Science.gov

Sample records for brachytherapy seed reconstruction

  1. Incorporating seed orientation in brachytherapy implant reconstruction

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Jain, Ameet K.; Chirikjian, Gregory S.; Fichtinger, Gabor

    2006-03-01

    Intra-operative quality assurance and dosimetry optimization in prostate brachytherapy critically depends on the ability of discerning the locations of implanted seeds. Various methods exist for seed matching and reconstruction from multiple segmented C-arm images. Unfortunately, using three or more images makes the problem NP-hard, i.e. no polynomial-time algorithm can provably compute the complete matching. Typically, a statistical analysis of performance is considered sufficient. Hence it is of utmost importance to exploit all the available information in order to minimize the matching and reconstruction errors. Current algorithms use only the information about seed centers, disregarding the information about the orientations and length of seeds. While the latter has little dosimetric impact, it can positively contribute to improving seed matching rate and 3D implant reconstruction accuracy. It can also become critical information when hidden and spuriously segmented seeds need to be matched, where reliable and generic methods are not yet available. Expecting orientation information to be useful in reconstructing large and dense implants, we have developed a method which incorporates seed orientation information into our previously proposed reconstruction algorithm (MARSHAL). Simulation study shows that under normal segmentation errors, when considering seed orientations, implants of 80 to 140 seeds with the density of 2.0- 3.0 seeds/cc give an average matching rate >97% using three-image matching. It is higher than the matching rate of about 96% when considering only seed positions. This means that the information of seed orientations appears to be a valuable additive to fluoroscopy-based brachytherapy implant reconstruction.

  2. Matching and reconstruction of brachytherapy seeds using the Hungarian algorithm (MARSHAL)

    SciTech Connect

    Jain, Ameet Kumar; Zhou, Yu; Mustufa, Tabish; Clif Burdette, E.; Chirikjian, Gregory S.; Fichtinger, Gabor

    2005-11-15

    Intraoperative dosimetric quality assurance in prostate brachytherapy critically depends on discerning the three-dimensional (3D) locations of implanted seeds. The ability to reconstruct the implanted seeds intraoperatively will allow us to make immediate provisions for dosimetric deviations from the optimal implant plan. A method for seed reconstruction from segmented C-arm fluoroscopy images is proposed. The 3D coordinates of the implanted seeds can be calculated upon resolving the correspondence of seeds in multiple x-ray images. We formalize seed-matching as a combinatorial optimization problem, which has salient features: (a) extensively studied solutions by the computer science community; (b) proof for the nonexistence of any polynomial time exact algorithm; and (c) a practical pseudo-polynomial algorithm that mostly runs in O(N{sup 3}) time using any number of images. We prove that two images are insufficient to correctly match the seeds, while a third image renders the matching problem to be of nonpolynomial complexity. We utilize the special structure of the problem and propose a pseudopolynomial time algorithm. Using three presegmented images, matching and reconstruction of brachytherapy seeds using the Hungarian algorithm achieved complete matching in simulation experiments; and 98.5% in phantom experiments. 3D reconstruction error for correctly matched seeds has a mean of 0.63 mm, and 0.9 mm for incorrectly matched seeds. The maximum seed reconstruction error in each implant was typically around 1.32 mm. Both on synthetic data and in phantom experiments, matching rate and reconstruction error achieved using presegmented images was found to be sufficient for prostate brachytherapy. The algorithm is extendable to deal with arbitrary number of images without any loss in speed or accuracy. The algorithm is sufficiently generic to provide a practical solution to any correspondence problem, across different imaging modalities and features.

  3. Matching and reconstruction of brachytherapy seeds using the Hungarian algorithm (MARSHAL).

    PubMed

    Jain, Ameet Kumar; Zhou, Yu; Mustufa, Tabish; Burdette, E Clif; Chirikjian, Gregory S; Fichtinger, Gabor

    2005-11-01

    Intraoperative dosimetric quality assurance in prostate brachytherapy critically depends on discerning the three-dimensional (3D) locations of implanted seeds. The ability to reconstruct the implanted seeds intraoperatively will allow us to make immediate provisions for dosimetric deviations from the optimal implant plan. A method for seed reconstruction from segmented C-arm fluoroscopy images is proposed. The 3D coordinates of the implanted seeds can be calculated upon resolving the correspondence of seeds in multiple x-ray images. We formalize seed-matching as a combinatorial optimization problem, which has salient features: (a) extensively studied solutions by the computer science community; (b) proof for the nonexistence of any polynomial time exact algorithm; and (c) a practical pseudo-polynomial algorithm that mostly runs in O(N3) time using any number of images. We prove that two images are insufficient to correctly match the seeds, while a third image renders the matching problem to be of nonpolynomial complexity. We utilize the special structure of the problem and propose a pseudopolynomial time algorithm. Using three presegmented images, matching and reconstruction of brachytherapy seeds using the Hungarian algorithm achieved complete matching in simulation experiments; and 98.5% in phantom experiments. 3D reconstruction error for correctly matched seeds has a mean of 0.63 mm, and 0.9 mm for incorrectly matched seeds. The maximum seed reconstruction error in each implant was typically around 1.32 mm. Both on synthetic data and in phantom experiments, matching rate and reconstruction error achieved using presegmented images was found to be sufficient for prostate brachytherapy. The algorithm is extendable to deal with arbitrary number of images without any loss in speed or accuracy. The algorithm is sufficiently generic to provide a practical solution to any correspondence problem, across different imaging modalities and features. PMID:16372418

  4. Matching and reconstruction of brachytherapy seeds using the Hungarian algorithm (MARSHAL)

    NASA Astrophysics Data System (ADS)

    Jain, Ameet K.; Zhou, Yu; Mustufa, Tabish; Burdette, E. C.; Chirikjian, Gregory S.; Fichtinger, Gabor

    2005-04-01

    Purpose: Intraoperative dosimetric quality assurance in prostate brachytherapy critically depends on discerning the 3D locations of implanted seeds. The ability to reconstruct the implanted seeds intraoperatively will allow us to make immediate provisions for dosimetric deviations from the optimal implant plan. A method for seed reconstruction from segmented C-arm fluoroscopy images is proposed. Method: The 3D coordinates of the implanted seeds can be calculated upon resolving the correspondence of seeds in multiple X-ray images. We formalize seed-matching as a network flow problem, which has salient features: (a) extensively studied exact solutions, (b) performance claims on the space-time complexity, (c) optimality bounds on the final solution. A fast implementation is realized using the Hungarian algorithm. Results: We prove that two images can correctly match only about 67% of the seeds, and that a third image renders the matching problem to be of non-polynomial complexity. We utilize the special structure of the problem and propose a pseudo-polynomial time algorithm. Using three images, MARSHAL achieved 100% matching in simulation experiments; and 98.5% in phantom experiments. 3D reconstruction error for correctly matched seeds has a mean of 0:63 mm, and 0:91 mm for incorrectly matched seeds. Conclusion: Both on synthetic data and in phantom experiments, matching rate and reconstruction accuracy were found to be sufficient for prostate brachytherapy. The algorithm is extendable to deal with arbitrary number of images without loss in speed or accuracy. The algorithm is sufficiently generic to be used for establishing correspondences across any choice of features in different imaging modalities.

  5. Three-dimensional seed reconstruction from an incomplete data set for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeram; Cho, Paul S.; Marks, Robert J., II

    2004-08-01

    Intra-operative dosimetry in prostate brachytherapy requires 3D coordinates of the implanted, radioactive seeds. Since CT is not readily available during the implant operation, projection x-rays are commonly used for intra-operative seed localization. Three x-ray projections are usually used. The requirement of the current seed reconstruction algorithms is that the seeds must be identified on all three projections. However, in practice this is often difficult to accomplish due to the problem of heavily clustered and overlapping seeds. We have developed an algorithm that permits seed reconstruction from an incomplete data set. Instead of all three projections, the new algorithm requires only one of the three projections to be complete. Furthermore, even if all three projections are incomplete, it can reconstruct 100% of the implanted seeds depending on how the undetected seeds are distributed among the projections. The method utilizes the principles of epipolar imaging geometry and pseudo-matching of the undetected seeds. The algorithm was successfully applied to a large number of clinical cases where seeds imperceptibly overlap in some projections.

  6. Demonstration of a forward iterative method to reconstruct brachytherapy seed configurations from x-ray projections

    NASA Astrophysics Data System (ADS)

    Murphy, Martin J.; Todor, Dorin A.

    2005-06-01

    By monitoring brachytherapy seed placement and determining the actual configuration of the seeds in vivo, one can optimize the treatment plan during the process of implantation. Two or more radiographic images from different viewpoints can in principle allow one to reconstruct the configuration of implanted seeds uniquely. However, the reconstruction problem is complicated by several factors: (1) the seeds can overlap and cluster in the images; (2) the images can have distortion that varies with viewpoint when a C-arm fluoroscope is used; (3) there can be uncertainty in the imaging viewpoints; (4) the angular separation of the imaging viewpoints can be small owing to physical space constraints; (5) there can be inconsistency in the number of seeds detected in the images; and (6) the patient can move while being imaged. We propose and conceptually demonstrate a novel reconstruction method that handles all of these complications and uncertainties in a unified process. The method represents the three-dimensional seed and camera configurations as parametrized models that are adjusted iteratively to conform to the observed radiographic images. The morphed model seed configuration that best reproduces the appearance of the seeds in the radiographs is the best estimate of the actual seed configuration. All of the information needed to establish both the seed configuration and the camera model is derived from the seed images without resort to external calibration fixtures. Furthermore, by comparing overall image content rather than individual seed coordinates, the process avoids the need to establish correspondence between seed identities in the several images. The method has been shown to work robustly in simulation tests that simultaneously allow for unknown individual seed positions, uncertainties in the imaging viewpoints and variable image distortion.

  7. Three-dimensional seed reconstruction for prostate brachytherapy using Hough trajectories

    NASA Astrophysics Data System (ADS)

    Lam, Steve T.; Cho, Paul S.; Marks, Robert J., II; Narayanan, Sreeram

    2004-02-01

    In order to perform intra-operative or post-implant dosimetry in prostate brachytherapy, the 3D coordinates of the implanted radioactive seeds must be determined. Film or fluoroscopy based seed reconstruction techniques use back projection of x-ray data obtained at two or three x-ray positions. These methods, however, do not perform well when some of the seed images are undetected. To overcome this problem we have developed an alternate technique for 3D seed localization using the principle of Hough transform. The Hough method utilizes the fact that, for each seed coordinate in three dimensions, there exists a unique trajectory in Hough feature space. In this paper we present the Hough transform parametric equations to describe the path of the seed projections from one view to the next and a method to reconstruct the 3D seed coordinates. The results of simulation and phantom studies indicate that the Hough trajectory method can accurately determine the 3D seed positions even from an incomplete dataset.

  8. Clinical implementation of a digital tomosynthesis-based seed reconstruction algorithm for intraoperative postimplant dose evaluation in low dose rate prostate brachytherapy

    SciTech Connect

    Brunet-Benkhoucha, Malik; Verhaegen, Frank; Lassalle, Stephanie; Beliveau-Nadeau, Dominic; Reniers, Brigitte; Donath, David; Taussky, Daniel; Carrier, Jean-Francois

    2009-11-15

    Purpose: The low dose rate brachytherapy procedure would benefit from an intraoperative postimplant dosimetry verification technique to identify possible suboptimal dose coverage and suggest a potential reimplantation. The main objective of this project is to develop an efficient, operator-free, intraoperative seed detection technique using the imaging modalities available in a low dose rate brachytherapy treatment room. Methods: This intraoperative detection allows a complete dosimetry calculation that can be performed right after an I-125 prostate seed implantation, while the patient is still under anesthesia. To accomplish this, a digital tomosynthesis-based algorithm was developed. This automatic filtered reconstruction of the 3D volume requires seven projections acquired over a total angle of 60 deg. with an isocentric imaging system. Results: A phantom study was performed to validate the technique that was used in a retrospective clinical study involving 23 patients. In the patient study, the automatic tomosynthesis-based reconstruction yielded seed detection rates of 96.7% and 2.6% false positives. The seed localization error obtained with a phantom study is 0.4{+-}0.4 mm. The average time needed for reconstruction is below 1 min. The reconstruction algorithm also provides the seed orientation with an uncertainty of 10 deg. {+-}8 deg. The seed detection algorithm presented here is reliable and was efficiently used in the clinic. Conclusions: When combined with an appropriate coregistration technique to identify the organs in the seed coordinate system, this algorithm will offer new possibilities for a next generation of clinical brachytherapy systems.

  9. Prostate brachytherapy postimplant dosimetry: Automatic plan reconstruction of stranded implants

    SciTech Connect

    Chng, N.; Spadinger, I.; Morris, W. J.; Usmani, N.; Salcudean, S.

    2011-01-15

    Purpose: Plan reconstruction for permanent implant prostate brachytherapy is the process of determining the correspondence between planned and implanted seeds in postimplant analysis. Plan reconstruction informs many areas of brachytherapy quality assurance, including the verification of seed segmentation, misplacement and migration assessment, implant simulations, and the dosimetry of mixed-activity or mixed-species implants. Methods: An algorithm has been developed for stranded implants which uses the interseed spacing constraints imposed by the suture to improve the accuracy of reconstruction. Seventy randomly selected clinical cases with a mean of 23.6 (range 18-30) needles and mean density of 2.0 (range 1.6-2.6) 2.0 (range 1.6-2.6) seeds/cm{sup 3} were automatically reconstructed and the accuracy compared to manual reconstructions performed using a custom 3D graphical interface. Results: Using the automatic algorithm, the mean accuracy of the assignment relative to manual reconstruction was found to be 97.7{+-}0.5%. Fifty-two of the 70 cases (74%) were error-free; of seeds in the remaining cases, 96.7{+-}0.3% were found to be attributed to the correct strand and 97.0{+-}0.3% were correctly connected to their neighbors. Any necessary manual correction using the interface is usually straightforward. For the clinical data set tested, neither the number of seeds or needles, average density, nor the presence of clusters was found to have an effect on reconstruction accuracy using this method. Conclusions: Routine plan reconstruction of stranded implants can be performed with a high degree of accuracy to support postimplant dosimetry and quality analyses.

  10. Improving photoacoustic imaging contrast of brachytherapy seeds

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  11. Automatic Brachytherapy Seed Placement Under MRI Guidance

    PubMed Central

    Patriciu, Alexandru; Petrisor, Doru; Muntener, Michael; Mazilu, Dumitru; Schär, Michael; Stoianovici, Dan

    2011-01-01

    The paper presents a robotic method of performing low dose rate prostate brachytherapy under magnetic resonance imaging (MRI) guidance. The design and operation of a fully automated MR compatible seed injector is presented. This is used with the MrBot robot for transperineal percutaneous prostate access. A new image-registration marker and algorithms are also presented. The system is integrated and tested with a 3T MRI scanner. Tests compare three different registration methods, assess the precision of performing automated seed deployment, and use the seeds to assess the accuracy of needle targeting under image guidance. Under the ideal conditions of the in vitro experiments, results show outstanding image-guided needle and seed placement accuracy. PMID:17694871

  12. Localization of brachytherapy seeds in ultrasound by registration to fluoroscopy

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; KarimAghaloo, Z.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.

    2010-02-01

    Motivation: In prostate brachytherapy, transrectal ultrasound (TRUS) is used to visualize the anatomy, while implanted seeds can be seen in C-arm fluoroscopy or CT. Intra-operative dosimetry optimization requires localization of the implants in TRUS relative to the anatomy. This could be achieved by registration of TRUS images and the implants reconstructed from fluoroscopy or CT. Methods: TRUS images are filtered, compounded, and registered on the reconstructed implants by using an intensity-based metric based on a 3D point-to-volume registration scheme. A phantom was implanted with 48 seeds, imaged with TRUS and CT/X-ray. Ground-truth registration was established between the two. Seeds were reconstructed from CT/X-ray. Seven TRUS filtering techniques and two image similarity metrics were analyzed as well. Results: For point-to-volume registration, noise reduction combined with beam profile filter and mean squares metrics yielded the best result: an average of 0.38 +/- 0.19 mm seed localization error relative to the ground-truth. In human patient data C-arm fluoroscopy images showed 81 radioactive seeds implanted inside the prostate. A qualitative analysis showed clinically correct agreement between the seeds visible in TRUS and reconstructed from intra-operative fluoroscopy imaging. The measured registration error compared to the manually selected seed locations by the clinician was 2.86 +/- 1.26 mm. Conclusion: Fully automated seed localization in TRUS performed excellently on ground-truth phantom, adequate in clinical data and was time efficient having an average runtime of 90 seconds.

  13. NOTE: On the question of 3D seed reconstruction in prostate brachytherapy: the determination of x-ray source and film locations

    NASA Astrophysics Data System (ADS)

    Zhang, Mutian; Zaider, Marco; Worman, Michael; Cohen, Gilad

    2004-10-01

    Inaccuracy in seed placement during permanent prostate implants may lead to significant dosimetric deviations from the intended plan. In two recent publications (Todor et al 2002 Phys. Med. Biol. 47 2031 48, Todor et al 2003 Phys. Med. Biol. 48 1153 71), methodology was described for identifying intraoperatively the positions of seeds already implanted, thus allowing re-optimization of the treatment plan and correcting for such seed misplacement. Seed reconstruction is performed using fluoroscopic images and an important (and non-trivial) component of this approach is the ability to accurately determine the position of the gantry relative to the treatment volume. We describe the methodology for acquiring this information, based on the known geometry of six markers attached to the ultrasound probe. This method does not require the C-arm unit to be isocentric and films can be taken with the gantry set at any arbitrary position. This is significant because the patient positioning on the operating table (in the lithotomy position) restricts the range of angles at which films can be taken to a quite narrow (typically ±10°) interval and, as a general rule, the closer the angles the larger the uncertainty in the seed location reconstruction along the direction from the x-ray source to the film.

  14. Automatic segmentation of seeds and fluoroscope tracking (FTRAC) fiducial in prostate brachytherapy x-ray images

    NASA Astrophysics Data System (ADS)

    Kuo, Nathanael; Lee, Junghoon; Deguet, Anton; Song, Danny; Burdette, E. Clif; Prince, Jerry

    2010-02-01

    C-arm X-ray fluoroscopy-based radioactive seed localization for intraoperative dosimetry of prostate brachytherapy is an active area of research. The fluoroscopy tracking (FTRAC) fiducial is an image-based tracking device composed of radio-opaque BBs, lines, and ellipses that provides an effective means for pose estimation so that three-dimensional reconstruction of the implanted seeds from multiple X-ray images can be related to the ultrasound-computed prostate volume. Both the FTRAC features and the brachytherapy seeds must be segmented quickly and accurately during the surgery, but current segmentation algorithms are inhibitory in the operating room (OR). The first reason is that current algorithms require operators to manually select a region of interest (ROI), preventing automatic pipelining from image acquisition to seed reconstruction. Secondly, these algorithms fail often, requiring operators to manually correct the errors. We propose a fast and effective ROI-free automatic FTRAC and seed segmentation algorithm to minimize such human intervention. The proposed algorithm exploits recent image processing tools to make seed reconstruction as easy and convenient as possible. Preliminary results on 162 patient images show this algorithm to be fast, effective, and accurate for all features to be segmented. With near perfect success rates and subpixel differences to manual segmentation, our automatic FTRAC and seed segmentation algorithm shows promising results to save crucial time in the OR while reducing errors.

  15. Distortions induced by radioactive seeds into interstitial brachytherapy dose distributions.

    PubMed

    Zhou, Chuanyu; Inanc, Feyzi; Modrick, Joseph M

    2004-12-01

    In a previous article, we presented development and verification of an integral transport equation-based deterministic algorithm for computing three-dimensional brachytherapy dose distributions. Recently, we have included fluorescence radiation physics and parallel computation to the standing algorithms so that we can compute dose distributions for a large set of seeds without resorting to the superposition methods. The introduction of parallel computing capability provided a means to compute the dose distribution for multiple seeds in a simultaneous manner. This provided a way to study strong heterogeneity and shadow effects induced by the presence of multiple seeds in an interstitial brachytherapy implant. This article presents the algorithm for computing fluorescence radiation, algorithm for parallel computing, and display results for an 81-seed implant that has a perfect and imperfect lattice. The dosimetry data for a single model 6711 seeds is presented for verification and heterogeneity factor computations using simultaneous and superposition techniques are presented.

  16. Photoacoustic imaging of prostate brachytherapy seeds with transurethral light delivery

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2014-03-01

    We present a novel approach to photoacoustic imaging of prostate brachytherapy seeds utilizing an existing urinary catheter for transurethral light delivery. Two canine prostates were surgically implanted with brachyther- apy seeds under transrectal ultrasound guidance. One prostate was excised shortly after euthanasia and fixed in gelatin. The second prostate was imaged in the native tissue environment shortly after euthanasia. A urinary catheter was inserted in the urethra of each prostate. A 1-mm core diameter optical fiber coupled to a 1064 nm Nd:YAG laser was inserted into the urinary catheter. Light from the fiber was either directed mostly parallel to the fiber axis (i.e. end-fire fire) or mostly 90° to the fiber axis (i.e. side-fire fiber). An Ultrasonix SonixTouch scanner, transrectal ultrasound probe with curvilinear (BPC8-4) and linear (BPL9-5) arrays, and DAQ unit were utilized for synchronized laser light emission and photoacoustic signal acquisition. The implanted brachytherapy seeds were visualized at radial distances of 6-16 mm from the catheter. Multiple brachytherapy seeds were si- multaneously visualized with each array of the transrectal probe using both delay-and-sum (DAS) and short-lag spatial coherence (SLSC) beamforming. This work is the first to demonstrate the feasibility of photoacoustic imaging of prostate brachytherapy seeds using a transurethral light delivery method.

  17. Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate

    NASA Astrophysics Data System (ADS)

    Kuo, Nathanael; Kang, Hyun Jae; DeJournett, Travis; Spicer, James; Boctor, Emad

    2011-03-01

    The localization of brachytherapy seeds in relation to the prostate is a key step in intraoperative treatment planning (ITP) for improving outcomes in prostate cancer patients treated with low dose rate prostate brachytherapy. Transrectal ultrasound (TRUS) has traditionally been the modality of choice to guide the prostate brachytherapy procedure due to its relatively low cost and apparent ease of use. However, TRUS is unable to visualize seeds well, precluding ITP and producing suboptimal results. While other modalities such as X-ray and magnetic resonance imaging have been investigated to localize seeds in relation to the prostate, photoacoustic imaging has become an emerging and promising modality to solve this challenge. Moreover, photoacoustic imaging may be more practical in the clinical setting compared to other methods since it adds little additional equipment to the ultrasound system already adopted in procedure today, reducing cost and simplifying engineering steps. In this paper, we demonstrate the latest efforts of localizing prostate brachytherapy seeds using photoacoustic imaging, including visualization of multiple seeds in actual prostate tissue. Although there are still several challenges to be met before photoacoustic imaging can be used in the operating room, we are pleased to present the current progress in this effort.

  18. Implicit active contours for automatic brachytherapy seed segmentation in fluoroscopy

    NASA Astrophysics Data System (ADS)

    Moult, Eric; Burdette, Clif; Song, Danny; Fichtinger, Gabor; Fallavollita, Pascal

    2012-02-01

    Motivation: In prostate brachytherapy, intra-operative dosimetry would be ideal to allow for rapid evaluation of the implant quality while the patient is still in the treatment position. Such a mechanism, however, requires 3-D visualization of the currently deposited seeds relative to the prostate. Thus, accurate, robust, and fully-automatic seed segmentation is of critical importance in achieving intra-operative dosimetry. Methodology: Implanted brachytherapy seeds are segmented by utilizing a region-based implicit active contour approach. Overlapping seed clusters are then resolved using a simple yet effective declustering technique. Results: Ground-truth seed coordinates were obtained via a published segmentation technique. A total of 248 clinical C-arm images from 16 patients were used to validate the proposed algorithm resulting in a 98.4% automatic detection rate with a corresponding 2.5% false-positive rate. The overall mean centroid error between the ground-truth and automatic segmentations was measured to be 0.42 pixels, while the mean centroid error for overlapping seed clusters alone was measured to be 0.67 pixels. Conclusion: Based on clinical data evaluation and validation, robust, accurate, and fully-automatic brachytherapy seed segmentation can be achieved through the implicit active contour framework and subsequent seed declustering method.

  19. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    SciTech Connect

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  20. Seed-based transrectal ultrasound-fluoroscopy registration method for intraoperative dosimetry analysis of prostate brachytherapy

    SciTech Connect

    Tutar, Ismail B.; Gong Lixin; Narayanan, Sreeram; Pathak, Sayan D.; Cho, Paul S.; Wallner, Kent; Kim, Yongmin

    2008-03-15

    Prostate brachytherapy is an effective treatment option for early-stage prostate cancer. During a prostate brachytherapy procedure, transrectal ultrasound (TRUS) and fluoroscopy imaging modalities complement each other by providing good visualization of soft tissue and implanted seeds, respectively. Therefore, the registration of these two imaging modalities, which are readily available in the operating room, could facilitate intraoperative dosimetry, thus enabling physicians to implant additional seeds into the underdosed portions of the prostate while the patient is still on the operating table. It is desirable to register TRUS and fluoroscopy images by using the seeds as fiducial markers. Although the locations of all the implanted seeds can be reconstructed from three fluoroscopy images, only a fraction of these seeds can be located in TRUS images. It is challenging to register the TRUS and fluoroscopy images by using the identified seeds, since the correspondence between them is unknown. Furthermore, misdetection of nonseed structures as seeds can lead to the inclusion of spurious points in the data set. We developed a new method called iterative optimal assignment (IOA) to overcome these challenges in TRUS-fluoroscopy registration. By using the Hungarian method in an optimization framework, IOA computes a set of transformation parameters that yield the one-to-one correspondence with minimum cost. We have evaluated our registration method at varying noise levels, seed detection rates, and number of spurious points using data collected from 25 patients. We have found that IOA can perform registration with an average root mean square error of about 0.2 cm even when the seed detection rate is only 10%. We believe that IOA can offer a robust solution to seed-based TRUS-fluoroscopy registration, thus making intraoperative dosimetry possible.

  1. Seed localization in ultrasound and registration to C-arm fluoroscopy using matched needle tracks for prostate brachytherapy.

    PubMed

    Moradi, Mehdi; Mahdavi, S Sara; Dehghan, Ehsan; Lobo, Julio R; Deshmukh, Sanchit; Morris, William James; Fichtinger, Gabor; Salcudean, Septimiu Tim E

    2012-09-01

    We propose a novel fiducial-free approach for the registration of C-arm fluoroscopy to 3-D ultrasound images of prostate brachytherapy implants to enable dosimetry. The approach involves the reliable detection of a subset of radioactive seeds from 3-D ultrasound, and the use of needle tracks in both ultrasound and fluoroscopy for registration. Seed detection in ultrasound is achieved through template matching in 3-D radio frequency ultrasound signals, followed by thresholding and spatial filtering. The resulting subset of seeds is registered to the complete reconstruction of the brachytherapy implant from multiple C-arm fluoroscopy views. To compensate for the deformation caused by the ultrasound probe, simulated warping is applied to the seed cloud from fluoroscopy. The magnitude of the applied warping is optimized within the registration process. The registration is performed in two stages. First, the needle track projections from fluoroscopy and ultrasound are matched. Only the seeds in the matched needles are then used as fiducials for point-based registration. We report results from a physical phantom with a realistic implant (average postregistration seed distance of 1.6 ± 1.2 mm) and from five clinical patient datasets (average error: 2.8 ± 1.5 mm over 128 detected seeds). We conclude that it is feasible to use RF ultrasound data, template matching, and spatial filtering to detect a reliable subset of brachytherapy seeds from ultrasound to enable registration to fluoroscopy for dosimetry.

  2. CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: The impact of seed size

    SciTech Connect

    Robertson, Andrew K. H.; Basran, Parminder S.; Thomas, Steven D.; Wells, Derek

    2012-04-15

    Purpose: To investigate the effects of brachytherapy seed size on the quality of x-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) images and seed localization through comparison of the 6711 and 9011 {sup 125}I sources. Methods: For CT images, an acrylic phantom mimicking a clinical implantation plan and embedded with low contrast regions of interest (ROIs) was designed for both the 0.774 mm diameter 6711 (standard) and the 0.508 mm diameter 9011 (thin) seed models (Oncura, Inc., and GE Healthcare, Arlington Heights, IL). Image quality metrics were assessed using the standard deviation of ROIs between the seeds and the contrast to noise ratio (CNR) within the low contrast ROIs. For US images, water phantoms with both single and multiseed arrangements were constructed for both seed sizes. For MR images, both seeds were implanted into a porcine gel and imaged with pelvic imaging protocols. The standard deviation of ROIs and CNR values were used as metrics of artifact quantification. Seed localization within the CT images was assessed using the automated seed finder in a commercial brachytherapy treatment planning system. The number of erroneous seed placements and the average and maximum error in seed placements were recorded as metrics of the localization accuracy. Results: With the thin seeds, CT image noise was reduced from 48.5 {+-} 0.2 to 32.0 {+-} 0.2 HU and CNR improved by a median value of 74% when compared with the standard seeds. Ultrasound image noise was measured at 50.3 {+-} 17.1 dB for the thin seed images and 50.0 {+-} 19.8 dB for the standard seed images, and artifacts directly behind the seeds were smaller and less prominent with the thin seed model. For MR images, CNR of the standard seeds reduced on average 17% when using the thin seeds for all different imaging sequences and seed orientations, but these differences are not appreciable. Automated seed localization required an average ({+-}SD) of 7.0 {+-} 3.5 manual

  3. In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Kuo, Nathanael P.; Song, Danny Y.; Kang, Jin U.; Boctor, Emad M.

    2014-12-01

    We conducted a canine study to investigate the in vivo feasibility of photoacoustic imaging for intraoperative updates to brachytherapy treatment plans. A fiber coupled to a 1064-nm Nd:YAG laser was inserted into high-dose-rate brachytherapy needles, which diffused light spherically. These needles were inserted through the perineum into the prostate for interstitial light delivery and the resulting acoustic waves were detected with a transrectal ultrasound probe. Postoperative computed tomography images and ex vivo photoacoustic images confirmed seed locations. Limitations with insufficient light delivery were mitigated with short-lag spatial coherence (SLSC) beamforming, providing a 10-20 dB contrast improvement over delay-and-sum (DAS) beamforming for pulse energies ranging from 6.8 to 10.5 mJ with a fiber-seed distance as large as 9.5 mm. For the same distance and the same range of energy densities, signal-to-noise ratios (SNRs) were similar while the contrast-to-noise ratio (CNR) was higher in SLSC compared to DAS images. Challenges included visualization of signals associated with the interstitial fiber tip and acoustic reverberations between seeds separated by ≤2 mm. Results provide insights into the potential for clinical translation to humans.

  4. Prostate Brachytherapy seed migration to the Bladder presenting with Gross Hematuria.

    PubMed

    Haroun, Reham R; Nance, John W; Fishman, Elliot K

    2016-01-01

    We present the radiologic findings in a case of prostate brachytherapy seed migration to the bladder presenting as gross hematuria. While prostate brachytherapy seed implantation is considered a relatively safe procedure, migration is not uncommon; however, it is usually clinically silent and the seeds most commonly migrate to the lungs through the venous circulation via the periprostatic venous plexus. Our case illustrates that local erosion is possible, can be symptomatic, and therefore must be considered when evaluating select patients. PMID:27200152

  5. Prostate Brachytherapy seed migration to the Bladder presenting with Gross Hematuria

    PubMed Central

    Haroun, Reham R; Nance, John W; Fishman, Elliot K

    2016-01-01

    We present the radiologic findings in a case of prostate brachytherapy seed migration to the bladder presenting as gross hematuria. While prostate brachytherapy seed implantation is considered a relatively safe procedure, migration is not uncommon; however, it is usually clinically silent and the seeds most commonly migrate to the lungs through the venous circulation via the periprostatic venous plexus. Our case illustrates that local erosion is possible, can be symptomatic, and therefore must be considered when evaluating select patients. PMID:27200152

  6. Comparison of seed loading approaches in prostate brachytherapy.

    PubMed

    Butler, W M; Merrick, G S; Lief, J H; Dorsey, A T

    2000-02-01

    Since uniform seed loading in prostate brachytherapy can produce an intolerably high dose along the urethra, some form of peripheral loading is commonly employed. We define three variants of peripheral loading and compare them in a small, medium, and large prostate in terms of coverage of the planning target volume (PTV), homogeneity, and ability to spare critical structures of excessive dose. Modified uniform loading has at least 2/3 of the seeds occupying sites on a 1 cm cubic grid keyed to the prostate base and the posterior border of the prostate. Nonuniform loading explicitly spares the urethra by using only basal and apical seeds in at least two centrally located needles. Peripheral loading uses higher activity seeds with the posterior implant plane 5 mm anterior to the posterior border of the prostate. The three prostate volumes (18.7, 40.7, and 60.2 cm3 by ultrasound) were expanded to planning volumes (32.9, 60.0, and 87.8 cm3, respectively). The planning volumes (PTVs) were loaded with a 125I seed distribution and activity sufficient to cover 99.7+/-0.3% of the PTV with the prescribed minimal peripheral dose (mPD) of 145 Gy. Activities used ranged from 0.32 to 0.37 mCi/seed (0.41-0.47 U/seed) for the first two approaches and from 0.57 to 0.66 mCi (0.72-0.84 U) for peripheral loading. Modified uniform loading produced the most uniform distribution based on dose-volume histograms and the volume receiving >150% of prescribed dose. All the approaches are capable of constraining the superior-inferior dose profile (the urethral path) to less than 150% of the mPD, but the nonuniform approach with explicit urethral sparing kept the urethral dose below 120% of the mPD. Dose profiles for the three approaches along the posterior-anterior midline axis are comparable near the urethra, but peripheral and nonuniform approaches have extended regions where the dose is >150% of mPD. These regions approach within 10 mm of the rectum or urethra, so these two approaches

  7. Clinical application and validation of an iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray projections

    SciTech Connect

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F.

    2010-09-15

    Purpose: To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. Methods: The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four {sup 103}Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selected from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. Results: For the phantom study, seed localization error is (0.58{+-}0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/iteration on a 1 GHz processor. Conclusions: The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate {approx}1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.

  8. A Prospective Quasi-Randomized Comparison of Intraoperatively Built Custom-Linked Seeds Versus Loose Seeds for Prostate Brachytherapy

    SciTech Connect

    Ishiyama, Hiromichi; Satoh, Takefumi; Kawakami, Shogo; Tsumura, Hideyasu; Komori, Shouko; Tabata, Ken-ichi; Sekiguchi, Akane; Takahashi, Ryo; Soda, Itaru; Takenaka, Kouji; Iwamura, Masatsugu; Hayakawa, Kazushige

    2014-09-01

    Purpose: To compare dosimetric parameters, seed migration rates, operation times, and acute toxicities of intraoperatively built custom-linked (IBCL) seeds with those of loose seeds for prostate brachytherapy. Methods and Materials: Participants were 140 patients with low or intermediate prostate cancer prospectively allocated to an IBCL seed group (n=74) or a loose seed group (n=66), using quasirandomization (allocated by week of the month). All patients underwent prostate brachytherapy using an interactive plan technique. Computed tomography and plain radiography were performed the next day and 1 month after brachytherapy. The primary endpoint was detection of a 5% difference in dose to 90% of prostate volume on postimplant computed tomography 1 month after treatment. Seed migration was defined as a seed position >1 cm from the cluster of other seeds on radiography. A seed dropped into the seminal vesicle was also defined as a migrated seed. Results: Dosimetric parameters including the primary endpoint did not differ significantly between groups, but seed migration rate was significantly lower in the IBCL seed group (0%) than in the loose seed group (55%; P<.001). Mean operation time was slightly but significantly longer in the IBCL seed group (57 min) than in the loose seed group (50 min; P<.001). No significant differences in acute toxicities were seen between groups (median follow-up, 9 months). Conclusions: This prospective quasirandomized control trial showed no dosimetric differences between IBCL seed and loose seed groups. However, a strong trend toward decreased postimplant seed migration was shown in the IBCL seed group.

  9. Brachytherapy

    MedlinePlus

    ... smaller area in less time than conventional external beam radiation therapy. Brachytherapy is used to treat cancers ... to kill cancer cells and shrink tumors. External beam radiation therapy (EBRT) involves high-energy x-ray ...

  10. WE-A-17A-11: Implanted Brachytherapy Seed Movement Due to Transrectal Ultrasound Probe-Induced Prostate Deformation

    SciTech Connect

    Liu, D; Usmani, N; Sloboda, R; Meyer, T; Husain, S; Angyalfi, S; Kay, I

    2014-06-15

    Purpose: To characterize the movement of implanted brachytherapy seeds due to transrectal ultrasound probe-induced prostate deformation and to estimate the effects on prostate dosimetry. Methods: Implanted probe-in and probe-removed seed distributions were reconstructed for 10 patients using C-arm fluoroscopy imaging. The prostate was delineated on ultrasound and registered to the fluoroscopy seeds using a visible subset of seeds and residual needle tracks. A linear tensor and shearing model correlated the seed movement with position. The seed movement model was used to infer the underlying prostate deformation and to simulate the prostate contour without probe compression. Changes in prostate and surrogate urethra dosimetry were calculated. Results: Seed movement patterns reflecting elastic decompression, lateral shearing, and rectal bending were observed. Elastic decompression was characterized by anterior-posterior expansion and superior-inferior and lateral contractions. For lateral shearing, anterior movement up to 6 mm was observed for extraprostatic seeds in the lateral peripheral region. The average intra-prostatic seed movement was 1.3 mm, and the residual after linear modeling was 0.6 mm. Prostate D90 increased by 4 Gy on average (8 Gy max) and was correlated with elastic decompression. For selected patients, lateral shearing resulted in differential change in D90 of 7 Gy between anterior and posterior quadrants, and increase in whole prostate D90 of 4 Gy. Urethra D10 increased by 4 Gy. Conclusion: Seed movement upon probe removal was characterized. The proposed model captured the linear correlation between seed movement and position. Whole prostate dose coverage increased slightly, due to the small but systematic seed movement associated with elastic decompression. Lateral shearing movement increased dose coverage in the anterior-lateral region, at the expense of the posterior-lateral region. The effect on whole prostate D90 was smaller due to the subset

  11. Incidence of seed migration to the chest, abdomen, and pelvis after transperineal interstitial prostate brachytherapy with loose 125I seeds

    PubMed Central

    2011-01-01

    Background The aim was to determine the incidence of seed migration not only to the chest, but also to the abdomen and pelvis after transperineal interstitial prostate brachytherapy with loose 125I seeds. Methods We reviewed the records of 267 patients who underwent prostate brachytherapy with loose 125I seeds. After seed implantation, orthogonal chest radiographs, an abdominal radiograph, and a pelvic radiograph were undertaken routinely to document the occurrence and sites of seed migration. The incidence of seed migration to the chest, abdomen, and pelvis was calculated. All patients who had seed migration to the abdomen and pelvis subsequently underwent a computed tomography scan to identify the exact location of the migrated seeds. Postimplant dosimetric analysis was undertaken, and dosimetric results were compared between patients with and without seed migration. Results A total of 19,236 seeds were implanted in 267 patients. Overall, 91 of 19,236 (0.47%) seeds migrated in 66 of 267 (24.7%) patients. Sixty-nine (0.36%) seeds migrated to the chest in 54 (20.2%) patients. Seven (0.036%) seeds migrated to the abdomen in six (2.2%) patients. Fifteen (0.078%) seeds migrated to the pelvis in 15 (5.6%) patients. Seed migration occurred predominantly within two weeks after seed implantation. None of the 66 patients had symptoms related to the migrated seeds. Postimplant prostate D90 was not significantly different between patients with and without seed migration. Conclusion We showed the incidence of seed migration to the chest, abdomen and pelvis. Seed migration did not have a significant effect on postimplant prostate D90. PMID:21974959

  12. Automatic segmentation of radiographic fiducial and seeds from X-ray images in prostate brachytherapy

    PubMed Central

    Kuo, Nathanael; Deguet, Anton; Song, Danny Y.; Burdette, Everette C.; Prince, Jerry L.; Lee, Junghoon

    2011-01-01

    Prostate brachytherapy guided by transrectal ultrasound is a common treatment option for early stage prostate cancer. Prostate cancer accounts for 28% of cancer cases and 11% of cancer deaths in men with 217,730 estimated new cases and 32,050 estimated deaths in 2010 in the United States alone. The major current limitation is the inability to reliably localize implanted radiation seeds spatially in relation to the prostate. Multimodality approaches that incorporate X-ray for seed localization have been proposed, but they require both accurate tracking of the imaging device and segmentation of the seeds. Some use image-based radiographic fiducials to track the X-ray device, but manual intervention is needed to select proper regions of interest for segmenting both the tracking fiducial and the seeds, to evaluate the segmentation results, and to correct the segmentations in the case of segmentation failure, thus requiring a significant amount of extra time in the operating room. In this paper, we present an automatic segmentation algorithm that simultaneously segments the tracking fiducial and brachytherapy seeds, thereby minimizing the need for manual intervention. In addition, through the innovative use of image processing techniques such as mathematical morphology, Hough transforms, and RANSAC, our method can detect and separate overlapping seeds that are common in brachytherapy implant images. Our algorithm was validated on 55 phantom and 206 patient images, successfully segmenting both the fiducial and seeds with a mean seed segmentation rate of 96% and sub-millimeter accuracy. PMID:21802975

  13. Prostate brachytherapy postimplant dosimetry: Seed orientation and the impact of dosimetric anisotropy in stranded implants

    SciTech Connect

    Chng, Nicholas; Spadinger, Ingrid; Rasoda, Rosey; Morris, W. James; Salcudean, Septimiu

    2012-02-15

    Purpose: In postimplant dosimetry for prostate brachytherapy, dose is commonly calculated using the TG-43 1D formalism, because seed orientations are difficult to determine from CT images, the current standard for the procedure. However, the orientation of stranded seeds soon after implantation is predictable, as these seeds tend to maintain their relative spacing, and orient themselves along the implant trajectory. The aim of this study was to develop a method for determining seed orientations from reconstructed strand trajectories, and to use this information to investigate the dosimetric impact of applying the TG-43 2D formalism to clinical postimplant analysis. Methods: Using in-house software, the preplan to postimplant seed correspondence was determined for a cohort of 30 patients during routine day-0 CT-based postimplant dosimetry. All patients were implanted with stranded-seed trains. Spline curves were fit to each set of seeds composing a strand, with the requirement that the distance along the spline between seeds be equal to the seed spacing within the strand. The orientations of the seeds were estimated by the tangents to the spline at each seed centroid. Dose distributions were then determined using the 1D and 2D TG-43 formalisms. These were compared using the TG-137 recommended dose metrics for the prostate, prostatic urethra, and rectum. Results: Seven hundred and sixty one strands were analyzed in total. Defining the z-axis to be cranial-positive and the x-axis to be left-lateral positive in the CT coordinate system, the average seed had an inclination of 21 deg. {+-} 10 deg. and an azimuth of -81 deg. {+-} 57 deg. These values correspond to the average strand rising anteriorly from apex to base, approximately parallel to the midsagittal plane. Clinically minor but statistically significant differences in dose metrics were noted. Compared to the 2D calculation, the 1D calculation underestimated prostate V100 by 1.1% and D90 by 2.3 Gy, while

  14. Ultrasonic Detection and Imaging of Brachytherapy Seeds Based on Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Mamou, J.; Feleppa, E. J.

    A commonly used, effective method of treating localized prostate cancer is implantation of small radioactive seeds. The standard imaging modality for treatment-planning dosimetry and for guiding and monitoring seed implantation is transrectal ultrasound (TRUS). However, movement of the prostate during seed insertion can cause seed misplacement, hemorrhage, and clutter from calcifications and other hyperechogenic scattering objects, and the specularity of seeds themselves make detecting seeds and verifying proper dosimetry difficult in an intraoperative time frame. Radiation oncologists would find a real-time imaging system that is capable of providing accurate, post-insertion, seed-location information to be very valuable because the information would enable timely feedback for intraoperatively correcting deficiencies in the radiation dose. Therefore, a remaining challenge for TRUS-guided brachytherapy of prostate cancer is accurate detection and localization of the seeds upon their insertion.

  15. Is a Loose-Seed Nomogram Still Valid for Prostate Brachytherapy in a Stranded-Seed Era?

    SciTech Connect

    Kudchadker, Rajat J.; Swanson, David A.; Kuban, Deborah A.; Lee, Andrew K.; Bruno, Teresa L. C.; Frank, Steven J.

    2008-10-01

    Purpose: To characterize the amount of activity required to treat the prostate with stranded {sup 125}I radioactive seeds and compare our stranded data with the amount of activity recommended when individual seeds are implanted using a Mick applicator. Methods and Materials: Data from two groups of patients at University of Texas M. D. Anderson Cancer Center who were treated with prostate brachytherapy as monotherapy were analyzed. The first group included 100 patients implanted with individual seeds in 2000 and 2001. The second group comprised 81 patients for whom stranded seeds were implanted in 2006 and 2007. Seeds in both groups were {sup 125}I seeds with an air kerma strength of 0.497 U per seed (0.391 mCi per seed). The prescribed dose to planning target volume was 145 Gy. Results: The total implanted activity and the number of seeds used were significantly lower in the second group (p < 0.0001) than in the first group. The reduction in activity in the stranded-seed group was approximately 23% for a 20-cm{sup 3} prostate and approximately 15% for a 60-cm{sup 3} prostate. With equivalent activity between the two groups, the stranded-seed treatment covered a larger treatment volume with the prescribed dose. Conclusions: The amount of activity required to effectively treat a prostate of a given volume was lower with stranded seeds than with loose seeds. Our experience suggests that prostate brachytherapy that uses stranded seeds leads to a more efficient implant with fewer seeds and lower overall activity, resulting in improved homogeneity.

  16. Migration of a strand of four seeds in low-dose-rate brachytherapy

    PubMed Central

    Dedic-Hagan, Jasmina; Teh, Amy Y M; Liang, Eisen; Collett, Nicholas; Woo, Henry H

    2014-01-01

    We report a case of stranded-seed migration (one strand of four seeds), via the prostatic venous plexus to the internal pudendal vein, in low-dose-rate (LDR) prostate brachytherapy. A 70-year-old man with low-risk prostate adenocarcinoma underwent transperineal permanent seed implantation. A total of 93 iodine-125 seeds were implanted (91 stranded seeds and 2 loose seeds). Immediate postimplantation fluoroscopic image and day 1 postimplantation CT scan indicated all implanted seeds to be within the vicinity of the prostate as planned. Day 30 pelvic X-ray and CT scan revealed migration of a strand of four seeds to the right pelvis (adjacent to ischial spine). At 2 years postimplantation, the patient continues to have good disease control with prostate specific antigen level of 0.69 μg/L, and asymptomatic. To the best of our knowledge, this is the first report of migration of an entire strand of seeds following LDR prostate brachytherapy. PMID:24879735

  17. Comparison of implant quality between intraoperatively built custom-linked seeds and loose seeds in permanent prostate brachytherapy using sector analysis

    PubMed Central

    Katayama, Norihisa; Takemoto, Mitsuhiro; Takamoto, Atsushi; Ihara, Hiroki; Katsui, Kuniaki; Ebara, Shin; Nasu, Yasutomo; Kanazawa, Susumu

    2016-01-01

    We compared the implant quality of intraoperatively built custom-linked (IBCL) seeds with loose seeds in permanent prostate brachytherapy. Between June 2012 and January 2015, 64 consecutive prostate cancer patients underwent brachytherapy with IBCL seeds (n = 32) or loose seeds (n = 32). All the patients were treated with 144 Gy of brachytherapy alone. Brachytherapy was performed using a dynamic dose calculation technique. Computed tomography/magnetic resonance imaging fusion-based dosimetry was performed 1 month after brachytherapy. Post-implant dose–volume histogram (DVH) parameters, prostate sector dosimetry, operation time, seed migration, and toxicities were compared between the IBCL seed group and the loose seed group. A sector analysis tool was used to divide the prostate into six sectors (anterior and posterior sectors at the base, mid-gland, and apex). V100 (95.3% vs 89.7%; P = 0.014) and D90 (169.7 Gy vs 152.6 Gy; P = 0.013) in the anterior base sector were significantly higher in the IBCL seed group than in the loose seed group. The seed migration rate was significantly lower in the IBCL seed group than in the loose seed group (6% vs 66%; P < 0.001). Operation time per seed was significantly longer in the IBCL seed group than in the loose seed group (1.31 min vs 1.13 min; P = 0.003). Other post-implant DVH parameters and toxicities did not differ significantly between the two groups. Our study showed more dose coverage post-operatively in the anterior base prostate sector and less seed migration in IBCL seed implantation compared with loose seed implantation. PMID:26976125

  18. SU-E-P-08: Alarming Range of Seed Activities Ordered for I-125 Plaque Brachytherapy

    SciTech Connect

    Merz, B

    2014-06-01

    Purpose: To investigate the variation in I-125 seed activities ordered by various clinics for their plaque brachytherapy cases under a standardized set of assumptions. Methods: A majority of the plaque programs in North America were contacted and a survey was designed to give a few standardized cases to allow inter-comparison of seed activities ordered. Tumor dose, treatment duration, number of seeds, plaque, and tumor apex were held constant in order to reveal differences in prescription point, seed type, and seed activity. Results: While the survey is presently underway, preliminary results show alarmingly wide variations between centers. Differences up to 45% have been found with 15% differences being common. Conclusion: Though knowledge of the TG-43 dose calculation formalism is common, a number of factors in the field of plaque brachytherapy lead to alarming differences in activity of I-125 seeds being ordered for a given tumor. Knowledge of the present reality of widely varying treatment activities, and thus doses to tumor and normal structures, should serve as motivation for centers involved in this modality to review their programs with others in the community and share their experiences.

  19. Fast radioactive seed localization in intraoperative cone beam CT for low-dose-rate prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Hu, Yu-chi; Xiong, Jian-ping; Cohan, Gilad; Zaider, Marco; Mageras, Gig; Zelefsky, Michael

    2013-03-01

    A fast knowledge-based radioactive seed localization method for brachytherapy was developed to automatically localize radioactive seeds in an intraoperative volumetric cone beam CT (CBCT) so that corrections, if needed, can be made during prostate implant surgery. A transrectal ultrasound (TRUS) scan is acquired for intraoperative treatment planning. Planned seed positions are transferred to intraoperative CBCT following TRUS-to-CBCT registration using a reference CBCT scan of the TRUS probe as a template, in which the probe and its external fiducial markers are pre-segmented and their positions in TRUS are known. The transferred planned seeds and probe serve as an atlas to reduce the search space in CBCT. Candidate seed voxels are identified based on image intensity. Regions are grown from candidate voxels and overlay regions are merged. Region volume and intensity variance is checked against known seed volume and intensity profile. Regions meeting the above criteria are flagged as detected seeds; otherwise they are flagged as likely seeds and sorted by a score that is based on volume, intensity profile and distance to the closest planned seed. A graphical interface allows users to review and accept or reject likely seeds. Likely seeds with approximately twice the seed volume are automatically split. Five clinical cases are tested. Without any manual correction in seed detection, the method performed the localization in 5 seconds (excluding registration time) for a CBCT scan with 512×512×192 voxels. The average precision rate per case is 99% and the recall rate is 96% for a total of 416 seeds. All false negative seeds are found with 15 in likely seeds and 1 included in a detected seed. With the new method, updating of calculations of dose distribution during the procedure is possible and thus facilitating evaluation and improvement of treatment quality.

  20. Bioevaluation of 125I Ocu-Prosta seeds for application in prostate cancer brachytherapy

    PubMed Central

    Mukherjee, Archana; Sarma, Haladhar Dev; Saxena, Sanjay; Kumar, Yogendra; Chaudhari, Pradip; Goda, Jayant Sastri; Adurkar, Pranjal; Dash, Ashutosh; Samuel, Grace

    2014-01-01

    Background & objectives: In recent years, brachytherapy involving permanent radioactive seed implantation has emerged as an effective modality for the management of cancer of prostate. 125I-Ocu-Prosta seeds were indigenously developed and studies were carried out to assess the safety of the indigenously developed 125I-Ocu-Prosta seeds for treatment of prostate cancer. Methods: Animal experiments were performed to assess the likelihood of in vivo release of 125I from radioactive seeds and migration of seeds implanted in the prostate gland of the rabbit. In vivo release of 125I activity was monitored by serial blood sampling from the auricular vein and subsequent measurement of 125I activity. Serial computed tomography (CT) scans were done at regular intervals till 6 months post implant to assess the physical migration of the seeds. Results: The laser welded seeds maintained their hermeticity and prevented the in vivo release of 125I activity into the blood as no radioactivity was detected during follow up blood measurements. Our study showed that the miniature 125I seeds were clearly resolved in CT images. Seeds remained within the prostate gland during the entire study period. Moreover, the seed displacement was minimal even within the prostate gland. Interpretation & conclusions: Our findings have demonstrated that indigenously developed 125I-Ocu-Prosta seeds may be suitable for application in treatment of prostate cancer. PMID:24927341

  1. Verification and source-position error analysis of film reconstruction techniques used in the brachytherapy planning systems.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Chui, Chen-Shou; Du, Yi-Chun; Chen, Tainsong

    2009-09-01

    A method was presented that employs standard linac QA tools to verify the accuracy of film reconstruction algorithms used in the brachytherapy planning system. Verification of reconstruction techniques is important as suggested in the ESTRO booklet 8: "The institution should verify the full process of any reconstruction technique employed clinically." Error modeling was also performed to analyze seed-position errors. The "isocentric beam checker" device was used in this work. It has a two-dimensional array of steel balls embedded on its surface. The checker was placed on the simulator couch with its center ball coincident with the simulator isocenter, and one axis of its cross marks parallel to the axis of gantry rotation. The gantry of the simulator was rotated to make the checker behave like a three-dimensional array of balls. Three algorithms used in the ABACUS treatment planning system: orthogonal film, 2-films-with-variable-angle, and 3-films-with-variable-angle were tested. After exposing and digitizing the films, the position of each steel ball on the checker was reconstructed and compared to its true position, which can be accurately calculated. The results showed that the error is dependent on the object-isocenter distance, but not the magnification of the object. The averaged errors were less than 1 mm within the tolerance level defined by Roué et al. ["The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy," Radiother. Oncol. 78, 78-83 (2006)]. However, according to the error modeling, the theoretical error would be greater than 2 mm if the objects were located more than 20 cm away from the isocenter with a 0.5 degrees reading error of the gantry and collimator angles. Thus, in addition to carefully performing the QA of the gantry and collimator angle indicators, it is suggested that the patient, together with the applicators or seeds inside, should be placed close to the isocenter as much as possible. This method could be used to

  2. Verification and source-position error analysis of film reconstruction techniques used in the brachytherapy planning systems

    SciTech Connect

    Chang Liyun; Ho, Sheng-Yow; Chui, Chen-Shou; Du, Yi-Chun; Chen Tainsong

    2009-09-15

    A method was presented that employs standard linac QA tools to verify the accuracy of film reconstruction algorithms used in the brachytherapy planning system. Verification of reconstruction techniques is important as suggested in the ESTRO booklet 8: ''The institution should verify the full process of any reconstruction technique employed clinically.'' Error modeling was also performed to analyze seed-position errors. The ''isocentric beam checker'' device was used in this work. It has a two-dimensional array of steel balls embedded on its surface. The checker was placed on the simulator couch with its center ball coincident with the simulator isocenter, and one axis of its cross marks parallel to the axis of gantry rotation. The gantry of the simulator was rotated to make the checker behave like a three-dimensional array of balls. Three algorithms used in the ABACUS treatment planning system: orthogonal film, 2-films-with-variable-angle, and 3-films-with-variable-angle were tested. After exposing and digitizing the films, the position of each steel ball on the checker was reconstructed and compared to its true position, which can be accurately calculated. The results showed that the error is dependent on the object-isocenter distance, but not the magnification of the object. The averaged errors were less than 1 mm within the tolerance level defined by Roueet al. [''The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy,'' Radiother. Oncol. 78, 78-83 (2006)]. However, according to the error modeling, the theoretical error would be greater than 2 mm if the objects were located more than 20 cm away from the isocenter with a 0.5 deg. reading error of the gantry and collimator angles. Thus, in addition to carefully performing the QA of the gantry and collimator angle indicators, it is suggested that the patient, together with the applicators or seeds inside, should be placed close to the isocenter as much as possible. This method could be used

  3. Automated localization of implanted seeds in 3D TRUS images used for prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2006-07-15

    An algorithm has been developed in this paper to localize implanted radioactive seeds in 3D ultrasound images for a dynamic intraoperative brachytherapy procedure. Segmentation of the seeds is difficult, due to their small size in relatively low quality of transrectal ultrasound (TRUS) images. In this paper, intraoperative seed segmentation in 3D TRUS images is achieved by performing a subtraction of the image before the needle has been inserted, and the image after the seeds have been implanted. The seeds are searched in a 'local' space determined by the needle position and orientation information, which are obtained from a needle segmentation algorithm. To test this approach, 3D TRUS images of the agar and chicken tissue phantoms were obtained. Within these phantoms, dummy seeds were implanted. The seed locations determined by the seed segmentation algorithm were compared with those obtained from a volumetric cone-beam flat-panel micro-CT scanner and human observers. Evaluation of the algorithm showed that the rms error in determining the seed locations using the seed segmentation algorithm was 0.98 mm in agar phantoms and 1.02 mm in chicken phantoms.

  4. Photoacoustic imaging of brachytherapy seeds using a channel-domain ultrasound array system

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Zemp, Roger J.

    2011-03-01

    Brachytherapy is a technique commonly used in the treatment of prostate cancer that relies on the precise placement of small radioactive seeds near the tumor location. The advantage of this technique over traditional radiation therapies is that treatment can be continuous and uniform, resulting in fewer clinic visits and a shorter treatment duration. Two important phases of this treatment are needle guidance for implantation, and post-placement verification for dosimetry. Ultrasound is a common imaging modality used for these purposes, but it can be difficult to distinguish the seeds from surrounding tissues, often requiring other imaging techniques such as MRI or CT. Photoacoustic imaging may offer a viable alternative. Using a photoacoustic system based on an L7- 4 array transducer and a realtime ultrasound array system capable of parallel channel data acquisition streamed to a multi-core computer via PCI-express, we have demonstrated imaging of these seeds at an ultrasound depth of 16 mm and laser penetration depths ranging up to 50 mm in chicken tissue with multiple optical wavelengths. Ultrasound and photoacoustic images are coregistered via an interlaced pulse sequence. Two laser pulses are used to form a photoacoustic image, and at these depths, the brachytherapy seeds are detected with a signal-to-noise ratio of over 26dB. To obtain this result, 1064nm light was used with a fluence of 100mJ/cm2, the ANSI limit for human skin exposure at this wavelength. This study demonstrates the potential for photoacoustic imaging as a candidate technology for brachytherapy seed placement guidance and verification.

  5. 125I Seed Implant Brachytherapy for Painful Bone Metastases After Failure of External Beam Radiation Therapy

    PubMed Central

    Feng, Shi; Wang, Li; Xiao, Zhang; Maharjan, Rakesh; Chuanxing, Li; Fujun, Zhang; Jinhua, Huang; Peihong, Wu

    2015-01-01

    Abstract The purpose of this study was to evaluate the safety and therapeutic efficacy of computed tomography (CT)-guided 125I seed implant brachytherapy in patients with painful metastatic bone lesions after failure of external beam radiation therapy (EBRT). From August 2012 to July 2014, 26 patients with painful bone metastases after failure of EBRT were treated with CT-guided 125I seed implant brachytherapy. Patient pain and analgesic use were measured using the Brief Pain Inventory before treatment, weekly for 4 weeks, and every 4 weeks thereafter for a total of 24 weeks. Opioid analgesic medications and complications were monitored at the same follow-up intervals. Before 125I seed implantation, the mean score for worst pain in a 24-hour period was 7.3 out of 10. Following treatment, at weeks 1, 4, 8, 12, and 24, worst pain decreased to 5.0 (P < 0.0001), 3.0 (P < 0.0001), 2.8 (P < 0.0001), 2.6 (P < 0.0001), and 2.0 (P = 0.0001), respectively. Opioid usage significantly decreased at weeks 4, 8, and 12. Overall response rates of osseous metastases after 125I seed implantation at 1, 4, 8, 12, and 24 weeks were 58%, 79%, 81%, 82%, and 80%, respectively. Adverse events were seen in 4 patients, including Grade 1 myelosuppression and Grade 1 late skin toxicity. 125I seed brachytherapy is a safe and effective treatment for patients with painful bone metastases after failure of EBRT. PMID:26252288

  6. An automated approach to seed assignment for eye plaque brachytherapy.

    PubMed

    Koh, T S; Yeung, I; Tong, S

    2000-07-01

    Episcleral plaques are commonly used for the treatment of ocular tumours such as choroidal melanoma. Treatment planning involves the assignment of seeds to slots on the plaque to achieve a desired dose rate distribution. Seed assignment is rather straightforward if seeds are ordered on demand. However, the assignment task becomes tedious and laborious if the seeds have to be chosen from an existing stock of seeds with different activities. To date, this task has usually been performed by a human planner through trial and error. An algorithm has been developed to automate the task of seed assignment using a mixed-integer programming method. We also explore ways to simplify the problem such that the method becomes practical in most facilities. We have tested the method on three randomly chosen clinical cases from our past records, to show that the algorithm could yield solutions within a shorter time frame and with less deviation from the desired dose rate distributions, as compared with the solutions from a human counterpart.

  7. MRI of prostate brachytherapy seeds at high field: A study in phantom

    SciTech Connect

    Thomas, S. D.; Wachowicz, K.; Fallone, B. G.

    2009-11-15

    Postimplant evaluation of prostate brachytherapy using magnetic resonance imaging (MRI) at 1.5 T has met with some difficulties due to the uncertainty associated with seed localization despite the excellent anatomical delineation this imaging modality can achieve. Seeds in vascularized regions or outside the prostate, where signal heterogeneity or drop off can obscure their position, can be difficult to identify. The increase in SNR available at 3.0 T offers the potential to improve these issues with visualization. However, before moving directly to in vivo studies, it is important to investigate the effects of artifact size on the ability to localize multiple seeds in close proximity. These artifacts are of extra concern at higher field because of the increased induced field distortions surrounding the seeds. A single prostate brachytherapy seed (IMC6711, OncoSeed) and arrays of seed pairs were suspended in a porcine gel medium and imaged on 1.5 and 3 T MRI scanners for comparison. Two basic acquisition techniques utilized in a wide array of clinical sequences [spin-echo based and gradient-echo (GE) based] were investigated for the types of artifacts they produce, and their dependence on field. Analysis of the resulting voids was performed to determine the relative size of seeds as seen on the images, as well as the ability to distinguish seeds at close proximity. The seed voids at 3 T were only slightly larger than those obtained at 1.5 T (0.5 mm longer and wider) when using a spin-echo type sequence. For this work, the authors used a proton density fast spin-echo (FSE) sequence. These results are promising for the use of 3 T imaging for postimplant evaluation since the SNR will increase by roughly a factor of 2 with only a limited corresponding increase in artifact size. The minimum separation of the seeds to be completely distinguished using void analysis increased from between 1.5 and 3 mm to between 3 and 4.5 mm when going from 1.5 to 3 T FSE imaging. The

  8. Effect of constipation on dosimetry after permanent seed brachytherapy for prostate cancer

    PubMed Central

    Dolado, M. Carmen; Núñez, Eduardo J.; Otón, Claudio A.

    2015-01-01

    Purpose A major concern in prostate brachytherapy is rectal toxicity, which mainly depends on the dose and volume of rectum involved by radiation. We hypothesize that the rectal distension, as produced by constipation, influences the dosimetric parameters of the rectum and other pelvic organs. Material and methods An open, controlled, prospective, paired trial (pre-post test) was designed and conducted. Twenty-three patients treated with prostate brachytherapy were recruited, of which 21 were evaluated. All of them underwent two CT scans, the first one with empty rectum and the second with rectum distended by a catheter balloon. Target volumes and organs at risk were delineated, and dosimetric parameters were calculated and then compared for each patient between both CT. Results For rectum, D2cc increased 15.8% (p < 0.001) and D0.1cc 24.05% (p = 0.002) when the rectum was full. A significant difference was also found in dose distribution to prostate, when rectum is distended, a 1% decrease in V100 (p = 0.031) and a 3.25% in D90 (p = 0.033) was registered. Conclusions The status of rectal distension, as occurs in constipation, has a deleterious influence on prostate brachytherapy dosimetry. This situation increases the radiation to rectum and modifies dose distribution to prostate. We recommend prevention of constipation for at least two half lives of the radioactive seeds. PMID:26622226

  9. Measurement uncertainty analysis of low-dose-rate prostate seed brachytherapy: post-implant dosimetry.

    PubMed

    Gregory, Kent J; Pattison, John E; Bibbo, Giovanni

    2015-03-01

    The minimal dose covering 90 % of the prostate volume--D 90--is arguably the most important dosimetric parameter in low-dose-rate prostate seed brachytherapy. In this study an analysis of the measurement uncertainties in D 90 from low-dose-rate prostate seed brachytherapy was conducted for two common treatment procedures with two different post-implant dosimetry methods. The analysis was undertaken in order to determine the magnitude of D 90 uncertainty, how the magnitude of the uncertainty varied when D 90 was calculated using different dosimetry methods, and which factors were the major contributors to the uncertainty. The analysis considered the prostate as being homogeneous and tissue equivalent and made use of published data, as well as original data collected specifically for this analysis, and was performed according to the Guide to the expression of uncertainty in measurement (GUM). It was found that when prostate imaging and seed implantation were conducted in two separate sessions using only CT images for post-implant analysis, the expanded uncertainty in D 90 values were about 25 % at the 95 % confidence interval. When prostate imaging and seed implantation were conducted during a single session using CT and ultrasound images for post-implant analysis, the expanded uncertainty in D 90 values were about 33 %. Methods for reducing these uncertainty levels are discussed. It was found that variations in contouring the target tissue made the largest contribution to D 90 uncertainty, while the uncertainty in seed source strength made only a small contribution. It is important that clinicians appreciate the overall magnitude of D 90 uncertainty and understand the factors that affect it so that clinical decisions are soundly based, and resources are appropriately allocated.

  10. Characterization of the susceptibility artifact around a prostate brachytherapy seed in MRI

    SciTech Connect

    Wachowicz, K.; Thomas, S. D.; Fallone, B. G.

    2006-12-15

    Magnetic distortions surrounding a typical brachytherapy seed (IMC6711, OncoSeed{sup TM}) within a clinical magnetic resonance imager were modeled for a number of different seed orientations with respect to the main magnetic field. From these distortion maps, simulated images were produced. The simulated images were then compared to images experimentally acquired using a spin echo technique on a Philips 1.5 T magnetic resonance imaging scanner. The modeled images were found to conform very well to those acquired experimentally, thus allowing one to establish where the seed is positioned within the complex image distortion patterns. The artifact patterns were dependent on the orientation of the seed with the main magnetic field, as well as the direction of the read encode gradient. While all imaging schemes which employ a unidirectional linear read encode trajectory should produce the artifacts modeled in this article, sequences other than spin echo may produce additional artifacts. Gradient echo and steady-state free precession imaging techniques were also performed on the seed for comparison.

  11. Seed Implant Retention Score Predicts the Risk of Prolonged Urinary Retention After Prostate Brachytherapy

    SciTech Connect

    Lee, Hoon K.; Adams, Marc T.; Shi, Qiuhu; Basillote, Jay; LaMonica, Joanne; Miranda, Luis; Motta, Joseph

    2010-04-15

    Purpose: To risk-stratify patients for urinary retention after prostate brachytherapy according to a novel seed implant retention score (SIRS). Patients and Methods: A total of 835 patients underwent transperineal prostate seed implant from March 1993 to January 2007; 197 patients had {sup 125}I and 638 patients had {sup 103}Pd brachytherapy. Four hundred ninety-four patients had supplemental external-beam radiation. The final downsized prostate volume was used for the 424 patients who had neoadjuvant hormone therapy. Retention was defined as reinsertion of a Foley catheter after the implant. Results: Retention developed in 7.4% of patients, with an average duration of 6.7 weeks. On univariate analysis, implant without supplemental external-beam radiation (10% vs. 5.6%; p = 0.02), neoadjuvant hormone therapy (9.4% vs. 5.4%; p = 0.02), baseline alpha-blocker use (12.5% vs. 6.3%; p = 0.008), and increased prostate volume (13.4% vs. 6.9% vs. 2.9%, >45 cm{sup 3}, 25-45 cm{sup 3}, <25 cm{sup 3}; p = 0.0008) were significantly correlated with increased rates of retention. On multivariate analysis, implant without supplemental external-beam radiation, neoadjuvant hormone therapy, baseline alpha-blocker use, and increased prostate volume were correlated with retention. A novel SIRS was modeled as the combined score of these factors, ranging from 0 to 5. There was a significant correlation between the SIRS and retention (p < 0.0001). The rates of retention were 0, 4%, 5.6%, 9%, 20.9%, and 36.4% for SIRS of 0 to 5, respectively. Conclusions: The SIRS may identify patients who are at high risk for prolonged retention after prostate brachytherapy. A prospective validation study of the SIRS is planned.

  12. Required treatment margin for coronary endovascular brachytherapy with iridium-192 seed ribbon

    SciTech Connect

    Giap Huan

    2002-03-01

    Purpose: Preliminary clinical trials (SCRIPPS I, WRIST and Gamma 1) employing catheter-based endovascular brachytherapy (EVBT) with iridium-192 (Ir-192) seeds show promising results in reducing restenosis after coronary intervention. Failure analysis of these studies showed a significant number of restenosis at the treatment margin called ''edge effect.'' The objective of this study is to investigate the factors that contribute to the adequacy of treatment margin. Methods and materials: The factors contributing to the margins are penumbra effect at the end of the seed train, uncertainty in target localization, longitudinal seed movement during cardiac cycle and barotrauma due to stent deployment. The magnitudes of the penumbra effect, which refers to the tapering off the prescribed isodose line near the ends of the source train, were calculated for various source lengths of Ir-192 seed ribbon using AAPM TG-43 algorithm. Uncertainty in target localization refers to the fact that the visual estimation of proximal and distal extent of the injury is not accurate, and this can be obtained by comparing the 'estimate' from the interventional cardiologist with careful review of the cine-angiogram. Longitudinal seed movements relative to the coronary vessel during the cardiac cycle were determined by frame-by-frame reviewing cine-angiograms of 30 patients. The proximal and distal source points were measured in reference to branching vessels during the contrast phase of the cine-angiogram. The maximum proximal and distal longitudinal movement was captured and source displacement was measured from the closest proximal and distal branching vessel. Barotrauma, additional injury to the vessel arising from the stent deployment balloon, was obtained by reviewing specifications from commercially available stent delivery systems. Results: The penumbra effect ranges from 3.9 to 4.5 mm for 6-22 Ir-192 seed ribbons. The uncertainty in target localization is within 3 mm for our

  13. SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images

    SciTech Connect

    Mashouf, S; Fatemi-Ardekani, A; Song, W

    2015-06-15

    Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequence with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.

  14. Localization of linked {sup 125}I seeds in postimplant TRUS images for prostate brachytherapy dosimetry

    SciTech Connect

    Xue Jinyu . E-mail: Jinyu.Xue@mail.tju.edu; Waterman, Frank; Handler, Jay; Gressen, Eric

    2005-07-01

    Purpose: To demonstrate that {sup 125}I seeds can be localized in transrectal ultrasound (TRUS) images obtained with a high-resolution probe when the implant is performed with linked seeds and spacers. Adequate seed localization is essential to the implementation of TRUS-based intraoperative dosimetry for prostate brachytherapy. Methods and Materials: Thirteen preplanned peripherally loaded prostate implants were performed using {sup 125}I seeds and spacers linked together in linear arrays that prevent seed migration and maintain precise seed spacing. A set of two-dimensional transverse images spaced at 0.50-cm intervals were obtained with a high-resolution TRUS probe at the conclusion of the procedure with the patient still under anesthesia. The image set extended from 1.0 cm superior to the base to 1.0 cm inferior to the apex. The visible echoes along each needle track were first localized and then compared with the known construction of the implanted array. The first step was to define the distal and proximal ends of each array. The visible echoes were then identified as seeds or spacers from the known sequence of the array. The locations of the seeds that did not produce a visible echo were interpolated from their known position in the array. A CT scan was obtained after implantation for comparison with the TRUS images. Results: On average, 93% (range, 86-99%) of the seeds were visible in the TRUS images. However, it was possible to localize 100% of the seeds in each case, because the locations of the missing seeds could be determined from the known construction of the arrays. Two factors complicated the interpretation of the TRUS images. One was that the spacers also produced echoes. Although weak and diffuse, these echoes could be mistaken for seeds. The other was that the number of echoes along a needle track sometimes exceeded the number of seeds and spacers implanted. This was attributed to the overall length of the array, which was approximately 0.5 cm

  15. Rectal-wall dose dependence on postplan timing after permanent-seed prostate brachytherapy

    SciTech Connect

    Taussky, Daniel; Yeung, Ivan; Williams, Theresa; Pearson, Shannon; McLean, Michael; Pond, Gregory; Crook, Juanita . E-mail: Juanita.crook@rmp.uhn.on.ca

    2006-06-01

    Purpose: Dose to rectal wall after permanent-seed prostate brachytherapy is dependent on distance between posterior prostatic seeds and anterior rectal wall and is influenced by postimplant periprostatic edema. We analyzed the effect of postplan timing on anterior rectal-wall dose. Methods and Materials: Twenty patients received permanent seed {sup 125}I brachytherapy as monotherapy (145 Gy). Implants were preplanned by use of transrectal ultrasound (TRUS) and carried out by use of preloaded needles. Postimplant dosimetry was calculated by use of magnetic resonance imaging-computed tomography fusion on Days 1, 8, and 30. The anterior rectal-wall dose is reported as the isodose enclosing 1.0 or 2.0 cc of rectal wall and as the RV100 in cc. Results: The dose to rectal wall increased progressively over time. The median increase in dose to 1.0 cc of rectal wall (RD [1 cc]) from Day 1 to 30 was 39.2 Gy (p < 0.001). RV100 increased from a median of 0.07 cc on Day 1 to 0.67 cc on Day 30. The most significant predictor of rectal-wall dose (RD [1 cc], RD [2 cc], or RV100) was the time of evaluation (p < 0.001). Conclusion: Although periprostatic edema cannot be quantified by postimplant imaging, the dose to the anterior rectal wall increases significantly over time as prostatic and periprostatic edema resolve. Critical-organ dose reporting and guidelines for minimizing toxicity must take into account the time of the assessment.

  16. New National Air-Kerma-Strength Standards for 125I and 103Pd Brachytherapy Seeds

    PubMed Central

    Seltzer, Stephen M.; Lamperti, Paul J.; Loevinger, Robert; Mitch, Michael G.; Weaver, James T.; Coursey, Bert M.

    2003-01-01

    The new U.S. measurement standard for the air-kerma strength from low-energy photon-emitting brachytherapy seed sources is formally described in detail. This instrument-based standard was implemented on 1 January 1999, with its salient features and the implications of differences with the previous standard given only through a series of informal communications. The Wide-Angle Free-Air Chamber (WAFAC) is specially designed to realize air kerma from a single-seed source emitting photons with energies up to about 40 keV, and is now used to measure the wide variety of seeds used in prostate-cancer therapy that has appeared in the last few years. For the two 125I seed models that have been subject to both the old and new standards, the new standard reduces the air-kerma strength by 10.3 %. This change is mainly due to the removal of the influence on the measurement of the Ti K x rays produced in the source encapsulation, a component with no clinical significance. PMID:27413614

  17. Monte Carlo study of LDR seed dosimetry with an application in a clinical brachytherapy breast implant

    SciTech Connect

    Furstoss, C.; Reniers, B.; Bertrand, M. J.; Poon, E.; Carrier, J.-F.; Keller, B. M.; Pignol, J. P.; Beaulieu, L.; Verhaegen, F.

    2009-05-15

    A Monte Carlo (MC) study was carried out to evaluate the effects of the interseed attenuation and the tissue composition for two models of {sup 125}I low dose rate (LDR) brachytherapy seeds (Medi-Physics 6711, IBt InterSource) in a permanent breast implant. The effect of the tissue composition was investigated because the breast localization presents heterogeneities such as glandular and adipose tissue surrounded by air, lungs, and ribs. The absolute MC dose calculations were benchmarked by comparison to the absolute dose obtained from experimental results. Before modeling a clinical case of an implant in heterogeneous breast, the effects of the tissue composition and the interseed attenuation were studied in homogeneous phantoms. To investigate the tissue composition effect, the dose along the transverse axis of the two seed models were calculated and compared in different materials. For each seed model, three seeds sharing the same transverse axis were simulated to evaluate the interseed effect in water as a function of the distance from the seed. A clinical study of a permanent breast {sup 125}I implant for a single patient was carried out using four dose calculation techniques: (1) A TG-43 based calculation, (2) a full MC simulation with realistic tissues and seed models, (3) a MC simulation in water and modeled seeds, and (4) a MC simulation without modeling the seed geometry but with realistic tissues. In the latter, a phase space file corresponding to the particles emitted from the external surface of the seed is used at each seed location. The results were compared by calculating the relevant clinical metrics V{sub 85}, V{sub 100}, and V{sub 200} for this kind of treatment in the target. D{sub 90} and D{sub 50} were also determined to evaluate the differences in dose and compare the results to the studies published for permanent prostate seed implants in literature. The experimental results are in agreement with the MC absolute doses (within 5% for EBT

  18. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    SciTech Connect

    Buzurovic, I; Devlin, P; Hansen, J; O'Farrell, D; Bhagwat, M; Friesen, S; Damato, A; Lewis, J; Cormack, R

    2014-06-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curved surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high level

  19. A perspective matrix-based seed reconstruction algorithm with applications to C-arm based intra-operative dosimetry

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeram; Cho, Paul S.

    2006-03-01

    Currently available seed reconstruction algorithms are based on the assumption that accurate information about the imaging geometry is known. The assumption is valid for isocentric x-ray units such as radiotherapy simulators. However, the large majority of the clinics performing prostate brachytherapy today use C-arms for which imaging parameters such as source to axis distance, image acquisition angles, central axis of the image are not accurately known. We propose a seed reconstruction algorithm that requires no such knowledge of geometry. The new algorithm makes use of perspective projection matrix, which can be easily derived from a set of known reference points. The perspective matrix calculates the transformation of a point in 3D space to the imaging coordinate system. An accurate representation of the imaging geometry can be derived from the generalized projection matrix (GPM) with eleven degrees of freedom. In this paper we show how GPM can be derived given a theoretical minimum number of reference points. We propose an algorithm to compute the line equation that defines the backprojection operation given the GPM. The algorithm can be extended to any ray-tracing based seed reconstruction algorithms. Reconstruction using the GPM does not require calibration of C-arms and the images can be acquired at arbitrary angles. The reconstruction is performed in near real-time. Our simulations show that reconstruction using GPM is robust and accuracy is independent of the source to detector distance and location of the reference points used to generate the GPM. Seed reconstruction from C-arm images acquired at unknown geometry provides a useful tool for intra-operative dosimetry in prostate brachytherapy.

  20. Effects of seed migration on post-implant dosimetry of prostate brachytherapy

    SciTech Connect

    Gao, M.; Wang, J. Z.; Nag, S.; Gupta, N.

    2007-02-15

    Brachytherapy using permanent seed implants has been an effective treatment for prostate cancer. However, seeds will migrate after implant, thus making the evaluation of post-implant dosimetry difficult. In this study, we developed a computer program to simulate seed migration and analyzed dosimetric changes due to seed migration at various migration amounts. The study was based on 14 patients treated with Pd-103 at the James Cancer Hospital. Modeling of seed migration, including direction, distance as well as day of migration, was based on clinical observations. Changes of commonly used dosimetric parameters as a function of migration amount (2, 4, 6 mm respectively), prostate size (from 20 to 90 cc), and prostate region (central vs peripheral) were studied. Change of biological outcome (tumor control probability) due to migration was also estimated. Migration reduced prostate D90 to 99{+-}2% of original value in 2 mm migration, and the reduction increased to 94{+-}6% in 6 mm migration. The reduction of prostate dose led to a 14% (40%) drop in the tumor control probability for 2 mm (6 mm) migration, assuming radiosensitive tumors. However, migration has less effect on a prostate implanted with a larger number of seeds. Prostate V100 was less sensitive to migration than D90 since its mean value was still 99% of original value even in 6 mm migration. Migration also showed a different effect in the peripheral region vs the central region of the prostate, where the peripheral mean dose tended to drop more significantly. Therefore, extra activity implanted in the peripheral region during pre-plan can be considered. The detrimental effects of migration were more severe in terms of increasing the dose to normal structures, as rectum V50 may be 70% higher and urethra V100 may be 50% higher in the case of 6 mm migration. Quantitative knowledge of these effects is helpful in treatment planning and post-implant evaluation.

  1. Sequential evaluation of prostate edema after permanent seed prostate brachytherapy using CT-MRI fusion

    SciTech Connect

    Taussky, Daniel; Austen, Lyn; Toi, Ants; Yeung, Ivan; Williams, Theresa; Pearson, Shannon; McLean, Michael; Pond, Gregory; Crook, Juanita . E-mail: juanita.crook@rmp.uhn.on.ca

    2005-07-15

    Purpose: To analyze the extent and time course of prostate edema and its effect on dosimetry after permanent seed prostate brachytherapy. Methods and Materials: Twenty patients scheduled for permanent seed {sup 125}I prostate brachytherapy agreed to a prospective study on postimplant edema. Implants were preplanned using transrectal ultrasonography. Postimplant dosimetry was calculated using computed tomography-magnetic resonance imaging (CT-MRI) fusion on the day of the implant (Day 1) and Days 8 and 30. The prostate was contoured on MRI, and the seeds were located on CT. Factors investigated for an influence on edema were the number of seeds and needles, preimplant prostate volume, transitional zone index (transition zone volume divided by prostate volume), age, and prostate-specific antigen level. Prostate dosimetry was evaluated by the percentage of the prostate volume receiving 100% of the prescribed dose (V{sub 100}) and percentage of prescribed dose received by 90% of the prostate volume (D{sub 90}). Results: Prostate edema was maximal on Day 1, with the median prostate volume 31% greater than preimplant transrectal ultrasound volume (range, 0.93-1.72; p < 0.001) and decreased with time. It was 21% greater than baseline at Day 8 (p = 0.013) and 5% greater on Day 30 (p < 0.001). Three patients still had a prostate volume greater than baseline by Day 30. The extent of edema depended on the transition zone volume (p = 0.016) and the preplan prostate volume (p 0.003). The median V{sub 100} on Day 1 was 93.6% (range, 86.0-98.2%) and was 96.3% (range, 85.7-99.5%) on Day 30 (p = 0.079). Patients with a Day 1 V{sub 100} >93% were less affected by edema resolution, showing a median increase in V{sub 100} of 0.67% on Day 30 compared with 2.77% for patients with a V{sub 100} <93 % on Day 1. Conclusion: Despite the extreme range of postimplant edema, the effect on dosimetry was less than expected. Dose coverage of the prostate was good for all patients during Days 1

  2. A study of a pretreatment method to predict the number of I-125 seeds required for prostate brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar . E-mail: bashar@medphysics.leeds.ac.uk; Brearley, Elizabeth; St Clair, Shaun; Flynn, Anthony

    2006-05-01

    Purpose: Prediction of the number of iodine seeds (I-125) required for prostate implantation is an important tool to reduce the number of unused seeds for brachytherapy. This study was designed to investigate the relationship between the number of seeds implanted vs. prostate volume. This can produce a tool to accurately estimate the number of seeds required for a given target volume. In addition, total cost of treatment, personal radiation risks during storage and handling, and errors in accounting for seeds can be reduced. Methods and Materials: Data from two groups of patients who had I-125 seed prostate implants (Oncura/Amersham RAPIDStrand model 6711 I-125) have been separately analyzed: (A) The relationship between prostate volume vs. number of seeds implanted was based on 401 patients treated between 1999 and 2002 who were implanted with seeds of air kerma strength (AKS) of 0.459 {mu}Gyh{sup -1} at 1 m per seed. (B) The relationship between prostate volume vs. total seed AKS was analyzed. This was based on 628 patients treated between 1999 and 2002 who were implanted with a range of seed strengths from 0.381 to 0.521 U. Both patient groups were subdivided into integer prostate volume bins. For each bin, the mean and 95% confidence intervals (CI) for the implanted number of seeds or total AKS implanted were calculated. The upper 95% CI was used to investigate the relationship between the number of seeds implanted and total AKS implanted vs. prostate volume. Results: The new method of predicting the number of seeds shows valid and accurate results. The required number of seeds can be predicted, which helps to reduce the number of leftover seeds to 3% of the total number of seeds ordered. Conclusion: The number of I-125 seeds or the total activity that is required to deliver the prescribed dose for the target volume can be predicted. This could reduce the overall treatment cost by accurate seed ordering before implantation.

  3. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  4. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect

    Morrison, Hali Menon, Geetha; Sloboda, Ron S.

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  5. MAGNETIC RESONANCE IMAGING COMPATIBLE ROBOTIC SYSTEM FOR FULLY AUTOMATED BRACHYTHERAPY SEED PLACEMENT

    PubMed Central

    Muntener, Michael; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Bagga, Herman; Kavoussi, Louis; Cleary, Kevin; Stoianovici, Dan

    2011-01-01

    Objectives To introduce the development of the first magnetic resonance imaging (MRI)-compatible robotic system capable of automated brachytherapy seed placement. Methods An MRI-compatible robotic system was conceptualized and manufactured. The entire robot was built of nonmagnetic and dielectric materials. The key technology of the system is a unique pneumatic motor that was specifically developed for this application. Various preclinical experiments were performed to test the robot for precision and imager compatibility. Results The robot was fully operational within all closed-bore MRI scanners. Compatibility tests in scanners of up to 7 Tesla field intensity showed no interference of the robot with the imager. Precision tests in tissue mockups yielded a mean seed placement error of 0.72 ± 0.36 mm. Conclusions The robotic system is fully MRI compatible. The new technology allows for automated and highly accurate operation within MRI scanners and does not deteriorate the MRI quality. We believe that this robot may become a useful instrument for image-guided prostate interventions. PMID:17169653

  6. On the use of Kodak CR film for quality assurance of needle loading in I-125 seed prostate brachytherapy.

    PubMed

    Fog, L S; Nicholls, R; van Doom, T

    2007-09-01

    Low dose rate brachytherapy using implanted I-125 seeds as a monotherapy for prostate cancer is now in use in many hospitals. In contrast to fractionated brachytherapy treatments, where the effect of incorrect positioning of the source in one treatment fraction can be diminished by correcting the position in subsequent fractions, the I-125 seed implant is permanent, making correct positioning of the seeds in the prostate essential. The seeds are inserted into the prostate using needles. Correct configuration of seeds in the needles is essential in order to deliver the planned treatment. A comparison of an autoradiograph obtained by exposing film to the seed-loaded needles with the patient treatment plan is a valuable quality assurance tool. However, the time required to sufficiently expose Kodak XOMAT V film, currently used in this department is significant. This technical note presents the use of Kodak CR film for acquisition of the radiograph. The digital radiograph can be acquired significantly faster, has superior signal-to-noise ratio and contrast and has the usual benefits of digital film, e.g. a processing time which is shorter than that required for non-digital film, the possibility of image manipulation, possibility of paper printing and electronic storage.

  7. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    SciTech Connect

    Genebes, Caroline; Filleron, Thomas; Graff, Pierre; Jonca, Frédéric; Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard; Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc

    2013-11-15

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes.

  8. Poor Predictive Value of Intraoperative Real-Time Dosimetry for Prostate Seed Brachytherapy

    SciTech Connect

    Igidbashian, Levon; Donath, David; Carrier, Jean-Francois; Lassalle, Stephanie; Hervieux, Yannick; David, Sandrine; Bahary, Jean-Paul; Taussky, Daniel

    2008-10-01

    Purpose: To identify dosimetric parameters predictive of a good prostate seed I{sup 125} quality implant. We analyzed preimplant and postimplant realtime dosimetry in patients treated with intraoperative (IO) inverse planning. Methods and Materials: We analyzed 127 consecutively treated patients with primarily low-risk prostate carcinoma who underwent prostate permanent seed I{sup 125} brachytherapy using an IO planning approach. The implant was done using the three-dimensional transrectal ultrasound (PRE-TRUS)-guided IO interactive inverse preplanning system. The TRUS was repeated in the operating room after the implant procedure was complete (POST-TRUS). The prostate was recontoured and postimplant dosimetry was calculated. Each patient underwent computed tomography scan on Day 28 (CT-D28) to evaluate implant quality. Area under the receiver operating characteristic curves (AUROC) was evaluated for models predictive of a V100 of {>=}90% and a D90 of {>=}140 Gy on the basis of CT-D28 values. Results: On CT-D28, 72.4% of patients had a V100 of {>=}90% and 74.8% had a D90 of {>=}140 Gy. AUROC for a V100 of {>=}90% was 0.665 (p = 0.004) on PRE-TRUS and 0.619 (p = 0.039) on POST-TRUS. AUROC for D90 of {>=}140 Gy was 0.602 (p = 0.086) on PRE-TRUS and 0.614 (p = 0.054) on POST-TRUS. Using PRE-TRUS V100 cutoff of >97% gives sensitivity of 88% and a false-positive rate of 63%. A POST-TRUS D90 cutoff of >170 Gy resulted in a sensitivity of 62% and a false-positive rate of 34%. Conclusions: Because of unacceptably high false-positive rates, IO preimplant and postimplant TRUS-based dosimetry are not accurate tools to predict for postimplant computed tomography-based dosimetry.

  9. Monte Carlo and thermoluminescence dosimetry of the new IsoSeed registered model I25.S17 {sup 125}I interstitial brachytherapy seed

    SciTech Connect

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.; Karaiskos, P.; Sandilos, P.; Przykutta, A.; Baltas, D.

    2005-11-15

    Monte Carlo simulation and experimental thermoluminescence dosimetry were utilized for the dosimetric characterization of the new IsoSeed registered model I25.S17 {sup 125}I interstitial brachytherapy seed. The new seed design is similar to that of the selectSeed and 6711 seeds, with the exception of its molybdenum marker. Full dosimetric data are presented following the recommendations in the Update of the AAPM Task Group 43 report (TG-43U1). A difference of 3.3% was found between Monte Carlo dose rate constant results calculated by air kerma strengths from simulations using a point detector and a detector resembling the solid angle subtended to the seed by the Wide Angle Free Air Chamber (WAFAC) in the primary standard calibration geometry. Following the TG-43U1 recommendations, an average value of {lambda}{sub MC}=(0.929{+-}0.014) cGy h{sup -1} U{sup -1} was adopted for the new seed. This value was then averaged with the measured value of {lambda}{sub EXP}=(0.951{+-}0.044) cGy h{sup -1} U{sup -1} to yield the proposed dose rate constant for the new seed that is equal to {lambda}=(0.940{+-}0.051) cGy h{sup -1} U{sup -1}. The Monte Carlo calculated radial dose function and two-dimensional (2-D) anisotropy function results for the new seed were found in agreement with experimental results to within statistical uncertainty of repeated measurements. Monte Carlo simulations were also performed for {sup 125}I seeds of similar geometry and dimensions for the purpose of comparison. The new seed presents dosimetric characteristics that are very similar to that of the selectSeed. In comparison to the most extensively studied Amersham 6711 seed, the new one presents similar dosimetric characteristics with a slightly reduced dose rate constant (1.5%)

  10. Urethra-Sparing, Intraoperative, Real-Time Planned, Permanent-Seed Prostate Brachytherapy: Toxicity Analysis

    SciTech Connect

    Zilli, Thomas; Taussky, Daniel; Donath, David; Le, Hoa Phong; Larouche, Renee-Xaviere; Beliveau-Nadeau, Dominique; Hervieux, Yannick; Delouya, Guila

    2011-11-15

    Purpose: To report the toxicity outcome in patients with localized prostate cancer undergoing {sup 125}I permanent-seed brachytherapy (BT) according to a urethra-sparing, intraoperative (IO), real-time planned conformal technique. Methods and Materials: Data were analyzed on 250 patients treated consecutively for low- or intermediate-risk prostate cancer between 2005 and 2009. The planned goal was urethral V{sub 150} = 0. Acute and late genitourinary (GU), gastrointestinal (GI), and erectile toxicities were scored with the International Prostate Symptom Score (IPSS) questionnaire and Common Terminology Criteria for Adverse Events (version 3.0). Median follow-up time for patients with at least 2 years of follow-up (n = 130) was 34.4 months (range, 24-56.9 months). Results: Mean IO urethra V{sub 150} was 0.018% {+-} 0.08%. Mean prostate D{sub 90} and V{sub 100} on day-30 computed tomography scan were 158.0 {+-} 27.0 Gy and 92.1% {+-} 7.2%, respectively. Mean IPSS peak was 9.5 {+-} 6.3 1 month after BT (mean difference from baseline IPSS, 5.3). No acute GI toxicity was observed in 86.8% of patients. The 3-year probability of Grade {>=}2 late GU toxicity-free survival was 77.4% {+-} 4.0%, with Grade 3 late GU toxicity encountered in only 3 patients. Three-year Grade 1 late GI toxicity-free survival was 86.1% {+-} 3.2%. No patient presented Grade {>=}2 late GI toxicity. Of patients with normal sexual status at baseline, 20.7% manifested Grade {>=}2 erectile dysfunction after BT. On multivariate analysis, elevated baseline IPSS (p = 0.016) and high-activity sources (median 0.61 mCi) (p = 0.033) predicted increased Grade {>=}2 late GU toxicity. Conclusions: Urethra-sparing IO BT results in low acute and late GU toxicity compared with the literature. High seed activity and elevated IPSS at baseline increased long-term GU toxicity.

  11. Gamma spectrometry and chemical characterization of ceramic seeds with samarium-153 and holmium-166 for brachytherapy proposal.

    PubMed

    Valente, Eduardo S; Campos, Tarcísio P R

    2010-12-01

    Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy.

  12. Study of Dosimetric and Thermal Properties of a Newly Developed Thermo-brachytherapy Seed for Treatment of Solid Tumors

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj R.

    Studies on the curative effects of hyperthermia and radiation therapy on treatment of cancer show strong evidence of synergistic enhancement when both radiation and hyperthermia treatment modalities are applied simultaneously. A variety of tissue heating approaches developed to date still fail to overcome essential limitations such as inadequate temperature control, temperature non-uniformity, and prolonged time delay between hyperthermia and radiation treatments. We propose a new self-regulating Thermo-brachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent administration of brachytherapy and hyperthermia. The proposed seed is based on the BestRTM Iodine-125 seed model 2301, where the tungsten marker core and the air gap are replaced with ferromagnetic material. The ferromagnetic core produces heat when subjected to an alternating electromagnetic (EM) field and effectively shuts off after reaching the Curie temperature (TC) of the ferromagnetic material, thus establishing temperature self-regulation. The seed has a ferromagnetic Ni-Cu alloy core having a Curie transition at a temperature of 52 °C. This study summarizes the design and development of the self regulating ferromagnetic core TB seed for the concurrent hyperthermia and brachytherapy treatments. An experimental study of the magnetic properties of the Ni1-xCu x (0.28≤ x ≤0.3) alloys, and the simulation studies of radiation and thermal distribution properties of the seed have been performed. A preliminary experiment for the ferromagnetic induction heating of Ni-Cu needles has been carried out to ensure the practical feasibility of the induction heating. Radiation dose characterizing parameters (dose rate constant and other TG-43 factors) were calculated using the Monte Carlo method. For the thermal characteristics, we studied a model consisting of single or multiple seeds placed in the central region of a cylindrical phantom using a finite-element analysis method

  13. Multiple-estimate Monte Carlo calculation of the dose rate constant for a cesium-131 interstitial brachytherapy seed

    SciTech Connect

    Wittman, Richard S.; Fisher, Darrell R.

    2007-01-03

    The purpose of this study was to calculate a more accurate dose rate constant for the Cs-131 (model CS-1, IsoRay Medical, Inc., Richland, Washington) interstitial brachytherapy seed. Previous measurements of the dose rate constant for this seed have been reported by others with incongruity. Recent direct measurements by thermoluminescence dosimetry and by gamma-ray spectroscopy were about 15 percent greater than earlier thermoluminescence dosimetry measurements. Therefore, we set about to calculate independent values by a Monte Carlo approach that combined three estimates as a consistency check, and to quantify the computational uncertainty. The calculated dose rate constant for the Cs-131 seed was 1.040 cGy h^{-1} U^{-1} for an ionization chamber model and 1.032 cGy h^{-1} U^{-1} for a circular ring model. A formal value of 2.2% uncertainty was calculated for both values. The range of our multi-estimate values were from 1.032 cGy h^{-1} U^{-1} to 1.061 cGy h^{-1} U^{-1}. We also modeled three I-125 seeds with known dose rate constants to test the accuracy of this study's approach.

  14. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    SciTech Connect

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A; Mashouf, S; Safigholi, H; Ravi, A; Morton, G; Song, WY; Han, D

    2015-06-15

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/ TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best identify

  15. On the feasibility of polyurethane based 3D dosimeters with optical CT for dosimetric verification of low energy photon brachytherapy seeds

    SciTech Connect

    Adamson, Justus Yang, Yun; Juang, Titania; Chisholm, Kelsey; Rankine, Leith; Yin, Fang Fang; Oldham, Mark; Adamovics, John

    2014-07-15

    Purpose: To investigate the feasibility of and challenges yet to be addressed to measure dose from low energy (effective energy <50 keV) brachytherapy sources (Pd-103, Cs-131, and I-125) using polyurethane based 3D dosimeters with optical CT. Methods: The authors' evaluation used the following sources: models 200 (Pd-103), CS-1 Rev2 (Cs-131), and 6711 (I-125). The authors used the Monte Carlo radiation transport code MCNP5, simulations with the ScanSim optical tomography simulation software, and experimental measurements with PRESAGE{sup ®} dosimeters/optical CT to investigate the following: (1) the water equivalency of conventional (density = 1.065 g/cm{sup 3}) and deformable (density = 1.02 g/cm{sup 3}) formulations of polyurethane dosimeters, (2) the scatter conditions necessary to achieve accurate dosimetry for low energy photon seeds, (3) the change in photon energy spectrum within the dosimeter as a function of distance from the source in order to determine potential energy sensitivity effects, (4) the optimal delivered dose to balance optical transmission (per projection) with signal to noise ratio in the reconstructed dose distribution, and (5) the magnitude and characteristics of artifacts due to the presence of a channel in the dosimeter. Monte Carlo simulations were performed using both conventional and deformable dosimeter formulations. For verification, 2.8 Gy at 1 cm was delivered in 92 h using an I-125 source to a PRESAGE{sup ®} dosimeter with conventional formulation and a central channel with 0.0425 cm radius for source placement. The dose distribution was reconstructed with 0.02 and 0.04 cm{sup 3} voxel size using the Duke midsized optical CT scanner (DMOS). Results: While the conventional formulation overattenuates dose from all three sources compared to water, the current deformable formulation has nearly water equivalent attenuation properties for Cs-131 and I-125, while underattenuating for Pd-103. The energy spectrum of each source is

  16. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    SciTech Connect

    Racine, E; Hautvast, G; Binnekamp, D; Beaulieu, L

    2014-06-15

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry

  17. Quality assurance of I-125 seeds for prostate brachytherapy using an imaging plate

    SciTech Connect

    Furutani, Shunsuke . E-mail: shun@clin.med.tokushima-u.ac.jp; Saze, Takuya; Ikushima, Hitoshi; Oita, Masataka; Ozaki, Kyousuke; Kishida, Yoshiomi; Takegawa, Yoshihiro; Nishitani, Hiromu

    2006-10-01

    Purpose: OncoSeed is delivered in a sterile environment in the form of a cartridge, so it is impractical to resterilize and reload seeds after calibration. We investigated a new method using an imaging plate dosimetry system to characterize all seeds in the OncoSeed cartridge in a sterile environment. Methods and Materials: Seeds within the cartridge were placed on an imaging plate, and the imaging plate irradiated. To remove scatter radiation, and improve spatial resolution of seed images, we used X-ray parallel cross grids. The irradiated imaging plate was scanned using a Bio-imaging Analyzer System, and radioactivity intensities of seed images were given in counts. Counts could be translated to profiles, and each seed within the cartridge was analyzed. Results: Results showed a good correlation between counts and total radioactivity of the seeds within the cartridge. Thus, using a least-squares line, it was possible to characterize a cartridge with unknown apparent activity. By analyzing the profiles, it was possible not only to detect a miscalibrated seed in the cartridge from its relative difference in counts, but also to identify its position in the cartridge. No significant changes in counts were seen between sterile and nonsterile environments. Conclusion: Using an imaging plate dosimetry system, all seeds in a cartridge could be characterized in a sterile environment.

  18. Y-configured metallic stent combined with 125I seed strands cavity brachytherapy for a patient with type IV Klatskin tumor

    PubMed Central

    Dechao, Jiao; Yanli, Wang; Zhen, Li

    2016-01-01

    We report a case in an inoperable patient with type IV Klatskin tumor treated by the use of a novel, two piece, Y-configured self-expandable metallic stent (SEMS) combined with two 125I seed strands via bilateral approach. The placement of the Y-shaped SEMS was successful and resulted in adequate biliary drainage. After 2 months of intraluminal brachytherapy (ILBT), both 125I seed strands and temporary drainage catheter were removed after patency of the expanded stents was confirmed by the cholangiogram. This technique was feasible and could be considered for the treatment of patients with Bismuth type IV Klatskin tumors.

  19. Y-configured metallic stent combined with 125I seed strands cavity brachytherapy for a patient with type IV Klatskin tumor

    PubMed Central

    Dechao, Jiao; Yanli, Wang; Zhen, Li

    2016-01-01

    We report a case in an inoperable patient with type IV Klatskin tumor treated by the use of a novel, two piece, Y-configured self-expandable metallic stent (SEMS) combined with two 125I seed strands via bilateral approach. The placement of the Y-shaped SEMS was successful and resulted in adequate biliary drainage. After 2 months of intraluminal brachytherapy (ILBT), both 125I seed strands and temporary drainage catheter were removed after patency of the expanded stents was confirmed by the cholangiogram. This technique was feasible and could be considered for the treatment of patients with Bismuth type IV Klatskin tumors. PMID:27648091

  20. Combination of cryosurgery and Iodine-125 seeds brachytherapy for lung cancer

    PubMed Central

    Zhou, Liang; Xu, Kecheng; Mu, Feng

    2012-01-01

    It has been proven that radioactive seeds such as Iodine-125 seeds implantation is a highly effective treatment for patients with localized cancer, such as lung cancer. It may increase the effectiveness of cryosurgery for lung cancer with the combination of Iodine-125 seed implantation into edge of the cryoablation zone. Percutaneous cryosurgery and Iodine-125 seed implantation are mutual complementation; both have been proved to be safe and effective modality for unresectable lung cancer, especially for centrally located lung cancer. Well-designed, randomized and control study both in the laboratory and in the clinical about this option are needed before the conclusive evidence submits. PMID:23050115

  1. Comparison of Intraoperatively Built Custom Linked Seeds Versus Loose Seed Gun Applicator Technique Using Real-Time Intraoperative Planning for Permanent Prostate Brachytherapy

    SciTech Connect

    Zauls, A. Jason; Ashenafi, Michael S.; Onicescu, Georgiana; Clarke, Harry S.; Marshall, David T.

    2011-11-15

    Purpose: To report our dosimetric results using a novel push-button seed delivery system that constructs custom links of seeds intraoperatively. Methods and Materials: From 2005 to 2007, 43 patients underwent implantation using a gun applicator (GA), and from 2007 to 2008, 48 patientsunderwent implantation with a novel technique allowing creation of intraoperatively built custom links of seeds (IBCL). Specific endpoint analyses were prostate D90% (pD90%), rV100% > 1.3 cc, and overall time under anesthesia. Results: Final analyses included 91 patients, 43 GA and 48 IBCL. Absolute change in pD90% ({Delta}pD90%) between intraoperative and postoperative plans was evaluated. Using GA method, the {Delta}pD90% was -8.1Gy and -12.8Gy for I-125 and Pd-103 implants, respectively. Similarly, the IBCL technique resulted in a {Delta}pD90% of -8.7Gy and -9.8Gy for I-125 and Pd-103 implants, respectively. No statistically significant difference in {Delta}pD90% was found comparing methods. The GA method had two intraoperative and 10 postoperative rV100% >1.3 cc. For IBCL, five intraoperative and eight postoperative plans had rV100% >1.3 cc. For GA, the mean time under anesthesia was 75 min and 87 min for Pd-103 and I-125 implants, respectively. For IBCL, the mean time was 86 and 98 min for Pd-103 and I-125. There was a statistical difference between the methods when comparing mean time under anesthesia. Conclusions: Dosimetrically relevant endpoints were equivalent between the two methods. Currently, time under anesthesia is longer using the IBCL technique but has decreased over time. IBCL is a straightforward brachytherapy technique that can be implemented into clinical practice as an alternative to gun applicators.

  2. Reconstruction of Graph Signals Through Percolation from Seeding Nodes

    NASA Astrophysics Data System (ADS)

    Segarra, Santiago; Marques, Antonio G.; Leus, Geert; Ribeiro, Alejandro

    2016-08-01

    New schemes to recover signals defined in the nodes of a graph are proposed. Our focus is on reconstructing bandlimited graph signals, which are signals that admit a sparse representation in a frequency domain related to the structure of the graph. Most existing formulations focus on estimating an unknown graph signal by observing its value on a subset of nodes. By contrast, in this paper, we study the problem of reconstructing a known graph signal using as input a graph signal that is non-zero only for a small subset of nodes (seeding nodes). The sparse signal is then percolated (interpolated) across the graph using a graph filter. Graph filters are a generalization of classical time-invariant systems and represent linear transformations that can be implemented distributedly across the nodes of the graph. Three setups are investigated. In the first one, a single simultaneous injection takes place on several nodes in the graph. In the second one, successive value injections take place on a single node. The third one is a generalization where multiple nodes inject multiple signal values. For noiseless settings, conditions under which perfect reconstruction is feasible are given, and the corresponding schemes to recover the desired signal are specified. Scenarios leading to imperfect reconstruction, either due to insufficient or noisy signal value injections, are also analyzed. Moreover, connections with classical interpolation in the time domain are discussed. The last part of the paper presents numerical experiments that illustrate the results developed through synthetic graph signals and two real-world signal reconstruction problems: influencing opinions in a social network and inducing a desired brain state in humans.

  3. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer.

    PubMed

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  4. Anisotropy Characterization of I-125 Seed with Attached Encapsulated Cobalt Chloride Complex Contrast Agent Markers for MRI-Based Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J.; Tailor, Ramesh C.; Kudchadker, Rajat J.; Martirosyan, Karen S.; Stafford, R. Jason; Elliott, Andrew M.; Swanson, David A.; Sing, David; Choi, Jonathan; Mourtada, Firas; Ibbott, Geoffrey S.

    2011-07-01

    We have developed a novel MRI marker for prostate brachytherapy. The purpose of this study was to evaluate the changes in anisotropy when cobalt chloride complex contrast agent encapsulated contrast agent markers (C4-ECAM) were placed adjacent to an iodine-125 (I-125) titanium seed, and to verify that the C4-ECAMs were visible on magnetic resonance imaging (MRI) after radiation exposure. Two C4-ECAMs were verified to be MRI visible in a phantom before radiation exposure. The C4-ECAMs were then attached to each end of a 12.7-U (10-mCi) I-125 titanium seed in a polymer tube. Anisotropy was measured and analyzed with the seed alone and with attached C4-ECAMs by suspending thermoluminescent dosimeters in a water phantom in 2 circles surrounding the radioactive source with radius of 1 or 2 cm. A T1-weighted MRI evaluation of C4-ECAMs was then performed after exposure to the amount of radiation typically delivered during 1 month of prostate brachytherapy. Measured values of the anisotropy function F(r, {theta}) for the I-125 seed with and without the C4-ECAMs were mutually statistically indistinguishable (standard error of the mean <4.2%) and agreed well with published TG-43 values for the bare seed. As expected, the anisotropy function {phi}{sub an}(r) for the 2 datasets (with and without C4-ECAMs) derived from the measured F(r, {theta}) did not exhibit statistically measurable difference. Both datasets showed agreement with the published TG-43 {phi}{sub an}(r) for the bare seed. The C4-ECAMs were well visualized by MRI after 1 month of radiation exposure. There were no changes in anisotropy when the C4-ECAMs were placed next to an I-125 radioactive seed, and the C4-ECAMs were visualized after radiation exposure.

  5. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    SciTech Connect

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa; Alizad, Azra; Davis, Brian J.

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that

  6. Comparison and verification of the reconstruction method of the catheters for interstitial brachytherapy

    PubMed Central

    Zwierzchowski, Grzegorz; Skowronek, Janusz; Stefaniak, Patrycja; Dymnicka, Magdalena

    2009-01-01

    Purpose 1. Comparison and verification of accuracy of the implant reconstruction method based on images from IBU and CT. 2. Estimation of influence of the implant reconstruction method on dose disposition in selected reference points. Material and methods Paraffin-wax phantom with three catheters, central marker and control point were prepared. IBU unit were used for obtaining two series of images for reconstruction. The Earth magnetic field correction algorithm was used to correct S-shape distortions of the images. CT images (1 mm slice) were prepared. In the treatment planning system positions of 15 catheter points (MP, measure points), control point (CP) and central marker (CM) were reconstructed for each series of images. Distances between 15 catheter points and control point, and between catheter points and central marker were calculated. Results There were no statistically significant differences observed for IBU and CT based reconstructions for all orientations of the phantom (p > 0.05, U-Mann Whitney Test). There were no statistically significant differences observed between reconstruction based on IBU images with and without Earth magnetic field correction algorithm for phantom located perpendicular to the IBU table (p > 0.05, Wilcoxon Test). Statistically significant differences were observed only for images set with long axis of the phantom located parallel to the table (p < 0.05, Wilcoxon Test). There were no statistically significant differences observed for values doses in reference points for reconstruction based on IBU images and CT for all orientations of the phantom. Conclusions 1. Obtained results showed that IBU (radiographs based) reconstruction of the catheter placement is the reliable and accurate method for interstitial implants when reconstruction based on CT “catheter tracking” is not possible or not necessary. 2. The Earth magnetic field correction algorithm should be always use to correct S-shape distortions; reconstruction will be

  7. Beta dose calculation in human arteries for various brachytherapy seed types

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    This dissertation explores beta dose profile of microspheres packed in arteries, various source geometries of 142Pr that can be used for therapeutic purpose, and dose backscatter factors for selected beta sources. A novel treatment method by injecting microspheres into feeding arteries of arteriovenous malformation (AVM) is under pre-clinical investigation. To optimize radiation dose to the clinically important area, i.e. arterial wall, preliminary dosimetric studies were needed. Monte Carlo calculations were performed for several geometries simulating arteries filled with microspheres packed by random packing methods. Arterial radii used in the simulation varied from 50 mum to 3 mm; microsphere radii varied from 10 mum to 0.7 mm. Dose varied significantly as a function of microsphere size, for constant arterial sizes. For the same sizes of arteries, significant dose increase was observed because of inter-artery exposure for large arteries (>0.1 cm rad.) filled with large microspheres (>0.03 cm rad.). Dose increase between small arteries (<0.03 cm rad.) was less significant. The dose profiles of prototype 142Pr beta brachytherapy sources were calculated using MCNP 4C Monte Carlo code as well as dose point kernel (DPK) for selected cases. Dose profiles were similar to beta sources currently used indicating that 142Pr can substitute for current sources for certain cases and the DPK was closely matched with MCNP result. Backscattering of electrons is a prominent secondary effect in beta dosimetry. The backscattering is closely correlated with factors such as geometry of source and scattering material, and composition of scattering material. The backscattering factors were calculated for selected beta sources that are currently used as well as potentially useful sources for therapeutic purpose. The factors were calculated as a function of distance from the interface between water and scatterers. These factors were fit by a simple function for future incorporation into

  8. Poster — Thur Eve — 42: Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect

    Morrison, H; Menon, G; Sloboda, R

    2014-08-15

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGB transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.

  9. BrachyView: multiple seed position reconstruction and comparison with CT post-implant dosimetry

    NASA Astrophysics Data System (ADS)

    Alnaghy, S.; Loo, K. J.; Cutajar, D. L.; Jalayer, M.; Tenconi, C.; Favoino, M.; Rietti, R.; Tartaglia, M.; Carriero, F.; Safavi-Naeini, M.; Bucci, J.; Jakubek, J.; Pospisil, S.; Zaider, M.; Lerch, M. L. F.; Rosenfeld, A. B.; Petasecca, M.

    2016-05-01

    BrachyView is a novel in-body imaging system utilising high-resolution pixelated silicon detectors (Timepix) and a pinhole collimator for brachytherapy source localisation. Recent studies have investigated various options for real-time intraoperative dynamic dose treatment planning to increase the quality of implants. In a previous proof-of-concept study, the justification of the pinhole concept was shown, allowing for the next step whereby multiple active seeds are implanted into a PMMA phantom to simulate a more realistic clinical scenario. In this study, 20 seeds were implanted and imaged using a lead pinhole of 400 μ m diameter. BrachyView was able to resolve the seed positions within 1-2 mm of expected positions, which was verified by co-registering with a full clinical post-implant CT scan.

  10. Effect of improved TLD dosimetry on the determination of dose rate constants for {sup 125}I and {sup 103}Pd brachytherapy seeds

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2014-11-01

    Purpose: To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for {sup 125}I and {sup 103}Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values. Methods: The relative absorbed-dose energy dependence, f{sup rel}, for TLDs and the phantom correction, P{sub phant}, are calculated for {sup 125}I and {sup 103}Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced by calculated (f{sup rel}){sup −1} and P{sub phant} values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, k{sub bq}{sup rel}, is determined. The new P{sub phant} values and relative absorbed-dose sensitivities, S{sub AD}{sup rel}, calculated as the product of (f{sup rel}){sup −1} and (k{sub bq}{sup rel}){sup −1}, are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values. Results: In general, f{sup rel} is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among {sup 125}I and {sup 103}Pd seed models and common TLD shapes. P{sub phant} values depend primarily on the isotope used. Deduced (k{sub bq}{sup rel}){sup −1} values are 1.074 ± 0.015 and 1.084 ± 0.026 for {sup 125}I and {sup 103}Pd seeds, respectively. For (1 mm){sup 3} chips, this implies an overall absorbed-dose sensitivity relative to {sup 60}Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for {sup 125}I and {sup 103}Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of P{sub phant} calculated here have much lower statistical uncertainties than literature values, but

  11. Three-dimensional reconstruction of seed implants by randomized rounding and visual evaluation

    SciTech Connect

    Siebert, Frank-Andre; Srivastav, Anand; Kliemann, Lasse; Fohlin, Helena; Kovacs, Gyoergy

    2007-03-15

    The development of efficient 3D seed reconstruction algorithms is an ongoing and vivid research topic. Since the 1980s many publications about seed assignment were published. In this paper a novel mathematical approach is described to solve the 3D assignment problem for the reconstruction of seeds with radiographs: we present a fast linear programming approach together with afterwards applying the so-called randomized rounding scheme to compute good (possibly partial) assignments. We apply a visualization software that allows user interaction to check the solution given by the algorithm and to augment partial assignments. The second step is justified as the randomized algorithm already returns optimal solutions is many cases, and in cases with partial assignments it fails to match only a very small number of seed images. Our algorithm transfers ideas from recent breakthrough research work on the design of efficient randomized algorithms in discrete optimization and computer science to the seed reconstruction problem.

  12. Dynamic dosimetry and edema detection in prostate brachytherapy: a complete system

    NASA Astrophysics Data System (ADS)

    Jain, A.; Deguet, A.; Iordachita, I.; Chintalapani, G.; Blevins, J.; Le, Y.; Armour, E.; Burdette, C.; Song, D.; Fichtinger, G.

    2008-03-01

    Purpose: Brachytherapy (radioactive seed insertion) has emerged as one of the most effective treatment options for patients with prostate cancer, with the added benefit of a convenient outpatient procedure. The main limitation in contemporary brachytherapy is faulty seed placement, predominantly due to the presence of intra-operative edema (tissue expansion). Though currently not available, the capability to intra-operatively monitor the seed distribution, can make a significant improvement in cancer control. We present such a system here. Methods: Intra-operative measurement of edema in prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical non-isocentric C-arm, and exported to a commercial brachytherapy delivery system. Technical obstacles for 3D reconstruction on a non-isocentric C-arm include pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. Results: In precision-machined hard phantoms with 40-100 seeds and soft tissue phantoms with 45-87 seeds, we correctly reconstructed the seed implant shape with an average 3D precision of 0.35 mm and 0.24 mm, respectively. In a DoD Phase-1 clinical trial on 6 patients with 48-82 planned seeds, we achieved intra-operative monitoring of seed distribution and dosimetry, correcting for dose inhomogeneities by inserting an average of 4.17 (1-9) additional seeds. Additionally, in each patient, the system automatically detected intra-operative seed migration induced due to edema (mean 3.84 mm, STD 2.13 mm, Max 16.19 mm). Conclusions: The proposed system is the first of a kind that makes intra-operative detection of edema (and subsequent re-optimization) possible on any typical non-isocentric C-arm, at negligible additional cost to the existing clinical installation. It achieves a significantly more homogeneous seed distribution, and has the potential to

  13. A dynamic dosimetry system for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Kuo, Nathanael; Dehghan, Ehsan; Deguet, Anton; Song, Danny Y.; Prince, Jerry L.; Lee, Junghoon

    2013-03-01

    The lack of dynamic dosimetry tools for permanent prostate brachytherapy causes otherwise avoidable problems in prostate cancer patient care. The goal of this work is to satisfy this need in a readily adoptable manner. Using the ubiquitous ultrasound scanner and mobile non-isocentric C-arm, we show that dynamic dosimetry is now possible with only the addition of an arbitrarily configured marker-based fiducial. Not only is the system easily configured from accessible hardware, but it is also simple and convenient, requiring little training from technicians. Furthermore, the proposed system is built upon robust algorithms of seed segmentation, fiducial detection, seed reconstruction, and image registration. All individual steps of the pipeline have been thoroughly tested, and the system as a whole has been validated on a study of 25 patients. The system has shown excellent results of accurately computing dose, and does so with minimal manual intervention, therefore showing promise for widespread adoption of dynamic dosimetry.

  14. 3D Surface Reconstruction of Plant Seeds by Volume Carving: Performance and Accuracies

    PubMed Central

    Roussel, Johanna; Geiger, Felix; Fischbach, Andreas; Jahnke, Siegfried; Scharr, Hanno

    2016-01-01

    We describe a method for 3D reconstruction of plant seed surfaces, focusing on small seeds with diameters as small as 200 μm. The method considers robotized systems allowing single seed handling in order to rotate a single seed in front of a camera. Even though such systems feature high position repeatability, at sub-millimeter object scales, camera pose variations have to be compensated. We do this by robustly estimating the tool center point from each acquired image. 3D reconstruction can then be performed by a simple shape-from-silhouette approach. In experiments we investigate runtimes, theoretically achievable accuracy, experimentally achieved accuracy, and show as a proof of principle that the proposed method is well sufficient for 3D seed phenotyping purposes. PMID:27375628

  15. Monte Carlo investigation of I-125 interseed attenuation for standard and thinner seeds in prostate brachytherapy with phantom validation using a MOSFET

    SciTech Connect

    Mason, J.; Al-Qaisieh, B.; Bownes, P.; Henry, A.; Thwaites, D.

    2013-03-15

    Purpose: In permanent seed implant prostate brachytherapy the actual dose delivered to the patient may be less than that calculated by TG-43U1 due to interseed attenuation (ISA) and differences between prostate tissue composition and water. In this study the magnitude of the ISA effect is assessed in a phantom and in clinical prostate postimplant cases. Results are compared for seed models 6711 and 9011 with 0.8 and 0.5 mm diameters, respectively. Methods: A polymethyl methacrylate (PMMA) phantom was designed to perform ISA measurements in a simple eight-seed arrangement and at the center of an implant of 36 seeds. Monte Carlo (MC) simulation and experimental measurements using a MOSFET dosimeter were used to measure dose rate and the ISA effect. MC simulations of 15 CT-based postimplant prostate treatment plans were performed to compare the clinical impact of ISA on dose to prostate, urethra, rectum, and the volume enclosed by the 100% isodose, for 6711 and 9011 seed models. Results: In the phantom, ISA reduced the dose rate at the MOSFET position by 8.6%-18.3% (6711) and 7.8%-16.7% (9011) depending on the measurement configuration. MOSFET measured dose rates agreed with MC simulation predictions within the MOSFET measurement uncertainty, which ranged from 5.5% to 7.2% depending on the measurement configuration (k= 1, for the mean of four measurements). For 15 clinical implants, the mean ISA effect for 6711 was to reduce prostate D90 by 4.2 Gy (3%), prostate V100 by 0.5 cc (1.4%), urethra D10 by 11.3 Gy (4.4%), rectal D2cc by 5.5 Gy (4.6%), and the 100% isodose volume by 2.3 cc. For the 9011 seed the mean ISA effect reduced prostate D90 by 2.2 Gy (1.6%), prostate V100 by 0.3 cc (0.7%), urethra D10 by 8.0 Gy (3.2%), rectal D2cc by 3.1 Gy (2.7%), and the 100% isodose volume by 1.2 cc. Differences between the MC simulation and TG-43U1 consensus data for the 6711 seed model had a similar impact, reducing mean prostate D90 by 6 Gy (4.2%) and V100 by 0.6 cc (1

  16. Long-Term Results of Brachytherapy With Temporary Iodine-125 Seeds in Children With Low-Grade Gliomas

    SciTech Connect

    Korinthenberg, Rudolf; Neuburger, Daniela; Trippel, Michael; Ostertag, Christoph; Nikkhah, Guido

    2011-03-15

    Purpose: To retrospectively review the results of temporary I-125 brachytherapy in 94 children and adolescents with low-grade glioma. Methods and Materials: Treatment was performed in progressive tumors roughly spherical in shape with a diameter of up to 5 cm, including 79 astrocytomas, 5 oligodendrogliomas, 4 oligoastrocytomas, 1 ependymoma, and 5 other tumors. Location was suprasellar/chiasmal in 44, thalamic/basal ganglia in 18, hemispheric in 15, midbrain/pineal region in 13, and lower brainstem in 3. Initially, 8% of patients were free of symptoms, 47% were symptomatic but not disabled, and 30% were slightly, 6% moderately, and 3% severely disabled. Results: 5- and 10-year survival was 97% and 92%. The response to I-125 brachytherapy over the long term was estimated after a median observation period of 38.4 (range, 6.4-171.0) months. At that time, 4 patients were in complete, 27 in partial, and 18 in objective remission; 15 showed stable and 30 progressive tumors. Treatment results did not correlate with age, sex, histology, tumor size, location, or demarcation of the tumor. Secondary treatment became necessary in 36 patients, including 19 who underwent repeated I-125 brachytherapy. At final follow-up, the number of symptom-free patients had risen to 21%. Thirty-eight percent showed symptoms without functional impairment, 19% were slightly and 11% moderately disabled, and only 4% were severely disabled. Conclusions: Response rates similar to those of conventional radiotherapy or chemotherapy can be anticipated with I-125 brachytherapy in tumors of the appropriate size and shape. We believe it to be a useful contribution to the treatment of low-grade gliomas in children.

  17. Monte Carlo calculations and experimental measurements of the TG-43U1-recommended dosimetric parameters of 125I (Model IR-Seed2) brachytherapy source.

    PubMed

    Sheikholeslami, Sahar; Nedaie, Hasan Ali; Sadeghi, Mahdi; Pourbeigi, Hossein; Shahzadi, Sohrab; Zehtabian, Mehdi; Hasani, Mohsen; Meigooni, Ali S

    2016-01-01

    A new design of 125I (Model IR-Seed2) brachytherapy source has been manufactured recently at the Applied Radiation Research School, Nuclear Science and Technology Research Institute in Iran. The source consists of six resin beads (0.5 mm diameter) that are sealed in a cylindrical titanium capsule of 0.7 mm internal and 0.8 mm external diameters. This work aims to evaluate the dosimetric parameters of the newly designed 125I source using experimental measurements and Monte Carlo (MC) simulations. Dosimetric characteristics (dose rate constant, radial dose function, and 2D and 1D anisotropy functions) of the IR-Seed2 were determined using experimental measurements and MC simulations following the recommendations by the Task Group 43 (TG-43U1) report of the American Association of Physicists in Medicine (AAPM). MC simulations were performed using the MCNP5 code in water and Plexiglas, and experimental measurements were carried out using thermoluminescent dosimeters (TLD-GR207A) in Plexiglas phantoms. The measured dose to water in Plexiglas data were used for verification of the accuracy of the source and phantom geometry in the Monte Carlo simulations. The final MC simulated data to water in water were recommended for clinical applications. The MC calculated dose rate constant (Λ) of the IR-Seed2 125I seed in water was found to be 0.992 ± 0.025 cGy h-1U-1. Additionally, its radial dose function by line and point source approximations, gL(r) and gp(r), calculated for distances from 0.1 cm to 7 cm. The values of gL(r) at radial distances from 0.5 cm to 5 cm were measured in a Plexiglas phantom to be between 1.212 and 0.413. The calculated and measured of values for 2D anisotropy function, F(r, θ), were obtained for the radial distances ranging from 1.5 cm to 5 cm and angular range of 0°-90° in a Plexiglas phantom. Also, the 2D anisotropy function was calculated in water for the clinical application. The results of these investigations show that the uncertainty of

  18. Brachytherapy with Iodine-125 seeds strand for treatment of main portal vein tumor thrombi: an experimental study in a rabbit model

    PubMed Central

    Zhang, Wen; Luo, Jianjun; Liu, Qingxin; Ma, Jingqin; Qu, Xudong; Yang, Minjie; Yan, Zhiping; Wang, Jianhua

    2016-01-01

    This study aims to establish an animal model of implanted main portal vein tumor thrombus (MPVTT) and to evaluate safety and efficacy of brachy therapy with Iodine-125 (125I) seeds strand to treat MPVTT of rabbit. VX2 tumor thrombus was implanted in main portal vein (MPV) of 32 New Zealand white rabbits. These rabbits were randomly divided into treatment group (Group T, T1-T16) and control group (Group C, C1-C16). 125I seeds and blank seeds strand were implanted in MPV of rabbits in Group T and C, respectively. Changes of general condition, body weight and blood laboratory examination were monitored at every time point after procedure. 2 weeks later, 8 rabbits of each group were sacrificed for pathologic examination. The rest of rabbits were dissected postmortem, and therapeutic effects were evaluated on basis of multi-detector computed tomography and histopathology. Ki-67 labeling index (Ki-67 LI) and apoptosis index (AI) were compared between two groups. Overall survival period was recorded. At every time point after brachytherapy, more serious weight loss were detected in Group C. Results of liver function tests and blood cells counts showed no significant difference between two groups. Mean volume of tumor tissue within MPV were 565.40 ± 220.90 mm3 in Group T and 2269.90 ± 437.00 mm3 in Group C (P < 0.001). (Ki-67 LI) and AI were (4.14 ± 1.84)% and (6.51 ± 1.92)% in Group T, compared with (33.82 ± 6.07)% and (0.91 ± 0.26)% in Group C, respectively (P < 0.001). Media survival time of rabbits were 39.50 ± 2.37 days in Group T and 27.38 ± 1.22 days in Group C, respectively (P = 0.001). In conclusion, injecting and suspensory fixing VX2 tumor strip into MPV is a reliable method to establish MPVTT animal model. Brachytherapy with 125I seeds strand was safe and effective to treat VX2 tumor strand inoculated in the MPV of rabbit. PMID:27152237

  19. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    SciTech Connect

    Poulin, E; Racine, E; Beaulieu, L; Binnekamp, D

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  20. Improved dose calculation accuracy for low energy brachytherapy by optimizing dual energy CT imaging protocols for noise reduction using sinogram affirmed iterative reconstruction.

    PubMed

    Landry, Guillaume; Gaudreault, Mathieu; van Elmpt, Wouter; Wildberger, Joachim E; Verhaegen, Frank

    2016-03-01

    The goal of this study was to evaluate the noise reduction achievable from dual energy computed tomography (CT) imaging (DECT) using filtered backprojection (FBP) and iterative image reconstruction algorithms combined with increased imaging exposure. We evaluated the data in the context of imaging for brachytherapy dose calculation, where accurate quantification of electron density ρe and effective atomic number Zeff is beneficial. A dual source CT scanner was used to scan a phantom containing tissue mimicking inserts. DECT scans were acquired at 80 kVp/140Sn kVp (where Sn stands for tin filtration) and 100 kVp/140Sn kVp, using the same values of the CT dose index CTDIvol for both settings as a measure for the radiation imaging exposure. Four CTDIvol levels were investigated. Images were reconstructed using FBP and sinogram affirmed iterative reconstruction (SAFIRE) with strength 1,3 and 5. From DECT scans two material quantities were derived, Zeff and ρe. DECT images were used to assign material types and the amount of improperly assigned voxels was quantified for each protocol. The dosimetric impact of improperly assigned voxels was evaluated with Geant4 Monte Carlo (MC) dose calculations for an (125)I source in numerical phantoms. Standard deviations for Zeff and ρe were reduced up to a factor ∼2 when using SAFIRE with strength 5 compared to FBP. Standard deviations on Zeff and ρe as low as 0.15 and 0.006 were achieved for the muscle insert representing typical soft tissue using a CTDIvol of 40 mGy and 3mm slice thickness. Dose calculation accuracy was generally improved when using SAFIRE. Mean (maximum absolute) dose errors of up to 1.3% (21%) with FBP were reduced to less than 1% (6%) with SAFIRE at a CTDIvol of 10 mGy. Using a CTDIvol of 40mGy and SAFIRE yielded mean dose calculation errors of the order of 0.6% which was the MC dose calculation precision in this study and no error was larger than ±2.5% as opposed to errors of up to -4% with FPB. This

  1. Image-based brachytherapy for cervical cancer.

    PubMed

    Vargo, John A; Beriwal, Sushil

    2014-12-10

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of "grey zones" to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced cervical

  2. Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 {sup 125}I brachytherapy sources

    SciTech Connect

    Rivard, Mark J.

    2009-02-15

    Smaller diameter brachytherapy seeds for permanent interstitial implantation allow for use of smaller diameter implant needles. The use of smaller diameter needles may provide a lower incidence of healthy-tissue complications. This study determines the brachytherapy dosimetry parameters for the smaller diameter source (model 9011) and comments on the dosimetric comparison between this new source and the conventional brachytherapy seed (model 6711).

  3. High-contrast pattern reconstructions using a phase-seeded point CGH method.

    PubMed

    McWilliam, Richard; Williams, Gavin L; Cowling, Joshua J; Seed, Nicholas L; Purvis, Alan

    2016-03-01

    A major challenge encountered in digital holography applications is the need to synthesize computer-generated holograms (CGHs) that are realizable as phase-only elements while also delivering high quality reconstruction. This trade-off is particularly acute in high-precision applications such as photolithography where contrast typically must exceed 0.6. A seeded-phase point method is proposed to address this challenge, whereby patterns composed of fine lines that intersect and form closed shapes are reconstructed with high contrast while maintaining a phase-only CGH. The method achieves superior contrast to that obtained by uniform or random seeded-phase methods while maintaining computational efficiency for large area exposures. It is also shown that binary phase modulation achieves similar contrast performance with benefits for the fabrication of simpler diffractive optical elements. PMID:26974633

  4. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Zemp, Roger J.

    2011-08-01

    Brachytherapy is a form of radiation therapy commonly used in the treatment of prostate cancer wherein sustained radiation doses can be precisely targeted to the tumor area by the implantation of small radioactive seeds around the treatment area. Ultrasound is a popular imaging mode for seed implantation, but the seeds are difficult to distinguish from the tissue structure. In this work, we demonstrate the feasibility of photoacoustic imaging for identifying brachytherapy seeds in a tissue phantom, comparing the received intensity to endogenous contrast. We have found that photoacoustic imaging at 1064 nm can identify brachytherapy seeds uniquely at laser penetration depths of 5 cm in biological tissue at the ANSI limit for human exposure with a contrast-to-noise ratio of 26.5 dB. Our realtime combined photoacoustic-ultrasound imaging approach may be suitable for brachytherapy seed placement and post-placement verification, potentially allowing for realtime dosimetry assessment during implantation.

  5. Monte Carlo study of a new I-125 brachytherapy prototype seed with a ceramic radionuclide carrier and radiographic marker.

    PubMed

    Paixão, Lucas; Facure, Alessandro; Santos, Ana Maria M; dos Santos, Adriano Márcio; Grynberg, Suely Epsztein

    2012-01-01

    In prostate cancer treatment, there is an increasing interest in the permanent radioactive seeds implant technique. Currently, in Brazil, the seeds are imported with high prices, which prohibit their use in public hospitals. A ceramic matrix that can be used as a radioisotope carrier and radiographic marker was developed at our institution. The ceramic matrix is distinguished by the characteristic of maintaining the radioactive material uniformly distributed in its surface. In this work, Monte Carlo simulations were performed in order to assess the dose distributions generated by this prototype seed model, with the ceramic matrix encapsulated in titanium, in the same way as the commercial 6711 seed. The obtained data was assessed, as described in the TG-43U1 report by the American Association of Physicists in Medicine, for two seed models: (1) the most used model 6711 source - for validation and comparison, and (2) for the prototype model with the ceramic matrix. The dosimetric parameters dose rate constant, Λ, radial dose function, gL(r), and anisotropy function, F(r,θ), were derived from simulations by the Monte Carlo method using the MCNP5 code. A Λ 0.992 (± 2.33%) cGyh-1U-1 was found for the prototype model. In comparison with the 6711 model, a lower dose fall-off on transverse axis was found, as well as a lower dose anisotropy for the radius r = 0.25 cm. In general, for all distances, the prototype seed model presents a slightly larger anisotropy between 0° ≤ Θ < 50° and anisotropy similar to the 6711 model for Θ ≥ 50°. The dosimetric characteristics of the prototype model presented in this study suggest that its use is feasible. Because of the model's characteristics, seeds of lower specific activity iodine might be necessary which, on the other hand, would help to reduce costs. However, it has to be emphasized that the proposed source is a prototype, and the required (AAPM prerequisites) experimental study and tolerance manufacturer values are

  6. Prostate brachytherapy

    MedlinePlus

    Implant therapy - prostate cancer; Radioactive seed placement; Internal radiation therapy - prostate; High dose radiation (HDR) ... plan and then place the seeds that deliver radiation into your prostate. The seeds are placed with ...

  7. EchoSeed Model 6733 Iodine-125 brachytherapy source: Improved dosimetric characterization using the MCNP5 Monte Carlo code

    SciTech Connect

    Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S.

    2012-08-15

    This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.

  8. An image-guidance system for dynamic dose calculation in prostate brachytherapy using ultrasound and fluoroscopy

    SciTech Connect

    Kuo, Nathanael Prince, Jerry L.; Dehghan, Ehsan; Deguet, Anton; Mian, Omar Y.; Le, Yi; Song, Danny Y.; Burdette, E. Clif; Fichtinger, Gabor; Lee, Junghoon

    2014-09-15

    Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.

  9. Brachytherapy dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  10. Novel brachytherapy treatment planning system utilizing dose rate dependent average cell survival, CT-simulator, and dose-volume histogram

    SciTech Connect

    Mayer, R.; Fong, W.; Frankel, T.

    1995-12-31

    This report describes a new brachytherapy planning program that provides an evaluation of a given low or high dose rate treatment taking into account spatial dose heterogeneity and cell response to radiation. This brachytherapy scheme uses the images from a CT-Simulator (AcQSim, Picker International, Cleveland, Ohio) to simultaneously localize the seed positions and to axially scan the patient. This procedure helps to ensure accurate registration of the putative seed positions with the patient tissues and organs. The seed positions are determined by back-projecting positions of seeds or dummy seeds from the CT-Simulator setup scout images. Physicians delineate the tissues of interest on the axial slices. Dose is computed after assigning activity (low dose rate) of dwell times (high dose rate) to the Ir{sup 192} or I{sup 125} seed. The planar isodose distribution is superimposed onto axial cuts of the tissues and onto coronal or sagital views of the tissues following image reconstruction. Areal or volumetric calculations of the dose distribution within a given tissue are computed from the tissue outlines. The treatment plan computes (1) volume differential and cummulative dose histograms of the dose delivered to individual tissues, (2) the average, standard deviation, and coefficient of skewness of the dose distribution delivered to the individual tissues, (3) the average survival probability for a given radiation treatment.

  11. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    SciTech Connect

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O.; Poulin, E.; Hautvast, G.; Binnekamp, D.

    2014-08-15

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.

  12. Audio signal reconstruction based on adaptively selected seed points from laser speckle images

    NASA Astrophysics Data System (ADS)

    Chen, Ziyi; Wang, Cheng; Huang, Chaohong; Fu, Hongyan; Luo, Huan; Wang, Hanyun

    2014-11-01

    Speckle patterns, present in the laser reflection from an object, reflect the micro-structure of the object where the laser is illuminated on. When the object surface vibrates, the speckle patterns move accordingly, and this movement can be recovered with a high-speed camera system. Due to the low signal to noise ratio (SNR), it is a challenging task to recover the micro-vibration information and reconstruct the audio signal from the captured speckle image sequences fast and effectively. In this paper, we propose a novel method based on pixels' gray value variations in laser speckle patterns to work out with the challenging task. The major contribution of the proposed method relies on using the intensity variations of the adaptively selected seed points to recover the vibration information and the audio signal with a novel model that effectively fuses the multiple seed points' information together. Experiments show that our method not only recovers the vibration information with high quality but is also robust and runs fast. The SNR of the experimental results reach about 20 dB and 10 dB at the detection distances of 10 m and 50 m, respectively.

  13. Functional Reconstruction of Tracheal Defects by Protein-Loaded, Cell-Seeded, Fibrous Constructs in Rabbits

    PubMed Central

    Ott, Lindsey M.; Vu, Cindy H.; Farris, Ashley L.; Fox, Katrina D.; Galbraith, Richard A.; Weiss, Mark L.; Weatherly, Robert A.

    2015-01-01

    Tracheal stenosis is a life-threatening disease and current treatments include surgical reconstruction with autologous rib cartilage and the highly complex slide tracheoplasty surgical technique. We propose using a sustainable implant, composed of a tunable, fibrous scaffold with encapsulated chondrogenic growth factor (transforming growth factor-beta3 [TGF-β3]) or seeded allogeneic rabbit bone marrow mesenchymal stromal cells (BMSCs). In vivo functionality of these constructs was determined by implanting them in induced tracheal defects in rabbits for 6 or 12 weeks. The scaffolds maintained functional airways in a majority of the cases, with the BMSC-seeded group having an improved survival rate and the Scaffold-only group having a higher occurrence of more patent airways as determined by microcomputed tomography. The BMSC group had a greater accumulation of inflammatory cells over the graft, while also exhibiting normal epithelium, subepithelium, and cartilage formation. Overall, it was concluded that a simple, acellular scaffold is a viable option for tracheal tissue engineering, with the intraoperative addition of cells being an optional variation to the scaffolds. PMID:26094554

  14. Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers.

    PubMed

    Witjes, Sebastian; Witsch, Kristian; Eltz, Thomas

    2011-05-01

    The measurement of insect visits to flowers is essential in basic and applied pollination ecology studies but often fraught with difficulty. Floral visitation is highly variable, and observational studies are limited in scope due to the considerable time necessary to acquire reliable data. The aim of our study was to investigate whether the analysis of hydrocarbon residues (footprints) deposited by insects during flower visits would allow reconstruction of the visitor community and prediction of seed set for large numbers of plants. In 3 consecutive years, we recorded bumblebee visitation to wild plants of comfrey, Symphytum officinale, and later used gas chromatography/mass spectrometry (GC/MS) to quantify bumblebee-derived unsaturated hydrocarbons (UHCs) extracted from flowers. We found that the UHCs washed from corollas were most similar to the tarsal UHC profile of the most abundant bumblebee species, Bombus pascuorum, in all 3 years. The species composition of the bumblebee communities estimated from UHCs on flowers were also similar to those actually observed. There was a significant positive correlation between the observed number of visits by each of three bumblebee species (contributing 3-68% of flower visits) and the estimated number of visits based on UHC profiles. Furthermore, significant correlations were obtained separately for workers and drones of two of the study species. Seed set of comfrey plants was positively correlated to overall bumblebee visitation and the total amount of UHCs on flowers, suggesting the potential for pollen limitation. We suggest that quantifying cumulative footprint hydrocarbons provides a novel way to assess floral visitation by insects and can be used to predict seed set in pollen-limited plants. PMID:21069386

  15. Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers.

    PubMed

    Witjes, Sebastian; Witsch, Kristian; Eltz, Thomas

    2011-04-01

    The measurement of insect visits to flowers is essential for basic and applied pollination ecology, but is often fraught with difficulty. Floral visitation is highly variable and observational studies are limited in scope due to the considerable time needed to acquire reliable data. Our study investigates whether the analysis of hydrocarbon residues (footprints) deposited by insects during flower visits allows the reconstruction of the visitor community and the prediction of seed set for large numbers of plants. In three consecutive years we recorded bumblebee visitation to wild plants of comfrey, Symphytum officinale, and later used gas chromatography/mass spectrometry (GC/MS) to quantify bumblebee-derived unsaturated hydrocarbons (UHCs) extracted from flowers. The UHCs washed from corollae were most similar to the tarsal UHC profile of the most abundant bumblebee species, Bombus pascuorum, in all 3 years. The species compositions of the bumblebee communities estimated from UHCs on flowers were also similar to those actually observed. There was a significant positive correlation between the observed number of visits by each of three bumblebee species (contributing 3-68% of the flower visits) and the estimated number of visits based on UHC profiles. Furthermore, significant correlations were obtained separately for workers and drones of two species. Seed set of comfrey plants was positively correlated with overall bumblebee visitation and the total amount of UHCs on flowers, suggesting the potential for pollen limitation. We suggest that quantifying cumulative footprint hydrocarbons provides a novel way to assess floral visitation by insects, and that this method can be used to predict seed set in pollen-limited plants. PMID:20978796

  16. Image guided Brachytherapy: The paradigm of Gynecologic and Partial Breast HDR Brachytherapy

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, S.; Kantemiris, I.; Konidari, A.; Zaverdinos, P.

    2015-09-01

    High dose rate (HDR) brachytherapy uses high strength radioactive sources and temporary interstitial implants to conform the dose to target and minimize the treatment time. The advances of imaging technology enable accurate reconstruction of the implant and exact delineation of high-risk CTV and the surrounding critical structures. Furthermore, with sophisticated treatment planning systems, applicator devices and stepping source afterloaders, brachytherapy evolved to a more precise, safe and individualized treatment. At the Radiation Oncology Department of Metropolitan Hospital Athens, MRI guided HDR gynecologic (GYN) brachytherapy and accelerated partial breast irradiation (APBI) with brachytherapy are performed routinely. Contouring and treatment planning are based on the recommendations of the GEC - ESTRO Working group. The task of this presentation is to reveal the advantages of 3D image guided brachytherapy over 2D brachytherapy. Thus, two patients treated at our department (one GYN and one APBI) will be presented. The advantage of having adequate dose coverage of the high risk CTV and simultaneous low doses to the OARs when using 3D image- based brachytherapy will be presented. The treatment techniques, equipment issues, as well as implantation, imaging and treatment planning procedures will be described. Quality assurance checks will be treated separately.

  17. SU-D-BRF-07: Ultrasound and Fluoroscopy Based Intraoperative Image-Guidance System for Dynamic Dosimetry in Prostate Brachytherapy

    SciTech Connect

    Kuo, N; Le, Y; Deguet, A; Prince, J; Song, D; Lee, J; Dehghan, E; Burdette, E; Fichtinger, G

    2014-06-01

    Purpose: Prostate brachytherapy is a common treatment method for low-risk prostate cancer patients. Intraoperative treatment planning is known to improve the treatment procedure and the outcome. The current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. We developed an image-guidance system to fulfill this need to achieve intraoperative dynamic dosimetry in prostate brachytherapy. Methods: Our system is based on standard imaging equipments available in the operating room, including the transrectal ultrasound (TRUS) and the mobile C-arm. A simple fiducial is added to compute the C-arm pose. Three fluoroscopic images and an ultrasound volume of the seeds and the prostate are acquired and processed by four image processing algorithms: seed segmentation, fiducial detection with pose estimation, seed reconstruction, and seeds-to-TRUS registration. The updated seed positions allow the physician to assess the quality of implantation and dynamically adjust the treatment plan during the course of surgery to achieve improved exit dosimetry. Results: The system was tested on 10 phantoms and 37 patients. Seed segmentation resulted in a 1% false negative and 2% false positive rates. Fiducial detection with pose estimation resulted in a detection rate of 98%. Seed reconstruction had a mean reconstruction error of 0.4 mm. Seeds-to-TRUS registration had a mean registration error of 1.3 mm. The total processing time from image acquisition to registration was approximately 1 minute. Conclusion: We present an image-guidance system for intraoperative dynamic dosimetry in prostate brachytherapy. Using standard imaging equipments and a simple fiducial, our system can be easily adopted in any clinics. Robust image processing algorithms enable accurate and fast computation of the delivered dose. Especially, the system enables detection of possible hot/cold spots during the surgery, allowing the physician to address these

  18. BrachyView: Proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy

    SciTech Connect

    Petasecca, M.; Loo, K. J.; Safavi-Naeini, M.; Han, Z.; Metcalfe, P. E.; Lerch, M. L. F.; Qi, Y.; Rosenfeld, A. B.; Meikle, S.; Pospisil, S.; Jakubek, J.; Bucci, J. A.; Zaider, M.

    2013-04-15

    Purpose: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. Methods: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. Results: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real

  19. Direct determination of the absorbed dose to water from 125I low dose-rate brachytherapy seeds using the new absorbed dose primary standard developed at ENEA-INMRI

    NASA Astrophysics Data System (ADS)

    Toni, M. P.; Pimpinella, M.; Pinto, M.; Quini, M.; Cappadozzi, G.; Silvestri, C.; Bottauscio, O.

    2012-10-01

    Low-intensity radioactive sources emitting low-energy photons are used in the clinic for low dose-rate brachytherapy treatments of tumours. The dosimetry of these sources is based on reference air kerma rate measurements. The absorbed dose rate to water at the reference depth d0 = 1 cm, \\dot {D}_{w,1\\,cm} , is then obtained by a conversion procedure with a large relative standard uncertainty of about 5%. This paper describes a primary standard developed at ENEA-INMRI to directly measure \\dot {D}_{w,1\\,cm} due to LDR sources. The standard is based on a large-angle and variable-volume ionization chamber, embedded in a graphite phantom and operating under ‘wall-less air chamber’ conditions. A set of correction and conversion factors, based on experiments and Monte Carlo simulations, are determined to obtain the value of Dw,1 cm from measurements of increment of ionization current with increasing chamber volume. The relative standard uncertainty on \\dot {D}_{w,1\\,cm} is 2.6%, which is appreciably lower than the current uncertainty. Characteristics of the standard, its associated uncertainty budget, and some experimental results are given for 125I BEBIG I25.S16.C brachytherapy seeds. Finally, results of the experimental determination of the dose-rate constant Λ1 cm, traceable to the Dw,1 cm and the low-energy air kerma ENEA-INMRI standards, are given. The relative standard uncertainty on Λ1 cm is 2.9%, appreciably lower than the typical uncertainty (4.8%) of the values available in the literature.

  20. Brachytherapy needle deflection evaluation and correction

    SciTech Connect

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-04-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively.

  1. {sup 106}Ruthenium Brachytherapy for Retinoblastoma

    SciTech Connect

    Abouzeid, Hana; Moeckli, Raphael; Gaillard, Marie-Claire; Beck-Popovic, Maja; Pica, Alessia; Zografos, Leonidas; Balmer, Aubin; Pampallona, Sandro; Munier, Francis L.

    2008-07-01

    Purpose: To evaluate the efficacy of {sup 106}Ru plaque brachytherapy for the treatment of retinoblastoma. Methods and Materials: We reviewed a retrospective, noncomparative case series of 39 children with retinoblastoma treated with {sup 106}Ru plaques at the Jules-Gonin Eye Hospital between October 1992 and July 2006, with 12 months of follow-up. Results: A total of 63 tumors were treated with {sup 106}Ru brachytherapy in 41 eyes. The median patient age was 27 months. {sup 106}Ru brachytherapy was the first-line treatment for 3 tumors (4.8%), second-line treatment for 13 (20.6%), and salvage treatment for 47 tumors (74.6%) resistant to other treatment modalities. Overall tumor control was achieved in 73% at 1 year. Tumor recurrence at 12 months was observed in 2 (12.5%) of 16 tumors for which {sup 106}Ru brachytherapy was used as the first- or second-line treatment and in 15 (31.9%) of 47 tumors for which {sup 106}Ru brachytherapy was used as salvage treatment. Eye retention was achieved in 76% of cases (31 of 41 eyes). Univariate and multivariate analyses revealed no statistically significant risk factors for tumor recurrence. Radiation complications included retinal detachment in 7 (17.1%), proliferative retinopathy in 1 (2.4%), and subcapsular cataract in 4 (9.7%) of 41 eyes. Conclusion: {sup 106}Ru brachytherapy is an effective treatment for retinoblastoma, with few secondary complications. Local vitreous seeding can be successfully treated with {sup 106}Ru brachytherapy.

  2. Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction

    PubMed Central

    Ma, Limin; Yang, Yijun; Sikka, Suresh C.; Kadowitz, Philip J.; Ignarro, Louis J.; Abdel-Mageed, Asim B.; Hellstrom, Wayne J. G.

    2012-01-01

    Porcine small intestinal submucosa (SIS) has been widely used in tunica albuginea (TA) reconstructive surgery. Adipose tissue-derived stem cells (ADSCs) can repair damaged tissue, augment cellular differentiation, and stimulate release of multiple growth factors. The aim of this rat study was to assess the feasibility of seeding ADSCs onto SIS grafts for TA reconstruction. Here, we demonstrate that seeding syngeneic ADSCs onto SIS grafts (SIS-ADSC) resulted in significant cavernosal tissue preservation and maintained erectile responses, similar to controls, in a rat model of bilateral incision of TA, compared with sham-operated animals and rats grafted with SIS graft (SIS) alone. In addition to increased TGF-β1 and FGF-2 expression levels, cross-sectional studies of the rat penis with SIS and SIS-ADSC revealed mild to moderate fibrosis and an increase of 30% and 40% in mean diameter in flaccid and erectile states, respectively. SIS grafting induced transcriptional up-regulation of iNOS and down-regulation of endothelial NOS, neuronal NOS, and VEGF, an effect that was restored by seeding ADCSs on the SIS graft. Taken together, these data show that rats undergoing TA incision with autologous SIS-ADSC grafts maintained better erectile function compared with animals grafted with SIS alone. This study suggests that SIS-ADSC grafting can be successfully used for TA reconstruction procedures and can restore erectile function. PMID:22308363

  3. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: A systematic review and meta-analysis.

    PubMed

    Xue, Jing-Dong; Gao, Jing; Fu, Qiang; Feng, Chao; Xie, Hong

    2016-07-01

    We systematically reviewed published preclinical studies to evaluate the effectiveness of cell-seeded tissue engineering approach for urethral reconstruction in an animal model. The outcomes were summarized by success factors in the animal experiments, which evaluate the possibility and feasibility of a clinical application in the future. Preclinical studies of tissue engineering approaches for urethral reconstruction were identified through a systematic search in PubMed, Embase, and Biosis Previews (web of science SP) databases for studies published from 1 January 1980 to 23 November 2014. Primary studies were included if urethral reconstruction was performed using a tissue-engineered biomaterial in any animal species (with the experiment group being a cell-seeded scaffold and the control group being a cell-free scaffold) with histology and urethrography as the outcome measure. A total of 15 preclinical studies were included in our meta-analysis. The histology and urethrography outcome between the experimental and control groups were considered to be the most clinically relevant. Through this systematic approach, our outcomes suggested that applying the cell-seeded biomaterial in creating a neo-urethra was stable and effective. And multi-type cells including epithelial cells as well as smooth muscle cells or fibroblasts seemed to be a better strategy. Stem cells, especially after epithelial differentiation, could be a promising choice for future researches.

  4. Urethral toxicity after LDR brachytherapy: experience in Japan.

    PubMed

    Tanaka, Nobumichi; Asakawa, Isao; Hasegawa, Masatoshi; Fujimoto, Kiyohide

    2015-01-01

    Urinary toxicity is common after low-dose-rate (LDR) brachytherapy, and the resolution of urinary toxicity is a concern. In particular, urinary frequency is the most common adverse event among the urinary toxicities. We have previously reported that approximately 70% of patients experience urinary frequency during the first 6 months after seed implantation. Most urinary adverse events were classified as Grade 1, and Grade 2 or higher adverse events were rare. The incidence of urinary retention was approximately 2-4%. A high International Prostate Symptom Score before seed implantation was an independent predictor of acute urinary toxicity of Grade 2 or higher. Several previous reports from the United States also supported this trend. In Japan, LDR brachytherapy was legally approved in 2003. A nationwide prospective cohort study entitled Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation was initiated in July 2005. It is an important issue to limit urinary toxicities in patients who undergo LDR brachytherapy.

  5. The dosimetry of brachytherapy-induced erectile dysfunction

    SciTech Connect

    Merrick, Gregory S.; Butler, Wayne M

    2003-12-31

    There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D{sub 50}) and 25% (D{sub 25}) of the bulb of the penis should be maintained below 40% and 60% mPD, respectively, while the crura D{sub 50} should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation.

  6. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    PubMed

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-01

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  7. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction.

    PubMed

    Pires, Mathias M; Galetti, Mauro; Donatti, Camila I; Pizo, Marco A; Dirzo, Rodolfo; Guimarães, Paulo R

    2014-08-01

    The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.

  8. Early voiding dysfunction associated with prostate brachytherapy.

    PubMed

    Wagner; Nag; Young; Bahnson

    2000-12-15

    Introduction: Transperineal prostate brachytherapy is gaining popularity as a treatment for clinically localized carcinoma of the prostate. Very little prospective data exists addressing the issue of complications associated with this procedure. We present an analysis of the early voiding dysfunction associated with prostate brachytherapy. Materials and Methods: Forty-six consecutive patients who underwent Palladium-103 (Pd-103) seed placement for clinically localized prostate carcinoma were evaluated prospectively for any morbidity associated with the procedure. Twenty-three patients completed an International Prostate Symptom Score (IPSS) questionnaire preoperatively, at their first postoperative visit, and at their second postoperative visit. The total IPSS, each of the seven individual components, and the "bother" score were evaluated separately for each visit, and statistical significance was determined. Results: Urinary retention occurred in 7/46 patients (15%). Of these, 5 were able to void spontaneously after catheter removal. One patient is maintained with a suprapubic tube, and one patient is currently on continuous intermittent catheterization. Baseline IPSS was 7.1 and this went to 20.0 at the first postoperative visit (p<0.001). By the second postoperative visit, the IPSS was 8.0. Conclusions: In our experience, prostate brachytherapy for localized carcinoma of the prostate is associated with a 15% catheterization rate and a significant increase in the IPSS (7.1 to 20.0). This increase in the IPSS seems to be self-limited. Patients need to be educated on these issues prior to prostate brachytherapy. PMID:11113369

  9. Automated intraoperative calibration for prostate cancer brachytherapy

    SciTech Connect

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-11-15

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 {+-} 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 {+-} 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 {+-} 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 {+-} 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  10. Dose reconstruction technique using non-rigid registration to evaluate spatial correspondence between high-dose region and late radiation toxicity: a case of tracheobronchial stenosis after external beam radiotherapy combined with endotracheal brachytherapy for tracheal cancer

    PubMed Central

    Murakami, Naoya; Inaba, Koji; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Sato, Jun; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun

    2016-01-01

    Purpose Small organ subvolume irradiated by a high-dose has been emphasized to be associated with late complication after radiotherapy. Here, we demonstrate a potential use of surface-based, non-rigid registration to investigate how high-dose volume topographically correlates with the location of late radiation morbidity in a case of tracheobronchial radiation stenosis. Material and methods An algorithm of point set registration was implemented to handle non-rigid registration between contour points on the organ surfaces. The framework estimated the global correspondence between the dose distribution and the varying anatomical structure. We applied it to an 80-year-old man who developed tracheobronchial stenosis 2 years after high-dose-rate endobronchial brachytherapy (HDR-EBT) (24 Gy in 6 Gy fractions) and external beam radiotherapy (EBRT) (40 Gy in 2 Gy fractions) for early-stage tracheal cancer. Results and conclusions Based on the transformation function computed by the non-rigid registration, irradiated dose distribution was reconstructed on the surface of post-treatment tracheobronchial stenosis. For expressing the equivalent dose in a fractional dose of 2 Gy in HDR-EBT, α/β of linear quadratic model was assumed as 3 Gy for the tracheal bronchus. The tracheobronchial surface irradiated by more than 100 Gyαβ3 tended to develop severe stenosis, which attributed to a more than 50% decrease in the luminal area. The proposed dose reconstruction technique can be a powerful tool to predict late radiation toxicity with spatial consideration. PMID:27257421

  11. Transurethral ultrasound of the prostrate for applications in prostrate brachytherapy: analysis of phantom and in-vivo data

    NASA Astrophysics Data System (ADS)

    Holmes, David R., III; Davis, Brian J.; Bruce, Charles; Wilson, Torrence; Robb, Richard A.

    2001-05-01

    3D Trans-Urethral Ultrasound (TUUS) imaging is a new imaging technique for the diagnosis and treatment of prostate disease. Our current research focuses on the potential of TUUS in therapy guidance during tansperineal interstitial permanent prostate brachytherapy (TIPPB). TUUS may complement of potentially replace x-ray fluoroscopy and TRUS in providing data for determining the prostate boundary and radiation source locations. Prostate boundary detection and source localization using TUUS were tested on an ultrasound- equivalent prostate phantom and ina patient during TIPPB. Data collection was conducted with a 10 French, 10 MHz ultrasound catheter controlled by an Acuson SequoiaTM workstation. 2D and 3D TUUS scans were acquired after radioactive seeds were placed in the phantom and in the patient. Data was reconstructed, processed, and analyzed using Analyze software. Segmentation of the prostate boundary was performed semi-automatically, and seed segmentation was performed manually. Image artifacts in TUUS data resulted in incorrect reconstruction of the seeds. Intelligent processing of the seed data improved reconstruction. Comparison to the CT data suggests that TUUS dat provides: 1) greater spatial resolution, 2) greater temporal resolution and 3) better contrast for soft tissue differentiation. The reconstructed source sizes and locations were measured and found accurate. Placement of the TUUS catheter into the urethra provides excellent 2D sections which can be used to acquire volumetric data for 3D analysis of the prostate and radioactive sources. Preliminary results suggest that TUUS will be useful for guidance of seed placement, post-implant seed localization, and intra-operative dosimetry.

  12. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion.

    PubMed

    Bodin, Aase; Bharadwaj, Shantaram; Wu, Shaofeng; Gatenholm, Paul; Atala, Anthony; Zhang, Yuanyuan

    2010-12-01

    The objective of this study was to generate bacterial cellulose (BC) scaffolds seeded with human urine-derived stem cells (USC) to form a tissue-engineered conduit for use in urinary diversion. Microporous BC scaffolds were synthesized and USC were induced to differentiate into urothelial and smooth muscle cells (SMC). Induced USC (10(6) cells/cm(2)) were seeded onto BC under static and 3D dynamic (10 or 40 RPM) conditions and cultured for 2 weeks. The urothelial cells and SMC derived from USC formed multilayers on the BC scaffold surface, and some cells infiltrated into the scaffold. The urothelium derived from USC differentiation expressed urothelial markers (uroplakin Ia and AE1/AE3) and the SMC expressed SMC markers (α-smooth muscle actin and desmin). In addition, USC/BC scaffold constructs were implanted into athymic mice, and the cells were tracked using immunohistochemical staining for human nuclear antigen. In vivo, the cells appeared to differentiate and express urothelial and SMC markers. In conclusion, porous BC scaffolds allow 3 dimensional growth of USC, leading to formation of a multilayered urothelium and cell-matrix infiltration. Thus, cell-seeded BC scaffolds hold promise for use in tissue-engineered urinary conduits for urinary reconstruction.

  13. ³²P-chromic phosphate-Poly(L-Lactide) seeds of sustained release and their brachytherapy for prostate cancer with lymphatic metastasis.

    PubMed

    He, Xingjun; Jia, Ruipeng; Xu, Luwei; Liang, Kai; Wang, Zizheng; Shao, Guoqiang; Huang, Peilin; Li, Wencheng

    2012-09-01

    This study aims to develop a new agent, the ³²P-chromic phosphate-poly(l-lactide) (³²P-CP-PLLA) seed and to explore its anticancer effect against prostate cancer (Pca) with local lymphatic metastasis in nude mice. ³²P-CP-PLLA seeds of sustained release and nude mouse models of Pca with lymphatic metastasis were prepared. After 4 weeks, the tumor nude mouse models were randomly assigned into five groups. ³²P-CP-PLLA seeds (3.7, 7.4, 14.8, and 0 MBq) and ³²P-CP (14.8 MBq) were implanted in the tumor tissues of the nude mouse models. The following were discussed in this study: (1) the distributions of ³²P-CP-PLLA, (2) the pathological and morphological changes in the tumor and regional lymph nodes, and (3) the changes in white blood cell (WBC) and platelet counts in peripheral blood for toxic reactions. The homemade ³²P-CP-PLLA seed was a regular green cylinder, with an even distribution of mass and radioactivity. After implantation, single-photon emission computed tomograph (SPECT) showed that ³²P was mainly gathered in the tumor and regional lymph nodes. Morphological examinations revealed that necrosis and hemorrhage were around the tumor and focal lymph nodes. The tumor inhibition rates of the five groups were 70.16% ± 5.48%, 80.18% ± 5.84%, 84.97% ± 4.79%, (-), and 78.81% ± 3.13%, respectively. These values were all positive when compared with the control group. As a new homemade agent of pure β-ray, local implantation of the agent increased the focal retention of radioactivity at the target. Moreover, effective half-life showed an obvious damage to the tumor and metastatic foci of Pca.

  14. An algorithm for efficient metal artifact reductions in permanent seed implants

    SciTech Connect

    Xu Chen; Verhaegen, Frank; Laurendeau, Denis; Enger, Shirin A.; Beaulieu, Luc

    2011-01-15

    Purpose: In permanent seed implants, 60 to more than 100 small metal capsules are inserted in the prostate, creating artifacts in x-ray computed tomography (CT) imaging. The goal of this work is to develop an automatic method for metal artifact reduction (MAR) from small objects such as brachytherapy seeds for clinical applications. Methods: The approach for MAR is based on the interpolation of missing projections by directly using raw helical CT data (sinogram). First, an initial image is reconstructed from the raw CT data. Then, the metal objects segmented from the reconstructed image are reprojected back into the sinogram space to produce a metal-only sinogram. The Steger method is used to determine precisely the position and edges of the seed traces in the raw CT data. By combining the use of Steger detection and reprojections, the missing projections are detected and replaced by interpolation of non-missing neighboring projections. Results: In both phantom experiments and patient studies, the missing projections have been detected successfully and the artifacts caused by metallic objects have been substantially reduced. The performance of the algorithm has been quantified by comparing the uniformity between the uncorrected and the corrected phantom images. The results of the artifact reduction algorithm are indistinguishable from the true background value. Conclusions: An efficient algorithm for MAR in seed brachytherapy was developed. The test results obtained using raw helical CT data for both phantom and clinical cases have demonstrated that the proposed MAR method is capable of accurately detecting and correcting artifacts caused by a large number of very small metal objects (seeds) in sinogram space. This should enable a more accurate use of advanced brachytherapy dose calculations, such as Monte Carlo simulations.

  15. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    PubMed

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-01

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  <  0.05). Comparisons of smooth muscle content and endothelia density among the three groups revealed a significant increase at each time point (p  <  0.05). Our results demonstrated that 3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction. PMID:26358641

  16. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    PubMed

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-11

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  <  0.05). Comparisons of smooth muscle content and endothelia density among the three groups revealed a significant increase at each time point (p  <  0.05). Our results demonstrated that 3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction.

  17. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  18. [Safety in brachytherapy].

    PubMed

    Marcié, S; Marinello, G; Peiffert, D; Lartigau, É

    2013-04-01

    No technique can now be used without previously considering the safety of patients, staff and public and risk management. This is the case for brachytherapy. The various aspects of brachytherapy are discussed for both the patient and the staff. For all, the risks must be minimized while achieving a treatment of quality. It is therefore necessary to establish a list as comprehensive as possible regardless of the type of brachytherapy (low, high, pulsed dose-rate). Then, their importance must be assessed with the help of their criticality. Radiation protection of personnel and public must take into account the many existing regulation texts. Four axes have been defined for the risk management for patients: organization, preparation, planning and implementation of treatment. For each axis, a review of risks is presented, as well as administrative, technical and medical dispositions for staff and the public. PMID:23465784

  19. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer.

    PubMed

    Murali, V; Kurup, P G G; Mahadev, P; Mahalakshmi, S

    2010-04-01

    Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.

  20. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer

    PubMed Central

    Murali, V.; Kurup, P. G. G.; Mahadev, P.; Mahalakshmi, S.

    2010-01-01

    Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage. PMID:20589121

  1. Design and optimization of a brachytherapy robot

    NASA Astrophysics Data System (ADS)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  2. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic. PMID:26449447

  3. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.

  4. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  5. Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Song, Danny Y.; Lee, Junghoon

    2016-03-01

    Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.

  6. Rectal ulcer: Due to ketoprofen, argon plasma coagulation and prostatic brachytherapy.

    PubMed

    Koessler, Thibaud; Servois, Vincent; Mariani, Pascale; Aubert, Emilie; Cacheux, Wulfran

    2014-12-01

    Prostatic brachytherapy with permanent seed implants is a recent and safe radiation therapy technique associated with radiation-induced digestive disease. Argon plasma coagulation procedure is a validated modality in the management of haemorrhagic radiation proctitis, which is known to occasionally induce chronic rectal ulcers. We report here an original case report of an acute painful rectal ulcer as a consequence of the combination of short-term therapy with non-steroidal anti-inflammatory drugs therapy, prostatic brachytherapy with malposition of seed implants and argon plasma coagulation procedure in a patient with haemorrhagic radiation proctitis. The description of this clinical observation is essential to recommend the discontinuation of non-steroidal anti-inflammatory drugs therapy and the control of the position of seed implants in case of prostatic brachytherapy before argon plasma coagulation for radiation-induced proctitis.

  7. Penile brachytherapy: Results for 49 patients

    SciTech Connect

    Crook, Juanita M. . E-mail: juanita.crook@rmp.uhn.on.ca; Jezioranski, John; Grimard, Laval; Esche, Bernd; Pond, G.

    2005-06-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  8. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar; Mason, Josh; Bownes, Peter; Henry, Ann; Dickinson, Louise; Ahmed, Hashim U.; Emberton, Mark; Langley, Stephen

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  9. [High dose rate brachytherapy].

    PubMed

    Aisen, S; Carvalho, H A; Chavantes, M C; Esteves, S C; Haddad, C M; Permonian, A C; Taier, M do C; Marinheiro, R C; Feriancic, C V

    1992-01-01

    The high dose rate brachytherapy uses a single source os 192Ir with 10Ci of nominal activity in a remote afterloading machine. This technique allows an outpatient treatment, without the inconveniences of the conventional low dose rate brachytherapy such as use of general anesthesia, rhachianesthesia, prolonged immobilization, and personal exposition to radiation. The radiotherapy department is now studying 5 basic treatment schemes concerning carcinomas of the uterine cervix, endometrium, lung, esophagus and central nervous system tumors. With the Micro Selectron HDR, 257 treatment sessions were done in 90 patients. Mostly were treated with weekly fractions, receiving a total of three to four treatments each. No complications were observed neither during nor after the procedure. Doses, fraction and ideal associations still have to be studied, so that a higher therapeutic ratio can be reached.

  10. Human Urine-derived Stem Cells Seeded Surface Modified Composite Scaffold Grafts for Bladder Reconstruction in a Rat Model.

    PubMed

    Lee, Jun Nyung; Chun, So Young; Lee, Hyo-Jung; Jang, Yu-Jin; Choi, Seock Hwan; Kim, Dae Hwan; Oh, Se Heang; Song, Phil Hyun; Lee, Jin Ho; Kim, Jong Kun; Kwon, Tae Gyun

    2015-12-01

    We conducted this study to investigate the synergistic effect of human urine-derived stem cells (USCs) and surface modified composite scaffold for bladder reconstruction in a rat model. The composite scaffold (Polycaprolactone/Pluronic F127/3 wt% bladder submucosa matrix) was fabricated using an immersion precipitation method, and heparin was immobilized on the surface via covalent conjugation. Basic fibroblast growth factor (bFGF) was loaded onto the heparin-immobilized scaffold by a simple dipping method. In maximal bladder capacity and compliance analysis at 8 weeks post operation, the USCs-scaffold(heparin-bFGF) group showed significant functional improvement (2.34 ± 0.25 mL and 55.09 ± 11.81 µL/cm H2O) compared to the other groups (2.60 ± 0.23 mL and 56.14 ± 9.00 µL/cm H2O for the control group, 1.46 ± 0.18 mL and 34.27 ± 4.42 µL/cm H2O for the partial cystectomy group, 1.76 ± 0.22 mL and 35.62 ± 6.69 µL/cm H2O for the scaffold group, and 1.92 ± 0.29 mL and 40.74 ± 7.88 µL/cm H2O for the scaffold(heparin-bFGF) group, respectively). In histological and immunohistochemical analysis, the USC-scaffold(heparin-bFGF) group showed pronounced, well-differentiated, and organized smooth muscle bundle formation, a multi-layered and pan-cytokeratin-positive urothelium, and high condensation of submucosal area. The USCs seeded scaffold(heparin-bFGF) exhibits significantly increased bladder capacity, compliance, regeneration of smooth muscle tissue, multi-layered urothelium, and condensed submucosa layers at the in vivo study.

  11. Salvage Brachytherapy for Biochemically Recurrent Prostate Cancer following Primary Brachytherapy

    PubMed Central

    Lacy, John M.; Wilson, William A.; Bole, Raevti; Chen, Li; Meigooni, Ali S.; Rowland, Randall G.; Clair, William H. St.

    2016-01-01

    Purpose. In this study, we evaluated our experience with salvage brachytherapy after discovery of biochemical recurrence after a prior brachytherapy procedure. Methods and Materials. From 2001 through 2012 twenty-one patients treated by brachytherapy within University of Kentucky or from outside centers developed biochemical failure and had no evidence of metastases. Computed tomography (CT) scans were evaluated; patients who had an underseeded portion of their prostate were considered for reimplantation. Results. The majority of the patients in this study (61.9%) were low risk and median presalvage PSA was 3.49 (range 17.41–1.68). Mean follow-up was 61 months. At last follow-up after reseeding, 11/21 (52.4%) were free of biochemical recurrence. There was a trend towards decreased freedom from biochemical recurrence in low risk patients (p = 0.12). International Prostate Symptom Scores (IPSS) increased at 3-month follow-up visits but decreased and were equivalent to baseline scores at 18 months. Conclusions. Salvage brachytherapy after primary brachytherapy is possible; however, in our experience the side-effect profile after the second brachytherapy procedure was higher than after the first brachytherapy procedure. In this cohort of patients we demonstrate that approximately 50% oncologic control, low risk patients appear to have better outcomes than others. PMID:27092279

  12. Calibration of multiple LDR brachytherapy sources

    SciTech Connect

    DeWerd, Larry A.; Micka, John A.; Holmes, Shannon M.; Bohm, Tim D.

    2006-10-15

    A trend is underway toward the use of prepackaged low dose rate brachytherapy sources, which come in the form of strands, coiled line sources, preloaded needles, and sterile cartridge packs. Since the medical physicist is responsible for verification of source strength prior to patient treatment, development of prepackaged source strength verification methods is needed. Existing guidelines are reviewed to establish the situation that medical physicists find with respect to prepackaged sources. This investigation presents an experimental evaluation of the effect of some of these multiseed geometries on source strength measurements. Multiseed strands and coils, whether {sup 125}I, {sup 103}Pd, or {sup 192}Ir can be measured in a chamber with a long, sensitive axial length with a uniform response. Sterile seed cartridge packs can also be measured but require a correction factor to be applied. Sources in needles, however, cannot be measured in the needle since there is too great a variation in needle composition and needle tolerance thickness. Removing these seeds from the needle into a sterile measurement insert, which maintains sterility is a practical source strength verification method, similar to those done for multiple seed configurations in a well chamber with adequate axial uniformity. Values are compared with individual air kerma strength calibrations, and correction factors, are presented where needed. In each case, care must be taken to maintain sterility as multiple seeds are measured in well chamber inserts.

  13. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

  14. Initial application of digital tomosynthesis to improve brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Baydush, Alan H.; Mirzaei McKee, Mahta; King, June; Godfrey, Devon J.

    2007-03-01

    We present preliminary investigations that examine the feasibility of incorporating volumetric images generated using digital tomosynthesis into brachytherapy treatment planning. The Integrated Brachytherapy Unit (IBU) at our facility consists of an L-arm, C-arm isocentric motion system with an x-ray tube and fluoroscopic imager attached. Clinically, this unit is used to generate oblique, anterior-posterior, and lateral images for simple treatment planning and dose prescriptions. Oncologists would strongly prefer to have volumetric data to better determine three dimensional dose distributions (dose-volume histograms) to the target area and organs at risk. Moving the patient back and forth to CT causes undo stress on the patient, allows extensive motion of organs and treatment applicators, and adds additional time to patient treatment. We propose to use the IBU imaging system with digital tomosynthesis to generate volumetric patient data, which can be used for improving treatment planning and overall reducing treatment time. Initial image data sets will be acquired over a limited arc of a human-like phantom composed of real bones and tissue equivalent material. A brachytherapy applicator will be incorporated into one of the phantoms for visualization purposes. Digital tomosynthesis will be used to generate a volumetric image of this phantom setup. This volumetric image set will be visually inspected to determine the feasibility of future incorporation of these types of images into brachytherapy treatment planning. We conclude that initial images using the tomosynthesis reconstruction technique show much promise and bode well for future work.

  15. Radiobiological evaluation of low dose-rate prostate brachytherapy implants

    NASA Astrophysics Data System (ADS)

    Knaup, Courtney James

    Low dose-rate brachytherapy is a radiation therapy treatment for men with prostate cancer. While this treatment is common, the use of isotopes with varying dosimetric characteristics means that the prescription level and normal organ tolerances vary. Additionally, factors such as prostate edema, seed loss and seed migration may alter the dose distribution within the prostate. The goal of this work is to develop a radiobiological response tool based on spatial dose information which may be used to aid in treatment planning, post-implant evaluation and determination of the effects of prostate edema and seed migration. Aim 1: Evaluation of post-implant prostate edema and its dosimetric and biological effects. Aim 2: Incorporation of biological response to simplify post-implant evaluation. Aim 3: Incorporation of biological response to simplify treatment plan comparison. Aim 4: Radiobiologically based comparison of single and dual-isotope implants. Aim 5: Determine the dosimetric and radiobiological effects of seed disappearance and migration.

  16. An overview of interstitial brachytherapy and hyperthermia

    SciTech Connect

    Brandt, B.B.; Harney, J.

    1989-11-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.

  17. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  18. The Effects of Metallic Implants on Electroporation Therapies: Feasibility of Irreversible Electroporation for Brachytherapy Salvage

    SciTech Connect

    Neal, Robert E.; Smith, Ryan L.; Kavnoudias, Helen; Rosenfeldt, Franklin Ou, Ruchong; Mclean, Catriona A.; Davalos, Rafael V.; Thomson, Kenneth R.

    2013-12-15

    Purpose: Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. Materials and Methods: This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. Results: There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. Conclusion: This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.

  19. Recurrent abscess after MammoSite brachytherapy.

    PubMed

    Lopchinsky, Richard A; Giles, Kristina A

    2004-01-01

    Recently a new catheter was introduced to facilitate brachytherapy in a lumpectomy cavity. Data are limited on the side effects of high-dose brachytherapy to the lumpectomy cavity with the MammoSite catheter. We present a case of recurrent abscesses over a 7-month period in the lumpectomy cavity after MammoSite brachytherapy.

  20. Magnetic resonance spectroscopy-guided transperineal prostate biopsy and brachytherapy for recurrent prostate cancer.

    PubMed

    Barnes, Agnieszka Szot; Haker, Steven J; Mulkern, Robert V; So, Minna; D'Amico, Anthony V; Tempany, Clare M

    2005-12-01

    Brachytherapy targeted to the peripheral zone with magnetic resonance imaging (MRI) guidance is a prostate cancer treatment option with potentially fewer complications than other treatments. Follow-up MRI when failure is suspected is, however, difficult because of radiation-induced changes. Furthermore, MR spectroscopy (MRS) is compromised by susceptibility artifacts from radioactive seeds in the peripheral zone. We report a case in which combined MRI/MRS was useful for the detection of prostate cancer in the transitional zone in patients previously treated with MR-guided brachytherapy. We propose that MRI/MRS can help detect recurrent prostate cancer, guide prostate biopsy, and help manage salvage treatment decisions. PMID:16360468

  1. Apparatus and method for high dose rate brachytherapy radiation treatment

    DOEpatents

    Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James

    2005-01-25

    A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.

  2. Study of dose calculation on breast brachytherapy using prism TPS

    NASA Astrophysics Data System (ADS)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  3. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192

    SciTech Connect

    Podder, Tarun K.; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A.; Crass, Jostin B.; Dicker, Adam P.; Yu, Yan; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A.; Moerland, Marinus A.; Nath, Ravinder; Rivard, Mark J.; Salcudean, Tim; Song, Danny Y.; Thomadsen, Bruce R.

    2014-10-15

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3–6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests

  4. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192.

    PubMed

    Podder, Tarun K; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A; Crass, Jostin B; Dicker, Adam P; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A; Moerland, Marinus A; Nath, Ravinder; Rivard, Mark J; Salcudean, Tim; Song, Danny Y; Thomadsen, Bruce R; Yu, Yan

    2014-10-01

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3-6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests should

  5. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192.

    PubMed

    Podder, Tarun K; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A; Crass, Jostin B; Dicker, Adam P; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A; Moerland, Marinus A; Nath, Ravinder; Rivard, Mark J; Salcudean, Tim; Song, Danny Y; Thomadsen, Bruce R; Yu, Yan

    2014-10-01

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3-6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests should

  6. Brachytherapy in Gynecologic Cancers: Why Is It Underused?

    PubMed

    Han, Kathy; Viswanathan, Akila N

    2016-04-01

    Despite its established efficacy, brachytherapy is underused in the management of cervical and vaginal cancers in some parts of the world. Possible reasons for the underutilization of brachytherapy include the adoption of less invasive techniques, such as intensity-modulated radiotherapy; reimbursement policies favoring these techniques over brachytherapy; poor physician or patient access to brachytherapy; inadequate maintenance of brachytherapy skills among practicing radiation oncologists; transitioning to high-dose-rate (HDR) brachytherapy with increased time requirements; and insufficient training of radiation oncology residents.

  7. Tracheal reconstruction using chondrocytes seeded on a poly(L-lactic-co-glycolic acid)-fibrin/hyaluronan.

    PubMed

    Hong, Hyun Jun; Chang, Jae Won; Park, Ju-Kyeong; Choi, Jae Won; Kim, Yoo Suk; Shin, Yoo Seob; Kim, Chul-Ho; Choi, Eun Chang

    2014-11-01

    Reconstruction of trachea is still a clinical dilemma. Tissue engineering is a recent and promising concept to resolve this problem. This study evaluated the feasibility of allogeneic chondrocytes cultured with fibrin/hyaluronic acid (HA) hydrogel and degradable porous poly(L-lactic-co-glycolic acid) (PLGA) scaffold for partial tracheal reconstruction. Chondrocytes from rabbit articular cartilage were expanded and cultured with fibrin/HA hydrogel and injected into a 5 × 10 mm-sized, curved patch-shape PLGA scaffold. After 4 weeks in vitro culture, the scaffold was implanted on a tracheal defect in eight rabbits. Six and 10 weeks postoperatively, the implanted sites were evaluated by bronchoscope and radiologic and histologic analyses. Ciliary beat frequency (CBF) of regenerated epithelium was also evaluated. None of the eight rabbits showed any sign of respiratory distress. Bronchoscopic examination did not reveal stenosis of the reconstructed trachea and the defects were completely recovered with respiratory epithelium. Computed tomography scan showed good luminal contour of trachea. Histologic data showed that the implanted chondrocytes successfully formed neocartilage with minimal granulation tissue. CBF of regenerated epithelium was similar to that of normal epithelium. Partial tracheal defect was successfully reconstructed anatomically and functionally using allogeneic chondrocytes cultured with PLGA-fibrin/HA composite scaffold.

  8. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    PubMed

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  9. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment

    NASA Astrophysics Data System (ADS)

    Miksys, N.; Xu, C.; Beaulieu, L.; Thomson, R. M.

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  10. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    PubMed

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  11. Toward adaptive stereotactic robotic brachytherapy for prostate cancer: Demonstration of an adaptive workflow incorporating inverse planning and an MR stealth robot

    PubMed Central

    CUNHA, J. ADAM; HSU, I-CHOW; POULIOT, JEAN; ROACH, MACK; SHINOHARA, KATSUTO; KURHANEWICZ, JOHN; REED, GALEN; STOIANOVICI, DAN

    2011-01-01

    To translate any robot into a clinical environment, it is critical that the robot can seamlessly integrate with all the technology of a modern clinic. MRBot, an MR-stealth brachytherapy delivery device, was used in a closed-bore 3T MRI and a clinical brachytherapy cone beam CT suite. Targets included ceramic dummy seeds, MR-Spectroscopy-sensitive metabolite, and a prostate phantom. Acquired DICOM images were exported to planning software to register the robot coordinates in the imager’s frame, contour and verify target locations, create dose plans, and export needle and seed positions to the robot. The coordination of each system element (imaging device, brachytherapy planning system, robot control, robot) was validated with a seed delivery accuracy of within 2 mm in both a phantom and soft tissue. An adaptive workflow was demonstrated by acquiring images after needle insertion and prior to seed deposition. This allows for adjustment if the needle is in the wrong position. Inverse planning (IPSA) was used to generate a seed placement plan and coordinates for ten needles and 29 seeds were transferred to the robot. After every two needles placed, an image was acquired. The placed seeds were identified and validated prior to placing the seeds in the next two needles. The ability to robotically deliver seeds to locations determined by IPSA and the ability of the system to incorporate novel needle patterns were demonstrated. Shown here is the ability to overcome this critical step. An adaptive brachytherapy workflow is demonstrated which integrates a clinical anatomy-based seed location optimization engine and a robotic brachytherapy device. Demonstration of this workflow is a key element of a successful translation to the clinic of the MRI stealth robotic delivery system, MRBot. PMID:20642386

  12. Toward adaptive stereotactic robotic brachytherapy for prostate cancer: demonstration of an adaptive workflow incorporating inverse planning and an MR stealth robot.

    PubMed

    Cunha, J Adam; Hsu, I-Chow; Pouliot, Jean; Roach Iii, Mack; Shinohara, Katsuto; Kurhanewicz, John; Reed, Galen; Stoianovici, Dan

    2010-08-01

    To translate any robot into a clinical environment, it is critical that the robot can seamlessly integrate with all the technology of a modern clinic. MRBot, an MR-stealth brachytherapy delivery device, was used in a closed-bore 3T MRI and a clinical brachytherapy cone beam CT suite. Targets included ceramic dummy seeds, MR-Spectroscopy-sensitive metabolite, and a prostate phantom. Acquired DICOM images were exported to planning software to register the robot coordinates in the imager's frame, contour and verify target locations, create dose plans, and export needle and seed positions to the robot. The coordination of each system element (imaging device, brachytherapy planning system, robot control, robot) was validated with a seed delivery accuracy of within 2 mm in both a phantom and soft tissue. An adaptive workflow was demonstrated by acquiring images after needle insertion and prior to seed deposition. This allows for adjustment if the needle is in the wrong position. Inverse planning (IPSA) was used to generate a seed placement plan and coordinates for ten needles and 29 seeds were transferred to the robot. After every two needles placed, an image was acquired. The placed seeds were identified and validated prior to placing the seeds in the next two needles. The ability to robotically deliver seeds to locations determined by IPSA and the ability of the system to incorporate novel needle patterns were demonstrated. Shown here is the ability to overcome this critical step. An adaptive brachytherapy workflow is demonstrated which integrates a clinical anatomy-based seed location optimization engine and a robotic brachytherapy device. Demonstration of this workflow is a key element of a successful translation to the clinic of the MRI stealth robotic delivery system, MRBot.

  13. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    SciTech Connect

    Francis, Jasmine H.; Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil; Gobin, Y. Pierre; Marr, Brian P.; Brodie, Scott E.; Dunkel, Ira J.; Abramson, David H.

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.

  14. Validation of K-edge 125I brachytherapy enhancement with silver compounds.

    PubMed

    Young, L A; Phillips, M H; Nelson, J A

    1999-08-01

    Brachytherapy with radioactive seeds implanted within the tumour volume has demonstrated good success rates in treating certain cancers. In an effort to improve the curative rates in cancer patients, ongoing research is being conducted to enhance the amount of radiation dose that is absorbed within the tumour volume while minimizing the dose absorbed by the surrounding normal tissue. One method for enhancing tumour dose absorption with 125I brachytherapy seeds is to increase the number of photoelectric atomic interactions within the tumour volume by introducing small quantities of a silver compound, taking advantage of the K-edge effect. Because low-energy electrons and Auger electrons are the primary sources of brachytherapy dose enhancement, acquiring accurate experimental measurements of absorbed dose increases is a major challenge. To circumvent this problem, an x ray fluorescence excitation spectroscopy dosimetry technique supplemented with clinically accepted dosimetry calculations was developed to estimate relative absorbed dose increases in a water phantom containing up to 7.5 mM of silver. Excellent agreement was observed between theoretically derived Monte Carlo dosimetric predictions and experimental measurements. These results successfully demonstrated that K-edge enhanced 125I brachytherapy is indeed possible with future development of a non-toxic silver chelate.

  15. Feasibility of functional imaging for brachytherapy

    PubMed Central

    2009-01-01

    This review summarizes the current understanding of the feasibility of functional imaging for brachytherapy. In following subsections the role of ultrasound, power doppler imaging, positron emission tomography, magnetic resonance imaging, dynamic dose calculation and targeted brachytherapy is analyzed. The combination of functional imaging with the new tools for intraoperative dose calculation and optimization opens new and exciting times in brachytherapy. New optimized protocols are needed and should be tested in controlled trials, to demonstrate an advantage of such a new paradigm.

  16. DuraSeal as a spacer to reduce rectal doses in low-dose rate brachytherapy for prostate cancer.

    PubMed

    Heikkilä, Vesa-Pekka; Kärnä, Aarno; Vaarala, Markku H

    2014-08-01

    The purpose of this study was to evaluate the utility of off-label use of DuraSeal polyethylene glycol (PEG) gel in low-dose rate (LDR) prostate brachytherapy seed implantation to reduce rectal doses. Diluted DuraSeal was easy to use and, in spite of a clearance effect, useful in decreasing D₂cc rectal doses. PMID:25201125

  17. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; Haas-Kock, Danielle de; Visser, Peter; Gils, Francis van; Verhaegen, Frank

    2012-03-15

    Purpose: The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. Methods: A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D{sub 90} was reported based on the post implant CT prostate contour. Results: Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although

  18. Afterloading: The Technique That Rescued Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  19. Testicular shielding in penile brachytherapy

    PubMed Central

    Bindal, Arpita; Tambe, Chandrashekhar M.; Ghadi, Yogesh; Murthy, Vedang; Shrivastava, Shyam Kishore

    2015-01-01

    Purpose Penile cancer, although rare, is one of the common genitourinary cancers in India affecting mostly aged uncircumcised males. For patients presenting with small superficial lesions < 3 cm restricted to glans, surgery, radical external radiation or brachytherapy may be offered, the latter being preferred as it allows organ and function preservation. In patients receiving brachytherapy, testicular morbidity is not commonly addressed. With an aim to minimize and document the doses to testis after adequate shielding during radical interstitial brachytherapy for penile cancers, we undertook this study in 2 patients undergoing brachytherapy and forms the basis of this report. Material and methods Two patients with early stage penile cancer limited to the glans were treated with radical high-dose-rate (HDR) brachytherapy using interstitial implant. A total of 7-8 tubes were implanted in two planes, parallel to the penile shaft. A total dose of 44-48 Gy (55-60 Gy EQD2 doses with α/β = 10) was delivered in 11-12 fractions of 4 Gy each delivered twice daily. Lead sheets adding to 11 mm (4-5 half value layer) were interposed between the penile shaft and scrotum. The testicular dose was measured using thermoluminescent dosimeters. For each patient, dosimetry was done for 3 fractions and mean calculated. Results The cumulative testicular dose to left and right testis was 31.68 cGy and 42.79 cGy for patient A, and 21.96 cGy and 23.28 cGy for patient B. For the same patients, the mean cumulative dose measured at the posterior aspect of penile shaft was 722.15 cGy and 807.72 cGy, amounting to 16.4% and 16.8% of the prescribed dose. Hence, the application of lead shield 11 mm thick reduced testicular dose from 722-808 cGy to 21.96-42.57 cGy, an “absolute reduction” of 95.99 ± 1.5%. Conclusions With the use of a simple lead shield as described, we were able to effectively reduce testicular dose from “spermicidal” range to “oligospermic” range with possible

  20. Dynamic rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  1. High dose rate brachytherapy for oral cancer

    PubMed Central

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  2. Dosimetry of the 198Au Source used in Interstitial Brachytherapy

    SciTech Connect

    Dauffy, L; Braby, L; Berner, B

    2004-05-18

    The American Association of Physicists in Medicine Task Group 43 report, AAPM TG-43, provides an analytical model and a dosimetry protocol for brachytherapy dose calculations, as well as documentation and results for some sealed sources. The radionuclide {sup 198}Au (T{sub 1/2} = 2.70 days, E{gamma} = 412 keV) has been used in the form of seeds for brachytherapy treatments including brain, eye, and prostate tumors. However, the TG-43 report has no data for {sup 198}Au seeds, and none have previously been obtained. For that reason, and because of the conversion of most treatment planning systems to TG-43 based methods, both Monte Carlo calculations (MCNP 4C) and thermoluminescent dosimeters (TLDs) are used in this work to determine these data. The geometric variation in dose is measured using an array of TLDs in a solid water phantom, and the seed activity is determined using both a well ion chamber and a High Purity Germanium detector (HPGe). The results for air kerma strength, S{sub k}, per unit apparent activity, are 2.06 (MCNP) and 2.09 (measured) U mCi{sup -1}. The former is identical to what was published in 1991 in the AAPM Task Group 32 report. The dose rate constant results, {Lambda}, are 1.12 (MCNP) and 1.10 (measured), cGy h{sup -1} U{sup -1}. The radial dose function, g(r), anisotropy function, F(r,{theta}), and anisotropy factor, {psi}{sub an}(r), are given. The anisotropy constant values are 0.973 (MCNP) and 0.994 (measured) and are consistent with both source geometry and the emitted photon energy.

  3. SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy

    SciTech Connect

    Li, Z; Jiang, S; Yang, Z; Bai, H; Zhang, X

    2014-06-01

    Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs group real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing

  4. Study of dose calculation on breast brachytherapy using prism TPS

    SciTech Connect

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  5. {beta}-Ray brachytherapy with {sup 106}Ru plaques for retinoblastoma

    SciTech Connect

    Schueler, Andreas O. . E-mail: andreas.schueler@uni-essen.de; Fluehs, Dirk; Anastassiou, Gerassimos; Jurklies, Christine; Neuhaeuser, Markus; Schilling, Harald; Bornfeld, Norbert; Sauerwein, Wolfgang

    2006-07-15

    Purpose: A retrospective analysis of 134 patients who received {sup 106}Ru brachytherapy for retinoblastomas (175 tumors in 140 eyes). Treatment and follow-up were analyzed with special emphasis on tumor control organ, preservation, and late complications. Results: Treated tumors had a mean height and diameter of 3.7 {+-} 1.4 mm and 5.0 {+-} 2.8 disk diameters, respectively. The radiation dose values were recalculated according to the calibration standard recently introduced by the National Institute of Standards and Technology. The recalculation revealed a mean applied dose of 419 Gy at the sclera (SD, 207 Gy) and 138 Gy (SD, 67 Gy) at the tumor apex. The 5-year tumor control rate was 94.4%. Tumor recurrence was more frequent in eyes with vitreous tumor cell seeding or fish-flesh regression. The estimated 5-year eye preservation rate was 86.5%. Previous treatment by brachytherapy or external beam radiotherapy, as well as a large tumor diameter, were significant factors for enucleation. The radiotherapy-induced complications after 5 years of follow-up were retinopathy (22%), optic neuropathy (21%), and cataract (17%). These complications were significantly more frequent after prior brachytherapy or external beam radiotherapy. Conclusion: Brachytherapy using {sup 106}Ru plaques is a highly efficient therapy with excellent local tumor control and an acceptable incidence of side effects.

  6. SU-E-J-263: Dosimetric Analysis On Breast Brachytherapy Based On Deformable Image Registration

    SciTech Connect

    Chen, T; Nie, K; Narra, V; Zou, J; Zhang, M; Khan, A; Haffty, B; Yue, N

    2014-06-01

    Purpose: To quantitatively compare and evaluate the dosimetry difference between breast brachytherapy protocols with different fractionation using deformable image registration. Methods: The accumulative dose distribution for multiple breast brachytherapy patients using four different applicators: Contura, Mammosite, Savi, and interstitial catheters, under two treatment protocols: 340cGy by 10 fractions in 5 days and 825cGy by 3 fractions in 2days has been reconstructed using a two stage deformable image registration approach. For all patients, daily CT was acquired with the same slice thickness (2.5mm). In the first stage, the daily CT images were rigidly registered to the initial planning CT using the registration module in Eclipse (Varian) to align the applicators. In the second stage, the tissues surrounding the applicator in the rigidly registered daily CT image were non-rigidly registered to the initial CT using a combination of image force and the local constraint that enforce zero normal motion on the surface of the applicator, using a software developed in house. We calculated the dose distribution in the daily CTs and deformed them using the final registration to convert into the image domain of the initial planning CT. The accumulative dose distributions were evaluated by dosimetry parameters including D90, V150 and V200, as well as DVH. Results: Dose reconstruction results showed that the two day treatment has a significant dosimetry improvement over the five day protocols. An average daily drop of D90 at 1.3% of the prescription dose has been observed on multiple brachytherapy patients. There is no significant difference on V150 and V200 between those two protocols. Conclusion: Brachytherapy with higher fractional dose and less fractions has an improved performance on being conformal to the dose distribution in the initial plan. Elongated brachytherapy treatments need to consider the dose uncertainty caused by the temporal changes of the soft tissue.

  7. Surface coating for prevention of metallic seed migration in tissues

    SciTech Connect

    Lee, Hyunseok; Park, Jong In; Lee, Won Seok; Park, Min; Son, Kwang-Jae; Bang, Young-bong; Choy, Young Bin E-mail: sye@snu.ac.kr; Ye, Sung-Joon E-mail: sye@snu.ac.kr

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  8. The importance of three-dimensional brachytherapy treatment planning for nasopharyngeal carcinoma.

    PubMed

    Leung, T W; Wong, V Y; Tung, S Y; Lui, C M; Tsang, W W; Sze, W K; O, S K

    1997-01-01

    High dose rate (HDR) intracavitary brachytherapy is now more frequently incorporated into treatment programmes for patients with persistent and recurrent nasopharyngeal carcinoma (NPC). However, many centres still employ two-dimensional (2-D) image reconstruction for applicators with a three-dimensional (3-D) orientation. In this study, we introduced the use of a mobile modified Nucletron reconstruction box inside the brachytherapy suite for image reconstruction and quality assurance. Three-dimensional reconstruction of the applicators' configurations proved possible and the dose distributions generated by the 2-D and 3-D image reconstructions could be compared. Thirty-one applications were included in this part of the analysis. The results showed that, based on the 2-D planning method, the reference doses were under-prescribed by 1%-10% in all except one patient, whose dose was over-prescribed by 3%. The evaluated doses to the floor of the sphenoid, which was shown to be significant for subsequent local control, was shown to be underestimated by up to 19% or overestimated by 18%, with an average of 5.9% dose underestimation. With this system, the reliability of the anchoring techniques was verified by posttherapy radiographs. Any catheter displacement of more than 1 mm was counted as a failure. Nine of the 43 verified applications were classified as failures, although six of nine catheter displacements measured < or = 2.5 mm. We recommend the routine use of a modified reconstruction box for 3-D image reconstruction for dose calculation and prescription in the treatment of NPC with HDR intracavitary brachytherapy. Quality assurance programmes should be included as an integral part of any HDR treatment; their importance cannot be overemphasized.

  9. A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy

    NASA Astrophysics Data System (ADS)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2013-03-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.

  10. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    SciTech Connect

    Reed, J. L. Micka, J. A.; Culberson, W. S.; DeWerd, L. A.; Rasmussen, B. E.; Davis, S. D.

    2014-12-15

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  11. Poster — Thur Eve — 77: Implanted Brachythearpy Seed Movement due to Transrectal Ultrasound Probe-Induced Prostate Deformation

    SciTech Connect

    Liu, D; Usmani, N; Sloboda, R; Meyer, T; Husain, S; Angyalfi, S; Kay, I

    2014-08-15

    The study investigated the movement of implanted brachytherapy seeds upon transrectal US probe removal, providing insight into the underlying prostate deformation and an estimate of the impact on prostate dosimetry. Implanted seed distributions, one obtained with the prostate under probe compression and another with the probe removed, were reconstructed using C-arm fluoroscopy imaging. The prostate, delineated on ultrasound images, was registered to the fluoroscopy images using seeds and needle tracks identified on ultrasound. A deformation tensor and shearing model was developed to correlate probe-induced seed movement with position. Changes in prostate TG-43 dosimetry were calculated. The model was used to infer the underlying prostate deformation and to estimate the location of the prostate surface in the absence of probe compression. Seed movement patterns upon probe removal reflected elastic decompression, lateral shearing, and rectal bending. Elastic decompression was characterized by expansion in the anterior-posterior direction and contraction in the superior-inferior and lateral directions. Lateral shearing resulted in large anterior movement for extra-prostatic seeds in the lateral peripheral region. Whole prostate D90 increased up to 8 Gy, mainly due to the small but systematic seed movement associated with elastic decompression. For selected patients, lateral shearing movement increased prostate D90 by 4 Gy, due to increased dose coverage in the anterior-lateral region at the expense of the posterior-lateral region. The effect of shearing movement on whole prostate D90 was small compared to elastic decompression due to the subset of peripheral seeds involved, but is expected to have greater consequences for local dose coverage.

  12. Observations on rotating needle insertions using a brachytherapy robot

    NASA Astrophysics Data System (ADS)

    Meltsner, M. A.; Ferrier, N. J.; Thomadsen, B. R.

    2007-09-01

    A robot designed for prostate brachytherapy implantations has the potential to greatly improve treatment success. Much of the research in robotic surgery focuses on measuring accuracy. However, there exist many factors that must be optimized before an analysis of needle placement accuracy can be determined. Some of these parameters include choice of the needle type, insertion velocity, usefulness of the rotating needle and rotation speed. These parameters may affect the force at which the needle interacts with the tissue. A reduction in force has been shown to decrease the compression of the prostate and potentially increase the accuracy of seed position. Rotating the needle as it is inserted may reduce frictional forces while increasing accuracy. However, needle rotations are considered to increase tissue damage due to the drilling nature of the insertion. We explore many of the factors involved in optimizing a brachytherapy robot, and the potential effects each parameter may have on the procedure. We also investigate the interaction of rotating needles in gel and suggest the rotate-cannula-only method of conical needle insertion to minimize any tissue damage while still maintaining the benefits of reduced force and increased accuracy.

  13. Conformal Brachytherapy Planning for Cervical Cancer Using Transabdominal Ultrasound

    SciTech Connect

    Van Dyk, Sylvia Narayan, Kailash; Fisher, Richard; Bernshaw, David

    2009-09-01

    Purpose: To determine if transabdominal ultrasound (US) can be used for conformal brachytherapy in cervical cancer patients. Materials and Methods: Seventy-one patients with locoregionally advanced cervix cancer treated with chemoradiation and brachytherapy were included in this study. The protocol consisted of US-assisted tandem insertion and conformal US-based planning. Orthogonal films for applicator reconstruction were also taken. A standard plan was modified to suit the US-based volume and treatment was delivered. The patient then underwent a magnetic resonance imaging (MRI) scan with the applicators in situ. Retrospectively, individual standard (STD), US, and MRI plans were extrapolated for five fractions and superimposed onto the two-dimensional sagittal MRI images for comparison. Doses to Point A, target volume, International Commission on Radiation Units and Measurements (ICRU) 38 bladder and rectal points, and individualized bowel points were calculated on original implant geometry on Plato for each planning method. Results: STD (high-dose-rate) plans reported higher doses to Point A, target volume, ICRU 38 bladder and rectal points, and individualized bowel point compared with US and MRI plans. There was a statistically significant difference between standard plans and image-based plans-STD vs. US, STD vs. MRI, and STD vs. Final-having consistent (p {<=} 0.001) respectively for target volume, Point A, ICRU 38 bladder, and bowel point. US plan assessed on two-dimensional MRI image was comparable for target volume (p = 0.11), rectal point (p = 0.8), and vaginal mucosa (p = 0.19). Local control was 90%. Late bowel morbidity (G3, G4) was <2%. Conclusions: Transabdominal ultrasound offers an accurate, quick, accessible, and cost-effective method of conformal brachytherapy planning.

  14. Enhancement of high intensity Iodine-125 brachytherapy by cis-platinum in a murine bladder tumor model

    SciTech Connect

    Nag, S.; Blatnik, A.; Soloway, M.

    1984-06-01

    The interaction of cis-platinum chemotherapy and high-intensity Iodine-125 brachytherapy was studied in C3H/He mice with MBT-2 tumors growing in the thigh. Brachytherapy was delivered by 3 Iodine-125 seeds of 10 mCi each implanted into the tumor. Ninety-six animals were randomly divided into 8 groups of 12 animals each. Each group was given either no treatment (control), cis-platinum alone or brachytherapy of 20, 40 or 50 Gy either alone or combined with cis-platinum. Cis-platinum 3 mg. per kg. was given every 5 days for 3 doses. The addition of cis-platinum enhanced the effects of Iodine-125 brachytherapy as shown by the end-points of tumor regrowth delay, local tumor control and median survival times. The sensitization enhancement ratio ranged from 1.2 to 1.9. Further experiments are to be conducted to study the normal tissue effect, therapeutic gain factor, effects of altering the time of administration of cis-platinum and the clinical use of high-intensity Iodine-125 for removable brachytherapy.

  15. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; O'Keeffe, S.

    2016-05-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is presented, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 250μm of a 500μm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for brachytherapy, in prostate cancer treatment, providing oncologists with real-time information of the radiation dose to the target area and/or nearby critical structures. The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to Iodine-125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  16. Differential dose contributions on total dose distribution of (125)I brachytherapy source.

    PubMed

    Camgöz, B; Yeğin, G; Kumru, M N

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 (125)I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically.

  17. Differential dose contributions on total dose distribution of (125)I brachytherapy source.

    PubMed

    Camgöz, B; Yeğin, G; Kumru, M N

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 (125)I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  18. SU-E-T-397: Include Organ Deformation Into Dose Calculation of Prostate Brachytherapy

    SciTech Connect

    Shao, Y; Shen, D; Chen, R; Wang, A; Lian, J

    2014-06-01

    Purpose: Prostate brachytherapy is an important curative treatment for patients with localized prostate cancer. In brachytherapy, rectal balloon is generally needed to adjust for unfavorable prostate position for seed placement. However, rectal balloon causes prostate deformation, which is not accounted for in dosimetric planning. Therefore, it is possible that brachytherapy dosimetry deviates significantly from initial plan when prostate returns to its non-deformed state (after procedure). The goal of this study is to develop a method to include prostate deformation into the treatment planning of brachytherapy dosimetry. Methods: We prospectively collected ultrasound images of prostate pre- and post- rectal balloon inflation from thirty five consecutive patients undergoing I-125 brachytherapy. Based on the cylinder coordinate systems, we learned the initial coordinate transformation parameters between the manual segmentations of both deformed and non-deformed prostates of each patient in training set. With the nearest-neighbor interpolation, we searched the best transformation between two coordinate systems to maximum the mutual information of deformed and non-deformed images. We then mapped the implanted seeds of five selected patients from the deformed prostate into non-deformed prostate. The seed position is marked on original pre-inflation US image and it is imported into VariSeed software for dose calculation. Results: The accuracy of image registration is 87.5% as quantified by Dice Index. The prostate coverage V100% dropped from 96.5±0.5% of prostate deformed plan to 91.9±2.6% (p<0.05) of non-deformed plan. The rectum V100% decreased from 0.44±0.26 cc to 0.10±0.18 cc (p<0.05). The dosimetry of the urethra showed mild change but not significant: V150% changed from 0.05±0.10 cc to 0.14±0.15 cc (p>0.05) and D1% changed from 212.9±37.3 Gy to 248.4±42.8 Gy (p>0.05). Conclusion: We have developed a deformable image registration method that allows

  19. Clinical implementation of a new electronic brachytherapy system for skin brachytherapy.

    PubMed

    Pons-Llanas, Olga; Ballester-Sánchez, Rosa; Celada-Álvarez, Francisco Javier; Candela-Juan, Cristian; García-Martínez, Teresa; Llavador-Ros, Margarita; Botella-Estrada, Rafael; Barker, Christopher A; Ballesta, Antonio; Tormo-Micó, Alejandro; Rodríguez, Silvia; Perez-Calatayud, Jose

    2015-01-01

    Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a radiation treatment modality that offers the most conformal option to patients. A new modality for skin brachytherapy is electronic brachytherapy. This involves the placement of a high dose rate X-ray source directly in a skin applicator close to the skin surface, and therefore combines the benefits of brachytherapy with those of low energy X-ray radiotherapy. The Esteya electronic brachytherapy system is specifically designed for skin surface brachytherapy procedures. The purpose of this manuscript is to describe the clinical implementation of the new Esteya electronic brachytherapy system, which may provide guidance for users of this system. The information covered includes patient selection, treatment planning (depth evaluation and margin determination), patient marking, and setup. The justification for the hypofractionated regimen is described and compared with others protocols in the literature. Quality assurance (QA) aspects including daily testing are also included. We emphasize that these are guidelines, and clinical judgment and experience must always prevail in the care of patients, as with any medical treatment. We conclude that clinical implementation of the Esteya brachytherapy system is simple for patients and providers, and should allow for precise and safe treatment of nonmelanoma skin cancers. PMID:25834587

  20. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  1. Dosimetric characterization of a {sup 131}Cs brachytherapy source by thermoluminescence dosimetry in liquid water

    SciTech Connect

    Tailor, Ramesh; Ibbott, Geoffrey; Lampe, Stephanie; Bivens Warren, Whitney; Tolani, Naresh

    2008-12-15

    Dosimetry measurements of a {sup 131}Cs brachytherapy source have been performed in liquid water employing thermoluminescence dosimeters. A search of the literature reveals that this is the first time a complete set of dosimetric parameters for a brachytherapy ''seed'' source has been measured in liquid water. This method avoids the medium correction uncertainties introduced by the use of water-equivalent plastic phantoms. To assure confidence in the results, four different sources were employed for each parameter measured, and measurements were performed multiple times. The measured dosimetric parameters presented here are based on the AAPM Task Group 43 formalism. The dose-rate constant measured in liquid water was (1.063{+-}0.023) cGy h{sup -1} U{sup -1} and was based on the air-kerma strength standard for this source established by the National Institute of Standards and Technology. Measured values for the 2D anisotropy function and the radial dose function are presented.

  2. Dosimetric Characteristics for Brachytherapy Sources

    SciTech Connect

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-05

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as {sup 60}Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  3. In vivo dosimetry in brachytherapy

    SciTech Connect

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E.; Kertzscher, Gustavo; Cygler, Joanna E.

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  4. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  5. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of...

  6. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  7. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of...

  8. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  9. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  10. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  11. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  12. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  13. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  14. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  15. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  16. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of...

  17. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  18. Focal partial salvage low-dose-rate brachytherapy for local recurrent prostate cancer after permanent prostate brachytherapy with a review of the literature

    PubMed Central

    Wakumoto, Yoshiaki; Yamaguchi, Nanae; Horie, Shigeo; Sasai, Keisuke

    2016-01-01

    Purpose To investigate the treatment results for focal partial salvage re-implantation against local recurrence after permanent prostate brachytherapy. Material and methods Between January 2010 and September 2015, 12 patients were treated with focal partial salvage re-implantation for local recurrence after low-dose-rate brachytherapy using 125I seeds. The focal clinical target volume (F-CTV) was delineated on positive biopsy areas in a mapping biopsy, combining the cold spots on the post-implant dosimetry for initial brachytherapy. The F-CTV was expanded by 3 mm to create the planning target volume (PTV) as a margin to compensate for uncertainties in image registration and treatment delivery. The prescribed dose to the PTV was 145 Gy. The characteristics and biochemical disease-free survival (BdFS) rates were analyzed. Genitourinary (GU) and gastrointestinal (GI) toxicities were evaluated using the Common Terminology Criteria for Adverse Events version 4. Results The median prostate-specific antigen (PSA) level at re-implantation was 4.09 ng/ml (range: 2.91-8.24 ng/ml). The median follow-up time was 56 months (range: 6-74 months). The median RD2cc and UD10 were 63 Gy and 159 Gy, respectively. The 4-year BdFS rate was 78%, which included non-responders. Biochemical recurrence occurred in two patients after 7 and 31 months, respectively. The former was treated with hormonal therapy after biochemical failure, and the latter underwent watchful waiting (PSA at the last follow-up of 53 months: 7.3 ng/ml) at the patient's request. No patients had grade 3 GU/GI toxicities or died after salvage re-implantation. Conclusions The partial salvage low-dose-rate brachytherapy used to treat local recurrence after permanent prostate brachytherapy is well-tolerated, with high biochemical response rates. This treatment can be not only a method to delay chemical castration but also a curative treatment option in cases of local recurrence of prostate carcinoma after seed implantation

  19. Tissue modeling schemes in low energy breast brachytherapy.

    PubMed

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-21

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D(90) metric is used for the analysis and is based on the dose to water (D(90(w,m))). D(90(m,m)) is also reported for comparison to D(90(w,m)). The two-month post-implant D(90(w,m)) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D(90(w,m)) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this

  20. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images.

    PubMed

    Mashouf, S; Lechtman, E; Lai, P; Keller, B M; Karotki, A; Beachey, D J; Pignol, J P

    2014-09-21

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 [Formula: see text] formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  1. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  2. Data fusion for planning target volume and isodose prediction in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2015-03-01

    In low-dose prostate brachytherapy treatment, a large number of radioactive seeds is implanted in and adjacent to the prostate gland. Planning of this treatment involves the determination of a Planning Target Volume (PTV), followed by defining the optimal number of seeds, needles and their coordinates for implantation. The two major planning tasks, i.e. PTV determination and seed definition, are associated with inter- and intra-expert variability. Moreover, since these two steps are performed in sequence, the variability is accumulated in the overall treatment plan. In this paper, we introduce a model based on a data fusion technique that enables joint determination of PTV and the minimum Prescribed Isodose (mPD) map. The model captures the correlation between different information modalities consisting of transrectal ultrasound (TRUS) volumes, PTV and isodose contours. We take advantage of joint Independent Component Analysis (jICA) as a linear decomposition technique to obtain a set of joint components that optimally describe such correlation. We perform a component stability analysis to generate a model with stable parameters that predicts the PTV and isodose contours solely based on a new patient TRUS volume. We propose a framework for both modeling and prediction processes and evaluate it on a dataset of 60 brachytherapy treatment records. We show PTV prediction error of 10:02+/-4:5% and the V100 isodose overlap of 97+/-3:55% with respect to the clinical gold standard.

  3. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry

    SciTech Connect

    Liu, Derek Sloboda, Ron S.

    2014-05-15

    Purpose: Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. Methods: The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Results: Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. Conclusions: A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  4. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy.

    PubMed

    Bakht, Mohamadreza K; Sadeghi, Mahdi

    2011-10-01

    Radionuclides of rare earth elements are gaining importance as emerging therapeutic agents in nuclear medicine. β(-)-particle emitter 142Pr [T (1/2) = 19.12 h, E(-)β = 2.162 MeV (96.3%), Eγ = 1575 keV (3.7%)] is one of the praseodymium-141 (100% abundant) radioisotopes. Production routes and therapy aspects of 142Pr will be reviewed in this paper. However, 142Pr produces via 141Pr(n, γ) 142Pr reaction by irradiation in a low-fluence reactor; 142Pr cyclotron produced, could be achievable. 142Pr due to its high β(-)-emission and low specific gamma γ-emission could not only be a therapeutic radionuclide, but also a suitable radionuclide in order for biodistribution studies. Internal radiotherapy using 142Pr can be classified into two sub-categories: (1) unsealed source therapy (UST), (2) brachytherapy. UST via 142Pr-HA and 142Pr-DTPA in order for radiosynovectomy have been proposed. In addition, 142Pr Glass seeds and 142Pr microspheres have been utilized for interstitial brachytherapy of prostate cancer and intraarterial brachytherapy of arteriovenous malformation, respectively.

  5. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    SciTech Connect

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-04-15

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters ({alpha}=0.15 Gy{sup -1} and {alpha}/{beta}=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD{sub 2}) with respect to three effects: edema, RBE, and dose heterogeneity for {sup 125}I and {sup 103}Pd implants. The EUD{sub 2} analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V{sub 100} (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D{sub 90} (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for {sup 125}I and {sup 103}Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for {sup 125}I and 1.3-1.6 for {sup 103}Pd implants. These RBE values are consistent with the RBE data published in the

  6. Complications associated with preoperative radiation therapy and Iodine-125 brachytherapy for localized prostatic carcinoma

    SciTech Connect

    Flanigan, R.C.; Patterson, J.; Mendiondo, O.A.; Gee, W.F.; Lucas, B.A.; McRoberts, J.W.

    1983-08-01

    Twenty-five consecutive patients with localized adenocarcinoma of the prostate treated with 1,050 rad preoperative radiation therapy and Iodine-125 seed brachytherapy are reviewed. Significant long-term postoperative complications included radiation cystitis (12%), radiation proctitis (4%), genital and leg edema (12%), stress incontinence (8%), total incontinence (4%), and impotence (26%). Complications occurred in 75 per cent of patients who received additional postoperative radiation. Improved staging with CT scan, lymphangiography, and Chiba needle biopsy of any possibly abnormal lymph nodes provided excellent preoperative staging with only 1 patient (6%) upstaged at surgery to Stage D1.

  7. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4.

    PubMed

    Pope, D J; Cutajar, D L; George, S P; Guatelli, S; Bucci, J A; Enari, K E; Miller, S; Siegele, R; Rosenfeld, A B

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences.Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  8. Tracking brachytherapy sources using emission imaging with one flat panel detector

    SciTech Connect

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-04-15

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  9. Investigating the dosimetric and tumor control consequences of prostate seed loss and migration

    SciTech Connect

    Knaup, Courtney; Mavroidis, Panayiotis; Esquivel, Carlos; Stathakis, Sotirios; Swanson, Gregory; Baltas, Dimos; Papanikolaou, Nikos

    2012-06-15

    Purpose: Low dose-rate brachytherapy is commonly used to treat prostate cancer. However, once implanted, the seeds are vulnerable to loss and movement. The goal of this work is to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. Methods: Five patients were used in this study. For each patient three treatment plans were created using Iodine-125, Palladium-103, and Cesium-131 seeds. The three seeds that were closest to the urethra were identified and modeled as the seeds lost through the urethra. The three seeds closest to the exterior of prostatic capsule were identified and modeled as those lost from the prostate periphery. The seed locations and organ contours were exported from Prowess and used by in-house software to perform the dosimetric and radiobiological evaluation. Seed loss was simulated by simultaneously removing 1, 2, or 3 seeds near the urethra 0, 2, or 4 days after the implant or removing seeds near the exterior of the prostate 14, 21, or 28 days after the implant. Results: Loss of one, two or three seeds through the urethra results in a D{sub 90} reduction of 2%, 5%, and 7% loss, respectively. Due to delayed loss of peripheral seeds, the dosimetric effects are less severe than for loss through the urethra. However, while the dose reduction is modest for multiple lost seeds, the reduction in tumor control probability was minimal. Conclusions: The goal of this work was to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. The results presented show that loss of multiple seeds can cause a substantial reduction of D{sub 90} coverage. However, for the patients in this study the dose reduction was not seen to reduce tumor control probability.

  10. The American Brachytherapy Society Treatment Recommendations for Locally Advanced Carcinoma of the Cervix Part II: High Dose-Rate Brachytherapy

    PubMed Central

    Viswanathan, Akila N.; Beriwal, Sushil; De Los Santos, Jennifer; Demanes, D. Jeffrey; Gaffney, David; Hansen, Jorgen; Jones, Ellen; Kirisits, Christian; Thomadsen, Bruce; Erickson, Beth

    2012-01-01

    Purpose This report presents the 2011 update to the American Brachytherapy Society (ABS) high-dose-rate (HDR) brachytherapy guidelines for locally advanced cervical cancer. Methods Members of the American Brachytherapy Society (ABS) with expertise in cervical cancer brachytherapy formulated updated guidelines for HDR brachytherapy using tandem and ring, ovoids, cylinder or interstitial applicators for locally advanced cervical cancer were revised based on medical evidence in the literature and input of clinical experts in gynecologic brachytherapy. Results The Cervical Cancer Committee for Guideline Development affirms the essential curative role of tandem-based brachytherapy in the management of locally advanced cervical cancer. Proper applicator selection, insertion, and imaging are fundamental aspects of the procedure. Three-dimensional imaging with magnetic resonance or computed tomography or radiographic imaging may be used for treatment planning. Dosimetry must be performed after each insertion prior to treatment delivery. Applicator placement, dose specification and dose fractionation must be documented, quality assurance measures must be performed, and follow-up information must be obtained. A variety of dose/fractionation schedules and methods for integrating brachytherapy with external-beam radiation exist. The recommended tumor dose in 2 Gray (Gy) per fraction radiobiologic equivalence (EQD2) is 80–90 Gy, depending on tumor size at the time of brachytherapy. Dose limits for normal tissues are discussed. Conclusion These guidelines update those of 2000 and provide a comprehensive description of HDR cervical cancer brachytherapy in 2011. PMID:22265437

  11. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    SciTech Connect

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.

  12. Is there any place for LDR brachytherapy for head and neck carcinomas in HDR era?

    PubMed Central

    2009-01-01

    In Poland, the classical LDR brachytherapy for head and neck carcinomas with Ir-192 wires or hairpins has completely disappeared some time ago after 30 years of successful clinical use. Can this technique be fully and safely replaced by HDR or PDR application? This option seems attractive because of new possibilities of 3D reconstruction and computer real-time treatment planning and optimization. However, in my opinion, long time is needed to get a clinical and scientific experience that has been accumulated for decades with the use of LDR technique.

  13. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  14. Brachytherapy in pelvic malignancies: a review for radiologists.

    PubMed

    Vicens, Rafael A; Rodriguez, Joshua; Sheplan, Lawrence; Mayo, Cody; Mayo, Lauren; Jensen, Corey

    2015-10-01

    Brachytherapy, also known as sealed source or internal radiation therapy, involves placement of a radioactive source immediately adjacent to or within tumor, thus enabling delivery of a localized high dose of radiation. Compared with external beam radiation which must first pass through non-target tissues, brachytherapy results in less radiation dose to normal tissues. In the past decade, brachytherapy use has markedly increased, thus radiologists are encountering brachytherapy devices and their associated post-treatment changes to increasing degree. This review will present a variety of brachytherapy devices that radiologists may encounter during diagnostic pelvic imaging with a focus on prostate and gynecologic malignancies. The reader will become familiar with the function, correct position, and potential complications of brachytherapy devices in an effort to improve diagnostic reporting and communication with clinicians.

  15. A Phase III Randomized Trial of the Timing of Meloxicam With Iodine-125 Prostate Brachytherapy

    SciTech Connect

    Crook, Juanita; Patil, Nikhilesh; Wallace, Kris; Borg, Jette; Zhou, David; Ma, Clement; Pond, Greg

    2010-06-01

    Purpose: Nonsteroidal anti-inflammatory medication is used to reduce prostate edema and urinary symptoms following prostate brachytherapy. We hypothesized that a cyclooxygenase-2 (COX-2) inhibitor regimen started 1 week prior to seed implant might diminish the inflammatory response, thus reducing edema, retention rates, and symptom severity. Methods and Materials: From March 2004 to February 2008, 316 men consented to an institutional review board-approved randomized study of a 4-week course of meloxicam, 7.5 mg orally twice per day, starting either on the day of implant or 1 week prior to implant. Brachytherapy was performed using iodine-125 seeds and was preplanned and performed under transrectal ultrasound (TRUS) and fluoroscopic guidance. Prostate volume obtained by MR imaging at 1 month was compared to baseline prostate volume obtained by TRUS planimetry and expressed as an edema factor. The trial endpoints were prostate edema at 1 month, International Prostate Symptom Score (IPSS) questionnaire results at 1 and 3 months, and any need for catheterization. Results: Results for 300 men were analyzed. Median age was 61 (range, 45-79 years), and median TRUS prostate volume was 35.7 cc (range, 18.1-69.5 cc). Median IPSS at baseline was 5 (range, 0-24) and was 15 at 1 month, 16 at 3 months, and 10 at 6 months. Catheterization was required for 7% of patients (6.2% day 0 arm vs. 7.9% day -7 arm; p = 0.65). The median edema factor at 1 month was 1.02 (range, 0.73-1.7). 1.01 day 0 arm vs. 1.05 day -7 arm. Baseline prostate volume remained the primary predictor of postimplant urinary retention. Conclusions: Starting meloxicam 1 week prior to brachytherapy compared to starting immediately after the procedure did not reduce 1-month edema, improve IPSSs at 1 or 3 months, or reduce the need for catheterization.

  16. Fast prostate segmentation for brachytherapy based on joint fusion of images and labels

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2014-03-01

    Brachytherapy as one of the treatment methods for prostate cancer takes place by implantation of radioactive seeds inside the gland. The standard of care for this treatment procedure is to acquire transrectal ultrasound images of the prostate which are segmented in order to plan the appropriate seed placement. The segmentation process is usually performed either manually or semi-automatically and is associated with subjective errors because the prostate visibility is limited in ultrasound images. The current segmentation process also limits the possibility of intra-operative delineation of the prostate to perform real-time dosimetry. In this paper, we propose a computationally inexpensive and fully automatic segmentation approach that takes advantage of previously segmented images to form a joint space of images and their segmentations. We utilize joint Independent Component Analysis method to generate a model which is further employed to produce a probability map of the target segmentation. We evaluate this approach on the transrectal ultrasound volume images of 60 patients using a leave-one-out cross-validation approach. The results are compared with the manually segmented prostate contours that were used by clinicians to plan brachytherapy procedures. We show that the proposed approach is fast with comparable accuracy and precision to those found in previous studies on TRUS segmentation.

  17. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  18. Effects of insertion speed and trocar stiffness on the accuracy of needle position for brachytherapy

    SciTech Connect

    McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.; McLaughlin, Patrick W.; Shih, Albert J.

    2012-04-15

    Purpose: In prostate brachytherapy, accurate positioning of the needle tip to place radioactive seeds at its target site is critical for successful radiation treatment. During the procedure, needle deflection leads to seed misplacement and suboptimal radiation dose to cancerous cells. In practice, radiation oncologists commonly use high-speed hand needle insertion to minimize displacement of the prostate as well as the needle deflection. Effects of speed during needle insertion and stiffness of trocar (a solid rod inside the hollow cannula) on needle deflection are studied. Methods: Needle insertion experiments into phantom were performed using a 2{sup 2} factorial design (2 parameters at 2 levels), with each condition having replicates. Analysis of the deflection data included calculating the average, standard deviation, and analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: The stiffer tungsten carbide trocar is effective in reducing the average and standard deviation of needle deflection. The fast insertion speed together with the stiffer trocar generated the smallest average and standard deviation for needle deflection for almost all cases. Conclusions: The combination of stiff tungsten carbide trocar and fast needle insertion speed are important to decreasing needle deflection. The knowledge gained from this study can be used to improve the accuracy of needle insertion during brachytherapy procedures.

  19. Monte Carlo dosimetry for {sup 125}I and {sup 103}Pd eye plaque brachytherapy

    SciTech Connect

    Thomson, R. M.; Taylor, R. E. P.; Rogers, D. W. O.

    2008-12-15

    A Monte Carlo study of dosimetry for eye plaque brachytherapy is performed. BrachyDose, an EGSnrc user code which makes use of Yegin's multi-geometry package, is used to fully model {sup 125}I (model 6711) and {sup 103}Pd (model 200) brachytherapy seeds and the standardized plaques of the Collaborative Ocular Melanoma Study (COMS). Three-dimensional dose distributions in the eye region are obtained. In general, dose to water is scored; however, the implications of replacing water with eye tissues are explored. The effect of the gold alloy (Modulay) backing is investigated and the dose is found to be sensitive to the elemental composition of the backing. The presence of the silicone polymer (Silastic) seed carrier results in substantial dose decreases relative to water, particularly for {sup 103}Pd. For a 20 mm plaque with a Modulay backing and Silastic insert, fully loaded with 24 seeds, the dose decrease relative to water is of the order of 14% for {sup 125}I and 20% for {sup 103}Pd at a distance of 1 cm from the inner sclera along the plaque's central axis. For the configurations of seeds used in COMS plaques, interseed attenuation is a small effect within the eye region. The introduction of an air interface results in a dose reduction in its vicinity which depends on the plaque's position within the eye and the radionuclide. Introducing bone in the eye's vicinity also causes dose reductions. The dose distributions in the eye for the two different radionuclides are compared and, for the same prescription dose, {sup 103}Pd generally offers a lower dose to critical normal structures. BrachyDose is sufficiently fast to allow full Monte Carlo dose calculations for routine clinical treatment planning.

  20. Sequential Comparison of Seed Loss and Prostate Dosimetry of Stranded Seeds With Loose Seeds in {sup 125}I Permanent Implant for Low-Risk Prostate Cancer

    SciTech Connect

    Saibishkumar, Elantholi P.; Borg, Jette; Yeung, Ivan; Cummins-Holder, Cheryl; Landon, Angela; Crook, Juanita

    2009-01-01

    Purpose: To compare stranded seeds (SSs) with loose seeds (LSs) in terms of prostate edema, dosimetry, and seed loss after {sup 125}I brachytherapy. Methods and Materials: Two prospective cohorts of 20 men participated in an institutional review board-approved protocols to study postimplant prostate edema and its effect on dosimetry. The LS cohort underwent brachytherapy between September 2002 and July 2003 and the SS cohort between April 2006 and January 2007. Both cohorts were evaluated sequentially using computed tomography-magnetic resonance imaging fusion-based dosimetry on Days 0, 7, and 30. No hormonal therapy or supplemental beam radiotherapy was used. Results: Prostate edema was less in the SS cohort at all points (p = NS). On Day 0, all the prostate dosimetric factors were greater in the LS group than in the SS group (p = 0.003). However, by Days 7 and 30, the dosimetry was similar between the two cohorts. No seeds migrated to the lung in the SS cohort compared with a total of five seeds in 4 patients in the LS cohort. However, the overall seed loss was greater in the SS cohort (24 seeds in 6 patients; 1.1% of total vs. 0.6% for LSs), with most seeds lost through urine (22 seeds in 5 patients). Conclusion: Despite elimination of venous seed migration, greater seed loss was observed with SSs compared with LSs, with the primary site of loss being the urinary tract. Modification of the technique might be necessary to minimize this. Prostate dosimetry on Days 7 and 30 was similar between the SS and LS cohorts.

  1. Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

    PubMed Central

    2014-01-01

    Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients. PMID:25834586

  2. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  3. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  4. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  5. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  6. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  7. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  8. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  9. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  10. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  11. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  12. The evolution of brachytherapy treatment planning.

    PubMed

    Rivard, Mark J; Venselaar, Jack L M; Beaulieu, Luc

    2009-06-01

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  13. Rotating-shield brachytherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Yang, Wenjun; Kim, Yusung; Wu, Xiaodong; Song, Qi; Liu, Yunlong; Bhatia, Sudershan K.; Sun, Wenqing; Flynn, Ryan T.

    2013-06-01

    In this treatment planning study, the potential benefits of a rotating shield brachytherapy (RSBT) technique based on a partially-shielded electronic brachytherapy source were assessed for treating cervical cancer. Conventional intracavitary brachytherapy (ICBT), intracavitary plus supplementary interstitial (IS+ICBT), and RSBT treatment plans for azimuthal emission angles of 180° (RSBT-180) and 45° (RSBT-45) were generated for five patients. For each patient, high-risk clinical target volume (HR-CTV) equivalent dose in 2 Gy fractions (EQD2) (α/β = 10 Gy) was escalated until bladder, rectum, or sigmoid colon tolerance EQD2 values were reached. External beam radiotherapy dose (1.8 Gy × 25) was accounted for, and brachytherapy was assumed to have been delivered in 5 fractions. IS+ICBT provided a greater HR-CTV D90 (minimum EQD2 to the hottest 90%) than ICBT. D90 was greater for RSBT-45 than IS+ICBT for all five patients, and greater for RSBT-180 than IS+ICBT for two patients. When the RSBT-45/180 plan with the lowest HR-CTV D90 that was greater than the D90 the ICBT or IS+ICBT plan was selected, the average (range) of D90 increases for RSBT over ICBT and IS+ICBT were 16.2 (6.3-27.2)and 8.5 (0.03-20.16) Gy, respectively. The average (range) treatment time increase per fraction of RSBT was 34.56 (3.68-70.41) min over ICBT and 34.59 (3.57-70.13) min over IS+ICBT. RSBT can increase D90 over ICBT and IS+ICBT without compromising organ-at-risk sparing. The D90 and treatment time improvements from RSBT depend on the patient and shield emission angle.

  14. Erectile Function Durability Following Permanent Prostate Brachytherapy

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Kurko, Brian S.; Anderson, Richard; Lief, Jonathan H.

    2009-11-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 >= 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  15. SU-E-T-55: Biological Equivalent Dose (BED) Comparison Between Permanent Interstitial Brachytherapy and Conventional External Beam Radiotherapy for Prostate Cancer

    SciTech Connect

    Liu, X; Rahimian, J; Cosmatos, H; Goy, B; Heywood, C; Qian, Y

    2014-06-01

    Purpose: The goal of this research is to calculate and compare the Biological Equivalent Dose (BED) between permanent prostate Iodine-125 implant brachytherapy as monotherapy with the BED of conventional external beam radiation therapy (EBRT). Methods: A retrospective study of 605 patients treated with Iodine-125 seed implant was performed in which physician A treated 274 patients and physician B treated 331 patients. All the Brachytherapy treatment plans were created using VariSeed 8 planning system. The Iodine-125 seed source activities and loading patterns varied slightly between the two physicians. The prescription dose is 145 Gy to PTV for each patient. The BED and Tumor Control Probability (TCP) were calculated based on the TG 137 formulas. The BED for conventional EBRT of the prostate given in our institution in 2Gy per fraction for 38 fractions was calculated and compared. Results: Physician A treated 274 patients with an average BED of 123.92±0.87 Gy and an average TCP of 99.20%; Physician B treated 331 patients with an average BED of 124.87±1.12 Gy and an average TCP of 99.30%. There are no statistically significant differences (T-Test) between the BED and TCP values calculated for these two group patients.The BED of the patients undergoing conventional EBRT is calculated to be 126.92Gy. The BED of the patients treated with permanent implant brachytherapy and EBRT are comparable. Our BED and TCP values are higher than the reported values by TG 137 due to higher Iodine-125 seed activity used in our institution. Conclusion: We calculated the BED,a surrogate of the biological response to a permanent prostate brachytherapy using TG 137 formulas and recommendation. The TCP of better than 99% is calculated for these patients. A clinical outcome study of these patients correlating the BED and TCP values with PSA and Gleason Levels as well as patient survival is warranted.

  16. Determination of the prescription dose for biradionuclide permanent prostate brachytherapy

    SciTech Connect

    Nuttens, V. E.; Lucas, S.

    2008-12-15

    A model based on the linear quadratic model that has been corrected for repopulation, sublethal cell damage repair, and RBE effect has been used to determine the prescription dose for prostate permanent brachytherapy using seeds loaded with a mixture of {sup 103}Pd and {sup 125}I or a mixture of {sup 103}Pd and {sup 131}Cs. The prescription dose was determined by comparing the tumor cell survival fractions between the considered biradionuclide seed implant and one monoradionuclide seed implant chosen from {sup 103}Pd, {sup 125}I, and {sup 131}Cs. Prostate edema is included in the model. The influence of the value of the radiobiological parameters and RBE were also investigated. Two mixtures of radionuclides were considered: {sup 103}Pd{sub 0.75}-{sup 125}I{sub 0.25} and {sup 103}Pd{sub 0.25}-{sup 131}Cs{sub 0.75}, where the subscripts indicate the fractions of total initial internal activity in the biradionuclide seed. These fractions were selected in order to obtain a dose distribution that lies between that of {sup 103}Pd and {sup 125}I/{sup 131}Cs. As expected, the computed prescription dose values are dependent on the model parameters (edema half-life and magnitude, radiobiogical parameters, and RBE). The radionuclide used as a benchmark also has a strong impact on the derived prescribed dose. The large uncertainties in the radiobiological parameters and RBE values produce big errors in the computed prescribed dose. Averaged over the range of all the parameters and depending on the radionuclide used as a benchmark (in subscript), the derived prescription dose for the first mixture (PdI) would be: D{sub Pd}{sup PdI}=142{sub -16}{sup +15} Gy and D{sub I}{sup PdI}=142{sub -8}{sup +6} Gy; and D{sub Pd}{sup PdCs}=128{sub -13}{sup +13} Gy and D{sub Cs}{sup PdCs}=115{sub -7}{sup +6} Gy for the PdCs mixture. The uncertainties could be reduced if the radiobiological parameters and RBE value were known more accurately. However, as edema characteristics are patient

  17. Decline in urinary retention incidence in 805 patients after prostate brachytherapy: The effect of learning curve?

    SciTech Connect

    Keyes, Mira . E-mail: mkeyes@bccancer.bc.ca; Schellenberg, Devin; Moravan, Veronika M.Sc.; McKenzie, Michael; Agranovich, Alexander; Pickles, Tom; Wu, Jonn; Liu, Mitchell; Bucci, Joseph M.B.B.S.; Morris, W. James

    2006-03-01

    Purpose: To evaluate the incidence and factors predictive of acute urinary retention (AUR) in 805 consecutive patients treated with prostate brachytherapy monotherapy and to examine the possible effect of a learning curve. Methods and Materials: Between July 1998 and November 2002, 805 patients were treated with prostate brachytherapy. Low-risk patients (Gleason Score (GS) {<=}6; prostate specific antigen (PSA) {<=}10, and {<=} T2b [UICC 1997]) received implant alone. Patients with prostate volume of 50 cc or more, GS = 7, or PSA = 10 to 15 received 6 months of androgen suppression (AS) with brachytherapy. Patient, treatment, and dosimetric factors examined include baseline prostate symptom score (IPSS), diabetes, vascular disease, PSA, Gleason score, clinical stage, AS, ultrasound planning target volume (PUTV), postimplant prostate volume (obtained with 'Day 30' postimplant CT), CT:PUTV ratio (surrogate for postimplant edema), number of seeds, number of needles, number of seeds per needle, dosimetric parameters (V100, V150, and D90), date of implant (learning curve), and implanting oncologists. Univariate and multivariate analyses were carried out. Results: Acute urinary retention in the first 200 patients was 17% vs. 6.3% in the most recently treated 200 patients (p = 0.002). Overall AUR was 12.7%, and prolonged urinary obstruction incidence (>20 days) was 5%. On multivariate analysis, factors predictive of any AUR include baseline IPSS (p = < 0.004), CT:PUTV ratio (p = < 0.001), PUTV (p = < 0.001), and implant order (learning curve) (p = 0.001). Factors predictive for 'prolonged' catheterization (>20 days) on multivariate analysis include IPSS (p < 0.01), number of needles (p < 0.001), diabetes mellitus (p = 0.048), and CT:PUTV ratio (p < 0.001) Conclusion: Over the years, our AUR rate has fallen significantly (from 17% to 6.3%). On multivariate analysis, highly significant factors include IPSS, PUTV, CT:PUTV ratio (i.e., degree of prostate edema), and order of

  18. Boost in radiotherapy: external beam sunset, brachytherapy sunrise

    PubMed Central

    2009-01-01

    Radiobiological limitations for dose escalation in external radiotherapy are presented. Biological and clinical concept of brachytherapy boost to increase treatment efficacy is discussed, and different methods are compared. Oncentra Prostate 3D conformal real-time ultrasound-guided brachytherapy is presented as a solution for boost or sole therapy.

  19. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  20. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  1. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  2. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  3. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  4. Ultrasound use in gynecologic brachytherapy: Time to focus the beam.

    PubMed

    van Dyk, Sylvia; Schneider, Michal; Kondalsamy-Chennakesavan, Srinivas; Bernshaw, David; Narayan, Kailash

    2015-01-01

    There is wide disparity in the practice of brachytherapy for cervical cancer around the world. Although select well-resourced centers advocate use of MRI for all insertions, planar X-ray imaging remains the most commonly used imaging modality to assess intracavitary implants, particularly where the burden of cervical cancer is high. Incorporating soft tissue imaging into brachytherapy programs has been shown to improve the technical accuracy of implants, which in turn has led to improved local control and decreased toxicity. These improvements have a positive effect on the quality of life of patients undergoing brachytherapy for cervical cancer. Finding an accessible soft tissue imaging modality is essential to enable these improvements to be available to all patients. A modality that has good soft tissue imaging capabilities, is widely available, portable, and economical, is needed. Ultrasound fulfils these requirements and offers the potential of soft tissue image guidance to a much wider brachytherapy community. Although use of ultrasound is the standard of care in brachytherapy for prostate cancer, it only seems to have limited uptake in gynecologic brachytherapy. This article reviews the role of ultrasound in gynecologic brachytherapy and highlights the potential applications for use in brachytherapy for cervical cancer.

  5. Evaluation of the MIM Symphony treatment planning system for low-dose-rate- prostate brachytherapy.

    PubMed

    Dhanesar, Sandeep K; Lim, Tze Y; Du, Weiliang; Bruno, Teresa L; Frank, Steven J; Kudchadker, Rajat J

    2015-09-08

    MIM Symphony is a recently introduced low-dose-rate prostate brachytherapy treatment planning system (TPS). We evaluated the dosimetric and planning accuracy of this new TPS compared to the universally used VariSeed TPS. For dosimetric evaluation of the MIM Symphony version 5.4 TPS, we compared dose calculations from the MIM Symphony TPS with the formalism recommended by the American Association of Physicists in Medicine Task Group 43 report (TG-43) and those generated by the VariSeed version 8.0 TPS for iodine-125 (I-125; Models 6711 and IAI-125A), palladium-103 (Pd-103; Model 200), and cesium-131 (Cs-131; Model Cs-1). Validation was performed for both line source and point source approximations. As part of the treatment planning validation, first a QA phantom (CIRS Brachytherapy QA Phantom Model 045 SN#D7210-3) containing three ellipsoid objects with certified volumes was scanned in order to check the volume accuracy of the contoured structures in MIM Symphony. Then the DICOM data containing 100 patient plans from the VariSeed TPS were imported into the MIM Symphony TPS. The 100 plans included 25 each of I-125 pre-implant plans, Pd-103 pre-implant plans, I-125 Day 30 plans (i.e., from 1 month after implantation), and Pd-103 Day 30 plans. The dosimetric parameters (including prostate volume, prostate D90 values, and rectum V100 values) of the 100 plans were calculated independently on the two TPSs. Other TPS tests that were done included verification of source input and geometrical accuracy, data transfer between different planning systems, text printout, 2D dose plots, DVH printout, and template grid accuracy. According to the line source formalism, the dosimetric results between the MIM Symphony TPS and TG-43 were within 0.5% (0.02 Gy) for r > 1 cm. In the line source approximation validation, MIM Symphony TPS values agreed with VariSeed TPS values to within 0.5% (0.09 Gy) for r > 1 cm. Similarly, in point source approximation validation, the MIM Symphony values

  6. Evaluation of the MIM Symphony treatment planning system for low-dose-rate- prostate brachytherapy.

    PubMed

    Dhanesar, Sandeep K; Lim, Tze Y; Du, Weiliang; Bruno, Teresa L; Frank, Steven J; Kudchadker, Rajat J

    2015-01-01

    MIM Symphony is a recently introduced low-dose-rate prostate brachytherapy treatment planning system (TPS). We evaluated the dosimetric and planning accuracy of this new TPS compared to the universally used VariSeed TPS. For dosimetric evaluation of the MIM Symphony version 5.4 TPS, we compared dose calculations from the MIM Symphony TPS with the formalism recommended by the American Association of Physicists in Medicine Task Group 43 report (TG-43) and those generated by the VariSeed version 8.0 TPS for iodine-125 (I-125; Models 6711 and IAI-125A), palladium-103 (Pd-103; Model 200), and cesium-131 (Cs-131; Model Cs-1). Validation was performed for both line source and point source approximations. As part of the treatment planning validation, first a QA phantom (CIRS Brachytherapy QA Phantom Model 045 SN#D7210-3) containing three ellipsoid objects with certified volumes was scanned in order to check the volume accuracy of the contoured structures in MIM Symphony. Then the DICOM data containing 100 patient plans from the VariSeed TPS were imported into the MIM Symphony TPS. The 100 plans included 25 each of I-125 pre-implant plans, Pd-103 pre-implant plans, I-125 Day 30 plans (i.e., from 1 month after implantation), and Pd-103 Day 30 plans. The dosimetric parameters (including prostate volume, prostate D90 values, and rectum V100 values) of the 100 plans were calculated independently on the two TPSs. Other TPS tests that were done included verification of source input and geometrical accuracy, data transfer between different planning systems, text printout, 2D dose plots, DVH printout, and template grid accuracy. According to the line source formalism, the dosimetric results between the MIM Symphony TPS and TG-43 were within 0.5% (0.02 Gy) for r > 1 cm. In the line source approximation validation, MIM Symphony TPS values agreed with VariSeed TPS values to within 0.5% (0.09 Gy) for r > 1 cm. Similarly, in point source approximation validation, the MIM Symphony values

  7. Intraoperative Ultrasound-Fluoroscopy Fusion can Enhance Prostate Brachytherapy Quality

    SciTech Connect

    Orio, Peter F.; Tutar, Ismail B.; Narayanan, Sreeram; Arthurs, Sandra; Cho, Paul S.; Kim, Yongmin; Merrick, Gregory; Wallner, Kent E.

    2007-09-01

    Purpose: To evaluate a transrectal ultrasound (TRUS)-fluoroscopy fusion-based intraoperative dosimetry system. Method and Materials: Twenty-five patients were treated for prostate cancer with Pd-103 implantation. After the execution of the treatment plan, two sets of TRUS images were collected using the longitudinal and axial transducers of a biplanar probe. Then, three fluoroscopic images were acquired at 0, -15 and +15{sup o}. The three-dimensional locations of all implanted seeds were reconstructed from fluoroscopic images. A subset of the implanted seeds was manually identified in TRUS images and used as fiducial markers to perform TRUS-fluoroscopy fusion. To improve the implant quality, additional seeds were placed if adverse isodose patterns were identified during visual inspection. If additional seeds were placed, intraoperative dosimetry was repeated. Day 0 computed tomography-based dosimetry was compared with final intraoperative dosimetry to validate dosimetry achieved in the implant suite. Results: An average of additional 4.0 seeds was implanted in 16 patients after initial intraoperative dose evaluation. Based on TRUS-fluoroscopy fusion-based dosimetry, the V100 improved from 86% to 93% (p = 0.005), whereas D90 increased from 94% to 109% (p = 0.011) with the guided additional seed implantation. No statistical difference was observed in V200 and V300 values. V100 and D90 values were 95 {+-} 4% and 120 {+-} 24%, respectively, based on the final intraoperative dosimetry evaluation, compared with 95 {+-} 4% and 122 {+-} 24%, respectively, based on Day 0 computed tomography-based dosimetry. Conclusions: Implantation of extra seeds based on TRUS-fluoroscopy fusion-based intraoperative dosimetry can improve the final V100 and D90 values with minimal increase in V200 and V300 values.

  8. Evaluation of TG-43 recommended 2D-anisotropy function for elongated brachytherapy sources.

    PubMed

    Awan, Shahid B; Meigooni, Ali S; Mokhberiosgouei, Ramin; Hussain, Manzoor

    2006-11-01

    The original and updated protocols recommended by Task Group 43 from the American Association of Physicists in Medicine (i.e., TG-43 and TG-43U1, respectively), have been introduced to unify brachytherapy source dosimetry around the world. Both of these protocols are based on experiences with sources less than 1.0 cm in length. TG-43U1 recommends that for 103Pd sources, 2D anisotropy function F(r, theta), should be tabulated at a minimum for radial distances of 0.5, 1.0, 2.0, 3.0, and 5.0 cm. Anisotropy functions defined in these protocols are only valid when the point of calculation does not fall on the active length of the source. However, for elongated brachytherapy sources (active length >1 cm), some of the calculation points with r < 1/2 active length and small theta may fall on the source itself and there is no clear recommendation to handle this situation. In addition, the linear interpolation technique recommended by TG-43U1 is found to be valid for seed types of sources as the difference between F(r, theta) for two consecutive radii is <10%. However, in the present investigations it has been found that values of F(r, 5 degrees) for a 5 cm long RadioCoil 103Pd source at radial distances of 2.5, 3.0, and 4.0 cm were 2.95, 1.74, and 1.19, respectively, with differences up to about a factor of 3. Therefore, the validity of the linear interpolation technique for an elongated brachytherapy source with such a large variation in F(r, theta) needs to be investigated. In this project, application of the TG-43U1 formalism for dose calculation around an elongated RadioCoil 103Pd brachytherapy source has been investigated. In addition, the linear interpolation techniques as described in TG-43U1 for seed type sources have been evaluated for a 5.0 cm long RadioCoil 103Pd brachytherapy source. Application of a polynomial fit to F(r, theta) has also been investigated as an alternate approach to the linear interpolation technique. The results of these investigations

  9. Patient perception of local anesthesia for prostate brachytherapy.

    PubMed

    Smathers, S; Wallner, K; Simpson, C; Roof, J

    2000-05-01

    Prostate brachytherapy is an increasingly popular treatment for early-stage prostate cancer. Until now, spinal or general anesthesia for the procedure has been the standard of care. For patient safety, patient convenience, and to limit use of operating facilities, the authors started performing implants routinely with local anesthesia. We present here an evaluation of patients' acceptance of prostate brachytherapy under local anesthesia. On arrival at our department on the morning of the procedure, the patient is brought into the simulator suite, an intravenous line is started, and a urinary catheter is inserted. With the patient in the lithotomy position, a 5-by-5-cm patch of perineal skin and subcutaneous tissue is anesthetized by local infiltration of 10 mL of 1% lidocaine, using a 25-gauge 5/8-inch needle. Immediately following injection into the subcutaneous tissues, the deeper tissues, including the pelvic floor and prostate apex, are anesthetized by injecting 15 mL lidocaine solution with approximately 8 passes of a 20-gauge 1-inch needle. Following subcutaneous and periapical lidocaine injections, the transrectal ultrasound (TRUS) probe is positioned to reproduce the planning images and a 3.5- or 6-inch, 22-gauge spinal needle is inserted into the peripheral planned needle tracks, monitored by TRUS. When the tips of the needles reach the prostatic base, about 1 mL of lidocaine solution is injected in the intraprostatic track, as the needle is slowly withdrawn. The lidocaine infiltration procedure takes approximately 10 to 15 minutes. Seed implantation is then performed as previously described. At the time of this report preparation, 58 of the 71 patients (81%) were interviewed, with a median follow-up of 6 months since the implant procedure. On a scale of 1 to 10, the median biopsy pain score was 4.5 compared with a median pain score with the implant procedure of 3.0. There was no clear correlation between the two scores (r = .26). There was no correlation

  10. Establishing High-Quality Prostate Brachytherapy Using a Phantom Simulator Training Program

    SciTech Connect

    Thaker, Nikhil G.; Kudchadker, Rajat J.; Swanson, David A.; Albert, Jeffrey M.; Bruno, Teresa L.; Prestidge, Bradley R.; Crook, Juanita M.; Cox, Brett W.; Potters, Louis; Moran, Brian J.; Keyes, Mira; Kuban, Deborah A.; Frank, Steven J.

    2014-11-01

    Purpose: To design and implement a unique training program that uses a phantom-based simulator to teach the process of prostate brachytherapy (PB) quality assurance and improve the quality of education. Methods and Materials: Trainees in our simulator program were practicing radiation oncologists, radiation oncology residents, and fellows of the American Brachytherapy Society. The program emphasized 6 core areas of quality assurance: patient selection, simulation, treatment planning, implant technique, treatment evaluation, and outcome assessment. Using the Iodine 125 ({sup 125}I) preoperative treatment planning technique, trainees implanted their ultrasound phantoms with dummy seeds (ie, seeds with no activity). Pre- and postimplant dosimetric parameters were compared and correlated using regression analysis. Results: Thirty-one trainees successfully completed the simulator program during the period under study. The mean phantom prostate size, number of seeds used, and total activity were generally consistent between trainees. All trainees met the V100 >95% objective both before and after implantation. Regardless of the initial volume of the prostate phantom, trainees' ability to cover the target volume with at least 100% of the dose (V100) was not compromised (R=0.99 pre- and postimplant). However, the V150 had lower concordance (R=0.37) and may better reflect heterogeneity control of the implant process. Conclusions: Analysis of implants from this phantom-based simulator shows a high degree of consistency between trainees and uniformly high-quality implants with respect to parameters used in clinical practice. This training program provides a valuable educational opportunity that improves the quality of PB training and likely accelerates the learning curve inherent in PB. Prostate phantom implantation can be a valuable first step in the acquisition of the required skills to safely perform PB.

  11. Predictive Factors and Management of Rectal Bleeding Side Effects Following Prostate Cancer Brachytherapy

    SciTech Connect

    Price, Jeremy G.; Stone, Nelson N.; Stock, Richard G.

    2013-08-01

    Purpose: To report on the incidence, nature, and management of rectal toxicities following individual or combination brachytherapy following treatment for prostate cancer over a 17-year period. We also report the patient and treatment factors predisposing to acute ≥grade 2 proctitis. Methods and Materials: A total of 2752 patients were treated for prostate cancer between October 1990 and April 2007 with either low-dose-rate brachytherapy alone or in combination with androgen depletion therapy (ADT) or external beam radiation therapy (EBRT) and were followed for a median of 5.86 years (minimum 1.0 years; maximum 19.19 years). We investigated the 10-year incidence, nature, and treatment of acute and chronic rectal toxicities following BT. Using univariate, and multivariate analyses, we determined the treatment and comorbidity factors predisposing to rectal toxicities. We also outline the most common and effective management for these toxicities. Results: Actuarial risk of ≥grade 2 rectal bleeding was 6.4%, though notably only 0.9% of all patients required medical intervention to manage this toxicity. The majority of rectal bleeding episodes (72%) occurred within the first 3 years following placement of BT seeds. Of the 27 patients requiring management for their rectal bleeding, 18 underwent formalin treatment and nine underwent cauterization. Post-hoc univariate statistical analysis revealed that coronary artery disease (CAD), biologically effective dose, rectal volume receiving 100% of the prescription dose (RV100), and treatment modality predict the likelihood of grade ≥2 rectal bleeding. Only CAD, treatment type, and RV100 fit a Cox regression multivariate model. Conclusions: Low-dose-rate prostate brachytherapy is very well tolerated and rectal bleeding toxicities are either self-resolving or effectively managed by medical intervention. Treatment planning incorporating adjuvant ADT while minimizing RV100 has yielded the best toxicity-free survival following

  12. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.

    2015-03-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  13. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    SciTech Connect

    Wang, Wei; Pan, Li; Tokuda, Junichi; Schmidt, Ehud J.; Seethamraju, Ravi T.; Dumoulin, Charles L.

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  14. Three-Dimensional Imaging in Gynecologic Brachytherapy: A Survey of the American Brachytherapy Society

    SciTech Connect

    Viswanathan, Akila N.; Erickson, Beth A.

    2010-01-15

    Purpose: To determine current practice patterns with regard to three-dimensional (3D) imaging for gynecologic brachytherapy among American Brachytherapy Society (ABS) members. Methods and Materials: Registered physician members of the ABS received a 19-item survey by e-mail in August 2007. This report excludes physicians not performing brachytherapy for cervical cancer. Results: Of the 256 surveys sent, we report results for 133 respondents who perform one or more implantations per year for locally advanced cervical cancer. Ultrasound aids 56% of physicians with applicator insertion. After insertion, 70% of physicians routinely obtain a computed tomography (CT) scan. The majority (55%) use CT rather than X-ray films (43%) or magnetic resonance imaging (MRI; 2%) for dose specification to the cervix. However, 76% prescribe to Point A alone instead of using a 3D-derived tumor volume (14%), both Point A and tumor volume (7%), or mg/h (3%). Those using 3D imaging routinely contour the bladder and rectum (94%), sigmoid (45%), small bowel (38%), and/or urethra (8%) and calculate normal tissue dose-volume histogram (DVH) analysis parameters including the D2cc (49%), D1cc (36%), D0.1cc (19%), and/or D5cc (19%). Respondents most commonly modify the treatment plan based on International Commission on Radiation Units bladder and/or rectal point dose values (53%) compared with DVH values (45%) or both (2%). Conclusions: More ABS physician members use CT postimplantation imaging than plain films for visualizing the gynecologic brachytherapy apparatus. However, the majority prescribe to Point A rather than using 3D image based dosimetry. Use of 3D image-based treatment planning for gynecologic brachytherapy has the potential for significant growth in the United States.

  15. The Monte Carlo-Based Dosimetry of Beta Emitters for Intravascular Brachytherapy

    SciTech Connect

    Choi, C.K.; Son, J.; Ye, S.J.

    2001-06-17

    Intravascular brachytherapy (IVBT) is a new radiotherapy modality to prevent restenosis (re-blockage of the coronary artery) following interventional coronary angioplasty. It is estimated that the restenosis rate may drop from {approx}35 to 40% to well below 10% if radiation is delivered to the obstruction site during or after angioplasty. In traditional brachytherapy, the dose is typically specified at 1 cm from the source, and the effects of low-energy photons and secondary electrons are essentially ignored. In IVBT, however, the entire lesion may be 1 to 3 mm in thickness. A better understanding of dosimetry in the millimetre range will help in the development of optimum clinical devices and their efficacious use in different institutions using different radionuclides and devices. The actual treatment geometry consists of an encapsulated train of seeds, a guide wire, and a stent in a curved vessel. The source is a cylindrical train of 12 source seeds, each having dimensions of 0.64 mm in diameter and 2.5 mm in length, and proximal/distal gold markers. Each seed contains {sup 90}Sr/Y mixed with fired ceramic encapsulated in a 0.04-mm stainless steel wall. The Monte Carlo simulations are carried out for the trained source geometries in the linear and curved vessels with and without a stent. The stent structure is approximately modeled as a set of tori with a rotational radius of 1.92 mm from the source axis and a circular radius of 0.08 mm in cross section. Five tori are equally spaced for each seed. The stent shadows 31% of the total area of the source surface. The total activity of 70 mCi (2.59 x 10{sup 9} Bq) was chosen from manufacturer data. The corresponding mass fraction of {sup 90}Sr/Y in the source ceramic is negligible and was not explicitly included in the MCNP simulations. All tallies were multiplied with 5.83 mCi/seed x 3.7 x 10{sup 7} s/mCi for one active seed, and then the tallies that made contributions to the dose in a voxel of interest were

  16. Caudal epidural anesthesia during intracavitary brachytherapy for cervical cancer.

    PubMed

    Isoyama-Shirakawa, Yuko; Nakamura, Katsumasa; Abe, Madoka; Kunitake, Naonobu; Matsumoto, Keiji; Ohga, Saiji; Sasaki, Tomonari; Uehara, Satoru; Okushima, Kazuhiro; Shioyama, Yoshiyuki; Honda, Hiroshi

    2015-05-01

    It has been suggested that pain control during intracavitary brachytherapy for cervical cancer is insufficient in most hospitals in Japan. Our hospital began using caudal epidural anesthesia during high-dose-rate (HDR) intracavitary brachytherapy in 2011. The purpose of the present study was to retrospectively investigate the effects of caudal epidural anesthesia during HDR intracavitary brachytherapy for cervical cancer patients. Caudal epidural anesthesia for 34 cervical cancer patients was performed during HDR intracavitary brachytherapy between October 2011 and August 2013. We used the patients' self-reported Numeric Rating Scale (NRS) score at the first session of HDR intracavitary brachytherapy as a subjective evaluation of pain. We compared NRS scores of the patients with anesthesia with those of 30 patients who underwent HDR intracavitary brachytherapy without sacral epidural anesthesia at our hospital between May 2010 and August 2011. Caudal epidural anesthesia succeeded in 33 patients (97%), and the NRS score was recorded in 30 patients. The mean NRS score of the anesthesia group was 5.17 ± 2.97, significantly lower than that of the control group's 6.80 ± 2.59 (P = 0.035). The caudal epidural block resulted in no side-effects. Caudal epidural anesthesia is an effective and safe anesthesia option during HDR intracavitary brachytherapy for cervical cancer.

  17. Recent developments and best practice in brachytherapy treatment planning

    PubMed Central

    2014-01-01

    Brachytherapy has evolved over many decades, but more recently, there have been significant changes in the way that brachytherapy is used for different treatment sites. This has been due to the development of new, technologically advanced computer planning systems and treatment delivery techniques. Modern, three-dimensional (3D) imaging modalities have been incorporated into treatment planning methods, allowing full 3D dose distributions to be computed. Treatment techniques involving online planning have emerged, allowing dose distributions to be calculated and updated in real time based on the actual clinical situation. In the case of early stage breast cancer treatment, for example, electronic brachytherapy treatment techniques are being used in which the radiation dose is delivered during the same procedure as the surgery. There have also been significant advances in treatment applicator design, which allow the use of modern 3D imaging techniques for planning, and manufacturers have begun to implement new dose calculation algorithms that will correct for applicator shielding and tissue inhomogeneities. This article aims to review the recent developments and best practice in brachytherapy techniques and treatments. It will look at how imaging developments have been incorporated into current brachytherapy treatment and how these developments have played an integral role in the modern brachytherapy era. The planning requirements for different treatments sites are reviewed as well as the future developments of brachytherapy in radiobiology and treatment planning dose calculation. PMID:24734939

  18. Multihelix rotating shield brachytherapy for cervical cancer

    SciTech Connect

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T.; Wu, Xiaodong

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  19. Phase I Trial of Gross Total Resection, Permanent Iodine-125 Brachytherapy, and Hyperfractionated Radiotherapy for Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Chen, Allen M.; Chang, Susan; Pouliot, Jean; Sneed, Penny K.; Prados, Michael D.; Lamborn, Kathleen R.; Malec, Mary K.; McDermott, Michael W.; Berger, Mitchell S.; Larson, David A.

    2007-11-01

    Purpose: To evaluate the feasibility of gross total resection and permanent I-125 brachytherapy followed by hyperfractionated radiotherapy for patients with newly diagnosed glioblastoma. Methods and Materials: From April 1999 to May 2002, 21 patients with glioblastoma multiforme were enrolled on a Phase I protocol investigating planned gross total resection and immediate placement of permanent I-125 seeds, followed by postoperative hyperfractionated radiotherapy to a dose of 60 Gy at 100 cGy b.i.d., 5 days per week. Median age and Karnofsky performance status were 50 years (range, 32-65 years) and 90 (range, 70-100), respectively. Toxicity was assessed according to Radiation Therapy Oncology Group criteria. Results: Eighteen patients completed treatment according to protocol. The median preoperative tumor volume on magnetic resonance imaging was 18.6 cm{sup 3} (range, 4.4-41.2 cm{sup 3}). The median brachytherapy dose measured 5 mm radially outward from the resection cavity was 400 Gy (range, 200-600 Gy). Ten patients underwent 12 reoperations, with 11 of 12 reoperations demonstrating necrosis without evidence of tumor. Because of high toxicity, the study was terminated early. Median progression-free survival and overall survival were 57 and 114 weeks, respectively, but not significantly improved compared with historical patients treated at University of California, San Francisco, with gross total resection and radiotherapy without brachytherapy. Conclusions: Treatment with gross total resection and permanent I-125 brachytherapy followed by hyperfractionated radiotherapy as performed in this study results in high toxicity and reoperation rates, without demonstrated improvement in survival.

  20. Stereotactic interstitial brachytherapy of malignant astrocytomas with remarks on postimplantation computed tomographic appearance

    SciTech Connect

    Willis, B.K.; Heilbrun, M.P.; Sapozink, M.D.; McDonald, P.R.

    1988-09-01

    Seventeen patients were treated with stereotactically implanted high activity iodine-125 seeds, 12 patients for recurrent malignant astrocytomas (Protocol I) and 5 patients for newly diagnosed glioblastomas (Protocol II). Total radiation dosage to the recurrent tumors in Protocol I, including prior external beam irradiation, averaged 13,500 cGy. In the follow-up period of 6 to 50 months, the survival rate was 93% at 6 months, 60% at 12 months, 50% at 18 months, and 38% at 24 months after implantation. In Protocol II, brachytherapy was used as an interstitial radiation boost to the conventional treatment of newly diagnosed glioblastomas. External beam therapy and interstitial brachytherapy provided 11,000 cGy to these tumors. In the follow-up period of 15 to 27 months, there was a 100% survival at 12 months, 75% at 18 months, and 25% at 24 months after implantation. Eight of our 17 patients required reoperation for persistent or recurrent mass lesions at 6 to 15 months postimplantation; 7 were found to harbor masses of radionecrosis containing nests of anaplastic astrocytes; 1 had frank tumor recurrence. Median survival in this group of patients requiring reoperation was 18.7 months postimplantation. In a review of postimplantation computed tomographic scans, significant mass effect and crossover of hypodensity or enhancement into the corpus callosum or opposite hemisphere were found to have prognostic significance; persistent areas of contrast enhancement and excessive peritumoral hypodensity did not.

  1. Peripheral nerve reconstruction with epsilon-caprolactone conduits seeded with vasoactive intestinal peptide gene-transfected mesenchymal stem cells in a rat model

    NASA Astrophysics Data System (ADS)

    Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.

    2014-08-01

    Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.

  2. Brachytherapy in the treatment of cervical cancer: a review

    PubMed Central

    Banerjee, Robyn; Kamrava, Mitchell

    2014-01-01

    Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer. PMID:24920937

  3. SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System

    SciTech Connect

    Jiang, S; Zhao, S; Chen, Y; Li, Z; Li, P; Huang, Z; Yang, Z; Zhang, X

    2014-06-01

    Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method while the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and

  4. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    SciTech Connect

    Fulkerson, Regina K. Micka, John A.; DeWerd, Larry A.

    2014-02-15

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally

  5. [Intraoperative and post-implant dosimetry in patients treated with permanent prostate implant brachytherapy].

    PubMed

    Herein, András; Ágoston, Péter; Szabó, Zoltán; Jorgo, Kliton; Markgruber, Balázs; Pesznyák, Csilla; Polgár, Csaba; Major, Tibor

    2015-06-01

    The purpose of our work was to compare intraoperative and four-week post-implant dosimetry for loose and stranded seed implants for permanent prostate implant brachytherapy. In our institute low-dose-rate (LDR) prostate brachytherapy is performed with encapsulated I-125 isotopes (seeds) using transrectal ultrasound guidance and metal needles. The SPOT PRO 3.1 (Elekta, Sweden) system is used for treatment planning. In this study the first 79 patients were treated with loose seed (LS) technique, the consecutive patients were treated with stranded seed (SS) technique. During intraoperative planning the dose constraints were the same for both techniques. All LSs were placed inside the prostate capsule, while with SS a 2 mm margin around the prostate was allowed for seed positioning. The prescribed dose for the prostate was 145 Gy. This study investigated prostate dose coverage in 30-30 randomly selected patients with LS and SS. Four weeks after the implantation native CT and MRI were done and CT/MRI image fusion was performed. The target was contoured on MRI and the plan was prepared on CT data. To assess the treatment plan dose-volume histograms were used. For the target coverage V100, V90, D90, D100, for the dose inhomogeneity V150, V200, and the dose-homogeneity index (DHI), for dose conformality the conformal index (COIN) were calculated. Intraoperative and postimplant plans were compared. The mean V100 values decreased at four-week plan for SS (97% vs. 84%) and for LS (96% vs. 80%) technique, as well. Decrease was observed for all parameters except for the DHI value. The DHI increased for SS (0.38 vs. 0.41) and for LS (0.38 vs. 0.47) technique, as well. The COIN decreased for both techniques at four-week plan (SS: 0.63 vs. 0.57; LS: 0.67 vs. 0.50). All differences were significant except for the DHI value at SS technique. The percentage changes were not significant, except the COIN value. The dose coverage of the target decreased significantly at four-week plans

  6. Monte Carol-Based Dosimetry of Beta-Emitters for Intravascular Brachytherapy

    SciTech Connect

    Choi, C.K.

    2002-06-25

    Monte Carlo simulations for radiation dosimetry and the experimental verifications of the simulations have been developed for the treatment geometry of intravascular brachytherapy, a form of radionuclide therapy for occluded coronary disease (restenosis). Monte Carlo code, MCNP4C, has been used to calculate the radiation dose from the encapsulated array of B-emitting seeds (Sr/Y-source train). Solid water phantoms have been fabricated to measure the dose on the radiochromic films that were exposed to the beta source train for both linear and curved coronary vessel geometries. While the dose difference for the 5-degree curved vessel at the prescription point of f+2.0 mm is within the 10% guideline set by the AAPM, however, the difference increased dramatically to 16.85% for the 10-degree case which requires additional adjustment for the acceptable dosimetry planning. The experimental dose measurements agree well with the simulation results

  7. BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation

    SciTech Connect

    Safavi-Naeini, M.; Han, Z.; Alnaghy, S.; Cutajar, D.; Petasecca, M.; Lerch, M. L. F.; Rosenfeld, A. B.; Franklin, D. R.; Bucci, J.; Carrara, M.; Zaider, M.

    2015-12-15

    Purpose: This paper presents initial experimental results from a prototype of high dose rate (HDR) BrachyView, a novel in-body source tracking system for HDR brachytherapy based on a multipinhole tungsten collimator and a high resolution pixellated silicon detector array. The probe and its associated position estimation algorithms are validated and a comprehensive evaluation of the accuracy of its position estimation capabilities is presented. Methods: The HDR brachytherapy source is moved through a sequence of positions in a prostate phantom, for various displacements in x, y, and z. For each position, multiple image acquisitions are performed, and source positions are reconstructed. Error estimates in each dimension are calculated at each source position and combined to calculate overall positioning errors. Gafchromic film is used to validate the accuracy of source placement within the phantom. Results: More than 90% of evaluated source positions were estimated with an error of less than one millimeter, with the worst-case error being 1.3 mm. Experimental results were in close agreement with previously published Monte Carlo simulation results. Conclusions: The prototype of HDR BrachyView demonstrates a satisfactory level of accuracy in its source position estimation, and additional improvements are achievable with further refinement of HDR BrachyView’s image processing algorithms.

  8. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  9. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    SciTech Connect

    Harkenrider, Matthew M. Alite, Fiori; Silva, Scott R.; Small, William

    2015-07-15

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy.

  10. I-125 seed calibration using the SeedSelectron® afterloader: a practical solution to fulfill AAPM-ESTRO recommendations

    PubMed Central

    Perez-Calatayud, Jose; Richart, Jose; Guirado, Damián; Pérez-García, Jordi; Rodríguez, Silvia; Santos, Manuel

    2012-01-01

    Purpose SeedSelectron® v1.26b (Nucletron BV, The Netherlands) is an afterloader system used in prostate interstitial permanent brachytherapy with I-125 selectSeed seeds. It contains a diode array to assay all implanted seeds. Only one or two seeds can be extracted during the surgical procedure and assayed using a well chamber to check the manufacturer air-kerma strength (SK) and to calibrate the diode array. Therefore, it is not feasible to assay 5–10% seeds as required by the AAPM-ESTRO. In this study, we present a practical solution of the SeedSelectron® users to fulfill the AAPM- ESTRO recommendations. Material and methods The method is based on: a) the SourceCheck® well ionization chamber (PTW, Germany) provided with a PTW insert; b) n = 10 selectSeed from the same batch and class as the seeds for the implant; c) the Nucletron insert to accommodate the n = 10 seeds on the SourceCheck® and to measure their averaged SK. Results for 56 implants have been studied comparing the SK value from the manufacturer with the one obtained with the n = 10 seeds using the Nucletron insert prior to the implant and with the SK of just one seed measured with the PTW insert during the implant. Results We are faced with SK deviation for individual seeds up to 7.8%. However, in the majority of cases SK is in agreement with the manufacturer value. With the method proposed using the Nucletron insert, the large deviations of SK are reduced and for 56 implants studied no deviation outside the range of the class were found. Conclusions The new Nucletron insert and the proposed procedure allow to evaluate the SK of the n = 10 seeds prior to the implant, fulfilling the AAPM-ESTRO recommendations. It has been adopted by Nucletron to be extended to seedSelectron® users under request. PMID:23346136

  11. The evolution of computerized treatment planning for brachytherapy: American contributions

    PubMed Central

    Rivard, Mark J.

    2014-01-01

    Purpose To outline the evolution of computerized brachytherapy treatment planning in the United States through a review of technological developments and clinical practice refinements. Material and methods A literature review was performed and interviews were conducted with six participants in the development of computerized treatment planning for brachytherapy. Results Computerized brachytherapy treatment planning software was initially developed in the Physics Departments of New York's Memorial Hospital (by Nelson, Meurk and Balter), and Houston's M. D. Anderson Hospital (by Stovall and Shalek). These public-domain programs could be used by institutions with adequate computational resources; other clinics had access to them via Memorial's and Anderson's teletype-based computational services. Commercial brachytherapy treatment planning programs designed to run on smaller computers (Prowess, ROCS, MMS), were developed in the late 1980s and early 1990s. These systems brought interactive dosimetry into the clinic and surgical theatre. Conclusions Brachytherapy treatment planning has evolved from systems of rigid implant rules to individualized pre- and intra-operative treatment plans, and post-operative dosimetric assessments. Brachytherapy dose distributions were initially calculated on public domain programs on large regionally located computers. With the progression of computer miniaturization and increase in processor speeds, proprietary software was commercially developed for microcomputers that offered increased functionality and integration with clinical practice. PMID:25097560

  12. Influence of Dose on Risk of Acute Urinary Retention After Iodine-125 Prostate Brachytherapy

    SciTech Connect

    Roeloffzen, Ellen M.A.; Battermann, Jan J.; Deursen, Marijke J.H. van; Monninkhof, Evelyn M.; Visscher, Mareije I.; Moerland, Marinus A.; Vulpen, Marco van

    2011-07-15

    Purpose: To assess the influence of dose on the risk of acute urinary retention (AUR) after iodine-125 prostate brachytherapy. Methods and Materials: Between January 2005 and December 2008, 714 consecutive patients with localized prostate cancer were treated with iodine-125 prostate brachytherapy at our department. All patients completed four imaging studies: magnetic resonance imaging before and 4 weeks after treatment and intraoperative three-dimensional transrectal ultrasonography before and after implantation. The development of AUR was prospectively recorded. The evaluated treatment and dosimetric parameters included prostate volume, number of needles and seeds used, intra- and postoperative prostate edema, percentage of prostate volume receiving 100%, 150%, and 200% of the prescribed dose to the prostate, minimal dose received by 90% of the prostate volume, and percentage of the urethra receiving 100%, 150%, and 200% of the prescribed dose. Logistic regression analysis was used to examine which factors were associated with AUR. Results: Of the 714 patients, 57 (8.0%) developed AUR. On univariate analysis, the following treatment and dosimetric factors were significantly associated with AUR: International Prostate Symptom Score (odds ratio [OR], 2.07, per 10-point increase), preimplant prostate volume (OR, 1.06), postimplant prostate volume (OR, 1.04), number of needles used (OR, 1.09), and number of seeds used (OR, 1.03). On multivariate analysis, the only independent predictive factors for AUR were pretreatment prostate volume (OR, 1.05) and International Prostate Symptom Score (OR, 1.76, per 10-point increase). Patients with a pretreatment prostate volume >35 cm{sup 3} had a 10.4% risk of developing AUR compared with 5.4% for those with a prostate volume of {<=}35 cm{sup 3}. No association was found between any of the dosimetric parameters and the development of AUR. Conclusion: The radiation dose, within the range studied, did not influence the risk of AUR

  13. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M.; Furutani, K. M.

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue

  14. Predictors of Metastatic Disease After Prostate Brachytherapy

    SciTech Connect

    Forsythe, Kevin; Burri, Ryan; Stone, Nelson; Stock, Richard G.

    2012-06-01

    Purpose: To identify predictors of metastatic disease after brachytherapy treatment for prostate cancer. Methods and Materials: All patients who received either brachytherapy alone (implant) or brachytherapy in combination with external beam radiation therapy for treatment of localized prostate cancer at The Mount Sinai Hospital between June 1990 and March 2007 with a minimum follow-up of 2 years were included. Univariate and multivariable analyses were performed on the following variables: risk group, Gleason score (GS), clinical T stage, pretreatment prostate-specific antigen level, post-treatment prostate-specific antigen doubling time (PSA-DT), treatment type (implant vs. implant plus external beam radiation therapy), treatment era, total biological effective dose, use of androgen deprivation therapy, age at diagnosis, and race. PSA-DT was analyzed in the following ordinate groups: 0 to 90 days, 91 to 180 days, 180 to 360 days, and greater than 360 days. Results: We included 1,887 patients in this study. Metastases developed in 47 of these patients. The 10-year freedom from distant metastasis (FFDM) rate for the entire population was 95.1%. Median follow-up was 6 years (range, 2-15 years). The only two significant predictors of metastatic disease by multivariable analyses were GS and PSA-DT (p < 0.001 for both variables). Estimated 10-year FFDM rates for GS of 6 or less, GS of 7, and GS of 8 or greater were 97.9%, 94.3%, and 76.1%, respectively (p < 0.001). Estimated FFDM rates for PSA-DT of 0 to 90 days, 91 to 180 days, 181 to 360 days, and greater than 360 days were 17.5%, 67.9%, 74%, and 94.8%, respectively (p < 0.001). Estimated 10-year FFDM rates for the low-, intermediate-, and high-risk groups were 98.6%, 96.2%, and 86.7%, respectively. A demographic shift to patients presenting with higher-grade disease in more recent years was observed. Conclusions: GS and post-treatment PSA-DT are both statistically significant independent predictors of metastatic

  15. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4

    NASA Astrophysics Data System (ADS)

    Pope, D. J.; Cutajar, D. L.; George, S. P.; Guatelli, S.; Bucci, J. A.; Enari, K. E.; Miller, S.; Siegele, R.; Rosenfeld, A. B.

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences. Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  16. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4.

    PubMed

    Pope, D J; Cutajar, D L; George, S P; Guatelli, S; Bucci, J A; Enari, K E; Miller, S; Siegele, R; Rosenfeld, A B

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences.Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  17. Monte Carlo calculated TG-60 dosimetry parameters for the {beta}{sup -} emitter {sup 153}Sm brachytherapy source

    SciTech Connect

    Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.; Tenreiro, Claudio

    2010-10-15

    Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters of AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.

  18. Neither high-dose nor low-dose brachytherapy increases flap morbidity in salvage treatment of recurrent head and neck cancer

    PubMed Central

    Henderson, Peter W.; Kutler, David I.; Parashar, Bhupesh; Otterburn, David M.; Cohen, Marc A.

    2016-01-01

    Purpose While brachytherapy is often used concurrently with flap reconstruction following surgical ablation for head and neck cancer, it remains unclear whether it increases morbidity in the particularly high risk subset of patients undergoing salvage treatment for recurrent head and neck cancer (RH&NC). Material and methods A retrospective chart review was undertaken that evaluated patients with RH&NC who underwent flap coverage after surgical re-resection and concomitant brachytherapy. The primary endpoint was flap viability, and the secondary endpoints were flap and recipient site complications. Results In the 23 subjects included in series, flap viability and skin graft take was 100%. Overall recipient site complication rate was 34.8%, high-dose radiation (HDR) group 50%, and low-dose radiation (LDR) group 29.4%. There was no statistically significant difference between these groups. Conclusions In patients who undergo flap reconstruction and immediate postoperative radiotherapy following salvage procedures for RH&NC, flap coverage of defects in combination with brachytherapy remains a safe and effective means of providing stable soft tissue coverage.

  19. Neither high-dose nor low-dose brachytherapy increases flap morbidity in salvage treatment of recurrent head and neck cancer

    PubMed Central

    Henderson, Peter W.; Kutler, David I.; Parashar, Bhupesh; Otterburn, David M.; Cohen, Marc A.

    2016-01-01

    Purpose While brachytherapy is often used concurrently with flap reconstruction following surgical ablation for head and neck cancer, it remains unclear whether it increases morbidity in the particularly high risk subset of patients undergoing salvage treatment for recurrent head and neck cancer (RH&NC). Material and methods A retrospective chart review was undertaken that evaluated patients with RH&NC who underwent flap coverage after surgical re-resection and concomitant brachytherapy. The primary endpoint was flap viability, and the secondary endpoints were flap and recipient site complications. Results In the 23 subjects included in series, flap viability and skin graft take was 100%. Overall recipient site complication rate was 34.8%, high-dose radiation (HDR) group 50%, and low-dose radiation (LDR) group 29.4%. There was no statistically significant difference between these groups. Conclusions In patients who undergo flap reconstruction and immediate postoperative radiotherapy following salvage procedures for RH&NC, flap coverage of defects in combination with brachytherapy remains a safe and effective means of providing stable soft tissue coverage. PMID:27648084

  20. Paddle-based rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Xu, Weiyu; Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M.; Dadkhah, Hossein; Wu, Xiaodong

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  1. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  2. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  3. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  4. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  5. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  6. A Novel Device for Intravaginal Electronic Brachytherapy

    SciTech Connect

    Schneider, Frank Fuchs, Holger; Lorenz, Friedlieb; Steil, Volker; Ziglio, Francesco; Kraus-Tiefenbacher, Uta; Lohr, Frank; Wenz, Frederik

    2009-07-15

    Purpose: Postoperative intravaginal brachytherapy for endometrial carcinoma is usually performed with {sup 192}Ir high-dose rate (HDR) afterloading. A potential alternative is treatment with a broadband 50kV X-ray point source, the advantage being its low energy and the consequential steep dose gradient. The aim of this study was to create and evaluate a homogeneous cylindrical energy deposition around a newly designed vaginal applicator. Methods and Materials: To create constant isodose layers along the cylindrical plastic vaginal applicator, the source (INTRABEAM system) was moved in steps of 17-19.5 mm outward from the tip of the applicator. Irradiation for a predetermined time was performed at each position. The axial shift was established by a stepping mechanism that was mounted on a table support. The total dose/dose distribution was determined using film dosimetry (Gafchromic EBT) in a 'solid water' phantom. The films were evaluated with Mathematica 5.2 and OmniPro-I'mRT 1.6. The results (dose D0/D5/D10 in 0/5/10 mm tissue depth) were compared with an {sup 192}Ir HDR afterloading plan for multiple sampling points around the applicator. Results: Three different dose distributions with lengths of 3.9-7.3 cm were created. The irradiation time based on the delivery of 5/7 Gy to a 5 mm tissue depth was 19/26 min to 27/38 min. D0/D5/D10 was 150%/100%/67% for electronic brachytherapy and 140%/100%/74% for the afterloading technique. The deviation for repeated measurements in the phantom was <7%. Conclusions: It is possible to create a homogeneous cylindrical dose distribution, similar to {sup 192}Ir HDR afterloading, through the superimposition of multiple spherical dose distributions by stepping a kilovolt point source.

  7. Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera.

    PubMed

    Duan, J; Macey, D J; Pareek, P N; Brezovich, I A

    2001-02-01

    We investigated a pinhole imaging system for independent in vivo monitoring and verification of high dose rate (HDR) brachytherapy treatment. The system consists of a high-resolution pinhole collimator, an x-ray fluoroscope, and a standard radiographic screen-film combination. Autofluoroscopy provides real-time images of the in vivo Ir-192 HDR source for monitoring the source location and movement, whereas autoradiography generates a permanent record of source positions on film. Dual-pinhole autoradiographs render stereo-shifted source images that can be used to reconstruct the source dwell positions in three dimensions. The dynamic range and spatial resolution of the system were studied with a polystyrene phantom using a range of source strengths and dwell times. For the range of source activity used in HDR brachytherapy, a 0.5 mm diameter pinhole produced sharp fluoroscopic images of the source within the dynamic range of the fluoroscope. With a source-to-film distance of 35 cm and a 400 speed screen-film combination, the same pinhole yielded well recognizable images of a 281.2 GBq (7.60 Ci) Ir-192 source for dwell times in the typical clinical range of 2 to 400 s. This 0.5 mm diameter pinhole could clearly resolve source positions separated by lateral displacements as small as 1 mm. Using a simple reconstruction algorithm, dwell positions in a phantom were derived from stereo-shifted dual-pinhole images and compared to the known positions. The agreement was better than 1 mm. A preliminary study of a patient undergoing HDR treatment for cervical cancer suggests that the imaging method is clinically feasible. Based on these studies we believe that the pinhole imaging method is capable of providing independent and reliable real-time monitoring and verification for HDR brachytherapy.

  8. Calibration procedures for seeds preloaded in cartridges

    SciTech Connect

    Brame, Ryan S.; Cohen, Gil'ad N.; Zaider, Marco

    2006-08-15

    Radioactive seeds preloaded in sterilized cartridges or needles are commonly obtainable from manufacturers. Under the US regulations for control of radioactive materials, seed users are required to account for all seeds and independently verify their air kerma strength (S{sub K}). As a result, the viability of inspection schemes that rely on measurement of aggregate seeds is of interest. In this paper we consider the conditions (if any) under which cartridge inspection can satisfy regulatory requirements and still provide practical benefit (i.e., time savings) against the regular single-seed assay. The standards for comparison are the recommendations of AAPM TG40, AAPM TG56, and ACR's 'Standard for the Performance of Manually Loaded Brachytherapy Sources'. The practical benefit is judged in comparison to the effort required to apply the 10% assay recommendation of TG40 to seeds in cartridges. Two specific cartridge inspection schemes are considered: (a) measuring the S{sub K} of each cartridge in a batch; (b) measuring a single cartridge sampled at random from the batch. Unlike the 10% assay, which is defined (imperfectly, in our view) without reference to the prevalence of in-calibration seeds, the estimation of the relative merits of cartridge inspection methods must necessarily include such information and, as such, is manufacturer specific. In this paper results are provided for Oncura model 6711 {sup 125}I seeds in shielded and unshielded Mick cartridges. We show that the only practically useful cartridge inspection scheme is the batch scheme applied to unshielded cartridges. The false positive rates associated with the other schemes are such that we expect to open a cartridge (and perform the 10% assay) at least 80% of the time. While anything less than 100% of the time is theoretically an improvement, this neglects the additional effort required to assay the cartridges.

  9. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    PubMed Central

    Smith, Grace L; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A; Smith, Benjamin D

    2015-01-01

    Background Breast brachytherapy after lumpectomy is controversial in younger patients, as effectiveness is unclear and selection criteria are debated. Methods Using MarketScan® healthcare claims data, we identified 45,884 invasive breast cancer patients (ages 18–64), treated from 2003–2010 with lumpectomy, followed by brachytherapy (n=3,134) or whole breast irradiation (WBI) (n=42,750). We stratified patients into risk groups, based on age (Age<50 vs. Age≥50) and endocrine therapy status (Endocrine− vs. Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy vs. WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results Brachytherapy utilization increased from 2003 to 2010: In patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 vs. 32% of WBI patients (P<0.001); while 41% of brachytherapy patients were Endocrine- vs. 44% of WBI patients (P=0.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs. 9.0% after WBI (Hazard ratio[HR]=2.18, 1.37–3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs. 4.9%; HR=1.76, 1.26–2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs. 4.5%; HR=1.18, 0.61–2.31); Endocrine+/Age≥50 (4.2% vs. 2.4%; HR=1.71, 1.16–2.51). Conclusion In this younger cohort, endocrine status was a valuable discriminatory factor predicting subsequent mastectomy risk after brachytherapy vs. WBI and therefore may be useful for selecting appropriate

  10. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    SciTech Connect

    Smith, Grace L.; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  11. Prostate brachytherapy in patients with median lobe hyperplasia.

    PubMed

    Wallner, K; Smathers, S; Sutlief, S; Corman, J; Ellis, W

    2000-06-20

    Our aim was to document the technical and clinical course of prostate brachytherapy patients with radiographic evidence of median lobe hyperplasia (MLH). Eight patients with MLH were identified during our routine brachytherapy practice, representing 9% of the 87 brachytherapy patients treated during a 6-month period. No effort was made to avoid brachytherapy in patients noted to have MLH on diagnostic work-up. Cystoscopic evaluation was not routinely performed. Postimplant axial computed tomographic (CT) images of the prostate were obtained at 0.5 cm intervals. Preimplant urinary obstructive symptoms were quantified by the criteria of the American Urologic Association (AUA). Each patient was contacted during the writing of this report to update postimplant morbidity information. There was no apparent association between the degree of MLH and preimplant prostate volume or AUA score. Intraoperatively, we were able to visualize MLH by transrectal ultrasound and did not notice any particular difficulty placing sources in the MLH tissue or migration of sources out of the tissue. The prescription isodose covered from 81% to 99% of the postimplant CT-defined target volume, achieving adequate dose to the median lobe tissue in all patients. Two of the eight patients developed acute, postimplant urinary retention. The first patient required intermittent self-catheterization for 3 months and then resumed spontaneous urination. MLH does not appear to be a strong contraindication to prostate brachytherapy, and prophylactic resection of hypertrophic tissue in such patients is probably not warranted. Int. J. Cancer (Radiat. Oncol. Invest.) 90, 152-156 (2000). PMID:10900427

  12. Nonholonomic catheter path reconstruction using electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor

    2015-03-01

    Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.

  13. The consistency of Fletcher-Suit applicator geometry and of the rectal probe’s position in high dose rate brachytherapy treatment fraction of cervix carcinoma

    PubMed Central

    2009-01-01

    Purpose The dose values computed with the treatment planning system and the in vivo dose measurements with semiconductor detectors in rectum during the high dose rate brachytherapy treatment fraction of the cervix carcinoma are occasionally significantly different. We’ve investigated the consistency of the Fletcher-Suit applicator geometry and the in vivo rectal probe’s position stability during the high dose rate brachytherapy treatment fraction. Material and methods The patient lied in a lithotomic position during a biplane reconstruction images, throughout the treatment planning and dose administration. We obtained post-treatment reconstruction images and prepared a post-treatment plan. The amount of 14 treatment fractions of 10 patients were considered in the study. Two methods were applied: evaluation of the difference of reconstructed pre-treatment and post-treatment applicator points and rectal probe’s detectors being relevant to the co-ordinate system fixed to the applicator, and estimation of applicators and rectal probe’s reallocation with respect to the pelvic bones with registration of pre- and post-treatment reconstruction images. Results We’ve experienced good consistency in the Fletcher-Suit applicator geometry in all treatment fractions. 70% of them presented small variation in the rectal probe’s position, while the rest showed significant shift in the applicator or rectal probe’s position with regard to the pelvic bones.

  14. Interstitial rotating shield brachytherapy for prostate cancer

    SciTech Connect

    Adams, Quentin E. Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.; Enger, Shirin A.

    2014-05-15

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29

  15. Dosimetric and technical aspects of intraoperative I-125 brachytherapy for stage I non-small cell lung cancer.

    PubMed

    Johnson, Mark; Colonias, Athanasios; Parda, David; Trombetta, Mark; Gayou, Olivier; Reitz, Bodo; Miften, Moyed

    2007-03-01

    Initial treatment outcome data from our institution for stage I non-small cell lung cancer (NSCLC) patients have shown that sublobar resection in combination with iodine-125 (I-125) brachytherapy is associated with recurrence rates of 2.0%, compared to 18.6% with sublobar resection alone. In this work, the technical and dosimetric aspects required to execute this procedure from the radiation oncology perspective as well as an analysis of the dose distributions of patients treated with this technique are presented. In this treatment technique, I-125 seeds in vicryl suture are embedded into vicryl mesh and surgically inserted providing a 2.0 cm margin on each side of the resection staple line. A nomogram is developed to determine the suture spacing in the vicryl mesh, as a function of seed activity in order to deliver 120 Gy at a distance of 0.5 cm above and below the seed array. Post-operative dosimetry consists of a CT-based planning and dose volume analysis. Dose distributions, dose volume histograms and mean dose data for lung are analysed in a group of patients. Dosimetric results show significant lung sparing with only a small volume of lung irradiated for all patients with mean lung dose values ranging from 1.5 Gy to 5.4 Gy. Lung brachytherapy with I-125 at the time of sublobar resection is a highly conformal option of dose delivery for stage I NSCLC patients with compromised physiologic reserve. Patient-related toxicity clinically measured by loss of pulmonary function and radiation-induced pneumonitis have not been linked to this procedure.

  16. Dosimetric and technical aspects of intraoperative I-125 brachytherapy for stage I non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Johnson, Mark; Colonias, Athanasios; Parda, David; Trombetta, Mark; Gayou, Olivier; Reitz, Bodo; Miften, Moyed

    2007-03-01

    Initial treatment outcome data from our institution for stage I non-small cell lung cancer (NSCLC) patients have shown that sublobar resection in combination with iodine-125 (I-125) brachytherapy is associated with recurrence rates of 2.0%, compared to 18.6% with sublobar resection alone. In this work, the technical and dosimetric aspects required to execute this procedure from the radiation oncology perspective as well as an analysis of the dose distributions of patients treated with this technique are presented. In this treatment technique, I-125 seeds in vicryl suture are embedded into vicryl mesh and surgically inserted providing a 2.0 cm margin on each side of the resection staple line. A nomogram is developed to determine the suture spacing in the vicryl mesh, as a function of seed activity in order to deliver 120 Gy at a distance of 0.5 cm above and below the seed array. Post-operative dosimetry consists of a CT-based planning and dose volume analysis. Dose distributions, dose volume histograms and mean dose data for lung are analysed in a group of patients. Dosimetric results show significant lung sparing with only a small volume of lung irradiated for all patients with mean lung dose values ranging from 1.5 Gy to 5.4 Gy. Lung brachytherapy with I-125 at the time of sublobar resection is a highly conformal option of dose delivery for stage I NSCLC patients with compromised physiologic reserve. Patient-related toxicity clinically measured by loss of pulmonary function and radiation-induced pneumonitis have not been linked to this procedure.

  17. Calculating dosimetry parameters in brachytherapy using the continuous beta spectrum of Sm-153 in the Monte Carlo simulation approach

    NASA Astrophysics Data System (ADS)

    Shahrabi, Mohammad; Tavakoli-Anbaran, Hossien

    2015-02-01

    Calculation of dosimetry parameters by TG-60 approach for beta sources and TG-43 approach for gamma sources can help to design brachytherapy sources. In this work, TG-60 dosimetry parameters are calculated for the Sm-153 brachytherapy seed using the Monte Carlo simulation approach. The continuous beta spectrum of Sm-153 and probability density are applied to simulate the Sm-153 source. Sm-153 is produced by neutron capture during the 152Sm( n,)153Sm reaction in reactors. The Sm-153 radionuclide decays by beta rays followed by gamma-ray emissions with half-life of 1.928 days. Sm-153 source is simulated in a spherical water phantom to calculate the deposited energy and geometry function in the intended points. The Sm-153 seed consists of 20% samarium, 30% calcium and 50% silicon, in cylindrical shape with density 1.76gr/cm^3. The anisotropy function and radial dose function were calculated at 0-4mm radial distances relative to the seed center and polar angles of 0-90 degrees. The results of this research are compared with the results of Taghdiri et al. (Iran. J. Radiat. Res. 9, 103 (2011)). The final beta spectrum of Sm-153 is not considered in their work. Results show significant relative differences even up to 5 times for anisotropy functions at 0.6, 1 and 2mm distances and some angles. MCNP4C Monte Carlo code is applied in both in the present paper and in the above-mentioned one.

  18. Brachytherapy in the treatment of skin cancer: an overview.

    PubMed

    Skowronek, Janusz

    2015-10-01

    The incidence of skin cancer worldwide is constantly growing and it is the most frequently diagnosed tumor. Brachytherapy (BT) in particular localizations is a valuable tool of the exact radiation depot inside the tumor mass. In localizations such as the face, skull skin and inoperable tumors, relapses after surgery, radiotherapy are usually not suitable for primary or secondary invasive treatment. Brachytherapy is a safe procedure for organs at risk according to rapid fall of a dose outside the axis of the applicator with satisfactory dose localization inside the target. The complications rate is acceptable and treatment costs are low. In some tumors (great skin lesions in the scalp, near eyes or on the nose) BT allows for a great dose reduction in surrounding healthy tissues. Brachytherapy provides minimal dose delivery to surrounding healthy tissue, thus enabling good functional and cosmetic results. Treatment is possible almost in all cases on an outpatient basis. PMID:26759545

  19. Automated planning volume definition in soft-tissue sarcoma adjuvant brachytherapy.

    PubMed

    Lee, Eva K; Fung, Albert Y C; Brooks, J Paul; Zaider, Marco

    2002-06-01

    In current practice, the planning volume for adjuvant brachytherapy treatment for soft-tissue sarcoma is either not determined a priori (in this case, seed locations are selected based on isodose curves conforming to a visual estimate of the planning volume), or it is derived via a tedious manual process. In either case, the process is subjective and time consuming, and is highly dependent on the human planner. The focus of the work described herein involves the development of an automated contouring algorithm to outline the planning volume. Such an automatic procedure will save time and provide a consistent and objective method for determining planning volumes. In addition, a definitive representation of the planning volume will allow for sophisticated brachytherapy treatment planning approaches to be applied when designing treatment plans, so as to maximize local tumour control and minimize normal tissue complications. An automated tumour volume contouring algorithm is developed utilizing computational geometry and numerical interpolation techniques in conjunction with an artificial intelligence method. The target volume is defined to be the slab of tissue r cm perpendicularly away from the curvilinear plane defined by the mesh of catheters. We assume that if adjacent catheters are over 2r cm apart, the tissue between the two catheters is part of the tumour bed. Input data consist of the digitized coordinates of the catheter positions in each of several cross-sectional slices of the tumour bed, and the estimated distance r from the catheters to the tumour surface. Mathematically, one can view the planning volume as the volume enclosed within a minimal smoothly-connected surface which contains a set of circles, each circle centred at a given catheter position in a given cross-sectional slice. The algorithm performs local interpolation on consecutive triplets of circles. The effectiveness of the algorithm is evaluated based on its performance on a collection of

  20. In vivo motion and force measurement of surgical needle intervention during prostate brachytherapy

    SciTech Connect

    Podder, Tarun; Clark, Douglas; Sherman, Jason; Fuller, Dave; Messing, Edward; Rubens, Deborah; Strang, John; Brasacchio, Ralph; Liao, Lydia; Ng, W.-S.; Yu Yan

    2006-08-15

    In this paper, we present needle insertion forces and motion trajectories measured during actual brachytherapy needle insertion while implanting radioactive seeds in the prostate glands of 20 different patients. The needle motion was captured using ultrasound images and a 6 degree-of-freedom electromagnetic-based position sensor. Needle velocity was computed from the position information and the corresponding time stamps. From in vivo data we found the maximum needle insertion forces to be about 15.6 and 8.9 N for 17 gauge (1.47 mm) and 18 gauge (1.27 mm) needles, respectively. Part of this difference in insertion forces is due to the needle size difference (17G and 18G) and the other part is due to the difference in tissue properties that are specific to the individual patient. Some transverse forces were observed, which are attributed to several factors such as tissue heterogeneity, organ movement, human factors in surgery, and the interaction between the template and the needle. However, theses insertion forces are significantly responsible for needle deviation from the desired trajectory and target movement. Therefore, a proper selection of needle and modulated velocity (translational and rotational) may reduce the tissue deformation and target movement by reducing insertion forces and thereby improve the seed delivery accuracy. The knowledge gleaned from this study promises to be useful for not only designing mechanical/robotic systems but also developing a predictive deformation model of the prostate and real-time adaptive controlling of the needle.

  1. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  2. Effect of post-implant edema on prostate brachytherapy treatment margins

    SciTech Connect

    Reed, Daniel R.; Wallner, Kent; Ford, Eric; Mueller, Amy; Merrick, Gregory; Maki, Jeffrey; Sutlief, Steven; Butler, Wayne

    2005-12-01

    Purpose: To determine if postimplant prostate brachytherapy treatment margins calculated on Day 0 differ substantially from those calculated on Day 30. Methods: Thirty patients with 1997 American Joint Commission on Cancer clinical stage T1-T2 prostatic carcinoma underwent prostate brachytherapy with I-125 prescribed to 144 Gy. Treatment planning methods included using loose seeds in a modified peripheral loading pattern and treatment margins (TMs) of 5-8 mm. Postimplant plain radiographs, computed tomography scans, and magnetic resonance scans were obtained 1-4 hours after implantation (Day 0). A second set of imaging studies was obtained at 30 days after implantation (Day 30) and similarly analyzed. Treatment margins were measured as the radial distance in millimeters from the prostate edge to the 100% isodose line. The TMs were measured and tabulated at 90{sup o} intervals around the prostate periphery at 0.6-cm intervals. Each direction was averaged to obtain the mean anterior, posterior, left, and right margins. Results: The mean overall TM increased from 2.6 mm ({+-}2.3) on Day 0 to 3.5 mm ({+-}2.4) on Day 30. The mean anterior margin increased from 1.2 mm on Day 0 to 1.8 mm on Day 30. The posterior margin increased from 1.2 mm on Day 0 to 2.8 mm on Day 30. The lateral treatment margins increased most over time, with mean right treatment margin increasing from 3.9 mm on Day 0 to 4.7 mm on Day 30. Conclusion: Treatment margins appear to be durable in the postimplant period, with a clinically insignificant increase from Day 0 to Day 30.

  3. A novel perineal shield for low-dose-rate prostate brachytherapy

    PubMed Central

    Schwartz, David; Safdieh, Joseph; Polubarov, Alex; Telivala, Tejas; Worth, Matthew; Schreiber, David

    2015-01-01

    Purpose To study the impact on radiation exposure to staff through the use of an original perineal shield during low-dose-rate prostate brachytherapy. Material and methods We designed a 1 mm thick stainless steel shield that duplicates and is able to slide directly over a standard commercialized prostate brachytherapy grid. We then analyzed the post-procedure exposure in 15 consecutive patients who underwent Iodine-125 seed placement. Measurements were performed with and without the shield in place at fixed locations relative to the grid template. Endpoints were analyzed using the paired two-sample t-test, with statistical significance defined as a p-value < 0.05. Results The exposure at the midline grid template ranged from 0.144-0.768 mSv/hr without the shield, and 0.038-0.144 mSv/hr with the shield (p < 0.0001). The exposure 10 cm left of the grid template was 0.134-0.576 mSv/hr without the shield, and 0.001-0.012 mSv/hr with the shield (p < 0.0001). The exposure 10 cm right of the grid template was 0.125-0.576 mSv/hr without the shield, and 0.001-0.012 mSv/hr with the shield (p < 0.0001). The median reduction of exposure at the grid was 76% midline, 98.5% left, and 99% right. Similarly, each individual dose rate was recorded at 25 cm from the perineum, both with and without shield. The median reduction of exposure 25 cm from the perineum was 73.7% midline, 77.7% left and 81.6% right (p < 0.0001). Conclusions Our novel shield took seconds to install and was non-restrictive during the procedure, and provided at least a four-fold reduction in radiation exposure to the brachytherapist. PMID:26207107

  4. A dosimetric study of prostate brachytherapy using Monte Carlo simulations with a voxel phantom, measurements and a comparison with a treatment planning procedure.

    PubMed

    Teles, P; Barros, S; Cardoso, S; Facure, A; da Rosa, L A R; Santos, M; Pereira, P; Vaz, P; Zankl, M

    2015-07-01

    In prostate brachytherapy treatments, there is an initial swelling of the prostate of the patient due to an oedema related to the insertion of the seeds. The variation of the prostate volume can lead to variations in the final prescribed dose in treatment planning procedures. As such, it is important to understand their influence for dose optimisation purposes. This work reports on a dosimetric study of the swelling of the prostate in prostate brachytherapy using Monte Carlo simulations. Dosimetric measurements performed on a physical anthropomorphic tissue-equivalent prostate phantom and thermoluminescent dosimeters (TLDs) were used to validate the MC model. Finally the MC model was also used to simulate prostate swelling in a real treatment planning procedure. The obtained results indicate that the parameters mentioned above represent a source of uncertainty in dose assessment in prostate brachytherapy, and can be detrimental to a correct dose evaluation in treatment plannings, and that these parameters can be accurately determined by means of MC simulations with a voxel phantom. PMID:25870437

  5. Current state of the art brachytherapy treatment planning dosimetry algorithms

    PubMed Central

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  6. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  7. Imaging method for monitoring delivery of high dose rate brachytherapy

    DOEpatents

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  8. Radiotherapy and brachytherapy for recurrent colorectal cancer

    SciTech Connect

    Nag, S. )

    1991-05-01

    Radical surgical excision of locoregional recurrence of colorectal carcinoma usually produces the best survival and should be attempted whenever possible. However, recurrences are often unresectable; hence palliative local therapy may be indicated. There are several options for the radiation therapy of local, unresectable, recurrent, or metastatic colorectal cancer. Whole pelvis irradiation of 4,000-5,000 cGy followed by a coned-down boost of 1,000-1,500 cGy generally provides good symptomatic palliation in 80-90% of patients, but long-term control or cure is rarely achieved. External beam irradiation of 2,000-3,000 cGy to the whole liver with or without concurrent chemotherapy may be used for palliation of metastatic disease to the liver. A combination of intraoperative radiation therapy applied directly to the tumor bed and external beam irradiation may improve local control and survival rates. Multiple options are available for the intraoperative use of brachytherapy which can deliver high radiation doses to the residual tumor, or tumor bed, sparing normal tissue.

  9. Source localisation and dose verification for a novel brachytherapy unit

    NASA Astrophysics Data System (ADS)

    Metaxas, Marinos G.

    A recent development in the field of radiotherapy has been the introduction of the PRS Intrabeam system (Carl Zeiss Surgical GmbH, Oberkochen, Germany). This is essentially a portable, miniaturised, electron-driven photon generator that allows high intensity, soft-energy x-rays (50 kVp) to be delivered directly to the tumour site in a single fraction. The system has been used for the interstitial radiation treatment of both brain and breast tumours. At present, a standardised in-vivo dose verification technique is not available for the PRS treatments. The isotropical distribution of photons about the tip of the PRS probe inserted in the tissue can effectively be viewed as a point source of radiation buried in the body. This work has looked into ways of localising the PRS source utilising its own radiation field. Moreover, the response of monoenergetic sources, mimicking realistic brachytherapy sources, has also been investigated. The purpose of this project was to attempt to localise the source as well as derive important dosimetric information from the resulting image. A detection system comprised of a well-collimated Germanium detector (HPGe) has been devised in a rotate-translate Emission Computed Tomography (ECT) modality. The superior energy resolving ability of the detection system allowed for energy selective reconstruction to be carried out in the case of the monoenergetic source (241Am). Results showed that the monoenergetic source can be localised to within 1 mm and the continuous PRS x-ray source to within 3mm. For the PRS dose map derivation, Monte Carlo studies have been employed in order to extract information on the dosimetric aspect of the resulting image. The final goal of this work was therefore to formulate a direct mathematical relation (Transform Map) between the image created by the escaping photons and the dose map as predicted by the theoretical model. The formation therefore of the in-vivo PRS image could allow for a real-time monitoring

  10. Dose distribution for endovascular brachytherapy using Ir-192 sources: comparison of Monte Carlo calculations with radiochromic film measurements

    NASA Astrophysics Data System (ADS)

    Sureka, C. S.; Sunny, C. Sunil; Subbaiah, K. V.; Aruna, P.; Ganesan, S.

    2007-01-01

    An analysis of Ir-192 source distribution using the Monte Carlo method and radiochromic film experiments for endovascular brachytherapy is presented. Three different source possibilities, namely, mHDR Ir-192 sources with 5 mm and 2.5 mm step sizes and Ir-192 seed sources with 1 mm air gap are investigated to obtain uniform radial dose distribution throughout the treatment area. From this study, it is inferred that mHDR Ir-192 sources with 2.5 mm step size are effective for getting dose uniformity. Hence, different restenosis geometries, namely, linear, dumb bell and hairpin, are simulated with 2.5 mm step size, 15 mHDR Ir-192 sources using the Monte Carlo technique and the results are compared experimentally by using radiochromic films. The results from both methods agreed to within 7%. Further, it is also inferred that for the dosimetry of endovascular brachytherapy, the film dosimetry may be considered adequate, even if the film calibration is time consuming and requires adequate dosimetric procedures.

  11. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Balvert, Marleen; Gorissen, Bram L.; den Hertog, Dick; Hoffmann, Aswin L.

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2-5 cc. However, this comes at a cost of a reduction in D90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D90% against uncertainty in dwell positions for both models.

  12. Cervical brachytherapy utilizing ring applicator: Comparison of standard and conformal loading

    SciTech Connect

    Brooks, Susan; Bownes, Peter; Lowe, Gerry; Bryant, Lynda; Hoskin, Peter J. . E-mail: peterhoskin@nhs.net

    2005-11-01

    Purpose: Afterloading high-dose-rate brachytherapy (HDR) treatment of cervical cancer with cross-sectional imaging and three-dimensional (3D) reconstruction offers opportunities for individualized conformal treatment planning rather than fixed point-A dosimetry. Methods and Materials: Between June 2003 and September 2004, 15 patients with FIGO Stage 1B-4A cervical carcinoma, median age 56 years, were treated with radical external-beam radiotherapy to pelvis, including paraortic nodes if positive on staging investigations. Fourteen patients received concurrent cisplatin chemotherapy. All patients received HDR brachytherapy administered by intrauterine tube and ring applicator. Clinical target volume (CTV) and organs at risk (OAR)-rectum, bladder, and small bowel-were outlined from postinsertion CT planning scans. Planning target volume (PTV) was derived by use of 2-mm to 3-mm 3D expansion. A standard plan was produced that delivered 6 Gy to point A, and a second plan delivered 6 Gy to PTV. Constraints were defined for the OAR: bladder, 6 Gy; rectum, 5 Gy; and small bowel, 5 Gy. Dosimetric comparison was performed by use of the Baltas conformal index (COIN). Results: Mean COIN values were 0.39 for conformal plans and 0.33 for standard plans (p = 0.001); mean D95 values were 4.79 Gy and 4.50 Gy, respectively. Conclusion: The majority of patients achieved a plan closer to ideal for coverage of PTV, with minimization of radiation received by normal tissues for conformal loading measured by COIN compared with fixed point-A prescription that used the cervical ring applicator.

  13. Interstitial brachytherapy of periorificial skin carcinomas of the face: A retrospective study of 97 cases

    SciTech Connect

    Rio, Emmanuel . E-mail: e-rio@nantes.fnclcc.fr; Bardet, Etienne; Ferron, Christophe; Peuvrel, Patrick; Supiot, Stephane; Campion, Loic; Beauvillain De Montreuil, Claude; Mahe, Marc Andre; Dreno, Brigitte

    2005-11-01

    Purpose: To analyze outcomes after interstitial brachytherapy of facial periorificial skin carcinomas. Patients and Methods: We performed a retrospective analysis of 97 skin carcinomas (88 basal cell carcinomas, 9 squamous cell carcinomas) of the nose, periorbital areas, and ears from 40 previously untreated patients (Group 1) and 57 patients who had undergone surgery (Group 2). The average dose was 55 Gy (range, 50-65 Gy) in Group 1 and 52 Gy (range, 50-60 Gy) in Group 2 (mean implantation times: 79 and 74 hours, respectively). We calculated survival rates and assessed functional and cosmetic results de visu. Results: Median age was 71 years (range, 17-97 years). There were 29 T1, 8 T2, 1 T3, and 2 Tx tumors in Group 1. Tumors were <2 cm in Group 2. Local control was 92.5% in Group 1 and 88% in Group 2 (median follow-up, 55 months; range, 6-132 months). Five-year disease-free survival was better in Group 1 (91%; range, 75-97) than in Group 2 (80%; range, 62-90; p = 0.23). Of the 34 patients whose results were reassessed, 8 presented with pruritus or epiphora; 1 Group 2 patient had an impaired eyelid aperture. Cosmetic results were better in Group 1 than in Group 2 with, respectively, 72% (8/11) vs. 52% (12/23) good results and 28 (3/11) vs. 43% (10/23) fair results. Conclusions: Brachytherapy provided a high level of local control and good cosmetic results for facial periorificial skin carcinomas that pose problems of surgical reconstruction. Results were better for untreated tumors than for incompletely excised tumors or tumors recurring after surgery.

  14. Novel Silicone-Coated 125I Seeds for the Treatment of Extrahepatic Cholangiocarcinoma

    PubMed Central

    Zhang, Weixing; Cai, Xiaobo; Chen, Dafan; Wan, Xinjian

    2016-01-01

    125I seeds coated with titanium are considered a safe and effective interstitial brachytherapy for tumors, while the cost of 125I seeds is a major problem for the patients implanting lots of seeds. The aim of this paper was to develop a novel silicone coating for 125I seeds with a lower cost. In order to show the radionuclide utilization ratio, the silicone was coated onto the seeds using the electro-spinning method and the radioactivity was evaluated, then the anti-tumor efficacy of silicone 125I seeds was compared with titanium 125I seeds. The seeds were divided into four groups: A (control), B (pure silicone), C (silicone 125I), D (titanium 125I) at 2 Gy or 4 Gy. Their anti-tumour activity and mechanism were assessed in vitro and in vivo using a human extrahepatic cholangiocarcinoma cell line FRH-0201 and tumor-bearing BALB/c nude mice. The silicone 125I seeds showed higher radioactivity; the rate of cell apoptosis in vitro and the histopathology in vivo demonstrated that the silicone 125I seeds shared similar anti-tumor efficacy with the titanium 125I seeds for the treatment of extrahepatic cholangiocarcinoma, while they have a much lower cost. PMID:26840346

  15. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy.

    PubMed

    Palmer, Antony L; Lee, Chris; Ratcliffe, Ailsa J; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for 'full system' dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  16. Reliability of EUCLIDIAN: An autonomous robotic system for image-guided prostate brachytherapy

    SciTech Connect

    Podder, Tarun K.; Buzurovic, Ivan; Huang Ke; Showalter, Timothy; Dicker, Adam P.; Yu, Yan

    2011-01-15

    Purpose: Recently, several robotic systems have been developed to perform accurate and consistent image-guided brachytherapy. Before introducing a new device into clinical operations, it is important to assess the reliability and mean time before failure (MTBF) of the system. In this article, the authors present the preclinical evaluation and analysis of the reliability and MTBF of an autonomous robotic system, which is developed for prostate seed implantation. Methods: The authors have considered three steps that are important in reliability growth analysis. These steps are: Identification and isolation of failures, classification of failures, and trend analysis. For any one-of-a-kind product, the reliability enhancement is accomplished through test-fix-test. The authors have used failure mode and effect analysis for collection and analysis of reliability data by identifying and categorizing the failure modes. Failures were classified according to severity. Failures that occurred during the operation of this robotic system were considered as nonhomogenous Poisson process. The failure occurrence trend was analyzed using Laplace test. For analyzing and predicting reliability growth, commonly used and widely accepted models, Duane's model and the Army Material Systems Analysis Activity, i.e., Crow's model, were applied. The MTBF was used as an important measure for assessing the system's reliability. Results: During preclinical testing, 3196 seeds (in 53 test cases) were deposited autonomously by the robot and 14 critical failures were encountered. The majority of the failures occurred during the first few cases. The distribution of failures followed Duane's postulation as well as Crow's postulation of reliability growth. The Laplace test index was -3.82 (<0), indicating a significant trend in failure data, and the failure intervals lengthened gradually. The continuous increase in the failure occurrence interval suggested a trend toward improved reliability. The MTBF

  17. Three-dimensional position determination of catheters for the purpose of brachytherapy

    NASA Astrophysics Data System (ADS)

    Ellenberger, Stephanie L.; Verweij, Andre; de Knecht, Jurrien P.

    2000-06-01

    Treatment planning in brachytherapy depends heavily on the accurate localization of markers in a catheter implant. We are developing an interactive system to combine the image information of biplane X-ray images to reconstruct the 3D marker positions. Current systems ask the user to identify all corresponding markers in both images manually. Especially in cases where multiple, eventually crossing catheters are present this is very time consuming and difficult as markers that are visible in one image may be hidden in the other image. To improve the procedure of marker detection we apply image-processing techniques. We investigate two approaches. One is based on 3D snakes. This is a model-based technique that is not sensitive to noise or ambiguities in the image. After the user has given a number of corresponding points per catheter, the system automatically detects the complete catheter and determines all 3D-marker positions. The second approach uses edge detection in a small region of interest (ROI). In both cases, knowledge about the catheter is used to guide the marker detection algorithm. The user has to examine the result visually. In case of erroneous marker detection the user can move, add or delete single maker points. To be able to judge the accuracy of the reconstruction it is necessary to locate possible error sources. For an accurate reconstruction of the catheter positions it is important to know the exact geometry of the imaging system. With a mathematical model the influence of uncertainties in parameters on the reconstruction result is studied.

  18. BrachyView, A novel inbody imaging system for HDR prostate brachytherapy: Design and Monte Carlo feasibility study

    SciTech Connect

    Safavi-Naeini, M.; Han, Z.; Cutajar, D.; Guatelli, S.; Petasecca, M.; Lerch, M. L. F.; Franklin, D. R.; Jakubek, J.; Pospisil, S.; Bucci, J.; Zaider, M.; Rosenfeld, A. B.

    2013-07-15

    Purpose: High dose rate (HDR) brachytherapy is a form of radiation therapy for treating prostate cancer whereby a high activity radiation source is moved between predefined positions inside applicators inserted within the treatment volume. Accurate positioning of the source is essential in delivering the desired dose to the target area while avoiding radiation injury to the surrounding tissue. In this paper, HDR BrachyView, a novel inbody dosimetric imaging system for real time monitoring and verification of the radioactive seed position in HDR prostate brachytherapy treatment is introduced. The current prototype consists of a 15 Multiplication-Sign 60 mm{sup 2} silicon pixel detector with a multipinhole tungsten collimator placed 6.5 mm above the detector. Seven identical pinholes allow full imaging coverage of the entire treatment volume. The combined pinhole and pixel sensor arrangement is geometrically designed to be able to resolve the three-dimensional location of the source. The probe may be rotated to keep the whole prostate within the transverse plane. The purpose of this paper is to demonstrate the efficacy of the design through computer simulation, and to estimate the accuracy in resolving the source position (in detector plane and in 3D space) as part of the feasibility study for the BrachyView project.Methods: Monte Carlo simulations were performed using the GEANT4 radiation transport model, with a {sup 192}Ir source placed in different locations within a prostate phantom. A geometrically accurate model of the detector and collimator were constructed. Simulations were conducted with a single pinhole to evaluate the pinhole design and the signal to background ratio obtained. Second, a pair of adjacent pinholes were simulated to evaluate the error in calculated source location.Results: Simulation results show that accurate determination of the true source position is easily obtainable within the typical one second source dwell time. The maximum error in

  19. Introduction of Transperineal Image-Guided Prostate Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2014-07-15

    The modern prostate brachytherapy procedure is characterized by ultrasound guidance, template assistance, and a return to a “closed” transperineal approach. This review traces the introduction and evolution of these elements and charts the development of the procedure from the ashes of previous, failed efforts.

  20. Verification of Oncentra brachytherapy planning using independent calculation

    NASA Astrophysics Data System (ADS)

    Safian, N. A. M.; Abdullah, N. H.; Abdullah, R.; Chiang, C. S.

    2016-03-01

    This study was done to investigate the verification technique of treatment plan quality assurance for brachytherapy. It is aimed to verify the point doses in 192Ir high dose rate (HDR) brachytherapy between Oncentra Masterplan brachytherapy treatment planning system and independent calculation software at a region of rectum, bladder and prescription points for both pair ovoids and full catheter set ups. The Oncentra TPS output text files were automatically loaded into the verification programme that has been developed based on spreadsheets. The output consists of source coordinates, desired calculation point coordinates and the dwell time of a patient plan. The source strength and reference dates were entered into the programme and then dose point calculations were independently performed. The programme shows its results in a comparison of its calculated point doses with the corresponding Oncentra TPS outcome. From the total of 40 clinical cases that consisted of two fractions for 20 patients, the results that were given in term of percentage difference, it shows an agreement between TPS and independent calculation are in the range of 2%. This programme only takes a few minutes to be used is preferably recommended to be implemented as the verification technique in clinical brachytherapy dosimetry.

  1. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... a source of nuclear radiation for therapy. (b) Classification. Class II....

  2. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... a source of nuclear radiation for therapy. (b) Classification. Class II....

  3. Human factors evaluation of remote afterloading brachytherapy - an overview

    SciTech Connect

    Schoenfeld, I.

    1994-12-31

    This report presents information from a research project aimed at understanding the causes of human errors in remote afterloading brachytherapy. The analysis determined functions, tasks, equipment, and personnel involoved, as well as cognitive, perceptual, and motor skills needed to perform the tasks.

  4. Patient effective dose from endovascular brachytherapy with 192Ir sources.

    PubMed

    Perma, L; Bianchi, C; Nicolini, G; Novario, R; Tanzi, F; Conte, L

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 112Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rqndo phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from cronary treatment were 2.4 x 10(-2) mSv.GBq(-1).min(-1) for lung, 0.9 x 10(-2) mSv.GBSq(-1).min(-1) for oesophagus and 0.48 x 10(-2) mS.GBq(-1).min(-1) for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2 x 10(-2) mS.GBq(-1).min(-1) for colon, 7.8 x 10(-2) mSv.GBq(-1).min(-1) for stomach and 1.7 x 10(-2) mSv.GBq(-1).min(-1) for liver. Coronary treatment iJnvlled an efl'fective dose of (0.046 mSv.GBq(-1).min(-1), whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq(-1).min(-1); there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low.

  5. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy

    SciTech Connect

    Enger, Shirin A.; Rezaei, Arash; Munck af Rosenschoeld, Per; Lundqvist, Hans

    2006-01-15

    Restenosis is a major problem after balloon angioplasty and stent implantation. The aim of this study is to introduce gadolinium neutron capture brachytherapy (GdNCB) as a suitable modality for treatment of stenosis. The utility of GdNCB in intravascular brachytherapy (IVBT) of stent stenosis is investigated by using the GEANT4 and MCNP4B Monte Carlo radiation transport codes. To study capture rate, Kerma, absorbed dose and absorbed dose rate around a Gd-containing stent activated with neutrons, a 30 mm long, 5 mm diameter gadolinium foil is chosen. The input data is a neutron spectrum used for clinical neutron capture therapy in Studsvik, Sweden. Thermal neutron capture in gadolinium yields a spectrum of high-energy gamma photons, which due to the build-up effect gives an almost flat dose delivery pattern to the first 4 mm around the stent. The absorbed dose rate is 1.33 Gy/min, 0.25 mm from the stent surface while the dose to normal tissue is in order of 0.22 Gy/min, i.e., a factor of 6 lower. To spare normal tissue further fractionation of the dose is also possible. The capture rate is relatively high at both ends of the foil. The dose distribution from gamma and charge particle radiation at the edges and inside the stent contributes to a nonuniform dose distribution. This will lead to higher doses to the surrounding tissue and may prevent stent edge and in-stent restenosis. The position of the stent can be verified and corrected by the treatment plan prior to activation. Activation of the stent by an external neutron field can be performed days after catherization when the target cells start to proliferate and can be expected to be more radiation sensitive. Another advantage of the nonradioactive gadolinium stent is the possibility to avoid radiation hazard to personnel.

  6. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    SciTech Connect

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-11-15

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, <1 mm, use of the one-dimensional (1D) brachytherapy dosimetry formalism is not recommended due to polar anisotropy. Consequently, 1D brachytherapy dosimetry parameters were not sought. Calculated point-source model radial dose functions at g{sub P}(5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1

  7. SU-E-T-546: Use of Implant Volume for Quality Assurance of Low Dose Rate Brachytherapy Treatment Plans

    SciTech Connect

    Wilkinson, D; Kolar, M

    2014-06-01

    Purpose: To analyze the application of volume implant (V100) data as a method for a global check of low dose rate (LDR) brachytherapy plans. Methods: Treatment plans for 335 consecutive patients undergoing permanent seed implants for prostate cancer and for 113 patients treated with plaque therapy for ocular melanoma were analyzed. Plaques used were 54 COMS (10 to 20 mm, notched and regular) and 59 Eye Physics EP917s with variable loading. Plots of treatment time x implanted activity per unit dose versus v100 ^.667 were made. V100 values were obtained using dose volume histograms calculated by the treatment planning systems (Variseed 8.02 and Plaque Simulator 5.4). Four different physicists were involved in planning the prostate seed cases; two physicists for the eye plaques. Results: Since the time and dose for the prostate cases did not vary, a plot of implanted activity vs V100 ^.667 was made. A linear fit with no intercept had an r{sup 2} = 0.978; more than 94% of the actual activities fell within 5% of the activities calculated from the linear fit. The greatest deviations were in cases where the implant volumes were large (> 100 cc). Both COMS and EP917 plaque linear fits were good (r{sup 2} = .967 and .957); the largest deviations were seen for large volumes. Conclusions: The method outlined here is effective for checking planning consistency and quality assurance of two types of LDR brachytherapy treatment plans (temporary and permanent). A spreadsheet for the calculations enables a quick check of the plan in situations were time is short (e.g. OR-based prostate planning)

  8. SU-E-T-477: An Efficient Dose Correction Algorithm Accounting for Tissue Heterogeneities in LDR Brachytherapy

    SciTech Connect

    Mashouf, S; Lai, P; Karotki, A; Keller, B; Beachey, D; Pignol, J

    2014-06-01

    Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented using MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and

  9. A radiobiology-based inverse treatment planning method for optimisation of permanent l-125 prostate implants in focal brachytherapy

    NASA Astrophysics Data System (ADS)

    Haworth, Annette; Mears, Christopher; Betts, John M.; Reynolds, Hayley M.; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A.

    2016-01-01

    Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The ‘biological optimisation’ considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.

  10. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Thomson, R. M.; Rogers, D. W. O.

    2011-08-15

    Purpose: To investigate the use of various breast tissue segmentation models in Monte Carlo dose calculations for low-energy brachytherapy. Methods: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations of a breast brachytherapy treatment using TheraSeed Pd-103 seeds with various breast tissue segmentation models. Models used include a phantom where voxels are randomly assigned to be gland or adipose (randomly segmented), a phantom where a single tissue of averaged gland and adipose is present (averaged tissue), and a realistically segmented phantom created from previously published numerical phantoms. Radiation transport in averaged tissue while scoring in gland along with other combinations is investigated. The inclusion of calcifications in the breast is also studied in averaged tissue and randomly segmented phantoms. Results: In randomly segmented and averaged tissue phantoms, the photon energy fluence is approximately the same; however, differences occur in the dose volume histograms (DVHs) as a result of scoring in the different tissues (gland and adipose versus averaged tissue), whose mass energy absorption coefficients differ by 30%. A realistically segmented phantom is shown to significantly change the photon energy fluence compared to that in averaged tissue or randomly segmented phantoms. Despite this, resulting DVHs for the entire treatment volume agree reasonably because fluence differences are compensated by dose scoring differences. DVHs for the dose to only the gland voxels in a realistically segmented phantom do not agree with those for dose to gland in an averaged tissue phantom. Calcifications affect photon energy fluence to such a degree that the differences in fluence are not compensated for (as they are in the no calcification case) by dose scoring in averaged tissue phantoms. Conclusions: For low-energy brachytherapy, if photon transport and dose scoring both occur in an averaged tissue, the resulting DVH for the entire

  11. Blob-enhanced reconstruction technique

    NASA Astrophysics Data System (ADS)

    Castrillo, Giusy; Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2016-09-01

    A method to enhance the quality of the tomographic reconstruction and, consequently, the 3D velocity measurement accuracy, is presented. The technique is based on integrating information on the objects to be reconstructed within the algebraic reconstruction process. A first guess intensity distribution is produced with a standard algebraic method, then the distribution is rebuilt as a sum of Gaussian blobs, based on location, intensity and size of agglomerates of light intensity surrounding local maxima. The blobs substitution regularizes the particle shape allowing a reduction of the particles discretization errors and of their elongation in the depth direction. The performances of the blob-enhanced reconstruction technique (BERT) are assessed with a 3D synthetic experiment. The results have been compared with those obtained by applying the standard camera simultaneous multiplicative reconstruction technique (CSMART) to the same volume. Several blob-enhanced reconstruction processes, both substituting the blobs at the end of the CSMART algorithm and during the iterations (i.e. using the blob-enhanced reconstruction as predictor for the following iterations), have been tested. The results confirm the enhancement in the velocity measurements accuracy, demonstrating a reduction of the bias error due to the ghost particles. The improvement is more remarkable at the largest tested seeding densities. Additionally, using the blobs distributions as a predictor enables further improvement of the convergence of the reconstruction algorithm, with the improvement being more considerable when substituting the blobs more than once during the process. The BERT process is also applied to multi resolution (MR) CSMART reconstructions, permitting simultaneously to achieve remarkable improvements in the flow field measurements and to benefit from the reduction in computational time due to the MR approach. Finally, BERT is also tested on experimental data, obtaining an increase of the

  12. Selecting Patients for Exclusive Permanent Implant Prostate Brachytherapy: The Experience of the Paris Institut Curie/Cochin Hospital/Necker Hospital Group on 809 Patients

    SciTech Connect

    Cosset, Jean-Marc Flam, Thierry; Thiounn, Nicolas; Gomme, Stephanie; Rosenwald, Jean-Claude; Asselain, Bernard; Pontvert, Dominique; Henni, Mehdi; Debre, Bernard; Chauveinc, Laurent

    2008-07-15

    Purpose: The aim of this study was to analyze overall and relapse-free survival in a cohort of 809 patients, 34% of whom corresponded to a higher-risk group than American Brachytherapy Society (ABS) criteria. Methods and Materials: Between January 1999 and September 2004, 809 patients were treated with permanent loose 125 iodine seed implantation (IsoSeed Bebig, Eckert and Ziegler) by the Paris Institut Curie, Cochin Hospital, and Necker Hospital group. Of these 809 patients, 533 (65.9%) corresponded exactly to ABS criteria. Two hundred and seventy-six patients (34.1%) had a prostate-specific antigen (PSA) level between 10 and 15, or a Gleason score of 7, or both (non-ABS group). Results: Overall 5-year survival was 98%, with no difference between the ABS group and the non-ABS patient subgroups (p 0.62).Five-year relapse-free survival was 97% in the ABS group; it was significantly lower (p = 0.001) in the non-ABS group but remained satisfactory at 94%. On subgroup analysis, the results appeared to be better for the subgroup of patients with PSA 10-15 than for the subgroup with a Gleason score of 7. Conclusions: Our results suggest that selected patients in the intermediate-risk group of localized prostate cancers can be safely proposed as recipients of permanent implant brachytherapy as monotherapy.

  13. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  14. SU-E-T-285: Revisiting the Nomogram for Intra-Operative Planning Based Pd-103 Brachytherapy

    SciTech Connect

    Narayanan, S; Cho, P

    2014-06-01

    Purpose: The seed implant technique at our institution involves using a published nomogram for seed ordering based on CT based volume studies of the prostate. Ultrasound volume studies are subsequently used in the operating room for planning a modified peripheral loading with urethra sparing seed implant. The purpose of this study is to determine the appropriate modality for prostate volume measurement and creating an updated nomogram for intra-operative planning specific to our technique for pd-103 brachytherapy for efficient seed ordering. Methods: Prostate volumes based on pre-implant CT (Pre-CT), intra-operative ultrasound (TRUS), and post-implant CT (post-CT) studies as well as the total airkerma strength (AKS) of the implants were analyzed for 135 seed implant cases (69 monotherapy, 66 boost). Regression analysis was performed to derive the relationship between the total AKS and pre-CT and TRUS volumes. The correlation between TRUS and pre-CT volumes and TRUS and post-CT volumes were also studied. Results: Ultrasound based prostate volume exhibited a stronger correlation with total AKS than the pre-implant CT volume (R{sup 2} = 0.97 vs 0.88 for monotherapy and 0.96 vs 0.89 for boost). In general the pre-CT overestimated the prostate volume leading to ordering of a larger number of seeds and thus leading to higher number of unused/wasted seeds. Newly derived TRUS based nomogram was better suited for our technique than the published data. The post-implant CT volume closely followed the ultrasound volume (R{sup 2} = 0.88) as compared to pre-implant CT volumes (R{sup 2} = 0.57). Conclusion: In an era of costconscious health care where waste reduction is of utmost importance, an updated technique-specific nomogram is useful for ordering optimal number of seeds resulting in significant cost savings. In addition, our study shows that ultrasound based prostate volume is a better predictor for seed ordering for intra-operative planning than pre-implant CT.

  15. Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149

    SciTech Connect

    Chiu-Tsao, Sou-Tung; Schaart, Dennis R.; Soares, Christopher G.; Nath, Ravinder

    2007-11-15

    Since the publication of AAPM Task Group 60 report in 1999, a considerable amount of dosimetry data for the three coronary brachytherapy systems in use in the United States has been reported. A subgroup, Task Group 149, of the AAPM working group on Special Brachytherapy Modalities (Bruce Thomadsen, Chair) was charged to develop recommendations for dose calculation formalisms and the related consensus dosimetry parameters. The recommendations of this group are presented here. For the Cordis {sup 192}Ir and Novoste {sup 90}Sr/{sup 90}Y systems, the original TG-43 formalism in spherical coordinates should be used along with the consensus values of the dose rate constant, geometry function, radial dose function, and anisotropy function for the single seeds. Contributions from the single seeds should be added linearly for the calculation of dose distributions from a source train. For the Guidant {sup 32}P wire system, the modified TG-43 formalism in cylindrical coordinates along with the recommended data for the 20 and 27 mm wires should be used. Data tables for the 6, 10, 14, 18, and 22 seed trains of the Cordis system, 30, 40, and 60 mm seed trains of the Novoste system, and the 20 and 27 mm wires of the Guidant system are presented along with our rationale and methodology for selecting the consensus data. Briefly, all available datasets were compared with each other and the consensus dataset was either an average of available data or the one obtained from the most densely populated study; in most cases this was a Monte Carlo calculation.

  16. Time dependence of energy spectra of brachytherapy sources and its impact on the half and the tenth value layers

    SciTech Connect

    Yue, Ning J.; Chen Zhe; Hearn, Robert A.; Rodgers, Joseph J.; Nath, Ravinder

    2009-11-15

    Purpose: Several factors including radionuclide purity influence the photon energy spectra from sealed brachytherapy sources. The existence of impurities and trace elements in radioactive materials as well as the substrate and encapsulation may not only alter the spectrum at a given time but also cause change in the spectra as a function of time. The purpose of this study is to utilize a semiempirical formalism, which quantitatively incorporates this time dependence, to calculate and evaluate the shielding requirement impacts introduced by this time dependence for a {sup 103}Pd source. Methods: The formalism was used to calculate the NthVL thicknesses in lead for a {sup 103}Pd model 200 seed. Prior to 2005, the {sup 103}Pd in this source was purified to a level better than 0.006% of the total {sup 103}Pd activity, the key trace impurity consisting of {sup 65}Zn. Because {sup 65}Zn emits higher energy photons and has a much longer half-life of 244 days compared to {sup 103}Pd, its presence in {sup 103}Pd seeds led to a time dependence of the photon spectrum and other related physical quantities. This study focuses on the time dependence of the NthVL and the analysis of the corresponding shielding requirements. Results: The results indicate that the first HVL and the first TVL in lead steadily increased with time for about 200 days and then reached a plateau. The increases at plateau were more than 1000 times compared to the corresponding values on the zeroth day. The second and third TVLs in lead reached their plateaus in about 100 and 60 days, respectively, and the increases were about 19 and 2.33 times the corresponding values on the zeroth day, respectively. All the TVLs demonstrated a similar time dependence pattern, with substantial increases and eventual approach to a plateau. Conclusions: The authors conclude that the time dependence of the emitted photon spectra from brachytherapy sources can introduce substantial variations in the values of the NthVL with

  17. SU-E-J-232: Feasibility of MRI-Based Preplan On Low Dose Rate Prostate Brachytherapy

    SciTech Connect

    Huang, Y; Tward, J; Rassiah-Szegedi, P; Zhao, H; Sarkar, V; Huang, L; Szegedi, M; Kokeny, K; Salter, B

    2015-06-15

    Purpose: To investigate the feasibility of using MRI-based preplan for low dose rate prostate brachytherapy. Methods: 12 patients who received transrectal ultrasound (TRUS) guided prostate brachytherapy with Pd-103 were retrospectively studied. Our care-standard of the TRUS-based preplan served as the control. One or more prostate T2-weighted wide and/or narrow-field of view MRIs obtained within the 3 months prior to the implant were imported into the MIM Symphony software v6.3 (MIM Software Inc., Cleveland, OH) for each patient. In total, 37 MRI preplans (10 different image sequences with average thickness of 4.8mm) were generated. The contoured prostate volume and the seed counts required to achieve adequate dosimetric coverage from TRUS and MRI preplans were compared for each patient. The effects of different MRI sequences and image thicknesses were also investigated statistically using Student’s t-test. Lastly, the nomogram from the MRI preplan and TRUS preplan from our historical treatment data were compared. Results: The average prostate volume contoured on the TRUS and MRI were 26.6cc (range: 12.6∼41.3cc), and 27.4 cc (range: 14.3∼50.0cc), respectively. Axial MRI thicknesses (range: 3.5∼8.1mm) did not significantly affect the contoured volume or the number of seeds required on the preplan (R2 = 0.0002 and 0.0012, respectively). Four of the MRI sequences (AX-T2, AX-T2-Whole-Pelvis, AX-T2-FSE, and AXIALT2- Hi-Res) showed statistically significant better prostate volume agreement with TRUS than the other seven sequences (P <0.01). Nomogram overlay between the MRI and TRUS preplans showed good agreement; indicating volumes contoured on MRI preplan scan reliably predict how many seeds are needed for implant. Conclusion: Although MRI does not allow for determination of the actual implant geometry, it can give reliable volumes for seed ordering purposes. Our future work will investigate if MRI is sufficient to reliably replace TRUS preplanning in patients

  18. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States

    SciTech Connect

    Han, Kathy; Milosevic, Michael; Fyles, Anthony; Pintilie, Melania; Viswanathan, Akila N.

    2013-09-01

    Purpose: To determine the trends in brachytherapy use in cervical cancer in the United States and to identify factors and survival benefits associated with brachytherapy treatment. Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER) database, we identified 7359 patients with stages IB2-IVA cervical cancer treated with external beam radiation therapy (EBRT) between 1988 and 2009. Propensity score matching was used to adjust for differences between patients who received brachytherapy and those who did not from 2000 onward (after the National Cancer Institute alert recommending concurrent chemotherapy). Results: Sixty-three percent of the 7359 women received brachytherapy in combination with EBRT, and 37% received EBRT alone. The brachytherapy utilization rate has decreased from 83% in 1988 to 58% in 2009 (P<.001), with a sharp decline of 23% in 2003 to 43%. Factors associated with higher odds of brachytherapy use include younger age, married (vs single) patients, earlier years of diagnosis, earlier stage and certain SEER regions. In the propensity score-matched cohort, brachytherapy treatment was associated with higher 4-year cause-specific survival (CSS; 64.3% vs 51.5%, P<.001) and overall survival (OS; 58.2% vs 46.2%, P<.001). Brachytherapy treatment was independently associated with better CSS (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.57-0.71), and OS (HR 0.66; 95% CI, 0.60 to 0.74). Conclusions: This population-based analysis reveals a concerning decline in brachytherapy utilization and significant geographic disparities in the delivery of brachytherapy in the United States. Brachytherapy use is independently associated with significantly higher CSS and OS and should be implemented in all feasible cases.

  19. Metal artefacts in MRI-guided brachytherapy of cervical cancer

    PubMed Central

    Owrangi, Amir; Ravi, Ananth; Song, William Y.

    2016-01-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions.

  20. Cataract extraction after brachytherapy for malignant melanoma of the choroid

    SciTech Connect

    Fish, G.E.; Jost, B.F.; Snyder, W.I.; Fuller, D.G.; Birch, D.G. )

    1991-05-01

    Thirteen eyes of 55 consecutive patients treated with brachytherapy for malignant melanoma of the choroid developed postirradiation cataracts. Cataract development was more common in older patients and in patients with larger and more anterior tumors. Eleven eyes had extracapsular cataract extraction and intraocular lens implantation. Initial visual improvement occurred in 91% of eyes, with an average improvement of 5.5 lines. Visual acuity was maintained at 20/60 or better in 55% of the eyes over an average period of follow-up of 24 months (range, 6 to 40 months). These data suggest that, visually, cataract extraction can be helpful in selected patients who develop a cataract after brachytherapy for malignant melanoma of the choroid.

  1. [Basic principles and results of brachytherapy in gynecological oncology].

    PubMed

    Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V

    2014-01-01

    The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.

  2. Metal artefacts in MRI-guided brachytherapy of cervical cancer.

    PubMed

    Soliman, Abraam S; Owrangi, Amir; Ravi, Ananth; Song, William Y

    2016-08-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions. PMID:27648092

  3. Intraoperative interstitial microwave-induced hyperthermia and brachytherapy.

    PubMed

    Coughlin, C T; Wong, T Z; Strohbehn, J W; Colacchio, T A; Sutton, J E; Belch, R Z; Douple, E B

    1985-09-01

    Intra-operative placement of 11-gauge nylon catheters into deep-seated unresectable tumors for interstitial brachytherapy permits localized heating of tumors (hyperthermia) using microwave (915 MHz) antennas which are inserted into these catheters. Four preliminary cases are described where epithelial tumors at various sites were implanted with an antenna array and heated for 1 hour, both before and after the iridium-192 brachytherapy. Temperatures were monitored in catheters required for the appropriate radiation dosimetry but not required for the interstitial microwave antenna array hyperthermia (IMAAH) system. Additional thermometry was obtained using nonperturbed fiberoptic thermometry probes inserted into the catheters' housing antennas. No significant complications, such as bleeding or infection, were observed. This approach to cancer therapy is shown to be feasible and it produces controlled, localized hyperthermia, with temperatures of 50 degrees C or more in tumors. This technique may offer a therapeutic option for pelvic, intra-abdominal and head and neck tumors.

  4. Metal artefacts in MRI-guided brachytherapy of cervical cancer

    PubMed Central

    Owrangi, Amir; Ravi, Ananth; Song, William Y.

    2016-01-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions. PMID:27648092

  5. Metal artefacts in MRI-guided brachytherapy of cervical cancer.

    PubMed

    Soliman, Abraam S; Owrangi, Amir; Ravi, Ananth; Song, William Y

    2016-08-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions.

  6. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  7. High dose rate (HDR) brachytherapy quality assurance: a practical guide

    PubMed Central

    Wilkinson, DA

    2006-01-01

    The widespread adoption of high dose rate brachytherapy with its inherent dangers necessitates adoption of appropriate quality assurance measures to minimize risks to both patients and medical staff. This paper is aimed at assisting someone who is establishing a new program or revising one already in place into adhere to the recently issued Nuclear Regulatory Commission (USA) regulations and the guidelines from the American Association of Physicists in Medicine. PMID:21614233

  8. Brachytherapy in Lip Carcinoma: Long-Term Results

    SciTech Connect

    Guibert, Mireille; David, Isabelle; Vergez, Sebastien; Rives, Michel; Filleron, Thomas; Bonnet, Jacques; Delannes, Martine

    2011-12-01

    Purpose: The aim of this study was to evaluate the effectiveness of low-dose-rate brachytherapy for local control and relapse-free survival in squamous cell and basal cell carcinomas of the lips. We compared two groups: one with tumors on the skin and the other with tumors on the lip. Patients and methods: All patients had been treated at Claudius Regaud Cancer Centre from 1990 to 2008 for squamous cell or basal cell carcinoma. Low-dose-rate brachytherapy was performed with iridium 192 wires according to the Paris system rules. On average, the dose delivered was 65 Gy. Results: 172 consecutive patients were included in our study; 69 had skin carcinoma (squamous cell or basal cell), and 92 had squamous cell mucosal carcinoma. The average follow-up time was 5.4 years. In the skin cancer group, there were five local recurrences and one lymph node recurrence. In the mucosal cancer group, there were ten local recurrences and five lymph node recurrences. The 8-year relapse-free survival for the entire population was 80%. The 8-year relapse-free survival was 85% for skin carcinoma 75% for mucosal carcinoma, with no significant difference between groups. The functional results were satisfactory for 99% of patients, and the cosmetic results were satisfactory for 92%. Maximal toxicity observed was Grade 2. Conclusions: Low-dose-rate brachytherapy can be used to treat lip carcinomas at Stages T1 and T2 as the only treatment with excellent results for local control and relapse-free survival. The benefits of brachytherapy are also cosmetic and functional, with 91% of patients having no side effects.

  9. Californium-252 brachytherapy for anal and ano-rectal carcinoma

    SciTech Connect

    Cross, B.; Maruyama, Y.; Proudfoot, W.; Malcolm, A.

    1986-01-01

    Surgery has historically been the standard treatment for anal, ano-rectal and rectal carcinoma but is prone to local or regional failure. Over the past 15 years there has been increasing interest in and success with radiation therapy and combined chemoradiotherapy for treatment of anal and ano-rectal cancers. Cf-252 brachytherapy combined with external beam teletherapy has been investigated for anal and ano-rectal lesions at the Univ. of Kentucky with encouraging results.

  10. Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Lief, Jonathan H.; Allen, Zachariah A.; Wallner, Kent E.

    2012-01-01

    Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an association between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase {>=}25%, 23% of men experienced a decrease {>=}25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA response

  11. Cable attachment for a radioactive brachytherapy source capsule

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-07-18

    In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

  12. Sexual Function and the Use of Medical Devices or Drugs to Optimize Potency After Prostate Brachytherapy

    SciTech Connect

    Whaley, J. Taylor; Levy, Lawrence B.; Swanson, David A.; Pugh, Thomas J.; Kudchadker, Rajat J.; Bruno, Teresa L.; Frank, Steven J.

    2012-04-01

    Purpose: Prospective evaluation of sexual outcomes after prostate brachytherapy with iodine-125 seeds as monotherapy at a tertiary cancer care center. Methods and Materials: Subjects were 129 men with prostate cancer with I-125 seed implants (prescribed dose, 145 Gy) without supplemental hormonal or external beam radiation therapy. Sexual function, potency, and bother were prospectively assessed at baseline and at 1, 4, 8, and 12 months using validated quality-of-life self-assessment surveys. Postimplant dosimetry values, including dose to 10% of the penile bulb (D10), D20, D33, D50, D75, D90, and penile volume receiving 100% of the prescribed dose (V100) were calculated. Results: At baseline, 56% of patients recorded having optimal erections; at 1 year, 62% of patients with baseline erectile function maintained optimal potency, 58% of whom with medically prescribed sexual aids or drugs. Variables associated with pretreatment-to-posttreatment decline in potency were time after implant (p = 0.04) and age (p = 0.01). Decline in urinary function may have been related to decline in potency. At 1 year, 69% of potent patients younger than 70 years maintained optimal potency, whereas 31% of patients older than 70 maintained optimal potency (p = 0.02). Diabetes was related to a decline in potency (p = 0.05), but neither smoking nor hypertension were. For patients with optimal potency at baseline, mean sexual bother scores had declined significantly at 1 year (p < 0.01). Sexual potency, sexual function, and sexual bother scores failed to correlate with any dosimetric variable tested. Conclusions: Erections firm enough for intercourse can be achieved at 1 year after treatment, but most men will require medical aids to optimize potency. Although younger men were better able to maintain erections firm enough for intercourse than older men, there was no correlation between potency, sexual function, or sexual bother and penile bulb dosimetry.

  13. Accelerated partial breast irradiation utilizing brachytherapy: patient selection and workflow.

    PubMed

    Shah, Chirag; Wobb, Jessica; Manyam, Bindu; Khan, Atif; Vicini, Frank

    2016-02-01

    Accelerated partial breast irradiation (APBI) represents an evolving technique that is a standard of care option in appropriately selected woman following breast conserving surgery. While multiple techniques now exist to deliver APBI, interstitial brachytherapy represents the technique used in several randomized trials (National Institute of Oncology, GEC-ESTRO). More recently, many centers have adopted applicator-based brachytherapy to deliver APBI due to the technical complexities of interstitial brachytherapy. The purpose of this article is to review methods to evaluate and select patients for APBI, as well as to define potential workflow mechanisms that allow for the safe and effective delivery of APBI. Multiple consensus statements have been developed to guide clinicians on determining appropriate candidates for APBI. However, recent studies have demonstrated that these guidelines fail to stratify patients according to the risk of local recurrence, and updated guidelines are expected in the years to come. Critical elements of workflow to ensure safe and effective delivery of APBI include a multidisciplinary approach and evaluation, optimization of target coverage and adherence to normal tissue guideline constraints, and proper quality assurance methods. PMID:26985202

  14. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    SciTech Connect

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D.

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document.

  15. Report of a consensus meeting on focal low dose rate brachytherapy for prostate cancer.

    PubMed

    Langley, Stephen; Ahmed, Hashim U; Al-Qaisieh, Bashar; Bostwick, David; Dickinson, Louise; Veiga, Francisco Gomez; Grimm, Peter; Machtens, Stefan; Guedea, Ferran; Emberton, Mark

    2012-02-01

    What's known on the subject? and What does the study add? Whole gland brachytherapy has been used to successfully treat prostate cancer but the protocol for focal therapy has not previously been established. The consensus findings provide guidance on patient selection for focal brachytherapy as well as recommendations for conducting therapy and patient follow-up. Low dose rate prostate brachytherapy is an effective treatment for localized prostate cancer. Recently, it has been considered for use in a focused manner whereby treatment is targeted only to areas of prostate cancer. The objective of focal brachytherapy is to provide effective cancer control for low-risk disease but with reduced genitourinary and rectal side-effects in a cost-effective way. We report on the outputs of a consensus meeting of international experts in brachytherapy and focal therapy convened to consider the feasibility and potential development of focal brachytherapy. A number of factors were considered for focal brachytherapy including optimal patient selection, disease characterization and localization, treatment protocols and outcome measures. The consensus meeting also addressed the design of a clinical trial that would assess the oncological outcomes and side-effect profiles resulting from focal brachytherapy. PMID:22239224

  16. [Brachytherapy in France: current situation and economic outlook due to the unavailability of iridium wires].

    PubMed

    Le Vu, B; Boucher, S

    2014-10-01

    In 2013, about 6000 patients were treated with brachytherapy, the number diminishing by 2.6% per year since 2008. Prostate, breast and gynecological cancers are the most common types of cancers. Since 2008, the number of brachytherapy facilities has decreased by 18%. In medicoeconomic terms, brachytherapy faces many problems: the coding system is outdated; brachytherapy treatments cost as much as internal radiation; fees do not cover costs; since iridium wire has disappeared from the market, the technique will be transferred to more expensive high-speed or pulse dose rates. The French financing grid based on the national study of costs lags behind changes in such treatments and in the best of cases, hospitals resorting to alternatives such as in-hospital brachytherapy are funded at 46% of their additional costs. Brachytherapy is a reference technique. With intense pressure on hospital pricing, financing brachytherapy facilities will become even more problematic as a consequence of the disappearance of iridium 192 wires. The case of brachytherapy illustrates the limits of the French financing system and raises serious doubts as to its responsiveness. PMID:25195115

  17. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy.

    PubMed

    Kasper, Michael E; Chaudhary, Ahmed A

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and (226)Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy.

  18. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  19. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy.

    PubMed

    Kasper, Michael E; Chaudhary, Ahmed A

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and (226)Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. PMID:26648763

  20. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy

    PubMed Central

    Kasper, Michael E; Chaudhary, Ahmed A

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and 226Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. PMID:26648763

  1. Seed Treatment. Bulletin 760.

    ERIC Educational Resources Information Center

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  2. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.

    PubMed

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm(3) calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  3. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  4. The use of isodose curves on radiographs and on CT scans in interstitial brachytherapy.

    PubMed

    Warszawski, N; Bleher, M; Bratengeier, K; Bohndorf, W

    1992-07-01

    In brachytherapy an accurate dose distribution is usually not definable, and therefore not required. If flexible catheters are implanted, such as in head and neck cancer, resulting isodose curves only rarely fit exactly to radiographic films, and the target volume is not easily reconstructed. Usually no clear relationship exists between the three-dimensional (3D) dose distribution and target volume on the one hand and the two-dimensional (2D) radiographic films on the other. Dose distributions on radiographs are not sufficient to define the target absorbed dose and doses that critical areas will receive. A 3D imaging system, like computed tomographic (CT) scans, is needed in order to visualize underdosage inside the target volume and non-tolerable hot spots outside the tumour. Large-scale and expensive techniques exist to tackle these problems. Our inexpensive and verifiable approach to solve these problems combines localization radiographs with CT scans. Whereas tumour and critical areas are displayed on CT scans, flexible catheters loaded with dummy sources are best seen on radiographic films. With the help of a self-developed computer program, dose distributions are superimposed on CT scans. Doses to the target and critical organs are easily read and verified by external and internal detectors.

  5. Monte Carlo dosimetry for {sup 103}Pd, {sup 125}I, and {sup 131}Cs ocular brachytherapy with various plaque models using an eye phantom

    SciTech Connect

    Lesperance, Marielle; Martinov, M.; Thomson, R. M.

    2014-03-15

    Purpose: To investigate dosimetry for ocular brachytherapy for a range of eye plaque models containing{sup 103}Pd, {sup 125}I, or {sup 131}Cs seeds with model-based dose calculations. Methods: Five representative plaque models are developed based on a literature review and are compared to the standardized COMS plaque, including plaques consisting of a stainless steel backing and acrylic insert, and gold alloy backings with: short collimating lips and acrylic insert, no lips and silicone polymer insert, no lips and a thin acrylic layer, and individual collimating slots for each seed within the backing and no insert. Monte Carlo simulations are performed using the EGSnrc user-code BrachyDose for single and multiple seed configurations for the plaques in water and within an eye model (including nonwater media). Simulations under TG-43 assumptions are also performed, i.e., with the same seed configurations in water, neglecting interseed and plaque effects. Maximum and average doses to ocular structures as well as isodose contours are compared for simulations of each radionuclide within the plaque models. Results: The presence of the plaque affects the dose distribution substantially along the plaque axis for both single seed and multiseed simulations of each plaque design in water. Of all the plaque models, the COMS plaque generally has the largest effect on the dose distribution in water along the plaque axis. Differences between doses for single and multiple seed configurations vary between plaque models and radionuclides. Collimation is most substantial for the plaque with individual collimating slots. For plaques in the full eye model, average dose in the tumor region differs from those for the TG-43 simulations by up to 10% for{sup 125}I and {sup 131}Cs, and up to 17% for {sup 103}Pd, and in the lens region by up to 29% for {sup 125}I, 34% for {sup 103}Pd, and 28% for {sup 131}Cs. For the same prescription dose to the tumor apex, the lowest doses to critical

  6. Third-party brachytherapy source calibrations and physicist responsibilities: Report of the AAPM Low Energy Brachytherapy Source Calibration Working Group

    SciTech Connect

    Butler, Wayne M.; Bice, William S. Jr.; DeWerd, Larry A.; Hevezi, James M.; Huq, M. Saiful; Ibbott, Geoffrey S.; Palta, Jatinder R.; Rivard, Mark J.; Seuntjens, Jan P.; Thomadsen, Bruce R.

    2008-09-15

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations.

  7. Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group.

    PubMed

    Butler, Wayne M; Bice, William S; DeWerd, Larry A; Hevezi, James M; Huq, M Saiful; Ibbott, Geoffrey S; Palta, Jatinder R; Rivard, Mark J; Seuntjens, Jan P; Thomadsen, Bruce R

    2008-09-01

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations. PMID:18841836

  8. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    SciTech Connect

    Craciunescu, O; Todor, D; Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  9. Ocular Response of Choroidal Melanoma With Monosomy 3 Versus Disomy 3 After Iodine-125 Brachytherapy

    SciTech Connect

    Marathe, Omkar S.; Wu, Jeffrey; Lee, Steve P.; Yu Fei; Burgess, Barry L.; Leu Min; Straatsma, Bradley R.; McCannel, Tara A.

    2011-11-15

    Purpose: To report the ocular response of choroidal melanoma with monosomy 3 vs. disomy 3 after {sup 125}I brachytherapy. Methods and Materials: We evaluated patients with ciliochoroidal melanoma managed with fine needle aspiration biopsy immediately before plaque application for {sup 125}I brachytherapy between January 1, 2005 and December 31, 2008. Patients with (1) cytopathologic diagnosis of melanoma, (2) melanoma chromosome 3 status identified by fluorescence in situ hybridization, and (3) 6 or more months of follow-up after brachytherapy were sorted by monosomy 3 vs. disomy 3 and compared by Kruskal-Wallis test. Results: Among 40 ciliochoroidal melanomas (40 patients), 15 had monosomy 3 and 25 had disomy 3. Monosomy 3 melanomas had a median greatest basal diameter of 12.00 mm and a median tumor thickness of 6.69 mm before brachytherapy; at a median of 1.75 years after brachytherapy, median thickness was 3.10 mm. Median percentage decrease in tumor thickness was 48.3%. Disomy 3 melanomas had a median greatest basal diameter of 10.00 mm and median tumor thickness of 3.19 mm before brachytherapy; at a median of 2.00 years after brachytherapy, median tumor thickness was 2.37 mm. The median percentage decrease in tumor thickness was 22.7%. Monosomy 3 melanomas were statistically greater in size than disomy 3 melanomas (p < 0.001) and showed a greater decrease in tumor thickness after brachytherapy (p = 0.006). Conclusion: In this study, ciliochoroidal melanomas with monosomy 3 were significantly greater in size than disomy 3 melanoma and showed a significantly greater decrease in thickness at a median of 1.75 years after brachytherapy. The greater decrease in monosomy 3 melanoma thickness after brachytherapy is consistent with other malignancies in which more aggressive pathology has been shown to be associated with a greater initial response to radiotherapy.

  10. What Are Chia Seeds?

    MedlinePlus

    ... Men For Women For Seniors What Are Chia Seeds? Published February 05, 2014 Print Email When you ... number of research participants. How to Eat Chia Seeds Chia seeds can be eaten raw or prepared ...

  11. Dynamic modulated brachytherapy (DMBT) and intensity modulated brachytherapy (IMBT) for the treatment of rectal and breast carcinomas

    NASA Astrophysics Data System (ADS)

    Webster, Matthew Julian

    The ultimate goal of any treatment of cancer is to maximize the likelihood of killing the tumor while minimizing the chance of damaging healthy tissues. One of the most effective ways to accomplish this is through radiation therapy, which must be able to target the tumor volume with a high accuracy while minimizing the dose delivered to healthy tissues. A successful method of accomplishing this is brachytherapy which works by placing the radiation source in very close proximity to the tumor. However, most current applications of brachytherapy rely mostly on the geometric manipulation of isotropic sources, which limits the ability to specifically target the tumor. The purpose of this work is to introduce several types of shielded brachytherapy applicators which are capable of targeting tumors with much greater accuracy than existing technologies. These applicators rely on the modulation of the dose profile through a high-density tungsten alloy shields to create anisotropic dose distributions. Two classes of applicators have been developed in this work. The first relies on the active motion of the shield, to aim a highly directional radiation profile. This allows for very precise control of the dose distribution for treatment, achieving unparalleled dose coverage to the tumor while sparing healthy tissues. This technique has been given the moniker of Dynamic Modulated Brachytherapy (DMBT). The second class of applicators, designed to reduce treatment complexity uses static applicators. These applicators retain the use of the tungsten shield, but the shield is motionless during treatment. By intelligently designing the shield, significant improvements over current methods have been demonstrated. Although these static applicators fail to match the dosimetric quality of DMBT applicators the simplified setup and treatment procedure gives them significant appeal. The focus of this work has been to optimize these shield designs, specifically for the treatment of rectal and

  12. Project Reconstruct.

    ERIC Educational Resources Information Center

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  13. Vaginal reconstruction

    SciTech Connect

    Lesavoy, M.A.

    1985-05-01

    Vaginal reconstruction can be an uncomplicated and straightforward procedure when attention to detail is maintained. The Abbe-McIndoe procedure of lining the neovaginal canal with split-thickness skin grafts has become standard. The use of the inflatable Heyer-Schulte vaginal stent provides comfort to the patient and ease to the surgeon in maintaining approximation of the skin graft. For large vaginal and perineal defects, myocutaneous flaps such as the gracilis island have been extremely useful for correction of radiation-damaged tissue of the perineum or for the reconstruction of large ablative defects. Minimal morbidity and scarring ensue because the donor site can be closed primarily. With all vaginal reconstruction, a compliant patient is a necessity. The patient must wear a vaginal obturator for a minimum of 3 to 6 months postoperatively and is encouraged to use intercourse as an excellent obturator. In general, vaginal reconstruction can be an extremely gratifying procedure for both the functional and emotional well-being of patients.

  14. Surface reconstruction through poisson disk sampling.

    PubMed

    Hou, Wenguang; Xu, Zekai; Qin, Nannan; Xiong, Dongping; Ding, Mingyue

    2015-01-01

    This paper intends to generate the approximate Voronoi diagram in the geodesic metric for some unbiased samples selected from original points. The mesh model of seeds is then constructed on basis of the Voronoi diagram. Rather than constructing the Voronoi diagram for all original points, the proposed strategy is to run around the obstacle that the geodesic distances among neighboring points are sensitive to nearest neighbor definition. It is obvious that the reconstructed model is the level of detail of original points. Hence, our main motivation is to deal with the redundant scattered points. In implementation, Poisson disk sampling is taken to select seeds and helps to produce the Voronoi diagram. Adaptive reconstructions can be achieved by slightly changing the uniform strategy in selecting seeds. Behaviors of this method are investigated and accuracy evaluations are done. Experimental results show the proposed method is reliable and effective. PMID:25915744

  15. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    SciTech Connect

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent {sup 103}Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm{sup 3}, respectively, much lower than the 159 Gy and 0.65 cm{sup 3} obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry

  16. Long term outcome and side effects in patients receiving low-dose I125 brachytherapy: a retrospective analysis

    PubMed Central

    Logghe, Pieter; Verlinde, Rolf; Bouttens, Frank; den Broecke, Caroline Van; Deman, Nathalie; Verboven, Koen; Maes, Dirk; Merckx, Luc

    2016-01-01

    ABSTRACT Objectives: To retrospectively evaluate the disease free survival (DFS), disease specific survival (DSS),overall survival (OS) and side effects in patients who received low-dose rate (LDR) brachytherapy with I125 stranded seeds. Materials and methods: Between july 2003 and august 2012, 274 patients with organ confined prostate cancer were treated with permanent I125 brachytherapy. The median follow-up, age and pretreatment prostate specific antigen (iPSA) was 84 months (12-120), 67 years (50-83) and 7.8 ng/mL (1.14-38), respectively. Median Gleason score was 6 (3-9). 219 patients (80%) had stage cT1c, 42 patients (15.3%) had stage cT2a, 3 (1.1%) had stage cT2b and 3 (1.1%) had stage cT2c. The median D90 was 154.3 Gy (102.7-190.2). Results: DSS was 98.5%.OS was 93.5%. 13 patients (4.7%) developed systemic disease, 7 patients (2.55%) had local progression. In 139 low risk patients, the 5 year biochemical freedom from failure rate (BFFF) was 85% and 9 patients (6.4%) developed clinical progression. In the intermediate risk group, the 5 year BFFF rate was 70% and 5 patients (7.1%) developed clinical progression. Median nPSA in patients with biochemical relapse was 1.58 ng/mL (0.21 – 10.46), median nPSA in patients in remission was 0.51 ng/mL (0.01 – 8.5). Patients attaining a low PSA nadir had a significant higher BFFF (p<0.05). Median D90 in patients with biochemical relapse was 87.2 Gy (51 – 143,1). Patients receiving a high D90 had a significant higher BFFF (p<0.05). Conclusion: In a well selected patient population, LDR brachytherapy offers excellent outcomes. Reaching a low PSA nadir and attaining high D90 values are significant predictors for a higher DFS. PMID:27532118

  17. Potential role of TRAns Cervical Endosonography (TRACE) in brachytherapy of cervical cancer: proof of concept

    PubMed Central

    Kirisits, Christian

    2016-01-01

    Purpose Magnetic resonance imaging (MRI) is the gold standard for image guided adaptive brachytherapy (BT) of cervical cancer. Ultrasound is an attractive alternative with reasonable costs and high soft tissue depiction quality. This technical note aims to demonstrate the proof of principle for use of TRAns Cervical Endosonography with rotating transducer in the context of brachytherapy (TRACE BT). Material and methods TRACE BT presentation is based on a single stage IIB cervical cancer patient. Prior to second BT implant, rotating US transducer (6.9 mm diameter) was inserted in cervical canal and axial images obtained at 10 MHz, focal range of 30 mm, and axial resolution of 0.4 mm. Size and topography of hypo-echoic areas were assessed and optimal positions of interstitial needles were determined. Finally, intracavitary applicator was placed and needles inserted through vaginal ring-template according to TRACE pre-plan. MRI-based high risk clinical target volume (CTVHR) dimensions were compared with hypoechoic areas on TRACE. Topography of parametrial needles on post-insertion MRI was compared with TRACE pre-plan. Results Insertion of rotating mechanism into cervico-uterine cavity was safe, feasible and fast. The 360° imaging in axial plane enabled real-time assessment of cervix, uterus, and adjacent parametria. Qualitative comparison of TRACE with post-insertion MRI revealed favorable agreement of findings. In-plane size of CTVHR on MRI was comparable to hypoechoic areas on TRACE. Needle positions on post-insertion MRI corresponded to TRACE-based pre-plan. Main limitation of TRACE was gradual deterioration of image quality due to coupling gel removal. Conclusions Present proof of concept demonstrates potential role of TRACE-BT for cervical cancer as an attractive high-tech approach with reasonable costs. Prior to investigation of its clinical role, further development of TRACE methodology is needed. This includes reliable transducer-tissue coupling, applicator

  18. Natural History of Clinically Staged Low- and Intermediate-Risk Prostate Cancer Treated With Monotherapeutic Permanent Interstitial Brachytherapy

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Wallner, Kent E.; Butler, Wayne M.

    2010-02-01

    Purpose: To evaluate the natural history of clinically staged low- and intermediate-risk prostate cancer treated with permanent interstitial seed implants as monotherapy. Methods and Materials: Between April 1995 and May 2005, 463 patients with clinically localized prostate cancer underwent brachytherapy as the sole definitive treatment. Men who received supplemental external beam radiotherapy or androgen deprivation therapy were excluded. Dosimetric implant quality was determined based on the minimum dose that covered 90% of the target volume and the volume of the prostate gland receiving 100% of the prescribed dose. Multiple parameters were evaluated as predictors of treatment outcomes. Results: The 12-year biochemical progression-free survival (bPFS), cause-specific survival, and overall survival rates for the entire cohort were 97.1%, 99.7%, and 75.4%, respectively. Only pretreatment prostate-specific antigen level, percent positive biopsy cores, and minimum dose that covered 90% of the target volume were significant predictors of biochemical recurrence. The bPFS, cause-specific survival, and overall survival rates were 97.4%, 99.6%, and 76.2%, respectively, for low-risk patients and 96.4%, 100%, and 74.0%, respectively, for intermediate-risk patients. The bPFS rate was 98.8% for low-risk patients with high-quality implants versus 92.1% for those with less adequate implants (p < 0.01), and it was 98.3% for intermediate-risk patients with high-quality implants versus 86.4% for those with less adequate implants (p < 0.01). Conclusions: High-quality brachytherapy implants as monotherapy can provide excellent outcomes for men with clinically staged low- and intermediate-risk prostate cancer. For these men, a high-quality implant can achieve results comparable to high-quality surgery in the most favorable pathologically staged patient subgroups.

  19. Bean Seed Imbibition.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1998-01-01

    Enables students to examine the time course for seed imbibition and the pressure generated by imbibing seeds. Provides background information, detailed procedures, and ideas for further investigation. (DDR)

  20. Hemiablative Focal Low Dose Rate Brachytherapy: A Phase II Trial Protocol

    PubMed Central

    Bucci, Joseph; Chin, Yaw Sinn; Malouf, David; Howie, Andrew; Enari, Komiti Ese

    2016-01-01

    Background The objective of focal brachytherapy (BT) is to provide effective prostate cancer control for low-risk disease but with reduced genitourinary, gastrointestinal and sexual side effects in a cost-effective way. Objective The aim of this study is to describe a phase II study examining technical and dosimetric feasibility and toxicity, quality of life changes, and local control with post-treatment biopsy outcomes in men with early stage low volume prostate cancer treated with focal iodine-125 seed BT. Methods The study design is a prospective, multicenter trial with a planned sample size of 20 patients including men with a minimum age of 60 years, a life expectancy estimated to be greater than 10 years, with low or low-tier intermediate risk prostate cancer, unilateral disease on the biopsy, and a Gleason score of ≤3+4 and <25% cores involved. The investigations specific for the study are multi-parametric magnetic resonance imaging (Mp-MRI) baseline, at 20 and 36 months to rule out high grade disease and a transperineal mapping biopsy (baseline and at 36 months) for more accurate patient selection. The hemigland region will receive 144 Gy. Standard normal tissue constraints will be considered as for a whole gland (WG) implant. Dosimetric parameters will be evaluated at day 30 after the implant. Toxicity and quality of life will be evaluated with international validated questionnaires focusing on urinary, rectal, sexual domain, and general health-related quality of life. The patients will complete this assessment at baseline and then approximately every 6 months after the implant up to 10 years. Results To date, one patient is involved in the trial. He underwent the pre-implant investigations which found bilateral disease. Therefore, a standard seed implant was performed. If the results from this trial provide evidence that the treatment is safe, feasible, and improves toxicity, funding will be sought to conduct a large, multicenter, randomized controlled

  1. Dose Constraint for Minimizing Grade 2 Rectal Bleeding Following Brachytherapy Combined With External Beam Radiotherapy for Localized Prostate Cancer: Rectal Dose-Volume Histogram Analysis of 457 Patients

    SciTech Connect

    Shiraishi, Yutaka; Yorozu, Atsunori; Ohashi, Toshio; Toya, Kazuhito; Seki, Satoshi; Yoshida, Kayo; Kaneda, Tomoya; Saito, Shiro; Nishiyama, Toru; Hanada, Takashi; Shigematsu, Naoyuki

    2011-11-01

    Purpose: To determine the rectal tolerance to Grade 2 rectal bleeding after I-125 seed brachytherapy combined with external beam radiotherapy (EBRT), based on the rectal dose-volume histogram. Methods and Materials: A total of 458 consecutive patients with stages T1 to T3 prostate cancer received combined modality treatment consisting of I-125 seed implantation followed by EBRT to the prostate and seminal vesicles. The prescribed doses of brachytherapy and EBRT were 100 Gy and 45 Gy in 25 fractions, respectively. The rectal dosimetric factors were analyzed for rectal volumes receiving >100 Gy and >150 Gy (R100 and R150) during brachytherapy and for rectal volumes receiving >30 Gy to 40 Gy (V30-V40) during EBRT therapy in 373 patients for whom datasets were available. The patients were followed from 21 to 72 months (median, 45 months) after the I-125 seed implantation. Results: Forty-four patients (9.7%) developed Grade 2 rectal bleeding. On multivariate analysis, age (p = 0.014), R100 (p = 0.002), and V30 (p = 0.001) were identified as risk factors for Grade 2 rectal bleeding. The rectal bleeding rate increased as the R100 increased: 5.0% (2/40 patients) for 0 ml; 7.5% (20/267 patients) for >0 to 0.5 ml; 11.0% (11/100 patients) for >0.5 to 1 ml; 17.9% (5/28 patients) for >1 to 1.5 ml; and 27.3% (6/22 patients) for >1.5 ml (p = 0.014). Grade 2 rectal bleeding developed in 6.4% (12/188) of patients with a V30 {<=}35% and in 14.1% (26/185) of patients with a V30 >35% (p = 0.02). When these dose-volume parameters were considered in combination, the Grade 2 rectal bleeding rate was 4.2% (5/120 patients) for a R100 {<=}0.5 ml and a V30 {<=}35%, whereas it was 22.4% (13/58 patients) for R100 of >0.5 ml and V30 of >35%. Conclusion: The risk of rectal bleeding was found to be significantly volume-dependent in patients with prostate cancer who received combined modality treatment. Rectal dose-volume analysis is a practical method for predicting the risk of development of

  2. SU-E-J-216: A Sequence Independent Approach for Quantification of MR Image Deformations From Brachytherapy Applicators

    SciTech Connect

    Wieringen, N van; Heerden, L van; Gurney-Champion, O; Kesteren, Z van; Houweling, A; Pieters, B; Bel, A

    2015-06-15

    Purpose: MRI is increasingly used as a single imaging modality for brachytherapy treatment planning. The presence of a brachytherapy applicator may cause distortions in the images, especially at higher field strengths. Our aim is to develop a procedure to quantify these distortions theoretically for any MR-sequence and to verify the estimated deformations for clinical sequences. Methods: Image distortions due to perturbation of the B0-field are proportional to the ratio of the induced frequency shift and the read-out bandwidth of the applied sequence. By reconstructing a frequency-shift map from the phase data from a multi-echo sequence, distortions can be calculated for any MR-sequence. Verification of this method for estimating distortions was performed by acquiring images with opposing read-out directions and consequently opposing distortions. The applicator shift can be determined by rigidly matching these images. Clinically, T2W-TSE-images are used for this purpose. For pre-clinical tests, EPI-sequences with narrow read-out bandwidth (19.5–47.5Hz), consequently large distortions, were added to the set of clinical MRsequences. To quantify deformations of the Utrecht Interstitial CT/MR applicator (Elekta Brachytherapy) on a Philips Ingenia 3T MRI, pre-clinical tests were performed in a phantom with the applicator in water, followed by clinical validation. Results: Deformations observed in the narrow bandwidth EPI-images were well predicted using the frequency-shift, the latter giving an overestimation up to 30%/up to 1 voxel. For clinically applied MR-sequences distortions were well below the voxel size. In patient setup distortions determined from the frequency-shift map were at sub-voxel level (<0.7mm). Using T2W-images larger distortions were found (1–2mm). This discrepancy was caused by patient movement between/during acquisition of the T2W-images with opposing read-out directions. Conclusion: Phantom experiments demonstrated the feasibility of a

  3. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  4. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    PubMed Central

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  5. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    SciTech Connect

    Yang, Xiaofeng Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian; Mao, Hui

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  6. Prostate Brachytherapy in Men {>=}75 Years of Age

    SciTech Connect

    Merrick, Gregory S. Wallner, Kent E.; Galbreath, Robert W.; Butler, Wayne M.; Brammer, Sarah G.; Allen, Zachariah A.; Adamovich, Edward

    2008-10-01

    Purpose: To evaluate cause-specific survival (CSS), biochemical progression-free survival (bPFS), and overall survival (OS) in prostate cancer patients aged {>=}75 years undergoing brachytherapy with or without supplemental therapies. Methods and Materials: Between April 1995 and August 2004, 145 consecutive patients aged {>=}75 years underwent permanent prostate brachytherapy. Median follow-up was 5.8 years. Biochemical progression-free survival was defined by a prostate-specific antigen level {<=}0.40 ng/mL after nadir. Patients with metastatic prostate cancer or hormone-refractory disease without obvious metastases who died of any cause were classified as dead of prostate cancer. All other deaths were attributed to the immediate cause of death. Multiple clinical, treatment, and dosimetric parameters were evaluated for impact on survival. Results: Nine-year CSS, bPFS, and OS rates for the entire cohort were 99.3%, 97.1%, and 64.5%, respectively. None of the evaluated parameters predicted for CSS, whereas bPFS was most closely predicted by percentage positive biopsies. Overall survival and non-cancer deaths were best predicted by tobacco status. Thirty-seven patients have died, with 83.8% of the deaths due to cardiovascular disease (22 patients) or second malignancies (9 patients). To date, only 1 patient (0.7%) has died of metastatic prostate cancer. Conclusions: After brachytherapy, high rates of CSS and bPFS are noted in elderly prostate cancer patients. Overall, approximately 65% of patients are alive at 9 years, with survival most closely related to tobacco status. We believe our results support an aggressive locoregional approach in appropriately selected elderly patients.

  7. Use of radiochromic dosimetry film for HDR brachytherapy quality assurance.

    PubMed

    Steidley, K D

    1998-01-01

    An important quality assurance (QA) procedure in high dose rate (HDR) remote afterloading brachytherapy is the verification of the system's control of the source by a direct test with dosimetry medium prior to the patient's first treatment. In this test radiochromic film is placed in direct contact with the applicator and the patient's proposed treatment is then run with their EPROM card. Examination of the film allows a quick appraisal of step size, number of steps, and offset. Advantages of this film include self-development so the image may be viewed immediately, insensitivity to normal room light, and archivability. The cost is about U.S. $2 per clinical case.

  8. Radiological response of ceramic and polymeric devices for breast brachytherapy.

    PubMed

    Nogueira, Luciana Batista; de Campos, Tarcisio Passos Ribeiro

    2012-04-01

    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis.

  9. [Endobronchial brachytherapy: state of the art in 2013].

    PubMed

    Derhem, N; Sabila, H; Mornex, F

    2013-04-01

    Endobronchial brachytherapy is an invasive technique, which allows localizing radioactive sources at the tumour contact. Therefore, high doses are administered to tumour while healthy tissues can be spared. Initially dedicated to a palliative setting, improvements helped reaching 60 to 88% symptoms alleviation and 30 to 100% of endoscopic macroscopic response. New diagnostic techniques and early diagnosis extended the indications to a curative intent: endoluminal primitive tumour, post radiation endobronchial recurrence, inoperable patients. CT-based dosimetry is a keypoint to optimize treatment quality and to minimize potential side effects, making this treatment a safe and efficient technique for specific indications. PMID:23465785

  10. A novel curvilinear approach for prostate seed implantation

    SciTech Connect

    Podder, Tarun K.; Dicker, Adam P.; Hutapea, Parsaoran; Darvish, Kurosh; Yu Yan

    2012-04-15

    Purpose: A new technique called ''curvilinear approach'' for prostate seed implantation has been proposed. The purpose of this study is to evaluate the dosimetric benefit of curvilinear distribution of seeds for low-dose-rate (LDR) prostate brachytherapy. Methods: Twenty LDR prostate brachytherapy cases planned intraoperatively with VariSeed planning system and I-125 seeds were randomly selected as reference rectilinear cases. All the cases were replanned by using curved-needle approach keeping the same individual source strength and the volume receiving 100% of prescribed dose 145 Gy (V{sub 100}). Parameters such as number of needles, seeds, and the dose coverage of the prostate (D{sub 90}, V{sub 150}, V{sub 200}), urethra (D{sub 30}, D{sub 10}) and rectum (D{sub 5}, V{sub 100}) were compared for the rectilinear and the curvilinear methods. Statistical significance was assessed using two-tailed student's t-test. Results: Reduction of the required number of needles and seeds in curvilinear method were 30.5% (p < 0.001) and 11.8% (p < 0.49), respectively. Dose to the urethra was reduced significantly; D{sub 30} reduced by 10.1% (p < 0.01) and D{sub 10} reduced by 9.9% (p < 0.02). Reduction in rectum dose D{sub 5} was 18.5% (p < 0.03) and V{sub 100} was also reduced from 0.93 cc in rectilinear to 0.21 cc in curvilinear (p < 0.001). Also the V{sub 150} and V{sub 200} coverage of prostate reduced by 18.8% (p < 0.01) and 33.9% (p < 0.001), respectively. Conclusions: Significant improvement in the relevant dosimetric parameters was observed in curvilinear needle approach. Prostate dose homogeneity (V{sub 150}, V{sub 200}) improved while urethral dose was reduced, which might potentially result in better treatment outcome. Reduction in rectal dose could potentially reduce rectal toxicity and complications. Reduction in number of needles would minimize edema and thereby could improve postimplant urinary incontinence. This study indicates that the curvilinear implantation

  11. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    SciTech Connect

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-02-15

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model

  12. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Lim, Tze Yee; Stafford, R. Jason; Kudchadker, Rajat J.; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S.; Frank, Steven J.

    2014-05-01

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures.

  13. Feasibility of radiochromic gels for 3D dosimetry of brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Šolc, Jaroslav; Sochor, Vladimír

    2012-10-01

    Two radiochromic gel dosimeters, Fricke-xylenol orange (FXO) gel and Turnbull Blue (TB) gel, were studied in the scope of the iMERA+ project ‘Increasing cancer treatment efficacy using 3D brachytherapy’ for their feasibility for the determination of relative 3D dose distribution of brachytherapy (BT) sources. Initially, the dose, dose rate and energy dependence of the gels were investigated. Subsequently, the gels were irradiated by a point low-dose-rate source IsoSeed I25.S16 (125I) and a high-dose-rate source GammaMed+ (192Ir) and scanned using optical computed tomography. Optical transmission images of irradiated gels were processed to obtain detailed 3D optical density maps inside the gels with voxel dimensions of 0.25 × 0.25 × 0.25 mm3. The radial dose function between 1.5 mm and 35 mm from the source and the anisotropy function at 10 mm radius were determined and compared with Monte Carlo calculations and TG-43 data, showing agreement mostly within the measurement uncertainty. Results revealed that the TB gel is feasible for measurements of the relative 3D dose distributions very close to the point BT source because it conserves sharp dose gradients as this gel does not suffer diffusion of dye created upon irradiation. On the other hand, FXO gel underestimates doses closer than 5 mm from the source due to diffusion effects, but it has a significantly higher sensitivity which enables convenient measurement of relative doses up to 35 mm from the source. Further development, especially on gel composition and corrections to optical CT images, is desirable.

  14. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype

    SciTech Connect

    Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana; Ishmael Parsai, E.; Subramanian, Manny

    2014-02-15

    Purpose: A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulating thermal properties. Methods: The new seed's geometry is based on the standard BEST Model 2301{sup 125}I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni–Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni–Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Results: Annealing the Ni–Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT

  15. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  16. 2D/3D registration algorithm for lung brachytherapy

    SciTech Connect

    Zvonarev, P. S.; Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E.; Sur, R. K.

    2013-02-15

    Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

  17. A Brachytherapy Plan Evaluation Tool for Interstitial Applications

    PubMed Central

    Nambiraj, N. Arunai; Dayalan, Sridhar; Ganesh, Kalaivany; Anchineyan, Pichandi; Bilimagga, Ramesh S.

    2014-01-01

    Radiobiological metrics such as tumor control probability (TCP) and normal tissue complication probability (NTCP) help in assessing the quality of brachytherapy plans. Application of such metrics in clinics as well as research is still inadequate. This study presents the implementation of two indigenously designed plan evaluation modules: Brachy_TCP and Brachy_NTCP. Evaluation tools were constructed to compute TCP and NTCP from dose volume histograms (DVHs) of any interstitial brachytherapy treatment plan. The computation module was employed to estimate probabilities of tumor control and normal tissue complications in ten cervical cancer patients based on biologically effective equivalent uniform dose (BEEUD). The tumor control and normal tissue morbidity were assessed with clinical followup and were scored. The acute toxicity was graded using common terminology criteria for adverse events (CTCAE) version 4.0. Outcome score was found to be correlated with the TCP/NTCP estimates. Thus, the predictive ability of the estimates was quantified with the clinical outcomes. Biologically effective equivalent uniform dose-based formalism was found to be effective in predicting the complexities and disease control. PMID:24665263

  18. Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water

    SciTech Connect

    Tailor, Ramesh; Tolani, Naresh; Ibbott, Geoffrey S.

    2008-09-15

    Radiation therapy dose measurements are customarily performed in liquid water. The characterization of brachytherapy sources is, however, generally based on measurements made with thermoluminescence dosimeters (TLDs), for which contact with water may lead to erroneous readings. Consequently, most dosimetry parameters reported in the literature have been based on measurements in water-equivalent plastics, such as Solid Water. These previous reports employed a correction factor to transfer the dose measurements from a plastic phantom to liquid water. The correction factor most often was based on Monte Carlo calculations. The process of measuring in a water-equivalent plastic phantom whose exact composition may be different from published specifications, then correcting the results to a water medium leads to increased uncertainty in the results. A system has been designed to enable measurements with TLDs in liquid water. This system, which includes jigs to support water-tight capsules of lithium fluoride in configurations suitable for measuring several dosimetric parameters, was used to determine the correction factor from water-equivalent plastic to water. Measurements of several {sup 125}I and {sup 131}Cs prostate brachytherapy sources in liquid water and in a Solid Water phantom demonstrated a correction factor of 1.039{+-}0.005 at 1 cm distance. These measurements are in good agreement with a published value of this correction factor for an {sup 125}I source.

  19. Remote afterloading for intracavitary and interstitial brachytherapy with californium-252

    NASA Astrophysics Data System (ADS)

    Tačev, Tačo; Grigorov, Grigor; Papírek, Tomáš; Kolařík, Vladimír.

    2004-01-01

    The authors present their design concept of remote afterloading for 252Cf brachytherapy with respect to characteristic peculiarities of 252Cf and the current worldwide development of remote afterloading devices. The afterloading device has been designed as a stationary radiator comprising three mutually interconnected units: (1) a control and drive unit, consisting of a control computer and a motor-driven Bowden system carrying the 252Cf source; (2) a source housed in a watertight, concrete vessel, which is stored in a strong room situated well beneath the patient's bed and (3) an afterloading application module installed in the irradiation room. As 252Cf is a nuclide with low specific activity, it was necessary to produce two independent devices for high dose rate intracavitary treatment and for low dose rate intestinal treatment. The sources may be moved arbitrarily during the treatment with a position accuracy of 0.5-1.0 mm within a distance of 520 cm from the source storage position in the strong room to the application position. The technical concept of the present automatic afterloading device for neutron brachytherapy represents one possible option of a range of conceivable design variants, which, while minimizing the technical and economic requirements, provides operating personnel with optimum protection and work safety, thus extending the applicability of high-LET radiation-based treatment methods in clinical practice.

  20. Brain damage from sup 125 I brachytherapy evaluated by MR imaging, a blood-brain barrier tracer, and light and electron microscopy in a rat model

    SciTech Connect

    Bernstein, M.; Marotta, T.; Stewart, P.; Glen, J.; Resch, L.; Henkelman, M. )

    1990-10-01

    Changes in normal rat brain were studied acutely, and at 3, 6, 9, and 12 months following interstitial brachytherapy with high-activity {sup 125}I seeds. An 80-Gy radiation dose was administered to an area with a 5.5-mm radius. Effects were measured with magnetic resonance (MR) imaging (with and without gadolinium enhancement), leakage of horseradish peroxidase (HRP), electron microscopy, and light microscopy. Significant histological damage was seen at radiation doses above 295 Gy, and breakdown of the blood-brain barrier was observed only in tissue receiving a dose of 165 Gy or greater. Blood-brain barrier breakdown increased up to the 6-month time point, and thereafter appeared to stabilize or decrease. The area of blood-brain barrier disruption indicated by gadolinium-enhanced MR imaging was greater than that indicated by leakage of HRP.

  1. Systematic Review of Focal Prostate Brachytherapy and the Future Implementation of Image-Guided Prostate HDR Brachytherapy Using MR-Ultrasound Fusion.

    PubMed

    Peach, M Sean; Trifiletti, Daniel M; Libby, Bruce

    2016-01-01

    Prostate cancer is the most common malignancy found in North American and European men and the second most common cause of cancer related death. Since the practice of PSA screening has become common the disease is most often found early and can have a long indolent course. Current definitive therapy treats the whole gland but has considerable long-term side effects. Focal therapies may be able to target the cancer while decreasing dose to organs at risk. Our objective was to determine if focal prostate brachytherapy could meet target objectives while permitting a decrease in dose to organs at risk in a way that would allow future salvage treatments. Further, we wanted to determine if focal treatment results in less toxicity. Utilizing the Medline repository, dosimetric papers comparing whole gland to partial gland brachytherapy and clinical papers that reported toxicity of focal brachytherapy were selected. A total of 9 dosimetric and 6 clinical papers met these inclusion criteria. Together, these manuscripts suggest that focal brachytherapy may be employed to decrease dose to organs at risk with decreased toxicity. Of current technology, image-guided HDR brachytherapy using MRI registered to transrectal ultrasound offers the flexibility and efficiency to achieve such focal treatments. PMID:27293899

  2. Temporal relationship between prostate brachytherapy and the diagnosis of colorectal cancer

    SciTech Connect

    Gutman, Sarah A.; Merrick, Gregory S. . E-mail: gmerrick@urologicresearchinstitute.org; Butler, Wayne M.; Wallner, Kent E.; Allen, Zachariah A.; Galbreath, Robert W.; Adamovich, Edward

    2006-09-01

    Purpose: To identify the location of pretreatment and posttreatment colorectal malignancies and posttreatment colorectal polyps in patients with clinically localized prostate cancer managed with brachytherapy. Methods and Materials: From April 1995 through July 2004, 1,351 consecutive patients underwent brachytherapy for clinical stage T1b-T3a (American Joint Committee on Cancer, 2002) prostate cancer. Supplemental external beam radiotherapy (XRT) was administered to 699 patients. The median follow-up was 4.6 years. Operative and pathology reports were reviewed for all patients with pretreatment and posttreatment colorectal cancer and posttreatment colorectal polyps. Multiple parameters were evaluated for the development of colorectal cancer or colorectal polyps. Results: Colorectal cancer was diagnosed in 23 and 25 patients before and after prostate brachytherapy, respectively. No differences were identified in the distribution of colorectal cancers either before or after treatment (3 and 4 rectal cancers in the pre- and postbrachytherapy cohorts). Thirty-five of the 48 colorectal cancers (73%) were diagnosed within 5 years of brachytherapy with a peak incidence 1 year after brachytherapy. One hundred ninety-two colorectal polyps were diagnosed after brachytherapy, 160 (83%) occurred within 4 years of brachytherapy, and only 27 (14%) were located in the rectum. In multivariate Cox regression analysis, prostate D{sub 9} (minimum percentage of the dose covering 90% of the target volume) predicted for posttreatment colorectal cancer. Rectal polyps were most closely related to patient age and percent positive biopsies, whereas sigmoid/colon polyps were best predicted by patient age, planning volume, and supplemental XRT. Conclusions: Colorectal cancer was diagnosed with equal frequency before and after brachytherapy with comparable geographic distributions. In addition, the vast majority of postbrachytherapy colorectal polyps were located beyond the confines of the

  3. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    SciTech Connect

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  4. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    SciTech Connect

    Anker, Christopher J.; O'Donnell, Kristen; Boucher, Kenneth M.; Gaffney, David K.

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

  5. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect

    Friedman, Lois C.; Abdallah, Rita; Schluchter, Mark; Panneerselvam, Ashok; Kunos, Charles A.

    2011-07-01

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight of 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.

  6. WE-E-BRD-01: HDR Brachytherapy I: Overview of Clinical Application and QA

    SciTech Connect

    Libby, B; Showalter, T

    2014-06-15

    With the increased usage of high dose rate (HDR) brachytherapy and the introduction of dedicated image guided brachytherapy suites, it is necessary to review the processes and procedures associated with safely delivering these treatments in the expedited time scales that dedicated treatment suites afford. The speakers will present the clinical aspects of switching from LDR to HDR treatments, including guidelines for patient selection, and the clinical outcomes comparing LDR to HDR. The speakers will also discuss the HDR treatment process itself, because the shortened clinical timeline involved with a streamlined scan/plan/treat workflow can introduce other issues. Safety and QA aspects involved with the streamlined process, including increased personnel required for parallel tasks, and possible interfering tasks causing delays in patient treatments will also be discussed. Learning Objectives: To understand the clinical aspects of HDR Brachytherapy, including common clinical indications, patient selection, and the evolving evidence in support of this therapeutic modality To review the current prominent clinical trials for HDR brachytherapy To interpret the established guidelines for HDR brachytherapy quality assurance for implementation into practical clinical settings. To introduce the basic requirements for image guided brachytherapy.

  7. Clinical implementation of a novel applicator in high-dose-rate brachytherapy treatment of esophageal cancer

    PubMed Central

    Hansen, Jorgen L.; Bhagwat, Mandar S.; O'Farrell, Desmond A.; Friesen, Scott; Harris, Thomas C.; Damato, Antonio L.; Cormack, Robert A.; Martin, Neil E.; Devlin, Phillip M.

    2016-01-01

    Purpose In this study, we present the clinical implementation of a novel transoral balloon centering esophageal applicator (BCEA) and the initial clinical experience in high-dose-rate (HDR) brachytherapy treatment of esophageal cancer, using this applicator. Material and methods Acceptance testing and commissioning of the BCEA were performed prior to clinical use. Full performance testing was conducted including measurements of the dimensions and the catheter diameter, evaluation of the inflatable balloon consistency, visibility of the radio-opaque markers, congruence of the markers, absolute and relative accuracy of the HDR source in the applicator using the radiochromic film and source position simulator, visibility and digitization of the applicator on the computed tomography (CT) images under the clinical conditions, and reproducibility of the offset. Clinical placement of the applicator, treatment planning, treatment delivery, and patient's response to the treatment were elaborated as well. Results The experiments showed sub-millimeter accuracy in the source positioning with distal position at 1270 mm. The digitization (catheter reconstruction) was uncomplicated due to the good visibility of markers. The treatment planning resulted in a favorable dose distribution. This finding was pronounced for the treatment of the curvy anatomy of the lesion due to the improved repeatability and consistency of the delivered fractional dose to the patient, since the radioactive source was placed centrally within the lumen with respect to the clinical target due to the five inflatable balloons. Conclusions The consistency of the BCEA positioning resulted in the possibility to deliver optimized non-uniform dose along the catheter, which resulted in an increase of the dose to the cancerous tissue and lower doses to healthy tissue. A larger number of patients and long-term follow-up will be required to investigate if the delivered optimized treatment can lead to improved

  8. Clinical implementation of a novel applicator in high-dose-rate brachytherapy treatment of esophageal cancer

    PubMed Central

    Hansen, Jorgen L.; Bhagwat, Mandar S.; O'Farrell, Desmond A.; Friesen, Scott; Harris, Thomas C.; Damato, Antonio L.; Cormack, Robert A.; Martin, Neil E.; Devlin, Phillip M.

    2016-01-01

    Purpose In this study, we present the clinical implementation of a novel transoral balloon centering esophageal applicator (BCEA) and the initial clinical experience in high-dose-rate (HDR) brachytherapy treatment of esophageal cancer, using this applicator. Material and methods Acceptance testing and commissioning of the BCEA were performed prior to clinical use. Full performance testing was conducted including measurements of the dimensions and the catheter diameter, evaluation of the inflatable balloon consistency, visibility of the radio-opaque markers, congruence of the markers, absolute and relative accuracy of the HDR source in the applicator using the radiochromic film and source position simulator, visibility and digitization of the applicator on the computed tomography (CT) images under the clinical conditions, and reproducibility of the offset. Clinical placement of the applicator, treatment planning, treatment delivery, and patient's response to the treatment were elaborated as well. Results The experiments showed sub-millimeter accuracy in the source positioning with distal position at 1270 mm. The digitization (catheter reconstruction) was uncomplicated due to the good visibility of markers. The treatment planning resulted in a favorable dose distribution. This finding was pronounced for the treatment of the curvy anatomy of the lesion due to the improved repeatability and consistency of the delivered fractional dose to the patient, since the radioactive source was placed centrally within the lumen with respect to the clinical target due to the five inflatable balloons. Conclusions The consistency of the BCEA positioning resulted in the possibility to deliver optimized non-uniform dose along the catheter, which resulted in an increase of the dose to the cancerous tissue and lower doses to healthy tissue. A larger number of patients and long-term follow-up will be required to investigate if the delivered optimized treatment can lead to improved

  9. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  10. An experimental palladium-103 seed (OptiSeed{sup exp}) in a biocompatible polymer without a gold marker: Characterization of dosimetric parameters including the interseed effect

    SciTech Connect

    Abboud, F.; Scalliet, P.; Vynckier, S.

    2008-12-15

    Permanent implantation of {sup 125}I (iodine) or {sup 103}Pd (palladium) sources is a popular treatment option in the management of early stage prostate cancer. New sources are being developed, some of which are being marketed for different clinical applications. A new technique of adjuvant stereotactic permanent seed breast implant, similar to that used in the treatment of prostate cancer, has been proposed by [N. Jansen et al., Int. J. Radiat. Oncol. Biol. Phys. 67, 1052-1058 (2007)] with encouraging results. The presence of artifacts from the metallic seeds, however, can disturb follow-up imaging. The development of plastic seeds has reduced these artifacts. This paper presents a feasibility study of the advantages of palladium-103 seeds, encapsulated with a biocompatible polymer, for future clinical applications, and on the effect of the gold marker on the dosimetric characteristics of such seeds. Experimental palladium seeds, OptiSeed{sup exp}, were manufactured by International Brachytherapy (IBt), Seneffe, Belgium, from a biocompatible polymer, including the marker. Apart from the absence of a gold marker, the studied seed has an identical design to the OptiSeed{sup 103}[Phys. Med. Biol. 50, 1493-1504 (2005)]; [Appl. Radiat. Isot. 63, 311-321 (2005)]. Polymer encapsulation was preferred by IBt in order to reduce the quantity of radioactive material needed for a given dose rate and to reduce the anisotropy of the radiation field around the seed. In addition, this design is intended to decrease the interseed effects that can occur as a result of the marker and the encapsulation. Dosimetric measurements were performed using LiF thermoluminescent dosimeters (1 mm{sup 3}) in solid water phantoms (WT1). Measured data were compared to Monte Carlo simulated data in solid water using the MCNP code, version 4C. Updated cross sections [Med. Phys. 30, 701-711 (2003)] were used. As the measured and calculated data were in agreement, Monte Carlo calculations were then

  11. Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns

    SciTech Connect

    Cunha, J. A. M.; Hsu, I-C.; Pouliot, J.

    2009-01-15

    Purpose: To determine whether alternative high dose rate prostate brachytherapy catheter patterns can result in similar or improved dose distributions while providing better access and reducing trauma. Materials and Methods: Standard prostate cancer high dose rate brachytherapy uses a regular grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. This study used CT datasets with 3 mm slice spacing from ten previously treated patients and digitized new catheters following three hypothetical catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a plan must fulfill the RTOG-0321 dose criteria for target dose coverage (V{sub 100}{sup Prostate}>90%) and organ-at-risk dose sparing (V{sub 75}{sup Bladder}<1 cc, V{sub 75}{sup Rectum}<1 cc, V{sub 125}{sup Urethra}<<1 cc). Results: The three nonstandard catheter patterns used 16 nonparallel, straight divergent catheters, with entry points in the perineum. Thirty plans from ten patients with prostate sizes ranging from 26 to 89 cc were optimized. All nonstandard patterns fulfilled the RTOG criteria when the clinical plan did. In some cases, the dose distribution was improved by better sparing the organs-at-risk. Conclusion: Alternative catheter patterns can provide the physician with additional ways to treat patients previously considered unsuited for brachytherapy treatment (pubic arch interference) and facilitate robotic guidance of

  12. Primary Causes of Death After Permanent Prostate Brachytherapy

    SciTech Connect

    Bittner, Nathan; Merrick, Gregory S. Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Allen, Zachariah A.; Brammer, Sarah G.; Moyad, Mark

    2008-10-01

    Purpose: To evaluate the primary causes of death in low-risk (low-risk), intermediate-risk (intermediate-risk), and high-risk (high-risk) patients undergoing permanent prostate brachytherapy with or without supplemental therapies. Methods and Materials: From April 1995 through November 2004, a total of 1,354 consecutive patients underwent prostate brachytherapy. All patients underwent brachytherapy >3 years before analysis. Of the patients, 532 (39.3%) received androgen deprivation therapy and 703 (51.9%) received supplemental radiation therapy. The median follow-up was 5.4 years. Multiple parameters were evaluated as predictors of cause-specific, biochemical progression-free, and overall survival. Results: The 10-year cause-specific survival was 97.0% (99.7%, 99.0%, and 90.1% for low-risk, intermediate-risk, and high-risk patients). Overall survival was 76.7% (82.5%, 78.3%, and 67.6% for low-, intermediate-, and high-risk patients, respectively). The cumulative death rate for cardiovascular disease was 11.5% (8.7%, 9.3%, and 19.8% for low-, intermediate-, and high-risk patients). The death rate from second malignancies (nonprostate cancer) was 7.2% and was not substantially different when stratified by risk group. Death from all other causes was 6.5% for the entire cohort but 1.3%, 5.0%, and 10.8% for low-, intermediate-, and high-risk patients. In multivariate analysis, death from prostate cancer was best predicted by Gleason score and risk group, whereas death from cardiovascular disease, nonprostate cancer, and all other causes were most closely related to patient age and tobacco use. Conclusions: Although cardiovascular mortality was the predominant cause of death, prostate cancer was responsible for approximately 10% of all deaths. In particular, overall survival was poorest in the high-risk group. Although high-risk patients were most likely to die of prostate cancer, the divergence in overall survival between high-risk and lower-risk patients primarily

  13. Critical Organ Preservation in Reirradiation Brachytherapy by Injectable Spacer

    SciTech Connect

    Kishi, Kazushi Sonomura, Tetsuo; Shirai, Shintaro; Sato, Morio; Tanaka, Kayo

    2009-10-01

    Purpose: This case series study evaluated the feasibility and effectiveness of an interstitial high-dose rate brachytherapy (HDR-BT) procedure combined with an at-risk organ-sparing procedure. Methods and Materials: Thirty patients who were scheduled for reirradiation treatment for recurrent cancer after receiving a median dose of 60 Gy (range, 44-70 Gy) in 2-Gy fractions of previous external beam treatment were enrolled. Thirteen patients had lesions in the head and neck, and other lesions were located in the axilla, skeleton, breast, pelvis, and abdominal wall. Chief complaints included local masses (for 25) and refractory pain (for 21). After high-dose rate brachytherapy applicator needle implantation, an optimal CT-based three-dimensional brachytherapy plan was created with a virtual at-risk organ shift from the target. According to the plan, hyaluronic acid gel was injected to maintain the shift during irradiation. The prescribed dose was the result of an individualized tradeoff between target dose and at-risk organ dose, to avoid serious complications. A single-fraction dose of 18.0 Gy (median, equivalent to 75.6 Gy at an {alpha}/{beta} value of 3; range, 16-20 Gy) was applied to the tumor. Results: The at-risk organ dose decreased from 9.1 {+-} 0.9 Gy to 4.4 {+-} 0.4 Gy (mean {+-} standard deviation, p < 0.01), and the normal tissue complication probability decreased from 60.8% {+-} 12.6% to 16.1% {+-} 19.8% (p < 0.01). The shift effect lasted at least 4 hours and disappeared gradually. Distinct tumor shrinkage in 20 of 21 eligible patients, including tumor disappearance in 6 patients, pain reduction in 18 of 21 eligible patients, and no unexpected late toxicity greater than grade 2 were observed during the 19.5-month observation period. Conclusions: This at-risk organ-sparing preservation procedure may provide a safe and efficient reirradiation treatment.

  14. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    SciTech Connect

    Kertzscher, Gustavo Andersen, Claus E.; Tanderup, Kari

    2014-05-15

    Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was

  15. SU-F-19A-11: Retrospective Evaluation of Thermal Coverage by Thermobrachytherapy Seed Arrangements of Clinical LDR Prostate Implants

    SciTech Connect

    Warrell, G; Shvydka, D; Chen, C; Parsai, E

    2014-06-15

    Purpose: The superiority of a properly-administered combination of radiation therapy and hyperthermia over radiation alone in treatment of human cancers has been demonstrated in multiple studies examining radiobiology, local control, and survival. Unfortunately, hyperthermia is not yet a common modality in oncology practice, due in part to the technical difficulty of heating a deep-seated target volume to sufficient temperature. To address this problem, our group has invented a thermobrachytherapy (TB) seed based on a commonly-used low dose-rate permanent brachytherapy seed for implant in solid tumors. Instead of the tungsten radiographic marker of the standard seed, the TB seed contains one of a self-regulating ferromagnetic alloy. Placement of a patient implanted with such seeds in an oscillating magnetic field generates heat via induction of eddy currents. We present the results of studies of the capability of clinically-realistic TB seed arrangements to adequately heat defined target volumes. Methods: Seed distributions for several past LDR prostate permanent implant brachytherapy patients were reproduced in the finite element analysis software package COMSOL Multiphysics 4.4, with the difference that TB seeds were modelled, rather than the radiation-only seeds actually used for their treatments. The implant geometries were mainly of the modified peripheral loading type; a range of prostatic volumes and blood perfusion rates likely to be seen in a clinical setting were examined. Results: According to the simulations, when distributed to optimize radiation dose, TB seeds also produce sufficient heat to provide thermal coverage of the target given proper selection of the magnetic field strength. However, the thermal distributions may be improved by additional use of hyperthermia-only seeds. Conclusion: A dual-modality seed intended as an alternative to and using the same implantation apparatus and technique as the standard LDR permanent implant seed has been

  16. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  17. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  18. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  19. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  20. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  1. Seed Treatment. Sale Publication 4076.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide gives information about types of seeds that may require chemical protection against pests, seed treatment pesticide formulations, seed treatment methods, labeling treated seed, and safety and environmental precautions. (Author/BB)

  2. Healthy food trends -- chia seeds

    MedlinePlus

    ... Healthy food trends - salvia; Healthy snacks - Chia seeds; Weight loss - Chia seeds; Healthy diet - Chia seeds; Wellness - Chia ... fiber. Some think chia seeds may help with weight loss and other risk factors, but this has not ...

  3. Validation of a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial HDR brachytherapy

    SciTech Connect

    Poulin, Eric; Beaulieu, Luc; Gardi, Lori; Barker, Kevin; Montreuil, Jacques; Fenster, Aaron

    2015-12-15

    Purpose: In current clinical practice, there is no integrated 3D ultrasound (3DUS) guidance system clinically available for breast brachytherapy. In this study, the authors present a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial high dose rate (HDR) brachytherapy treatment. Methods: For this work, a new computer controlled robotic 3DUS system was built to perform a hybrid motion scan, which is a combination of a 6 cm linear translation with a 30° rotation at both ends. The new 3DUS scanner was designed to fit on a modified Kuske assembly, keeping the current template grid configuration but modifying the frame to allow the mounting of the 3DUS system at several positions. A finer grid was also tested. A user interface was developed to perform image reconstruction, semiautomatic segmentation of the surgical bed as well as catheter reconstruction and tracking. A 3D string phantom was used to validate the geometric accuracy of the reconstruction. The volumetric accuracy of the system was validated with phantoms using magnetic resonance imaging (MRI) and computed tomography (CT) images. In order to accurately determine whether 3DUS can effectively replace CT for treatment planning, the authors have compared the 3DUS catheter reconstruction to the one obtained from CT images. In addition, in agarose-based phantoms, an end-to-end procedure was performed by executing six independent complete procedures with both 14 and 16 catheters, and for both standard and finer Kuske grids. Finally, in phantoms, five end-to-end procedures were performed with the final CT planning for the validation of 3DUS preplanning. Results: The 3DUS acquisition time is approximately 10 s. A paired Student t-test showed that there was no statistical significant difference between known and measured values of string separations in each direction. Both MRI and CT volume measurements were not statistically different from 3DUS volume (Student t-test: p > 0

  4. Independent dosimetric assessment of the model EP917 episcleral brachytherapy plaque

    SciTech Connect

    Aryal, Prakash; Molloy, Janelle A.; Rivard, Mark J.

    2014-09-15

    Purpose: To investigate the influence of slot design on dose distributions and dose-volume histograms (DVHs) for the model EP917 plaque for episcleral brachytherapy. Methods: Dimensions and orientations of the slots were measured for three model EP917 plaques and compared to data in the Plaque Simulator (PS) treatment planning software (version 5.7.6). These independently determined coordinates were incorporated into the MCNP Monte Carlo simulation environment to obtain dose from the plaques in a water environment and in a clinical environment with ocular structures. A tumor volume was simulated as 5 mm in apical height and 11 mm in basal diameter. Variations in plaque mass density and composition; slot length, width, and depth; seed positioning; and Ag-marker rod positioning were simulated to examine their influence on plaque central axis (CAX) and planar dose distributions, and DVHs. Results: Seed shifts in a single slot toward the eye and shifts of the{sup 125}I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution. A shift of 0.0994 mm toward the eye increased dose by 14%, 9%, 4.3%, and 2.7% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. When examining the fully-modeled plaque in the ocular geometry, the largest dose variations were caused by shifting the Ag rods toward the sclera and shifting the seeds away from the globe when the slots were made 0.51 mm deeper, causing +34.3% and −69.4% dose changes to the outer sclera, respectively. At points along the CAX, dose from the full plaque geometry using the measured slot design was 2.4% ± 1.1% higher than the manufacturer-provided slot design and 2.2% ± 2.3% higher than the homogeneous calculation of PS treatment planning results. The ratio of D{sub 10} values for the measured slot design to the D{sub 10} values for the manufacturer-provided slot design was higher by 9%, 10%, and 19% for the tumor, inner sclera, and outer sclera, respectively. In comparison to the

  5. [Role of the technician in a brachytherapy department].

    PubMed

    Bélot-Cheval, V; Lemoine, L; Cuisinier, C; Gensse, M-C; Lasbareilles, O

    2013-04-01

    The role of the technician in a brachytherapy department is essential for the cohesion of the treatment team made up of the radiation oncologist, the physicist, and the technician. He/she collaborates in the different treatment steps such as taking care of the patients, training of the professionals and research studies in collaboration with the team. He participates in all steps of the treatment such as preparation, technician's consultation, catheters/templates and radioactives sources implant, dose distribution analysis and treatment. He looks after the management of planning, radioactive sources and chemist's equipments. He takes part in the training of the junior technician, and support doctors and physicists in different studies. The procedure writing and the presentation of professional practices are also part of the technician task.

  6. [Palliative locoregional therapy for hilar cholangiocarcinoma: photodynamic therapy and brachytherapy].

    PubMed

    Dumoulin, F L; Horst, E; Sauerbruch, T; Gerhardt, T

    2007-08-01

    In hilar cholangiocarcinoma, only 20-30% of the patients are candidates for curative surgical resection, leaving the majority with merely palliative treatment options. Since the natural history of hilar cholangiocarcinoma is dominated by local complications rather than metastatic disease, local palliative treatment seems a reasonable option. Here, endoluminal photodynamic therapy has emerged as a promising treatment with several prospective observational studies and 2 prospective randomised studies published which included nearly 200 patients. With low complication rate and morbidity, PDT achieves an increased median survival as well as an increased quality of life even in patients with reduced performance status. Radiotherapy is an alternative local treatment option applied as brachytherapy, external beam radiotherapy or combined modality treatment. To date, however, sufficient data from controlled clinical trials are lacking, thus palliative radiotherapy has to be considered an experimental treatment option.

  7. Evaluating the cost of therapy for restenosis: considerations for brachytherapy.

    PubMed

    Weintraub, W S

    1996-11-01

    Costs have become increasingly important in medicine in recent years as demand for services has outstripped readily available resources. Clinical microeconomics offers an approach to understanding cost and outcomes in an environment of economic scarcity. In this article the types of costs and methods for determining cost are presented. In addition, methods for assessing outcome and outcome in relation to cost are developed. Restenosis after coronary angioplasty is a prime example of a clinical problem requiring economic evaluation. This is because it results in little serious morbidity except for recurrent chest pain, but it has serious economic consequences which occur some time after the original angioplasty. This makes the economic assessment of restenosis complicated. The application of health care microeconomic principles to brachytherapy for restenosis in the coronary arteries is presented. PMID:8960526

  8. Registration of structurally dissimilar images in MRI-based brachytherapy

    NASA Astrophysics Data System (ADS)

    Berendsen, F. F.; Kotte, A. N. T. J.; de Leeuw, A. A. C.; Jürgenliemk-Schulz, I. M.; Viergever, M. A.; Pluim, J. P. W.

    2014-08-01

    A serious challenge in image registration is the accurate alignment of two images in which a certain structure is present in only one of the two. Such topological changes are problematic for conventional non-rigid registration algorithms. We propose to incorporate in a conventional free-form registration framework a geometrical penalty term that minimizes the volume of the missing structure in one image. We demonstrate our method on cervical MR images for brachytherapy. The intrapatient registration problem involves one image in which a therapy applicator is present and one in which it is not. By including the penalty term, a substantial improvement in the surface distance to the gold standard anatomical position and the residual volume of the applicator void are obtained. Registration of neighboring structures, i.e. the rectum and the bladder is generally improved as well, albeit to a lesser degree.

  9. Dose verification of eye plaque brachytherapy using spectroscopic dosimetry.

    PubMed

    Jarema, T; Cutajar, D; Weaver, M; Petasecca, M; Lerch, M; Kejda, A; Rosenfeld, A

    2016-09-01

    Eye plaque brachytherapy has been developed and refined for the last 80 years, demonstrating effective results in the treatment of ocular malignancies. Current dosimetry techniques for eye plaque brachytherapy (such as TLD- and film-based techniques) are time consuming and cannot be used prior to treatment in a sterile environment. The measurement of the expected dose distribution within the eye, prior to insertion within the clinical setting, would be advantageous, as any errors in source loading will lead to an erroneous dose distribution and inferior treatment outcomes. This study investigated the use of spectroscopic dosimetry techniques for real-time quality assurance of I-125 based eye plaques, immediately prior to insertion. A silicon detector based probe, operating in spectroscopy mode was constructed, containing a small (1 mm(3)) silicon detector, mounted within a ceramic holder, all encapsulated within a rubber sheath to prevent water infiltration of the electronics. Preliminary tests of the prototype demonstrated that the depth dose distribution through the central axis of an I-125 based eye plaque may be determined from AAPM Task Group 43 recommendations to a deviation of 6 % at 3 mm depth, 7 % at 5 mm depth, 1 % at 10 mm depth and 13 % at 20 mm depth, with the deviations attributed to the construction of the probe. A new probe design aims to reduce these discrepancies, however the concept of spectroscopic dosimetry shows great promise for use in eye plaque quality assurance in the clinical setting.

  10. Comparison of biochemical failure definitions for permanent prostate brachytherapy

    SciTech Connect

    Kuban, Deborah A. . E-mail: dakuban@mdanderson.org; Levy, Larry B.; Potters, Louis; Beyer, David C.; Blasko, John C.; Moran, Brian J.; Ciezki, Jay P.; Zietman, Anthony L.; Zelefsky, Michael J.; Pisansky, Thomas M.; Elshaikh, Mohamed; Horwitz, Eric M.

    2006-08-01

    Purpose: To assess prostate-specific antigen (PSA) failure definitions for patients with Stage T1-T2 prostate cancer treated by permanent prostate brachytherapy. Methods and Materials: A total of 2,693 patients treated with radioisotopic implant as solitary treatment for T1-T2 prostatic adenocarcinoma were studied. All patients had a pretreatment PSA, were treated at least 5 years before analysis, 1988 to 1998, and did not receive hormonal therapy before recurrence. Multiple PSA failure definitions were tested for their ability to predict clinical failure. Results: Definitions which determined failure by a certain increment of PSA rise above the lowest PSA level to date (nadir + x ng/mL) were more sensitive and specific than failure definitions based on PSA doubling time or a certain number of PSA rises. The sensitivity and specificity for the nadir + 2 definition were 72% and 83%, vs. 51% and 81% for 3 PSA rises. The surgical type definitions (PSA exceeding an absolute value) could match this sensitivity and specificity but only when failure was defined as exceeding a PSA level in the 1-3 ng/mL range and only when patients were allowed adequate time to nadir. When failure definitions were compared by time varying covariate regression analysis, nadir + 2 ng/mL retained the best fit. Conclusions: For patients treated by permanent radioisotopic implant for prostate cancer, the definition nadir + 2 ng/mL provides the best surrogate for failure throughout the entire follow-up period, similar to patients treated by external beam radiotherapy. Therefore, the same PSA failure definition could be used for both modalities. For brachytherapy patients with long-term follow-up, at least 6 years, defining failure as exceeding an absolute PSA level in the 0.5 ng/mL range may be reasonable.

  11. Monte Carlo dosimetry of a new 90Y brachytherapy source

    PubMed Central

    Junxiang, Wu; Shihu, You; Jing, Huang; Fengxiang, Long; Chengkai, Wang; Zhangwen, Wu; Qing, Hou

    2015-01-01

    Purpose In this study, we attempted to obtain full dosimetric data for a new 90Y brachytherapy source developed by the College of Chemistry (Sichuan University) for use in high-dose-rate after-loading systems. Material and methods The dosimetric data for this new source were used as required by the dose calculation formalisms proposed by the AAPM Task Group 60 and Task Group 149. The active core length of the new 90Y source was increased to 4.7 mm compared to the value of 2.5 mm for the old 90Sr/90Y source. The Monte Carlo simulation toolkit Geant4 was used to calculate these parameters. The source was located in a 30-cm-radius theoretical sphere water phantom. Results The dosimetric data included the reference absorbed dose rate, the radial dose function in the range of 1.0 to 8.0 mm in the longitudinal axis, and the anisotropy function with a θ in the range of 0° to 90° at 5° intervals and an r in the range of 1.0 to 8.0 mm in 0.2-mm intervals. The reference absorbed dose rate for the new 90Y source was determined to be equal to 1.6608 ± 0.0008 cGy s–1 mCi–1, compared to the values of 0.9063 ± 0.0005 cGy s–1 mCi–1 that were calculated for the old 90Sr/90Y source. A polynomial function was also obtained for the radial dose function by curve fitting. Conclusions Dosimetric data are provided for the new 90Y brachytherapy source. These data are meant to be used commercially in after-loading system. PMID:26622247

  12. Brachytherapy dosimetry parameters calculated for a {sup 131}Cs source

    SciTech Connect

    Rivard, Mark J.

    2007-02-15

    A comprehensive analysis of the IsoRay Medical model CS-1 Rev2 {sup 131}Cs brachytherapy source was performed. Dose distributions were simulated using Monte Carlo methods (MCNP5) in liquid water, Solid{sup TM}, and Virtual Water{sup TM} spherical phantoms. From these results, the in-water brachytherapy dosimetry parameters have been determined, and were compared with those of Murphy et al. [Med. Phys. 31, 1529-1538 (2004)] using measurements and simulations. Our results suggest that calculations obtained using erroneous cross-section libraries should be discarded as recommended by the 2004 AAPM TG-43U1 report. Our {sub MC}{lambda} value of 1.046{+-}0.019 cGy h{sup -1} U{sup -1} is within 1.3% of that measured by Chen et al. [Med. Phys. 32, 3279-3285 (2005)] using TLDs and the calculated results of Wittman and Fisher [Med. Phys. 34, 49-54 (2007)] using MCNP5. Using the discretized energy approach of Rivard [Appl. Radiat. Isot. 55, 775-782 (2001)] to ascertain the impact of individual {sup 131}Cs photons on radial dose function and anisotropy functions, there was virtual equivalence of results for 29.461{<=}E{sub {gamma}}{<=}34.419 keV and for a mono-energetic 30.384 keV photon source. Comparisons of radial dose function and 2D anisotropy function data are also included, and an analysis of material composition and cross-section libraries was performed.

  13. Seed Proteomics"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomic analysis of seeds encounters some specific problems that do not impinge on analyses of other plant cells, tissues, or organs. There are anatomic considerations. Seeds comprise the seed coat, the storage organ(s), and the embryonic axis. Are these to be studied individually or as a compo...

  14. Going to Seed.

    ERIC Educational Resources Information Center

    Powell, Richard R.

    1984-01-01

    Describes a unit on seeds designed to introduce students to their scientific and nutritional uses. Unit activities are easily done, employ a variety of process skills, and can be used at various grade levels. Suggests field trips to gather seeds, seed sprouting, and making cookies out of various whole grains. (JM)

  15. Needs of Seeds

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    The "Needs of Seeds" formative assessment probe can be used to find out whether students recognize that seeds have needs both similar to and different from plants and other living organisms (Keeley, Eberle, and Tugel 2007). The probe reveals whether students overgeneralize the needs of seeds by assuming they have the same needs as the adult plants…

  16. The PTB primary standard for the absorbed-dose to water for I-125 interstitial brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Schneider, T.

    2012-10-01

    The German national metrology institute (PTB) developed a primary standard in terms of absorbed-dose to water Dw for low-energy interstitial brachytherapy sources, which is based on an extrapolation chamber in a phantom of water-equivalent material. The method to determine Dw from extrapolation chamber measurements has been newly developed and is already described in the literature. With the chamber the absorbed-dose at 30 cm distance from the source is measured and the quantity is converted into the desired quantity, the absorbed-dose to water measured at 1 cm distance perpendicular to the source axis. In this paper, a synthesis of the work done within the EMRP Project: ‘TP2.JRP6: Increasing Cancer Treatment Efficacy Using 3D Brachytherapy’ is given and the final results and the final uncertainty budget are presented. Furthermore, an experimentally determined dose-rate constant for this seed type (BEBIG Symmetra I25.S16) is given based on the measurement of four different instances.

  17. Comparison of external beam radiation and brachytherapy to external beam radiation alone for unresectable extrahepatic cholangiocarcinoma

    PubMed Central

    Boothe, Dustin; Hopkins, Zachary; Frandsen, Jonathan

    2016-01-01

    Background Extrahepatic cholangiocarcinoma (EHC) is a rare malignancy with a relatively poor prognosis. There are no randomized, prospective data to help define the optimal method of radiation delivery for unresectable EHC. The purpose of this study was to evaluate the benefit of adding brachytherapy to external beam radiation therapy (EBRT) for unresectable EHC. Methods A retrospective review of 1,326 patients with unresectable EHC using the Surveillance, Epidemiology, and End Results (SEER) database was completed. Kaplan-Meier methods were used to analyze the primary endpoint, overall survival. Univariate and multivariate analysis was performed to identify and control for potential confounding variables, including age at diagnosis, sex, stage, grade, histology, race, year of diagnosis, and reason for no surgery. Results Of the 1,326 patients with unresectable EHC, 1,188 (92.9%) received EBRT only, while 91 (7.1%) received both EBRT and brachytherapy. Patients receiving combined modality radiation therapy were more likely to be treated prior to the year 2000. Median overall survival for patients receiving EBRT and EBRT plus brachytherapy was 9 and 11 months, respectively (P=0.04). Cause specific survival was 12 months for those receiving EBRT only, and 15 months for those who received EBRT + brachytherapy (P=0.10). Survival analysis performed on patients with locoregional disease only revealed a trend towards prolonged overall survival with those receiving EBRT + brachytherapy (P=0.08). Multivariate analysis revealed grade and stage of disease were correlated with both overall survival and cause specific survival (P≤0.05). Conclusions Among patients with unresectable EHC, the addition of brachytherapy to EBRT is associated with a prolonged median overall survival. However, the use of brachytherapy boost decreased in the last decade of the study. PMID:27563448

  18. Viability estimation of pepper seeds using time-resolved photothermal signal characterization

    NASA Astrophysics Data System (ADS)

    Kim, Ghiseok; Kim, Geon-Hee; Lohumi, Santosh; Kang, Jum-Soon; Cho, Byoung-Kwan

    2014-11-01

    We used infrared thermal signal measurement system and photothermal signal and image reconstruction techniques for viability estimation of pepper seeds. Photothermal signals from healthy and aged seeds were measured for seven periods (24, 48, 72, 96, 120, 144, and 168 h) using an infrared camera and analyzed by a regression method. The photothermal signals were regressed using a two-term exponential decay curve with two amplitudes and two time variables (lifetime) as regression coefficients. The regression coefficients of the fitted curve showed significant differences for each seed groups, depending on the aging times. In addition, the viability of a single seed was estimated by imaging of its regression coefficient, which was reconstructed from the measured photothermal signals. The time-resolved photothermal characteristics, along with the regression coefficient images, can be used to discriminate the aged or dead pepper seeds from the healthy seeds.

  19. Near-field dosimetry of {sup 125}I sources for interstitial brachytherapy implants measured using thermoluminescent sheets

    SciTech Connect

    Iwata, Kazuro; Yue, Ning J.; Nath, Ravinder

    2004-12-01

    The dosimetric characteristics were measured for two types of {sup 125}I low-energy photon-emitting sources by using a wide and highly sensitive thermoluminescent (TL) sheet film, which was developed for two-dimensional dose distribution measurements. The TL film is made of Teflon homogeneously mixed with small powders of thermoluminescence (BaSO{sub 4}:Eu doped). Various dosimetric parameters (i.e., radial dose function, 2D and 1D anisotropy functions) of model 6711 and 6702 {sup 125}I sources were obtained at various distances from the source surfaces to 15 mm. These parameters obtained with TL sheet were compared with the data recommended in the updated AAPM TG-43 report. The radial dose functions measured with TL sheet are in agreement with those established data of model 6711 {sup 125}I seed and model 6702 {sup 125}I seed at most of the distances within 5% and 7%, respectively. All the measured anisotropy functions showed symmetry about the longitudinal source axis. The anisotropy of dose distributions was clearly present in the immediate vicinity of the source edges. The measured 2D anisotropy function values at 1 cm are in reasonably good agreement with the recommended values. The differences at two points in the 1D anisotropy functions measured with TL sheet and the established data at 1 cm from source center were 0.7% and 1.9% for model 6711 and 6702 {sup 125}I sources, respectively; the differences at 0.5 cm were 1.5% and 1.7% for model 6711 and 6702 {sup 125}I sources, respectively. The relative dosimetric characteristics in the vicinity of actual interstitial brachytherapy sources containing {sup 125}I have been experimentally determined by using the TL sheet as a 2D dosimeter.

  20. Influence of long-distance seed dispersal on the genetic diversity of seed rain in fragmented Pinus densiflora populations relative to pollen-mediated gene flow.

    PubMed

    Ozawa, Hajime; Watanabe, Atsushi; Uchiyama, Kentaro; Saito, Yoko; Ide, Yuji

    2013-01-01

    Long-distance dispersal (LDD) of seeds has a critical impact on species survival in patchy landscapes. However, relative to pollen dispersal, empirical data on how seed LDD affects genetic diversity in fragmented populations have been poorly reported. Thus, we attempted to indirectly evaluate the influence of seed LDD by estimating maternal and paternal inbreeding in the seed rain of fragmented 8 Pinus densiflora populations. In total, the sample size was 458 seeds and 306 adult trees. Inbreeding was estimated by common parentage analysis to evaluate gene flow within populations and by sibship reconstruction analysis to estimate gene flow within and among populations. In the parentage analysis, the observed probability that sampled seeds had the same parents within populations was significantly larger than the expected probability in many populations. This result suggested that gene dispersal was limited to within populations. In the sibship reconstruction, many donors both within and among populations appeared to contribute to sampled seeds. Significant differences in sibling ratios were not detected between paternity and maternity. These results suggested that seed-mediated gene flow and pollen-mediated gene flow from outside population contributed some extent to high genetic diversity of the seed rain (H E > 0.854). We emphasize that pine seeds may have excellent potential for gene exchange within and among populations.

  1. The seed nuclear proteome

    PubMed Central

    Repetto, Ombretta; Rogniaux, Hélène; Larré, Colette; Thompson, Richard; Gallardo, Karine

    2012-01-01

    Understanding the