-, and high-risk patients. Largely due to patient lead advocacy for minimally invasive treatment options, high-quality prostate implants have become widely available in the US, Europe, and Japan. The reason that brachytherapy results are reproducible in several different practice settings is because numerous implant quality factors have been defined over the last 20 years, which can be applied objectively to judge the success of the intervention both during and after the procedure. In addition, recent long-term follow-up studies have clarified that the secondary cancer incidence of brachytherapy is not clinically meaningful. In terms of future directions, the study of radiation repair genetics may allow for the counseling physician to better estimate any given patients risk for side effects, thereby substantially reducing the therapeutic uncertainties faced by patients choosing a prostate cancer intervention.

  5. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  6. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  7. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  8. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  9. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  10. Determination of the prescription dose for biradionuclide permanent prostate brachytherapy

    SciTech Connect

    Nuttens, V. E.; Lucas, S.

    2008-12-15

    A model based on the linear quadratic model that has been corrected for repopulation, sublethal cell damage repair, and RBE effect has been used to determine the prescription dose for prostate permanent brachytherapy using seeds loaded with a mixture of {sup 103}Pd and {sup 125}I or a mixture of {sup 103}Pd and {sup 131}Cs. The prescription dose was determined by comparing the tumor cell survival fractions between the considered biradionuclide seed implant and one monoradionuclide seed implant chosen from {sup 103}Pd, {sup 125}I, and {sup 131}Cs. Prostate edema is included in the model. The influence of the value of the radiobiological parameters and RBE were also investigated. Two mixtures of radionuclides were considered: {sup 103}Pd{sub 0.75}-{sup 125}I{sub 0.25} and {sup 103}Pd{sub 0.25}-{sup 131}Cs{sub 0.75}, where the subscripts indicate the fractions of total initial internal activity in the biradionuclide seed. These fractions were selected in order to obtain a dose distribution that lies between that of {sup 103}Pd and {sup 125}I/{sup 131}Cs. As expected, the computed prescription dose values are dependent on the model parameters (edema half-life and magnitude, radiobiogical parameters, and RBE). The radionuclide used as a benchmark also has a strong impact on the derived prescribed dose. The large uncertainties in the radiobiological parameters and RBE values produce big errors in the computed prescribed dose. Averaged over the range of all the parameters and depending on the radionuclide used as a benchmark (in subscript), the derived prescription dose for the first mixture (PdI) would be: D{sub Pd}{sup PdI}=142{sub -16}{sup +15} Gy and D{sub I}{sup PdI}=142{sub -8}{sup +6} Gy; and D{sub Pd}{sup PdCs}=128{sub -13}{sup +13} Gy and D{sub Cs}{sup PdCs}=115{sub -7}{sup +6} Gy for the PdCs mixture. The uncertainties could be reduced if the radiobiological parameters and RBE value were known more accurately. However, as edema characteristics are patient

  11. SU-F-BRA-02: Electromagnetic Tracking in Brachytherapy as An Advanced Modality for Treatment Quality Assurance

    SciTech Connect

    Kellermeier, M; Herbolzheimer, J; Kreppner, S; Lotter, M; Strnad, V; Bert, C

    2015-06-15

    Purpose: To present the use of Electromagnetic Tracking (EMT) for quality assurance in brachytherapy by means of phantom studies and to assess the clinical applicability of EMT during HDR breast brachytherapy. Methods: An EMT system was investigated to examine its suitability for clinical applications in brachytherapy. A field generator served as electromagnetic field emitter. Sensors (magnetic sensitive only), connected to a control unit, were used and their respective position and orientation inside a pre-defined measurement volume (500 mm cube length) determined. Up to three 6DoF sensors were placed on the phantom’s surface to obtain additional reference coordinates used to derive relative measured positions of a smaller 5DoF sensor inserted in the 6F catheters of the implant. The catheters were successively measured by manual displacement of the sensor at ∼40 mm/s. The measured catheter tracks, acquired multiple times at various locations (CT and treatment room), were smoothed, divided into intervals (2.5 mm dwell step size), registered (rigid Iterative Closest Point transformation) and compared against the known phantom geometry. Results: The reference coordinates were used to exclude the influence of external (e.g., respiratory-induced) motion. Precision tests in a clinical setting showed variances below 1 mm (translational) and 1° (rotational), respectively. Our method for catheter reconstruction preserved the length of the tracked catheter (within 1 mm). The measured tracking accuracy was 1±0.3 mm (maximum: 2 mm). The results are less accurate in environments potentially interfering with the magnetic field, e.g., in the vicinity of ferromagnetic table components. Conclusion: Our EMT system is able to perform reproducible and accurate catheter tracking and reconstruction. Currently, measurements of the implant geometry in HDR breast treatments are initiated. Online implant monitoring by means of EM tracking may be a first step towards advanced

  12. Improving the efficiency of image guided brachytherapy in cervical cancer

    PubMed Central

    Franklin, Adrian; Ajaz, Mazhar; Stewart, Alexandra

    2016-01-01

    Brachytherapy is an essential component of the treatment of locally advanced cervical cancers. It enables the dose to the tumor to be boosted whilst allowing relative sparing of the normal tissues. Traditionally, cervical brachytherapy was prescribed to point A but since the GEC-ESTRO guidelines were published in 2005, there has been a move towards prescribing the dose to a 3D volume. Image guided brachytherapy has been shown to reduce local recurrence, and improve survival and is optimally predicated on magnetic resonance imaging. Radiological studies, patient workflow, operative parameters, and intensive therapy planning can represent a challenge to clinical resources. This article explores the ways, in which 3D conformal brachytherapy can be implemented and draws findings from recent literature and a well-developed hospital practice in order to suggest ways to improve the efficiency and efficacy of a brachytherapy service. Finally, we discuss relatively underexploited translational research opportunities. PMID:28115963

  13. [How to prepare the brachytherapy of the future].

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2013-10-01

    For more than a century, brachytherapy has been a treatment of choice for delivering a high dose in a small volume. However, over the past 15 years, this irradiation technique has stalled. Even so, brachytherapy allows the delivery of the right dose at the right place by dispensing with target volume motion and repositioning. The evolution of brachytherapy can be based on a road-map including at least the following three points: the acquisition of clinical evidence, teaching and valuation of the procedures. The evolution of brachytherapy will be also impacted by technological considerations (end of the production of low dose rate 192 iridium wires). Regarding the evolution toward a personalized treatment, brachytherapy of the future should take its place as a partner of other modern external beam radiation techniques, be performed by experimented actors (physicians, physicists, technicians, etc.) who received adequate training, and be valued in proportion to the delivered medical service.

  14. Evaluation of the MIM Symphony treatment planning system for low-dose-rate- prostate brachytherapy.

    PubMed

    Dhanesar, Sandeep K; Lim, Tze Y; Du, Weiliang; Bruno, Teresa L; Frank, Steven J; Kudchadker, Rajat J

    2015-09-08

    MIM Symphony is a recently introduced low-dose-rate prostate brachytherapy treatment planning system (TPS). We evaluated the dosimetric and planning accuracy of this new TPS compared to the universally used VariSeed TPS. For dosimetric evaluation of the MIM Symphony version 5.4 TPS, we compared dose calculations from the MIM Symphony TPS with the formalism recommended by the American Association of Physicists in Medicine Task Group 43 report (TG-43) and those generated by the VariSeed version 8.0 TPS for iodine-125 (I-125; Models 6711 and IAI-125A), palladium-103 (Pd-103; Model 200), and cesium-131 (Cs-131; Model Cs-1). Validation was performed for both line source and point source approximations. As part of the treatment planning validation, first a QA phantom (CIRS Brachytherapy QA Phantom Model 045 SN#D7210-3) containing three ellipsoid objects with certified volumes was scanned in order to check the volume accuracy of the contoured structures in MIM Symphony. Then the DICOM data containing 100 patient plans from the VariSeed TPS were imported into the MIM Symphony TPS. The 100 plans included 25 each of I-125 pre-implant plans, Pd-103 pre-implant plans, I-125 Day 30 plans (i.e., from 1 month after implantation), and Pd-103 Day 30 plans. The dosimetric parameters (including prostate volume, prostate D90 values, and rectum V100 values) of the 100 plans were calculated independently on the two TPSs. Other TPS tests that were done included verification of source input and geometrical accuracy, data transfer between different planning systems, text printout, 2D dose plots, DVH printout, and template grid accuracy. According to the line source formalism, the dosimetric results between the MIM Symphony TPS and TG-43 were within 0.5% (0.02 Gy) for r > 1 cm. In the line source approximation validation, MIM Symphony TPS values agreed with VariSeed TPS values to within 0.5% (0.09 Gy) for r > 1 cm. Similarly, in point source approximation validation, the MIM Symphony values

  15. Evaluation of TG-43 recommended 2D-anisotropy function for elongated brachytherapy sources

    SciTech Connect

    Awan, Shahid B.; Meigooni, Ali S.; Mokhberiosgouei, Ramin; Hussain, Manzoor

    2006-11-15

    The original and updated protocols recommended by Task Group 43 from the American Association of Physicists in Medicine (i.e., TG-43 and TG-43U1, respectively), have been introduced to unify brachytherapy source dosimetry around the world. Both of these protocols are based on experiences with sources less than 1.0 cm in length. TG-43U1 recommends that for {sup 103}Pd sources, 2D anisotropy function F(r,{theta}), should be tabulated at a minimum for radial distances of 0.5, 1.0, 2.0, 3.0, and 5.0 cm. Anisotropy functions defined in these protocols are only valid when the point of calculation does not fall on the active length of the source. However, for elongated brachytherapy sources (active length >1 cm), some of the calculation points with r<(1/2) active length and small {theta} may fall on the source itself and there is no clear recommendation to handle this situation. In addition, the linear interpolation technique recommended by TG-43U1 is found to be valid for seed types of sources as the difference between F(r,{theta}) for two consecutive radii is <10%. However, in the present investigations it has been found that values of F(r,5 deg. ) for a 5 cm long RadioCoil trade mark sign {sup 103}Pd source at radial distances of 2.5, 3.0, and 4.0 cm were 2.95, 1.74, and 1.19, respectively, with differences up to about a factor of 3. Therefore, the validity of the linear interpolation technique for an elongated brachytherapy source with such a large variation in F(r,{theta}) needs to be investigated. In this project, application of the TG-43U1 formalism for dose calculation around an elongated RadioCoil trade mark sign {sup 103}Pd brachytherapy source has been investigated. In addition, the linear interpolation techniques as described in TG-43U1 for seed type sources have been evaluated for a 5.0 cm long RadioCoil trade mark sign {sup 103}Pd brachytherapy source. Application of a polynomial fit to F(r,{theta}) has also been investigated as an alternate approach to the

  16. Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  17. SU-F-BRA-13: Knowledge-Based Treatment Planning for Prostate LDR Brachytherapy Based On Principle Component Analysis

    SciTech Connect

    Roper, J; Bradshaw, B; Godette, K; Schreibmann, E; Chanyavanich, V

    2015-06-15

    Purpose: To create a knowledge-based algorithm for prostate LDR brachytherapy treatment planning that standardizes plan quality using seed arrangements tailored to individual physician preferences while being fast enough for real-time planning. Methods: A dataset of 130 prior cases was compiled for a physician with an active prostate seed implant practice. Ten cases were randomly selected to test the algorithm. Contours from the 120 library cases were registered to a common reference frame. Contour variations were characterized on a point by point basis using principle component analysis (PCA). A test case was converted to PCA vectors using the same process and then compared with each library case using a Mahalanobis distance to evaluate similarity. Rank order PCA scores were used to select the best-matched library case. The seed arrangement was extracted from the best-matched case and used as a starting point for planning the test case. Computational time was recorded. Any subsequent modifications were recorded that required input from a treatment planner to achieve an acceptable plan. Results: The computational time required to register contours from a test case and evaluate PCA similarity across the library was approximately 10s. Five of the ten test cases did not require any seed additions, deletions, or moves to obtain an acceptable plan. The remaining five test cases required on average 4.2 seed modifications. The time to complete manual plan modifications was less than 30s in all cases. Conclusion: A knowledge-based treatment planning algorithm was developed for prostate LDR brachytherapy based on principle component analysis. Initial results suggest that this approach can be used to quickly create treatment plans that require few if any modifications by the treatment planner. In general, test case plans have seed arrangements which are very similar to prior cases, and thus are inherently tailored to physician preferences.

  18. Establishing High-Quality Prostate Brachytherapy Using a Phantom Simulator Training Program

    SciTech Connect

    Thaker, Nikhil G.; Kudchadker, Rajat J.; Swanson, David A.; Albert, Jeffrey M.; Bruno, Teresa L.; Prestidge, Bradley R.; Crook, Juanita M.; Cox, Brett W.; Potters, Louis; Moran, Brian J.; Keyes, Mira; Kuban, Deborah A.; Frank, Steven J.

    2014-11-01

    Purpose: To design and implement a unique training program that uses a phantom-based simulator to teach the process of prostate brachytherapy (PB) quality assurance and improve the quality of education. Methods and Materials: Trainees in our simulator program were practicing radiation oncologists, radiation oncology residents, and fellows of the American Brachytherapy Society. The program emphasized 6 core areas of quality assurance: patient selection, simulation, treatment planning, implant technique, treatment evaluation, and outcome assessment. Using the Iodine 125 ({sup 125}I) preoperative treatment planning technique, trainees implanted their ultrasound phantoms with dummy seeds (ie, seeds with no activity). Pre- and postimplant dosimetric parameters were compared and correlated using regression analysis. Results: Thirty-one trainees successfully completed the simulator program during the period under study. The mean phantom prostate size, number of seeds used, and total activity were generally consistent between trainees. All trainees met the V100 >95% objective both before and after implantation. Regardless of the initial volume of the prostate phantom, trainees' ability to cover the target volume with at least 100% of the dose (V100) was not compromised (R=0.99 pre- and postimplant). However, the V150 had lower concordance (R=0.37) and may better reflect heterogeneity control of the implant process. Conclusions: Analysis of implants from this phantom-based simulator shows a high degree of consistency between trainees and uniformly high-quality implants with respect to parameters used in clinical practice. This training program provides a valuable educational opportunity that improves the quality of PB training and likely accelerates the learning curve inherent in PB. Prostate phantom implantation can be a valuable first step in the acquisition of the required skills to safely perform PB.

  19. COMS eye plaque brachytherapy dosimetry simulations for {sup 103}Pd, {sup 125}I, and {sup 131}Cs

    SciTech Connect

    Melhus, Christopher S.; Rivard, Mark J.

    2008-07-15

    Monte Carlo (MC) simulations were performed to estimate brachytherapy dose distributions for Collaborative Ocular Melanoma Study (COMS) eye plaques. Brachytherapy seed models 200, 6711, and CS-1 Rev2 carrying {sup 103}Pd, {sup 125}I, and {sup 131}Cs radionuclides, respectively, were modeled and benchmarked against previously published values. Calculated dose rate constants {sub MC}{lambda} were 0.684, 0.924, and 1.052 cGy h{sup -1} U{sup -1} ({+-}2.6%, k=1 uncertainty) for models 200, 6711, and CS-1 Rev2, respectively. The seeds were distributed into 10, 12, 14, 16, 18, 20, and 22 mm-diameter COMS eye plaques. Simulations were performed in both heterogeneous and homogeneous environments, where the latter were in-water and the former included the silastic seed carrier insert and gold-alloy plaque. MC-based homogenous central axis dose distributions agreed within 2%{+-}1% ({+-}1 s.d.) to hand-calculated values. For heterogeneous simulations, notable photon attenuation was observed, with dose reduction at 5 mm of 19%, 11%, and 9% for {sup 103}Pd, {sup 125}I, and {sup 131}Cs, respectively. A depth-dependent correction factor was derived to correct homogenous central-axis dose distributions for plaque component heterogeneities, which were found to be significant at short radial distances.

  20. Three-Dimensional Imaging in Gynecologic Brachytherapy: A Survey of the American Brachytherapy Society

    SciTech Connect

    Viswanathan, Akila N.; Erickson, Beth A.

    2010-01-15

    Purpose: To determine current practice patterns with regard to three-dimensional (3D) imaging for gynecologic brachytherapy among American Brachytherapy Society (ABS) members. Methods and Materials: Registered physician members of the ABS received a 19-item survey by e-mail in August 2007. This report excludes physicians not performing brachytherapy for cervical cancer. Results: Of the 256 surveys sent, we report results for 133 respondents who perform one or more implantations per year for locally advanced cervical cancer. Ultrasound aids 56% of physicians with applicator insertion. After insertion, 70% of physicians routinely obtain a computed tomography (CT) scan. The majority (55%) use CT rather than X-ray films (43%) or magnetic resonance imaging (MRI; 2%) for dose specification to the cervix. However, 76% prescribe to Point A alone instead of using a 3D-derived tumor volume (14%), both Point A and tumor volume (7%), or mg/h (3%). Those using 3D imaging routinely contour the bladder and rectum (94%), sigmoid (45%), small bowel (38%), and/or urethra (8%) and calculate normal tissue dose-volume histogram (DVH) analysis parameters including the D2cc (49%), D1cc (36%), D0.1cc (19%), and/or D5cc (19%). Respondents most commonly modify the treatment plan based on International Commission on Radiation Units bladder and/or rectal point dose values (53%) compared with DVH values (45%) or both (2%). Conclusions: More ABS physician members use CT postimplantation imaging than plain films for visualizing the gynecologic brachytherapy apparatus. However, the majority prescribe to Point A rather than using 3D image based dosimetry. Use of 3D image-based treatment planning for gynecologic brachytherapy has the potential for significant growth in the United States.

  1. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    PubMed Central

    Wang, Wei; Viswanathan, Akila N.; Damato, Antonio L.; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T.; Dumoulin, Charles L.; Schmidt, Ehud J.; Cormack, Robert A.

    2015-01-01

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  2. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    SciTech Connect

    Wang, Wei; Pan, Li; Tokuda, Junichi; Schmidt, Ehud J.; Seethamraju, Ravi T.; Dumoulin, Charles L.

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  3. Recent developments and best practice in brachytherapy treatment planning

    PubMed Central

    2014-01-01

    Brachytherapy has evolved over many decades, but more recently, there have been significant changes in the way that brachytherapy is used for different treatment sites. This has been due to the development of new, technologically advanced computer planning systems and treatment delivery techniques. Modern, three-dimensional (3D) imaging modalities have been incorporated into treatment planning methods, allowing full 3D dose distributions to be computed. Treatment techniques involving online planning have emerged, allowing dose distributions to be calculated and updated in real time based on the actual clinical situation. In the case of early stage breast cancer treatment, for example, electronic brachytherapy treatment techniques are being used in which the radiation dose is delivered during the same procedure as the surgery. There have also been significant advances in treatment applicator design, which allow the use of modern 3D imaging techniques for planning, and manufacturers have begun to implement new dose calculation algorithms that will correct for applicator shielding and tissue inhomogeneities. This article aims to review the recent developments and best practice in brachytherapy techniques and treatments. It will look at how imaging developments have been incorporated into current brachytherapy treatment and how these developments have played an integral role in the modern brachytherapy era. The planning requirements for different treatments sites are reviewed as well as the future developments of brachytherapy in radiobiology and treatment planning dose calculation. PMID:24734939

  4. Multihelix rotating shield brachytherapy for cervical cancer

    SciTech Connect

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T.; Wu, Xiaodong

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  5. Multihelix rotating shield brachytherapy for cervical cancer

    PubMed Central

    Dadkhah, Hossein; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.

    2015-01-01

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D90 of HR-CTV) were the two metrics used as the basis for evaluation and

  6. Phase I Trial of Gross Total Resection, Permanent Iodine-125 Brachytherapy, and Hyperfractionated Radiotherapy for Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Chen, Allen M.; Chang, Susan; Pouliot, Jean; Sneed, Penny K.; Prados, Michael D.; Lamborn, Kathleen R.; Malec, Mary K.; McDermott, Michael W.; Berger, Mitchell S.; Larson, David A.

    2007-11-01

    Purpose: To evaluate the feasibility of gross total resection and permanent I-125 brachytherapy followed by hyperfractionated radiotherapy for patients with newly diagnosed glioblastoma. Methods and Materials: From April 1999 to May 2002, 21 patients with glioblastoma multiforme were enrolled on a Phase I protocol investigating planned gross total resection and immediate placement of permanent I-125 seeds, followed by postoperative hyperfractionated radiotherapy to a dose of 60 Gy at 100 cGy b.i.d., 5 days per week. Median age and Karnofsky performance status were 50 years (range, 32-65 years) and 90 (range, 70-100), respectively. Toxicity was assessed according to Radiation Therapy Oncology Group criteria. Results: Eighteen patients completed treatment according to protocol. The median preoperative tumor volume on magnetic resonance imaging was 18.6 cm{sup 3} (range, 4.4-41.2 cm{sup 3}). The median brachytherapy dose measured 5 mm radially outward from the resection cavity was 400 Gy (range, 200-600 Gy). Ten patients underwent 12 reoperations, with 11 of 12 reoperations demonstrating necrosis without evidence of tumor. Because of high toxicity, the study was terminated early. Median progression-free survival and overall survival were 57 and 114 weeks, respectively, but not significantly improved compared with historical patients treated at University of California, San Francisco, with gross total resection and radiotherapy without brachytherapy. Conclusions: Treatment with gross total resection and permanent I-125 brachytherapy followed by hyperfractionated radiotherapy as performed in this study results in high toxicity and reoperation rates, without demonstrated improvement in survival.

  7. Basic treatment planning parameters for a 90Sr / 90Y source train used in endovascular brachytherapy.

    PubMed

    Kirisits, Christian; Berger, Daniel; Schmid, Rainer; Syeda, Bonni; Pokrajac, Boris; Glogar, Dietmar; Pötter, Richard; Georg, Dietmar

    2004-01-01

    Working groups of the AAPM, DGMP, and ESTRO have published recommendations for endovascular brachytherapy, introducing concepts of relevant parameters for dose specification and treatment planning. However, the procedures for this treatment remain often mainly based on trial protocols and manufacturer instructions. Treatment planning requires the essential knowledge of the radial and longitudinal dose distribution, as well as information about geometrical uncertainties. The present study includes a whole data set for daily clinical practice using a commercially available device for endovascular brachytherapy (Novoste Betacath). The dose distribution around the 90Sr seed train was calculated with Monte-Carlo algorithms and verified by film dosimetry. The radial dose profile was determined starting from the surface of the delivery catheter Calculated dose profiles were in good agreement to measured values. The geometrical uncertainties were estimated with a retrospective analysis of 51 patient treatments. This shows the importance of using a safety margin of at least 10 mm between Intervention Length and Reference Isodose Length. Based on the longitudinal dose profile and the necessary safety margins, the maximum treatable intervention length is 25 mm and 45 mm for a 40 mm and 60 mm source train, respectively.

  8. SU-E-T-635: Process Mapping of Eye Plaque Brachytherapy

    SciTech Connect

    Huynh, J; Kim, Y

    2015-06-15

    Purpose: To apply a risk-based assessment and analysis technique (AAPM TG 100) to eye plaque brachytherapy treatment of ocular melanoma. Methods: The role and responsibility of personnel involved in the eye plaque brachytherapy is defined for retinal specialist, radiation oncologist, nurse and medical physicist. The entire procedure was examined carefully. First, major processes were identified and then details for each major process were followed. Results: Seventy-one total potential modes were identified. Eight major processes (corresponding detailed number of modes) are patient consultation (2 modes), pretreatment tumor localization (11), treatment planning (13), seed ordering and calibration (10), eye plaque assembly (10), implantation (11), removal (11), and deconstruction (3), respectively. Half of the total modes (36 modes) are related to physicist while physicist is not involved in processes such as during the actual procedure of suturing and removing the plaque. Conclusion: Not only can failure modes arise from physicist-related procedures such as treatment planning and source activity calibration, but it can also exist in more clinical procedures by other medical staff. The improvement of the accurate communication for non-physicist-related clinical procedures could potentially be an approach to prevent human errors. More rigorous physics double check would reduce the error for physicist-related procedures. Eventually, based on this detailed process map, failure mode and effect analysis (FMEA) will identify top tiers of modes by ranking all possible modes with risk priority number (RPN). For those high risk modes, fault tree analysis (FTA) will provide possible preventive action plans.

  9. Stereotactic interstitial brachytherapy of malignant astrocytomas with remarks on postimplantation computed tomographic appearance

    SciTech Connect

    Willis, B.K.; Heilbrun, M.P.; Sapozink, M.D.; McDonald, P.R.

    1988-09-01

    Seventeen patients were treated with stereotactically implanted high activity iodine-125 seeds, 12 patients for recurrent malignant astrocytomas (Protocol I) and 5 patients for newly diagnosed glioblastomas (Protocol II). Total radiation dosage to the recurrent tumors in Protocol I, including prior external beam irradiation, averaged 13,500 cGy. In the follow-up period of 6 to 50 months, the survival rate was 93% at 6 months, 60% at 12 months, 50% at 18 months, and 38% at 24 months after implantation. In Protocol II, brachytherapy was used as an interstitial radiation boost to the conventional treatment of newly diagnosed glioblastomas. External beam therapy and interstitial brachytherapy provided 11,000 cGy to these tumors. In the follow-up period of 15 to 27 months, there was a 100% survival at 12 months, 75% at 18 months, and 25% at 24 months after implantation. Eight of our 17 patients required reoperation for persistent or recurrent mass lesions at 6 to 15 months postimplantation; 7 were found to harbor masses of radionecrosis containing nests of anaplastic astrocytes; 1 had frank tumor recurrence. Median survival in this group of patients requiring reoperation was 18.7 months postimplantation. In a review of postimplantation computed tomographic scans, significant mass effect and crossover of hypodensity or enhancement into the corpus callosum or opposite hemisphere were found to have prognostic significance; persistent areas of contrast enhancement and excessive peritumoral hypodensity did not.

  10. Intercomparison of ionisation chamber measurements from (125)I seeds.

    PubMed

    Davies, J B; Enari, K F; Baldock, C

    2007-05-01

    The reference air kerma rates of a set of individual (125)I seeds were calculated from current measurements of a calibrated re-entrant ionisation chamber. Single seeds were distributed to seven Australian brachytherapy centres for the same measurement with the user's instrumentation. Results are expressed as the ratio of the reference air kerma rate measured by the Australian Nuclear Science & Technology Organisation (ANSTO) to the reference air kerma rate measured at the centre. The intercomparison ratios of all participants were within +/-5% of unity.

  11. [Pulsed-dose rate brachytherapy in cervical cancers: why, how?].

    PubMed

    Mazeron, R; Dumas, I; Martin, V; Martinetti, F; Benhabib-Boukhelif, W; Gensse, M-C; Chargari, C; Guemnie-Tafo, A; Haie-Méder, C

    2014-10-01

    The end of the production of 192 iridium wires terminates low dose rate brachytherapy and requires to move towards pulsed-dose rate or high-dose rate brachytherapy. In the case of gynecological cancers, technical alternatives exist, and many teams have already taken the step of pulsed-dose rate for scientific reasons. Using a projector source is indeed a prerequisite for 3D brachytherapy, which gradually installs as a standard treatment in the treatment of cervical cancers. For other centers, this change implies beyond investments in equipment and training, organizational consequences to ensure quality.

  12. Biomaterial characteristics and application of silicone rubber and PVA hydrogels mimicked in organ groups for prostate brachytherapy.

    PubMed

    Li, Pan; Jiang, Shan; Yu, Yan; Yang, Jun; Yang, Zhiyong

    2015-09-01

    It is definite that transparent material with similar structural characteristics and mechanical properties to human tissue is favorable for experimental study of prostate brachytherapy. In this paper, a kind of transparent polyvinyl alcohol (PVA) hydrogel and silicone rubber are developed as suitable substitutions for human soft tissue. Segmentation and 3D reconstruction of medical image are performed to manufacture the mould of organ groups through rapid prototyping technology. Micro-structure observation, force test and CCD deformation test have been conducted to investigate the structure and mechanical properties of PVA hydrogel used in organ group mockup. Scanning electron microscope (SEM) image comparison results show that PVA hydrogel consisting of 3 g PVA, 17 g de-ionized water, 80 g dimethyl-sulfoxide (DMSO), 4 g NaCl, 1.5 g NaOH, 3 g epichlorohydrin (ECH) and 7 freeze/thaw cycles reveals similar micro-structure to human prostate tissue. Through the insertion force comparison between organ group mockup and clinical prostate brachytherapy, PVA hydrogel and silicone rubber are found to have the same mechanical properties as prostate tissue and muscle. CCD deformation test results show that insertion force suffers a sharp decrease and a relaxation of tissue deformation appears when needle punctures the capsule of prostate model. The results exhibit that organ group mockup consisting of PVA hydrogel, silicone rubber, membrane and agarose satisfies the needs of prostate brachytherapy simulation in general and can be used to mimic the soft tissues in pelvic structure.

  13. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    PubMed Central

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  14. SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System

    SciTech Connect

    Jiang, S; Zhao, S; Chen, Y; Li, Z; Li, P; Huang, Z; Yang, Z; Zhang, X

    2014-06-01

    Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method while the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and

  15. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose

  16. Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application

    PubMed Central

    Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S.

    2015-01-01

    Abstract This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543

  17. Peripheral nerve reconstruction with epsilon-caprolactone conduits seeded with vasoactive intestinal peptide gene-transfected mesenchymal stem cells in a rat model

    NASA Astrophysics Data System (ADS)

    Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.

    2014-08-01

    Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.

  18. Monte Carol-Based Dosimetry of Beta-Emitters for Intravascular Brachytherapy

    SciTech Connect

    Choi, C.K.

    2002-06-25

    Monte Carlo simulations for radiation dosimetry and the experimental verifications of the simulations have been developed for the treatment geometry of intravascular brachytherapy, a form of radionuclide therapy for occluded coronary disease (restenosis). Monte Carlo code, MCNP4C, has been used to calculate the radiation dose from the encapsulated array of B-emitting seeds (Sr/Y-source train). Solid water phantoms have been fabricated to measure the dose on the radiochromic films that were exposed to the beta source train for both linear and curved coronary vessel geometries. While the dose difference for the 5-degree curved vessel at the prescription point of f+2.0 mm is within the 10% guideline set by the AAPM, however, the difference increased dramatically to 16.85% for the 10-degree case which requires additional adjustment for the acceptable dosimetry planning. The experimental dose measurements agree well with the simulation results

  19. [Intraoperative and post-implant dosimetry in patients treated with permanent prostate implant brachytherapy].

    PubMed

    Herein, András; Ágoston, Péter; Szabó, Zoltán; Jorgo, Kliton; Markgruber, Balázs; Pesznyák, Csilla; Polgár, Csaba; Major, Tibor

    2015-06-01

    The purpose of our work was to compare intraoperative and four-week post-implant dosimetry for loose and stranded seed implants for permanent prostate implant brachytherapy. In our institute low-dose-rate (LDR) prostate brachytherapy is performed with encapsulated I-125 isotopes (seeds) using transrectal ultrasound guidance and metal needles. The SPOT PRO 3.1 (Elekta, Sweden) system is used for treatment planning. In this study the first 79 patients were treated with loose seed (LS) technique, the consecutive patients were treated with stranded seed (SS) technique. During intraoperative planning the dose constraints were the same for both techniques. All LSs were placed inside the prostate capsule, while with SS a 2 mm margin around the prostate was allowed for seed positioning. The prescribed dose for the prostate was 145 Gy. This study investigated prostate dose coverage in 30-30 randomly selected patients with LS and SS. Four weeks after the implantation native CT and MRI were done and CT/MRI image fusion was performed. The target was contoured on MRI and the plan was prepared on CT data. To assess the treatment plan dose-volume histograms were used. For the target coverage V100, V90, D90, D100, for the dose inhomogeneity V150, V200, and the dose-homogeneity index (DHI), for dose conformality the conformal index (COIN) were calculated. Intraoperative and postimplant plans were compared. The mean V100 values decreased at four-week plan for SS (97% vs. 84%) and for LS (96% vs. 80%) technique, as well. Decrease was observed for all parameters except for the DHI value. The DHI increased for SS (0.38 vs. 0.41) and for LS (0.38 vs. 0.47) technique, as well. The COIN decreased for both techniques at four-week plan (SS: 0.63 vs. 0.57; LS: 0.67 vs. 0.50). All differences were significant except for the DHI value at SS technique. The percentage changes were not significant, except the COIN value. The dose coverage of the target decreased significantly at four-week plans

  20. BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation

    SciTech Connect

    Safavi-Naeini, M.; Han, Z.; Alnaghy, S.; Cutajar, D.; Petasecca, M.; Lerch, M. L. F.; Rosenfeld, A. B.; Franklin, D. R.; Bucci, J.; Carrara, M.; Zaider, M.

    2015-12-15

    Purpose: This paper presents initial experimental results from a prototype of high dose rate (HDR) BrachyView, a novel in-body source tracking system for HDR brachytherapy based on a multipinhole tungsten collimator and a high resolution pixellated silicon detector array. The probe and its associated position estimation algorithms are validated and a comprehensive evaluation of the accuracy of its position estimation capabilities is presented. Methods: The HDR brachytherapy source is moved through a sequence of positions in a prostate phantom, for various displacements in x, y, and z. For each position, multiple image acquisitions are performed, and source positions are reconstructed. Error estimates in each dimension are calculated at each source position and combined to calculate overall positioning errors. Gafchromic film is used to validate the accuracy of source placement within the phantom. Results: More than 90% of evaluated source positions were estimated with an error of less than one millimeter, with the worst-case error being 1.3 mm. Experimental results were in close agreement with previously published Monte Carlo simulation results. Conclusions: The prototype of HDR BrachyView demonstrates a satisfactory level of accuracy in its source position estimation, and additional improvements are achievable with further refinement of HDR BrachyView’s image processing algorithms.

  1. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    SciTech Connect

    Harkenrider, Matthew M. Alite, Fiori; Silva, Scott R.; Small, William

    2015-07-15

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy.

  2. Brachytherapy in India – a long road ahead

    PubMed Central

    Mahantshetty, Umesh; Shrivastava, Shyamkishore

    2014-01-01

    Brachytherapy can play a very important role in the definitive cure by radiation therapy in India. However, except for in a handful of centres, the majority of hospitals use it only for intracavitary treatment. The most probable reasons for such are the lack of logistical resources in terms of trained personal and supporting staff, rather than lack of radiotherapy machines and equipment. In this article, the authors look into the various aspects of brachytherapy in India: from its beginning to present days. The authors point out the resources available, shortcomings, and some possible solutions to make use of brachytherapy more popular and effective. Apart from presenting a picture of the present scenario, the article pays attention to the positive signs of brachytherapy becoming more popular in the near future. PMID:25337139

  3. Adjuvant brachytherapy in the treatment of soft-tissue sarcomas.

    PubMed

    Crownover, R L; Marks, K E

    1999-06-01

    For many patients with STS, administering adjuvant radiation treatments in the form of interstitial brachytherapy provides an excellent alternative to a protracted course of EBRT. Ideal patients are those with intermediate- or high-grade tumors amenable to en bloc resection. Attractive features of this approach include an untainted pathologic specimen, expeditious completion of treatment, reduction in wound complications, and improved functional outcome. Brachytherapy can permit definitive reirradiation by tightly localizing the high dose radiation exposure. It is also useful in patients who are known to have or be at high risk of metastatic disease, for whom the rapid completion of local treatment allows systemic therapy to begin quickly. Introduction of HDR techniques has shifted the delivery of brachytherapy from inpatient solitary confinement to an outpatient setting. Early reports using HDR brachytherapy for treatment of adult and pediatric STS are quite encouraging. The clinical equivalence between hyperfractionated HDR schedules and traditional LDR techniques is gaining acceptance.

  4. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes.

  5. TU-AB-201-10: Novel Conformal Skin Brachytherapy Device

    SciTech Connect

    Ferreira, C; Johnson, D; Ahmad, S; Rasmussen, K; Jung, J

    2015-06-15

    Purpose: A novel conformal skin brachytherapy (CSBT) device was developed to provide patient specific treatment for small inoperable lesions and irregular surfaces that are not good candidates for electron external beam, e.g. eyelids, nose, lips, ears, etc. Methods: A prototype was built and tested using radioactive seeds spaced by 1.5 mm attached to a 3D printed template. Seeds were allowed to move independently at treatment surface to conform to target geometry. Beta-emitter Praseodymium-142 (half-life: 19.12 h, average beta energy: 809 keV) and Iodine-125 Model 6711 (half-life: 59.4 days, average gamma energy: 28 keV) seeds were used to test the feasibility of the device in solid water phantom for different prescription depths and surface areas. Percent depth doses and dose profiles were analyzed. MCNPX2.6 Monte Carlo Simulation and Gafchromic EBT3 film measurements were performed for a single Pr-142 seed. Treatment with nineteen I-125 seeds was planned in BrachyVision and measured experimentally for a total dose of 500 cGy at 5.0 mm depth. Results: For a single Pr-142 seed, dose was 500.0 cGy at surface and 17.4 cGy at 5.00 mm. BrachyVision planned and film doses for I-125 seed matrix were 500 cGy and 473.5 cGy at 5 mm depth and 171.0 cGy and 201.0 cGy at 10 mm depth. Total covered surface area for Pr-142 and I-125 were 2.35 mm{sup 2} and 88.24 mm{sup 2} respectively. Profile dose fall-off showed to be very conformal to contact area with 50% of the total surface dose from a single Pr-142 and array of I-125 seeds being deposited at 0.72 mm and 0.65 mm respectively from the central axis. Conclusion: CSBT device provides a high conformal dose to small surfaces. BrachyVision can be used to predict clinical dose distributions for multiple seeds matrix. Different radioactive seeds can be used to suit prescription depth and treatment area.

  6. [Edge effect and late thrombosis -- inevitable complications of vascular brachytherapy?].

    PubMed

    Schiele, T M; Staber, L; Kantlehner, R; Pöllinger, B; Dühmke, E; Theisen, K; Klauss, V

    2002-11-01

    Restenosis is the limiting entity after percutaneous coronary angioplasty. Vascular brachytherapy for the treatment of in-stent restenosis has been shown to reduce the repeat restenosis rate and the incidence of major adverse events in several randomized trials. Besides the beneficial effects, brachytherapy yielded some unwanted side effects. The development of new stenoses at the edges of the target lesion treated with radiation is termed edge effect. It occurs after afterloading brachytherapy as well as after implantation of radioactive stents. It is characterized by extensive intimal hyperplasia and negative remodeling. As contributing factors the axial dose fall-off, inherent to all radioactive sources, and the application of vessel wall trauma by angioplasty have been identified. The combination of both factors, by insufficient overlap of the radiation length over the injured vessel segment, has been referred to as geographic miss. It has been shown to be associated with a very high incidence of the edge effect. Avoidance of geographic miss is strongly recommended in vascular brachytherapy procedures. Late thrombosis after vascular brachytherapy is of multifactorial origin. It comprises platelet recruitment, fibrin deposition, disturbed vasomotion, non-healing dissection and stent malapposition predisposing to turbulent blood flow. The strongest predictors for late thrombosis are premature discontinuation of antiplatelet therapy and implantation of new stents during the brachytherapy procedure. With a consequent and prolonged antiplatelet therapy, the incidence of late thrombosis has been reduced to placebo levels. Edge effect and late thrombosis represent unwanted side effects of vascular brachytherapy. By means of a thorough treatment planning and prolonged antiplatelet therapy their incidences can be largely reduced. With regard to the very favorable net effect, they do not constitute relevant limitations of vascular brachytherapy.

  7. Thermoluminescent and Monte Carlo dosimetry of a new 170Tm brachytherapy source.

    PubMed

    Nazari, Sona; Sadeghi, Mahdi; Shirvani-Arani, Simindokht; Bahrami-Samani, Ali; Saidi, Pooneh

    2014-03-01

    In this Study characteristics of a new 170Tm brachytherapy seed using thermoluminescent dosimeter and also the Monte Carlo simulations to evaluate between calculated and measured values was determined. Titanium tube contained Tm(NO3)3 powders bombardment at the Tehran Research Reactor (TRR) for a period of 7 days at a flux of 2-3 × 10(13) neutrons/cm2 s. To obtain the radial dose function, g(r), and the anisotropy function, F(r, θ), according to the AAPM TG-43U1 recommendations, 30 cm × 30 cm × 15 cm phantoms of Perspex slabs were used. Brachytherapy dose distributions were simulated with the MCNP5 Monte Carlo (MC) radiation transport code. The MCPLIB04 photon cross-section library was applied using data from ENDF/B-VI. Cell-heating tally, F6 was employed to calculate absorbed dose in two separate runs for both beta and gamma particles. The calculated dose rate constant for the HDR source was found to be 1.113 ± 0.021 cGyU(-1) h(-1). Nominal uncertainty in the measured and calculated radial dose functions, g(r), for the IR-(170)Tm source in Perspex is tabulated is approximately 6% (ranging from 2% to 9%). The anisotropy function, F(r, θ), of the IR-(170)Tm source was measured at radial distances of r = 1.5, 2, 3, 5 cm relative to the seed center, and polar angles θ ranging from 0° to 330° in 30° increments.

  8. SU-E-T-259: Development of a Primary Standard for LDR Brachytherapy

    SciTech Connect

    Shen, H; McEwen, M

    2015-06-15

    Purpose: The National Research Council initiated a program in 2012 to develop a primary standard to calibrate I-125 and Pd-103 sources used for LDR brachytherapy and disseminate this through calibration services to Canadian users. This will simplify procedures as Canadian cancer centres currently have to ship instruments to the US. Methods: The standard is based on a commercial version of the wide-angle free air chamber (WAFAC) pioneered by NIST. Significant enhancements were implemented to improve signal-to-noise and measurement reproducibility and eliminate electric field effects. Validation of this ionization chamber was then carried out in a low-energy X -ray beam (∼ 31 keV) where the dose rate had been previously established using the existing NRC primary standard free-air chamber. As a final component of this initial testing, measurements were made with a set of I-125 seeds (with air kerma strength traceable to NIST). Results: Excellent agreement of the two NRC free-air chambers was obtained within the combined standard uncertainty of 0.5 %. However, it was found that the WAFAC response is very sensitive to the beam geometry (distance from the source, diameter of the beam-defining aperture, etc) and Monte Carlo calculations, carried out to evaluate these geometry corrections, have confirmed the experimental results. The results for the seed measurements indicated a precision of better than 1 % is achievable for a reasonable acquisition time and the air kerma strength agreed with the manufacturer (NIST-traceable) value within 2 %. Conclusion: The prototype primary standard for LDR brachytherapy has met accuracy target of 3 % for the determination of air kerma strength. Work is ongoing to refine operation of the device and develop the calibration protocol for clinical users, with an anticipated launch of a calibration service in late 2015.

  9. I-125 seed calibration using the SeedSelectron® afterloader: a practical solution to fulfill AAPM-ESTRO recommendations

    PubMed Central

    Perez-Calatayud, Jose; Richart, Jose; Guirado, Damián; Pérez-García, Jordi; Rodríguez, Silvia; Santos, Manuel

    2012-01-01

    Purpose SeedSelectron® v1.26b (Nucletron BV, The Netherlands) is an afterloader system used in prostate interstitial permanent brachytherapy with I-125 selectSeed seeds. It contains a diode array to assay all implanted seeds. Only one or two seeds can be extracted during the surgical procedure and assayed using a well chamber to check the manufacturer air-kerma strength (SK) and to calibrate the diode array. Therefore, it is not feasible to assay 5–10% seeds as required by the AAPM-ESTRO. In this study, we present a practical solution of the SeedSelectron® users to fulfill the AAPM- ESTRO recommendations. Material and methods The method is based on: a) the SourceCheck® well ionization chamber (PTW, Germany) provided with a PTW insert; b) n = 10 selectSeed from the same batch and class as the seeds for the implant; c) the Nucletron insert to accommodate the n = 10 seeds on the SourceCheck® and to measure their averaged SK. Results for 56 implants have been studied comparing the SK value from the manufacturer with the one obtained with the n = 10 seeds using the Nucletron insert prior to the implant and with the SK of just one seed measured with the PTW insert during the implant. Results We are faced with SK deviation for individual seeds up to 7.8%. However, in the majority of cases SK is in agreement with the manufacturer value. With the method proposed using the Nucletron insert, the large deviations of SK are reduced and for 56 implants studied no deviation outside the range of the class were found. Conclusions The new Nucletron insert and the proposed procedure allow to evaluate the SK of the n = 10 seeds prior to the implant, fulfilling the AAPM-ESTRO recommendations. It has been adopted by Nucletron to be extended to seedSelectron® users under request. PMID:23346136

  10. The evolution of computerized treatment planning for brachytherapy: American contributions

    PubMed Central

    Rivard, Mark J.

    2014-01-01

    Purpose To outline the evolution of computerized brachytherapy treatment planning in the United States through a review of technological developments and clinical practice refinements. Material and methods A literature review was performed and interviews were conducted with six participants in the development of computerized treatment planning for brachytherapy. Results Computerized brachytherapy treatment planning software was initially developed in the Physics Departments of New York's Memorial Hospital (by Nelson, Meurk and Balter), and Houston's M. D. Anderson Hospital (by Stovall and Shalek). These public-domain programs could be used by institutions with adequate computational resources; other clinics had access to them via Memorial's and Anderson's teletype-based computational services. Commercial brachytherapy treatment planning programs designed to run on smaller computers (Prowess, ROCS, MMS), were developed in the late 1980s and early 1990s. These systems brought interactive dosimetry into the clinic and surgical theatre. Conclusions Brachytherapy treatment planning has evolved from systems of rigid implant rules to individualized pre- and intra-operative treatment plans, and post-operative dosimetric assessments. Brachytherapy dose distributions were initially calculated on public domain programs on large regionally located computers. With the progression of computer miniaturization and increase in processor speeds, proprietary software was commercially developed for microcomputers that offered increased functionality and integration with clinical practice. PMID:25097560

  11. Influence of Dose on Risk of Acute Urinary Retention After Iodine-125 Prostate Brachytherapy

    SciTech Connect

    Roeloffzen, Ellen M.A.; Battermann, Jan J.; Deursen, Marijke J.H. van; Monninkhof, Evelyn M.; Visscher, Mareije I.; Moerland, Marinus A.; Vulpen, Marco van

    2011-07-15

    Purpose: To assess the influence of dose on the risk of acute urinary retention (AUR) after iodine-125 prostate brachytherapy. Methods and Materials: Between January 2005 and December 2008, 714 consecutive patients with localized prostate cancer were treated with iodine-125 prostate brachytherapy at our department. All patients completed four imaging studies: magnetic resonance imaging before and 4 weeks after treatment and intraoperative three-dimensional transrectal ultrasonography before and after implantation. The development of AUR was prospectively recorded. The evaluated treatment and dosimetric parameters included prostate volume, number of needles and seeds used, intra- and postoperative prostate edema, percentage of prostate volume receiving 100%, 150%, and 200% of the prescribed dose to the prostate, minimal dose received by 90% of the prostate volume, and percentage of the urethra receiving 100%, 150%, and 200% of the prescribed dose. Logistic regression analysis was used to examine which factors were associated with AUR. Results: Of the 714 patients, 57 (8.0%) developed AUR. On univariate analysis, the following treatment and dosimetric factors were significantly associated with AUR: International Prostate Symptom Score (odds ratio [OR], 2.07, per 10-point increase), preimplant prostate volume (OR, 1.06), postimplant prostate volume (OR, 1.04), number of needles used (OR, 1.09), and number of seeds used (OR, 1.03). On multivariate analysis, the only independent predictive factors for AUR were pretreatment prostate volume (OR, 1.05) and International Prostate Symptom Score (OR, 1.76, per 10-point increase). Patients with a pretreatment prostate volume >35 cm{sup 3} had a 10.4% risk of developing AUR compared with 5.4% for those with a prostate volume of {<=}35 cm{sup 3}. No association was found between any of the dosimetric parameters and the development of AUR. Conclusion: The radiation dose, within the range studied, did not influence the risk of AUR

  12. A review of the clinical experience in pulsed dose rate brachytherapy

    PubMed Central

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose. PMID:26290399

  13. A review of the clinical experience in pulsed dose rate brachytherapy.

    PubMed

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N; Pieters, Bradley R

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose.

  14. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M.; Furutani, K. M.

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue

  15. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  16. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4

    NASA Astrophysics Data System (ADS)

    Pope, D. J.; Cutajar, D. L.; George, S. P.; Guatelli, S.; Bucci, J. A.; Enari, K. E.; Miller, S.; Siegele, R.; Rosenfeld, A. B.

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences. Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  17. Predictors of Metastatic Disease After Prostate Brachytherapy

    SciTech Connect

    Forsythe, Kevin; Burri, Ryan; Stone, Nelson; Stock, Richard G.

    2012-06-01

    Purpose: To identify predictors of metastatic disease after brachytherapy treatment for prostate cancer. Methods and Materials: All patients who received either brachytherapy alone (implant) or brachytherapy in combination with external beam radiation therapy for treatment of localized prostate cancer at The Mount Sinai Hospital between June 1990 and March 2007 with a minimum follow-up of 2 years were included. Univariate and multivariable analyses were performed on the following variables: risk group, Gleason score (GS), clinical T stage, pretreatment prostate-specific antigen level, post-treatment prostate-specific antigen doubling time (PSA-DT), treatment type (implant vs. implant plus external beam radiation therapy), treatment era, total biological effective dose, use of androgen deprivation therapy, age at diagnosis, and race. PSA-DT was analyzed in the following ordinate groups: 0 to 90 days, 91 to 180 days, 180 to 360 days, and greater than 360 days. Results: We included 1,887 patients in this study. Metastases developed in 47 of these patients. The 10-year freedom from distant metastasis (FFDM) rate for the entire population was 95.1%. Median follow-up was 6 years (range, 2-15 years). The only two significant predictors of metastatic disease by multivariable analyses were GS and PSA-DT (p < 0.001 for both variables). Estimated 10-year FFDM rates for GS of 6 or less, GS of 7, and GS of 8 or greater were 97.9%, 94.3%, and 76.1%, respectively (p < 0.001). Estimated FFDM rates for PSA-DT of 0 to 90 days, 91 to 180 days, 181 to 360 days, and greater than 360 days were 17.5%, 67.9%, 74%, and 94.8%, respectively (p < 0.001). Estimated 10-year FFDM rates for the low-, intermediate-, and high-risk groups were 98.6%, 96.2%, and 86.7%, respectively. A demographic shift to patients presenting with higher-grade disease in more recent years was observed. Conclusions: GS and post-treatment PSA-DT are both statistically significant independent predictors of metastatic

  18. Monte Carlo calculated TG-60 dosimetry parameters for the {beta}{sup -} emitter {sup 153}Sm brachytherapy source

    SciTech Connect

    Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.; Tenreiro, Claudio

    2010-10-15

    Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters of AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.

  19. Paddle-based rotating-shield brachytherapy

    PubMed Central

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Dadkhah, Hossein; Bhatia, Sudershan K.; Buatti, John M.; Xu, Weiyu; Wu, Xiaodong

    2015-01-01

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm3 (D2cm3) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy3, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D90 increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy10, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D90, compared to D-RSBT, were 16.6, 12.9, 7.2, 3.7, and 1.7 Gy10

  20. Harmony search optimization for HDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Panchal, Aditya

    In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was

  1. Paddle-based rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Xu, Weiyu; Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M.; Dadkhah, Hossein; Wu, Xiaodong

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  2. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    SciTech Connect

    Smith, Grace L.; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  3. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    PubMed Central

    Smith, Grace L; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A; Smith, Benjamin D

    2015-01-01

    Background Breast brachytherapy after lumpectomy is controversial in younger patients, as effectiveness is unclear and selection criteria are debated. Methods Using MarketScan® healthcare claims data, we identified 45,884 invasive breast cancer patients (ages 18–64), treated from 2003–2010 with lumpectomy, followed by brachytherapy (n=3,134) or whole breast irradiation (WBI) (n=42,750). We stratified patients into risk groups, based on age (Age<50 vs. Age≥50) and endocrine therapy status (Endocrine− vs. Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy vs. WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results Brachytherapy utilization increased from 2003 to 2010: In patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 vs. 32% of WBI patients (P<0.001); while 41% of brachytherapy patients were Endocrine- vs. 44% of WBI patients (P=0.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs. 9.0% after WBI (Hazard ratio[HR]=2.18, 1.37–3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs. 4.9%; HR=1.76, 1.26–2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs. 4.5%; HR=1.18, 0.61–2.31); Endocrine+/Age≥50 (4.2% vs. 2.4%; HR=1.71, 1.16–2.51). Conclusion In this younger cohort, endocrine status was a valuable discriminatory factor predicting subsequent mastectomy risk after brachytherapy vs. WBI and therefore may be useful for selecting appropriate

  4. Prostate brachytherapy in patients with median lobe hyperplasia.

    PubMed

    Wallner, K; Smathers, S; Sutlief, S; Corman, J; Ellis, W

    2000-06-20

    Our aim was to document the technical and clinical course of prostate brachytherapy patients with radiographic evidence of median lobe hyperplasia (MLH). Eight patients with MLH were identified during our routine brachytherapy practice, representing 9% of the 87 brachytherapy patients treated during a 6-month period. No effort was made to avoid brachytherapy in patients noted to have MLH on diagnostic work-up. Cystoscopic evaluation was not routinely performed. Postimplant axial computed tomographic (CT) images of the prostate were obtained at 0.5 cm intervals. Preimplant urinary obstructive symptoms were quantified by the criteria of the American Urologic Association (AUA). Each patient was contacted during the writing of this report to update postimplant morbidity information. There was no apparent association between the degree of MLH and preimplant prostate volume or AUA score. Intraoperatively, we were able to visualize MLH by transrectal ultrasound and did not notice any particular difficulty placing sources in the MLH tissue or migration of sources out of the tissue. The prescription isodose covered from 81% to 99% of the postimplant CT-defined target volume, achieving adequate dose to the median lobe tissue in all patients. Two of the eight patients developed acute, postimplant urinary retention. The first patient required intermittent self-catheterization for 3 months and then resumed spontaneous urination. MLH does not appear to be a strong contraindication to prostate brachytherapy, and prophylactic resection of hypertrophic tissue in such patients is probably not warranted. Int. J. Cancer (Radiat. Oncol. Invest.) 90, 152-156 (2000).

  5. Percutaneous interstitial brachytherapy for adrenal metastasis: technical report.

    PubMed

    Kishi, Kazushi; Tamura, Shinji; Mabuchi, Yasushi; Sonomura, Tetsuo; Noda, Yasutaka; Nakai, Motoki; Sato, Morio; Ino, Kazuhiko; Yamanaka, Noboru

    2012-09-01

    We developed and evaluated the feasibility of a brachytherapy technique as a safe and effective treatment for adrenal metastasis. Adapting a paravertebral insertion technique in radiofrequency ablation of adrenal tumors, we developed an interstitial brachytherapy for adrenal metastasis achievable on an outpatient basis. Under local anesthesia and under X-ray CT guidance, brachytherapy applicator needles were percutaneously inserted into the target. A treatment plan was created to eradicate the tumor while preserving normal organs including the spinal cord and kidney. We applied this interstitial brachytherapy technique to two patients: one who developed adrenal metastasis as the third recurrence of uterine cervical cancer after reirradiation, and one who developed metachronous multiple metastases from malignant melanoma. The whole procedure was completed in 2.5 hours. There were no procedure-related or radiation-related early/late complications. FDG PET-CT images at two and three months after treatment showed absence of FDG uptake, and no recurrence of the adrenal tumor was observed for over seven months until expiration, and for six months until the present, respectively. This interventional interstitial brachytherapy procedure may be useful as a safe and eradicative treatment for adrenal metastasis.

  6. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives

  7. Model-based dose calculations for {sup 125}I lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Furutani, K. M.; Garces, Y. I.; Thomson, R. M.

    2012-07-15

    Purpose: Model-baseddose calculations (MBDCs) are performed using patient computed tomography (CT) data for patients treated with intraoperative {sup 125}I lung brachytherapy at the Mayo Clinic Rochester. Various metallic artifact correction and tissue assignment schemes are considered and their effects on dose distributions are studied. Dose distributions are compared to those calculated under TG-43 assumptions. Methods: Dose distributions for six patients are calculated using phantoms derived from patient CT data and the EGSnrc user-code BrachyDose. {sup 125}I (GE Healthcare/Oncura model 6711) seeds are fully modeled. Four metallic artifact correction schemes are applied to the CT data phantoms: (1) no correction, (2) a filtered back-projection on a modified virtual sinogram, (3) the reassignment of CT numbers above a threshold in the vicinity of the seeds, and (4) a combination of (2) and (3). Tissue assignment is based on voxel CT number and mass density is assigned using a CT number to mass density calibration. Three tissue assignment schemes with varying levels of detail (20, 11, and 5 tissues) are applied to metallic artifact corrected phantoms. Simulations are also performed under TG-43 assumptions, i.e., seeds in homogeneous water with no interseed attenuation. Results: Significant dose differences (up to 40% for D{sub 90}) are observed between uncorrected and metallic artifact corrected phantoms. For phantoms created with metallic artifact correction schemes (3) and (4), dose volume metrics are generally in good agreement (less than 2% differences for all patients) although there are significant local dose differences. The application of the three tissue assignment schemes results in differences of up to 8% for D{sub 90}; these differences vary between patients. Significant dose differences are seen between fully modeled and TG-43 calculations with TG-43 underestimating the dose (up to 36% in D{sub 90}) for larger volumes containing higher proportions of

  8. SU-F-BRA-08: An Investigation of Well-Chamber Responses for An Electronic Brachytherapy Source

    SciTech Connect

    Culberson, W; Micka, J

    2015-06-15

    Purpose: The aim of this study was to investigate the variation of well-type ionization chamber response between a Xoft Axxent™ electronic brachytherapy (EBT) source and a GE Oncoseed™ 6711 I-125 seed. Methods: A new EBT air-kerma standard has recently been introduced by the National Institute of Standards and Technology (NIST). Historically, the Axxent source strength has been based on a well chamber calibration from an I-125 brachytherapy source due to the lack of a primary standard. Xoft utilizes a calibration procedure that employs a GE 6711 seed calibration as a surrogate standard to represent the air-kerma strength of an Axxent source. This method is based on the premise that the energies of the two sources are similar and thus, a conversion factor would be a suitable interim solution until a NIST standard was established. For this investigation, a number of well chambers of the same model type and three different EBT sources were used to determine NIST-traceable calibration coefficients for both the GE 6711 seed and the Axxent source. The ratio of the two coefficients was analyzed for consistency and also to identify any possible correlations with chamber vintage or the sources themselves. Results: For all well chambers studied, the relative standard deviation of the ratio of calibration coefficients between the two standards is less than 1%. No specific trends were found with the well chamber vintage or between the three different EBT sources used. Conclusion: The variation of well chamber calibration coefficients between a Xoft Axxent™ EBT source versus a GE 6711 Oncoseed™ are consistent across well chamber vintage and between sources. The results of this investigation confirm the underlying assumptions and stability of the surrogate standard currently in use by Xoft, and establishes a migration path for future implementation of the new NIST air kerma standard. This research is supported in part by Xoft, a subsidiary of iCAD.

  9. Dosimetric and technical aspects of intraoperative I-125 brachytherapy for stage I non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Johnson, Mark; Colonias, Athanasios; Parda, David; Trombetta, Mark; Gayou, Olivier; Reitz, Bodo; Miften, Moyed

    2007-03-01

    Initial treatment outcome data from our institution for stage I non-small cell lung cancer (NSCLC) patients have shown that sublobar resection in combination with iodine-125 (I-125) brachytherapy is associated with recurrence rates of 2.0%, compared to 18.6% with sublobar resection alone. In this work, the technical and dosimetric aspects required to execute this procedure from the radiation oncology perspective as well as an analysis of the dose distributions of patients treated with this technique are presented. In this treatment technique, I-125 seeds in vicryl suture are embedded into vicryl mesh and surgically inserted providing a 2.0 cm margin on each side of the resection staple line. A nomogram is developed to determine the suture spacing in the vicryl mesh, as a function of seed activity in order to deliver 120 Gy at a distance of 0.5 cm above and below the seed array. Post-operative dosimetry consists of a CT-based planning and dose volume analysis. Dose distributions, dose volume histograms and mean dose data for lung are analysed in a group of patients. Dosimetric results show significant lung sparing with only a small volume of lung irradiated for all patients with mean lung dose values ranging from 1.5 Gy to 5.4 Gy. Lung brachytherapy with I-125 at the time of sublobar resection is a highly conformal option of dose delivery for stage I NSCLC patients with compromised physiologic reserve. Patient-related toxicity clinically measured by loss of pulmonary function and radiation-induced pneumonitis have not been linked to this procedure.

  10. p-type silicon detector for brachytherapy dosimetry.

    PubMed

    Piermattei, A; Azario, L; Monaco, G; Soriani, A; Arcovito, G

    1995-06-01

    The sensitivity of a cylindrical p-type silicon detector was studied by means of air and water measurements using different photon beams. A lead filter cap around the diode was used to minimize the dependence of the detector response as a function of the brachytherapy photon energy. The radial dose distribution of a high-activity 192Ir source in a brachytherapy phantom was measured by means of the shielded diode and the agreement of these data with theoretical evaluations confirms the method used to compensate diode response in the intermediate energy range. The diode sensitivity was constant over a wide range of dose rates of clinical interest; this allowed one to have a small detector calibrated in terms of absorbed dose in a medium. Theoretical evaluations showed that a single shielding filter around the p-type diode is sufficient to obtain accurate dosimetry for 192Ir, 137Cs, and 60Co brachytherapy sources.

  11. Brachytherapy in the treatment of skin cancer: an overview

    PubMed Central

    2015-01-01

    The incidence of skin cancer worldwide is constantly growing and it is the most frequently diagnosed tumor. Brachytherapy (BT) in particular localizations is a valuable tool of the exact radiation depot inside the tumor mass. In localizations such as the face, skull skin and inoperable tumors, relapses after surgery, radiotherapy are usually not suitable for primary or secondary invasive treatment. Brachytherapy is a safe procedure for organs at risk according to rapid fall of a dose outside the axis of the applicator with satisfactory dose localization inside the target. The complications rate is acceptable and treatment costs are low. In some tumors (great skin lesions in the scalp, near eyes or on the nose) BT allows for a great dose reduction in surrounding healthy tissues. Brachytherapy provides minimal dose delivery to surrounding healthy tissue, thus enabling good functional and cosmetic results. Treatment is possible almost in all cases on an outpatient basis. PMID:26759545

  12. In vivo motion and force measurement of surgical needle intervention during prostate brachytherapy

    SciTech Connect

    Podder, Tarun; Clark, Douglas; Sherman, Jason; Fuller, Dave; Messing, Edward; Rubens, Deborah; Strang, John; Brasacchio, Ralph; Liao, Lydia; Ng, W.-S.; Yu Yan

    2006-08-15

    In this paper, we present needle insertion forces and motion trajectories measured during actual brachytherapy needle insertion while implanting radioactive seeds in the prostate glands of 20 different patients. The needle motion was captured using ultrasound images and a 6 degree-of-freedom electromagnetic-based position sensor. Needle velocity was computed from the position information and the corresponding time stamps. From in vivo data we found the maximum needle insertion forces to be about 15.6 and 8.9 N for 17 gauge (1.47 mm) and 18 gauge (1.27 mm) needles, respectively. Part of this difference in insertion forces is due to the needle size difference (17G and 18G) and the other part is due to the difference in tissue properties that are specific to the individual patient. Some transverse forces were observed, which are attributed to several factors such as tissue heterogeneity, organ movement, human factors in surgery, and the interaction between the template and the needle. However, theses insertion forces are significantly responsible for needle deviation from the desired trajectory and target movement. Therefore, a proper selection of needle and modulated velocity (translational and rotational) may reduce the tissue deformation and target movement by reducing insertion forces and thereby improve the seed delivery accuracy. The knowledge gleaned from this study promises to be useful for not only designing mechanical/robotic systems but also developing a predictive deformation model of the prostate and real-time adaptive controlling of the needle.

  13. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  14. Interstitial microwave-induced hyperthermia and iridium brachytherapy for the treatment of obstructing biliary carcinomas.

    PubMed

    Coughlin, C T; Wong, T Z; Ryan, T P; Jones, E L; Crichlow, R W; Spiegel, P K; Jeffery, R

    1992-01-01

    In a phase I clinical study, 10 patients with obstructive biliary carcinomas were treated with single-antenna interstitial microwave hyperthermia and iridium-192 brachytherapy. For each patient a standard biliary drainage catheter was implanted percutaneously through the obstructed common bile duct. This catheter accommodated a single microwave antenna which operated at 915 MHz, and one or two fibreoptic thermometry probes for temperature measurement. Under fluoroscopic guidance the microwave antenna and temperature probes were positioned in the CT-determined tumour mass. The 60-min heat treatment achieved a central tumour temperature of 45-55 degrees C while keeping temperatures at the proximal and distal margins at 43 degrees C. Immediately following the hyperthermia treatment the microwave antenna and temperature probes were removed, and a single strand of iridium-192 double-strength seeds was inserted to irradiate the tumour length. A dose of 5500-7900 cGy calculated at 0.5 cm radially from the catheter was administered over 5-7 days. Upon removal of the iridium a second hyperthermia treatment was performed. A total of 18 hyperthermia treatments were administered to the 10 patients. In two cases the second hyperthermia treatment after brachytherapy was not possible due to a kink in the catheter, or bile precipitation in the catheter. All patients tolerated the procedure well, and there were no acute complications. To evaluate the volumetric heating potential of this hyperthermia method, specific absorption rate (SAR) values were measured at 182 planar points in muscle phantom. Insulated and non-insulated antenna performance was tested at 915 MHz in a biliary catheter filled with air, saline, or bile to mimic clinical treatments. The insulated antenna exhibited the best performance. Differences between antenna performance in saline and bile were also noted. In summary, this technique may have potential for tumours which obstruct biliary drainage and are

  15. Preparation of 103Pd seed-molecular plating of 103Pd onto silver rod.

    PubMed

    Zhang, Chunfu; Wang, Yongxian; Tian, Haibin; Yin, Duanzhi

    2002-09-01

    A method for 103Pd "molecular plating" onto the surface of a silver rod is reported. The optimal composition of the plating bath is as follows: palladium chloride 0.1 mol/l, formaldehyde 2 mol/l, nitric acid 1 mol/l, and formic acid 0.4 mol/l. The 103Pd molecular plating procedure will last 25 min at 30 degrees C. This article provides a valuable experience for the preparation of 103Pd brachytherapy seed.

  16. Nonholonomic catheter path reconstruction using electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor

    2015-03-01

    Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.

  17. Current state of the art brachytherapy treatment planning dosimetry algorithms

    PubMed Central

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  18. Imaging method for monitoring delivery of high dose rate brachytherapy

    DOEpatents

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  19. [Guidelines for external radiotherapy and brachytherapy: 2nd edition].

    PubMed

    Mahé, M-A; Barillot, I; Chauvet, B

    2016-09-01

    In 2007, a first edition was published with the objective to produce guidelines for optimization, harmonization and homogenization of practices in external radiation therapy in France. The second edition, including brachytherapy, has the same objective and takes into account recent technologic improvements (intensity modulation radiation therapy, stereotactic radiotherapy, and 3-dimension brachytherapy) and results of literature. The first part is about daily use of general principles (quality, security, image-guided radiation therapy) and the second is to describe each treatment step in main cancers.

  20. Radiotherapy and brachytherapy for recurrent colorectal cancer

    SciTech Connect

    Nag, S. )

    1991-05-01

    Radical surgical excision of locoregional recurrence of colorectal carcinoma usually produces the best survival and should be attempted whenever possible. However, recurrences are often unresectable; hence palliative local therapy may be indicated. There are several options for the radiation therapy of local, unresectable, recurrent, or metastatic colorectal cancer. Whole pelvis irradiation of 4,000-5,000 cGy followed by a coned-down boost of 1,000-1,500 cGy generally provides good symptomatic palliation in 80-90% of patients, but long-term control or cure is rarely achieved. External beam irradiation of 2,000-3,000 cGy to the whole liver with or without concurrent chemotherapy may be used for palliation of metastatic disease to the liver. A combination of intraoperative radiation therapy applied directly to the tumor bed and external beam irradiation may improve local control and survival rates. Multiple options are available for the intraoperative use of brachytherapy which can deliver high radiation doses to the residual tumor, or tumor bed, sparing normal tissue.

  1. Epimacular brachytherapy for wet AMD: current perspectives

    PubMed Central

    Casaroli-Marano, Ricardo P; Alforja, Socorro; Giralt, Joan; Farah, Michel E

    2014-01-01

    Age-related macular degeneration (AMD) is considered the most common cause of blindness in the over-60 age group in developed countries. There are basically two forms of presentation: geographic (dry or atrophic) and wet (neovascular or exudative). Geographic atrophy accounts for approximately 85%–90% of ophthalmic frames and leads to a progressive degeneration of the retinal pigment epithelium and the photoreceptors. Wet AMD causes the highest percentage of central vision loss secondary to disease. This neovascular form involves an angiogenic process in which newly formed choroidal vessels invade the macular area. Today, intravitreal anti-angiogenic drugs attempt to block the angiogenic events and represent a major advance in the treatment of wet AMD. Currently, combination therapy for wet AMD includes different forms of radiation delivery. Epimacular brachytherapy (EMBT) seems to be a useful approach to be associated with current anti-vascular endothelial growth factor agents, presenting an acceptable efficacy and safety profile. However, at the present stage of research, the results of the clinical trials carried out to date are insufficient to justify extending routine use of EMBT for the treatment of wet AMD. PMID:25210436

  2. Epimacular brachytherapy for wet AMD: current perspectives.

    PubMed

    Casaroli-Marano, Ricardo P; Alforja, Socorro; Giralt, Joan; Farah, Michel E

    2014-01-01

    Age-related macular degeneration (AMD) is considered the most common cause of blindness in the over-60 age group in developed countries. There are basically two forms of presentation: geographic (dry or atrophic) and wet (neovascular or exudative). Geographic atrophy accounts for approximately 85%-90% of ophthalmic frames and leads to a progressive degeneration of the retinal pigment epithelium and the photoreceptors. Wet AMD causes the highest percentage of central vision loss secondary to disease. This neovascular form involves an angiogenic process in which newly formed choroidal vessels invade the macular area. Today, intravitreal anti-angiogenic drugs attempt to block the angiogenic events and represent a major advance in the treatment of wet AMD. Currently, combination therapy for wet AMD includes different forms of radiation delivery. Epimacular brachytherapy (EMBT) seems to be a useful approach to be associated with current anti-vascular endothelial growth factor agents, presenting an acceptable efficacy and safety profile. However, at the present stage of research, the results of the clinical trials carried out to date are insufficient to justify extending routine use of EMBT for the treatment of wet AMD.

  3. Postoperative interstitial brachytherapy in eyelid cancer: long term results and assessment of Cosmesis After Interstitial Brachytherapy scale

    PubMed Central

    Basu, Trinanjan; Chaudhary, Suresh; Chaukar, Devendra; Nadkarni, Mandar; GN, Manjunatha

    2014-01-01

    Purpose To analyse feasibility and safety of postoperative interstitial brachytherapy (IBRT) in patients of eyelid cancer treated primarily by surgical excision. Material and methods In this series, 8 patients with eyelid cancer were treated using postoperative interstitial brachytherapy. Patients were followed up for local control, cosmetic outcome, and acute and late toxicities. Cosmetic outcome was measured using a 6 point indigenous Cosmesis After Interstitial Brachytherapy (CAIB) scale. Results The patients were between 23-82 years (median: 71 years). There were 3 females and 5 males, and 3 patients had lesions in upper eyelid. Postoperative high-dose-rate brachytherapy was used in all with 2 catheters implanted in most of them (6 out of 8). Local control was calculated from end of treatment to last follow-up. At last follow-up, all patients remained locally controlled. Two patients had nodal recurrence 6 months after interstitial brachytherapy and were salvaged effectively by external beam radiotherapy. At last follow-up, 7 patients were loco-regionally controlled and one was lost to follow up. All patients had Radiation Therapy Oncology Group (RTOG) grade 1 acute toxicity and 2 had grade 1 Common Terminology Criteria for Adverse Events (CTCAE) version.3 late toxicities. The cosmesis score for the whole group ranged between 0-1 indicating excellent to very good cosmesis. Conclusions Postoperative high-dose-rate brachytherapy resulted in excellent disease control and cosmesis without significant acute or late toxicities. It is an effective modality for treatment of eyelid cancers in selected patients. Future prospective studies with the validation of CAIB scale would give us more insight to this effective yet often ignored modality of IBRT. PMID:25834578

  4. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy

    NASA Astrophysics Data System (ADS)

    Giménez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  5. Dose distribution for endovascular brachytherapy using Ir-192 sources: comparison of Monte Carlo calculations with radiochromic film measurements

    NASA Astrophysics Data System (ADS)

    Sureka, C. S.; Sunny, C. Sunil; Subbaiah, K. V.; Aruna, P.; Ganesan, S.

    2007-01-01

    An analysis of Ir-192 source distribution using the Monte Carlo method and radiochromic film experiments for endovascular brachytherapy is presented. Three different source possibilities, namely, mHDR Ir-192 sources with 5 mm and 2.5 mm step sizes and Ir-192 seed sources with 1 mm air gap are investigated to obtain uniform radial dose distribution throughout the treatment area. From this study, it is inferred that mHDR Ir-192 sources with 2.5 mm step size are effective for getting dose uniformity. Hence, different restenosis geometries, namely, linear, dumb bell and hairpin, are simulated with 2.5 mm step size, 15 mHDR Ir-192 sources using the Monte Carlo technique and the results are compared experimentally by using radiochromic films. The results from both methods agreed to within 7%. Further, it is also inferred that for the dosimetry of endovascular brachytherapy, the film dosimetry may be considered adequate, even if the film calibration is time consuming and requires adequate dosimetric procedures.

  6. SU-E-T-10: A Clinical Implementation and the Dosimetric Evidence in High Dose Rate Vaginal Multichannel Applicator Brachytherapy

    SciTech Connect

    Syh, J; Syh, J; Patel, B; Zhang, J; Wu, H; Rosen, L

    2015-06-15

    Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. The CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.

  7. SU-E-T-150: Brachytherapy QA Employing a High Resolution Liquid Filled Ionisation Chamber Array: Initial Experience and Limitations

    SciTech Connect

    Gainey, M; Kollefrath, M; Bruggmoser, G

    2015-06-15

    Purpose: Verifying a complex 3D brachytherapy dose distribution by measurement is non-trivial. Ideally a photon detector array should be independent of energy and angle, have high spatial resolution and be robust for routine clinical use. Methods: An iridium-192 source was used. A PMMA jig was constructed comprising an outer slab and a central insert with eight milled channels for 1.33mm (outer diameter) steel needles, see figure. All calculations were performed using an empty CT study reconstructing eight virtual needles (QA-CT), using the v2 source model (Elekta AG, Sweden). A high resolution liquid filled ionisation chamber array SRS1000, together with Verisoft software v6.0 (PTW Freiburg, Germany), was used to perform measurements of plans of increasing complexity to evaluate its suitability for device- and patient-specific QA. The dimension of backscatter material was investigated. The patient plan dwell time distribution was entered manually into the QA-CT and the dose distribution was calculated. Results: Our measurements indicate that the array is independent of energy and angle. The resulting measured dose values are linearly interpolated to 2025 values. Shifts of 1mm of the entire needle are readily detectable. Individual dwell position shifts (2.5mm) are also readily measurable. Moreover a dwell time increase of 1 second both in the edge and central region are detectable. Conclusion: The high resolution SRS1000 array is a powerful instrument for brachytherapy QA enabling 977 simultaneous measurements to be performed. Our measurements suggest 60mm of RW3 backscatter material upstream and downstream are sufficient. Local percentage difference analysis is useful for device based QA, normalized relative percentage difference is arguably better for patient specific QA. Automated transfer of patient plan dwell time distribution to the QA plan is required to enable a comprehensive patient QA study to be performed. Moreover the described measurement technique

  8. Interstitial brachytherapy of periorificial skin carcinomas of the face: A retrospective study of 97 cases

    SciTech Connect

    Rio, Emmanuel . E-mail: e-rio@nantes.fnclcc.fr; Bardet, Etienne; Ferron, Christophe; Peuvrel, Patrick; Supiot, Stephane; Campion, Loic; Beauvillain De Montreuil, Claude; Mahe, Marc Andre; Dreno, Brigitte

    2005-11-01

    Purpose: To analyze outcomes after interstitial brachytherapy of facial periorificial skin carcinomas. Patients and Methods: We performed a retrospective analysis of 97 skin carcinomas (88 basal cell carcinomas, 9 squamous cell carcinomas) of the nose, periorbital areas, and ears from 40 previously untreated patients (Group 1) and 57 patients who had undergone surgery (Group 2). The average dose was 55 Gy (range, 50-65 Gy) in Group 1 and 52 Gy (range, 50-60 Gy) in Group 2 (mean implantation times: 79 and 74 hours, respectively). We calculated survival rates and assessed functional and cosmetic results de visu. Results: Median age was 71 years (range, 17-97 years). There were 29 T1, 8 T2, 1 T3, and 2 Tx tumors in Group 1. Tumors were <2 cm in Group 2. Local control was 92.5% in Group 1 and 88% in Group 2 (median follow-up, 55 months; range, 6-132 months). Five-year disease-free survival was better in Group 1 (91%; range, 75-97) than in Group 2 (80%; range, 62-90; p = 0.23). Of the 34 patients whose results were reassessed, 8 presented with pruritus or epiphora; 1 Group 2 patient had an impaired eyelid aperture. Cosmetic results were better in Group 1 than in Group 2 with, respectively, 72% (8/11) vs. 52% (12/23) good results and 28 (3/11) vs. 43% (10/23) fair results. Conclusions: Brachytherapy provided a high level of local control and good cosmetic results for facial periorificial skin carcinomas that pose problems of surgical reconstruction. Results were better for untreated tumors than for incompletely excised tumors or tumors recurring after surgery.

  9. SU-E-T-169: Characterization of Pacemaker/ICD Dose in SAVI HDR Brachytherapy

    SciTech Connect

    Kalavagunta, C; Lasio, G; Yi, B; Zhou, J; Lin, M

    2015-06-15

    Purpose: It is important to estimate dose to pacemaker (PM)/Implantable Cardioverter Defibrillator (ICD) before undertaking Accelerated Partial Breast Treatment using High Dose Rate (HDR) brachytherapy. Kim et al. have reported HDR PM/ICD dose using a single-source balloon applicator. To the authors knowledge, there have so far not been any published PM/ICD dosimetry literature for the Strut Adjusted Volume Implant (SAVI, Cianna Medical, Aliso Viejo, CA). This study aims to fill this gap by generating a dose look up table (LUT) to predict maximum dose to the PM/ICD in SAVI HDR brachytherapy. Methods: CT scans for 3D dosimetric planning were acquired for four SAVI applicators (6−1-mini, 6−1, 8−1 and 10−1) expanded to their maximum diameter in air. The CT datasets were imported into the Elekta Oncentra TPS for planning and each applicator was digitized in a multiplanar reconstruction window. A dose of 340 cGy was prescribed to the surface of a 1 cm expansion of the SAVI applicator cavity. Cartesian coordinates of the digitized applicator were determined in the treatment leading to the generation of a dose distribution and corresponding distance-dose prediction look up table (LUT) for distances from 2 to 15 cm (6-mini) and 2 to 20 cm (10–1).The deviation between the LUT doses and the dose to the cardiac device in a clinical case was evaluated. Results: Distance-dose look up table were compared to clinical SAVI plan and the discrepancy between the max dose predicted by the LUT and the clinical plan was found to be in the range (−0.44%, 0.74%) of the prescription dose. Conclusion: The distance-dose look up tables for SAVI applicators can be used to estimate the maximum dose to the ICD/PM, with a potential usefulness for quick assessment of dose to the cardiac device prior to applicator placement.

  10. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  11. Reliability of EUCLIDIAN: An autonomous robotic system for image-guided prostate brachytherapy

    PubMed Central

    Podder, Tarun K.; Buzurovic, Ivan; Huang, Ke; Showalter, Timothy; Dicker, Adam P.; Yu, Yan

    2011-01-01

    Purpose: Recently, several robotic systems have been developed to perform accurate and consistent image-guided brachytherapy. Before introducing a new device into clinical operations, it is important to assess the reliability and mean time before failure (MTBF) of the system. In this article, the authors present the preclinical evaluation and analysis of the reliability and MTBF of an autonomous robotic system, which is developed for prostate seed implantation. Methods: The authors have considered three steps that are important in reliability growth analysis. These steps are: Identification and isolation of failures, classification of failures, and trend analysis. For any one-of-a-kind product, the reliability enhancement is accomplished through test-fix-test. The authors have used failure mode and effect analysis for collection and analysis of reliability data by identifying and categorizing the failure modes. Failures were classified according to severity. Failures that occurred during the operation of this robotic system were considered as nonhomogenous Poisson process. The failure occurrence trend was analyzed using Laplace test. For analyzing and predicting reliability growth, commonly used and widely accepted models, Duane’s model and the Army Material Systems Analysis Activity, i.e., Crow’s model, were applied. The MTBF was used as an important measure for assessing the system’s reliability. Results: During preclinical testing, 3196 seeds (in 53 test cases) were deposited autonomously by the robot and 14 critical failures were encountered. The majority of the failures occurred during the first few cases. The distribution of failures followed Duane’s postulation as well as Crow’s postulation of reliability growth. The Laplace test index was −3.82 (<0), indicating a significant trend in failure data, and the failure intervals lengthened gradually. The continuous increase in the failure occurrence interval suggested a trend toward improved

  12. Reliability of EUCLIDIAN: An autonomous robotic system for image-guided prostate brachytherapy

    SciTech Connect

    Podder, Tarun K.; Buzurovic, Ivan; Huang Ke; Showalter, Timothy; Dicker, Adam P.; Yu, Yan

    2011-01-15

    Purpose: Recently, several robotic systems have been developed to perform accurate and consistent image-guided brachytherapy. Before introducing a new device into clinical operations, it is important to assess the reliability and mean time before failure (MTBF) of the system. In this article, the authors present the preclinical evaluation and analysis of the reliability and MTBF of an autonomous robotic system, which is developed for prostate seed implantation. Methods: The authors have considered three steps that are important in reliability growth analysis. These steps are: Identification and isolation of failures, classification of failures, and trend analysis. For any one-of-a-kind product, the reliability enhancement is accomplished through test-fix-test. The authors have used failure mode and effect analysis for collection and analysis of reliability data by identifying and categorizing the failure modes. Failures were classified according to severity. Failures that occurred during the operation of this robotic system were considered as nonhomogenous Poisson process. The failure occurrence trend was analyzed using Laplace test. For analyzing and predicting reliability growth, commonly used and widely accepted models, Duane's model and the Army Material Systems Analysis Activity, i.e., Crow's model, were applied. The MTBF was used as an important measure for assessing the system's reliability. Results: During preclinical testing, 3196 seeds (in 53 test cases) were deposited autonomously by the robot and 14 critical failures were encountered. The majority of the failures occurred during the first few cases. The distribution of failures followed Duane's postulation as well as Crow's postulation of reliability growth. The Laplace test index was -3.82 (<0), indicating a significant trend in failure data, and the failure intervals lengthened gradually. The continuous increase in the failure occurrence interval suggested a trend toward improved reliability. The MTBF

  13. Novel Silicone-Coated 125I Seeds for the Treatment of Extrahepatic Cholangiocarcinoma.

    PubMed

    Lin, Lizhou; Guo, Lili; Zhang, Weixing; Cai, Xiaobo; Chen, Dafan; Wan, Xinjian

    2016-01-01

    125I seeds coated with titanium are considered a safe and effective interstitial brachytherapy for tumors, while the cost of 125I seeds is a major problem for the patients implanting lots of seeds. The aim of this paper was to develop a novel silicone coating for 125I seeds with a lower cost. In order to show the radionuclide utilization ratio, the silicone was coated onto the seeds using the electro-spinning method and the radioactivity was evaluated, then the anti-tumor efficacy of silicone 125I seeds was compared with titanium 125I seeds. The seeds were divided into four groups: A (control), B (pure silicone), C (silicone 125I), D (titanium 125I) at 2 Gy or 4 Gy. Their anti-tumour activity and mechanism were assessed in vitro and in vivo using a human extrahepatic cholangiocarcinoma cell line FRH-0201 and tumor-bearing BALB/c nude mice. The silicone 125I seeds showed higher radioactivity; the rate of cell apoptosis in vitro and the histopathology in vivo demonstrated that the silicone 125I seeds shared similar anti-tumor efficacy with the titanium 125I seeds for the treatment of extrahepatic cholangiocarcinoma, while they have a much lower cost.

  14. Novel Silicone-Coated 125I Seeds for the Treatment of Extrahepatic Cholangiocarcinoma

    PubMed Central

    Zhang, Weixing; Cai, Xiaobo; Chen, Dafan; Wan, Xinjian

    2016-01-01

    125I seeds coated with titanium are considered a safe and effective interstitial brachytherapy for tumors, while the cost of 125I seeds is a major problem for the patients implanting lots of seeds. The aim of this paper was to develop a novel silicone coating for 125I seeds with a lower cost. In order to show the radionuclide utilization ratio, the silicone was coated onto the seeds using the electro-spinning method and the radioactivity was evaluated, then the anti-tumor efficacy of silicone 125I seeds was compared with titanium 125I seeds. The seeds were divided into four groups: A (control), B (pure silicone), C (silicone 125I), D (titanium 125I) at 2 Gy or 4 Gy. Their anti-tumour activity and mechanism were assessed in vitro and in vivo using a human extrahepatic cholangiocarcinoma cell line FRH-0201 and tumor-bearing BALB/c nude mice. The silicone 125I seeds showed higher radioactivity; the rate of cell apoptosis in vitro and the histopathology in vivo demonstrated that the silicone 125I seeds shared similar anti-tumor efficacy with the titanium 125I seeds for the treatment of extrahepatic cholangiocarcinoma, while they have a much lower cost. PMID:26840346

  15. Introduction of Transperineal Image-Guided Prostate Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2014-07-15

    The modern prostate brachytherapy procedure is characterized by ultrasound guidance, template assistance, and a return to a “closed” transperineal approach. This review traces the introduction and evolution of these elements and charts the development of the procedure from the ashes of previous, failed efforts.

  16. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406... from storage, the name of the individual who removed them from storage, and the location of use; and...

  17. Brachytherapy treatment planning algorithm applied to prostate cancer

    NASA Astrophysics Data System (ADS)

    Herrera-Rodríguez, M. R.; Martínez-Dávalos, A.

    2000-10-01

    An application of Genetic Algorithms (GAs) for treatment planning optimization in prostate brachytherapy is presented. The importance of multi-objective selection criteria based on the contour of the volume of interest and radiosensitive structures such as the rectum and urethra is discussed. First results are obtained for a simple test case which presents radial symmetry.

  18. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  19. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  20. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  1. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  2. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  3. Stereotactic brachytherapy of low-grade cerebral glioma after tumor resection.

    PubMed

    Suchorska, Bogdana; Ruge, Maximilian; Treuer, Harald; Sturm, Volker; Voges, Jürgen

    2011-10-01

    The purpose of this study was to assess the impact of stereotactic brachytherapy (SBT) on survival time and outcome when applied after resection of low-grade glioma (LGG) of World Health Organization grade II. From January 1982 through December 2006 we treated 1024 patients who had glioma with stereotactic implantation of iodine-125 seeds and SBT in accordance with a prospective protocol. For the present analysis, we selected 95 of 277 patients with LGG, in whom SBT was applied to treat progressive (43 patients) or recurrent (52 patients) tumor after resection. At 24 months after seed implantation, the tumor response rate was 35.9%, and the tumor control rate was 97.3%. The median progression-free-survival (PFS) duration after SBT was 52.7 ± 7.1 months. Five-year and 10-year PFS probabilities were 43.4% and 10.7%, respectively. Malignant tumor transformation, the diagnosis "astrocytoma," and tumor volume >20 mL were significantly associated with reduced PFS. Tumor progression or relapse after SBT (53 of 95 patients) was treated with tumor resection, a second SBT, chemotherapy, and/or radiotherapy. The median overall survival duration (from the first diagnosis of LGG until the patient's last contact) was 245.0 ± 4.9 months. Patients still under observation after seed implantation had a median follow-up time of 156.4 ± 55.7 months. Perioperative transient morbidity was 1.1%, and the frequency of permanent morbidity caused by SBT was 3.3%. In conclusion, SBT of recurrent or progressive LGG after resection located in functionally critical brain areas has high local efficacy and comparably low morbidity. Referred to individually adopted glioma treatment concepts SBT provides a reasonably long PFS, thus improving overall survival. In selected patients, SBT can lead to delays in the application of chemotherapy and/or radiotherapy.

  4. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy

    SciTech Connect

    Enger, Shirin A.; Rezaei, Arash; Munck af Rosenschoeld, Per; Lundqvist, Hans

    2006-01-15

    Restenosis is a major problem after balloon angioplasty and stent implantation. The aim of this study is to introduce gadolinium neutron capture brachytherapy (GdNCB) as a suitable modality for treatment of stenosis. The utility of GdNCB in intravascular brachytherapy (IVBT) of stent stenosis is investigated by using the GEANT4 and MCNP4B Monte Carlo radiation transport codes. To study capture rate, Kerma, absorbed dose and absorbed dose rate around a Gd-containing stent activated with neutrons, a 30 mm long, 5 mm diameter gadolinium foil is chosen. The input data is a neutron spectrum used for clinical neutron capture therapy in Studsvik, Sweden. Thermal neutron capture in gadolinium yields a spectrum of high-energy gamma photons, which due to the build-up effect gives an almost flat dose delivery pattern to the first 4 mm around the stent. The absorbed dose rate is 1.33 Gy/min, 0.25 mm from the stent surface while the dose to normal tissue is in order of 0.22 Gy/min, i.e., a factor of 6 lower. To spare normal tissue further fractionation of the dose is also possible. The capture rate is relatively high at both ends of the foil. The dose distribution from gamma and charge particle radiation at the edges and inside the stent contributes to a nonuniform dose distribution. This will lead to higher doses to the surrounding tissue and may prevent stent edge and in-stent restenosis. The position of the stent can be verified and corrected by the treatment plan prior to activation. Activation of the stent by an external neutron field can be performed days after catherization when the target cells start to proliferate and can be expected to be more radiation sensitive. Another advantage of the nonradioactive gadolinium stent is the possibility to avoid radiation hazard to personnel.

  5. Treatment planning for multicatheter interstitial brachytherapy of breast cancer – from Paris system to anatomy-based inverse planning

    PubMed Central

    Polgár, Csaba

    2017-01-01

    In the last decades, treatment planning for multicatheter interstitial breast brachytherapy has evolved considerably from fluoroscopy-based 2D to anatomy-based 3D planning. To plan the right positions of the catheters, ultrasound or computed tomography (CT) imaging can be used, but the treatment plan is always based on postimplant CT images. With CT imaging, the 3D target volume can be defined more precisely and delineation of the organs at risk volumes is also possible. Consequently, parameters calculated from dose-volume histogram can be used for quantitative plan evaluation. The catheter reconstruction is also easier and faster on CT images compared to X-ray films. In high dose rate brachytherapy, using a stepping source, a number of forward dose optimization methods (manual, geometrical, on dose points, graphical) are available to shape the dose distribution to the target volume, and these influence dose homogeneities to different extent. Currently, inverse optimization algorithms offer new possibilities to improve dose distributions further considering the requirements for dose coverage, dose homogeneity, and dose to organs at risk simultaneously and automatically. In this article, the evolvement of treatment planning for interstitial breast implants is reviewed, different forward optimization methods are discussed, and dose-volume parameters used for quantitative plan evaluation are described. Finally, some questions of the inverse optimization method are investigated and initial experiences of the authors are presented. PMID:28344609

  6. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    PubMed

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, < 1 mm, use of the one-dimensional (1D) brachytherapy dosimetry formalism is not recommended due to polar anisotropy. Consequently, 1D brachytherapy dosimetry parameters were not sought. Calculated point-source model radial dose functions at gP(5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1

  7. SU-E-T-477: An Efficient Dose Correction Algorithm Accounting for Tissue Heterogeneities in LDR Brachytherapy

    SciTech Connect

    Mashouf, S; Lai, P; Karotki, A; Keller, B; Beachey, D; Pignol, J

    2014-06-01

    Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented using MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and

  8. Accuracy evaluation of a 3D-printed individual template for needle guidance in head and neck brachytherapy.

    PubMed

    Huang, Ming-Wei; Zhang, Jian-Guo; Zheng, Lei; Liu, Shu-Ming; Yu, Guang-Yan

    2016-11-01

    To transfer the preplan for the head and neck brachytherapy to the clinical implantation procedure, a preplan-based 3D-printed individual template for needle insertion guidance had previously been designed and used. The accuracy of needle insertion using this kind template was assessed in vivo In the study, 25 patients with head and neck tumors were implanted with (125)I radioactive seeds under the guidance of the 3D-printed individual template. Patients were divided into four groups based on the site of needle insertion: the parotid and masseter region group (nine patients); the maxillary and paranasal region group (eight patients); the submandibular and upper neck area group (five patients); and the retromandibular region group (six patients). The distance and angular deviations between the preplanned and placed needles were compared, and the complications and time required for needle insertion were assessed. The mean entrance point distance deviation for all 619 needles was 1.18 ± 0.81 mm, varying from 0.857 ± 0.545 to 1.930 ± 0.843 mm at different sites. The mean angular deviation was 2.08 ± 1.07 degrees, varying from 1.85 ± 0.93 to 2.73 ± 1.18 degrees at different sites. All needles were manually inserted to their preplanned positions in a single attempt, and the mean time to insert one needle was 7.5 s. No anatomical complications related to inaccurately placed implants were observed. Using the 3D-printed individual template for the implantation of (125)I radioactive seeds in the head and neck region can accurately transfer a CT-based preplan to the brachytherapy needle insertion procedure. Moreover, the addition of individual template guidance can reduce the time required for implantation and minimize the damage to normal tissues.

  9. Accuracy evaluation of a 3D-printed individual template for needle guidance in head and neck brachytherapy

    PubMed Central

    Huang, Ming-Wei; Zhang, Jian-Guo; Zheng, Lei; Liu, Shu-Ming; Yu, Guang-Yan

    2016-01-01

    To transfer the preplan for the head and neck brachytherapy to the clinical implantation procedure, a preplan-based 3D-printed individual template for needle insertion guidance had previously been designed and used. The accuracy of needle insertion using this kind template was assessed in vivo. In the study, 25 patients with head and neck tumors were implanted with 125I radioactive seeds under the guidance of the 3D-printed individual template. Patients were divided into four groups based on the site of needle insertion: the parotid and masseter region group (nine patients); the maxillary and paranasal region group (eight patients); the submandibular and upper neck area group (five patients); and the retromandibular region group (six patients). The distance and angular deviations between the preplanned and placed needles were compared, and the complications and time required for needle insertion were assessed. The mean entrance point distance deviation for all 619 needles was 1.18 ± 0.81 mm, varying from 0.857 ± 0.545 to 1.930 ± 0.843 mm at different sites. The mean angular deviation was 2.08 ± 1.07 degrees, varying from 1.85 ± 0.93 to 2.73 ± 1.18 degrees at different sites. All needles were manually inserted to their preplanned positions in a single attempt, and the mean time to insert one needle was 7.5 s. No anatomical complications related to inaccurately placed implants were observed. Using the 3D-printed individual template for the implantation of 125I radioactive seeds in the head and neck region can accurately transfer a CT-based preplan to the brachytherapy needle insertion procedure. Moreover, the addition of individual template guidance can reduce the time required for implantation and minimize the damage to normal tissues. PMID:27422928

  10. SU-E-T-546: Use of Implant Volume for Quality Assurance of Low Dose Rate Brachytherapy Treatment Plans

    SciTech Connect

    Wilkinson, D; Kolar, M

    2014-06-01

    Purpose: To analyze the application of volume implant (V100) data as a method for a global check of low dose rate (LDR) brachytherapy plans. Methods: Treatment plans for 335 consecutive patients undergoing permanent seed implants for prostate cancer and for 113 patients treated with plaque therapy for ocular melanoma were analyzed. Plaques used were 54 COMS (10 to 20 mm, notched and regular) and 59 Eye Physics EP917s with variable loading. Plots of treatment time x implanted activity per unit dose versus v100 ^.667 were made. V100 values were obtained using dose volume histograms calculated by the treatment planning systems (Variseed 8.02 and Plaque Simulator 5.4). Four different physicists were involved in planning the prostate seed cases; two physicists for the eye plaques. Results: Since the time and dose for the prostate cases did not vary, a plot of implanted activity vs V100 ^.667 was made. A linear fit with no intercept had an r{sup 2} = 0.978; more than 94% of the actual activities fell within 5% of the activities calculated from the linear fit. The greatest deviations were in cases where the implant volumes were large (> 100 cc). Both COMS and EP917 plaque linear fits were good (r{sup 2} = .967 and .957); the largest deviations were seen for large volumes. Conclusions: The method outlined here is effective for checking planning consistency and quality assurance of two types of LDR brachytherapy treatment plans (temporary and permanent). A spreadsheet for the calculations enables a quick check of the plan in situations were time is short (e.g. OR-based prostate planning)

  11. Penile Reconstruction

    PubMed Central

    Salgado, Christopher J.; Chim, Harvey; Tang, Jennifer C.; Monstrey, Stan J.; Mardini, Samir

    2011-01-01

    A variety of surgical options exists for penile reconstruction. The key to success of therapy is holistic management of the patient, with attention to the psychological aspects of treatment. In this article, we review reconstructive modalities for various types of penile defects inclusive of partial and total defects as well as the buried penis, and also describe recent basic science advances, which may promise new options for penile reconstruction. PMID:22851914

  12. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Thomson, R. M.; Rogers, D. W. O.

    2011-08-15

    Purpose: To investigate the use of various breast tissue segmentation models in Monte Carlo dose calculations for low-energy brachytherapy. Methods: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations of a breast brachytherapy treatment using TheraSeed Pd-103 seeds with various breast tissue segmentation models. Models used include a phantom where voxels are randomly assigned to be gland or adipose (randomly segmented), a phantom where a single tissue of averaged gland and adipose is present (averaged tissue), and a realistically segmented phantom created from previously published numerical phantoms. Radiation transport in averaged tissue while scoring in gland along with other combinations is investigated. The inclusion of calcifications in the breast is also studied in averaged tissue and randomly segmented phantoms. Results: In randomly segmented and averaged tissue phantoms, the photon energy fluence is approximately the same; however, differences occur in the dose volume histograms (DVHs) as a result of scoring in the different tissues (gland and adipose versus averaged tissue), whose mass energy absorption coefficients differ by 30%. A realistically segmented phantom is shown to significantly change the photon energy fluence compared to that in averaged tissue or randomly segmented phantoms. Despite this, resulting DVHs for the entire treatment volume agree reasonably because fluence differences are compensated by dose scoring differences. DVHs for the dose to only the gland voxels in a realistically segmented phantom do not agree with those for dose to gland in an averaged tissue phantom. Calcifications affect photon energy fluence to such a degree that the differences in fluence are not compensated for (as they are in the no calcification case) by dose scoring in averaged tissue phantoms. Conclusions: For low-energy brachytherapy, if photon transport and dose scoring both occur in an averaged tissue, the resulting DVH for the entire

  13. A radiobiology-based inverse treatment planning method for optimisation of permanent l-125 prostate implants in focal brachytherapy

    NASA Astrophysics Data System (ADS)

    Haworth, Annette; Mears, Christopher; Betts, John M.; Reynolds, Hayley M.; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A.

    2016-01-01

    Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The ‘biological optimisation’ considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.

  14. Intra-Operative Dosimetry in Prostate Brachytherapy

    DTIC Science & Technology

    2008-04-01

    4 A INTRODUCTION For several decades, the definitive treatment for low and medium risk prostate cancer was radical prostatectomy or external...with reduced morbidity. In contemporary practice, however, faulty needle and source placement often cause insufficient dose to the cancer and/or...seeds if the pose of a C-arm is known. The algorithm was validated using phantom and clinical patient data. Index Terms— Tomosynthesis, prostate cancer

  15. Project SEED.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Reports on Project SEED (Summer Educational Experience for the Disadvantaged) a project in which high school students from low-income families work in summer jobs in a variety of academic, industrial, and government research labs. The program introduces the students to career possibilities in chemistry and to the advantages of higher education.…

  16. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  17. SU-E-T-285: Revisiting the Nomogram for Intra-Operative Planning Based Pd-103 Brachytherapy

    SciTech Connect

    Narayanan, S; Cho, P

    2014-06-01

    Purpose: The seed implant technique at our institution involves using a published nomogram for seed ordering based on CT based volume studies of the prostate. Ultrasound volume studies are subsequently used in the operating room for planning a modified peripheral loading with urethra sparing seed implant. The purpose of this study is to determine the appropriate modality for prostate volume measurement and creating an updated nomogram for intra-operative planning specific to our technique for pd-103 brachytherapy for efficient seed ordering. Methods: Prostate volumes based on pre-implant CT (Pre-CT), intra-operative ultrasound (TRUS), and post-implant CT (post-CT) studies as well as the total airkerma strength (AKS) of the implants were analyzed for 135 seed implant cases (69 monotherapy, 66 boost). Regression analysis was performed to derive the relationship between the total AKS and pre-CT and TRUS volumes. The correlation between TRUS and pre-CT volumes and TRUS and post-CT volumes were also studied. Results: Ultrasound based prostate volume exhibited a stronger correlation with total AKS than the pre-implant CT volume (R{sup 2} = 0.97 vs 0.88 for monotherapy and 0.96 vs 0.89 for boost). In general the pre-CT overestimated the prostate volume leading to ordering of a larger number of seeds and thus leading to higher number of unused/wasted seeds. Newly derived TRUS based nomogram was better suited for our technique than the published data. The post-implant CT volume closely followed the ultrasound volume (R{sup 2} = 0.88) as compared to pre-implant CT volumes (R{sup 2} = 0.57). Conclusion: In an era of costconscious health care where waste reduction is of utmost importance, an updated technique-specific nomogram is useful for ordering optimal number of seeds resulting in significant cost savings. In addition, our study shows that ultrasound based prostate volume is a better predictor for seed ordering for intra-operative planning than pre-implant CT.

  18. Penile reconstruction

    PubMed Central

    Garaffa, Giulio; Sansalone, Salvatore; Ralph, David J

    2013-01-01

    During the most recent years, a variety of new techniques of penile reconstruction have been described in the literature. This paper focuses on the most recent advances in male genital reconstruction after trauma, excision of benign and malignant disease, in gender reassignment surgery and aphallia with emphasis on surgical technique, cosmetic and functional outcome. PMID:22426595

  19. Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149

    SciTech Connect

    Chiu-Tsao, Sou-Tung; Schaart, Dennis R.; Soares, Christopher G.; Nath, Ravinder

    2007-11-15

    Since the publication of AAPM Task Group 60 report in 1999, a considerable amount of dosimetry data for the three coronary brachytherapy systems in use in the United States has been reported. A subgroup, Task Group 149, of the AAPM working group on Special Brachytherapy Modalities (Bruce Thomadsen, Chair) was charged to develop recommendations for dose calculation formalisms and the related consensus dosimetry parameters. The recommendations of this group are presented here. For the Cordis {sup 192}Ir and Novoste {sup 90}Sr/{sup 90}Y systems, the original TG-43 formalism in spherical coordinates should be used along with the consensus values of the dose rate constant, geometry function, radial dose function, and anisotropy function for the single seeds. Contributions from the single seeds should be added linearly for the calculation of dose distributions from a source train. For the Guidant {sup 32}P wire system, the modified TG-43 formalism in cylindrical coordinates along with the recommended data for the 20 and 27 mm wires should be used. Data tables for the 6, 10, 14, 18, and 22 seed trains of the Cordis system, 30, 40, and 60 mm seed trains of the Novoste system, and the 20 and 27 mm wires of the Guidant system are presented along with our rationale and methodology for selecting the consensus data. Briefly, all available datasets were compared with each other and the consensus dataset was either an average of available data or the one obtained from the most densely populated study; in most cases this was a Monte Carlo calculation.

  20. Perioperative high dose rate (HDR) brachytherapy in unresectable locally advanced pancreatic tumors

    PubMed Central

    Waniczek, Dariusz; Piecuch, Jerzy; Mikusek, Wojciech; Arendt, Jerzy; Białas, Brygida

    2011-01-01

    Purpose The aim of the study was to present an original technique of catheter implantation for perioperative HDR-Ir192 brachytherapy in patients after palliative operations of unresectable locally advanced pancreatic tumors and to estimate the influence of perioperative HDR-Ir192 brachytherapy on pain relief in terminal pancreatic cancer patients. Material and methods Eight patients with pancreatic tumors located in the head of pancreas underwent palliative operations with the use of HDR-Ir192 brachytherapy. All patients qualified for surgery reported pain of high intensity and had received narcotic painkillers prior to operation. During the last phase of the surgery, the Nucletron® catheters were implanted in patients to prepare them for later perioperative brachytherapy. Since the 6th day after surgery HDR brachytherapy was performed. Before each brachytherapy fraction the location of implants were checked using fluoroscopy. A fractional dose was 5 Gy and a total dose was 20 Gy in the area of radiation. A comparative study of two groups of patients (with and without brachytherapy) with stage III pancreatic cancer according to the TNM scale was taken in consideration. Results and Conclusions The authors claim that the modification of catheter implantation using specially designed cannula, facilitates the process of inserting the catheter into the tumor, shortens the time needed for the procedure, and reduces the risk of complications. Mean survival time was 5.7 months. In the group of performed brachytherapy, the mean survival time was 6.7 months, while in the group of no brachytherapy performed – 4.4 months. In the group of brachytherapy, only one patient increased the dose of painkillers in the last month of his life. Remaining patients took constant doses of medicines. Perioperative HDR-Ir192 brachytherapy could be considered as a practical application of adjuvant therapy for pain relief in patients with an advanced pancreatic cancer. PMID:27895674

  1. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States

    SciTech Connect

    Han, Kathy; Milosevic, Michael; Fyles, Anthony; Pintilie, Melania; Viswanathan, Akila N.

    2013-09-01

    Purpose: To determine the trends in brachytherapy use in cervical cancer in the United States and to identify factors and survival benefits associated with brachytherapy treatment. Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER) database, we identified 7359 patients with stages IB2-IVA cervical cancer treated with external beam radiation therapy (EBRT) between 1988 and 2009. Propensity score matching was used to adjust for differences between patients who received brachytherapy and those who did not from 2000 onward (after the National Cancer Institute alert recommending concurrent chemotherapy). Results: Sixty-three percent of the 7359 women received brachytherapy in combination with EBRT, and 37% received EBRT alone. The brachytherapy utilization rate has decreased from 83% in 1988 to 58% in 2009 (P<.001), with a sharp decline of 23% in 2003 to 43%. Factors associated with higher odds of brachytherapy use include younger age, married (vs single) patients, earlier years of diagnosis, earlier stage and certain SEER regions. In the propensity score-matched cohort, brachytherapy treatment was associated with higher 4-year cause-specific survival (CSS; 64.3% vs 51.5%, P<.001) and overall survival (OS; 58.2% vs 46.2%, P<.001). Brachytherapy treatment was independently associated with better CSS (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.57-0.71), and OS (HR 0.66; 95% CI, 0.60 to 0.74). Conclusions: This population-based analysis reveals a concerning decline in brachytherapy utilization and significant geographic disparities in the delivery of brachytherapy in the United States. Brachytherapy use is independently associated with significantly higher CSS and OS and should be implemented in all feasible cases.

  2. Time dependence of energy spectra of brachytherapy sources and its impact on the half and the tenth value layers

    SciTech Connect

    Yue, Ning J.; Chen Zhe; Hearn, Robert A.; Rodgers, Joseph J.; Nath, Ravinder

    2009-11-15

    Purpose: Several factors including radionuclide purity influence the photon energy spectra from sealed brachytherapy sources. The existence of impurities and trace elements in radioactive materials as well as the substrate and encapsulation may not only alter the spectrum at a given time but also cause change in the spectra as a function of time. The purpose of this study is to utilize a semiempirical formalism, which quantitatively incorporates this time dependence, to calculate and evaluate the shielding requirement impacts introduced by this time dependence for a {sup 103}Pd source. Methods: The formalism was used to calculate the NthVL thicknesses in lead for a {sup 103}Pd model 200 seed. Prior to 2005, the {sup 103}Pd in this source was purified to a level better than 0.006% of the total {sup 103}Pd activity, the key trace impurity consisting of {sup 65}Zn. Because {sup 65}Zn emits higher energy photons and has a much longer half-life of 244 days compared to {sup 103}Pd, its presence in {sup 103}Pd seeds led to a time dependence of the photon spectrum and other related physical quantities. This study focuses on the time dependence of the NthVL and the analysis of the corresponding shielding requirements. Results: The results indicate that the first HVL and the first TVL in lead steadily increased with time for about 200 days and then reached a plateau. The increases at plateau were more than 1000 times compared to the corresponding values on the zeroth day. The second and third TVLs in lead reached their plateaus in about 100 and 60 days, respectively, and the increases were about 19 and 2.33 times the corresponding values on the zeroth day, respectively. All the TVLs demonstrated a similar time dependence pattern, with substantial increases and eventual approach to a plateau. Conclusions: The authors conclude that the time dependence of the emitted photon spectra from brachytherapy sources can introduce substantial variations in the values of the NthVL with

  3. SU-E-J-232: Feasibility of MRI-Based Preplan On Low Dose Rate Prostate Brachytherapy

    SciTech Connect

    Huang, Y; Tward, J; Rassiah-Szegedi, P; Zhao, H; Sarkar, V; Huang, L; Szegedi, M; Kokeny, K; Salter, B

    2015-06-15

    Purpose: To investigate the feasibility of using MRI-based preplan for low dose rate prostate brachytherapy. Methods: 12 patients who received transrectal ultrasound (TRUS) guided prostate brachytherapy with Pd-103 were retrospectively studied. Our care-standard of the TRUS-based preplan served as the control. One or more prostate T2-weighted wide and/or narrow-field of view MRIs obtained within the 3 months prior to the implant were imported into the MIM Symphony software v6.3 (MIM Software Inc., Cleveland, OH) for each patient. In total, 37 MRI preplans (10 different image sequences with average thickness of 4.8mm) were generated. The contoured prostate volume and the seed counts required to achieve adequate dosimetric coverage from TRUS and MRI preplans were compared for each patient. The effects of different MRI sequences and image thicknesses were also investigated statistically using Student’s t-test. Lastly, the nomogram from the MRI preplan and TRUS preplan from our historical treatment data were compared. Results: The average prostate volume contoured on the TRUS and MRI were 26.6cc (range: 12.6∼41.3cc), and 27.4 cc (range: 14.3∼50.0cc), respectively. Axial MRI thicknesses (range: 3.5∼8.1mm) did not significantly affect the contoured volume or the number of seeds required on the preplan (R2 = 0.0002 and 0.0012, respectively). Four of the MRI sequences (AX-T2, AX-T2-Whole-Pelvis, AX-T2-FSE, and AXIALT2- Hi-Res) showed statistically significant better prostate volume agreement with TRUS than the other seven sequences (P <0.01). Nomogram overlay between the MRI and TRUS preplans showed good agreement; indicating volumes contoured on MRI preplan scan reliably predict how many seeds are needed for implant. Conclusion: Although MRI does not allow for determination of the actual implant geometry, it can give reliable volumes for seed ordering purposes. Our future work will investigate if MRI is sufficient to reliably replace TRUS preplanning in patients

  4. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best? [Non-invasive Image-Guided Breast Brachytherapy

    SciTech Connect

    Libby, B.

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  5. Cataract extraction after brachytherapy for malignant melanoma of the choroid

    SciTech Connect

    Fish, G.E.; Jost, B.F.; Snyder, W.I.; Fuller, D.G.; Birch, D.G. )

    1991-05-01

    Thirteen eyes of 55 consecutive patients treated with brachytherapy for malignant melanoma of the choroid developed postirradiation cataracts. Cataract development was more common in older patients and in patients with larger and more anterior tumors. Eleven eyes had extracapsular cataract extraction and intraocular lens implantation. Initial visual improvement occurred in 91% of eyes, with an average improvement of 5.5 lines. Visual acuity was maintained at 20/60 or better in 55% of the eyes over an average period of follow-up of 24 months (range, 6 to 40 months). These data suggest that, visually, cataract extraction can be helpful in selected patients who develop a cataract after brachytherapy for malignant melanoma of the choroid.

  6. Metal artefacts in MRI-guided brachytherapy of cervical cancer

    PubMed Central

    Owrangi, Amir; Ravi, Ananth; Song, William Y.

    2016-01-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions. PMID:27648092

  7. Image-Guided Radiotherapy and -Brachytherapy for Cervical Cancer

    PubMed Central

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer. PMID:25853092

  8. Image-guided radiotherapy and -brachytherapy for cervical cancer.

    PubMed

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer.

  9. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  10. [Basic principles and results of brachytherapy in gynecological oncology].

    PubMed

    Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V

    2014-01-01

    The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.

  11. Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Lief, Jonathan H.; Allen, Zachariah A.; Wallner, Kent E.

    2012-01-01

    Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an association between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase {>=}25%, 23% of men experienced a decrease {>=}25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA response

  12. Primary calibration of coiled {sup 103}Pd brachytherapy sources

    SciTech Connect

    Paxton, Adam B.; Culberson, Wesley S.; DeWerd, Larry A.; Micka, John A.

    2008-01-15

    Coiled {sup 103}Pd brachytherapy sources have been developed by RadioMed Corporation for use as low-dose-rate (LDR) interstitial implants. The coiled sources are provided in integer lengths from 1 to 6 cm and address many common issues seen with traditional LDR brachytherapy sources. The current standard for determining the air-kerma strength (S{sub K}) of low-energy LDR brachytherapy sources is the National Institute of Standards and Technology's Wide-Angle Free-Air Chamber (NIST WAFAC). Due to geometric limitations, however, the NIST WAFAC is unable to determine the S{sub K} of sources longer than 1 cm. This project utilized the University of Wisconsin's Variable-Aperture Free-Air Chamber (UW VAFAC) to determine the S{sub K} of the longer coiled sources. The UW VAFAC has shown agreement in S{sub K} values of 1 cm length coils to within 1% of those determined with the NIST WAFAC, but the UW VAFAC does not share the same geometric limitations as the NIST WAFAC. A new source holder was constructed to hold the coiled sources in place during measurements with the UW VAFAC. Correction factors for the increased length of the sources have been determined and applied to the measurements. Using the new source holder and corrections, the S{sub K} of 3 and 6 cm coiled sources has been determined. Corrected UW VAFAC data and ionization current measurements from well chambers have been used to determine calibration coefficients for use in the measurement of 3 and 6 cm coiled sources in well chambers. Thus, the UW VAFAC has provided the first transferable, primary measurement of low-energy LDR brachytherapy sources with lengths greater than 1 cm.

  13. Cable attachment for a radioactive brachytherapy source capsule

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-07-18

    In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

  14. Brachytherapy in Lip Carcinoma: Long-Term Results

    SciTech Connect

    Guibert, Mireille; David, Isabelle; Vergez, Sebastien; Rives, Michel; Filleron, Thomas; Bonnet, Jacques; Delannes, Martine

    2011-12-01

    Purpose: The aim of this study was to evaluate the effectiveness of low-dose-rate brachytherapy for local control and relapse-free survival in squamous cell and basal cell carcinomas of the lips. We compared two groups: one with tumors on the skin and the other with tumors on the lip. Patients and methods: All patients had been treated at Claudius Regaud Cancer Centre from 1990 to 2008 for squamous cell or basal cell carcinoma. Low-dose-rate brachytherapy was performed with iridium 192 wires according to the Paris system rules. On average, the dose delivered was 65 Gy. Results: 172 consecutive patients were included in our study; 69 had skin carcinoma (squamous cell or basal cell), and 92 had squamous cell mucosal carcinoma. The average follow-up time was 5.4 years. In the skin cancer group, there were five local recurrences and one lymph node recurrence. In the mucosal cancer group, there were ten local recurrences and five lymph node recurrences. The 8-year relapse-free survival for the entire population was 80%. The 8-year relapse-free survival was 85% for skin carcinoma 75% for mucosal carcinoma, with no significant difference between groups. The functional results were satisfactory for 99% of patients, and the cosmetic results were satisfactory for 92%. Maximal toxicity observed was Grade 2. Conclusions: Low-dose-rate brachytherapy can be used to treat lip carcinomas at Stages T1 and T2 as the only treatment with excellent results for local control and relapse-free survival. The benefits of brachytherapy are also cosmetic and functional, with 91% of patients having no side effects.

  15. Sexual Function and the Use of Medical Devices or Drugs to Optimize Potency After Prostate Brachytherapy

    SciTech Connect

    Whaley, J. Taylor; Levy, Lawrence B.; Swanson, David A.; Pugh, Thomas J.; Kudchadker, Rajat J.; Bruno, Teresa L.; Frank, Steven J.

    2012-04-01

    Purpose: Prospective evaluation of sexual outcomes after prostate brachytherapy with iodine-125 seeds as monotherapy at a tertiary cancer care center. Methods and Materials: Subjects were 129 men with prostate cancer with I-125 seed implants (prescribed dose, 145 Gy) without supplemental hormonal or external beam radiation therapy. Sexual function, potency, and bother were prospectively assessed at baseline and at 1, 4, 8, and 12 months using validated quality-of-life self-assessment surveys. Postimplant dosimetry values, including dose to 10% of the penile bulb (D10), D20, D33, D50, D75, D90, and penile volume receiving 100% of the prescribed dose (V100) were calculated. Results: At baseline, 56% of patients recorded having optimal erections; at 1 year, 62% of patients with baseline erectile function maintained optimal potency, 58% of whom with medically prescribed sexual aids or drugs. Variables associated with pretreatment-to-posttreatment decline in potency were time after implant (p = 0.04) and age (p = 0.01). Decline in urinary function may have been related to decline in potency. At 1 year, 69% of potent patients younger than 70 years maintained optimal potency, whereas 31% of patients older than 70 maintained optimal potency (p = 0.02). Diabetes was related to a decline in potency (p = 0.05), but neither smoking nor hypertension were. For patients with optimal potency at baseline, mean sexual bother scores had declined significantly at 1 year (p < 0.01). Sexual potency, sexual function, and sexual bother scores failed to correlate with any dosimetric variable tested. Conclusions: Erections firm enough for intercourse can be achieved at 1 year after treatment, but most men will require medical aids to optimize potency. Although younger men were better able to maintain erections firm enough for intercourse than older men, there was no correlation between potency, sexual function, or sexual bother and penile bulb dosimetry.

  16. Ligament reconstruction.

    PubMed

    Glickel, Steven Z; Gupta, Salil

    2006-05-01

    Volar ligament reconstruction is an effective technique for treating symptomatic laxity of the CMC joint of the thumb. The laxity may bea manifestation of generalized ligament laxity,post-traumatic, or metabolic (Ehler-Danlos). There construction reduces the shear forces on the joint that contribute to the development and persistence of inflammation. Although there have been only a few reports of the results of volar ligament reconstruction, the use of the procedure to treat Stage I and Stage II disease gives good to excellent results consistently. More advanced stages of disease are best treated by trapeziectomy, with or without ligament reconstruction.

  17. Fabrication of cesium-137 brachytherapy sources using vitrification technology.

    PubMed

    Dash, Ashutosh; Varma, R N; Ram, Ramu; Saxena, S K; Mathakar, A R; Avhad, B G; Sastry, K V S; Sangurdekar, P R; Venkatesh, Meera

    2009-08-01

    137Cs source in solid matrix encapsulated in stainless-steel at MBq (mCi) levels are widely used as brachytherapy sources for the treatment of carcinoma of cervix uteri. This article describes the large-scale preparation of such sources. The process of fabrication includes vitrification of 137Cs-sodium borosilicate glass, its transformation into spheres of 5-6 mm diameter, casting of glass spheres into a cylinder of 1.5 mm (varphi) x 80 mm (l) in a platinum mould, cutting of the moulds into 5-mm-long pieces, silver coating on the sources, and finally, encapsulation in stainless steel capsules. Development of safety precautions used to trap 137Cs escaping during borosilicate glass preparation is also described. The leach rates of the radioactive sources prepared by the above technology were within permissible limits, and the sources could be used for encapsulation in stainless steel capsules and supplied for brachytherapy applications. This development was aimed at promoting the potential utility of 137Cs-brachytherapy sources in the country and reducing the user's reliance on imported sources. Since its development, more than 1000 such sources have been made by using 4.66 TBq(126 Ci) of 137Cs.

  18. Accelerated partial breast irradiation utilizing brachytherapy: patient selection and workflow

    PubMed Central

    Wobb, Jessica; Manyam, Bindu; Khan, Atif; Vicini, Frank

    2016-01-01

    Accelerated partial breast irradiation (APBI) represents an evolving technique that is a standard of care option in appropriately selected woman following breast conserving surgery. While multiple techniques now exist to deliver APBI, interstitial brachytherapy represents the technique used in several randomized trials (National Institute of Oncology, GEC-ESTRO). More recently, many centers have adopted applicator-based brachytherapy to deliver APBI due to the technical complexities of interstitial brachytherapy. The purpose of this article is to review methods to evaluate and select patients for APBI, as well as to define potential workflow mechanisms that allow for the safe and effective delivery of APBI. Multiple consensus statements have been developed to guide clinicians on determining appropriate candidates for APBI. However, recent studies have demonstrated that these guidelines fail to stratify patients according to the risk of local recurrence, and updated guidelines are expected in the years to come. Critical elements of workflow to ensure safe and effective delivery of APBI include a multidisciplinary approach and evaluation, optimization of target coverage and adherence to normal tissue guideline constraints, and proper quality assurance methods. PMID:26985202

  19. [Brachytherapy in France: current situation and economic outlook due to the unavailability of iridium wires].

    PubMed

    Le Vu, B; Boucher, S

    2014-10-01

    In 2013, about 6000 patients were treated with brachytherapy, the number diminishing by 2.6% per year since 2008. Prostate, breast and gynecological cancers are the most common types of cancers. Since 2008, the number of brachytherapy facilities has decreased by 18%. In medicoeconomic terms, brachytherapy faces many problems: the coding system is outdated; brachytherapy treatments cost as much as internal radiation; fees do not cover costs; since iridium wire has disappeared from the market, the technique will be transferred to more expensive high-speed or pulse dose rates. The French financing grid based on the national study of costs lags behind changes in such treatments and in the best of cases, hospitals resorting to alternatives such as in-hospital brachytherapy are funded at 46% of their additional costs. Brachytherapy is a reference technique. With intense pressure on hospital pricing, financing brachytherapy facilities will become even more problematic as a consequence of the disappearance of iridium 192 wires. The case of brachytherapy illustrates the limits of the French financing system and raises serious doubts as to its responsiveness.

  20. Perspectives of brachytherapy: patterns of care, new technologies, and "new biology".

    PubMed

    Guedea, F

    2014-10-01

    Brachytherapy has come a long way from its beginnings nearly a century ago. In recent years, brachytherapy has become ever more sophisticated thanks to a multitude of technological developments, including high-dose rate afterloading machines, image-guidance, and advanced planning systems. One of the advantages of brachytherapy, apart from the well-known capability of delivering highly conformal doses directly to the target, is that it is highly adaptable and can be used as a primary, adjunct, or salvage treatment. However, despite the existence of international treatment guidelines, the clinical practice of brachytherapy varies greatly by region, country, and even institution. In the present article, we provide an overview of recent findings from the Patterns of Care for Brachytherapy in Europe (PCBE) Study and we discuss new technologies used in brachytherapy and the emerging concept of "new biology" that supports the use of high-dose brachytherapy. Compared to the 1990s, the use of brachytherapy has increased substantially and it is expected to continue growing in the future as it becomes ever more precise and efficient.

  1. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    SciTech Connect

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D.

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document.

  2. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... therapeutic medical uses: (a) As approved in the Sealed Source and Device Registry; or (b) In research in... 10 Energy 1 2012-01-01 2012-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy §...

  3. ACL reconstruction

    MedlinePlus

    ... This increases the chance you may have a meniscus tear. ACL reconstruction may be used for these ... When other ligaments are also injured When your meniscus is torn Before surgery, talk to your health ...

  4. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy

    PubMed Central

    Kasper, Michael E; Chaudhary, Ahmed A

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and 226Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. PMID:26648763

  5. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  6. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  7. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.

    PubMed

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-07

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm(3) calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  8. Dose escalation in permanent brachytherapy for prostate cancer: dosimetric and biological considerations

    NASA Astrophysics Data System (ADS)

    Li, X. Allen; Wang, Jian Z.; Stewart, Robert D.; Di Biase, Steven J.

    2003-09-01

    No prospective dose escalation study for prostate brachytherapy (PB) with permanent implants has been reported. In this work, we have performed a dosimetric and biological analysis to explore the implications of dose escalation in PB using 125I and 103Pd implants. The concept of equivalent uniform dose (EUD), proposed originally for external-beam radiotherapy (EBRT), is applied to low dose rate brachytherapy. For a given 125I or 103Pd PB, the EUD for tumour that corresponds to a dose distribution delivered by EBRT is calculated based on the linear quadratic model. The EUD calculation is based on the dose volume histogram (DVH) obtained retrospectively from representative actual patient data. Tumour control probabilities (TCPs) are also determined in order to compare the relative effectiveness of different dose levels. The EUD for normal tissue is computed using the Lyman model. A commercial inverse treatment planning algorithm is used to investigate the feasibility of escalating the dose to prostate with acceptable dose increases in the rectum and urethra. The dosimetric calculation is performed for five representative patients with different prostate sizes. A series of PB dose levels are considered for each patient using 125I and 103Pd seeds. It is found that the PB prescribed doses (minimum peripheral dose) that give an equivalent EBRT dose of 64.8, 70.2, 75.6 and 81 Gy with a fraction size of 1.8 Gy are 129, 139, 150 and 161 Gy for 125I and 103, 112, 122 and 132 Gy for 103Pd implants, respectively. Estimates of the EUD and TCP for a series of possible prescribed dose levels (e.g., 145, 160, 170 and 180 Gy for 125I and 125, 135, 145 and 155 for 103Pd implants) are tabulated. The EUD calculation was found to depend strongly on DVHs and radiobiological parameters. The dosimetric calculations suggest that the dose to prostate can be escalated without a substantial increase in both rectal and urethral dose. For example, increasing the PB prescribed dose from 145 to

  9. Monte Carlo dosimetry for {sup 103}Pd, {sup 125}I, and {sup 131}Cs ocular brachytherapy with various plaque models using an eye phantom

    SciTech Connect

    Lesperance, Marielle; Martinov, M.; Thomson, R. M.

    2014-03-15

    Purpose: To investigate dosimetry for ocular brachytherapy for a range of eye plaque models containing{sup 103}Pd, {sup 125}I, or {sup 131}Cs seeds with model-based dose calculations. Methods: Five representative plaque models are developed based on a literature review and are compared to the standardized COMS plaque, including plaques consisting of a stainless steel backing and acrylic insert, and gold alloy backings with: short collimating lips and acrylic insert, no lips and silicone polymer insert, no lips and a thin acrylic layer, and individual collimating slots for each seed within the backing and no insert. Monte Carlo simulations are performed using the EGSnrc user-code BrachyDose for single and multiple seed configurations for the plaques in water and within an eye model (including nonwater media). Simulations under TG-43 assumptions are also performed, i.e., with the same seed configurations in water, neglecting interseed and plaque effects. Maximum and average doses to ocular structures as well as isodose contours are compared for simulations of each radionuclide within the plaque models. Results: The presence of the plaque affects the dose distribution substantially along the plaque axis for both single seed and multiseed simulations of each plaque design in water. Of all the plaque models, the COMS plaque generally has the largest effect on the dose distribution in water along the plaque axis. Differences between doses for single and multiple seed configurations vary between plaque models and radionuclides. Collimation is most substantial for the plaque with individual collimating slots. For plaques in the full eye model, average dose in the tumor region differs from those for the TG-43 simulations by up to 10% for{sup 125}I and {sup 131}Cs, and up to 17% for {sup 103}Pd, and in the lens region by up to 29% for {sup 125}I, 34% for {sup 103}Pd, and 28% for {sup 131}Cs. For the same prescription dose to the tumor apex, the lowest doses to critical

  10. Verification of high dose rate 192Ir source position during brachytherapy treatment

    NASA Astrophysics Data System (ADS)

    Batič, M.; Burger, J.; Cindro, V.; Kramberger, G.; Mandič, I.; Mikuž, M.; Studen, A.; Zavrtanik, M.

    2010-05-01

    A system for in vivo tracking of 1 Ci 192Ir source during brachytherapy treatment has been built using high resistivity silicon pad detectors as image sensors and knife-edge lead pinholes as collimators. The sensors consist of 256 pads arranged in 32 ×8 grid with pad size 1.4×1.4 mm2 and 1 mm thickness. The sensors have two metal layers, enabling connection of readout electronics (VATAGP3_1 chips) at the edge of the detector. With source self-images obtained from a dual-pinhole system, location of the source can be reconstructed in three dimensions in real time, allowing on-line detection of deviations from planned treatment. The system was tested with 1 Ci 192Ir clinical source in air and plexi-glass phantom. The movements of the source could be tracked in a field of view of approximately 20×20×20 cm3 with absolute precision of about 5 mm. Positions of the source, relative to the first measured source position, could be mapped with precision of around 3 mm.

  11. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    SciTech Connect

    Craciunescu, O; Todor, D; Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  12. Ocular Response of Choroidal Melanoma With Monosomy 3 Versus Disomy 3 After Iodine-125 Brachytherapy

    SciTech Connect

    Marathe, Omkar S.; Wu, Jeffrey; Lee, Steve P.; Yu Fei; Burgess, Barry L.; Leu Min; Straatsma, Bradley R.; McCannel, Tara A.

    2011-11-15

    Purpose: To report the ocular response of choroidal melanoma with monosomy 3 vs. disomy 3 after {sup 125}I brachytherapy. Methods and Materials: We evaluated patients with ciliochoroidal melanoma managed with fine needle aspiration biopsy immediately before plaque application for {sup 125}I brachytherapy between January 1, 2005 and December 31, 2008. Patients with (1) cytopathologic diagnosis of melanoma, (2) melanoma chromosome 3 status identified by fluorescence in situ hybridization, and (3) 6 or more months of follow-up after brachytherapy were sorted by monosomy 3 vs. disomy 3 and compared by Kruskal-Wallis test. Results: Among 40 ciliochoroidal melanomas (40 patients), 15 had monosomy 3 and 25 had disomy 3. Monosomy 3 melanomas had a median greatest basal diameter of 12.00 mm and a median tumor thickness of 6.69 mm before brachytherapy; at a median of 1.75 years after brachytherapy, median thickness was 3.10 mm. Median percentage decrease in tumor thickness was 48.3%. Disomy 3 melanomas had a median greatest basal diameter of 10.00 mm and median tumor thickness of 3.19 mm before brachytherapy; at a median of 2.00 years after brachytherapy, median tumor thickness was 2.37 mm. The median percentage decrease in tumor thickness was 22.7%. Monosomy 3 melanomas were statistically greater in size than disomy 3 melanomas (p < 0.001) and showed a greater decrease in tumor thickness after brachytherapy (p = 0.006). Conclusion: In this study, ciliochoroidal melanomas with monosomy 3 were significantly greater in size than disomy 3 melanoma and showed a significantly greater decrease in thickness at a median of 1.75 years after brachytherapy. The greater decrease in monosomy 3 melanoma thickness after brachytherapy is consistent with other malignancies in which more aggressive pathology has been shown to be associated with a greater initial response to radiotherapy.

  13. Variation in uterus position prior to brachytherapy of the cervix: A case report

    PubMed Central

    Georgescu, MT; Anghel, R

    2017-01-01

    Rationale: brachytherapy is administered in the treatment of patients with locally advanced cervical cancer following chemoradiotherapy. Lack of local anatomy evaluation prior to this procedure might lead to the selection of an inappropriate brachytherapy applicator, increasing the risk of side effects (e.g. uterus perforation, painful procedure ...). Objective: To assess the movement of the uterus and cervix prior to brachytherapy in patients with gynecological cancer, in order to select the proper type of brachytherapy applicator. Also we wanted to promote the replacement of the plain X-ray brachytherapy with the image-guided procedure. Methods and results: We presented the case of a 41-year-old female diagnosed with a biopsy that was proven cervical cancer stage IIIB. At diagnosis, the imaging studies identified an anteverted uterus. The patient underwent preoperative chemoradiotherapy. Prior to brachytherapy, the patient underwent a pelvic magnetic resonance imaging (MRI), which identified a displacement of the uterus in the retroverted position. Discussion: A great variety of brachytherapy applicators is available nowadays. Major changes in uterus position and lack of evaluation prior to brachytherapy might lead to a higher rate of incidents during this procedure. Also, by using orthogonal simulation and bidimensional (2D) treatment planning, brachytherapy would undoubtedly fail to treat the remaining tumoral tissue. This is the reason why we proposed the implementation of a prior imaging of the uterus and computed tomography (CT)/ MRI-based simulation in the brachytherapy procedure. Abbreviations: MRI = magnetic resonance imaging, CT = computed tomography, CTV = clinical target volume, DVH = dose-volume histogram, EBRT = external beam radiotherapy, GTV = gross tumor volume, Gy = Gray (unit), ICRU = International Commission of Radiation Units, IGRT = image guided radiotherapy, IM = internal margin, IMRT = image modulated radiotherapy, ITV = internal target

  14. Seed Treatment. Bulletin 760.

    ERIC Educational Resources Information Center

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  15. Seed Treatment. Manual 92.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet minimum EPA standards for certification as a commercial applicator of pesticides in the seed treatment category. The text discusses pests commonly associated with seeds; seed treatment pesticides; labels; chemicals and seed treatment equipment; requirements of federal and state seed laws;…

  16. Neurocognitive function and quality of life in patients with newly diagnosed brain metastasis after treatment with intra-operative cesium-131 brachytherapy: a prospective trial.

    PubMed

    Pham, Anthony; Yondorf, Menachem Z; Parashar, Bhupesh; Scheff, Ronald J; Pannullo, Susan C; Ramakrishna, Rohan; Stieg, Philip E; Schwartz, Theodore H; Wernicke, A Gabriella

    2016-03-01

    Intraoperative permanent Cesium-131 (Cs-131) brachytherapy can provide a viable alternative to WBRT with excellent response rates and minimal toxicity. This study reports the results of the prospective trial of the impact of intraoperative Cs-131 on neurocognitive function and quality of life (QoL) in patients with resected brain metastases. Between 2010 and 2012, 24 patients with newly diagnosed metastasis to the brain were accrued on a prospective protocol and treated with Cs-131 brachytherapy seeds after surgical resection. Physicians administered the mini-mental status examination (MMSE) and functional assessment of cancer therapy-brain (FACT-Br) questionnaire to all patients before treatment and again every 2 months for the duration of 6 months with additional follow-up again at 12 months. Wilcoxon rank sum test was used to analyze statistically significant changes in MMSE over time and paired t test was used to analyze changes in FACT-BR. There was a statistical improvement in overall FACT-BR score at 4 and 6 months of follow-up when compared to baseline (162 vs. 143, P = 0.004; 164 vs. 143, P = 0.005 respectively) with a non-significant trend toward improvement at 2 and 12 months (154 vs. 143, P = 0.067; 159 vs. 149, P = 0.4). MMSE score was statistically improved at 4 and up to 12 months compared to pre-treatment MMSE (30 vs. 29, P = 0.017; 30 vs. 29, P = 0.001 respectively). Patients with brain metastasis who received intra-operative permanent Cs-131 brachytherapy implants saw an improvement of their neurocognitive status and self-assessment of QoL. In addition to the excellent local control of metastasis, this approach may contribute to the improvements in cognitive function and QOL.

  17. AAPM TG-43U1 formalism adaptation and Monte Carlo dosimetry simulations of multiple-radionuclide brachytherapy sources

    SciTech Connect

    Nuttens, V.E.; Lucas, S.

    2006-04-15

    This paper presents a preliminary study on multiple-radionuclide sources for brachytherapy. An adaptation of the AAPM TG-43U1 formalism is proposed in order to derive the dosimetry parameters of multiple-radionuclide sources from mono-radionuclides. The adapted formalism is applied to a bi-radionuclide case with the help of Monte Carlo calculations (MCNPX 2.5.0). InterSource{sup TM} seed loaded with {sup 103}Pd and {sup 125}I was chosen. This combination promotes a higher dose rate than InterSource{sup 125} (loaded with {sup 125}I) and deeper tissue penetration than InterSource{sup 103} (loaded with {sup 103}Pd) while reducing the dose at long distance (beyond 2.5 cm) relative to InterSource{sup 125}. In conclusion, this work shows the benefits of combining different radionuclides inside the same seed and proposes an adaptation of the AAPM TG-43U1 formalism for the implementation of multiple-radionuclide sources in current treatment planning systems.

  18. Potential role of TRAns Cervical Endosonography (TRACE) in brachytherapy of cervical cancer: proof of concept

    PubMed Central

    Kirisits, Christian

    2016-01-01

    Purpose Magnetic resonance imaging (MRI) is the gold standard for image guided adaptive brachytherapy (BT) of cervical cancer. Ultrasound is an attractive alternative with reasonable costs and high soft tissue depiction quality. This technical note aims to demonstrate the proof of principle for use of TRAns Cervical Endosonography with rotating transducer in the context of brachytherapy (TRACE BT). Material and methods TRACE BT presentation is based on a single stage IIB cervical cancer patient. Prior to second BT implant, rotating US transducer (6.9 mm diameter) was inserted in cervical canal and axial images obtained at 10 MHz, focal range of 30 mm, and axial resolution of 0.4 mm. Size and topography of hypo-echoic areas were assessed and optimal positions of interstitial needles were determined. Finally, intracavitary applicator was placed and needles inserted through vaginal ring-template according to TRACE pre-plan. MRI-based high risk clinical target volume (CTVHR) dimensions were compared with hypoechoic areas on TRACE. Topography of parametrial needles on post-insertion MRI was compared with TRACE pre-plan. Results Insertion of rotating mechanism into cervico-uterine cavity was safe, feasible and fast. The 360° imaging in axial plane enabled real-time assessment of cervix, uterus, and adjacent parametria. Qualitative comparison of TRACE with post-insertion MRI revealed favorable agreement of findings. In-plane size of CTVHR on MRI was comparable to hypoechoic areas on TRACE. Needle positions on post-insertion MRI corresponded to TRACE-based pre-plan. Main limitation of TRACE was gradual deterioration of image quality due to coupling gel removal. Conclusions Present proof of concept demonstrates potential role of TRACE-BT for cervical cancer as an attractive high-tech approach with reasonable costs. Prior to investigation of its clinical role, further development of TRACE methodology is needed. This includes reliable transducer-tissue coupling, applicator

  19. Natural History of Clinically Staged Low- and Intermediate-Risk Prostate Cancer Treated With Monotherapeutic Permanent Interstitial Brachytherapy

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Wallner, Kent E.; Butler, Wayne M.

    2010-02-01

    Purpose: To evaluate the natural history of clinically staged low- and intermediate-risk prostate cancer treated with permanent interstitial seed implants as monotherapy. Methods and Materials: Between April 1995 and May 2005, 463 patients with clinically localized prostate cancer underwent brachytherapy as the sole definitive treatment. Men who received supplemental external beam radiotherapy or androgen deprivation therapy were excluded. Dosimetric implant quality was determined based on the minimum dose that covered 90% of the target volume and the volume of the prostate gland receiving 100% of the prescribed dose. Multiple parameters were evaluated as predictors of treatment outcomes. Results: The 12-year biochemical progression-free survival (bPFS), cause-specific survival, and overall survival rates for the entire cohort were 97.1%, 99.7%, and 75.4%, respectively. Only pretreatment prostate-specific antigen level, percent positive biopsy cores, and minimum dose that covered 90% of the target volume were significant predictors of biochemical recurrence. The bPFS, cause-specific survival, and overall survival rates were 97.4%, 99.6%, and 76.2%, respectively, for low-risk patients and 96.4%, 100%, and 74.0%, respectively, for intermediate-risk patients. The bPFS rate was 98.8% for low-risk patients with high-quality implants versus 92.1% for those with less adequate implants (p < 0.01), and it was 98.3% for intermediate-risk patients with high-quality implants versus 86.4% for those with less adequate implants (p < 0.01). Conclusions: High-quality brachytherapy implants as monotherapy can provide excellent outcomes for men with clinically staged low- and intermediate-risk prostate cancer. For these men, a high-quality implant can achieve results comparable to high-quality surgery in the most favorable pathologically staged patient subgroups.

  20. Biomatrices for bladder reconstruction.

    PubMed

    Lin, Hsueh-Kung; Madihally, Sundar V; Palmer, Blake; Frimberger, Dominic; Fung, Kar-Ming; Kropp, Bradley P

    2015-03-01

    There is a demand for tissue engineering of the bladder needed by patients who experience a neurogenic bladder or idiopathic detrusor overactivity. To avoid complications from augmentation cystoplasty, the field of tissue engineering seeks optimal scaffolds for bladder reconstruction. Naturally derived biomaterials as well as synthetic and natural polymers have been explored as bladder substitutes. To improve regenerative properties, these biomaterials have been conjugated with functional molecules, combined with nanotechology, or seeded with exogenous cells. Although most studies reported complete and functional bladder regeneration in small-animal models, results from large-animal models and human clinical trials varied. For functional bladder regeneration, procedures for biomaterial fabrication, incorporation of biologically active agents, introduction of nanotechnology, and application of stem-cell technology need to be standardized. Advanced molecular and medical technologies such as next generation sequencing and magnetic resonance imaging can be introduced for mechanistic understanding and non-invasive monitoring of regeneration processes, respectively.

  1. Brachytherapy in cancer cervix: Time to move ahead from point A?

    PubMed Central

    Srivastava, Anurita; Datta, Niloy Ranjan

    2014-01-01

    Brachytherapy forms an integral part of the radiation therapy in cancer cervix. The dose prescription for intracavitary brachytherapy (ICBT) in cancer cervix is based on Tod and Meredith’s point A and has been in practice since 1938. This was proposed at a time when accessibility to imaging technology and dose computation facilities was limited. The concept has been in practice worldwide for more than half a century and has been the fulcrum of all ICBT treatments, strategies and outcome measures. The method is simple and can be adapted by all centres practicing ICBT in cancer cervix. However, with the widespread availability of imaging techniques, clinical use of different dose-rates, availability of a host of applicators fabricated with image compatible materials, radiobiological implications of dose equivalence and its impact on tumour and organs at risk; more and more weight is being laid down on individualised image based brachytherapy. Thus, computed tomography, magnetic-resonance imaging and even positron emission computerized tomography along with brachytherapy treatment planning system are being increasingly adopted with promising outcomes. The present article reviews the evolution of dose prescription concepts in ICBT in cancer cervix and brings forward the need for image based brachytherapy to evaluate clinical outcomes. As is evident, a gradual transition from “point” based brachytherapy to “profile” based image guided brachytherapy is gaining widespread acceptance for dose prescription, reporting and outcome evaluation in the clinical practice of ICBT in cancer cervix. PMID:25302176

  2. High-dose-rate brachytherapy in uterine cervical carcinoma

    SciTech Connect

    Patel, Firuza D. . E-mail: patelfd@glide.net.in; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-05-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  3. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    SciTech Connect

    Yang, Xiaofeng Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian; Mao, Hui

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  4. SU-E-J-216: A Sequence Independent Approach for Quantification of MR Image Deformations From Brachytherapy Applicators

    SciTech Connect

    Wieringen, N van; Heerden, L van; Gurney-Champion, O; Kesteren, Z van; Houweling, A; Pieters, B; Bel, A

    2015-06-15

    Purpose: MRI is increasingly used as a single imaging modality for brachytherapy treatment planning. The presence of a brachytherapy applicator may cause distortions in the images, especially at higher field strengths. Our aim is to develop a procedure to quantify these distortions theoretically for any MR-sequence and to verify the estimated deformations for clinical sequences. Methods: Image distortions due to perturbation of the B0-field are proportional to the ratio of the induced frequency shift and the read-out bandwidth of the applied sequence. By reconstructing a frequency-shift map from the phase data from a multi-echo sequence, distortions can be calculated for any MR-sequence. Verification of this method for estimating distortions was performed by acquiring images with opposing read-out directions and consequently opposing distortions. The applicator shift can be determined by rigidly matching these images. Clinically, T2W-TSE-images are used for this purpose. For pre-clinical tests, EPI-sequences with narrow read-out bandwidth (19.5–47.5Hz), consequently large distortions, were added to the set of clinical MRsequences. To quantify deformations of the Utrecht Interstitial CT/MR applicator (Elekta Brachytherapy) on a Philips Ingenia 3T MRI, pre-clinical tests were performed in a phantom with the applicator in water, followed by clinical validation. Results: Deformations observed in the narrow bandwidth EPI-images were well predicted using the frequency-shift, the latter giving an overestimation up to 30%/up to 1 voxel. For clinically applied MR-sequences distortions were well below the voxel size. In patient setup distortions determined from the frequency-shift map were at sub-voxel level (<0.7mm). Using T2W-images larger distortions were found (1–2mm). This discrepancy was caused by patient movement between/during acquisition of the T2W-images with opposing read-out directions. Conclusion: Phantom experiments demonstrated the feasibility of a

  5. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  6. High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study

    NASA Astrophysics Data System (ADS)

    Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana

    2017-01-01

    Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased

  7. MO-E-BRD-01: Is Non-Invasive Image-Guided Breast Brachytherapy Good?

    SciTech Connect

    Hiatt, J.

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  8. MO-E-BRD-00: Breast Brachytherapy: The Phoenix of Radiation Therapy

    SciTech Connect

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  9. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    SciTech Connect

    Todor, D.

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  10. Prostate Brachytherapy in Men {>=}75 Years of Age

    SciTech Connect

    Merrick, Gregory S. Wallner, Kent E.; Galbreath, Robert W.; Butler, Wayne M.; Brammer, Sarah G.; Allen, Zachariah A.; Adamovich, Edward

    2008-10-01

    Purpose: To evaluate cause-specific survival (CSS), biochemical progression-free survival (bPFS), and overall survival (OS) in prostate cancer patients aged {>=}75 years undergoing brachytherapy with or without supplemental therapies. Methods and Materials: Between April 1995 and August 2004, 145 consecutive patients aged {>=}75 years underwent permanent prostate brachytherapy. Median follow-up was 5.8 years. Biochemical progression-free survival was defined by a prostate-specific antigen level {<=}0.40 ng/mL after nadir. Patients with metastatic prostate cancer or hormone-refractory disease without obvious metastases who died of any cause were classified as dead of prostate cancer. All other deaths were attributed to the immediate cause of death. Multiple clinical, treatment, and dosimetric parameters were evaluated for impact on survival. Results: Nine-year CSS, bPFS, and OS rates for the entire cohort were 99.3%, 97.1%, and 64.5%, respectively. None of the evaluated parameters predicted for CSS, whereas bPFS was most closely predicted by percentage positive biopsies. Overall survival and non-cancer deaths were best predicted by tobacco status. Thirty-seven patients have died, with 83.8% of the deaths due to cardiovascular disease (22 patients) or second malignancies (9 patients). To date, only 1 patient (0.7%) has died of metastatic prostate cancer. Conclusions: After brachytherapy, high rates of CSS and bPFS are noted in elderly prostate cancer patients. Overall, approximately 65% of patients are alive at 9 years, with survival most closely related to tobacco status. We believe our results support an aggressive locoregional approach in appropriately selected elderly patients.

  11. Project Reconstruct.

    ERIC Educational Resources Information Center

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  12. Matlab Tools: An Alternative to Planning Systems in Brachytherapy Treatments

    SciTech Connect

    Herrera, Higmar

    2006-09-08

    This work proposes the use of the Matlab environment to obtain the treatment dose based on the reported data by Krishnaswamy and Liu et al. The comparison with reported measurements is showed for the Amersham source model. For the 3M source model, measurements with TLDs and a Monte Carlo simulation are compared to the data obtained by Matlab. The difference for the Amersham model is well under the 15% recommended by the IAEA and for the 3M model, although the difference is greater, the results are consistent. The good agreement to the reported data allows the Matlab calculations to be used in daily brachytherapy treatments.

  13. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was  <3% as long as the source distance from the scintillator was  <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by  >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the

  14. [Endobronchial brachytherapy: state of the art in 2013].

    PubMed

    Derhem, N; Sabila, H; Mornex, F

    2013-04-01

    Endobronchial brachytherapy is an invasive technique, which allows localizing radioactive sources at the tumour contact. Therefore, high doses are administered to tumour while healthy tissues can be spared. Initially dedicated to a palliative setting, improvements helped reaching 60 to 88% symptoms alleviation and 30 to 100% of endoscopic macroscopic response. New diagnostic techniques and early diagnosis extended the indications to a curative intent: endoluminal primitive tumour, post radiation endobronchial recurrence, inoperable patients. CT-based dosimetry is a keypoint to optimize treatment quality and to minimize potential side effects, making this treatment a safe and efficient technique for specific indications.

  15. Radiological response of ceramic and polymeric devices for breast brachytherapy.

    PubMed

    Nogueira, Luciana Batista; de Campos, Tarcisio Passos Ribeiro

    2012-04-01

    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis.

  16. ACL reconstruction - discharge

    MedlinePlus

    Anterior cruciate ligament reconstruction - discharge; ACL reconstruction - discharge ... had surgery to reconstruct your anterior cruciate ligament (ACL). The surgeon drilled holes in the bones of ...

  17. A novel curvilinear approach for prostate seed implantation

    SciTech Connect

    Podder, Tarun K.; Dicker, Adam P.; Hutapea, Parsaoran; Darvish, Kurosh; Yu Yan

    2012-04-15

    Purpose: A new technique called ''curvilinear approach'' for prostate seed implantation has been proposed. The purpose of this study is to evaluate the dosimetric benefit of curvilinear distribution of seeds for low-dose-rate (LDR) prostate brachytherapy. Methods: Twenty LDR prostate brachytherapy cases planned intraoperatively with VariSeed planning system and I-125 seeds were randomly selected as reference rectilinear cases. All the cases were replanned by using curved-needle approach keeping the same individual source strength and the volume receiving 100% of prescribed dose 145 Gy (V{sub 100}). Parameters such as number of needles, seeds, and the dose coverage of the prostate (D{sub 90}, V{sub 150}, V{sub 200}), urethra (D{sub 30}, D{sub 10}) and rectum (D{sub 5}, V{sub 100}) were compared for the rectilinear and the curvilinear methods. Statistical significance was assessed using two-tailed student's t-test. Results: Reduction of the required number of needles and seeds in curvilinear method were 30.5% (p < 0.001) and 11.8% (p < 0.49), respectively. Dose to the urethra was reduced significantly; D{sub 30} reduced by 10.1% (p < 0.01) and D{sub 10} reduced by 9.9% (p < 0.02). Reduction in rectum dose D{sub 5} was 18.5% (p < 0.03) and V{sub 100} was also reduced from 0.93 cc in rectilinear to 0.21 cc in curvilinear (p < 0.001). Also the V{sub 150} and V{sub 200} coverage of prostate reduced by 18.8% (p < 0.01) and 33.9% (p < 0.001), respectively. Conclusions: Significant improvement in the relevant dosimetric parameters was observed in curvilinear needle approach. Prostate dose homogeneity (V{sub 150}, V{sub 200}) improved while urethral dose was reduced, which might potentially result in better treatment outcome. Reduction in rectal dose could potentially reduce rectal toxicity and complications. Reduction in number of needles would minimize edema and thereby could improve postimplant urinary incontinence. This study indicates that the curvilinear implantation

  18. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    SciTech Connect

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-02-15

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model

  19. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Lim, Tze Yee; Stafford, R. Jason; Kudchadker, Rajat J.; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S.; Frank, Steven J.

    2014-05-01

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures.

  20. Impact of Radionuclide Physical Distribution on Brachytherapy Dosimetry Parameters

    SciTech Connect

    Rivard, M.J.; Kirk, B.L.; Leal, L.C.

    2005-01-15

    Radiation dose distributions of brachytherapy sources are generally characterized with the assumption that all internal components are equally radioactive. Autoradiographs and discussions with source manufacturers indicated this assumption of the radionuclide physical distribution may be invalid. Consequently, clinical dose distributions would be in error when not accounting for these internal variations. Many implants use brachytherapy sources with four {sup 125}I resin beads and two radiopaque markers used for imaging. Monte Carlo methods were used to determine dose contributions from each of the resin beads. These contributions were compared with those from an idealized source having a uniform physical distribution. Upon varying the {sup 125}I physical distribution while retaining the same overall radioactivity, the dose distribution along the transverse plane remained constant within 5% for r > 0.5 cm. For r {<=} 0.5 cm, relative positioning of the resin beads dominated the shielding effects, and dose distributions varied up to a factor of 3 at r = 0.05 cm. For points off the transverse plane, comparisons of the uniform and nonuniform dose distributions produced larger variations. Shielding effects within the capsule were virtually constant along the source long axis and demonstrated that anisotropy variations among the four resin beads were dependent on internal component positioning.

  1. 2D/3D registration algorithm for lung brachytherapy

    SciTech Connect

    Zvonarev, P. S.; Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E.; Sur, R. K.

    2013-02-15

    Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

  2. Current status and perspectives of brachytherapy for cervical cancer.

    PubMed

    Toita, Takafumi

    2009-02-01

    Standard definitive radiotherapy for cervical cancer consists of whole pelvic external beam radiotherapy (EBRT) and intracavitary brachytherapy (ICBT). In Japan, high-dose-rate ICBT (HDR-ICBT) has been utilized in clinical practice for more than 40 years. Several randomized clinical trials demonstrated that HDR-ICBT achieved comparative outcomes, both for pelvic control and incidences of late complications, to low-dose-rate (LDR) ICBT. In addi