Sample records for bracket base surface

  1. A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets.

    PubMed

    Lee, Gi-Ja; Park, Ki-Ho; Park, Young-Guk; Park, Hun-Kuk

    2010-10-01

    In orthodontics, the surface roughnesses of orthodontic archwire and brackets affect the effectiveness of arch-guided tooth movement, corrosion behavior, and the aesthetics of orthodontic components. Atomic force microscopy (AFM) measurements were used to provide quantitative information on the surface roughness of the orthodontic material. In this study, the changes in surface roughness of various orthodontic bracket slots before and after sliding movement of archwire in vitro and in vivo were observed through the utilization of AFM. Firstly, we characterized the surface of four types of brackets slots as follows: conventional stainless steel (Succes), conventional ceramic (Perfect), self-ligating stainless steel (Damon) and self-ligating ceramic (Clippy-C) brackets. Succes) and Damon brackets showed relatively smooth surfaces, while Perfect had the roughest surface among the four types of brackets used. Secondly, after in vitro sliding test with beta titanium wire in two conventional brackets (Succes and Perfect), there were significant increases in only stainless steel bracket, Succes. Thirdly, after clinical orthodontic treatment for a maximum of 2 years, the self-ligating stainless steel bracket, Damon, showed a significant increase in surface roughness. But self-ligating ceramic brackets, Clippy-C, represented less significant changes in roughness parameters than self-ligating stainless steel ones. Based on the results of the AFM measurements, it is suggested that the self-ligating ceramic bracket has great possibility to exhibit less friction and better biocompatibility than the other tested brackets. This implies that these bracket slots will aid in the effectiveness of arch-guided tooth movement.

  2. Assessment of Bracket Surface Morphology and Dimensional Change

    PubMed Central

    Radhakrishnan, Pillai Devu; Sapna Varma, N. K.; Ajith, V. V.

    2017-01-01

    Objective: The objective of this study was to compare the surface morphology and dimensional stability of the bracket slot at the onset of treatment and after 12 months of intraoral exposure. The study also compared the amount of calcium at the bracket base which indicates enamel loss among the three orthodontic brackets following debonding after 12 months of intraoral exposure. Materials and Methods: The sample consisted of 60 (0.022” MBT) canine brackets. They were divided into three groups: self-ligating, ceramic bracket with metal slot, and stainless steel (SS) brackets. The slot dimensions, micromorphologic characteristics of as-received and retrieved brackets were measured with a stereomicroscope and scanning electron microscope (SEM), respectively. The amount of calcium at the bracket base which indicates enamel damage was quantified using energy-dispersive X-ray spectrometry (EDX). Results: The results showed statistically significant alterations (P < 0.05) in the right vertical dimension, internal tie wing width (cervical), right and left depth of the slot (Kruskal–Wallis test). Multiple comparison using Mann–Whitney test showed that ceramic brackets underwent (P < 0.05) minimal alterations in the right vertical dimension, internal tie wing width (cervical), right and left depth of the slot (0.01 mm, −0.003 mm, 0.006 mm, −0.002 mm, respectively) when compared with the changes seen in SS and self-ligating brackets. SEM analysis revealed an increase in the surface roughness of ceramic with metal slot brackets and self-ligating bracket showed the least irregularity. The presence of calcium was noted on all evaluated brackets under EDX, but ceramic with metal slot brackets showed a significantly greater amount of enamel loss (P = 0.001). Conclusion: Ceramic brackets were found to be dimensionally stable when compared to SS and self-ligating. Self-ligating bracket showed minimal surface irregularity. Ceramic with metal slot brackets showed a greater amount of enamel loss following debonding. PMID:28566855

  3. Metallurgical characterization of orthodontic brackets produced by Metal Injection Molding (MIM).

    PubMed

    Zinelis, Spiros; Annousaki, Olga; Makou, Margarita; Eliades, Theodore

    2005-11-01

    The aim of this study was to investigate the bonding base surface morphology, alloy type, microstructure, and hardness of four types of orthodontic brackets produced by Metal Injection Molding technology (Discovery, Extremo, Freedom, and Topic). The bonding base morphology of the brackets was evaluated by scanning electron microscopy (SEM). Brackets from each manufacturer were embedded in epoxy resin, and after metallographic grinding, polishing and coating were analyzed by x-ray energy-dispersive spectroscopic (EDS) microanalysis to assess their elemental composition. Then, the brackets were subjected to metallographic etching to reveal their metallurgical structure. The same specimen surfaces were repolished and used for Vickers microhardness measurements. The results were statistically analyzed with one-way analysis of variance and Student-Newman-Keuls multiple comparison test at the 0.05 level of significance. The findings of SEM observations showed a great variability in the base morphology design among the brackets tested. The x-ray EDS analysis demonstrated that each bracket was manufactured from different ferrous or Co-based alloys. Metallographic analysis showed the presence of a large grain size for the Discovery, Freedom, and Topic brackets and a much finer grain size for the Extremo bracket. Vickers hardness showed great variations among the brackets (Topic: 287 +/- 16, Freedom: 248 +/- 13, Discovery: 214 +/- 12, and Extremo: 154 +/- 9). The results of this study showed that there are significant differences in the base morphology, composition, microstructure, and microhardness among the brackets tested, which may anticipate significant clinical implications.

  4. Shear bond strength of brackets on restorative materials: Comparison on various dental restorative materials using the universal primer Monobond® Plus.

    PubMed

    Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian

    2016-03-01

    The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p < 0.05). Under both bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend against using these material combinations in clinical practice.

  5. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.

    PubMed

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru

    2013-04-01

    This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces.

  6. The fracture strength of ceramic brackets: a comparative study.

    PubMed

    Flores, D A; Caruso, J M; Scott, G E; Jeiroudi, M T

    1990-01-01

    Recent demand for esthetic brackets has led to the development and use of ceramic brackets in orthodontics. The purpose of this study was to compare the fracture strength of different ceramic brackets under different surface conditions and ligation methods using a torsional wire bending force. Five different bracket types (two polycrystalline, two single-crystal, and one metal) were tested using elastic and wire ligation, with half being scratched and the other half remaining unscratched. Results showed a significant difference between bracket types and surface conditions. Non-scratched single-crystal brackets had higher fracture strengths and slightly higher fracture loads than polycrystalline brackets. However, single-crystal brackets were significantly adversely affected by surface damage (scratching), while polycrystalline brackets were not significantly affected by surface damage. The fracture behavior of ceramic brackets followed the Griffith model where fracture strength decreased following surface damage.

  7. Intraoral corrosion of self-ligating metallic brackets and archwires and the effect on friction

    NASA Astrophysics Data System (ADS)

    Tima, Lori Lynn

    The purpose of this study was to investigate how the frictional coefficient was affected due to intraoral use. A secondary aim of this study was to determine whether or not there was a relationship between corrosion of orthodontic alloys and friction via scanning electron microscopic qualitative analysis. Orthodontic brackets and 0.019 x 0.025 inch stainless steel archwires were collected and divided into three groups of n=10: used bracket and used wires (UBUW), used brackets and new wires (UBNW), and new brackets and new wires (NBNW). New materials were as-received from the manufacturer, and used materials were clinically used bracket and wires collected from patients following orthodontic treatment. Archwires were pulled through bracket slots at a rate of 0.5mm/min while friction forces were measured. Following a cleaning process, the surface topography of the bracket slots was examined under a scanning electron microscope (SEM). Based on a 1-factor MANOVA, there was no significant group effect (all p>0.05) on frictional forces. Partial eta squared values indicated that intraoral exposure had only a small effect on frictional forces (≤ 3%). Qualitative analysis of SEM images did not show an association between surface characteristics of the bracket slots and magnitude of frictional force. Results suggest that surface corrosion from intraoral use does not significantly affect friction at the bracket wire interface.

  8. Evaluation of Micro-organism in Ligated Metal and Self-ligating Brackets using Scanning Electron Microscopy: An In Vivo Study

    PubMed Central

    Sunil, P C; Michael, Tony; Raju, Aravind S; Paul, Renji K; Mamatha, J; Ebin, T M

    2015-01-01

    Background: The objective of the study was to determine the sites of plaque accumulation and to compare the plaque accumulated with metal and self-ligating orthodontic brackets in order to know which bracket type had a higher plaque retaining capacity. Materials and Methods: The study was done on 20 subjects who were scheduled for orthodontic treatment including extraction of four premolars and fixed orthodontic appliances. Mesh-backed edgewise metal brackets ligated with steel ligatures and self-ligating brackets were bonded to the premolars to be extracted using composite (Transbond XT, 3M). The subjects were told to continue their normal oral hygiene regimen. Teeth were extracted at 1, 2, and 3 weeks after bracket bonding. Plaque attached to the buccal surfaces was stained using plaque disclosing agent. The teeth were then immersed in fixative containing 4% formaldehyde and 1% glutaraldehyde in phosphate buffer for 24 h, followed by 0.1 M phosphate buffer for 12 h. The specimens were then mounted on aluminum stubs, and sputter coated with gold prior to Scanning electron microscopy examination. Results: The results showed that increased retention of plaque in metal brackets ligated with steel ligatures and comparatively less in self-ligating brackets at the base of the brackets. Conclusions: This study highlights that higher retention of plaque in metal brackets ligated with steel ligatures and comparatively less plaque retention in self-ligating brackets. Excess composite around the bracket base is the critical site of plaque accumulation associated with fixed appliances due to its rough surface texture. PMID:26229372

  9. Evaluation of Micro-organism in Ligated Metal and Self-ligating Brackets using Scanning Electron Microscopy: An In Vivo Study.

    PubMed

    Sunil, P C; Michael, Tony; Raju, Aravind S; Paul, Renji K; Mamatha, J; Ebin, T M

    2015-07-01

    The objective of the study was to determine the sites of plaque accumulation and to compare the plaque accumulated with metal and self-ligating orthodontic brackets in order to know which bracket type had a higher plaque retaining capacity. The study was done on 20 subjects who were scheduled for orthodontic treatment including extraction of four premolars and fixed orthodontic appliances. Mesh-backed edgewise metal brackets ligated with steel ligatures and self-ligating brackets were bonded to the premolars to be extracted using composite (Transbond XT, 3M). The subjects were told to continue their normal oral hygiene regimen. Teeth were extracted at 1, 2, and 3 weeks after bracket bonding. Plaque attached to the buccal surfaces was stained using plaque disclosing agent. The teeth were then immersed in fixative containing 4% formaldehyde and 1% glutaraldehyde in phosphate buffer for 24 h, followed by 0.1 M phosphate buffer for 12 h. The specimens were then mounted on aluminum stubs, and sputter coated with gold prior to Scanning electron microscopy examination. The results showed that increased retention of plaque in metal brackets ligated with steel ligatures and comparatively less in self-ligating brackets at the base of the brackets. This study highlights that higher retention of plaque in metal brackets ligated with steel ligatures and comparatively less plaque retention in self-ligating brackets. Excess composite around the bracket base is the critical site of plaque accumulation associated with fixed appliances due to its rough surface texture.

  10. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns

    PubMed Central

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko

    2017-01-01

    Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​ Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846

  11. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    PubMed

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  12. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study.

    PubMed

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-09-01

    The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket surfaces in the four quadrants included in the study.

  13. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study

    PubMed Central

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-01-01

    Background: The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. Materials and Methods: At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. Results: There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). Conclusion: The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket surfaces in the four quadrants included in the study. PMID:26435612

  14. Comparison surface characteristics and chemical composition of conventional metallic and nickel-free brackets.

    PubMed

    Shintcovsk, Ricardo Lima; Knop, Luegya Amorim Henriques; Gandini, Luiz Gonzaga; Martins, Lidia Parsekian; Pires, Aline Segatto

    2015-01-01

    This study aims at comparing conventional and nickel-free metal bracket surface characteristics with elemental composition by scanning electron microscopy (SEM), using energy dispersive spectroscopy (EDS). The sample consisted of 40 lower incisor brackets divided into four groups: ABZ = conventional brackets, Kirium Abzil 3M® (n = 10); RL = conventional brackets, Roth Light Morelli® (n = 10); NF = nickel-free brackets, Nickel-Free Morelli® (n = 10); and RM = nickel-free brackets, Roth Max Morelli® (n = 10). Qualitative evaluation of the bracket surface was performed using SEM, whereby surface features were described and compared. The elemental composition was analyzed by EDS. According to surface analysis, groups ABZ and RL showed a homogeneous surface, with better finishing, whereas the surfaces in groups NF and RM were rougher. The chemical components with the highest percentage were Fe, Cr and C. Groups NF and MR showed no nickel in their composition. In conclusion, the bracket surface of the ABZ and RL groups was more homogeneous, with grooves and pores, whereas the surfaces in groups NF and RM showed numerous flaws, cracks, pores and grooves. The chemical composition analysis confirmed that the nickel-free brackets had no Ni in their composition, as confirmed by the manufacturer's specifications, and were therefore safe to use in patients with a medical history of allergy to this metal.

  15. Metallographic structure and hardness of titanium orthodontic brackets.

    PubMed

    Zinelis, Spiros; Annousaki, Olga; Eliades, Theodore; Makou, Margarita

    2003-11-01

    To determine the elemental composition, microstructure, and hardness of two different brands of titanium (Ti) orthodontic brackets. Four specimens of each brand were embedded in epoxy resin and, after metallographic grinding and polishing, were studied under a metallographic microscope. The bonding base morphology of each bracket was studied in as-received brackets by scanning electron microscopy. Energy dispersive x-ray microanalysis (EDS) was used on polished specimens to assess the elemental composition of base and wing bracket components, and the brackets were subjected to metallographic etching to reveal the metallurgical structure. The same specimen surfaces were used for assessment of the Vickers hardness. The results were statistically analyzed by two-way analysis of variance (ANOVA) with the bracket brand and bracket region (base, wing) serving as discriminating variables, whilst further group differences were investigated with Tukey's multiple comparison test at the alpha = 0.05 level of significance. Metallographic imaging revealed that the Orthos2 brackets (Ormco, Glendora, CA, USA) consist of two parts joined together by laser welding, with large gaps along the base wing interface, whereas Rematitan brackets (Dentaurum, Ispringen, Germany) are single-piece appliances. Ti was the only element identified in Rematitan and Orthos2 base materials, while aluminium (Al) and vanadium (V) were also found in the Orthos2 wing component. Metallographic analysis showed the presence of a + b phase for Orthos2 and plate-like grains for Rematitan. The results of the Vickers hardness testing were: Orthos2 (wing): 371 +/- 22, Rematitan (wing): 272 +/- 4, Rematitan (base): 271 +/- 16, Orthos2 (base): 165 +/- 2. The findings of the present study suggest that there are significant differences in composition, microstructure and hardness between the two commercial types of Ti brackets tested; the clinical implications of the findings are discussed.

  16. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane.

    PubMed

    Tupinambá, Rogerio Amaral; Claro, Cristiane Aparecida de Assis; Pereira, Cristiane Aparecida; Nobrega, Celestino José Prudente; Claro, Ana Paula Rosifini Alves

    2017-01-01

    Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Significant statistical differences (p< 0.05) for surface roughness and bacterial adhesion reduction were observed on conventional brackets after surface treatment and between conventional and self-ligating brackets; no significant statistical differences were observed between self-ligating groups (p> 0.05). Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film.

  17. Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets.

    PubMed

    Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza

    2017-01-01

    Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice.

  18. Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets

    PubMed Central

    Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza

    2017-01-01

    Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice. PMID:28912939

  19. Quantitative analysis of enamel on debonded orthodontic brackets.

    PubMed

    Cochrane, Nathan J; Lo, Thomas W G; Adams, Geoffrey G; Schneider, Paul M

    2017-09-01

    Iatrogenic damage to the tooth surface in the form of enamel tearouts can occur during removal of fixed orthodontic appliances. The aim of this study was to assess debonded metal and ceramic brackets attached with a variety of bonding materials to determine how frequently this type of damage occurs. Eighty-one patients close to finishing fixed orthodontic treatment were recruited. They had metal brackets bonded with composite resin and a 2-step etch-and-bond technique or ceramic brackets bonded with composite resin and a 2-step etch-and- bond technique, and composite resin with a self-etching primer or resin-modified glass ionomer cement. Debonded brackets were examined by backscattered scanning electron microscopy with energy dispersive x-ray spectroscopy to determine the presence and area of enamel on the base pad. Of the 486 brackets collected, 26.1% exhibited enamel on the bonding material on the bracket base pad. The incidences of enamel tearouts for each group were metal brackets, 13.3%; ceramic brackets, 30.2%; composite resin with self-etching primer, 38.2%; and resin-modified glass ionomer cement, 21.2%. The percentage of the bracket base pad covered in enamel was highly variable, ranging from 0% to 46.1%. Enamel damage regularly occurred during the debonding process with the degree of damage being highly variable. Damage occurred more frequently when ceramic brackets were used (31.9%) compared with metal brackets (13.3%). Removal of ceramic brackets bonded with resin-modified glass ionomer cement resulted in less damage compared with the resin bonding systems. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus.

    PubMed

    Shah, Alok Girish; Shetty, Pradeep Chandra; Ramachandra, C S; Bhat, N Sham; Laxmikanth, S M

    2011-11-01

    To assess the antiadherent and antibacterial properties of surface modified stainless steel orthodontic brackets with photocatalytic titanium oxide (TiO(2)) against Lactobacillus acidophilus. This study was done on 120 specimens of stainless steel preadjusted edgewise appliance (PEA) orthodontic brackets. The specimens were divided into four test groups. Each group consisted of 30 specimens. Groups containing uncoated brackets acted as a control group for their respective experimental group containing coated brackets. Surface modification of brackets was carried out by the radiofrequency (RF) magnetron sputtering method with photocatalytic TiO(2). Brackets then were subjected to microbiological tests for assessment of the antiadherent and antibacterial properties of photocatalytic TiO(2) coating against L acidophilus. Orthodontic brackets coated with photocatalytic TiO(2) showed an antiadherent effect against L acidophilus compared with uncoated brackets. The bacterial mass that was bound to the TiO(2)-coated brackets was less when compared with the uncoated brackets. Furthermore, TiO(2)-coated brackets had a bactericidal effect on L acidophilus, which causes dental caries. Surface modification of orthodontic brackets with photocatalytic TiO(2) can be used to prevent the accumulation of dental plaque and the development of dental caries during orthodontic treatment.

  1. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane

    PubMed Central

    Tupinambá, Rogerio Amaral; Claro, Cristiane Aparecida de Assis; Pereira, Cristiane Aparecida; Nobrega, Celestino José Prudente; Claro, Ana Paula Rosifini Alves

    2017-01-01

    ABSTRACT Introduction: Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Methods: Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Results: Significant statistical differences (p< 0.05) for surface roughness and bacterial adhesion reduction were observed on conventional brackets after surface treatment and between conventional and self-ligating brackets; no significant statistical differences were observed between self-ligating groups (p> 0.05). Conclusion: Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film. PMID:28902253

  2. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia

    PubMed Central

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method. PMID:29049418

  3. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    PubMed

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  4. Shear Bond Strength of Al2O3 Sandblasted Y-TZP Ceramic to the Orthodontic Metal Bracket

    PubMed Central

    Byeon, Seon Mi; Lee, Min Ho; Bae, Tae Sung

    2017-01-01

    As the proportion of adult orthodontic treatment increases, mainly for aesthetic reasons, orthodontic brackets are directly attached to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) restorations. This, study analyzed the shear bond strength (SBS) between various surface treated Y-TZP and orthodontic metal brackets. The Y-TZP specimens were conditioned by 110 μm Al2O3 sandblasting, or sandblasting followed by coating with one of the primers (silane, MDP, or an MDP-containing silane primer). After surface treatment, the orthodontic metal bracket was bonded to the specimen using a resin cement, and then 24 h storage in water and thermal cycling (5000 cycles, 5–55 °C), SBS was measured. Surface roughness was analyzed for surface morphology, and X-ray photoelectron spectroscopy (XPS) was employed for characterization of the chemical bond between the Y-TZP and the MDP-based primers (MDP, MDP containing silane primer). It was found that after surface treatment, the surface roughness of all groups increased. The groups treated with 110 μm Al2O3 sandblasting and MDP, or MDP-containing silane primer showed the highest SBS values, at 11.92 ± 1.51 MPa and 13.36 ± 2.31 MPa, respectively. The SBS values significantly decreased in all the groups after thermal cycling. Results from XPS analysis demonstrated the presence of chemical bonds between Y-TZP and MDP. Thus, the application of MDP-based primers after Al2O3 sandblasting enhances the resin bond strength between Y-TZP and the orthodontic metal bracket. However, bonding durability of all the surface-treated groups decreased after thermal cycling. PMID:28772508

  5. Cleansing orthodontic brackets with air-powder polishing: effects on frictional force and degree of debris.

    PubMed

    Leite, Brisa Dos Santos; Fagundes, Nathalia Carolina Fernandes; Aragón, Mônica Lídia Castro; Dias, Carmen Gilda Barroso Tavares; Normando, David

    2016-01-01

    Debris buildup on the bracket-wire interface can influence friction. Cleansing brackets with air-powder polishing can affect this process. The aim of this study was to evaluate the frictional force and amount of debris remaining on orthodontic brackets subjected to prophylaxis with air-powder polishing. Frictional force and debris buildup on the surface of 28 premolar brackets were evaluated after orthodontic treatment. In one hemiarch, each bracket was subjected to air-powder polishing (n = 14) for five seconds, while the contralateral hemiarch (n = 14) served as control. Mechanical friction tests were performed and images of the polished bracket surfaces and control surfaces were examined. Wilcoxon test was applied for comparative analysis between hemiarches at p < 0.05. Brackets that had been cleaned with air-powder polishing showed lower friction (median = 1.27 N) when compared to the control surfaces (median = 4.52 N) (p < 0.01). Image analysis showed that the control group exhibited greater debris buildup (median = 2.0) compared with the group that received prophylaxis with air-powder polishing (median = 0.5) (p < 0.05). Cleansing orthodontic brackets with air-powder polishing significantly reduces debris buildup on the bracket surface while decreasing friction levels observed during sliding mechanics.

  6. Biodegradation of orthodontic metallic brackets and associated implications for friction.

    PubMed

    Regis, Saulo; Soares, Paulo; Camargo, Elisa S; Guariza Filho, Odilon; Tanaka, Orlando; Maruo, Hiroshi

    2011-10-01

    This study aimed to assess the effect of clinical exposure on the surface morphology, dimensions, and frictional behavior of metallic orthodontic brackets. Ninety-five brackets, of 3 commercial brands, were retrieved from patients who had finished orthodontic treatment. As-received brackets, matched by type and brand, were used for comparisons. Surface morphology and precipitated material were analyzed by optical and scanning electron microscopy and x-ray microanalysis. Bracket dimensions were measured with a measuring microscope. Resistance to sliding on a stainless steel wire was assessed. Retrieved brackets showed surface alterations from corrosion, wear, and plastic deformation, especially in the external slot edges. Film deposition over the alloy surface was observed to a variable extent. The main elements in the film were carbon, oxygen, calcium, and phosphorus. The as-received brackets showed differences (P <0.05) in the slot sizes among brands, and 1 brand showed a 3% increase in the retrieved brackets' slots. The frictional behavior differed among brands. Retrieved brackets of 2 brands showed 10% to 20% increases in resistance to sliding. Metallic brackets undergo significant degradation during orthodontic treatment, possibly with increased friction. At present, it is difficult to predict the impact of these changes on the clinical performance of orthodontic components. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. 3D-printed orthodontic brackets - proof of concept.

    PubMed

    Krey, Karl-Friedrich; Darkazanly, Nawras; Kühnert, Rolf; Ruge, Sebastian

    Today, orthodontic treatment with fixed appliances is usually carried out using preprogrammed straight-wire brackets made of metal or ceramics. The goal of this study was to determine the possibility of clinically implementing a fully digital workflow with individually designed and three-dimensionally printed (3D-printed) brackets. Edgewise brackets were designed using computer-aided design (CAD) software for demonstration purposes. After segmentation of the malocclusion model generated based on intraoral scan data, the brackets were digitally positioned on the teeth and a target occlusion model created. The thus-defined tooth position was used to generate a template for an individualized arch form in the horizontal plane. The base contours of the brackets were modified to match the shape of the tooth surfaces, and a positioning guide (fabricated beforehand) was used to ensure that the brackets were bonded at the correct angle and position. The brackets, positioning guide, and retainer splint, digitally designed on the target occlusion model, were 3D printed using a Digital Light Processing (DLP) 3D printer. The archwires were individually pre-bent using the template. In the treatment sequence, it was shown for the first time that, in principle, it is possible to perform treatment with an individualized 3D-printed brackets system by using the proposed fully digital workflow. Technical aspects of the system, problems encountered in treatment, and possible future developments are discussed in this article.

  8. Effects of silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets to enamel.

    PubMed

    Atsü, Saadet Sağlam; Gelgör, Ibrahim Erhan; Sahin, Volkan

    2006-09-01

    To evaluate the effect of tribochemical silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets bonded to enamel surfaces with light-cured composite resin. Twenty metal and 20 ceramic brackets were divided into four groups (n = 10 for each group). The specimens were randomly assigned to one of the following treatment conditions of the metal and ceramic brackets' surface: (1) tribochemical silica coating combined with silane and (2) no treatment. Brackets were bonded to the enamel surface on the labial and lingual sides of human maxillary premolars (20 total) with a light-polymerized resin composite. All specimens were stored in water for 1 week at 37 degrees C and then thermocycled (5000 cycles, 5 degrees C to 55 degrees C, 30 seconds). The shear bond strength values were measured on a universal testing machine. Student's t-test was used to compare the data (alpha = 0.05). The types of failures were observed using a stereomicroscope. Metal and ceramic brackets treated with silica coating with silanization had significantly greater bond strength values (metal brackets: 14.2 +/- 1.7 MPa, P < .01; ceramic brackets: 25.9 +/- 4.4 MPa, P < .0001) than the control groups (metal brackets: 11.9 +/- 1.3 MPa; ceramic brackets: 15.6 +/- 4.2 MPa). Treated specimens of metal and ceramic exhibited cohesive failures in resin and adhesive failures at the enamel-adhesive interface, whereas control specimens showed mixed types of failures. Silica coating with aluminum trioxide particles coated with silica followed by silanization gave higher bond strengths in both metal and ceramic brackets than in the control group.

  9. Topographic and chemical surface modifications to metal brackets after a period in the mouth.

    PubMed

    Houb-Dine, Afaf; Bahije, Loubna; Oualalou, Youssef; Benyahia, Hicham; Zaoui, Fatima

    2017-09-01

    In the current state of our knowledge, the effects of corrosion on the performance of orthodontic appliances and on patient health are far from clear. Awareness of these problems has led to a growing demand for nickel-free products. Titanium brackets were recently launched on the market as an alternative to stainless-steel brackets. However, the use of fluorides for caries prevention creates a risk of corrosion of these titanium appliances. The aim of this study is to examine the corrosion of stainless-steel and titanium brackets in clinical orthodontic use, focusing on the impact of fluorine. After approval by the ethics committee and the informed consent of the patients, 30 candidates for multi-bracket treatment were selected on the basis of certain exclusion criteria. The patients were divided into 4 groups: group 1: titanium brackets and fluorine protection; group 2: titanium brackets without fluorine protection; group 3: stainless-steel brackets and fluorine protection; group 4: stainless-steel brackets without fluorine protection. Analysis of the brackets removed after 4months in the mouth, using scanning electron microscopy (SEM) with phase contrast, revealed a difference in the surface topography of the metal brackets and the presence of chromium coating on the surface of the titanium appliances. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  10. Bracket for photovoltaic modules

    DOEpatents

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  11. Surface quality and microstructure of low-vacuum sintered orthodontic bracket 17-4 PH stainless steel fabricated by MIM process

    NASA Astrophysics Data System (ADS)

    Suharno, Bambang; Suharno, Lingga Pradinda; Saputro, Hantoro Restucondro; Irawan, Bambang; Prasetyadi, Tjokro; Ferdian, Deni; Supriyadi, Sugeng

    2018-02-01

    Surface roughness and microstructure play important role on orthodontic bracket quality. Therefore, orthodontic brackets need to have smooth surface roughness to reduce the friction and bacterial adhesion. Microstructure of orthodontic brackets also determine the mechanical properties and corrosion resistance. There are two methods to produce orthodontic bracket, investment casting and metal injection molding. The purpose of this study is to observe the surface roughness and microstructure of orthodontic bracket which were made from two different fabrication methods. To produce orthodontic bracket with metal injection molding method, 17-4 PH stainless steel feedstock was injected to the orthodontic bracket mold using injection molding machine. After injection, the binder was eliminated with solvent and thermal debinding. Solvent debinding process was conducted with hexane at 50 °C on magnetic stirrer for 1.5 hours. Thermal debinding process was conducted at 510 °C with 0.5 °C/min heat rate and 120 min holding time. Hereafter, sintering process were performed with vacuum tube furnace at 1360 °C with heat rate 5 °C/min and 90 min holding time in low vacuum atmosphere. To produce orthodontic bracket with investment casting method, the wax was injected into the mold then the wax pattern was arranged into the tree form. The tree form was then dipped into ceramic slurry and allowed to harden, the ceramic slurry has a thickness in the region of 10 mm. The ceramic mold was then heated at a temperature of over than 1100°C to strengthen the ceramic mold and to remove the remaining wax. After that, the molten 17-4 PH stainless steel was poured into the ceramic mold at a temperature of over 1600°C. The natural cooling process was carried out at temperature of 25°C, after which the ceramic mold was broken away. Then, the orthodontic bracket was cut from the tree form. The results show that the orthodontic bracket which were made with investment casting fabrication method have low porosity, high density, and there is no indication of secondary phase on the microstructure. However, it has rough brackets surface. Whereas, the production of orthodontic brackets using metal injection molding method resulted in better surface roughness. But, it has relatively high porosity, presence of another phase on the microstructure, and low density.

  12. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets.

    PubMed

    Atsü, Saadet; Çatalbaş, Bülent; Gelgör, İbrahim Erhan

    2011-01-01

    The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group): (1) sandblasting (control); (2) tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles) between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05). Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa) than the sandblasting group (2.4±0.8 MPa, P<0.001). No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa) and the sandblasted brackets (13.6±3.9 MPa). Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  13. Physical and chemical properties of orthodontic brackets after 12 and 24 months: in situ study

    PubMed Central

    MENDES, Bernardo de Azevedo Bahia; FERREIRA, Ricardo Alberto Neto; PITHON, Matheus Melo; HORTA, Martinho Campolina Rebello; OLIVEIRA, Dauro Douglas

    2014-01-01

    Objective The aim of this article was to assess how intraoral biodegradation influenced the surface characteristics and friction levels of metallic brackets used during 12 and 24 months of orthodontic treatment and also to compare the static friction generated in these brackets with four different methods of the ligation of orthodontic wires. Material and Methods Seventy premolar brackets as received from the manufacturer and 224 brackets that were used in previous orthodontic treatments were evaluated in this experiment. The surface morphology and the composition of the deposits found in the brackets were evaluated with rugosimetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Friction was analyzed by applying tensile tests simulating sliding mechanics with a 0.019x0.025" steel wire. The static friction levels produced by the following ligation methods were evaluated: loosely attached steel ligature around all four bracket wings, steel ligature attached to only two wings, conventional elastomeric ligation around all 4 bracket wings, and non-conventional Slide® elastomeric ligature. Results The results demonstrated the presence of biodegradation effects such as corrosion pits, plastic deformation, cracks, and material deposits. The main chemical elements found on these deposits were Carbon and Oxygen. The maximum friction produced by each ligation method changed according to the time of intraoral use. The steel ligature loosely attached to all four bracket wings produced the lowest friction levels in the new brackets. The conventional elastic ligatures generated the highest friction levels. The metallic brackets underwent significant degradation during orthodontic treatment, showing an increase in surface roughness and the deposit of chemical elements on the surface. Conclusion The levels of static friction decreased with use. The non-conventional elastic ligatures were the best alternative to reduce friction. PMID:25025560

  14. Physical and chemical properties of orthodontic brackets after 12 and 24 months: in situ study.

    PubMed

    Mendes, Bernardo de Azevedo Bahia; Neto Ferreira, Ricardo Alberto; Pithon, Matheus Melo; Horta, Martinho Campolina Rebello; Oliveira, Dauro Douglas

    2014-06-01

    The aim of this article was to assess how intraoral biodegradation influenced the surface characteristics and friction levels of metallic brackets used during 12 and 24 months of orthodontic treatment and also to compare the static friction generated in these brackets with four different methods of the ligation of orthodontic wires. Seventy premolar brackets as received from the manufacturer and 224 brackets that were used in previous orthodontic treatments were evaluated in this experiment. The surface morphology and the composition of the deposits found in the brackets were evaluated with rugosimetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Friction was analyzed by applying tensile tests simulating sliding mechanics with a 0.019x0.025" steel wire. The static friction levels produced by the following ligation methods were evaluated: loosely attached steel ligature around all four bracket wings, steel ligature attached to only two wings, conventional elastomeric ligation around all 4 bracket wings, and non-conventional Slide® elastomeric ligature. The results demonstrated the presence of biodegradation effects such as corrosion pits, plastic deformation, cracks, and material deposits. The main chemical elements found on these deposits were Carbon and Oxygen. The maximum friction produced by each ligation method changed according to the time of intraoral use. The steel ligature loosely attached to all four bracket wings produced the lowest friction levels in the new brackets. The conventional elastic ligatures generated the highest friction levels. The metallic brackets underwent significant degradation during orthodontic treatment, showing an increase in surface roughness and the deposit of chemical elements on the surface. The levels of static friction decreased with use. The non-conventional elastic ligatures were the best alternative to reduce friction.

  15. Effects of 445-nm Diode Laser-Assisted Debonding of Self-Ligating Ceramic Brackets on Shear Bond Strength.

    PubMed

    Stein, Steffen; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas

    2018-01-01

    The aim of this study was to measure the effect of irradiation with a novel 445-nm diode laser on the shear bond strength (SBS) of ceramic brackets before debonding. Thirty ceramic brackets (In-Ovation ® C, GAC) were bonded in standard manner to the planed and polished buccal enamel surfaces of 30 caries-free human third molars. Each tooth was randomly allocated to the laser or control group, with 15 samples per group. The brackets in the laser group were irradiated with the diode laser (SIROLaser Blue ® ; Sirona) on three sides of the bracket bases for 5 sec each (lateral-coronal-lateral, a total of 15 sec) immediately before debonding. SBS values were measured for the laser group and control group. To assess the adhesive remnant index (ARI) and the degree of enamel fractures, micrographs of the enamel surface were taken with 10-fold magnification after debonding. The SBS values were significantly lower statistically in the laser group in comparison with the control group (p < 0.05). The ARI scores were also significantly lower statistically in the laser group in comparison with the control group (p < 0.05). No bracket fractures or enamel fractures occurred in either group after debonding. Irradiation of ceramic brackets with the novel diode laser before debonding significantly reduces the SBS values. This is of clinical importance, as it means that the risk of damage to the teeth, bracket fractures, and the overall treatment time can be reduced.

  16. Effect of chlorhexidine-containing prophylactic agent on the surface characterization and frictional resistance between orthodontic brackets and archwires: an in vitro study

    PubMed Central

    2013-01-01

    Background The purpose of this study was to assess the surface characterization and frictional resistance between stainless steel brackets and two types of orthodontic wires made of stainless steel and nickel-titanium alloys after immersion in a chlorhexidine-containing prophylactic agent. Methods Stainless steel orthodontic brackets with either stainless steel (SS) or heat-activated nickel-titanium (Ni-Ti) wires were immersed in a 0.2% chlorhexidine and an artificial saliva environment for 1.5 h. The frictional force was measured on a universal testing machine with a crosshead speed of 10 mm/min over a 5-mm of archwire. The surface morphology of bracket slots and surface roughness of archwires after immersion in chlorhexidine were also characterized using a scanning electron microscope (SEM) and an atomic force microscope (AFM), respectively. Results There was no significant difference in the frictional resistance values between SS and Ni-Ti wires immersed in either chlorhexidine or artificial saliva. The frictional resistance values for the SS and Ni-Ti wires immersed in 0.2% chlorhexidine solution were not significantly different from that inartificial saliva. No significant difference in the average surface roughness for both wires before (as-received) and after immersion in either chlorhexidine or artificial saliva was observed. Conclusions One-and-half-hour immersion in 0.2% chlorhexidine mouthrinse did not have significant influence on the archwires surface roughness or the frictional resistance between stainless steel orthodontic brackets and archwires made of SS and Ni-Ti. Based on these results, chlorhexidine-containing mouthrinses may be prescribed as non-destructive prophylactic agents on materials evaluated in the present study for orthodontic patients. PMID:24325758

  17. Sensitivity of titanium brackets to the corrosive influence of fluoride-containing toothpaste and tea.

    PubMed

    Harzer, W; Schröter, A; Gedrange, T; Muschter, F

    2001-08-01

    Titanium brackets are used in orthodontic patients with an allergy to nickel and other specific substances. In recent studies, the corrosive properties of fluoride-containing toothpastes with different pH values were investigated. The present in vivo study tested how the surfaces of titanium brackets react to the corrosive influence of acidic fluoride-containing toothpaste during orthodontic treatment. Molar bands were placed on 18 orthodontic patients. In these same patients, titanium brackets were bonded on the left quadrants and stainless steel brackets on the right quadrants of the upper and lower arches. Fifteen patients used Gel Kam containing soluble tin fluoride (pH 3.2), whereas 3 used fluoride-free toothpaste. The brackets were removed for evaluation by light microscopy and scanning microscopy 5.5 to 7.0 months and 7.5 to 17 months after bonding. The quality and quantity of elements present were measured by scanning microscopy. Macroscopic evaluation showed the matte gray color of titanium brackets dominating over the silver gleam of the steel brackets. The plaque accumulation on titanium brackets is high because of the very rough surface. Pitting and crevices were observed in only 3 of the 165 brackets tested. The present in vivo investigation confirms the results of in vitro studies, but the changes are so minor that titanium brackets can safely be used for up to 18 months. Wing surfaces should be improved by modifying the manufacturing process.

  18. Report: Discussion on the development of nano Ag/TiO2 coating bracket and its antibacterial property and biocompatibility in orthodontic treatment.

    PubMed

    Zhang, Ronghe; Zhang, Weiwei; Bai, Xueyan; Song, Xiaotong; Wang, Chunyan; Gao, Xinxin; Tian, Xubiao; Liu, Fengzhen

    2015-03-01

    This paper aims to explore the antibacterial property of nano Ag/TiO2 coating bracket for the common bacteria in oral cavity, and discuss its biocompatibility. Micro morphology in the surface of nano Ag/TiO2 coating bracket was detected by scanning electron microscope (SEM), and surface roughness of ordinary mental bracket, nano TiO2 coating bracket and nano Ag/TiO2 coating bracket were measured. First, antibacterial property of nano Ag/TiO2 coating bracket on the common bacteria in oral cavity was studied by sticking membrane method. Secondly, bonding strength of nano TiO2 coating and nano Ag/TiO2 coating bracket in groups were detected by scratching test. The result showed that, the synthetic nano Ag/TiO2 coating was nanogranular films with rigorous organizational structure, presenting as smooth and clean surface, and antibacterial rate of nano Ag/TiO2 coating for the common bacteria in oral cavity for 20 min was more than 79% in the dark. All the findings suggested that, nano Ag/TiO2 coating bracket not only has antibacterial effect but also has good biocompatibility, therefore, it can satisfy the clinical request of orthodontic treatment.

  19. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    PubMed

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P < 0.001). Acid etch application to sandblasted surfaces significantly increased the SBS in groups 1, 2, 5, and 6. The SBS of metal brackets debonded from groups 1, 3, and 5 were not significantly different from those of groups 2, 4, and 6. All debonded metal brackets revealed a similar pattern of bond failure at the adhesive-restorative interface. However, ceramic brackets had a significantly different adhesive failure pattern with dominant failure at the adhesive-bracket interface. Ceramic fractures after bracket removal were found more often in groups 1-4. No significant difference in ceramic fracture was observed between the IPS Empress 2 and In-Ceram groups.

  20. Retrieval analysis of different orthodontic brackets: the applicability of electron microprobe techniques for determining material heterogeneities and corrosive potential

    PubMed Central

    HOLST, Alexandra Ioana; HOLST, Stefan; HIRSCHFELDER, Ursula; von SECKENDORFF, Volker

    2012-01-01

    Objective The objective of this study was to investigate the applicability of micro-analytical methods with high spatial resolution to the characterization of the composition and corrosion behavior of two bracket systems. Material and methods The surfaces of six nickel-free brackets and six nickel-containing brackets were examined for signs of corrosion and qualitative surface analysis using an electron probe microanalyzer (EPMA), prior to bonding to patient's tooth surfaces and four months after clinical use. The surfaces were characterized qualitatively by secondary electron (SE) images and back scattered electron (BSE) images in both compositional and topographical mode. Qualitative and quantitative wavelength-dispersive analyses were performed for different elements, and by utilizing qualitative analysis the relative concentration of selected elements was mapped two-dimensionally. The absolute concentration of the elements was determined in specially prepared brackets by quantitative analysis using pure element standards for calibration and calculating correction-factors (ZAF). Results Clear differences were observed between the different bracket types. The nickel-containing stainless steel brackets consist of two separate pieces joined by a brazing alloy. Compositional analysis revealed two different alloy compositions, and reaction zones on both sides of the brazing alloy. The nickel-free bracket was a single piece with only slight variation in element concentration, but had a significantly rougher surface. After clinical use, no corrosive phenomena were detectable with the methods applied. Traces of intraoral wear at the contact areas between the bracket slot and the arch wire were verified. Conclusion Electron probe microanalysis is a valuable tool for the characterization of element distribution and quantitative analysis for corrosion studies. PMID:23032212

  1. A comparative study of shear bond strength between metal and ceramic brackets and artificially aged composite restorations using different surface treatments.

    PubMed

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2012-10-01

    This in vitro study evaluated the shear bond strength (SBS) between ceramic brackets (CBs) and resin composite restorations (RCRs) prepared using different surface treatments. The findings were also compared with a similar study that used stainless steel brackets (SSBs). Forty-five premolars were restored with a nano-hybrid composite resin (Tetric EvoCeram) and randomly assigned to three surface treatment groups: group 1, 5 per cent hydrofluoric acid (HF); group 2, air abrasion (50 μm alumina particles); and group 3, diamond bur. Specimens were bonded with CBs (Fascination) and exposed to thermo-cycling (500 cycles). The shear force at a crosshead speed of 1 mm/minute was transmitted to brackets. The adhesive remnant index (ARIs) scores were recorded after bracket failure. The analysis of SBS variance (P < 0.01) and chi-square test of ARIs scores (P < 0.01) revealed significant differences among three groups tested. The SBS in group 3 (mean: 26.34 ± 4.76 MPa) and group 2 (mean: 26.68 ± 5.93 MPa) was significantly higher than group 1 (mean: 16.25 ± 5.42 MPa). The SBS was significantly higher in CBs (mean: 23.09 ± 7.19 MPa) compared to SSBs (mean: 15.56 ± 5.13 MPa). High ARIs (100 per cent) occurred in SSBs treated with a diamond bur, whereas CBs primarily failed at the resin-adhesive interface (P < 0.01). In two-thirds of the specimens (SSBs or CBs), no adhesive was left on the restoration after HF conditioning. The ARIs profile of CBs and SSBs that received surface treatments with air abrasion were similar (P > 0.05) and bond failure occurred mainly in adhesive-bracket base and resin-adhesive interfaces. The diamond bur surface treatment is recommended as a safe and cost-effective method of bonding CBs to RCRs.

  2. Study of force loss due to friction comparing two ceramic brackets during sliding tooth movement.

    PubMed

    AlSubaie, Mai; Talic, Nabeel; Khawatmi, Said; Alobeid, Ahmad; Bourauel, Christoph; El-Bialy, Tarek

    2016-09-01

    To compare the percentage of force loss generated during canine sliding movements in newly introduced ceramic brackets with metal brackets. Two types of ceramic brackets, namely polycrystalline alumina (PCA) ceramic brackets (Clarity Advanced) and monocrystalline alumina (MCA) ceramic brackets (Inspire Ice) were compared with stainless steel (SS) brackets (Victory Series). All bracket groups (n = 5 each) were for the maxillary canines and had a 0.018-inch slot size. The brackets were mounted on an Orthodontic Measurement and Simulation System (OMSS) to simulate the canine retraction movement into the first premolar extraction space. Using elastic ligatures, 0.016 × 0.022″ (0.40 × 0.56 mm) stainless steel archwires were ligated onto the brackets. Retraction force was applied via a nickel-titanium coil spring with a nearly constant force of approximately 1 N. The OMSS measured the percentage of force loss over the retraction path by referring to the difference between the applied retraction force and actual force acting on each bracket. Between group comparisons were done with one-way analysis of variance. The metal brackets revealed the lowest percentage of force loss due to friction, followed by the PCA and MCA ceramic bracket groups (67 ± 4, 68 ± 7, and 76 ± 3 %, respectively). There was no significant difference between SS and PCA brackets (p = 0.97), but we did observe significant differences between metal and MCA brackets (p = 0.03) and between PCA and MCA ceramic brackets (p = 0.04). PCA ceramic brackets, whose slot surface is covered with an yttria-stabilized zirconia-based coating exhibited frictional properties similar to those of metal brackets. Frictional resistance resulted in an over 60 % loss of the applied force due to the use of elastic ligatures.

  3. Adhesive performance of precoated brackets after expiration.

    PubMed

    Cloud, Cayce C; Trojan, Terry M; Suliman, Sam N; Tantbirojn, Daranee; Versluis, Antheunis

    2016-03-01

    To evaluate adhesive performance in terms of debonding forces of precoated metal and ceramic brackets 4 years after expiration. Buccal and lingual surfaces of embedded extracted maxillary premolars were etched with 34% Tooth Conditioner Gel (Dentsply Caulk, Milford, Del), rinsed, and dried. Transbond MIP (3M Unitek, Monrovia, Calif) was applied prior to placing adhesive precoated brackets (APC II Victory stainless steel and APC Plus Clarity ceramic brackets, 3M Unitek). The preexpiration brackets had 29-35 months before, and the postexpiration brackets were 45-52 months past, their expiration dates. Sample size was 17-21 per group. Debonding forces were determined by subjecting the bonded brackets to a shear force in a universal testing machine. Debonding forces were compared using two-way ANOVA. Debonded surfaces were examined under a stereomicroscope to determine failure modes, which were compared using the chi-square test. No statistically significant difference was found in debonding forces (P  =  .8581) or failure modes (P  =  .4538) between expired and unexpired brackets. Metal brackets required statistically significantly higher debonding forces than did ceramic brackets (P  =  .0001). For both expired and unexpired brackets, failure modes were mostly cohesive in the adhesive layer for ceramic brackets, and mixed between adhesive and cohesive failure in the adhesive layer for metal brackets. Adhesive precoated brackets did not have any reduction in enamel-adhesion properties up to 4 years after their expiration date. Extended shelf life testing for precoated dental brackets may be worth considering.

  4. Apparatuses to support photovoltaic modules

    DOEpatents

    Ciasulli, John; Jones, Jason

    2017-08-22

    Methods and apparatuses to support photovoltaic ("PV") modules are described. A saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. A grounding washer has a first portion to couple to a support; and a second portion coupled to the first portion to provide a ground path to a PV module. A PV system has a saddle bracket; a PV module over the saddle bracket; and a grounding washer coupled to the saddle bracket and the PV module. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets.

  5. Shear bond strength of orthodontic brackets and disinclusion buttons: effect of water and saliva contamination.

    PubMed

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola; Scribante, Andrea

    2013-01-01

    The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.

  6. Evaluation of frictional resistance and surface characteristics after immersion of orthodontic brackets and wire in different chemical solutions: A comparative in vitrostudy.

    PubMed

    Nanjundan, Kavitha; Vimala, G

    2016-01-01

    To evaluate the changes of static and kinetic frictional forces between the brackets and wires following exposure to a soft drink, acidic food ingredient, and acidulated fluoride prophylactic agents. Two types of Roth prescription mandibular incisor brackets were used: 3M Unitek Victory stainless steel (SS) brackets (n = 40) and Transcend 6000 polycrystalline alumina (PCA) brackets (n = 40) as well as eighty 0.019 × 0.025" dimension ortho technology SS wires of 50 mm length each. Subsequently, brackets tied with SS wires divided into eight subgroups (n = 10) and were immersed in vinegar (pH = 3.5 ± 0.5), Pepsi ® (pH = 2.46), Colgate Phos-Flur mouth rinse (pH = 5.1), and artificial saliva (control group pH = 7) for 24 h. Changes in surface morphology under scanning electron microscope ×1000, surface roughness (Ra) with surface profilometer (single bracket and single wire from each subgroup), and frictional resistance using universal testing machine were evaluated. Highest mean (standard deviation) static frictional force of 2.65 (0.25) N was recorded in Pepsi ® followed by 2.57 (0.25) N, 2.40 (0.22) N, and 2.36 (0.17) N for Vinegar, Colgate Phos-Flur mouth rinse, and artificial saliva groups, respectively. In a similar order, lesser mean kinetic frictional forces obtained. PCA brackets revealed more surface deterioration and higher frictional force values than SS brackets. A significant positive correlation was observed between frictional forces and bracket slot roughness (r = 0.861 and 0.802, respectively, for static and kinetic frictional forces, p < 0.001 for both) and wire roughness (r = 0.243 and 0.242, respectively, for static and kinetic frictional forces, p < 0.05 for both). Findings may have long-term implications when acidic food substances are used during fixed orthodontic treatment. Further, in vivo studies are required to analyze the clinical effect of acidic mediums in the oral environment during orthodontic treatment.

  7. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, L.; Wepfer, R.M.

    1992-12-15

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

  8. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, Luciano; Wepfer, Robert M.

    1992-01-01

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

  9. Effect of blood contamination on shear bond strength of orthodontic brackets and disinclusion buttons.

    PubMed

    Sfondrini, Maria Francesca; Gatti, Sara; Scribante, Andrea

    2011-07-01

    Our aim was to assess the effect of blood contamination on the shear bonding strength and sites of failure of orthodontic brackets and bondable buttons. We randomly divided 160 bovine permanent mandibular incisors into 8 groups of 20 specimens each. Both orthodontic brackets (Step brackets, Leone, Sesto Fiorentino, Italy) and bondable buttons (Flat orthodontic buttons, Leone, Sesto Fiorentino, Italy) were tested on four different enamel surfaces: dry; contamination with blood before priming; after priming; and before and after priming. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bonding strength and the rate of adhesive failures were recorded. Data were analysed using the analysis of variance (ANOVA), Scheffè tests, and the chi-square test. Uncontaminated enamel surfaces showed the highest bonding strengths for both brackets and buttons. When they were contaminated with blood, orthodontic brackets had significantly lower shear strengths than bondable buttons (P=0.0001). There were significant differences in sites of failure among the groups for the various enamel surfaces (P=0.001). Contamination of enamel by blood during bonding lowers the strength of the bond, more so with orthodontic brackets than with bondable buttons. Copyright © 2010 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Numerical study of fairing installed between brackets based on CFD

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Xiong, Ying; Tang, Xin

    2017-10-01

    In view of the low speed and instability of the flow between the two arms of the bracket in front of the propeller, the fairing is installed between the arms of the bracket taking example of compensating duct, in order to speed up the flow between the bracket arms and improve the flow quality. A four-propeller surface ship was studied and an integral mathematic model including hull, appendage and propellers was established. Using a RANS solver, its installation height, angle and airfoil is optimized. Then ship models with fairing and without fairing are calculated. The result shows that fairing improves propeller efficiency behind ship with 1.1% of the outer propeller and 1.6% of the inner propeller, which indicates that fairing helps improve the flow quality

  11. Development of Superhydrophobic Material SS 17-4 PH for Bracket Orthodontic Application by Metal Injection Molding

    NASA Astrophysics Data System (ADS)

    Supriadi, S.; Suharno, B.; Widjaya, T.; Ayuningtyas, S. T.; Baek, E. R.

    2018-01-01

    Dental’s plaque is a common problem that encountered during orthodontic treatment using bracket. It is caused by demineralization of enamel due to the activity of bacteria. The bacteria increase with remaining excess food which trapped in teeth and bracket. A hydrophobic surface could reduce food attachment on the bracket because of extremely low wettability properties that make it easy to clean with water. There are several methods to obtain hydrophobic surfaces, which are sol-gel, template replica and also etching. The propose of this work is to compare etching treatment and surface modification on sintered SS 17-4 PH as bracket material using CuCl2 and HCl as an etchant while stearic acid was used for surface modification. Hydrophobic surfaces were produced under various etching time i.e 15, 30, 45 and 60 seconds for CuCl2 and 40, 50, 60 and 70 minutes for HCl and also HCl concentration i.e 1,2 and 3 mol/L at room temperature. The hydrophobicity is observed using contact angle measurement while the microstructures observed by Scanning Electron Microscope. The result shows the contact angle could be achieved up to 60% higher than the as-sintered material. Hydrophobic structure has successfully fabricated using etching technique that might be applied to the orthodontic bracket.

  12. Shear bond strength of orthodontic metal brackets to aged composite using three primers

    PubMed Central

    Tayebi, Ali; Fallahzadeh, Farnoosh

    2017-01-01

    Background This study aimed to assess the effect of surface preparation with sandblasting and diamond bur along with the use of three primers on shear bond strength (SBS) of metal brackets to aged composite. Material and Methods In this in vitro, experimental study, 60 Filtek Z250 composite discs were fabricated (10×2mm), immersed in distilled water for 24 hours and subjected to 5000 thermal cycles. They were randomly divided into two groups (n=30) of sandblasting with aluminum oxide particles for 10 seconds and surface roughening with bur. Each group was randomly divided into three subgroups (n=10) for use of Transbond XT, Assure Plus and Composite Primer. Metal brackets were bonded and the samples were stored in distilled water for 24 hours followed by 2000 thermal cycles. The SBS of brackets was measured and the adhesive remnant index (ARI) score was calculated. The data were analyzed by one-way ANOVA, t-test and Chi square test. Results The difference in the mean SBS was not significant among the six subgroups. Conclusions All combinations of primers and surface preparation methods provided adequately high SBS between brackets and aged composite surfaces. Considering the ARI scores, surface roughening by bur is superior to sandblasting. Key words:Shear strength, composite resins, orthodontic brackets, aged composite, surface preparation. PMID:28638550

  13. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    PubMed Central

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola

    2013-01-01

    Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825

  14. Enhancing the Hardness of Sintered SS 17-4PH Using Nitriding Process for Bracket Orthodontic Application

    NASA Astrophysics Data System (ADS)

    Suharno, B.; Supriadi, S.; Ayuningtyas, S. T.; Widjaya, T.; Baek, E. R.

    2018-01-01

    Brackets orthodontic create teeth movement by applying force from wire to bracket then transferred to teeth. However, emergence of friction between brackets and wires reduces load for teeth movement towards desired area. In order to overcome these problem, surface treatment like nitriding chosen as a process which could escalate efficiency of transferred force by improving material hardness since hard materials have low friction levels. This work investigated nitriding treatment to form nitride layer which affecting hardness of sintered SS 17-4PH. The nitride layers produced after nitriding process at various temperature i.e. 470°C, 500°C, 530°C with 8hr holding time under 50% NH3 atmosphere. Optical metallography was conducted to compare microstructure of base and surface metal while the increasing of surface hardness then observed using vickers microhardness tester. Hardened surface layer was obtained after gaseous nitriding process because of nitride layer that contains Fe4N, CrN and Fe-αN formed. Hardness layers can achieved value 1051 HV associated with varies thickness from 53 to 119 μm. The presence of a precipitation process occurring in conjunction with nitriding process can lead to a decrease in hardness due to nitrogen content diminishing in solid solution phase. This problem causes weakening of nitrogen expansion in martensite lattice.

  15. Elemental, microstructural, and mechanical characterization of high gold orthodontic brackets after intraoral aging.

    PubMed

    Hersche, Sepp; Sifakakis, Iosif; Zinelis, Spiros; Eliades, Theodore

    2017-02-01

    The purpose of the present study was to investigate the elemental composition, the microstructure, and the selected mechanical properties of high gold orthodontic brackets after intraoral aging. Thirty Incognito™ (3M Unitek, Bad Essen, Germany) lingual brackets were studied, 15 brackets as received (control group) and 15 brackets retrieved from different patients after orthodontic treatment. The surface of the wing area was examined by scanning electron microscopy (SEM). Backscattered electron imaging (BEI) was performed, and the elemental composition was determined by X-ray EDS analysis (EDX). After appropriate metallographic preparation, the mechanical properties tested were Martens hardness (HM), indentation modulus (EIT), elastic index (ηIT), and Vickers hardness (HV). These properties were determined employing instrumented indentation testing (IIT) with a Vickers indenter. The results were statistically analyzed by unpaired t-test (α=0.05). There were no statistically significant differences evidenced in surface morphology and elemental content between the control and the experimental group. These two groups of brackets showed no statistically significant difference in surface morphology. Moreover, the mean values of HM, EIT, ηIT, and HV did not reach statistical significance between the groups (p>0.05). Under the limitations of this study, it may be concluded that the surface elemental content and microstructure as well as the evaluated mechanical properties of the Incognito™ lingual brackets remain unaffected by intraoral aging.

  16. Bond strength with various etching times on young permanent teeth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.N.; Lu, T.C.

    1991-07-01

    Tensile bond strengths of an orthodontic resin cement were compared for 15-, 30-, 60-, 90-, or 120-second etching times, with a 37% phosphoric acid solution on the enamel surfaces of young permanent teeth. Fifty extracted premolars from 9- to 16-year-old children were used for testing. An orthodontic composite resin was used to bond the bracket directly onto the buccal surface of the enamel. The tensile bond strengths were tested with an Instron machine. Bond failure interfaces between bracket bases and teeth surfaces were examined with a scanning electron microscope and calculated with mapping of energy-dispersive x-ray spectrometry. The results ofmore » tensile bond strength for 15-, 30-, 60-, or 90-second etching times were not statistically different. For the 120-second etching time, the decrease was significant. Of the bond failures, 43%-49% occurred between bracket and resin interface, 12% to 24% within the resin itself, 32%-40% between resin and tooth interface, and 0% to 4% contained enamel fragments. There was no statistical difference in percentage of bond failure interface distribution between bracket base and resin, resin and enamel, or the enamel detachment. Cohesive failure within the resin itself at the 120-second etching time was less than at other etching times, with a statistical significance. To achieve good retention, to decrease enamel loss, and to reduce moisture contamination in the clinic, as well as to save chairside time, a 15-second etching time is suggested for teenage orthodontic patients.« less

  17. Bond strengths evaluation of laser ceramic bracket debonding

    NASA Astrophysics Data System (ADS)

    Dostalová, T.; Jelinková, H.; Šulc, J.; Němec, M.; Fibrich, M.; Jelínek, M.; Michalík, P.; Bučková, M.

    2012-09-01

    Ceramic brackets often used for an orthodontic treatment can lead to problems such as enamel tear outs because of their low fracture resistance and high bond strengths. Therefore the aim of our study was to investigate the positive laser radiation effect on bracket debonding. Moreover, the influence of the enamel shape surface under the bracket and laser radiation power on the debonding strength was investigated. The source of the radiation was the longitudinally diode-pumped Tm:YAP laser operating at 1997 nm. To eliminate the tooth surface roughness the flat enamel surface was prepared artificially and the bracket was bonded on it. The debonding was accomplished by Tm:YAP laser radiation with different the power value while recording the temperature rise in the pulp. To simulate the debonding process in vivo the actual bond strength was measured by the digital force gauge. The results were analyzed by scanning electron microscope.

  18. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    PubMed

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (p<0.001) between the groups. Sandblasted group had the highest SBS value (12.85 MPa) in experimental groups. The sandblasting surface treatment is recommended as an effective method of bonding orthodontic metal brackets to nano-hybrid composite resin surfaces.

  19. Shear bond resistance and enamel surface comparison after the bonding and debonding of ceramic and metallic brackets

    PubMed Central

    da Rocha, José Maurício; Gravina, Marco Abdo; Campos, Marcio José da Silva; Quintão, Cátia Cardoso Abdo; Elias, Carlos Nelson; Vitral, Robert Willer Farinazzo

    2014-01-01

    Objective To evaluate, in vitro, the shear bond strength presented by three brands of polycrystalline ceramic brackets and one brand of metallic bracket; verify the adhesive remnant index (ARI) after the tests, and analyze, through scanning electron microscopy (SEM) the enamel surface topography after debonding, detecting the release of mineral particles. Methods Sixty bovine lower incisors were used. Three ceramic brackets (Allure®, InVu®, and Clarity®) and one metallic bracket (Geneus®) were bonded with Transbond XT®. Kruskal-Wallis's test (significance level set at 5%) was applied to the results of share bond and ARI. Mann Whitney's test was performed to compare the pairs of brackets in relation to their ARI. Brown-Forsythe's test (significance level set at 5%) was applied to the results of enamel chemical composition. Comparisons between groups were made with Games-Howell's and the Post-hoc tests. Results No statistically significant difference was observed in relation to the shear bond strength loads. Clarity® brackets were the most affected in relation to the surface topography and to the release of mineral particles of enamel (calcium ions). Conclusion With regard to the ARI, there was a prevalence of score 4 (40.4%). As for enamel surface topography, the Geneus® bracket was the only one which did not show superficial tissue loss. The InVu® and Clarity® ones showed cohesive fractures in 33.3% and the Allure® in 50%, the latter being the one that presented most fractures during removal. PMID:24713563

  20. Comparative assessment of different recycling methods of orthodontic brackets for clinical use.

    PubMed

    de Oliveira Correia, Ayla M; de Souza Matos, Felipe; Pilli Jóias, Renata; de Mello Rode, Sigmar; Cesar, Paulo F; Paranhos, Luiz R

    2017-06-01

    This study aimed to assess bond strength of the resin/bracket interface, under in-vitro shear stress, of metal brackets recycled by different clinical protocols. Sixty stainless steel orthodontic brackets were bonded on acrylic resin. The Transbond XT™ resin was applied at the base of the bracket aided by a matrix, obtaining 1 mm of thickness, and photoactivated with a LED device (40 s; 500 mW/cm2). Samples were randomly divided into four groups (N.=15) according to the reconditioning/recycling protocol: aluminum oxide (AO) 90 µm; hydrofluoric acid 60 s (HA60); hydrofluoric acid 120 s (HA120); hydrofluoric acid 60 s + silane (HA60S). After recycling, the resin was applied at the base of the bracket for shear testing in a universal testing machine (0.5 mm/min). After reconditioning/recycling, the surfaces were analyzed by Scanning Electron Microscopy. Data obtained after the shear test were subjected to ANOVA and Tukey's test (P<0.05). The AO group presented higher values of shear bond strength compared to the other reconditioning/recycling protocols (P<0.05). The HA120 and HA60S groups presented statistically similar results, but HA120 presented strength below the recommended limit. The recycling technique by aluminum oxide sandblasting was more effective for reconditioning orthodontic brackets when compared to the other protocols. The reconditioning technique with 10% hydrofluoric acid followed by the application of silane bonding agent may be used as an alternative protocol.

  1. Improvement in adhesion of the brackets to the tooth by sandblasting treatment.

    PubMed

    Espinar-Escalona, Eduardo; Barrera-Mora, José María; Llamas-Carreras, José María; Solano-Reina, Enrique; Rodríguez, D; Gil, F J

    2012-02-01

    In oral orthodontic treatments, achievement of a good adhesion between brackets and teeth surfaces is essential. One way to increase adhesion is to apply a surface treatment of teeth facing surfaces through the projection of abrasive particles to produce a surface roughness which improves adhesion of the bracket to the tooth, because of the significantly increased contact between the two surfaces. The effect on adhesion through the use of this technique in different types of brackets, as well as through the use of different blasting particles, however, is yet not well described. In this study we have included three types of brackets which are commonly used in orthodontic therapies (two of them a mesh-type and the third one a micro-milled type) with a contact surface area of 11.16, 8.85 and 6.89 mm(2) respectively. These brackets were used combined with a sandblasting treatment with two different types of abrasive particles, alumina (Al(2)O(3)) and silicon carbide (SiC) and applied to natural teeth in vitro. The abrasive particles used are bio-compatible and usually used in achieving increased roughness for improved adherence in biomedical materials. Sandblasting was performed at 2 bars for 2 s; three particle sizes were used: 80, 200 and 600 μm. Non-blasted samples were used as control. Each of the pieces were cemented to natural teeth with a self-curing composite. Samples were stored in physiologic serum at 5°C temperature. Tensile tests were performed with a universal testing machine. Brackets treated with sandblasted particles were measured to have an increased adhesion as compared to the control sample. The highest bond strength was measured for samples sandblasted with alumina particles of 80 and 200 μm combined with micro-milled brackets. The recorded stresses did not exceed the tensile strength of tooth enamel.

  2. Influence of surface treatments on the shear bond strength of orthodontic brackets to porcelain

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Zeng, Jishan; Wang, Shaoan; Yang, Zheng; Huang, Qian; Chen, Pixiu; Zhou, Shujuan; Liu, Xiaoqing

    2008-11-01

    The purpose of this study was to investigate the effect of various surface treatments after different storage time and thermocycling on the shear bond strength of orthodontic brackets to the feldspathic porcelain surfaces. 128 disc-shaped porcelain specimens were randomly assigned to the following surface treatments: 9.6% HFA, 9.6% HFA combined with silane, 50 μ aluminum trioxide sandblasting followed by silane and application of silane after 37% phosphoric acid. Metal or ceramic brackets were bonded onto each treated porcelain facet with light cured resin. The samples were stored in 37 °C water 1 day or 7 days, thermocycled 500 times from 5 to 55 °C. The shear bond strengths were measured (1 mm/min), and statistically analyzed. The bond failure sites were classified according to ARI system. The surface of the glazed, sandblasted, hydrofluoric and phosphoric acid etched porcelain were examined with SEM. All groups achieved reasonable bond strengths to withstand the application of orthodontic forces. Water storage for 7 days caused lower shear bond strength than that of 1 day. But there is no statistically significant difference between the two groups. The mean shear bond strength provided by ceramic bracket with mechanical retention had no statistical difference with that of metal bracket. Therefore, the optimal treatment for orthodontic brackets bonding to feldspathic porcelain was to apply phosphoric acid combined with silane.

  3. Variations in enamel damage after debonding of two different bracket base designs: An in vitro study.

    PubMed

    Ahangar Atashi, Mohammad Hossein; Sadr Haghighi, Amir Hooman; Nastarin, Parastou; Ahangar Atashi, Sina

    2018-01-01

    Background. Bracket base design is a factor influencing shear bond strength. High shear bond strength leads to enamel crack formation during debonding. The aim of this study was to compare enamel damage variations, including the number and length of enamel cracks after debonding of two different base designs. Methods. Eighty-eight extracted human premolars were randomly divided into2 groups (n=44). The teeth in each group were bonded by two types of brackets with different base designs: 80-gauge mesh design versus anchor pylon design with pylons for adhesive retention. The number and length of enamel cracks before bonding and after debonding were evaluated under an optical stereomicroscope ×40 in both groups. Mann-Whitney U test was used to compare the number of cracks between the two groups. ANCOVA was used for comparison of crack lengths after and before debonding in each group and between the two groups. Results. There was a significant increase in enamel crack length and numbers in each group after debonding. There was no significant difference in enamel crack numbers after debonding between the two groups, whereas the length of enamel cracks was significantly greater in anchor pylon base design after debonding. Conclusion. Bracket bases with pylon design for adhesive retention caused more iatrogenic debonding damage to enamel surface.

  4. Occurrence and severity of enamel decalcification adjacent to bracket bases and sub-bracket lesions during orthodontic treatment with two different lingual appliances

    PubMed Central

    Klang, Elisabeth; Helms, Hans-Joachim; Wiechmann, Dirk

    2016-01-01

    Summary Background: Using lingual enamel surfaces for bracket placement not only has esthetic advantages, but may also be suitable in terms of reducing frequencies of enamel decalcifications. Objective: To test the null-hypothesis that there is no significant difference in enamel decalcification or cavitation incidence adjacent to and beneath bracket bases between two lingual multi-bracket (MB) appliances that are different in terms of design, material composition, and manufacturing technology (group A: WIN, DW-LingualSystems; group B: Incognito, 3M-Unitek), taking into account patient- and treatment-related variables on white spot lesion (WSL) formation. Methods: Standardized, digital, top-view photographs of 630 consecutive subjects (16214 teeth; n Incognito = 237/6076 teeth; n WIN = 393/10138 teeth; mean age: 17.47±7.8; m/f 43.2/56.8%) with completed lingual MB treatment of the upper and lower permanent teeth 1–7 were screened for decalcification or cavitation adjacent to and beneath the bracket bases before and after treatment, scored from 0 to 7. Non-parametric ANOVA was used for main effects ‘appliance type’, ‘gender’, ‘treatment complexity’, ‘grouped age’ (≤16/>16 years), and ‘treatment duration’ as covariable, at an α-level of 5%. Results: About 2.57% [5.94%] of all teeth in group A [B] developed decalcifications. Subject-related incidence was 9.59% [16.17%] for upper incisors in group A [B], and 12.98% [25.74%] for all teeth 16–46. There were significant effects by gender, age, and treatment duration. Conclusion: The null-hypothesis was rejected: sub-bracket lesions were significantly less frequent in group A, while frequencies of WSL adjacent to brackets were not significantly affected by appliance type. In view of the overall low incidences of lingual post-orthodontic white-spot lesions, the use of lingual appliances is advocated as a valid strategy for a reduction of enamel decalcifications during orthodontic treatment. PMID:26420772

  5. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO(2-x)N(y) thin film and examination of its antimicrobial performance.

    PubMed

    Cao, Baocheng; Wang, Yuhua; Li, Na; Liu, Bin; Zhang, Yingjie

    2013-01-01

    A bracket coated with a nitrogen-doped (N-doped) TiO(2-x)N(y) thin film was prepared using the RF magnetron sputtering method. The physicochemical properties of the thin film were measured using X-ray diffraction and energy-dispersive X-ray spectrometry, while the antimicrobial activity of the bracket against common oral pathogenic microbes was assessed on the basis of colony counts. The rate of antimicrobial activity of the bracket coated with nano-TiO(2-x)N(y) thin film against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscous, and Candida albicans was 95.19%, 91.00%, 69.44%, and 98.86%, respectively. Scanning electron microscopy showed that fewer microbes adhered to the surface of this newly designed bracket than to the surface of the normal edgewise bracket. The brackets coated with the N-doped TiO(2-x)N(y) thin film showed high antimicrobial and bacterial adhesive properties against normal oral pathogenic bacterial through visible light, which is effective in prevention of enamel demineralization and gingivitis in orthodontic patients.

  6. Bond strength of metal brackets bonded to a silica-based ceramic with light-cured adhesive : Influence of various surface treatment methods.

    PubMed

    Zhang, Zhe-Chen; Qian, Yu-Fen; Yang, Yi-Ming; Feng, Qi-Ping; Shen, Gang

    2016-09-01

    The purpose of this work was to evaluate the effects of several surface treatment methods on the shear bond strengths of metal brackets bonded to a silica-based ceramic with a light-cured adhesive. Silica-based ceramic (IPS Classic(®)) with glazed surfaces was cut into discs that were used as substrates. A total of 80 specimens were randomly divided into four groups according to the method used: 9.6 % hydrofluoric acid (group 1), 9.6 % hydrofluoric acid (HF) + silane coupling agent (group 2), sandblasting (aluminum trioxide, 50 μm) + silane (group 3), and tribochemical silica coating (CoJet™ sand, 30 μm) + silane (group 4). Brackets were bonded to the treated specimens with a light-cure adhesive (Transbond XT, 3 M Unitek). Shear bond strength was tested after bracket bonding, and the Adhesive Remnant Index (ARI) scores were quantified after debonding. Group 4 showed the highest bond strength (12.3 ± 1.0 MPa), which was not significantly different from that of group 3 (11.6 ± 1.2 MPa, P > 0.05); however, the bond strength of group 4 was substantially higher than that of group 2 (9.4 ± 1.1 MPa, P < 0.05). The shear bond strength of group 1 (3.1 ± 0.6 MPa, P< 0.05) was significantly lower than that of the other groups. Shear bond strengths exceeded the optimal range of ideal bond strength for clinical practice, except for the isolated HF group. HF acid etching followed by silane was the best suited method for bonding on IPS Classic(®). Failure modes in the sandblasting and silica-coating groups revealed signs of damaged ceramic surfaces.

  7. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    NASA Astrophysics Data System (ADS)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  8. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods

    PubMed Central

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    Background: This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. Materials and Methods: A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal–Wallis test, followed by Mann–Whitney test at the 0.05 level of significance. Results: The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. Conclusion: MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness. PMID:28928783

  9. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods.

    PubMed

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

  10. Effects of chlorhexidine (gel) application on bacterial levels and orthodontic brackets during orthodontic treatment.

    PubMed

    Al-Bazi, Samar M; Abbassy, Mona A; Bakry, Ahmed S; Merdad, Leena A; Hassan, Ali H

    2016-01-01

    The objectives of this study were to evaluate the effects of applying 0.50% chlorhexidine (CHX) gel using the dental drug delivery system (3DS) on salivary Streptococcus mutans (S. mutans) and on the surface topography of metal and ceramic orthodontic brackets. The study involved 20 orthodontic patients with high levels of salivary S. mutans. The patients were treated with professional mechanical tooth cleaning followed by application of 0.50% CHX using individual trays (3DS). Salivary S. mutans levels were repeatedly measured 1, 2, 4, and 8 weeks post-treatment. In vitro study utilized forty ceramic and metallic brackets that were immersed in 0.50% CHX gel for 10 min, whereas another untreated forty brackets served as controls. The frictional resistances of stainless steel wires to the brackets before and after CHX treatment were recorded using a universal testing machine. Scanning electron microscopy was used to compare changes in the surface topography of brackets. Statistical analyses were used to determine the effect of CHX on bacterial count and to evaluate the effect of CHX on frictional resistance. According to the results of this study, S. mutans levels were reduced significantly (P < 0.05). There were no significant changes in the frictional resistance and surface topography of brackets before or after application of CHX. (J Oral Sci 58, 35-42, 2016).

  11. Influence of surface treatments on bond strength of metal and ceramic brackets to a novel CAD/CAM hybrid ceramic material.

    PubMed

    Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of four different surface treatments methods on the shear bond strength (SBS) of ceramic and metal brackets to Vita Enamic (VE) CAD/CAM hybrid ceramic. A total of 240 plates (10 mm × 10 mm × 3 mm) were cut from VE ceramic blocks and divided into two groups. In each group, four subgroups were prepared by hydrofluoric acid (HF); phosphoric acid (H3PO4); diamond ceramic grinding bur; and silica coating using CoJet system (CJ). Maxillary central incisor metal (Victory Series) and ceramic (Clarity) brackets were bonded with light-cure composite and then stored in artificial saliva for 1 week and thermocycled. The SBS test was performed, and the failure types were classified with adhesive remnant index scores. Surface morphology of the ceramic was characterized after treatment using a scanning electron microscope. Data were analyzed using two-way ANOVA, Tukey HSD test, and Weibull analysis. SBS was significantly affected by the type of bracket and by type of treatment (P < 0.001). Specimens treated with CJ presented with significantly higher SBS compared to other groups (P < 0.05). Improvements in SBS values (MPa) were found in the following order: CJ > HF > Bur > H3PO4. Ceramic bracket showed higher SBS compared to metal bracket. Adhesive failures between the ceramic and composite resin were the predominant mode of failure in all groups. Surface treatment of VE CAD/CAM hybrid ceramic with silica coating enhanced the adhesion with ceramic and metal brackets.

  12. Surface morphology and electrical properties of Au/Ni/ Left-Pointing-Angle-Bracket C Right-Pointing-Angle-Bracket /n-Ga{sub 2}O{sub 3}/p-GaSe Left-Pointing-Angle-Bracket KNO{sub 3} Right-Pointing-Angle-Bracket hybrid structures fabricated on the basis of a layered semiconductor with nanoscale ferroelectric inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtinov, A. P., E-mail: chimsp@ukrpost.ua; Vodopyanov, V. N.; Netyaga, V. V.

    2012-03-15

    Features of the formation of Au/Ni/ Left-Pointing-Angle-Bracket C Right-Pointing-Angle-Bracket /n-Ga{sub 2}O{sub 3} hybrid nanostructures on a Van der Waals surface (0001) of 'layered semiconductor-ferroelectric' composite nanostructures (p-GaSe Left-Pointing-Angle-Bracket KNO{sub 3} Right-Pointing-Angle-Bracket ) are studied using atomic-force microscopy. The room-temperature current-voltage characteristics and the dependence of the impedance spectrum of hybrid structures on a bias voltage are studied. The current-voltage characteristic includes a resonance peak and a portion with negative differential resistance. The current attains a maximum at a certain bias voltage, when electric polarization switching in nanoscale three-dimensional inclusions in the layered GaSe matrix occurs. In the high-frequency region (fmore » > 10{sup 6} Hz), inductive-type impedance (a large negative capacitance of structures, {approx}10{sup 6} F/mm{sup 2}) is detected. This effect is due to spinpolarized electron transport in a series of interconnected semiconductor composite nanostructures with multiple p-GaSe Left-Pointing-Angle-Bracket KNO{sub 3} Right-Pointing-Angle-Bracket quantum wells and a forward-biased 'ferromagnetic metal-semiconductor' polarizer (Au/Ni/ Left-Pointing-Angle-Bracket C Right-Pointing-Angle-Bracket /n{sup +}-Ga{sub 2}O{sub 3}/n-Ga{sub 2}O{sub 3}). A shift of the maximum (current hysteresis) is detected in the current-voltage characteristics for various directions of the variations in bias voltage.« less

  13. Can 10% hydrofluoric acid be used for reconditioning of orthodontic brackets?

    PubMed

    Pompeo, Daniela D; Rosário, Henrique D; Lopes, Beatriz Mv; Cesar, Paulo F; Paranhos, Luiz Renato

    2016-01-01

    Bracket debonding is a common problem during orthodontic treatment. This type of failure is associated to masticatory forces, poor adhesion, and the need for repositioning the piece. The objective of this work was to compare the shear bond strength of debonded brackets that were reconditioned using different protocols (alumina blasting versus hydrofluoric etching). This was an in vitro experimental study with 45 stainless steel orthodontic brackets. They were randomly divided into three groups: (1) New brackets (n = 15), (2) brackets reconditioned using 10% hydrofluoric acid for 60 s (n = 15), and (3) brackets reconditioned by aluminum oxide blasting until complete removal of the remaining resin (n = 15). In Groups 2 and 3, the insertion of composite resin proceeded in two stages to simulate a type of bracket failure in which the bonding resin was left at the bracket base. For the shear test, the assembly composed by the metallic support, and specimen was taken to the Instron universal testing machine in which the specimens were loaded using a semicircle-shaped active tip in the region of the bonding interface parallel to the surface of the bracket at a speed of 0.5 mm/min. The data were subjected to D'Agostino's normality test to have their distribution checked. Analysis of variance and Tukey's test (P < 0.01) were used to compare the findings between groups. The results indicated that Group 1 (new brackets) showed higher bond strength than that obtained for the group treated with hydrofluoric acid (Group 2, P < 0.01). The bond strength value obtained for the group treated with alumina blasting (Group 3) was statistically similar to those obtained for Groups 1 and 2. The aluminum oxide blasting technique was effective for the reconditioning of orthodontic brackets. Nevertheless, the reconditioning technique using 10% fluoridric acid for 60 s was not efficient for clinical use.

  14. An in vitro investigation on friction generated by ceramic brackets.

    PubMed

    Tecco, Simona; Teté, Stefano; Festa, Mario; Festa, Felice

    2010-01-01

    To compare friction (F) of conventional and ceramic brackets (0.022-inch slot) using a model that tests the sliding of the archwire through 10 aligned brackets. Polycrystalline alumina brackets (PCAs), PCA brackets with a stainless steel slot (PCA-M), and monocrystalline sapphire brackets (MCS) were tested under elastic ligatures using various archwires in dry and wet (saliva) states. Conventional stainless steel brackets were used as controls. In both dry and wet states, PCA and MCS brackets expressed a statistically significant higher F value with respect to stainless steel and PCA-M brackets when combined with the rectangular archwires (P<.01). PCA brackets showed significantly higher friction than MCS brackets (P<.01) when coupled with 0.014 x 0.025-inch nickel-titanium (Ni-Ti) archwire. SEM analysis showed differences in the surfaces among stainless steel, MCS, PCA-M, and PCA brackets. In the wet state, the mean F values were generally higher than in the dry state. PCA brackets showed significantly higher F than MCS brackets only when combined with 0.014 x 0.025-inch Ni-Ti archwires. Thus, in this study, a 10 aligned-brackets study model showed similar results when compared to a single bracket system except for friction level with 0.014 × 0.025-inch Ni-Ti archwires. © 2011 BY QUINTESSENCE PUBLISHING CO, INC.

  15. Shingle assembly with support bracket

    DOEpatents

    Almy, Charles

    2007-01-02

    A shingle system, mountable to a support surface, includes overlapping shingle assemblies. Each shingle assembly comprises a support bracket, having upper and lower ends, secured to a shingle body. The upper end has an upper support portion, extending away from the shingle body, and an upper support-surface-engaging part, engageable with a support surface so that the upper edge of the shingle body is positionable at a first distance from the support surface to create a first gap therebetween. The lower end has a lower support portion extending away from the lower surface. The support brackets create: (1) a second gap between shingle bodies of the first and second shingle assemblies, and (2) an open region beneath the first shingle assembly fluidly coupling the first and second gaps.

  16. Streptococcus mutans forms xylitol-resistant biofilm on excess adhesive flash in novel ex-vivo orthodontic bracket model.

    PubMed

    Ho, Cindy S F; Ming, Yue; Foong, Kelvin W C; Rosa, Vinicius; Thuyen, Truong; Seneviratne, Chaminda J

    2017-04-01

    During orthodontic bonding procedures, excess adhesive is invariably left on the tooth surface at the interface between the bracket and the enamel junction; it is called excess adhesive flash (EAF). We comparatively evaluated the biofilm formation of Streptococcus mutans on EAF produced by 2 adhesives and examined the therapeutic efficacy of xylitol on S mutans formed on EAF. First, we investigated the biofilm formation of S mutans on 3 orthodontic bracket types: stainless steel preadjusted edgewise, ceramic preadjusted edgewise, and stainless steel self-ligating. Subsequently, tooth-colored Transbond XT (3M Unitek, Monrovia, Calif) and green Grengloo (Ormco, Glendora, Calif) adhesives were used for bonding ceramic brackets to extracted teeth. S mutans biofilms on EAF produced by the adhesives were studied using the crystal violet assay and scanning electron microscopy. Surface roughness and surface energy of the EAF were examined. The therapeutic efficacies of different concentrations of xylitol were tested on S mutans biofilms. Significantly higher biofilms were formed on the ceramic preadjusted edgewise brackets (P = 0.003). Transbond XT had significantly higher S mutans biofilms compared with Grengloo surfaces (P = 0.007). There was no significant difference in surface roughness between Transbond XT and Grengloo surfaces (P >0.05). Surface energy of Transbond XT had a considerably smaller contact angle than did Grengloo, suggesting that Transbond XT is a more hydrophilic material. Xylitol at low concentrations had no significant effect on the reduction of S mutans biofilms on orthodontic adhesives (P = 0.016). Transbond XT orthodontic adhesive resulted in more S mutans biofilm compared with Grengloo adhesive on ceramic brackets. Surface energy seemed to play a more important role than surface roughness for the formation of S mutans biofilm on EAF. Xylitol does not appear to have a therapeutic effect on mature S mutans biofilm. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives

    PubMed Central

    Sharma, Sudhir; Tandon, Pradeep; Nagar, Amit; Singh, Gyan P; Singh, Alka; Chugh, Vinay K

    2014-01-01

    Objectives: The objective of this study is to compare the shear bond strength (SBS) of stainless steel (SS) orthodontic brackets bonded with four different orthodontic adhesives. Materials and Methods: Eighty newly extracted premolars were bonded to 0.022 SS brackets (Ormco, Scafati, Italy) and equally divided into four groups based on adhesive used: (1) Rely-a-Bond (self-cure adhesive, Reliance Orthodontic Product, Inc., Illinois, USA), (2) Transbond XT (light-cure adhesive, 3M Unitek, CA, USA), (3) Transbond Plus (sixth generation self-etch primer, 3M Unitek, CA, USA) with Transbond XT (4) Xeno V (seventh generation self-etch primer, Dentsply, Konstanz, Germany) with Xeno Ortho (light-cure adhesive, Dentsply, Konstanz, Germany) adhesive. Brackets were debonded with a universal testing machine (Model No. 3382 Instron Corp., Canton, Mass, USA). The adhesive remnant index (ARI) was recordedIn addition, the conditioned enamel surfaces were observed under a scanning electron microscope (SEM). Results: Transbond XT (15.49 MPa) attained the highest bond strength. Self-etching adhesives (Xeno V, 13.51 MPa; Transbond Plus, 11.57 MPa) showed clinically acceptable SBS values and almost clean enamel surface after debonding. The analysis of variance (F = 11.85, P < 0.0001) and Chi-square (χ2 = 18.16, P < 0.05) tests revealed significant differences among groups. The ARI score of 3 (i.e., All adhesives left on the tooth) to be the most prevalent in Transbond XT (40%), followed by Rely-a-Bond (30%), Transbond Plus with Transbond XT (15%), and Xeno V with Xeno Ortho (10%). Under SEM, enamel surfaces after debonding of the brackets appeared porous when an acid-etching process was performed on the surfaces of Rely-a-Bond and Transbond XT, whereas with self-etching primers enamel presented smooth and almost clean surfaces (Transbond Plus and Xeno V group). Conclusion: All adhesives yielded SBS values higher than the recommended bond strength (5.9-7–8 MPa), Seventh generation self-etching primer Xeno V with Xeno Ortho showed clinically acceptable SBS and the least amount of residual adhesive left on the enamel surface after debonding. PMID:24987660

  18. A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type

    PubMed Central

    Lee, Souk Min

    2015-01-01

    Objective This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Methods Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a -7° torque. The orthodontic wires used included 0.018 round and 0.019 × 0.025 in rectangular stainless steel wires. The FR was measured at 0°, 5°, and 10° angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. Results The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p < 0.001). The metal passive self-ligating brackets exhibited the lowest static FR at the 0° angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. Conclusions The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation. PMID:25667913

  19. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets.

    PubMed

    Han, Ruo-qiao; Yang, Kai; Ji, Ling-fei; Ling, Chen

    2016-01-01

    The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.

  20. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets.

    PubMed

    Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki

    2015-01-01

    In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.

  1. Antibacterial Activity of Orthodontic Cement Containing Quaternary Ammonium Polyethylenimine Nanoparticles Adjacent to Orthodontic Brackets

    PubMed Central

    Sharon, Eldad; Sharabi, Revital; Eden, Adi; Zabrovsky, Asher; Ben-Gal, Gilad; Sharon, Esi; Houri-Haddad, Yael; Beyth, Nurit

    2018-01-01

    Enamel demineralization is a common problem found in patients using orthodontic devices, such as orthodontic braces. It was found that Streptoccocus mutans growth increases adjacent to orthodontic devices, which may result in caries development. Incorporated antibacterial quaternary ammonium polyethylenimine (QPEI) nanoparticles were previously shown to be highly efficacious against various bacteria. Combining antibacterial materials in orthodontic cement may be advantageous to prevent bacterial outgrowth adjacent to orthodontic brackets. The aim was to evaluate the efficiency of orthodontic cement containing QPEI nanoparticles in reducing S. mutans and Lactobacillus casei outgrowth adjacent to orthodontic brackets. Orthodontic brackets were bonded to the buccal surfaces of extracted lower incisors. The antibacterial effect on S. mutans and L. casei outgrowth of Neobond bracket adhesive orthodontic cement with and without QPEI nanoparticles was compared. The antibacterial effect was evaluated using crystal violet staining and bacterial count (CFU/mL). The teeth in the experimental group, with the QPEI nanoparticles cement, showed significantly lower optical density (OD) values and CFU counts of S. mutans and L. casei than the teeth in the control group (p < 0.05). Based on the results, it can be concluded that orthodontic cement containing QPEI nanoparticles significantly inhibits S. mutans and L. casei growth around orthodontic brackets. PMID:29584643

  2. Antibacterial Activity of Orthodontic Cement Containing Quaternary Ammonium Polyethylenimine Nanoparticles Adjacent to Orthodontic Brackets.

    PubMed

    Sharon, Eldad; Sharabi, Revital; Eden, Adi; Zabrovsky, Asher; Ben-Gal, Gilad; Sharon, Esi; Pietrokovski, Yoav; Houri-Haddad, Yael; Beyth, Nurit

    2018-03-27

    Enamel demineralization is a common problem found in patients using orthodontic devices, such as orthodontic braces. It was found that Streptoccocus mutans growth increases adjacent to orthodontic devices, which may result in caries development. Incorporated antibacterial quaternary ammonium polyethylenimine (QPEI) nanoparticles were previously shown to be highly efficacious against various bacteria. Combining antibacterial materials in orthodontic cement may be advantageous to prevent bacterial outgrowth adjacent to orthodontic brackets. The aim was to evaluate the efficiency of orthodontic cement containing QPEI nanoparticles in reducing S. mutans and Lactobacillus casei outgrowth adjacent to orthodontic brackets. Orthodontic brackets were bonded to the buccal surfaces of extracted lower incisors. The antibacterial effect on S. mutans and L. casei outgrowth of Neobond bracket adhesive orthodontic cement with and without QPEI nanoparticles was compared. The antibacterial effect was evaluated using crystal violet staining and bacterial count (CFU/mL). The teeth in the experimental group, with the QPEI nanoparticles cement, showed significantly lower optical density (OD) values and CFU counts of S. mutans and L. casei than the teeth in the control group ( p < 0.05). Based on the results, it can be concluded that orthodontic cement containing QPEI nanoparticles significantly inhibits S. mutans and L. casei growth around orthodontic brackets.

  3. Air-powder polishing on self-ligating brackets after clinical use: effects on debris levels.

    PubMed

    Aragón, Mônica L S Castro; Lima, Leandro Santiago; Normando, David

    2016-01-01

    Debris buildup on brackets and arch surfaces is one of the main factors that can influence the intensity of friction between bracket and orthodontic wire. This study sought to evaluate the effect of air-powder polishing cleaning on debris levels of self-ligating ceramic brackets at the end of orthodontic treatment, compared to the behavior of conventional brackets. Debris levels were evaluated in metal conventional orthodontic brackets (n = 42) and ceramic self-ligating brackets (n = 42) on canines and premolars, arranged in pairs. There were brackets with and without air-powder polishing. At the end of orthodontic treatment, a hemiarch served as control and the contralateral hemiarch underwent prophylaxis with air-powder polishing. Debris buildup in bracket slots was assessed through images, and Wilcoxon test was used to analyze the results. The median debris levels were statistically lower in the conventional metal brackets compared to self-ligating ones (p = 0.02), regarding brackets not submitted to air-powder polishing. Polishing significantly reduced debris buildup to zero in both systems, without differences between groups. Ceramic self-ligating brackets have a higher debris buildup in comparison to conventional metal brackets in vivo, but prophylaxis with sodium bicarbonate jet was effective in reducing debris levels in self-ligating and also in conventional brackets.

  4. [Influence of different porcelain surface treatment method on the bonding of metal brackets to porcelain].

    PubMed

    Fan, Cun-Hui; Chen, Jie; Liu, Xin-Qiang; Ma, Xin

    2005-08-01

    To investigate the influence of different porcelain surface treatment methods on the shear bond strength of metal brackets bonded to porcelain. 80 porcelain facets were divided randomly into two groups according to different adhesive material that was used to bond metal brackets. Adhesive material were Jing-Jin enamel adhesive and light-cured composite resin. Each group was further divided into 4 subgroups according to different surface treatment methods, which were acid etching with 37% phosphoric acid (H3PO4), acid etching with 9.6% hydrofluoric acid (HF), deglazing by grinding and silanating the porcelain surface. All specimens were stored in 37 degrees C water for 24 hours and then the shear bond strength and the porcelain fracture after debonding was determined. The porcelain surfaces after HF etching, H3PO4 etching and deglazing by grinding were examined by scanning electron microscopy respectively. The shear bond strengths in the HF etching groups, the deglazing groups and the silanating groups were much greater than that in the phosphoric etching groups (P < 0.01). Adequate orthodontic bonding strength was achieved both when bonded with light-cured composite resin after deglazing by grinding and when bonded with either of these adhesives after HF etching or surface silanating. There were no differences in the rates of porcelain fractures among groups (P > 0.05). HF etching, deglazing by grinding and silanating can all increase the shear bond strength between metal bracket and porcelain. Surface silanating of porcelain is a better surface treatment when metal brackets bonded to porcelain.

  5. Thermal debonding of ceramic brackets: an in vitro study.

    PubMed

    Crooks, M; Hood, J; Harkness, M

    1997-02-01

    Thermal debonding has been developed to overcome the problems of enamel damage and high forces when debonding ceramic orthodontic brackets. However, the temperature changes with thermal debonding have the potential to damage the tooth tissues. The principal aims of this study are, first, to investigate the effects of resin type, resin thickness, and debonding force on the temperature changes in human premolars during thermal debonding of ceramic brackets and, second, to record the sites of bond failure and damage to the tooth surface. Ceramic brackets were attached to each specimen by using one of four types of bonding resin in a controlled thick or thin resin layer. The ceramic debonding unit (Dentaurum, Pforzheim, Germany) was used to thermally debond the brackets with either a 40 or 80 Nmm torsional force. Higher temperature changes at the pulpal wall (> 10 degrees C in some 40 Nmm torsional force specimens) always occurred with Concise (3M Dental Products, St. Paul, Minn.) and Transbond (Unitek/3M Dental Products, Monrovia, Calif.) resins, and lower temperature changes (< 5 degrees C) with Quasar (Rocky Mountain Orthodontics, Denver, Colo.) and Ortho. B.S. (Dentaurum, Pforzheim, Germany) resins. In general, resin thickness was not significantly associated with buccal surface or pulpal wall temperature changes. However, temperature changes at the pulpal wall were significantly associated with the temperature changes at the buccal surface (r = 0.76), with the temperature of the thermal debonder blade for thin resin layer specimens (r = 0.50), and the time required to debond the bracket for both thick (r = 0.74) and thin (r = 0.63) resin layer specimens. In most specimens, the site of bond failure occurred at the bracket-resin interface. There was no evidence of enamel damage after bracket removal.

  6. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets

    PubMed Central

    Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen

    2016-01-01

    Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964

  7. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis.

    PubMed

    Fatani, Eman Jameel; Almutairi, Hamed H; Alharbi, Ali O; Alnakhli, Yasser Obaidallah; Divakar, Darshan Devang; Muzaheed; Alkheraif, Abdulaziz Abdullah; Khan, Aftab Ahmed

    2017-11-01

    Orthodontic brackets made from stainless steel were introduced in dentistry, though they have less ability in reducing enamel demineralization and are not successful in preventing microbial as well as biofilm growth. In this study, we evaluated the significant role of different brackets in reducing enamel demineralization indirectly. Results from different tests indicate the significant reduction in adhesion, biofilm formation and slow growth of tested bacterial species on brackets coated with Ag + TiO2 and found to be statistically significant lower than control. There was no loss in cell viability in all brackets indicating that the cells are biocompatible with different bracket materials. Scanning electron microscopy showed less bacteria attached with the surface coated with Ag + TiO2 indicated that bacteria were losing adherent nature on coated surface. In conclusion, TiO2+Ag coating on stainless steel brackets possessed anti-adherent properties and also have demonstrable antibacterial properties therefore helps in preventing dental caries and plaque accumulation indirectly. The cell compatibility of TiO2+Ag coated brackets is superior to the uncoated samples therefore can be used in orthodontics as it not only provide suitable antimicrobial activity and resistance to biofilm formation but also sustained the cell viability of human gingival fibroblast (HGF) cell lines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Laser radiation bracket debonding

    NASA Astrophysics Data System (ADS)

    Dostálová, Tat'jana; Jelínková, Helena; Šulc, Jan; Koranda, Petr; Nemec, Michal; Racek, Jaroslav; Miyagi, Mitsunobu

    2008-02-01

    Ceramic brackets are an aesthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths, which can lead to bracket breakage and enamel damage during classical type of debonding. This study examined the possibility of laser radiation ceramic brackets removing as well as the possible damage of a surface structure of hard dental tissue after this procedure. Two types of lasers were used for the experiments - a laser diode LIMO HLU20F400 generating a wavelength of 808 nm with the maximum output power 20W at the end of the fiber (core diameter 400 μm, numerical aperture 0.22). As a second source, a diode-pumped Tm:YAP laser system generating a wavelength of 1.9 μm, with up to 3.8 W maximum output power was chosen. For the investigation, extracted incisors with ceramic brackets were used. In both cases, laser radiation was applied for 0.5 minute at a maximum power of 1 W. Temperature changes of the irradiated tissue was registered by camera Electrophysics PV320. After the interaction experiment, the photo-documentation was prepared by the stereomicroscope Nikon SMZ 2T, Japan. The surface tissue analysis was processed in "low vacuum" (30 Pa) regime without desiccation. This technique was used to record back-scattered electron images. Selecting the appropriate laser, resin, and bracket combination can minimize risks of enamel degradation and make debonding more safe.

  9. Physical and adhesive properties of dental enamel after radiotherapy and bonding of metal and ceramic brackets.

    PubMed

    Santin, Gabriela Cristina; Palma-Dibb, Regina Guenka; Romano, Fábio Lourenço; de Oliveira, Harley Francisco; Nelson Filho, Paulo; de Queiroz, Alexandra Mussolino

    2015-08-01

    The increasing success rates for cancer patients treated with radiotherapy and the frequent occurrence of tooth loss during treatment have led to an increased demand for orthodontic treatment after radiotherapy. The aim of this study was to evaluate tooth enamel of irradiated teeth after the bonding and debonding of metal and ceramic brackets. Ten permanent molars were cut into enamel fragments measuring 1 mm(2) and divided into an irradiated group (total dose of 60 Gy) and a nonirradiated group. The fragments were subjected to microshear testing to evaluate whether radiotherapy altered the strength of the enamel. Furthermore, 90 prepared premolars were divided into 6 groups and subgroups (n = 15): group 1, nonirradiated and nonaged; group 2, nonirradiated and aged (thermal cycled); group 3, irradiated and aged; each group was divided into 2 subgroups: metallic and ceramic brackets. After thermal cycling and radiotherapy, the brackets were bonded onto the specimens with Transbond XT (3M Unitek, Monrovia, Calif). After 24 hours, the specimens were subjected to the shear tests. Images of the enamel surfaces were classified using the adhesive remnant index. The composite resin-enamel interface was also evaluated. Enamel fragments subjected to radiation had lower strength than did the nonirradiated samples (P <0.05). The groups and subgroups submitted to radiation and bonded ceramic brackets had the lowest strength values. Groups 1 and 2 with metallic brackets had less adhesive on the surface, whereas groups 1 and 2 with ceramic brackets and group 3 with both metallic and ceramic brackets had more adhesive on the surfaces. On the images of the composite resin-enamel interface, resin tags were more extensive on irradiated tooth enamel. Radiation decreased tooth enamel strength, and the specimens treated with radiotherapy had higher frequencies of adhesive failure between the bracket and the composite resin as well as more extensive tags. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  10. Laser-Aided Ceramic Bracket Debonding: A Comprehensive Review

    PubMed Central

    Ghazanfari, Rezvaneh; Nokhbatolfoghahaei, Hanieh; Alikhasi, Marzieh

    2016-01-01

    Different techniques have been introduced for the removal of ceramic brackets. Since the early 1990s, lasers have been used experimentally for debonding ceramic brackets. The goal of this study is to give a comprehensive literature review on laser-aided ceramic bracket debonding. PubMed and Google Scholar databases were used to identify dental articles with the following combination of key words: Ceramic brackets, Debonding, and Laser. Sixteen English articles from 2004 to 2015 were selected. The selected studies were categorized according to the variables investigated including the intrapulpal temperature, shear bond strength, debonding time, enamel damage and bracket failure. Most articles reported decreased shear bond strength and debonding time following laser irradiation without any critical and irritating increase in pulpal temperature. There were no reports of bracket failure or enamel damage. Laser irradiation is an efficient way to reduce shear bond strength of ceramic bracket and debonding time. This technique is a safe way for removing ceramic bracket with minimal impact on intrapulpal temperature and enamel surface and it reduces ceramic bracket failure. PMID:27330690

  11. Comparative study of dental enamel loss after debonding braces by analytical scanning electron microscopy (SEM).

    PubMed

    Rodríguez-Chávez, Jacqueline Adelina; Arenas-Alatorre, Jesús; Belio-Reyes, Irma Araceli

    2017-07-01

    Clinical procedures when shear forces are applied to brackets suggest adhesion forces between 2.8 and 10.0 MPa as appropriate. In this study dental enamel was evaluated by scanning electron microscopy (SEM) before and after removing the brackets. Thirty bicuspids (previous prophylaxis) with metallic brackets (Roth Inovation 0.022 GAC), Transbond Plus SEP 3M Unitek adhesive and Transbond XT 3M resin were used. The samples were preserved to 37°C during 24 hr and submited to tangential forces with the Instron Universal machine 1.0 mm/min speed load strength resistance debonding. Also the Adhesive Remanent Index (ARI) test was made, evaluating the bracket base and the bicuspid surface. All the bracket SEM images were processed with AutoCAD to determine the enamel detached area. The average value was 6.86 MPa (SD ± 3.2 MPa). ARI value 1= 63.3%, value 2= 20%, value 3= 13.3% and 33% presented value 0. All those samples with dental enamel loss, presented different situations as fractures, ledges, horizontal, and vertical loss in some cases, and some scratch lines. There is no association between the debonding resistance and enamel presence. Less than half of the remanent adhesive on the dental enamel was present in most of the samples when the ARI test was applied. When the resin area increases, the debonding resistance also increases, and when the enamel loss increases, the resin free metallic area of the bracket base decreases in the debonding. © 2017 Wiley Periodicals, Inc.

  12. Effects of enamel sealing on shear bond strength and the adhesive remnant index : Study of three fluoride-releasing adhesives in combination with metal and ceramic brackets.

    PubMed

    Hofmann, Elisabeth; Elsner, Laura; Hirschfelder, Ursula; Ebert, Thomas; Hanke, Sebastian

    2017-01-01

    Selected combinations of materials were used to create tooth-adhesive-bracket complexes to evaluate shear bond strength (SBS) and the adhesive remnant index (ARI) with regard to enamel sealing. Four adhesive systems also appropriate for use as enamel sealants were combined with four bracket types, resulting in 16 adhesive-bracket combinations, each of which was tested on 15 permanent bovine incisors. Sealant-adhesives included two recently introduced fluoride-releasing systems (Riva bond LC ® and go! ® ), one established primer (Opal ® Seal™), and one commonly used adhesive as control (Transbond™ XT). Brackets included two metal (discovery ® by Dentaurum and Sprint ® ) and two ceramic (discovery ® pearl and GLAM ® ) systems. After embedding the bovine teeth, bonding the brackets to their surface, and storing the resultant samples as per DIN 13990-2 with modifications, an SBS test was performed by applying the shear force directly at the bracket base in an incisocervical direction. Then the ARI scores were determined. Discovery ®  + Transbond™ XT yielded the highest (47.2 MPa) and GLAM ®  + go! ® the lowest (17.0 MPa) mean SBS values. Significant differences (p < 0.0001) were found between metal and ceramic brackets of the same manufacturers (Dentaurum and Forestadent). Our ratings of the failure modes upon debonding predominantly yielded ARI 0 or 1. The high SBS values and low ARI scores observed with discovery ®  + Transbond XT™ were reflected in a high rate of enamel fracture, which occurred on 11 of the 15 tooth specimens in this group. All sealant-bracket combinations were found to yield levels of SBS adequate for clinical application. SBS values and ARI scores varied significantly depending on which sealant-brackets were used.

  13. Assessing near infrared optical properties of ceramic orthodontic brackets using cross-polarization optical coherence tomography.

    PubMed

    Isfeld, Darren M; Aparicio, Conrado; Jones, Robert S

    2014-04-01

    Secondary decay (caries) under ceramic orthodontic brackets remains a significant dental problem and near infrared cross-polarization optical coherence tomography (CP-OCT) has the potential to detect underlying demineralization. The purpose of this study was to determine the effect of crystalline structure and chemical composition of ceramic brackets on CP-OCT imaging. Four ceramic brackets types, which were divided into monocrystalline and polycrystalline, were examined using CP-OCT. The results of this study demonstrated that the crystallinity of the ceramic brackets affected the 1310 nm CP-OCT imaging with the greatest attenuation seen in polycrystalline alumina brackets. The alumina polycrystalline bracket materials had significantly higher attenuation and scattering than alumina monocrystalline brackets (p < 0.05, ANOVA, Bonferroni). Additionally, bracket base morphology and composition affected NIR light attenuation. There was considerable attenuation in bracket bases that contained additive zirconium spheres (∼30 µm) and this alteration was significantly greater than the jagged alumina crystallographic alterations found in the other bracket systems (p < 0.05, ANOVA, Bonferroni). Noninvasive, near infrared (NIR) cross-polarization optical coherence tomography (CP-OCT) has potential to effectively image through portions of ceramic brackets; however, further investigation into the optical effects of resin integration in the base portion of the brackets is warranted. © 2013 Wiley Periodicals, Inc.

  14. Self-adjustable supplemental support system for a cylindrical container in a housing

    DOEpatents

    Blaushild, Ronald M.

    1987-01-01

    A self-adjustable supplementary support system for a cylindrical container coaxially disposed in a cylindrical housing by upper flanged supports has a plurality of outwardly extending bracket units on the external surface of the container which coact with inwardly extending resiliently outwardly extending bracket units on the inner wall of the cylindrical housing. The bracket units have flanges which form a concave surface that seats on support bars, attached by links to torsion bars that are secured to ring segments annularly spaced about the inner wall of the cylindrical housing and the bracket units and support bars coact with each other to radially position and support the container in the housing during movement of the two components from a vertical to a horizontal position, and during transportation of the same.

  15. Becchi-Rouet-Stora-Tyutin formalism and zero locus reduction

    NASA Astrophysics Data System (ADS)

    Grigoriev, M. A.; Semikhatov, A. M.; Tipunin, I. Yu.

    2001-08-01

    In the Becchi-Rouet-Stora-Tyutin (BRST) quantization of gauge theories, the zero locus ZQ of the BRST differential Q carries an (anti)bracket whose parity is opposite to that of the fundamental bracket. Observables of the BRST theory are in a 1:1 correspondence with Casimir functions of the bracket on ZQ. For any constrained dynamical system with the phase space N0 and the constraint surface Σ, we prove its equivalence to the constrained system on the BFV-extended phase space with the constraint surface given by ZQ. Reduction to the zero locus of the differential gives rise to relations between bracket operations and differentials arising in different complexes (the Gerstenhaber, Schouten, Berezin-Kirillov, and Sklyanin brackets); the equation ensuring the existence of a nilpotent vector field on the reduced manifold can be the classical Yang-Baxter equation. We also generalize our constructions to the bi-QP manifolds which from the BRST theory viewpoint correspond to the BRST-anti-BRST-symmetric quantization.

  16. Energy release rate analysis on the interface cracks of enamel-cement-bracket fracture using virtual crack closure technique

    NASA Astrophysics Data System (ADS)

    Samshuri, S. F.; Daud, R.; Rojan, M. A.; Mat, F.; Basaruddin, K. S.; Hassan, R.

    2017-10-01

    This paper presents the energy method to evaluate fracture behavior of enamel-cement-bracket system based on cement thickness. Finite element (FE) model of enamel-cement-bracket was constructed by using ANSYS Parametric Design Language (APDL). Three different thickness were used in this study, 0.05, 0.2, and 0.271 mm which assigned as thin, medium and thick for both enamel-cement and cement bracket interface cracks. Virtual crack closure technique (VCCT) was implemented as a simulation method to calculated energy release rate (ERR). Simulation results were obtained for each thickness are discussed by using Griffith’s energy balance approach. ERR for thin thickness are found to be the lowest compared to medium and thick. Peak value of ERR also showed a significant different between medium and thick thickness. Therefore, weakest bonding occurred at low cement thickness because less load required to produce enough energy to detach the bracket. For medium and thick thickness, both increased rapidly in energy value at about the mid-point of the enamel-cement interface. This behavior occurred because of the increasing in mechanical and surface energy when the cracks are increasing. However, result for thick thickness are higher at mid-point compared to thin thickness. In conclusion, fracture behavior of enamel cracking process for medium most likely the safest to avoid enamel fracture and withstand bracket debonding.

  17. [Enamel damage depending on the method of bracket removal].

    PubMed

    Fischer-Brandies, H; Kremers, L; Reicheneder, C; Kluge, G; Hüsler, K

    1993-04-01

    Two different methods of removing brackets, on the one side by torsion and on the other by bending, were compared for the purpose of analyzing the respective enamel lesions. Each test group consisted of 19 extracted human molars with metal brackets attached to the molars by means of the "concise etching technique". Bracket removal was standardized through the use of a Wolpert "Universalprüfmaschine TZZ 707" with modified torsion and bending mechanism. A scanning electron microscope was used to analyze the enamel surface. When using the torsion method, the mean extension of the enamel lesions was 48.3% of the adhesive free enamel surface. These lesions often reached into the deeper enamel layers and were mainly to be found on the broad side of the bonded area. On the other hand, when using the bending method, the enamel lesions were less frequent. They were mainly superficial and were confined almost exclusively to the pressure zones. The stress required to remove the brackets and the stress distribution were calculated on mechanical models and these results corresponded well with the enamel lesions observed on the molars. It can thus be concluded that the method of removing brackets is clinically relevant in relation to enamel lesions.

  18. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    PubMed

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM brackets, more precise manufacturing technique should be improved to get a more smoother surface finish.

  19. Histologic investigation of the human pulp after thermodebonding of metal and ceramic brackets.

    PubMed

    Jost-Brinkmann, P G; Stein, H; Miethke, R R; Nakata, M

    1992-11-01

    Twenty-five human permanent teeth scheduled for extraction for orthodontic reasons were used to study the effect of thermodebonding on the pulp tissue. One week before brackets were removed the teeth were bonded with either metal or ceramic brackets, with two alternative adhesives. For debonding, three different techniques were used: (1) debonding of ceramic brackets warmed up indirectly by resistance heating of a metallic bow applied to the bracket slot, (2) debonding of metal brackets warmed up directly by inductive heating of the bracket itself, and (3) debonding of ceramic brackets warmed up indirectly by inductive heating of metallic plier tips, applied to the mesial and distal bracket surfaces. Teeth with metal brackets removed without heat by squeezing the wings together served as a control group. The teeth were extracted 24 hours after debonding and subjected to a light microscopic study after histologic preparation and staining. In addition, the location of adhesive remnants was evaluated. While the thermodebonding of metal brackets worked properly and without any obvious pulp damage, there were problems related to the thermodebonding of ceramic brackets: (1) if more than one heating cycle was necessary, several teeth showed localized damage of the pulp with slight infiltration of inflammatory cells, (2) bracket fractures occurred frequently, and enamel damage could be shown, and (3) often with Transbond (Unitek/3M, Monrovia, Calif.) as the adhesive, more than one heating cycle was necessary for bracket removal, and thus patients complained about pain.

  20. Evaluation of Static Friction of Polycrystalline Ceramic Brackets after Conditioning with Different Powers of Er:YAG Laser.

    PubMed

    Arash, Valiollah; Javanmard, Saeed; Eftekhari, Zeinab; Rahmati-Kamel, Manouchehr; Bahadoram, Mohammad

    2015-01-01

    This research aimed to reduce the friction between the wire and brackets by Er:YAG laser. To measure the friction between the wires and brackets in 0° and 10° of wire angulations, 40 polycrystalline ceramic brackets (Hubit, South Korea) were divided into 8 study groups and irradiated by 100, 200, and 300 mj/s of Er:YAG laser power. Two groups of brackets were not irradiated. The friction between the wires and brackets was measured with universal testing machine (SANTAM) with a segment of .019 × .025 SS wire pulled out of the slot of bracket. ANOVA and t-test were used for analyzing the results. To evaluate the effect of the laser on surface morphology of the bracket, SEM evaluations were carried out. The mean frictional resistances between the brackets and wires with 0° of angulation by increasing the laser power decreased compared with control group, but, in 10° of angulation, the friction increased regardless of the laser power and was comparable to the friction of nonirradiated brackets. Furthermore, with each laser power, frictional resistance of brackets in 10° of angulation was significantly higher than 0° of angulation. These results were explained by SEM images too.

  1. Metal-composite adhesion based on diazonium chemistry.

    PubMed

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Self-adjustable supplemental support system for a cylindrical container in a housing

    DOEpatents

    Blaushild, R.M.

    1987-01-30

    A self-adjustable supplementary support system for a cylindrical container coaxially disposed in a cylindrical housing by upper flanged supports has a plurality of outwardly extending bracket units on the external surface of the container which coact with inwardly extending resiliently outwardly extending bracket units on the inner wall of the cylindrical housing. The bracket units have flanges which form a concave surface that seats on support bars, attached by links to torsion bars that are secured to ring segments annularly spaced about the inner wall of the cylindrical housing and the bracket units and support bars coact with each other to radially position and support the container in the housing during movement of the two components from a vertical to a horizontal position, and during transportation of the same. 14 figs.

  3. Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: a preliminary study.

    PubMed

    Ghasemi, Tania; Arash, Valiollah; Rabiee, Sayed Mahmood; Rajabnia, Ramazan; Pourzare, Amirhosein; Rakhshan, Vahid

    2017-06-01

    Nano-silver and nano-titanium oxide films can be coated over brackets in order to reduce bacterial aggregation and friction. However, their antimicrobial efficacy, surface roughness, and frictional resistance are not assessed before. Fifty-five stainless-steel brackets were divided into 5 groups of 11 brackets each: uncoated brackets, brackets coated with 60 µm silver, 100 µm silver, 60 µm titanium, and 100 µm titanium. Coating was performed using physical vapor deposition method. For friction test, three brackets from each group were randomly selected and tested. For scanning electron microscopy and atomic-force microscopy assessments, one and one brackets were selected from each group. For antibacterial assessment, six brackets were selected from each group. Of them, three were immediately subjected to direct contact with S. mutans. Colonies were counted 3, 6, 24, and 48 h of contact. The other three were stored in water for 3 months. Then were subjected to a similar direct contact test. Results pertaining to both subgroups were combined. Groups were compared statistically. Mean (SD) friction values of the groups 'control, silver-60, silver-100, titanium-60, and titanium-100' were 0.55 ± 0.14, 0.77 ± 0.08, 0.82 ± 0.11, 1.52 ± 0.24, and 1.57 ± 0.41 N, respectively (p = .0004, Kruskal-Wallis). Titanium frictions were significantly greater than control (p < .05), but silver groups were not (p > .05, Dunn). In the uncoated group, colony count increased exponentially within 48 h. The coated groups showed significant reductions in colony count (p < .05, two-way-repeated-measures ANOVA). In conclusions, all four explained coatings reduce surface roughness and bacterial growth. Nano-titanium films are not suitable for friction reduction. Nano-silver results were not conclusive and need future larger studies. © 2016 Wiley Periodicals, Inc.

  4. Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory.

    PubMed

    Zhong, Yi; Gross, Herbert

    2017-05-01

    Freeform surfaces play important roles in improving the imaging performance of off-axis optical systems. However, for some systems with high requirements in specifications, the structure of the freeform surfaces could be very complicated and the number of freeform surfaces could be large. That brings challenges in fabrication and increases the cost. Therefore, to achieve a good initial system with minimum aberrations and reasonable structure before implementing freeform surfaces is essential for optical designers. The already existing initial system design methods are limited to certain types of systems. A universal tool or method to achieve a good initial system efficiently is very important. In this paper, based on the Nodal aberration theory and the system design method using Gaussian Brackets, the initial system design method is extended from rotationally symmetric systems to general non-rotationally symmetric systems. The design steps are introduced and on this basis, two off-axis three-mirror systems are pre-designed using spherical shape surfaces. The primary aberrations are minimized using the nonlinear least-squares solver. This work provides insight and guidance for initial system design of off-axis mirror systems.

  5. Surface Modification of Orthodontic Bracket Models via Ion Implantation: Effect on Coefficients of Friction

    DTIC Science & Technology

    1989-01-01

    FEB 2 2 1990 Stephen Walter Andrews, D.M.D. The University of North Carolina at Chapel Hill Department of Orthodontics School of Dentistry 1989 Robert...PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) (UNCLASSIFIED) SURFACE MODIFICATION OF ORTHODONTIC ...Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE AFIT/CI "OVERPRINT" SURFACE MODIFICATION OF ORTHODONTIC BRACKET MODELS VIA ION

  6. Method of mounting a PC board to a hybrid

    NASA Technical Reports Server (NTRS)

    O'Coin, James R. (Inventor)

    1999-01-01

    A system for mounting a hybrid electronic component to a PC board is disclosed. The system includes a set of brackets for mutually engaging a first surface of the PC board and a cover surface of the hybrid electronic component, wherein the cover surface has an arcuate shape when in a vacuum environment. The brackets are designed with legs having lengths and thicknesses for providing clearance between the cover surface of the hybrid and the first surface of the PC board for use when the hybrid electronic component is in a vacuum environment.

  7. In vitro evaluation of an adhesive monomer as a bonding agent for orthodontic brackets to primary teeth and nickel-chromium ion crowns.

    PubMed

    Ergas, R P; Hondrum, S O; Mathieu, G P; Koonce, J D

    1995-01-01

    The adhesive monomer, Clearfil New Bond, was used to enhance the bond strength between orthodontic brackets and primary molars, premolars, and NiCr crowns. Twenty specimens of each had this dental adhesive applied according to the manufacturer's instructions in addition to a chemically cured composite material. The remaining specimens (20 each) were bonded without the adhesive monomer. Shear bond strengths were determined using a universal testing machine. Fracture sites were examined to determine the type of bond failure. All bond strengths were significantly increased with the addition of Clearfil New Bond (P < or = 0.0001). The shear bond strength to NiCr crowns with the addition of the adhesive monomer was 7.76 kg. This is comparable to the shear bond strength observed for primary molars (8.66 kg) and premolars (8.65 kg) without adhesive monomer. The observed decrease in adhesive bond failures with the addition of Clearfil New Bond indicated a stronger shear bond strength between the tooth surface and the bracket base. Clearfil New Bond can significantly increase the shear bond strength of orthodontic brackets to both primary molars and premolars. Additionally, it was shown that orthodontic brackets can be successfully bonded to Ni-Cr crowns at strengths comparable to primary or permanent enamel.

  8. A novel biomimetic orthodontic bonding agent helps prevent white spot lesions adjacent to brackets.

    PubMed

    Manfred, Lauren; Covell, David A; Crowe, Jennifer J; Tufekci, Eser; Mitchell, John C

    2013-01-01

    To compare changes in enamel microhardness adjacent to orthodontic brackets after using bonding agents containing various compositions of bioactive glass compared to a traditional resin adhesive following a simulated caries challenge. Extracted human third molars (n  =  10 per group) had orthodontic brackets bonded using one of four novel bioactive glass (BAG)-containing orthodontic bonding agents (BAG-Bonds) or commercially available Transbond-XT. The four new adhesives contained BAG in varying percentages incorporated into a traditional resin monomer mixture. Teeth were cycled through low-pH demineralizing and physiologic-pH remineralizing solutions once each day over 14 days. Microhardness was measured on longitudinal sections of the teeth 100, 200, and 300 µm from the bracket edge and beneath the brackets, at depths of 25 to 200 µm from the enamel surface. Normalized hardness values were compared using three-way analysis of variance. Significantly less reduction in enamel microhardness was found with the experimental adhesives at depths of 25 and 50 µm at all distances from the bracket edge. In all groups, there were no significant changes in enamel microhardness past 125-µm depth. Results varied with the different BAG-Bonds, with 81BAG-Bond showing the smallest decrease in enamel microhardness. The BAG-Bonds tested in this study showed a reduction in the amount of superficial enamel softening surrounding orthodontic brackets compared to a traditional bonding agent. The results indicate that clinically, BAG-Bonds may aid in maintaining enamel surface hardness, therefore helping prevent white spot lesions adjacent to orthodontic brackets.

  9. Surface modification for bonding between amalgam and orthodontic brackets.

    PubMed

    Wongsamut, Wittawat; Satrawaha, Sirichom; Wayakanon, Kornchanok

    2017-01-01

    Testing of methods to enhance the shear bond strength (SBS) between orthodontic metal brackets and amalgam by sandblasting and different primers. Three hundred samples of amalgam restorations (KerrAlloy ® ) were prepared in self-cured acrylic blocks, polished, and divided into two groups: nonsandblasted and sandblasted. Each group was divided into five subgroups with different primers used in surface treatment methods, with a control group of bonded brackets on human mandibular incisors. Following the surface treatments, mandibular incisor brackets (Unitek ® ) were bonded on the amalgam with adhesive resin (Transbond XT ® ). The SBS of the samples was tested. The adhesive remnant index (ARI) and failure modes were then determined under a stereo-microscope. Two-way analysis of variance, Chi-square, and Kruskal-Wallis tests were performed to calculate the correlations between and among the SBS and ARI values, the failure modes, and surface roughness results. There were statistically significant differences of SBS among the different adhesive primers and sandblasting methods ( P < 0.05). The sandblasted amalgam with Assure Plus ® showed the highest SBS ( P < 0.001). Samples mainly showed an ARI score = 1 and mix-mode failure. There was a statistically significant difference of surface roughness between nonsandblasted amalgam and sandblasted amalgam ( P < 0.05), but no significant differences among priming agents ( P > 0.05). Using adhesive primers with sandblasting together effectively enhances the SBS between orthodontic metal brackets and amalgam. The two primers with the ingredient methacryloxydecyl dihydrogen phosphate (MDP) monomer, Alloy Primer ® and Assure Plus ® , were the most effective. Including sandblasting in the treatment is essential to achieve the bonding strength required.

  10. Influence of tooth brushing on adhesion strength of orthodontic brackets bonded to porcelain.

    PubMed

    Durgesh, Bangalore H; Alhijji, Saleh; Hashem, Mohamed I; Al Kheraif, AbdulAziz A; Durgesh, Pavithra; Elsharawy, Mohamed; Vallittu, Pekka K

    2016-09-28

    Adhesive resin composite, which is used to bond orthodontic bracket to tooth surface is exposed to the influence of wear by tooth brushing and wear may influence loosening of the bracket. The aim of this study was to evaluate in vitro the effect of tooth brushing on the adhesion strength of orthodontic brackets bonded to surface treated porcelain. A total of 90 glazed porcelain fused to metal facets (PFM) were randomly assigned into 3 groups according to the surface treatment to be received. Group 1 was conditioned with hydrofluoric acid (HF), group 2 conditioned with grit-blasting (GB) and group 3 conditioned with tribochemical silica coating (RC). The groups were evaluated for surface roughness (Ra) before and after surface treatment. Next, 15 samples from each group were subjected to brushing and remaining 15 samples served as the baseline (n=15). Adhesion strength (shear bond strength)was recorded using a universal testing machine. Data collected were analyzed by ANOVA and Tukey's multiple comparison post hoc analysis. Tooth brushing decreased the bond strength in all groups. The highest adhesion strength (baseline and after brushing) was observed in group 3 (26.8 ± 1.77 MPa and 23.57 ± 1.02 MPa) and the lowest was found in group 1 (9.6 ± 1.5 MPa and 5.87 ± 0.77 MPa). Group 3 specimens exhibited the highest Ra (1.24 ± 0.08). It was found that tooth brushing of the exposed adhesive resin composite at the bracket-bonding substrate interface lowers the bonding strength regardless of the surface treatment of the substrate.

  11. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets.

    PubMed

    Bahnasi, Faisal I; Abd-Rahman, Aida Na; Abu-Hassan, Mohame I

    2013-10-01

    1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket.

  12. Bond efficacy of recycled orthodontic brackets: A comparative in vitro evaluation of two methods.

    PubMed

    Shetty, Vikram; Shekatkar, Yash; Kumbhat, Neesu; Gautam, G; Karbelkar, Shalan; Vandekar, Meghna

    2015-01-01

    Recycling of orthodontic brackets in developing orthodontic economies is an extremely common procedure. Bonding protocols and reliability of these brackets is, however, questionable, and still the subject of research. The aim was to evaluate and compare the shear bond strength of brackets recycled with sandblasting and silicoating. Ninety extracted human premolars were bonded with 0.022" SS brackets (American Orthodontics, Sheboygan USA) and then debonded. The debonded brackets were divided into three groups of 30 each. Group I: Sandblasting with 50-μm aluminum oxide (control group) Group II: Sandblasting with 50-μm aluminum oxide followed by metal primer application Group III: Silicoating with 30-μm Cojet sand followed by silane application and rebonded with Transbond XT. The sandblasted brackets and silicoated brackets were viewed under the scanning electron microscope, immediately after surface conditioning before rebonding. The shear bond strength with each group was tested. One-way analysis of variance, post-hoc Scheffe multiple comparison tests. The results showed that sandblasting created more irregularities and deeper erosions while silica coating created superficial irregularities and shallow erosions.

  13. Colour stability of aesthetic brackets: ceramic and plastic.

    PubMed

    Filho, Hibernon Lopes; Maia, Lúcio Henrique; Araújo, Marcus V; Eliast, Carlos Nelson; Ruellas, Antônio Carlos O

    2013-05-01

    The colour stability of aesthetic brackets may differ according to their composition, morphology and surface property, which may consequently influence their aesthetic performance. To assess the colour stability of aesthetic brackets (ceramic and plastic) after simulating aging and staining. Twelve commercially manufactured ceramic brackets and four different plastic brackets were assessed. To determine possible colour change (change of E*(ab)) and the value of the NBS (National Bureau of Standards) unit system, spectrophotometric colour measurements for CIE L*, a* and b* were taken before and after the brackets were aged and stained. Statistical analysis was undertaken using a one-way ANOVA analysis of variance and a Tukey multiple comparison test (alpha = 0.05). The colour change between the various (ceramic and plastic) materials was not significant (p > 0.05), but still varied significantly (p < 0.001) between the brackets of the same composition or crystalline structure and among commercial brands. Colour stability cannot be confirmed simply by knowing the type of material and crystalline composition or structure.

  14. Monitoring of typodont root movement via crown superimposition of single cone-beam computed tomography and consecutive intraoral scans.

    PubMed

    Lee, Robert J; Pham, John; Choy, Michael; Weissheimer, Andre; Dougherty, Harry L; Sameshima, Glenn T; Tong, Hongsheng

    2014-03-01

    The purpose of this study was to develop a new methodology to visualize in 3 dimensions whole teeth, including the roots, at any moment during orthodontic treatment without the need for multiple cone-beam computed tomography (CBCT) scans. An extraoral typodont model was created using extracted teeth placed in a wax base. These teeth were arranged to represent a typical malocclusion. Initial records of the malocclusion, including CBCT and intraoral surface scans, were taken. Threshold segmentation of the CBCT was performed to generate a 3-dimensional virtual model. This model and the intraoral surface scan model were superimposed to generate a complete set of digital composite teeth composed of high-resolution surface scan crowns sutured to the CBCT roots. These composite teeth were individually isolated from their respective arches for single-tooth manipulations. Orthodontic treatment for the malocclusion typodont model was performed, and posttreatment intraoral surface scans before and after bracket removal were taken. A CBCT scan after bracket removal was also obtained. The isolated composite teeth were individually superimposed onto the posttreatment surface scan, creating the expected root position setup. To validate this setup, it was compared with the posttreatment CBCT scan, which showed the true positions of the roots. Color displacement maps were generated to confirm accurate crown superimpositions and to measure the discrepancies between the expected and the true root positions. Color displacement maps through crown superimpositions showed differences between the expected and true root positions of 0.1678 ± 0.3178 mm for the maxillary teeth and 0.1140 ± 0.1587 mm for the mandibular teeth with brackets. Once the brackets were removed, differences of 0.1634 ± 0.3204 mm for the maxillary teeth and 0.0902 ± 0.2505 mm for the mandibular teeth were found. A new reliable approach was demonstrated in an ex-vivo typdont model to have the potential to track the 3-dimensional positions of whole teeth including the roots, with only the initial CBCT scan and consecutive intraoral scans. Since the presence of brackets in the intraoral scan had a minimal influence in the analysis, this method can be applied at any stage of orthodontic treatment. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Stretched graphene tented by polycaprolactone and polypyrrole net-bracket for neurotransmitter detection

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhen; Ying, Ye; Li, Li; Xu, Ting; Wu, Yiping; Guo, Xiaoyu; Wang, Feng; Shen, Haojie; Wen, Ying; Yang, Haifeng

    2017-02-01

    A net-bracket built out from the core@shell structure of chemically oxidized polypyrrole (PPy) coated electrospun polycaprolactone (PCL) nanofibers, and the following surface modification of a thin layer of positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) has been applied for stretching the reduced graphene oxide (RGO) sheets to some extent with the electrochemical deposition method. The as-formed RGO/PDDA/PCL@PPy nanocomposites were investigated by using scanning electron microscopy, transmission electron microscope, X-ray diffraction and Raman spectroscopy. The graphene tented by the net-bracket showed remarkable electrocatalytic properties in detecting the neurotransmitter dopamine (DA). Low detection limit of 0.34 μM (S/N = 3) with the wide linear detection range from 4 μM to 690 μM was obtained. The successful determination of DA in real urine samples and DA injection were achieved. Such attractive fabrication strategy can be extended to make other graphene sheet-based sensors.

  16. Comparison of the Debonding Characteristics of Conventional and New Debonding Instrument used for Ceramic, Composite and Metallic Brackets – An Invitro Study

    PubMed Central

    Gill, Vikas; Reddy, Y. N. N.; Sanadhya, Sudhanshu; Aapaliya, Pankaj; Sharma, Nidhi

    2014-01-01

    Background: Debonding procedure is time consuming and damaging to the enamel if performed with improper technique. Various debonding methods include: the conventional methods that use pliers or wrenches, an ultrasonic method, electrothermal devices, air pressure impulse devices, diamond burs to grind the brackets off the tooth surface and lasers. Among all these methods, using debonding pliers is most convenient and effective method but has been reported to cause damage to the teeth. Recently, a New Debonding Instrument designed specifically for ceramic and composite brackets has been introduced. As this is a new instrument, little information is available on efficacy of this instrument. The purpose of this study was to evaluate the debonding characteristics of both “the conventional debonding Pliers” and “the New debonding instrument” when removing ceramic, composite and metallic brackets. Materials and Methods: One Hundred Thirty eight extracted maxillary premolar teeth were collected and divided into two Groups: Group A and Group B (n = 69) respectively. They were further divided into 3 subGroups (n = 23) each according to the types of brackets to be bonded. In subGroups A1 and B1{stainless steel};A2 and B2{ceramic};A3 and B3{composite}adhesive precoated maxillary premolar brackets were used. Among them {ceramic and composite} adhesive pre-coated maxillary premolar brackets were bonded. All the teeth were etched using 37% phosphoric acid for 15 seconds and the brackets were bonded using Transbond XT primer. Brackets were debonded using Conventional Debonding Plier and New Debonding Instrument (Group B). After debonding, the enamel surface of each tooth was examined under stereo microscope (10X magnifications). Amodifiedadhesive remnant index (ARI) was used to quantify the amount of remaining adhesive on each tooth. Results: The observations demonstrate that the results of New Debonding Instrument for debonding of metal, ceramic and composite brackets were statistically significantly different (p = 0.04) and superior from the results of conventional debonding Pliers. Conclusion: The debonding efficiency of New Debonding Instrument is better than the debonding efficiency of Conventional Debonding Pliers for use of metal, ceramic and composite brackets respectively. PMID:25177639

  17. Comparison of the Debonding Characteristics of Conventional and New Debonding Instrument used for Ceramic, Composite and Metallic Brackets - An Invitro Study.

    PubMed

    Choudhary, Garima; Gill, Vikas; Reddy, Y N N; Sanadhya, Sudhanshu; Aapaliya, Pankaj; Sharma, Nidhi

    2014-07-01

    Debonding procedure is time consuming and damaging to the enamel if performed with improper technique. Various debonding methods include: the conventional methods that use pliers or wrenches, an ultrasonic method, electrothermal devices, air pressure impulse devices, diamond burs to grind the brackets off the tooth surface and lasers. Among all these methods, using debonding pliers is most convenient and effective method but has been reported to cause damage to the teeth. Recently, a New Debonding Instrument designed specifically for ceramic and composite brackets has been introduced. As this is a new instrument, little information is available on efficacy of this instrument. The purpose of this study was to evaluate the debonding characteristics of both "the conventional debonding Pliers" and "the New debonding instrument" when removing ceramic, composite and metallic brackets. One Hundred Thirty eight extracted maxillary premolar teeth were collected and divided into two Groups: Group A and Group B (n = 69) respectively. They were further divided into 3 subGroups (n = 23) each according to the types of brackets to be bonded. In subGroups A1 and B1{stainless steel};A2 and B2{ceramic};A3 and B3{composite}adhesive precoated maxillary premolar brackets were used. Among them {ceramic and composite} adhesive pre-coated maxillary premolar brackets were bonded. All the teeth were etched using 37% phosphoric acid for 15 seconds and the brackets were bonded using Transbond XT primer. Brackets were debonded using Conventional Debonding Plier and New Debonding Instrument (Group B). After debonding, the enamel surface of each tooth was examined under stereo microscope (10X magnifications). Amodifiedadhesive remnant index (ARI) was used to quantify the amount of remaining adhesive on each tooth. The observations demonstrate that the results of New Debonding Instrument for debonding of metal, ceramic and composite brackets were statistically significantly different (p = 0.04) and superior from the results of conventional debonding Pliers. The debonding efficiency of New Debonding Instrument is better than the debonding efficiency of Conventional Debonding Pliers for use of metal, ceramic and composite brackets respectively.

  18. Corrosion of orthodontic brackets in different spices: in vitro study.

    PubMed

    Chaturvedi, T P

    2014-01-01

    Moist environment in the mouth varies and causes variable amounts of corrosion of dental materials. This is of concern particularly when metallic implants, metallic fillings, orthodontic appliances are placed in the hostile electrolytic environment in the human mouth. Components of diet rich in salt and spices are important factors influencing the corrosion of metallic appliances placed in the oral cavity. To study in vitro corrosion of orthodontic metallic brackets immersed in solutions of salt and spices in artificial saliva. Orthodontic brackets were used for corrosion studies in artificial saliva, salt, and spices using electrochemical technique and surface analysis. Electrochemical studies using different parameters were done in solutions of artificial saliva containing salt and spices. Photomicrographs from the optical microscope were also obtained. RESULTS of corrosion studies have clearly demonstrated that certain spices such as turmeric and coriander are effective in reducing corrosion, whereas salt and red chili have been found to enhance it. Surface analysis of small pits present on the surface of the as-received bracket will initiate corrosion which leads to more pitting.

  19. Effect of time and pH on physical-chemical properties of orthodontic brackets and wires.

    PubMed

    Dos Santos, Aretha Aliny Ramos; Pithon, Matheus Melo; Carlo, Fabíola Galbiatti Carvalho; Carlo, Hugo Lemes; de Lima, Bruno Alessandro Silva Guedes; Dos Passos, Tibério Andrade; Lacerda-Santos, Rogério

    2015-03-01

    To test the hypothesis that treatment time, debris/biofilm, and oral pH have an influence on the physical-chemical properties of orthodontic brackets and arch wires. One hundred twenty metal brackets were evaluated. They were divided into four groups (n  =  30) according to treatment time: group C (control) and groups T12, T24, and T36 (brackets recovered after 12, 24, and 36 months of treatment, respectively). Rectangular stainless-steel arch wires that remained in the oral cavity for 12 to 24 months were also analyzed. Dimensional stability, surface morphology, composition of brackets, resistance to sliding of the bracket-wire set, surface roughness of wires, and oral pH were analyzed. One-way analysis of variance, followed by a Tukey multiple comparisons test, was used for statistical analysis (P < .05). Carbon and oxygen were shown to be elements that increased expressively and in direct proportion to time, and there was a progressive increase in the coefficient of friction and roughness of wires as a function of time of clinical use after 36 months. Oral pH showed a significant difference between group T36 and its control (P  =  .014). The hypothesis was partially accepted: treatment time and biofilm and debris accumulation in bracket slots were shown to have more influence on the degradation process and frictional force of these devices than did oral pH.

  20. Vessel structural support system

    DOEpatents

    Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.

    1992-01-01

    Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.

  1. Temperature analysis during bonding of brackets using LED or halogen light base units.

    PubMed

    Silva, Paulo César Gomes; De Fátima Zanirato Lizarelli, Rosane; Moriyama, Lílian Tan; De Toledo Porto Neto, Sizenando; Bagnato, Vanderlei Salvador

    2005-02-01

    The purpose of our investigation is to compare the intrapulpal temperature changes following blue LED system and halogen lamp irradiation at the enamel surface of permanent teeth. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Several light sources can be used: halogens, arc plasma, lasers, and recently blue LED systems. An important aspect to be observed during such a procedures is the temperature change. In this study, we have used nine human extracted permanent teeth: three central incisors, three lateral incisors, and three canines. Teeth were exposed to two light sources: blue LED system (preliminary commercial model LEC 470-II) and halogen lamp (conventional photo-cure equipment). The surface of teeth was exposed for 20, 40, and 60 sec at the buccal and lingual enamel surface with an angle of 45 degrees. Temperature values measured by a thermistor placed at pulpar chamber were read in time intervals of 1 sec. We obtained plots showing the temperature evolution as a function of time for each experiment. There is a correlation between heating quantity and exposition time of light source: with increasing exposition time, heating increases into the pulpal chamber. The halogen lamp showed higher heating than the LED system, which showed a shorter time of cooling than halogen lamp. The blue LED system seems like the indicated light source for photo-cure of composite resin during the bonding of brackets. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Blue LED equipment did not heat during its use. This could permit a shorter clinical time of operation and better performance.

  2. Influence of Preadjusted Bracket Shape and Positioning Reference on Angulation of Upper Central Incisor.

    PubMed

    Topolski, Francielle; de O Accorsi, Mauricio A; Trevisi, Hugo J; Cuoghi, Osmar A; Moresca, Ricardo

    2016-10-01

    To verify the influence of different bracket shapes and placement references according to Andrews and MBT systems on the expression of angulation in upper central incisors (UCI). Bracket positioning and mesiodistal dental movement simulations were performed and the angulations produced in the dental crown were evaluated, based on computed tomography scan images of 30 UCI and AutoCAD software analysis. Rectangular (Andrews) and rhomboid (MBT) brackets were placed according to the references recommended by Andrews and MBT systems - long axis of the clinical crown (LACC) and incisal edge (IE) respectively. Data showed that the use of LACC as reference for bracket positioning produced 5° and 4° UCI angulations in Andrews and MBT brackets respectively. The use of IE produced a 1.2° mean angulation in UCI for both brackets. When the LACC was used as reference for bracket positioning, the UCI crown angulation corresponded to the angulation built into the brackets, regardless of shape, while the use of IE resulted in natural crown angulation, regardless of bracket shape. This research contributes to guide the orthodontist in relation to the different treatment techniques based on the use of preadjusted brackets.

  3. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets

    PubMed Central

    Bahnasi, Faisal I.; Abu-Hassan, Mohame I.

    2013-01-01

    Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. Results: There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. Conclusion: To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket. PMID:24455081

  4. Elastomeric-ligated vs self-ligating appliances: a pilot study examining microbial colonization and white spot lesion formation after 1 year of orthodontic treatment.

    PubMed

    Buck, Tyson; Pellegrini, Peter; Sauerwein, Rebecca; Leo, Michael C; Covell, David A; Maier, Tom; Machida, Curtis A

    2011-01-01

    To (1) evaluate the use of adenosine triphosphate (ATP)-driven bioluminescence for quantification of total plaque bacteria in orthodontic patients, (2) compare plaque bacteria amounts at the bracket-tooth interface with use of elastomeric-ligated and self-ligating brackets after 1 year of orthodontic treatment, and (3) analyze formation of white spot lesions by photographic evaluation and laser-light fluorescence (DIAGNOdent). Thirteen subjects had fixed orthodontic appliances placed where lateral incisors were bonded with either elastomeric-ligated or self-ligating brackets. Plaque bacteria were collected from incisor surfaces after 1 year and quantified using plating methods and ATP-driven bioluminescence. White spot lesions were evaluated by photographic and DIAGNOdent determinations. A 2 x 2 x 2 mixed-design ANOVA was conducted to determine differences in plaque retention between elastomeric-ligated and self-ligating brackets. ATP-driven bioluminescence values correlated to numbers of total plaque bacteria (r = 0.80). However, unlike findings published in the original pilot study, which described increased plaque retention with elastomeric-ligated brackets at 5 weeks postbonding, there were no significant differences in bacterial numbers or ATP-driven bioluminescence values surrounding the elastomeric-ligated vs self-ligating brackets after 1 year of orthodontic treatment. Based on photographic and DIAGNOdent determinations, white spot lesions were found relatively equally on teeth bonded with either bracket type. DIAGNOdent measurements were found to have moderate sensitivity (0.71) and good specificity (0.88) when compared to white spot lesions determined using photographic evaluation. ATP-driven bioluminescence can be used as an accurate assessment of total plaque bacteria in orthodontic patients. After 1 year of orthodontic treatment for patients in this pilot study, there appeared to be no differences in retention of plaque bacteria or white spot lesions comparing the bracket types. The use of DIAGNOdent has some limitations, but may prove to be useful to monitor white spot lesions longitudinally.

  5. Antimicrobial action of chlorhexidine digluconate in self-ligating and conventional metal brackets infected with Streptococcus mutans biofilm.

    PubMed

    Dias, Ana Paula; Paschoal, Marco Aurélio Benini; Diniz, Rafael Soares; Lage, Lucas Meneses; Gonçalves, Letícia Machado

    2018-01-01

    The objectives of this study were to assess the adherence of Streptococcus mutans biofilms grown over conventional ligature (CL) or self-ligating (SL) metal brackets and their bacterial viability after 0.12% chlorhexidine (CHX) digluconate treatment. The sample consisted of 48 metallic orthodontic brackets divided randomly into two groups: CL (n=24) and SL brackets (n=24). S. mutans biofilms were grown over the bracket surface (96 h) and treated with CHX (positive control) or 0.9% phosphate-buffered saline (PBS) (negative control) for 1 min each. Quantitative analysis was assessed by colony-forming units, and fluorescence microscopy was performed aiming to illustrate the outcomes. The tests were done in triplicate at three different times (n=9). Data were analyzed using ANOVA and Tukey test ( P <0.05). There were significant differences in brackets' biofilm formation, being CL largely colonized compared with SL, which was observed by colony-forming unit counting ( P <0.05) and microcopy images. Significant reduction in the viability of S. mutans was found in both brackets treated with CHX compared to PBS ( P <0.05). The antimicrobial activities of CHX were similar for CL and SL brackets ( P >0.05). In conclusion, a lower colonization was achieved in SL brackets and S. mutans biofilms were susceptible to CHX treatment to both studied brackets.

  6. The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets.

    PubMed

    Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid

    2015-01-01

    Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.

  7. Er,Cr:YSGG Laser as a Novel Method for Rebonding Failed Ceramic Brackets.

    PubMed

    Sohrabi, Aydin; Jafari, Sanaz; Kimyai, Soodabeh; Rikhtehgaran, Sahand

    2016-10-01

    Since there is no standard method for rebonding loose ceramic brackets, the aim of this study was to evaluate the possibility of using Er,Cr:YSGG laser to eliminate the remaining composite materials from the base of ceramic brackets and to compare the bond strength of rebonded brackets with the new ones. Sixty-two extracted human premolars were mounted in acrylic cylinders. Thirty-one ceramic brackets were bonded, and shear bond strength was tested using Hounsfield testing machine. The remnants of the bonding material were removed from the bases of brackets using Er,Cr:YSGG laser. These brackets were rebonded to 31 fresh teeth and again shear bond strength was measured. Pattern of debonding was assessed in both cases under a stereomicroscope and graded according to ARI index. Data were analyzed with independent t-test and Fisher's exact test. Mean shear bond strength of the bond and rebond groups was 12.29 ± 5.46 and 10.58 ± 5.16 MPa, respectively. There were no significant differences between the two groups (p = 0.21). Pattern of bond failure was not statistically different between the two groups. Er,Cr:YSGG laser was effective in removing the remnants of bonding material from the base of ceramic brackets without any interference with the ceramic base itself, demonstrating that it might be a suitable method for rebonding ceramic brackets.

  8. Preliminary Process Design of ITER ELM Coil Bracket Brazing

    NASA Astrophysics Data System (ADS)

    LI, Xiangbin; SHI, Yi

    2015-03-01

    With the technical requirement of the International Thermonuclear Experimental Reactor (ITER) project, the manufacture and assembly technology of the mid Edge Localized Modes (ELM) coil was developed by the Institute of Plasma Physics, Chinese Academy of Science (ASIPP). As the gap between the bracket and the Stainless Steel jacketed and Mineral Insulated Conductor (SSMIC) can be larger than 0.5 mm instead of 0.01 mm to 0.1 mm as in normal industrial cases, the process of mid ELM coil bracket brazing to the SSMICT becomes quiet challenging, from a technical viewpoint. This paper described the preliminary design of ELM coil bracket brazing to the SSMIC process, the optimal bracket brazing curve and the thermal simulation of the bracket furnace brazing method developed by ANSYS. BAg-6 foil (Bag50Cu34Zn16) plus BAg-1a paste (Bag45CuZnCd) solders were chosen as the brazing filler. By testing an SSMICT prototype, it is shown that the average gap between the bracket and the SSMIC could be controlled to 0.2-0.3 mm, and that there were few voids in the brazing surface. The results also verified that the preliminary design had a favorable heat conducting performance in the bracket.

  9. Effects of different black mediators on the shear strength of orthodontic bracket to the enamel treated with Nd-Yag laser

    NASA Astrophysics Data System (ADS)

    Huang, Shun-Te; Lin, I.-Shueng; Tsai, Chi-Cheng

    1995-04-01

    The Nd:YAG laser has ablation, crack, and crater effects on the dental enamel through black mediators which are very similar to the acid etching effects of phosphoric acid. This study was designed for searching how the different black mediators influence the shear strengths of the brackets bound to the enamel surfaces which were treated with the Nd:YAG laser. 90 bovine enamels divided into 5 groups were painted with 5 kinds of black mediators including Chinese ink, oil ink, black ball pen, water ink and black transfer paper. The enamel surfaces painted with black mediators were then radiated by Nd:YAG laser (ADL; American Dental Laser 300dl, power: 20 pps, 87.5 mj). Orthodontic brackets were bonded to the radiated surfaces. Then the shear strengths of the brackets to the enamels were measured by Instron. The results showed that the Chinese ink group and oil ink group has the strongest shear strength, ball pen group and water ink group showed the second strength, and the transfer paper group has the lowest shear strength. In addition, scanning electronic microscope also was used to observe the topographic changes of the enamel surfaces induced by the laser ablation.

  10. The effect of remin pro and MI paste plus on bleached enamel surface roughness.

    PubMed

    Ahmad Akhoundi, Mohammad Sadegh; Aghajani, Farzaneh; Chalipa, Javad; Sadrhaghighi, Amir Hooman

    2014-03-01

    Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin. Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5-55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM. The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05). There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected. Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations.

  11. The Effect of Remin Pro and MI Paste Plus on Bleached Enamel Surface Roughness

    PubMed Central

    Ahmad Akhoundi, Mohammad Sadegh; Aghajani, Farzaneh; Chalipa, Javad; Sadrhaghighi, Amir Hooman

    2014-01-01

    Objective Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin. Materials and Methods: Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5–55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM. Results: The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05). There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected. Conclusion: Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations. PMID:24910698

  12. An orthodontic bracket embedded in the medial pterygoid surface: a case report.

    PubMed

    Wilmott, Sheryl E; Ikeagwuani, Okechukwu; McLeod, Niall M H

    2016-01-08

    There is a potential risk that orthodontic brackets can become dislodged into the aerodigestive tract. This case illustrates the management of an orthodontic bracket, which became embedded in the deep tissues of the oropharynx. We aim to highlight the potential risk misplaced dental instruments and materials pose, including that they may become embedded in the soft tissues of the throat and suggest that that this possibility should be considered when they cannot be localized.

  13. An orthodontic bracket embedded in the medial pterygoid surface: a case report.

    PubMed

    Wilmott, Sheryl E; Ikeagwuani, Okechukwu; McLeod, Niall M H

    2016-03-01

    There is a potential risk that orthodontic brackets can become dislodged into the aerodigestive tract. This case illustrates the management of an orthodontic bracket, which became embedded in the deep tissues of the oropharynx. We aim to highlight the potential risk misplaced dental instruments and materials pose, including that they may become embedded in the soft tissues of the throat and suggest that that this possibility should be considered when they cannot be localized.

  14. The Effect of Different Soft Drinks on the Shear Bond Strength of Orthodontic Brackets

    PubMed Central

    Omid Khoda, M.; Heravi, F.; Shafaee, H.; Mollahassani, H.

    2012-01-01

    Objective: It is proved that acidic soft drinks that are commonly used, have an adverse effect on dental structures, and may deteriorate oral heath of our patients and orthodontic appliances. The aim of this study was to compare the effect of yoghurt drink with other soft drinks on the shear bond strength of orthodontic brackets. Materials and Methods: Seventy-five first premolar teeth extracted for orthodontic purposes were selected and standard twin metal brackets were bonded on the center of buccal surface with No-Mix composite. The teeth were thermocycled for 625 cycles and randomly divided into five groups of artificial saliva, carbonated yoghurt drink with lactic acid base, non-carbonated yoghurt drink with lactic acid base, 7 up with citric acid base and Pepsi with phosphoric acid base. In all groups, the teeth were immersed in liquid for five-minute sessions three times with equal intervening intervals for 3 months. SBS was measured by a universal testing machine with a speed of 0.5mm/min. Data was analyzed statistically by one-way ANOVA. Results: The results showed that mean values for the shear bond strength of carbonated yoghurt drinks, non-carbonated yoghurt drinks, 7up and Pepsi groups were 12.98(±2.95), 13.26(±4.00), 16.11(±4.89), 14.73(±5.10), respectively. There was no statistically significant difference among the groups (P-value= 0.238) Conclusion: Soft drinks used in this study did not decrease the bond strength of the brackets bonded with this specific type of composite. PMID:23066479

  15. The effect of different soft drinks on the shear bond strength of orthodontic brackets.

    PubMed

    Omid Khoda, M; Heravi, F; Shafaee, H; Mollahassani, H

    2012-01-01

    It is proved that acidic soft drinks that are commonly used, have an adverse effect on dental structures, and may deteriorate oral heath of our patients and orthodontic appliances. The aim of this study was to compare the effect of yoghurt drink with other soft drinks on the shear bond strength of orthodontic brackets. Seventy-five first premolar teeth extracted for orthodontic purposes were selected and standard twin metal brackets were bonded on the center of buccal surface with No-Mix composite. The teeth were thermocycled for 625 cycles and randomly divided into five groups of artificial saliva, carbonated yoghurt drink with lactic acid base, non-carbonated yoghurt drink with lactic acid base, 7 up with citric acid base and Pepsi with phosphoric acid base. In all groups, the teeth were immersed in liquid for five-minute sessions three times with equal intervening intervals for 3 months. SBS was measured by a universal testing machine with a speed of 0.5mm/min. Data was analyzed statistically by one-way ANOVA. The results showed that mean values for the shear bond strength of carbonated yoghurt drinks, non-carbonated yoghurt drinks, 7up and Pepsi groups were 12.98(±2.95), 13.26(±4.00), 16.11(±4.89), 14.73(±5.10), respectively. There was no statistically significant difference among the groups (P-value= 0.238) Soft drinks used in this study did not decrease the bond strength of the brackets bonded with this specific type of composite.

  16. [Effects of different resin removal methods on shear bond strength of rebonded orthodontic brackets].

    PubMed

    Wu, Hai-miao; Zhao, Bin-jiao; Chen, Dong

    2015-06-01

    To compare the shear bond strength (SBS) of rebonded orthodontic metal brackets with different resin removal methods. Forty extracted premolars were chosen as samples and divided into 4 experimental groups. The teeth were bonded with brackets. The brackets from 3 groups were debonded while adhesive remnants were removed from bracket bases by methods of grinding, sandblasting, and direct flaming, respectively and then rebonded. The SBS values of all rebonded brackets were determined after pH cycling experiment for 30 days. Some rebonded bracket bases were selected and observed under scanning electron microscope (SEM). The data was analyzed by one-way ANOVA test using SPSS 13.0 software package. Statistical analysis revealed a significant difference of SBS values among the 4 experimental groups (P<0.05). The SBS values of the group by direct flaming was significantly lower compared to the other groups (P<0.05). There was no significant difference of SBS values among the other groups. The rebonded brackets after resin removal by grinding and sandblasting have a similar SBS compared to the initial brackets adhesive.

  17. The effect of various adhesives, enamel etching, and base treatment on the failure frequency of customized lingual brackets: a randomized clinical trial.

    PubMed

    Mavreas, Dimitrios; Cuzin, Jean-François; Boonen, Guillaume; Vande Vannet, Bart

    2018-05-25

    The aim of this paper was to compare failure differences in precious metal customized lingual brackets bonded with three adhesive systems. Also, differences in failure of non-precious metal brackets with and without a silicatized base layer bonded with the same adhesive, as well as the influence of enamel etching prior to using a self-etching dual cure resin were explored. Five different groups were defined in a semi-randomized approach. Group 1 (IME): Maxcem Elite with 378 Incognito brackets and etched teeth, Group 2 (IMNE): Maxcem Elite with 193 Incognito brackets on non-etched teeth, Group 3 (INE): Nexus+Excite with 385 Incognito brackets, Group 4 (IRE): Relyx with 162 Incognito brackets, Group 5 (HRME) and Group 6 (HNRME): Maxcem Elite with 182 Harmony brackets with silicatized and non-slicatized bases respectively. Bracket failures were recorded over a 12-month period. The number of failures during the observation period was small in the various adhesives types of groups, as well as in HRME and HNRME groups, and the comparisons among those groups were non-significant (P > 0.05). A statistically significant difference (P < 0.05) was found between the IME and IMNE groups. 1. During the first year of treatment customized lingual brackets failure frequencies (rates) are not different for the three adhesive materials tested. 2. Eliminating the etching stage when using self-etch/self-adhesive adhesives, may lead to a dramatic increase in the failure rates. 3. Silicoating of stainless steel customized lingual brackets does not seem to influence the failure of the bonds.

  18. The effects of various surface treatments on the shear bond strengths of stainless steel brackets to artificially-aged composite restorations.

    PubMed

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2011-05-01

    To compare the shear bond strengths (SBS) of stainless steel brackets bonded to artificially-aged composite restorations after different surface treatments. Forty-five premolar teeth were restored with a nano-hybrid composite (Tetric EvoCeram), stored in deionised water for one week and randomly divided into three equal groups: Group I, he restorations were exposed to 5 per cent hydrofluoric acid for 60 seconds; Group II, the restorations were abraded with a micro-etcher (50 Iim alumina particles); Group III, the restorations were roughened with a coarse diamond bur. Similar premolar brackets were bonded to each restoration using the same resin adhesive and the specimens were then cycled in deionised water between 5 degrees C and 55 degrees C (500 cycles). The shear bond strengths were determined with a universal testing machine at a crosshead speed of 1 mm/min. The teeth and brackets were examined under a stereomicroscope and the adhesive remnants on the teeth scored with the adhesive remnant index (ARI). Specimens treated with the diamond bur had a significantly higher SBS (Mean: 18.45 +/- 3.82 MPa) than the group treated with hydrofluoric acid (Mean: 12.85 +/- 5.20 MPa). The mean SBS difference between the air-abrasion (Mean: 15.36 +/- 4.92 MPa) and hydrofluoric acid groups was not significant. High ARI scores occurred following abrasion with a diamond bur (100 per cent) and micro-etcher (80 per cent). In approximately two thirds of the teeth no adhesive was left on the restoration after surface treatment with hydofluoric acid. Surface treatment with a diamond bur resulted in a high bond strength between stainless steel brackets and artificially-aged composite restorations and was considered to be a safe and effective method of surface treatment. Most of the adhesive remained on the tooth following surface treatment with either the micro-etcher or the diamond bur.

  19. Effect of CO2 Laser and Fluoride Varnish Application on Microhardness of Enamel Surface Around Orthodontic Brackets

    PubMed Central

    Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome

    2018-01-01

    Introduction: Orthodontic treatment has many advantages such as esthetic improvement and self-esteem enhancement; yet it has some disadvantages such as increasing the risk of formation of white spot lesions, because it makes oral hygiene more difficult. It is rational to implement procedures to prevent these lesions. The present study was aimed to assess the effect of CO2 laser and fluoride varnish on the surface of the enamel surface microhardness around the orthodontic braces. Methods: Eighty extracted premolar teeth were selected, scaled, polished with nonfluoridated pumic and metal brackets were bonded to them. Then, they were randomly allocated to 5 groups: control (neither fluoride nor laser is used on enamel surfaces), fluoride (4 minutes fluoride varnish treatment of the enamel surfaces), CO2 laser (10.6 µm CO2 laser irradiation of the teeth), laserfluoride (fluoride application after laser irradiation) and fluoride-laser (fluoride was applied and then teeth were irradiated with laser). After surface treatment around brackets on enamel, the samples were stored in 0.1% thymol for less than 5 days and then they were exposed to a 10-day microbiological caries model. Microhardness values of enamel were evaluated with Vickers test. One sample of each group (5 teeth from 80 samples) was prepared for SEM (scanning electron microscopy) and the data from 75 remaining teeth were analyzed with analysis of variance (ANOVA) and chi-square tests (α =0.05). Results: Microhardness mean values from high to low were as follow: fluoride-laser, laser-fluoride, laser, fluoride and control. Microhardness in fluoride-laser group was significantly higher compared with that of the control group. Distribution adhesive remnant index (ARI) scores were significantly different between groups and most of bond failures occurred at the enamel-adhesive interface in groups 2 to 5 and at the adhesive-bracket interface in the control group. Conclusion: Combination of fluoride varnish and CO2 laser irradiation can reduce enamel demineralization around orthodontic brackets. PMID:29399311

  20. Effect of CO2 Laser and Fluoride Varnish Application on Microhardness of Enamel Surface Around Orthodontic Brackets.

    PubMed

    Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome

    2018-01-01

    Introduction: Orthodontic treatment has many advantages such as esthetic improvement and self-esteem enhancement; yet it has some disadvantages such as increasing the risk of formation of white spot lesions, because it makes oral hygiene more difficult. It is rational to implement procedures to prevent these lesions. The present study was aimed to assess the effect of CO 2 laser and fluoride varnish on the surface of the enamel surface microhardness around the orthodontic braces. Methods: Eighty extracted premolar teeth were selected, scaled, polished with nonfluoridated pumic and metal brackets were bonded to them. Then, they were randomly allocated to 5 groups: control (neither fluoride nor laser is used on enamel surfaces), fluoride (4 minutes fluoride varnish treatment of the enamel surfaces), CO 2 laser (10.6 µm CO 2 laser irradiation of the teeth), laserfluoride (fluoride application after laser irradiation) and fluoride-laser (fluoride was applied and then teeth were irradiated with laser). After surface treatment around brackets on enamel, the samples were stored in 0.1% thymol for less than 5 days and then they were exposed to a 10-day microbiological caries model. Microhardness values of enamel were evaluated with Vickers test. One sample of each group (5 teeth from 80 samples) was prepared for SEM (scanning electron microscopy) and the data from 75 remaining teeth were analyzed with analysis of variance (ANOVA) and chi-square tests (α =0.05). Results: Microhardness mean values from high to low were as follow: fluoride-laser, laser-fluoride, laser, fluoride and control. Microhardness in fluoride-laser group was significantly higher compared with that of the control group. Distribution adhesive remnant index (ARI) scores were significantly different between groups and most of bond failures occurred at the enamel-adhesive interface in groups 2 to 5 and at the adhesive-bracket interface in the control group. Conclusion: Combination of fluoride varnish and CO2 laser irradiation can reduce enamel demineralization around orthodontic brackets.

  1. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study

    PubMed Central

    Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda

    2016-01-01

    Introduction Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. Aim The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Materials and Methods Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. Results The light absorption values obtained from spectrofluorometeric study were 3300000–3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000–6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 –3000000 cps for Group 3 (sapphire ceramic brackets) i.e., Group 2 showed the highest light absorption and the least translucency followed by groups 1 and 3. Shear bond strength results were 2.4 mpa, 1.9 mpa and 3.6 mpa for groups 1,2 and 3 respectively. Superior shear bond strength was recorded in group 3 (sapphire ceramic brackets). ARI results showed that group 3 had increased bond between bracket adhesive interfaces when compared to the other 2 groups. Conclusion From this study, it has been concluded that sapphire ceramic brackets (Group 3) was superior in translucency and shear bond strength followed by monocrystalline and polycrystalline ceramic brackets. PMID:27656556

  2. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study.

    PubMed

    Mohamed, Jauhar P; Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda

    2016-08-01

    Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. The light absorption values obtained from spectrofluorometeric study were 3300000-3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000-6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 -3000000 cps for Group 3 (sapphire ceramic brackets) i.e., Group 2 showed the highest light absorption and the least translucency followed by groups 1 and 3. Shear bond strength results were 2.4 mpa, 1.9 mpa and 3.6 mpa for groups 1,2 and 3 respectively. Superior shear bond strength was recorded in group 3 (sapphire ceramic brackets). ARI results showed that group 3 had increased bond between bracket adhesive interfaces when compared to the other 2 groups. From this study, it has been concluded that sapphire ceramic brackets (Group 3) was superior in translucency and shear bond strength followed by monocrystalline and polycrystalline ceramic brackets.

  3. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  4. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  5. Influence of the bracket on bonding and physical behavior of orthodontic resin cements.

    PubMed

    Bolaños-Carmona, Victoria; Zein, Bilal; Menéndez-Núñez, Mario; Sánchez-Sánchez, Purificación; Ceballos-García, Laura; González-López, Santiago

    2015-01-01

    The aim of the study is to determine the influence of the type of bracket, on bond strength, microhardness and conversion degree (CD) of four resin orthodontic cements. Micro-tensile bond strength (µTBS) test between the bracket base and the cement was carried out on glass-hour-shaped specimens (n=20). Vickers Hardness Number (VHN) and micro-Raman spectra were recorded in situ under the bracket base. Weibull distribution, ANOVA and non-parametric test were applied for data analysis (p<0.05). The highest values of ή as well as the β Weibull parameter were obtained for metallic brackets with Transbond™ plastic brackets with the self-curing cement showing the worst performance. The CD was from 80% to 62.5%.

  6. The effect of ZnO nanoparticle coating on the frictional resistance between orthodontic wires and ceramic brackets

    PubMed Central

    Behroozian, Ahmad; Kachoei, Mojgan; Khatamian, Masumeh; Divband, Baharak

    2016-01-01

    Background. Any decrease in friction between orthodontic wire and bracket can accelerate tooth movement in the sliding technique and result in better control of anchorage. This study was carried out to evaluate frictional forces by coating orthodontic wires and porcelain brackets with zinc oxide nanoparticles (ZnO). Methods. In this in vitro study, we evaluated a combination of 120 samples of 0.019×0.025 stainless steel (SS) orthodonticwires and 22 mil system edgewise porcelain brackets with and without spherical zinc oxide nanoparticles. Spherical ZnOnanoparticles were deposited on wires and brackets by immersing them in ethanol solution and SEM (scanning electronmicroscope) evaluation confirmed the presence of the ZnO coating. The frictional forces were calculated between the wiresand brackets in four groups: group ZZ (coated wire and bracket), group OO (uncoated wire and bracket), group ZO (coatedwire and uncoated bracket) and group OZ (uncoated wire and coated bracket). Kolmogorov-Smirnov, Mann-Whitney andKruskal-Wallis tests were used for data analysis. Results. The frictional force in ZZ (3.07±0.4 N) was the highest (P <0.05), and OZ (2.18±0.5 N) had the lowest amount of friction (P <0.05) among the groups. There was no significant difference in frictional forces between the ZO and OO groups (2.65±0.2 and 2.70±0.2 N, respectively). Conclusion. Coating of porcelain bracket surfaces with ZnO nanoparticles can decrease friction in the sliding technique,and wire coating combined with bracket coating is not recommended due to its effect on friction. PMID:27429727

  7. Material testing of reconditioned orthodontic brackets.

    PubMed

    Reimann, S; Rewari, A; Keilig, L; Widu, F; Jäger, A; Bourauel, C

    2012-12-01

    While all manufacturers of orthodontic brackets label these products for single use, there are commercial providers offering bracket reconditioning (or "recycling"). We conducted this study to investigate the effects of different recycling techniques on material-related parameters in orthodontic brackets, aiming to derive indications for clinical use and conclusions about the biocompatibility, longevity, and application of recycled brackets. New metal brackets (equilibrium(®); Dentaurum, Ispringen, Germany) were compared to brackets recycled by different techniques, including direct flaming with a Bunsen burner, chemical reconditioning in an acid bath, a commercial unit (Big Jane; Esmadent, IL, USA), and outsourcing to a company (Ortho Clean, Dellstedt, Germany). Material-related examinations included the following: (1) corrosion behavior by static immersion testing and use of a mass spectrometer to determine nickel-ion concentrations in the corrosive medium, (2) surface features in scanning electron micrographs before and after corrosion testing, (3) Vickers hardness using a hardness testing machine, (4) shear bond strength as defined in DIN 13990-1, (5) dimensional stability of the bracket slots by light microscopy, and (6) frictional loss as assessed by an orthodontic measurement and simulation system (OMSS). Each examination was performed on ten brackets. Student's t-test was used for statistical analysis. Compared to the new brackets, those recycled in an acid bath or by a commercial provider revealed significant dimensional changes (p<0.05). Corrosion on the recycled brackets varied according to the recycling techniques employed. The group of brackets recycled by one company revealed hardness values that differed from those of all the other groups. No significant differences were observed in nickel-ion release, frictional loss, and shear bond strength. Recycling was found to significantly reduce the corrosion resistance and dimensional stability of orthodontic brackets. As the savings generated by recycling do not justify the risks involved, the practice of labeling orthodontic brackets for single use remains a responsible precaution that safeguards patients and orthodontists against definite risks.

  8. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel.

    PubMed

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed

    2014-01-01

    The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  9. Antimicrobial action of chlorhexidine digluconate in self-ligating and conventional metal brackets infected with Streptococcus mutans biofilm

    PubMed Central

    Dias, Ana Paula; Paschoal, Marco Aurélio Benini; Diniz, Rafael Soares; Lage, Lucas Meneses; Gonçalves, Letícia Machado

    2018-01-01

    Objectives The objectives of this study were to assess the adherence of Streptococcus mutans biofilms grown over conventional ligature (CL) or self-ligating (SL) metal brackets and their bacterial viability after 0.12% chlorhexidine (CHX) digluconate treatment. Materials and methods The sample consisted of 48 metallic orthodontic brackets divided randomly into two groups: CL (n=24) and SL brackets (n=24). S. mutans biofilms were grown over the bracket surface (96 h) and treated with CHX (positive control) or 0.9% phosphate-buffered saline (PBS) (negative control) for 1 min each. Quantitative analysis was assessed by colony-forming units, and fluorescence microscopy was performed aiming to illustrate the outcomes. The tests were done in triplicate at three different times (n=9). Data were analyzed using ANOVA and Tukey test (P<0.05). Results There were significant differences in brackets’ biofilm formation, being CL largely colonized compared with SL, which was observed by colony-forming unit counting (P<0.05) and microcopy images. Significant reduction in the viability of S. mutans was found in both brackets treated with CHX compared to PBS (P<0.05). Conclusion The antimicrobial activities of CHX were similar for CL and SL brackets (P>0.05). In conclusion, a lower colonization was achieved in SL brackets and S. mutans biofilms were susceptible to CHX treatment to both studied brackets. PMID:29719422

  10. Gingival response in orthodontic patients: Comparative study between self-ligating and conventional brackets.

    PubMed

    Folco, Alejandra A; Benítez-Rogé, Sandra C; Iglesias, Marina; Calabrese, Diana; Pelizardi, Cristina; Rosa, Alcira; Brusca, Marisa I; Hecht, Pedro; Mateu, María E

    2014-01-01

    Orthodontic brackets contribute to the accumulation of bacterial plaque on tooth surfaces because they hinder oral hygiene. In contrast to conventional brackets, self-ligating brackets do not require additional parts to support the arches, thus improving dental hygiene. The aim of this study was to compare the gingival response in orthodontic patients wearing self-ligating or conventional brackets. A sample of 22 patients aged 16 to 30 years was divided into two groups: Group A, treated with selfligating brackets (Damon system) and Group B, treated with conventional brackets (Roth technique). The following were assessed during the treatment: Plaque Index (PI), Gingival Index (GI) and Probing Depth (PD), and sub-gingival samples were taken from teeth 14/24 for microbiological observation. No statistically significant difference was found between Groups A and B; p>0.05 (sign-ranked) or between PI, GI and PD at the different times (Friedman's Analysis of Variance), even though the indices were found to increase at 14 days, particularly for self-ligating brackets. The quantity and quality of microorganisms present were compatible with health on days 0, 28 and 56. As from day 14 there is a predominance of microbiota compatible with gingivitis in both groups. In the samples studied, orthodontic treatment increases bacterial plaque and inflammatory gingival response, but gingival-periodontal health can be maintained with adequate basic therapy. Self-ligating and conventional brackets produced similar gingival response.

  11. The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament--a finite element study.

    PubMed

    Sardarian, Ahmadreza; Danaei, Shahla Momeni; Shahidi, Shoaleh; Boushehri, Sahar Ghodsi; Geramy, Allahyar

    2014-01-01

    The ideal built-in tip and torque values of the straight wire appliance reduce the need for wire bending and hence reduce chair time. The vertical position of the bracket on the tooth surface can alter the torque exerted on the tooth. This is a result of the altered surface curvature observed at each vertical position. To further clarify the role of vertical bracket positioning on the applied torque and the resultant stresses in the periodontal ligament (PDL), we designed a mandibular first premolar using finite element modeling. Cone beam computed tomography of 52 patients (83 lower first premolars) was selected to be included in the study. Curvature was measured for points along the labial surface with increasing distances (0.5 mm increments) from the cusp tip by calculating the angle between tangents drawn from these points and the axis joining the cusp tip and the root apex. The mean values for each distance were calculated, and a finite element model was designed incorporating these mean values. The resultant stress and hydrostatic pressure in the PDL were calculated using finite element analysis. The labial surface of the mandibular first premolar demonstrated a 26.39° change from 2.5 to 6 mm from the cusp tip. The maximum Von-Mises stress and hydrostatic pressure in the PDL were observed at the root apex for all of the bracket positions, and these values demonstrated, respectively, a change of up to 0.059 and 0.186 MPa between two successive points. It can be concluded that the variation in the vertical position of the bracket can have an important effect on the torque and subsequently on the stresses and pressures in the PDL.

  12. Effects of surface treatment and artificial aging on the shear bond strength of orthodontic brackets bonded to four different provisional restorations.

    PubMed

    Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros

    2014-07-01

    To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α  =  0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.

  13. Effect of CPP-ACP paste with and without CO2 laser irradiation on demineralized enamel microhardness and bracket shear bond strength

    PubMed Central

    Farhadian, Nasrin; Rezaei-Soufi, Loghman; Jamalian, Seyed Farzad; Farhadian, Maryam; Tamasoki, Shahrzad; Malekshoar, Milad; Javanshir, Bahareh

    2017-01-01

    ABSTRACT Introduction: Many patients seeking orthodontic treatment already have incipient enamel lesions and should be placed under preventive treatments. The aim of this in vitro study was to evaluate the effect of CPP-ACP paste and CO2 laser irradiation on demineralized enamel microhardness and shear bond strength of orthodontic brackets. Methods: Eighty caries-free human premolars were subjected to a demineralization challenge using Streptococcus mutans. After demineralization, the samples were randomly divided into five equal experimental groups: Group 1 (control), the brackets were bonded without any surface treatment; Group 2, the enamel surfaces were treated with CPP-ACP paste for 4 minutes before bonding; Group 3, the teeth were irradiated with CO2 laser beams at a wavelength of 10.6 µm for 20 seconds. The samples in Groups 4 and 5 were treated with CO2 laser either before or through CPP-ACP application. SEM photomicrographs of a tooth from each group were taken to observe the enamel surface. The brackets were bonded to the buccal enamel using a conventional method. Shear bond strength of brackets and ARI scores were measured. Vickers microhardness was measured on the non-bonded enamel surface. Data were analyzed with ANOVA and Tukey test at the p< 0.05 level. Results: The mean shear bond strength and microhardness of the laser group were higher than those in the control group and this difference was statistically significant (p< 0.05). All groups showed a higher percentage of ARI score 4. Conclusion: CO2 laser at a wavelength of 10.6 µm significantly increased demineralized enamel microhardness and enhanced bonding to demineralized enamel. PMID:28902250

  14. Electrothermal debracketing: patient acceptance and effects on the dental pulp.

    PubMed

    Dovgan, J S; Walton, R E; Bishara, S E

    1995-09-01

    Adhesives bond ceramic brackets so effectively that their removal by mechanical forces can fracture the brackets and may damage the tooth surface. Electrothermal debracketers have been developed to facilitate removal; whether the heat generated will damage the underlying pulp is unclear. In our experiment, a prototype device with a high heat tip was used to remove brackets from premolars in patients. The following parameters were evaluated: (1) time required for removal, (2) patient acceptance, and (3) histologic effect on the pulp. Forty-eight experimental teeth planned for orthodontic extraction were bonded by a filled Bis-GMA composite resin and a monocrystalline sapphire bracket. After the chemically cured composite set, debracketing was performed according to the manufacturer's recommendations. Seventeen premolars were not etched or bracketed and served as controls. The interval between heat application and removal of the bracket was timed. Patients were questioned as to sensations during debracketing. Teeth were extracted at 5 to 7 or 28 to 32 days and histologically prepared. Pulps were evaluated for alterations. Brackets were removed in an average of 2.1 seconds, usually at the bracket/composite interface. Patient acceptance was generally positive. Pulpal necrosis was not observed but, in a number of specimens, slight inflammation and odontoblastic disruption occurred at both observation periods.

  15. Titanium orthodontic brackets: structure, composition, hardness and ionic release.

    PubMed

    Gioka, Christiana; Bourauel, Christoph; Zinelis, Spiros; Eliades, Theodore; Silikas, Nikolaos; Eliades, George

    2004-09-01

    The aim of the present study was to investigate the composition, morphology, bulk structure and ionic release of two brands of titanium orthodontic brackets: Orthos2 (Ormco, USA) and Rematitan (Dentaurum, Germany). Five specimens of each group were examined with computerized X-ray microtomography, to reveal the morphology and structure of brackets, whilst resin-embedded and metallographically polished specimens were subjected to SEM/EDS analysis and Vickers microhardness measurements. Brackets were also maintained in 0.9% saline for 2 months and the ionic release in the immersion medium was determined with Inductively Coupled Plasma Atomic Emission Spectroscopy. The results of the hardness and ionic release measurements were statistically analyzed with two-way ANOVA and Tukey's test (alpha = 0.05). Orthos2 brackets consisted of two parts, the base (commercially pure Ti grade II) and the wing (Ti-6Al-4V alloy), joined together by laser welding, producing large gaps along the base-wing interface. The base was of lower hardness (Hv = 145), than the wing (Hv = 392) and incorporated a standard foil base-mesh pad. Rematitan brackets consisted of commercially pure Ti grade IV, with a single-piece manufacturing pattern of virtually identical hardness (p > 0.05) at the base and wings, featuring a laser-etched base-mesh pad. The hardness of the Rematitan brackets was significantly lower than the hardness of the Orthos2 wings, but double the hardness of the Orthos2 base. Released Ti levels were below the threshold level (1 ng/ml) of analysis for both materials, whilst traces of Al (3 ppm) and V (2 ppm) were found in the immersion media for Ti-6Al-4V alloy. The structural and hardness differences found may influence the torque transfer characteristics from activated archwires to the brackets and the crevice corrosion potential at the base-wing interface (Orthos2). The detection of Al and V in the immersion medium (Orthos2) may imply a different biological response from the two types of Ti brackets.

  16. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  17. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  18. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  19. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  20. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  1. Comparative Evaluation of Friction Resistance of Titanium, Stainless Steel, Ceramic and Ceramic with Metal Insert Brackets with Varying Dimensions of Stainless Steel Wire: An In vitro Multi-center Study.

    PubMed

    Kumar, B Sunil; Miryala, Suresh; Kumar, K Kiran; Shameem, K; Regalla, Ravindra Reddy

    2014-09-01

    The orthodontist seeks an archwire-bracket combination that has both good biocompatibility and low friction. Hence, the aim of this multicenter in vitro study was to evaluate and compare the frictional resistance generated between titanium (Ti), stainless steel (SS), ceramic and ceramic with metal insert (CMI) brackets with SS wires of varying dimensions in a specially designed apparatus. The material used in this study were Ti, SS, Ceramic and CMI with 0.018″ slot manufactured with zero degree tip and -7° torque premolar brackets (3M, Unitek) and SS wires of varying dimensions (0.016″ round, 0.016 × 0.016″ square, 0.016 × 0.022″ rectangular and 0.017 × 0.025″ rectangular) used. The frictional resistance was measured using Instron Universal testing machine (Model no. 4301). The specimen population in each center composed each of 160 brackets and wires. Differences among the all bracket/wire combinations were tested using (one-way) ANOVA, followed by the student Newman Keuls multiple comparisons of means ranking (at P < 0.05) for the determination of differences among the groups. Ti bracket in combination with 0.017 × 0.025″ SS rectangular wire produced significant force levels for an optimum orthodontic movement with least frictional resistance. Ti brackets have least resistance and rectangular wires produced significant force. These can be used to avoid hazards of Nickel. SS brackets revealed higher static frictional force values as the wire dimension increased and showed lower static friction than Ti brackets for all wires except the thicker wire. Our study recommends the preclusion of brackets with rough surface texture (Ti brackets) with SS ligature wire for ligating bracket and archwire are better to reduce friction.

  2. Assessment of Ions released from Three Types of Orthodontic Brackets immersed in Different Mouthwashes: An in vitro Study.

    PubMed

    Nahidh, Mohammed; Garma, Noor Mh; Jasim, Esraa S

    2018-01-01

    Herbs are used widely in medicine. The purpose of the present study was to assess the ion release from gold-plated orthodontic bracket compared with other stainless steel brackets, and based on the findings of the study, the orthodontists can choose the most biocompatible brackets and mouthwashes useful in the clinical practice. A total of 150 orthodontic brackets from Orthotechnology™ Company, USA (50 stainless steel one-piece brackets, 50 stainless steel two-piece brackets, and 50 gold brackets) were immersed in four mouthwashes in addition to distilled water. Ten of each type of brackets in every media were immersed under 37°C for 45 days. Ions released in these mouthwashes were measured, and comparisons among different bracket types and among various mouthwashes were done by one-way analysis of variance (ANOVA) and then with Games-Howell tests. Increased amounts of ions released in herbal mouth-washes were recorded in gold and two-piece brackets in comparison with one-piece stainless steel brackets. Herbal mouthwashes must be used with caution as they showed an increased amount of ions released in comparison with chlorhexidine. One-piece stainless steel bracket system is the most compatible bracket type, as they released the least amount of ions. One-piece stainless steel brackets are better than two-piece brackets in terms of ions released.

  3. SEM Evaluation of Enamel Surface Changes and Enamel Microhardness around Orthodontic Brackets after Application of CO2 Laser, Er,Cr:YSGG Laser and Fluoride Varnish: An In vivo Study.

    PubMed

    Kaur, Tarundeep; Tripathi, Tulika; Rai, Priyank; Kanase, Anup

    2017-09-01

    One of the most undesirable consequences of orthodontic treatment is occurrence of enamel demineralization around orthodontic brackets. Numerous in vitro studies have reported the prevention of enamel demineralization by surface treatment with lasers and fluoride varnish. To evaluate the changes on the enamel surface and microhardness around orthodontic brackets after surface treatment by CO 2 laser, Er, Cr:YSGG laser and fluoride varnish in vivo. A double blind interventional study was carried out on 100 premolars which were equally divided into five groups, out of which one was the control group (Group 0). The intervention groups (Group I to IV) comprised of patients requiring fixed orthodontic treatment with all 4 first premolars extraction. Brackets were bonded on all 80 premolars which were to be extracted. Enamel surface treatment of Groups I, II and III was done by CO 2 laser, Er, Cr:YSGG laser and 5% sodium fluoride varnish respectively and Group IV did not receive any surface treatment. A modified T-loop was ligated to the bracket and after two months, the premolars were extracted. Surface changes were evaluated by Scanning Electron Microscopic (SEM) and microhardness testing. Comparison of mean microhardness between all the groups was assessed using post-hoc test with Bonferroni correction. Group I showed a melted enamel appearance with fine cracks and fissures while Group II showed a glossy, homogenous enamel surface with well coalesced enamel rods. Group III showed slight areas of erosions and Group IV presented areas of stripped enamel. Significant difference was observed between the mean microhardness (VHN) of Group I, Group II, Group III, Group IV and Group 0 with p<0.001. A significant difference of p<0.001 was observed while comparing Group I vs II,III,IV,0 and Group II vs III,IV,0. However, difference while comparing Group III vs IV was p=0.005 and difference between the mean microhardness of Group 0 vs Group III was non significant. Surface treatment with Er,Cr:YSGG laser causes a positive alteration of the enamel surface increasing its ability to resist demineralization with optimum microhardness as compared to CO 2 laser and sodium fluoride varnish.

  4. Evaluation of Scotchbond Multipurpose and maleic acid as alternative methods of bonding orthodontic brackets.

    PubMed

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-05-01

    Damage to the enamel surface during bonding and debonding of orthodontic brackets is a clinical concern. Alternative bonding methods that minimize enamel surface damage while maintaining a clinically useful bond strength is an aim of current research. The purpose of this study was to compare the effects on bond strength and bracket failure location of two adhesives (System 1+ and Scotchbond Multipurpose, 3M Dental Products Division) and two enamel conditioners (37% phosphoric acid and 10% maleic acid). Forty-eight freshly extracted human premolars were pumiced and divided into four groups of 12 teeth, and metal orthodontic brackets were attached to the enamel surface by one of four protocols: (1) System 1+ and phosphoric acid, (2) Scotchbond and phosphoric acid, (3) System 1+ and maleic acid, and (4) Scotchbond and maleic acid. After bracket attachment, the teeth were mounted in phenolic rings and stored in deionized water at 37 degrees C for 72 hours. A Zwick universal testing machine (Zwick GmbH & Co.) was used to determine shear bond strengths. The residual adhesive on the enamel surface was evaluated with the Adhesive Remnant Index. The analysis of variance was used to compare the four groups. Significance was predetermined at p < or = 0.05. The results indicated that there were no significant differences in bond strength among the four groups (p = 0.386). The results of the Chi square test, evaluating the residual adhesives on the enamel surfaces, revealed significant differences among the four groups (mean 2 = 0.005). A Duncan multiple range test revealed the difference occurred between the phosphoric acid and maleic acid groups, with maleic acid having bond failures at the enamel-adhesive interface. In conclusion, the use of Scotchbond Multipurpose and/or maleic acid does not significantly effect bond strength, however, the use of maleic acid resulted in an unfavorable bond failure location.

  5. Effects of sandblasting and silica coating on the bond strength of rebonded mechanically retentive ceramic brackets.

    PubMed

    Toroglu, M Serdar; Yaylali, Sirin

    2008-08-01

    The aim of this study was to determine the bond strength of rebonded mechanically retentive ceramic brackets after treatment with 2 abrasive techniques. In addition to a group of new brackets, 3 groups were treated according to the following conditions of debonded ceramic bracket bases: sandblasting, sandblasting + silane, and silica coating + silane (15 in each group). Treated ceramic brackets were rebonded on premolars. The samples were stored in distilled deionized water for 24 hours at 37 degrees C in an incubator and then thermocycled for 1000 times between 5 degrees C and 55 degrees C. Shear force was applied to the enamel-adhesive interface until debonding. The highest bond strength values were in the silica coating + silane and the new bracket groups (12.7 and 12.0 MPa, respectively), followed by the sandblasting + silane group (10.5 MPa). The sandblasting group had a significantly lower bond strength value (4.5 MPa). No enamel fracture was noted in any sample tested. In the new bracket and the sandblasting + silane groups, 20% of the samples had adhesive remnant index scores of 2, and 80% had scores of 3. In the sandblasting group, all specimens debonded at the bracket-adhesive interface. The silica coating + silane group showed mixed failures. Sandblasting + silane and silica coating + silane applications on debonded ceramic bracket base can produce bond strengths comparable with new brackets.

  6. The Effect of Bracket Base Pylon Orientation on the Shear Bond Strength of the ODP ANCHOR-LOCK Bracket Pad

    DTIC Science & Technology

    2013-06-06

    El Banna MS, Elsaka SE. Twelve-month bracket failure rate with amorphous calcium phosphate bonding system. Eur J Orthod 2012; doi:10.1093/ejo...material, Cambridge University Press. 1993;3. Willems G, Carels CEL, Verbeke G. In vitro peel /shear bond strength evaluation of orthodontic bracket

  7. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    PubMed

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  8. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive

    PubMed Central

    2018-01-01

    Objectives The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al2O3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used. PMID:29487838

  9. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel

    PubMed Central

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed

    2014-01-01

    Background: The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. Materials and Methods: In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. Results: The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. Conclusion: The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser. PMID:24688560

  10. Effects of moisture conditions of dental enamel surface on bond strength of brackets bonded with moisture-insensitive primer adhesive system.

    PubMed

    Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi

    2008-07-01

    The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.

  11. Shear bond strength and enamel fracture behavior of ceramic brackets Fascination® and Fascination®2.

    PubMed

    Gittner, Robert; Müller-Hartwich, Ralf; Engel, Sylvia; Jost-Brinkmann, Paul-Georg

    2012-01-01

    The purpose of this study was to compare the shear bond strength and incidence of enamel fractures of the ceramic brackets Fascination® and Fascination®2. A total of 360 teeth (180 first upper bicuspids and 180 lower incisors) were stored in 96% ethanol, while 360 other teeth (180 first upper bicuspids and 180 lower incisors) were stored in 0.1% thymol. All 720 teeth were bonded one-half each with Fascination® and Fascination®2 brackets using three different adhesives and three different light curing units. The teeth were debonded with a debonding-device according to DIN EN ISO 10477 using a universal testing machine with a crosshead speed of 1 mm per minute. The enamel surface was then examined stereomicroscopically (10x and 40x magnification). The non-parametric Mann-Whitney U test was used, since the data were not normally distributed. The Fascination®2 brackets provided significantly lower shear bond strength than Fascination® brackets (p = 0.003). Fascination® brackets demonstrated significantly fewer, smaller enamel fractures than Fascination®2 brackets (p = 0.012). The lower shear bond strength of the Fascination®2 brackets is clinically acceptable, but our study's experimental design did not enable us to prove whether this is clinically associated with a lower risk of enamel fracture.

  12. Degradation of orthodontic wires under simulated cariogenic and erosive conditions.

    PubMed

    Jaber, Laura Cavalcante Lima; Rodrigues, José Augusto; Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso

    2014-01-01

    This study examined the effect of cariogenic and erosive challenges (CCs and ECs, respectively) on the degradation of copper-nickel-titanium (CuNiTi) orthodontic wires. Sixty wire segments were divided into four treatment groups and exposed to CCs, ECs, artificial saliva, or dry storage (no-treatment control). CC and EC were simulated using a demineralizing solution (pH 4.3) and a citric acid solution (pH 2.3), respectively. Following treatment, the average surface roughness (Ra) of the wires was assessed, and friction between the wires and a passive self-ligating bracket was measured. CuNiTi wires subjected to ECs exhibited significantly higher Ra values than did those that were stored in artificial saliva. In contrast, surface roughness was not affected by CCs. Finally, friction between the treated wires and brackets was not affected by ECs or CCs. Our results indicate that CuNiTi orthodontic wires may suffer degradation within the oral cavity, as ECs increased the surface roughness of these wires. However, rougher surfaces did not increase friction between the wire and the passive self-ligating bracket.

  13. Comparison of frictional resistance between self-ligating and conventional brackets tied with elastomeric and metal ligature in orthodontic archwires.

    PubMed

    Leite, Vanessa Vieira; Lopes, Murilo Baena; Gonini Júnior, Alcides; Almeida, Marcio Rodrigues de; Moura, Sandra Kiss; Almeida, Renato Rodrigues de

    2014-01-01

    To compare the frictional resistance between self-ligating and conventional brackets tied to different types of wire. Abzil Kirium Capelozza (Pattern I) and Easy Clip (Roth prescription) incisor brackets were used. An elastomeric ligature or a 0.10-in ligating wire was used to ligate the wire to the Abzil bracket. Three types of orthodontic archwire alloys were assessed: 0.016-in NiTi wire, 0.016 x 0.021-in NiTi wire and 0.019 x 0.025-in steel wire. Ten observations were carried out for each bracket-archwire angulation combination. Brackets were mounted in a special appliance, positioned at 90 degrees in relation to the wire and tested in two angulations. Frictional test was performed in a Universal Testing Machine at 5 mm/min and 10 mm of displacement. The means (MPa) were submitted to ANOVA and Tukey's test set at 5% of significance. The surfaces of wires and brackets were observed at SEM. Steel-tied brackets (16.48 ± 8.31) showed higher means of frictional resistance than elastomeric-tied brackets (4.29 ± 2.16 ) and self-ligating brackets (1.66 ± 1.57) (P < 0.05), which also differed from each other (P < 0.05). As for the type of wire, 0.019 x 0.025-in steel wire (5.67 ± 3.97) showed lower means (P < 0.05) than 0.16-in NiTi wire (8.26 ± 10.92) and 0.016 x 0.021-in NiTi wire (8.51 ± 7.95), which did not differ from each other (P > 0.05). No statistical differences (P > 0.05) were found between zero (7.76 ± 8.46) and five-degree (7.19 ± 7.93) angulations. Friction was influenced not only by the type of bracket, but also by the ligating systems. Different morphological aspects were observed for the brackets and wires studied.

  14. Comparison of shear bond strength of orthodontic brackets using various zirconia primers.

    PubMed

    Lee, Ji-Yeon; Kim, Jin-Seok; Hwang, Chung-Ju

    2015-07-01

    The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using Transbond™ XT Paste and light cured for 15 s at 1,100 mW/cm(2). The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, ZP ≥ MP ≥ PC > NP but after thermocycling, the SBS was ZLT ≥ MPT ≥ ZPT > PCT = NPT (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses.

  15. Shear Bond Strength of Ceramic Brackets with Different Base Designs: Comparative In-vitro Study

    PubMed Central

    Ansari, Mohd. Younus; Agarwal, Deepak K; Bhattacharya, Preeti; Ansar, Juhi; Bhandari, Ravi

    2016-01-01

    Introduction Knowledge about the Shear Bond Strength (SBS) of ceramic brackets with different base design is essential as it affects bond strength to enamel. Aim The aim of the present study was to evaluate and compare the effect of base designs of different ceramic brackets on SBS, and to determine the fracture site after debonding. Materials and Methods Four groups of ceramic brackets and one group of metal brackets with different base designs were used. Adhesive precoated base of Clarity Advanced (APC Flash-free) (Unitek/3M, Monrovia, California), microcrystalline base of Clarity Advanced (Unitek/3M, Monrovia, California), polymer mesh base of InVu (TP Orthodontics, Inc., La Porte, IN, United States), patented bead ball base of Inspire Ice (Ormco, Glendora, California), and a mechanical mesh base of Gemini Metal bracket (Unitek/3M, Monrovia, California). Ten brackets of each type were bonded to 50 maxillary premolars with Transbond XT (Unitek/3M). Samples were stored in distilled water at room temperature for 24 hours and subsequently tested in shear mode on a universal testing machine (Model 3382; Instron Corp., Canton, Massachusetts, USA) at a cross head speed of 1mm/minute with the help of a chisel. The debonded interface was recorded and analyzed to determine the predominant bond failure site under an optical microscope (Stereomicroscope) at 10X magnification. One way analysis of variance (ANOVA) was used to compare SBS. Tukey’s significant differences tests were used for post-hoc comparisons. The Adhesive Remnant Index (ARI) scores were compared by chi-square test. Results Mean SBS of microcrystalline base (27.26±1.73), was the highest followed by bead ball base (23.45±5.09), adhesive precoated base (20.13±5.20), polymer mesh base (17.54±1.91), and mechanical mesh base (17.50±2.41) the least. Comparing the frequency (%) of ARI Score among the groups, chi-square test showed significantly different ARI scores among the groups (χ2 = 34.07, p<0.001). Conclusion Different base designs of metal and ceramic brackets influence SBS to enamel and all were clinically acceptable. PMID:28050507

  16. Role of lubricants on friction between self-ligating brackets and archwires.

    PubMed

    Leal, Renata C; Amaral, Flávia L B; França, Fabiana M G; Basting, Roberta T; Turssi, Cecilia P

    2014-11-01

    To evaluate the effect of different lubricants on friction between orthodontic brackets and archwires. Active (Quick, Forestadent) and passive (Damon 3MX, Ormco) self-ligating brackets underwent friction tests in the presence of mucin- and carboxymethylcellulose (CMC)-based artificial saliva, distilled water, and whole human saliva (positive control). Dry friction (no lubricant) was used as the negative control. Bracket/wire samples (0.014 × 0.025 inch, CuNiTi, SDS Ormco) underwent friction tests eight times in a universal testing machine. Two-way analysis of variance showed no significant interaction between bracket type and lubricant (P  =  .324). Friction force obtained with passive self-ligating brackets was lower than that for active brackets (P < .001). Friction observed in the presence of artificial saliva did not differ from that generated under lubrication with natural human saliva, as shown by Tukey test. Higher friction forces were found with the use of distilled water or when the test was performed under dry condition (ie, with no lubricant). Lubrication plays a role in friction forces between self-ligating brackets and CuNiTi wires, with mucin- and CMC-based artificial saliva providing a reliable alternative to human natural saliva.

  17. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    PubMed

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01). In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  18. Does the design of self-ligating brackets show different behavior in terms of friction?

    PubMed

    Tecco, Simona; Marzo, Giuseppe; Di Bisceglie, Beatrice; Crincoli, Vito; Tetè, Stefano; Festa, Felice

    2011-01-01

    This in vitro study evaluated the friction generated by aligned stainless steel conventional brackets, self-ligating Damon MX brackets, Time3 brackets, Vision LP brackets, and low-friction Slide ligatures coupled with various stainless steel, nickel-titanium (Ni-Ti), and beta-titanium (TMA) archwires. All brackets had a 0.022-inch slot; the orthodontic archwires were 0.014-inch Ni-Ti, 0.016-inch Ni-Ti, 0.014 x 0.025-inch Ni-Ti, 0.018 x 0.025-inch Ni-Ti, 0.017 x 0.025-inch TMA, 0.019 x 0.025-inch stainless steel, and 0.019 x 0.025-inch Ni-Ti. Each bracket-archwire combination was tested 10 times. Coupled with 0.014-inch Ni-Ti and 0.016-inch Ni-Ti archwire, conventional brackets generated the greatest friction, while Damon MX and Vision LP brackets generated the lowest (P < .05). No significant difference was observed between Time3 brackets and Slide ligatures. Coupled with all the rectangular archwires, Victory Series brackets, Slide ligatures, and Vision LP self-ligating brackets generated significantly lower friction than Time3 and Damon MX self-ligating brackets (P < .05). These findings suggest that self-ligating brackets are a great family of brackets that, in vitro, can generate different levels of friction when coupled with thin, thick, rectangular, or round archwires. Clinical conclusions based on our results are not possible, due to the limitations of the experimental conditions.

  19. Locking hinge

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1988-01-01

    The space station configuration currently studied utilizes structures which require struts to be hinged in the middle in the stowed mode and locked into place in the deployed mode. Since there are hundreds of hinges involved, it is necessary that they have simple, positive locking features with a minimum of joint looseness or slack. This invention comprises two similar housings hinged together with a spring loaded locking member which assists in making as well as breaking the lock. This invention comprises a bracket hinge and bracket members with a spring biased and movable locking member. The locking or latch member has ear parts received in locking openings where wedging surfaces on the ear parts cooperate with complimentary surfaces on the bracket members for bringing the bracket members into a tight end-to-end alignment when the bracket members are in an extended position. When the locking member is moved to an unlocking position, pivoting of the hinge about a pivot pin automatically places the locking member to retain the locking member in an unlocked position. In pivoting the hinge from an extended position to a folded position, longitudinal spring members are placed under tension over annular rollers so that the spring tension in a folded position assists in return of the hinge from a folded to an extended position. Novelty lies in the creation of a locking hinge which allows compact storage and easy assembly of structural members having a minimal number of parts.

  20. Comparison of the bond strength of stainless steel orthodontic brackets bonded to crown porcelains.

    PubMed

    Chay, Siew Han; Wattanapayungkul, Pranee; Yap, Adrian U Jin; Loh, Poey Ling; Chung, Sew Meng

    2005-05-01

    The bond strengths and mode of failure of stainless steel orthodontic brackets bonded to the newer all-ceramic crown systems has not been fully investigated. To compare the shear-peel bond strengths and modes of failure of stainless steel Begg orthodontic brackets bonded to all-ceramic crown systems (Finesse, Empress II) and a conventional feldsphatic crown porcelain (Vita Omega 900). Fifteen flat-surface discs of three crown porcelains (Finesse, Vita Omega 900, Empress II) were made and mounted in acrylic moulds. The discs were pumiced, etched with phosphoric acid, primed with silane, and a flat stainless steel Begg bracket bonded to each disc with a chemical cure composite resin (Unite Bond). The discs were stored for one week in water and debonded with a sheer-peel load in an Instron uniaxial testing system with a crosshead speed of 0.5 mm/min. The composite remnants on the ceramic surfaces were classified using the Adhesive Remnant Index (ARI). The bond strength of Finesse (15.03 +/- 1.90 MPa) was significantly greater (p < 0.001) than Vita Omega 900 11.51 +/- 2.35 MPa) and Empress II (11.12 +/- 1.78 MPa). There were no significant differences among the ARI scores. The mode of failure was a mixture of adhesive and cohesive failure. The results indicate that the bond strengths of stainless steel orthodontic brackets bonded to Finesse and Empress II porcelains are clinically acceptable.

  1. SBS vs Inhouse Recycling Methods-An Invitro Evaluation

    PubMed Central

    Verma, Jaya Krishanan; Arun; Sundari, Shanta; Chandrasekhar, Shyamala; Kumar, Aravind

    2015-01-01

    Introduction In today’s world of economic crisis it is not feasible for an orthodontist to replace each and every debonded bracket with a new bracket- quest for an alternative thrives Orthodontist. The concept of recycling bracket for its reuse has evolved over a period of time. Orthodontist can send the brackets to various commercial recycling companies for recycling, but it’s impractical as these are complex procedures and require time and usage of a new bracket would seem more feasible. Thereby, in-house methods have been developed. The aim of the study was to determine the SBS (Shear Bond Strength) and to compare, evaluate the efficiency of in house recycling methods with that of the SBS of new brackets. Materials and Methods Five in–house-recycling procedures-Adhesive Grinding Method, Sandblasting Method, Thermal Flaming Method, Buchman method and Acid Bath Method were used in the present study. Initial part of the study included the use of UV/Vis spectrophotometer where in the absorption level of base of new stainless steel bracket is compared with the base of a recycled bracket. The difference seen in the UV absorbance can be attributed to the presence of adhesive remnant. For each recycling procedure the difference in UV absorption is calculated. New stainless steel brackets and recycled brackets were tested for its shear bond strength with Instron testing machine. Comparisons were made between shear bond strength of new brackets with that of recycled brackets. The last part of the study involved correlating the findings of UV/Vis spectrophotometer with the shear bond strength for each recycling procedure. Results Among the recycled brackets the Sandblasting technique showed the highest shear bond strength (19.789MPa) and the least was shown by the Adhesive Grinding method (13.809MPa). Conclusion The study concludes that sand blasting can be an effective choice among the 5 in house methods of recycling methods. PMID:26501002

  2. FAST TRACK COMMUNICATION: Shear coordinate description of the quantized versal unfolding of a D4 singularity

    NASA Astrophysics Data System (ADS)

    Chekhov, Leonid; Mazzocco, Marta

    2010-11-01

    In this communication, by using Teichmüller theory of a sphere with four holes/orbifold points, we obtain a system of flat coordinates on the general affine cubic surface having a D4 singularity at the origin. We show that the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere coincides with the Etingof-Ginzburg Poisson bracket on the affine D4 cubic. We prove that this bracket is the image under the Riemann-Hilbert map of the Poisson-Lie bracket on \\oplus _{1}^3\\mathfrak {sl}^\\ast (2,{{\\bb C}}) . We realize the action of the mapping class group by the action of the braid group on the geodesic functions. This action coincides with the procedure of analytic continuation of solutions of the sixth Painlevé equation. Finally, we produce the explicit quantization of the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere and of the braid group action.

  3. The effect of pre-cure bracket movement on shear bond strength during placement of orthodontic brackets, an in vitro study.

    PubMed

    Tam, Byron; Bollu, Prashanti; Chaudhry, Kishore; Subramani, Karthikeyan

    2017-10-01

    The purpose of this study was to determine the influence of linear and rotational pre-cure bracket displacement during the bonding procedure on shear bond strength (SBS) of orthodontic brackets. Stainless steel orthodontic premolar brackets were bonded to the buccal surfaces of 50 human pre-molars with a conventional two-step bonding protocol. Extracted human pre-molars were divided into 5 groups (n=10/group). In the Control Group, the brackets were bonded with no pre-cure bracket displacement or rotation. The Rotation Group was bonded with 45 degrees of pre-cure rotation. The Displacement Group was bonded with 2mm pre-cure linear displacement. The Rotation-Displacement Group was bonded with pre-cure movements of 45º counter-clockwise rotation and 2mm displacement. The Slippage Group was bonded with 2mm each of mesial and distal pre-cure linear displacement. Photo-activation was carried out on the lateral sides of the bracket. Shear debonding force was measured, 24 hours after initial bonding, with an Instron universal testing machine using a knife-edged chisel. Data was analyzed using one-way ANOVA test. Adhesive Remnant Index (ARI) was scored under 15x magnification. The ARI data was analyzed using the Chi-square test ( p -value < 0.05). No statistically significant differences were detected among the control and experimental groups ( p = 0.331). The rotation and displacement group showed the highest mean SBS than all other groups. Mean SBS for all groups were above the clinically acceptable range. No statistically significant differences were detected in ARI scores among groups ( p = 0.071). Linear and rotational pre-cure bracket displacements do not appear to effect the shear bond strength of orthodontic brackets. Key words: Shear bond strength, orthodontic bracket, displacement, rotation, adhesive remnant index, pre-cure movement.

  4. Prototype to measure bracket debonding force in vivo.

    PubMed

    Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria

    2017-02-01

    Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. According to Student's t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.

  5. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  6. Improvement of orthodontic friction by coating archwire with carbon nitride film

    NASA Astrophysics Data System (ADS)

    Wei, Songbo; Shao, Tianmin; Ding, Peng

    2011-10-01

    In order to reduce frictional resistance between archwire and bracket during orthodontic tooth movement, carbon nitride (CNx) thin films were deposited on the surface of archwires with ion beam assisted deposition (IBAD). The energy-dispersive X-ray spectrometer (EDS) analysis showed that the CNx film was successfully deposited on the surface of the orthodontic wires. X-ray photoelectron spectroscopy (XPS) analysis suggested that the deposited CNx film was sp 2 carbon dominated structures, and diversiform bonds (N sbnd C, N tbnd C, et al.) coexisted in the film. The friction tests indicated that the CNx film significantly reduced the wire-bracket friction both in ambient air and in artificial saliva. The sp 2C rich structure of the CNx film as well as its protection function for the archwire was responsible for the low friction of the wire-bracket sliding system.

  7. Effects of Diode Laser Debonding of Ceramic Brackets on Enamel Surface and Pulpal Temperature.

    PubMed

    Yassaei, Soghra; Soleimanian, Azadeh; Nik, Zahra Ebrahimi

    2015-04-01

    Debonding of ceramic brackets due to their high bond strength and low fracture toughness is one of the most challenging complications of orthodontic clinicians. Application of lasers might be effective in the debonding of ceramic brackets as they reduce bond strength of resins and, therefore, can eliminate the risk of enamel damage. However, the thermal effects of laser radiation on dental tissue can cause undesirable results. The aim of this study is to evaluate the enamel surface characteristics and pulpal temperature changes of teeth after debonding of ceramic brackets with or without laser light. Thirty polycrystalline brackets were bonded to 30 intact extracted premolars, and later debonded conventionally or through a diode laser (2.5 W, 980 nm). The laser was applied for 10 seconds with sweeping movement. After debonding, the adhesive remnant index (ARI), the lengths and frequency of enamel cracks were compared among the groups. The increase in intrapulpal temperature was also measured. The collected data were analyzed by Chi-squared test and paired t-test using Statistical Package for Social Sciences (SPSS) software. There was no case of enamel fracture in none of the groups. Laser debonding caused a significant decrease in the frequency and lengths of enamel cracks, compared to conventional debonding. In laser debonding group, the increase in intrapulpal temperature (1.46°C) was significantly below the benchmark of 5.5°C for all the specimens. No significant difference was observed in ARI scores among the groups. Laser-assisted debonding of ceramic brackets could reduce the risk of enamel damage, without causing thermal damage to the pulp. However, some increases in the length and frequency of enamel cracks should be expected with all debonding methods.

  8. Bonding brackets on white spot lesions pretreated by means of two methods.

    PubMed

    Vianna, Julia Sotero; Marquezan, Mariana; Lau, Thiago Chon Leon; Sant'Anna, Eduardo Franzotti

    2016-01-01

    The aim of this study was to evaluate the shear bond strength (SBS) of brackets bonded to demineralized enamel pretreated with low viscosity Icon Infiltrant resin (DMG) and glass ionomer cement (Clinpro XT Varnish, 3M Unitek) with and without aging. A total of 75 bovine enamel specimens were allocated into five groups (n = 15). Group 1 was the control group in which the enamel surface was not demineralized. In the other four groups, the surfaces were submitted to cariogenic challenge and white spot lesions were treated. Groups 2 and 3 were treated with Icon Infiltrant resin; Groups 4 and 5, with Clinpro XT Varnish. After treatment, Groups 3 and 5 were artificially aged. Brackets were bonded with Transbond XT adhesive system and SBS was evaluated by means of a universal testing machine. Statistical analysis was performed by one-way analysis of variance followed by Tukey post-hoc test. All groups tested presented shear bond strengths similar to or higher than the control group. Specimens of Group 4 had significantly higher shear bond strength values (p < 0.05) than the others. Pretreatment of white spot lesions, with or without aging, did not decrease the SBS of brackets.

  9. Bond strength of stainless steel orthodontic brackets bonded to prefabricated acrylic teeth.

    PubMed

    Wan Abdul Razak, Wan Salbiah; Sherriff, Martyn; Bister, Dirk; Seehra, Jadbinder

    2017-06-01

    The purpose of this in-vitro study was to evaluate the force to debond stainless steel orthodontic brackets bonded to acrylic teeth using different combinations of adhesive and surface treatments. One hundred prefabricated upper lateral incisor acrylic teeth were divided into 4 equal groups: Transbond XT® adhesive only (Group 1, control), Transbond XT® adhesive with sandblasting (Group 2), Transbond XT® adhesive with abrasion / + methyl methacrylate (MMA) (Group 3) and Triad® Gel only (Group 4). The force in Newtons (N) to debond the brackets was measured. One-way analysis of variance (ANOVA) and pairwise multi-comparison of means (Šidak's adjustment) were undertaken. The highest force to debond was recorded for Group 2 (275.7 N; SD 89.0) followed by Group 3 (241.9 N; SD 76.0), Group 1 (142.7 N; SD 36.7) and Group 4 (67.9 N; SD 21.1). Significant differences in bond strength measurements between the experimental groups were detected. Mean force values for the groups revealed no significant differences between Group 2 and Group 3 (p>0.05). Both sandblasting and surface abrasion/+ application of methyl methacrylate (MMA) in combination with Transbond XT® adhesive are recommended for bonding stainless orthodontic brackets to acrylic teeth.

  10. Surface topography, hardness, and frictional properties of GFRP for esthetic orthodontic wires.

    PubMed

    Inami, Toshihiro; Tanimoto, Yasuhiro; Yamaguchi, Masaru; Shibata, Yo; Nishiyama, Norihiro; Kasai, Kazutaka

    2016-01-01

    In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fiber for esthetic orthodontic wires were prepared by using pultrusion. The purpose of the present study was to investigate the surface topography, hardness, and frictional properties of GFRPs. To investigate how fiber diameter affects surface properties, GFRP round wires with a diameter of 0.45 mm (0.018 in.) were prepared incorporating either 13 μm (GFRP-13) or 7 μm (GFRP-7) glass fibers. As controls, stainless steel (SS), cobalt-chromium-nickel alloy, β-titanium (β-Ti) alloy, and nickel-titanium (Ni-Ti) alloy were also evaluated. Under scanning electron microscopy and scanning probe microscopy, the β-Ti samples exhibited greater surface roughness than the other metallic wires and the GFRP wires. The dynamic hardness and elastic modulus of GFRP wires obtained by the dynamic micro-indentation method were much lower than those of metallic wires (p < 0.05). Frictional forces against the polymeric composite brackets of GFRP-13 and GFRP-7 were 3.45 ± 0.49 and 3.60 ± 0.38 N, respectively; frictional forces against the ceramic brackets of GFRP-13 and GFRP-7 were 3.39 ± 0.58 and 3.87 ± 0.48 N, respectively. For both bracket types, frictional forces of GFRP wires and Ni-Ti wire were nearly half as low as those of SS, Co-Cr, and β-Ti wires. In conclusion, there was no significant difference in surface properties between GFRP-13 and GFRP-7; presumably because both share the same polycarbonate matrix. We expect that GFRP wires will deliver superior sliding mechanics with low frictional resistance between the wire and bracket during orthodontic treatment. © 2015 Wiley Periodicals, Inc.

  11. Corrosion behavior of self-ligating and conventional metal brackets.

    PubMed

    Maia, Lúcio Henrique Esmeraldo Gurgel; Lopes Filho, Hibernon; Ruellas, Antônio Carlos de Oliveira; Araújo, Mônica Tirre de Souza; Vaitsman, Delmo Santiago

    2014-01-01

    To test the null hypothesis that the aging process in self-ligating brackets is not higher than in conventional brackets. Twenty-five conventional (GN-3M/Unitek; GE-GAC; VE-Aditek) and 25 self-ligating (SCs-3M/Unitek; INs-GAC; ECs-Aditek) metal brackets from three manufacturers (n = 150) were submitted to aging process in 0.9% NaCl solution at a constant temperature of 37 ± 1°C for 21 days. The content of nickel, chromium and iron ions in the solution collected at intervals of 7, 14 and 21 days was quantified by atomic absorption spectrophotometry. After the aging process, the brackets were analyzed by scanning electron microscopy (SEM) under 22X and 1,000X magnifications. Comparison of metal release in self-ligating and conventional brackets from the same manufacturer proved that the SCs group released more nickel (p < 0.05) than the GN group after 7 and 14 days, but less chromium (p < 0.05) after 14 days and less iron (p < 0.05) at the three experimental time intervals. The INs group released less iron (p < 0.05) than the GE group after 7 days and less nickel, chromium and iron (p < 0.05) after 14 and 21 days. The ECs group released more nickel, chromium and iron (p < 0.05) than the VE group after 14 days, but released less nickel and chromium (p < 0.05) after 7 days and less chromium and iron (p < 0.05) after 21 days. The SEM analysis revealed alterations on surface topography of conventional and self-ligating brackets. The aging process in self-ligating brackets was not greater than in conventional brackets from the same manufacturer. The null hypothesis was accepted.

  12. Corrosion behavior of self-ligating and conventional metal brackets

    PubMed Central

    Maia, Lúcio Henrique Esmeraldo Gurgel; Lopes Filho, Hibernon; Ruellas, Antônio Carlos de Oliveira; Araújo, Mônica Tirre de Souza; Vaitsman, Delmo Santiago

    2014-01-01

    Objective To test the null hypothesis that the aging process in self-ligating brackets is not higher than in conventional brackets. Methods Twenty-five conventional (GN-3M/Unitek; GE-GAC; VE-Aditek) and 25 self-ligating (SCs-3M/Unitek; INs-GAC; ECs-Aditek) metal brackets from three manufacturers (n = 150) were submitted to aging process in 0.9% NaCl solution at a constant temperature of 37 ± 1ºC for 21 days. The content of nickel, chromium and iron ions in the solution collected at intervals of 7, 14 and 21 days was quantified by atomic absorption spectrophotometry. After the aging process, the brackets were analyzed by scanning electron microscopy (SEM) under 22X and 1,000X magnifications. Results Comparison of metal release in self-ligating and conventional brackets from the same manufacturer proved that the SCs group released more nickel (p < 0.05) than the GN group after 7 and 14 days, but less chromium (p < 0.05) after 14 days and less iron (p < 0.05) at the three experimental time intervals. The INs group released less iron (p < 0.05) than the GE group after 7 days and less nickel, chromium and iron (p < 0.05) after 14 and 21 days. The ECs group released more nickel, chromium and iron (p < 0.05) than the VE group after 14 days, but released less nickel and chromium (p < 0.05) after 7 days and less chromium and iron (p < 0.05) after 21 days. The SEM analysis revealed alterations on surface topography of conventional and self-ligating brackets. Conclusions The aging process in self-ligating brackets was not greater than in conventional brackets from the same manufacturer. The null hypothesis was accepted. PMID:24945521

  13. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release.

    PubMed

    Metin-Gürsoy, Gamze; Taner, Lale; Akca, Gülçin

    2017-02-01

    Silver nanoparticles are currently utilized in the fields of dentistry. The aim of this study was to evaluate the antibacterial properties and ion release of nanosilver coated orthodontic brackets compared to conventional brackets. Nanosilver coating process was applied to standard orthodontic brackets placed on the mandibular incisors of Wistar Albino rats in the study group and conventional brackets in the control group. Dental plaque, mucosal vestibular smears, saliva, and blood samples were collected from rats at various days. The amounts of nanosilver ions in blood and saliva were measured and microbiological evaluation was made for Streptococcus mutans. For testing cariogenicity, all rats were sacrificed at the end of 75 days under anaesthesia. Teeth were stained using a caries indicator, then the caries ratio was assessed. Nanosilver coated orthodontic bracket favoured the inhibition of S.mutans on Day 30 and reduction of caries on the smooth surfaces. The nanosilver amounts in the saliva and serum samples were significantly higher in the study group on Day 7. It is suggested that nanosilver coated orthodontic brackets, as an antibacterial agent without patient compliance, could be helpful for the prevention of white spot lesions during fixed orthodontic treatment. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Damage of the Interface Between an Orthodontic Bracket and Enamel - the Effect of Some Elastic Properties of the Adhesive Material

    NASA Astrophysics Data System (ADS)

    Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.

    2016-01-01

    The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.

  15. Effect of Surface Treatment on Enamel Cracks After Orthodontic Bracket Debonding: Er,Cr:YSGG Laser-Etching Versus Acid-Etching

    PubMed Central

    Ghaffari, Hassanali; Mirhashemi, Amirhossein; Baherimoghadam, Tahereh; Azmi, Amir

    2017-01-01

    Objectives: This study sought to compare enamel cracks after orthodontic bracket debonding in the surfaces prepared with erbium, chromium: yttrium-scandium-galliumgarnet (Er,Cr:YSGG) laser and the conventional acid-etching technique. Materials and Methods: This in-vitro experimental study was conducted on 60 sound human premolars extracted for orthodontic purposes. The teeth were randomly divided into two groups (n=30). The teeth in group A were etched with 37% phosphoric acid gel, while the teeth in group B were subjected to Er,Cr:YSGG laser irradiation (gold handpiece, MZ8 tip, 50Hz, 4.5W, 60μs, 80% water and 60% air). Orthodontic brackets were bonded to the enamel surfaces and were then debonded in both groups. The samples were inspected under a stereomicroscope at ×38 magnification to assess the number and length of enamel cracks before bonding and after debonding. Independent-samples t-test was used to compare the frequency of enamel cracks in the two groups. Levene’s test was applied to assess the equality of variances. Results: No significant difference was noted in the frequency or length of enamel cracks between the two groups after debonding (P>0.05). Conclusions: Despite the same results of the frequency and length of enamel cracks in the two groups and by considering the side effects of acid-etching (demineralization and formation of white spot lesions), Er,Cr:YSGG laser may be used as an alternative to acid-etching for enamel surface preparation prior to bracket bonding. PMID:29296111

  16. Evaluation of a reproduction technique for the study of the enamel composite/bracket base area.

    PubMed

    Wilner, F J; Oliver, R G

    2000-09-01

    The objective of the study was to evaluate a reproduction method that would enable the study of the enamel/ bracket/composite interface in vivo, and consisted of in vitro assessment of two different impression materials to compare reproduction of brackets bonded to extracted teeth followed by in vivo assessment of the superior material. In vitro standard edgewise brackets were bonded to two extracted teeth and impressions were taken using two different types of low viscosity silicone-based impression materials. A medium viscosity silicone impression material was used to support the original impression. Three impressions of both the gingival and occlusal aspect of the bracket base region were obtained using each of the impression materials. Replicas were then prepared for SEM viewing and these compared to SEMs of the real teeth for reproduction of detail. A 3-point Reproducibility Index was used to compare the SEM photographs of the comparable replicas. One impression material was clearly superior to the other and produced an acceptably accurate representation of the true clinical situation in three out of four samples. This material also performed well in the in vivo situation. The technique described is satisfactory for the production and analysis of SEM pictures of the enamel/composite/ bracket base interface in vivo.

  17. Comparison of the efficacy of tooth alignment among lingual and labial brackets: an in vitro study.

    PubMed

    Alobeid, Ahmad; El-Bialy, Tarek; Reimann, Susanne; Keilig, Ludger; Cornelius, Dirk; Jäger, Andreas; Bourauel, Christoph

    2018-03-13

    The aim of this study was to evaluate the efficacy of tooth alignment with conventional and self-ligating labial and lingual orthodontic bracket systems. We tested labial brackets (0.022″ slot size) and lingual brackets (0.018″ slot size). The labial brackets were: (i) regular twin brackets (GAC-Twin [Dentsply]), (ii) passive self-ligating brackets including (Damon-Q® [ORMCO]; Ortho classic H4™ [Orthoclassic]; FLI®SL [RMO]), and (iii) active self-ligating brackets (GAC In-Ovation®C [DENTSPLY] and SPEED™[Strite]). The lingual brackets included (i) twin bracket systems (Incognito [3M] and Joy™ [Adenta]), (ii) passive self-ligating bracket system (GAC In-Ovation®LM™ [Dentsply]), and (iii) active self-ligating bracket system (Evolution SLT [Adenta]). The tested wires were Thermalloy-NiTi 0.013″ and 0.014″ (RMO). The archwires were tied to the regular twin brackets with stainless steel ligatures 0.010″ (RMO). The malocclusion simulated a displaced maxillary central incisor in the x-axis (2 mm gingivally) and in the z-axis (2 mm labially). The results showed that lingual brackets are less efficient in aligning teeth when compared with labial brackets in general. The vertical correction achieved by labial bracket systems ranged from 72 to 95 per cent with 13″ Thermalloy wires and from 70 to 87 per cent with 14″ Thermalloy wires. In contrast, the achieved corrections by lingual brackets with 13″ Thermalloy wires ranged between 25-44 per cent and 29-52 per cent for the 14" Thermalloy wires. The anteroposterior correction achieved by labial brackets ranged between 83 and 138 per cent for the 13″ Thermalloy and between 82 and 129 per cent for the 14″ Thermalloy wires. On the other hand, lingual brackets corrections ranged between 12 and 40 per cent for the 13″ Thermalloy wires and between 30 and 45 per cent for the 14″ Thermalloy wires. This is a lab-based study with different labial and lingual bracket slot sizes (however they are the commonly used ones in clinical orthodontics) and study did not consider saliva, periodontal ligament, mastication and other oral functions. The effectiveness of lingual brackets in correcting vertical and anteroposterior displacement achieved during the initial alignment phase of orthodontic treatment is lower than that of the effectiveness of labial brackets.

  18. Apparatus for mounting photovoltaic power generating systems on buildings

    DOEpatents

    Russell, Miles C [Lincoln, MA

    2009-08-18

    Rectangular photovoltaic (PV) modules are mounted on a building roof by mounting stands that are distributed in rows and columns. Each stand comprises a base plate and first and second different height brackets attached to opposite ends of the base plate. Each first and second bracket comprises two module-support members. One end of each module is pivotally attached to and supported by a first module-support member of a first bracket and a second module-support member of another first bracket. At its other end each module rests on but is connected by flexible tethers to module-support members of two different second brackets. The tethers are sized to allow the modules to pivot up away from the module-support members on which they rest to a substantially horizontal position in response to wind uplift forces.

  19. Apparatus and method for mounting photovoltaic power generating systems on buildings

    DOEpatents

    Russell, Miles Clayton [Lincoln, MA

    2008-10-14

    Rectangular PV modules (6) are mounted on a building roof (4) by mounting stands that are distributed in rows and columns. Each stand comprises a base plate (10) that rests on the building roof (4) and first and second brackets (12, 14) of different height attached to opposite ends of the base plate (10). Each bracket (12, 14) has dual members for supporting two different PV modules (6), and each PV module (6) has a mounting pin (84) adjacent to each of its four corners. Each module (6) is supported by attachment of two of its mounting pins (84) to different first brackets (12), whereby the modules (6) and their supporting stands are able to resist uplift forces resulting from high velocity winds without the base plates (10) being physically attached to the supporting roof structure (4). Preferably the second brackets (14) have a telescoping construction that permits their effective height to vary from less than to substantially the same as that of the first brackets (12).

  20. Development of an easy-debonding orthodontic adhesive using thermal heating.

    PubMed

    Tsuruoka, Takashi; Namura, Yasuhiro; Shimizu, Noriyoshi

    2007-01-01

    We produced experimentally a new bonding material that consisted of a mixture of a base resin (4-META/MMA-TBB resin adhesive) and thermoexpandable microcapsules for safe, easy debonding. Microcapsules in the base resin would start expansion at 80 degrees C, leading to a remarkable decrease in bond strength. Stainless steel brackets were bonded to bovine permanent mandibular incisors using bonding materials containing the microcapsules at different contents. After thermal cycling or heating, the shear bond strength of the brackets was measured. Shear bond strength of the bonding materials containing 30-40 wt% microcapsules decreased to about one-third or one-fifth that of the base resin on heating. Heating the brackets for eight seconds increased the temperature in the pulp chamber by 2 degrees C, which should not induce pulp damage. Results obtained suggested that the new bonding material should prove useful for removing brackets easily at the time of bracket debonding without any pain or enamel cracks, while maintaining the bonding strength during active orthodontic treatment.

  1. A comparison between the shear bond strength of brackets bonded to glazed and deglazed porcelain surfaces with resin-reinforced glass-ionomer cement and a bis-GMA resin adhesive.

    PubMed

    Lifshitz, Abraham B; Cárdenas, Marianela

    2006-01-01

    This study compared the shear bond strength of a light-cure resin-reinforced glass-ionomer cement with a bis-GMA light-cure resin system in the bonding of stainless steel brackets to glazed and deglazed porcelain surfaces. Porcelain surfaces were divided into 4 groups: group 1, deglazed porcelain surfaces with Transbond XT, group 2, glazed porcelain surfaces with Transbond XT; group 3, deglazed porcelain surfaces with Fuji Ortho LC; and group 4, porcelain surfaces with Fuji Ortho LC. Microetching with 50-microm aluminum oxide for 2 seconds at a distance of 5 mm deglazed the porcelain surfaces in groups 1 and 3. All brackets were bonded to the porcelain surfaces using the same procedure and light-cured for 40 seconds with a visible light. All samples were thermocycled between 5 degrees C and 55 degrees C for 300 cycles before testing for shear bond strength with a universal testing machine. The analysis of variance showed no significant difference (P < .05) among the 4 groups; ie, group 1, 10.12 MPa; group 2, 7.00 MPa; group 3, 6.78 MPa; and group 4, 11.15 MPa. The F test also failed to demonstrate any statistical difference among the groups. Conditioning the porcelain surfaces with 37% phosphoric acid immediately followed by a nonhydrolyzed silane coupling agent resulted in clinically adequate bond strength when using either a composite resin or a resin-reinforced glass-ionomer cement. Microetching of these porcelain surfaces apparently offers no bonding advantage.

  2. Comparison of friction force between corroded and noncorroded titanium nitride plating of metal brackets.

    PubMed

    Kao, Chia-Tze; Guo, Jia-Uei; Huang, Tsui-Hsien

    2011-05-01

    Titanium nitride (TiN) plating is a method to prevent metal corrosion and can increase the surface smoothness. The purpose of this study was to evaluate the friction forces between the orthodontic bracket, with or without TiN plating, and stainless steel wire after it was corroded in fluoride-containing solution. In total, 540 metal brackets were divided into a control group and a TiN-coated experimental group. The electrochemical corrosion was performed in artificial saliva with 1.23% acidulated phosphate fluoride (APF) as the electrolytes. Static and kinetic friction were measured by an EZ-test machine (Shimadazu, Tokyo, Japan) with a crosshead speed of 10 mm per minute over a 5-mm stretch of stainless steel archwire. The data were analyzed by using unpaired t test and analysis of variance (ANOVA). Both the control and TiN-coated groups' corrosion potential was higher with 1.23% APF solution than with artificial solution (P <0.05). In brackets without corrosion, both the static and kinetic friction force between the control and TiN-coated brackets groups showed a statistically significant difference (P <0.05). In brackets with corrosion, the control group showed no statistical difference on kinetic or static friction. The TiN-coated brackets showed a statistical difference (P <0.05) on kinetic and static friction in different solutions. TiN-coated metal brackets, with corrosion or without corrosion, cannot reduce the frictional force. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Evaluation of the Friction of Self-Ligating and Conventional Bracket Systems

    PubMed Central

    Tecco, Simona; Di Iorio, Donato; Nucera, Riccardo; Di Bisceglie, Beatrice; Cordasco, Giancarlo; Festa, Felice

    2011-01-01

    Objectives: This in vitro study evaluated the friction (F) generated by aligned stainless steel (SS) conventional brackets, self-ligating Damon MX© brackets (SDS Ormco, Glendora, California, USA), Time3© brackets (American Orthodontics, Sheboygan, Wisconsin, USA), Vision LP© brackets (American Orthodontics), and low-friction Slide© ligatures (Leone, Firenze, Italy) coupled with various SS, nickel-titanium (NiTi), and beta-titanium (TMA) archwires. Methods: All brackets had a 0.022-inch slot, and the orthodontic archwires were 0.014-inch, 0.016-inch, 0.014×0.025-inch, 0.018×0.025-inch, and 0.019×0.025-inch NiTi; 0.017×0.025-inch TMA; and 0.019×0.025-inch SS. Each bracket-archwire combination was tested 10 times. In the test, 10 brackets of the same group were mounted in alignment on a metal bar. The archwires moved through all the 10 brackets at a crosshead speed of 0.5 mm/min (each run lasted approximately 5 min). The differences among 5 groups of brackets were analyzed through the Kruskal-Wallis test, and a Mann-Whitney test was calculated as post hoc analysis. The P value was set at 0.05. Results: Coupled with 0.014-inch NiTi and 0.016-inch NiTi, Victory Series© brackets generated the greatest F, while Damon MX© and Vision LP© brackets generated the lowest (P<.05); no significant differences were observed between Time3© brackets and Slide© ligatures. Coupled with all the rectangular archwires, Victory Series© brackets, Slide© ligatures, and Vision LP© self-ligating brackets generated significantly lower F than did Time3© and Damon MX© self-ligating brackets (P<.05). Conclusions: These findings suggest that self-ligating brackets are a family of brackets that, in vitro, can generate different levels of F when coupled with thin or thick, rectangular, or round archwires. Clinical conclusions based on our results are not possible due to the limitations of the experimental conditions. PMID:21769273

  4. Prototype to measure bracket debonding force in vivo

    PubMed Central

    Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria

    2017-01-01

    ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. Results: According to Student’s t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets. PMID:28444011

  5. Investigation of bracket bonding for orthodontic treatments using en-face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda L.; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Roxana; Dodenciu, Dorin; Laissue, Philippe L.; Podoleanu, Adrian G.

    2008-04-01

    Despite good diagnosis and treatment planning, orthodontic treatment can fail if bonding fails. It is now common practice to address the aesthetic appearance of patients using aesthetic brackets instead of metal ones. Therefore, bonding aesthetic brackets has become an issue for orthodontists today. Orthodontic bonding is mainly achieved using composite resin but can also be performed with glass ionomer or resin cements. For improving the quality of bonding, the enamel is acid etched for 30 seconds with 38% phosphoric acid and then a bonding agent is applied. In our study we investigated and compared the quality of bonding between ceramic brackets, polymeric brackets and enamel, respectively using a new investigation method-OCT. The aim of our study was to evaluate the resin layer at the bracket base-tooth interface.

  6. Effect of adhesive resin flexibility on enamel fracture during metal bracket debonding: an ex vivo study.

    PubMed

    Kim, Young Kyung; Park, Hyo-Sang; Kim, Kyo-Han; Kwon, Tae-Yub

    2015-10-01

    To test the null hypothesis that neither the flexural properties of orthodontic adhesive resins nor the enamel pre-treatment methods would affect metal bracket debonding behaviours, including enamel fracture. A dimethacrylate-based resin (Transbond XT, TX) and two methyl methacrylate (MMA)-based resins (Super-Bond C&B, SB; an experimental light-cured resin, EXP) were tested. Flexural strength and flexural modulus for each resin were measured by a three-point-bending test. Metal brackets were bonded to human enamel pretreated with total-etch (TE) or self-etch adhesive using one of the three resins (a total of six groups, n = 15). After 24 hours of storage in water at 37°C, a shear bond strength (SBS) test was performed using the wire loop method. After debonding, remaining resin on the enamel surfaces and occurrence of enamel fracture were assessed. Statistical significance was set at P < 0.05. The two MMA resins exhibited substantially lower flexural strength and modulus values than the TX resin. The mean SBS values of all groups (10.15-11.09MPa) were statistically equivalent to one another (P > 0.05), except for the TE-TX group (13.51MPa, P < 0.05). The two EXP groups showed less resin remnant. Only in the two TX groups were enamel fractures observed (three cases for each group). The results were drawn only from ex vivo experiments. The hypothesis is rejected. This study suggests that a more flexible MMA resin is favourable for avoiding enamel fracture during metal bracket debonding. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Porcelain surface alterations and refinishing after use of two orthodontic bonding methods.

    PubMed

    Herion, Drew T; Ferracane, Jack L; Covell, David A

    2010-01-01

    To compare porcelain surfaces at debonding after use of two surface preparation methods and to evaluate a method for restoring the surface. Lava Ceram feldspathic porcelain discs (n = 40) underwent one of two surface treatments prior to bonding orthodontic brackets. Half the discs had sandblasting, hydrofluoric acid, and silane (SB + HF + S), and the other half, phosphoric acid and silane (PA + S). Brackets were debonded using bracket removing pliers, and resin was removed with a 12-fluted carbide bur. The surface was refinished using a porcelain polishing kit, followed by diamond polishing paste. Measurements for surface roughness (Ra), gloss, and color were made before bonding (baseline), after debonding, and after each step of refinishing. Surfaces were also examined by scanning electron microscopy (SEM). Data was analyzed with 2-way ANOVA followed by Tukey HSD tests (alpha = 0.05). The SB + HF + S bonding method increased Ra (0.160 to 1.121 microm), decreased gloss (41.3 to 3.7) and altered color (DeltaE = 4.37; P < .001). The PA + S method increased Ra (0.173 to 0.341 microm; P < .001), but the increase in Ra was significantly less than that caused by the SB + HF + S bonding method (P < . 001). The PA + S method caused insignificant changes in gloss (41.7 to 38.0) and color (DeltaE = 0.50). The measurements and SEM observations showed that changes were fully restored to baseline with refinishing. The PA + S method caused significantly less damage to porcelain than the SB + HF + S method. The refinishing protocol fully restored the porcelain surfaces.

  8. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems.

    PubMed

    Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur

    2016-08-01

    The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p < 0.05), whereas a significant difference was observed between the femtosecond laser etching group (3.3 ± 1.2 MPa) and the other two groups (p < 0.01). ARI scores were significantly different among the three groups. The results of our study suggest that laser conditioning with an Er:YAG system results in successful etching, similar to that obtained with acid. The sole use of a femtosecond laser system may not provide an adequate bond strength at the bracket-enamel interface.

  9. Effect of resin infiltration on white spot lesions after debonding orthodontic brackets.

    PubMed

    Hammad, Shaza M; El Banna, Mai; El Zayat, Inas; Mohsen, Mohamed Abdel

    2012-02-01

    To evaluate the effect of application of a resin infiltration material on masking the white spot lesions (WSLs) after bracket removal. 18 patients participated in this study and were divided into two groups of nine patients each; by a visual score based on the extent of demineralization, according to the classification of the WSLs. Group 1: Visible WSLs without surface disruption and Group 2: WSLs showed a roughened surface but not requiring restoration. Three successive photographs were taken for every patient; immediately after bracket removal, 1 week after oral hygiene measures and after Icon material application. The JPEG images were imported into image analysis software (Image J version 1.33u for Windows XP, US National Institutes of Health) which presented the images into histograms of gray scale from (0 to 255). Initial and final images were compared for percentage of WSLs masking area. For both groups, a statistically significant difference at P<0.05 was obtained as follows; for WSLs in Group 1, the means at gray scale for the initial and the final photographs were 126.091 +/- 13.452 and 221.268 +/- 9.350 respectively and they revealed significance by Wilcoxon's signed rank test = 0.038, P<0.05. For WSLs in Group 2, the means at gray scale for the initial and the final photographs were 95.585 +/- 20.973 and 155.612 +/- 31.203 respectively and they revealed significance by Wilcoxon's signed rank test = 0.029, P<0.05.

  10. Evaluation of ionic degradation and slot corrosion of metallic brackets by the action of different dentifrices.

    PubMed

    Brandão, Gustavo Antônio Martins; Simas, Rafael Menezes; de Almeida, Leandro Moreira; da Silva, Juliana Melo; Meneghim, Marcelo de Castro; Pereira, Antonio Carlos; de Almeida, Haroldo Amorim; Brandão, Ana Maria Martins

    2013-01-01

    To evaluate the in vitro ionic degradation and slot base corrosion of metallic brackets subjected to brushing with dentifrices, through analysis of chemical composition by Energy Dispersive Spectroscopy (EDS) and qualitative analysis by Scanning Electron Microscopy (SEM). Thirty eight brackets were selected and randomly divided into four experimental groups (n = 7). Two groups (n = 5) worked as positive and negative controls. Simulated orthodontic braces were assembled using 0.019 x 0.025-in stainless steel wires and elastomeric rings. The groups were divided according to surface treatment: G1 (Máxima Proteção Anticáries®); G2 (Total 12®); G3 (Sensitive®); G4 (Branqueador®); Positive control (artificial saliva) and Negative control (no treatment). Twenty eight brushing cycles were performed and evaluations were made before (T0) and after (T1) experiment. The Wilcoxon test showed no difference in ionic concentrations of titanium (Ti), chromium (Cr), iron (Fe) and nickel (Ni) between groups. G2 presented significant reduction (p < 0.05) in the concentration of aluminium ion (Al). Groups G3 and G4 presented significant increase (p < 0.05) in the concentration of aluminium ion. The SEM analysis showed increased characteristics indicative of corrosion on groups G2, G3 and G4. The EDS analysis revealed that control groups and G1 did not suffer alterations on the chemical composition. G2 presented degradation in the amount of Al ion. G3 and G4 suffered increase in the concentration of Al. The immersion in artificial saliva and the dentifrice Máxima Proteção Anticáries® did not alter the surface polishing. The dentifrices Total 12®, Sensitive® and Branqueador® altered the surface polishing.

  11. Dimensional accuracy of ceramic self-ligating brackets and estimates of theoretical torsional play.

    PubMed

    Lee, Youngran; Lee, Dong-Yul; Kim, Yoon-Ji R

    2016-09-01

    To ascertain the dimensional accuracies of some commonly used ceramic self-ligation brackets and the amount of torsional play in various bracket-archwire combinations. Four types of 0.022-inch slot ceramic self-ligating brackets (upper right central incisor), three types of 0.018-inch ceramic self-ligating brackets (upper right central incisor), and three types of rectangular archwires (0.016 × 0.022-inch beta-titanium [TMA] (Ormco, Orange, Calif), 0.016 × 0.022-inch stainless steel [SS] (Ortho Technology, Tampa, Fla), and 0.019 × 0.025-inch SS (Ortho Technology)) were measured using a stereomicroscope to determine slot widths and wire cross-sectional dimensions. The mean acquired dimensions of the brackets and wires were applied to an equation devised by Meling to estimate torsional play angle (γ). In all bracket systems, the slot tops were significantly wider than the slot bases (P < .001), yielding a divergent slot profile. Clarity-SLs (3M Unitek, Monrovia, Calif) showed the greatest divergence among the 0.022-inch brackets, and Clippy-Cs (Tomy, Futaba, Fukushima, Japan) among the 0.018-inch brackets. The Damon Clear (Ormco) bracket had the smallest dimensional error (0.542%), whereas the 0.022-inch Empower Clear (American Orthodontics, Sheboygan, Wis) bracket had the largest (3.585%). The largest amount of theoretical play is observed using the Empower Clear (American Orthodontics) 0.022-inch bracket combined with the 0.016 × 0.022-inch TMA wire (Ormco), whereas the least amount occurs using the 0.018 Clippy-C (Tomy) combined with 0.016 × 0.022-inch SS wire (Ortho Technology).

  12. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination.

    PubMed

    Khanehmasjedi, Mashallah; Naseri, Mohammad Ali; Khanehmasjedi, Samaneh; Basir, Leila

    2017-02-01

    This study compared the shear bond strength of metallic brackets bonded with Single Bond and Assure bonding agents under dry and saliva-contamination conditions. Sixty sound premolar teeth were selected, and stainless-steel brackets were bonded on enamel surfaces with Single Bond and Assure bonding agents under dry condition or with saliva contamination. Shear bond strength values of brackets were measured in a universal testing machine. The adhesive remnant index scores were determined after debonding of the brackets under a stereomicroscope. One-way analysis of variance (ANOVA) was used to analyze bond strength. Two-by-two comparisons were made with post hoc Tukey tests (p<0.001). Frequencies of adhesive remnant index scores were analyzed by Kruskal-Wallis test. Bond strength values of brackets to tooth structure were 9.29±8.56 MPa and 21.25±8.93 MPa with the use of Assure resin bonding agent under saliva-contamination and dry conditions, respectively. These values were 10.13±6.69 MPa and 14.09±6.6 MPa, respectively, under the same conditions with the use of Single Bond adhesive. Contamination with saliva resulted in a significant decrease in the bond strength of brackets to tooth structure with the application of Assure adhesive resin (p<0.001). There were no significant differences in the adhesive remnant index scores between the study groups. Application of Single Bond and Assure bonding agents resulted in adequate bond strength of brackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions. Copyright © 2016. Published by Elsevier Taiwan LLC.

  13. Translucency and color match with a shade guide of esthetic brackets with the aid of a spectroradiometer.

    PubMed

    Lee, Yong-Keun; Bin, Yu

    2016-01-01

    Since the color of esthetic brackets should match that of teeth, the aims of this study were to determine the color and translucency of esthetic brackets by means of the clinically relevant use of a spectroradiometer, and to compare the color of brackets with that of a commercial shade guide. The color of central and tie-wing regions of four plastic and four ceramic brackets was measured according to the CIE L*a*b* color scale over white and black backgrounds. Brackets were classified into five groups based on their composition. The color of Vitapan Classical Shade Guide tabs was also measured. Translucency parameter (TP) and contrast ratio (CR) were calculated to determine translucency. Color differences between brackets and the shade guide tabs were 10.4 - 34.5 ∆E*ab units. TP and CR values for the central region were 16.4 - 27.7 and 0.38 - 0.58, whereas for the tie-wings they were 24.0 - 39.9 and 0.25 - 0.45, respectively. The color coordinates, TP and CR values were significantly influenced by bracket composition and brand (p < 0.05). Esthetic brackets investigated herein showed unacceptable color differences (∆E*ab > 5.5) compared with the shade guide tabs. Differences in the translucency of brackets by brand were within the visually perceptible range (∆CR > 0.07). Therefore, brackets showing the best matching performance for each case should be selected considering esthetic and functional demands.

  14. Enamel cracks evaluation - A method to predict tooth surface damage during the debonding.

    PubMed

    Dumbryte, Irma; Jonavicius, Tomas; Linkeviciene, Laura; Linkevicius, Tomas; Peciuliene, Vytaute; Malinauskas, Mangirdas

    2015-01-01

    The objective of this in vitro study was to evaluate the effect of the enamel cracks on the tooth damage during the debonding. Measurements of the cracks characteristics (visibility, direction, length, and location) were performed utilizing a scanning electron microscopy (SEM) technique and mathematically derived formulas (x=h/30, l=n*x) before and following the removal of mechanically retained metal and ceramic brackets. The likelihood of having greater extent enamel defects was higher for the teeth with pronounced cracks (odds vatios, OR=3.728), increased when the crack was located in more than one zone of the tooth (OR=1.998), and the inclination did not exceed 30-45° (OR=0.505). Using ceramic brackets the risk of greater amount tooth structure defects raised 1.45 times (OR=1.450). Enamel crack showing all these characteristics at the beginning of the orthodontic treatment and the use of ceramic brackets might predispose to higher risk of greater extent tooth surface damage after the debonding by 20.4%.

  15. Effects of different orthodontic primers on enamel demineralization around orthodontic brackets.

    PubMed

    Baysal, Asli; Yasa, Asli; Sogut, Ozlem; Ozturk, Mehmet Ali; Uysal, Tancan

    2015-09-01

    The purpose of this work is to evaluate the effectiveness of one self-etching and two filled orthodontic primers on enamel demineralization around orthodontic brackets. Brackets were bonded to 84 bovine teeth and the vestibular enamel surfaces covered with acid-resistant nail varnish exposing 1 mm of space on each side of the bracket base. The teeth were allocated to four groups, using either Transbond XT conventional primer on etched enamel (group 1), Transbond Plus Self-Etching Primer on untreated enamel (group 2), Pro Seal filled resin primer on etched enamel (group 3), or Opal Seal filled resin primer on etched enamel (group 4). Each tooth was subjected to 15,000 strokes of brushing followed by exposure to an acid challenge. Calcium-ion release from each sample was calculated using atomic absorption spectrophotometry. Data were analyzed using one-way ANOVA and a post hoc Tukey test. Differences were considered statistically significant at p ≤ 0.05. Statistically significant differences were observed between the four groups (p < 0.001). No significant difference was found between the controls (group 1) and the Opal Seal group. Higher calcium release was observed in the Pro Seal group and the self-etching primer group compared to the controls. The highest calcium release was recorded in the self-etching primer group. Filled sealants may not have a protective effect against enamel demineralization. Transbond Plus Self-Etching Primer should be used cautiously, considering the risk of demineralization involved in its application.

  16. Clinical effects of pre-adjusted edgewise orthodontic brackets: a systematic review and meta-analysis.

    PubMed

    Papageorgiou, Spyridon N; Konstantinidis, Ioannis; Papadopoulou, Konstantina; Jäger, Andreas; Bourauel, Christoph

    2014-06-01

    Fixed-appliance treatment is a major part of orthodontic treatment, but clinical evidence remains scarce. Objective of this systematic review was to investigate how the therapeutic effects and side-effects of brackets used during the fixed-appliance orthodontic treatment are affected by their characteristics. SEARCH METHODS AND SELECTION CRITERIA: We searched MEDLINE and 18 other databases through April 2012 without restrictions for randomized controlled trials and quasi-randomized controlled trials investigating any bracket characteristic. After duplicate selection and extraction procedures, risk of bias was assessed also in duplicate according to Cochrane guidelines and quality of evidence according to the Grades of Recommendation. Assessment, Development and Evaluation approach. Random-effects meta-analyses, subgroup analyses, and sensitivity analyses were performed with the corresponding 95 per cent confidence intervals (CI) and 95 per cent prediction intervals (PI). We included 25 trials on 1321 patients, with most comparing self-ligated (SL) and conventional brackets. Based on the meta-analyses, the duration of orthodontic treatment was on average 2.01 months longer among patients with SL brackets (95 per cent CI: 0.45 to 3.57). The 95 per cent PIs for a future trial indicated that the difference could be considerable (-1.46 to 5.47 months). Treatment characteristics, outcomes, and side-effects were clinically similar between SL and conventional brackets. For most bracket characteristics, evidence is insufficient. Some meta-analyses included trials with high risk of bias, but sensitivity analyses indicated robustness. Based on existing evidence, no clinical recommendation can be made regarding the bracket material or different ligation modules. For SL brackets, no conclusive benefits could be proven, while their use was associated with longer treatment durations.

  17. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.

    2008-08-01

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  18. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles.

    PubMed

    Melo, Mary A S; Morais, Weslanny A; Passos, Vanara F; Lima, Juliana P M; Rodrigues, Lidiany K A

    2014-05-01

    Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. This in vitro study evaluated the capacity of fluoride releasing and enamel demineralization inhibition of fluoride-releasing nanofilled cement around orthodontic brackets using an artificial caries biofilm model. Forty bovine enamel discs were selected by evaluating surface microhardness and randomized into four groups (n = 10): non-fluoride-releasing microfilled composite, fluoride-releasing microfilled composite, resin-modified glass ionomer cement (RMGI), and fluoride-releasing nanofilled composite (FN). After brackets bonding in each disc, the specimens were subjected to a cariogenic challenge through a Streptococcus mutans biofilm model. After the experimental period, the biofilm formed around the brackets was collected for fluoride analysis and the mineral loss around the brackets was determined by integrated demineralization via cross-sectional microhardness measurement at 20 and 70 μm from the bracket margin. Additionally, samples of each group were subjected to energy-dispersive X-ray spectroscopy (EDX) analysis examined under a scanning electron microscopy (SEM). ANOVA followed by Tukey test were applied for fluoride concentration and mineral loss data, respectively. At both distances, only RMGI statistically differed from the other groups presenting the lowest demineralization, although there was a trend to a lower demineralization of enamel around brackets in FN group. Similar condition was found to fluoride concentration and EDX/SEM analysis. Under the cariogenic exposure condition of this study, the fluoride-releasing nanofilled material had similar performance to fluoride-releasing microfilled materials. The presence of nanofillers in the fluoride-releasing materials studied did not promote further benefits against caries lesion development around brackets and presented inferior demineralization inhibition than the resin-modified glass ionomer material.

  19. Comparison of Microleakage under Rebonded Stainless Steel Orthodontic Brackets Using Two Methods of Adhesive Removal: Sandblast and Laser.

    PubMed

    Tudehzaeim, Mohamad Hossein; Yassaei, Soghra; Taherimoghadam, Shohreh

    2015-02-01

    Debonding is a common occurrence in orthodontic treatment and a considerable number of orthodontists prefer to rebond the detached brackets because of economic issues. The aim of this study was to compare the microleakage beneath rebonded stainless steel brackets using two methods of adhesive removal namely sandblast and laser. Sixty human premolar teeth were randomly divided into three groups. Following bonding the brackets, group 1 served as the control group. Brackets in groups 2 and 3 were debonded, and adhesive removal from the bracket bases was done by means of sandblasting and Er-YAG laser, respectively. After rebonding, teeth in each group were stained with 2% methylene blue for 24 hours, sectioned and examined under a stereomicroscope. Marginal microleakage at the adhesive-enamel and bracket-adhesive interfaces in the occlusal and gingival margins was determined. Statistical analysis was done using the Kruskal-Wallis test. Comparison of the microleakage scores among the three groups revealed no statistically significant difference (P > 0.05). At the enamel-adhesive interface, the gingival margins in all groups showed higher microleakage while in the adhesive-bracket interface, the occlusal margin exhibited greater microleakage. Er-YAG laser irradiation and sandblasting for adhesive removal from the debonded brackets yielded clinically acceptable microleakage scores.

  20. Comparison of Microleakage under Rebonded Stainless Steel Orthodontic Brackets Using Two Methods of Adhesive Removal: Sandblast and Laser

    PubMed Central

    Tudehzaeim, Mohamad Hossein; Yassaei, Soghra; Taherimoghadam, Shohreh

    2015-01-01

    Objectives: Debonding is a common occurrence in orthodontic treatment and a considerable number of orthodontists prefer to rebond the detached brackets because of economic issues. The aim of this study was to compare the microleakage beneath rebonded stainless steel brackets using two methods of adhesive removal namely sandblast and laser. Materials and Methods: Sixty human premolar teeth were randomly divided into three groups. Following bonding the brackets, group 1 served as the control group. Brackets in groups 2 and 3 were debonded, and adhesive removal from the bracket bases was done by means of sandblasting and Er-YAG laser, respectively. After rebonding, teeth in each group were stained with 2% methylene blue for 24 hours, sectioned and examined under a stereomicroscope. Marginal microleakage at the adhesive-enamel and bracket-adhesive interfaces in the occlusal and gingival margins was determined. Statistical analysis was done using the Kruskal-Wallis test. Results: Comparison of the microleakage scores among the three groups revealed no statistically significant difference (P > 0.05). At the enamel-adhesive interface, the gingival margins in all groups showed higher microleakage while in the adhesive-bracket interface, the occlusal margin exhibited greater microleakage. Conclusion: Er-YAG laser irradiation and sandblasting for adhesive removal from the debonded brackets yielded clinically acceptable microleakage scores. PMID:26056521

  1. In vitro evaluation of frictional forces of two ceramic orthodontic brackets versus a stainless steel bracket in combination with two types of archwires

    PubMed Central

    Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad

    2015-01-01

    Purpose: The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. Materials and Methods: In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Results: Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Conclusions: Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire. PMID:26020037

  2. In vitro evaluation of frictional forces of two ceramic orthodontic brackets versus a stainless steel bracket in combination with two types of archwires.

    PubMed

    Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad

    2015-01-01

    The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire.

  3. Effect of saliva contamination on cementation of orthodontic brackets using different adhesive systems.

    PubMed

    Robaski, Aliden-Willian; Pamato, Saulo; Tomás-de Oliveira, Marcelo; Pereira, Jefferson-Ricardo

    2017-07-01

    The enamel condition and the quality of surface are points that need to be considered for achieving optimal efficiency in the treatment with orthodontic brackets. The aim of this study was to assess the immediate bond strength of metallic brackets cemented to dental. Forty human premolars were double-sectioned, placed in PVC matrices and randomly divided into 10 groups (n=8). They received artificial saliva contamination before or after the application of adhesive systems, except for the control groups. The metallic brackets were cemented using two orthodontic cements (Transbond™ Plus Color Change, 3M Unitek e Transbond™ XT Light, 3M Unitek). The specimens were subjected to mechanical shear bond strength testing and classified according to the fracture pattern. The results were analyzed using a two-way ANOVA and Tukey's test for multiple comparisons ( p <0.05). ANOVA analysis showed statistically significant differences between the groups ( p =0.01). The Tukey's multiple comparison test indicated statistically significant difference between G6 and G7 groups ( p <0.05). A high prevalence of adhesive failure in the groups receiving the hydrophobic adhesive system. The saliva contamination prior to the application of a hydrophobic simplified conventional adhesive system was responsible for decreasing the immediate bond strength values of brackets cemented on the dental enamel. Key words: Bonding, orthodontic brackets, shear bond strength, saliva, adhesive systems.

  4. In vitro Assessment of Influence of Various Bleaching Protocols on the Strength of Ceramic Orthodontic Brackets bonded to Bleached Tooth Surface: A Comparative Study.

    PubMed

    Iska, Divya; Devanna, Raghu; Singh, Madhvi; Chitumalla, Rajkiran; Balasubramanian, Sai C Bala; Goutam, Manish

    2017-12-01

    Esthetics is one of the common issues because of which patients consult dental orthodontic treatment. Two ways of tooth bleaching are available these days, which includes in-office bleach and home bleach. Various bleaching protocols are available these days for treating the tooth surfaces. Hence, we planned the present study for investigating the impact of various intracoronal bleaching protocols on shear bond strength of ceramic brackets bonded to tooth surface after bleaching. The present study included assessment of 100 extracted maxillary central incisors with the integrated buccal surface. A resin block was made and individual teeth were embedded in each block. Root canal therapy procedure was performed in all the teeth, after which 2 mm short of tooth apex up to the level of cementoenamel junction, removal of the root canal filling was done. All the samples were broadly divided into four study groups with 25 samples in each group. Bleaching procedure was carried in all the samples intracoronally followed by testing of shear bond strength using universal force testing machine. Following the modified adhesive remnant index (AI), assessment of remaining adhesive on the brackets was done. All the results were compiled and analyzed by Statistical Package for the Social Sciences (SPSS) software version 17.0. In the control group, mean shear bond strength was found to be 17.9 MPa. While comparing the carbamide peroxide (CP) group with sodium perborate study group, we observed a statistically significant difference. Nonsignificant results were obtained while comparing the shear bond strength in between sodium perborate group and hydrogen peroxide (HP) group. Intracoronal bleaching does affect the shear bond strength of ceramic brackets. Sodium perborate bleaching influences shear bond strength more strongly than other bleaching agents such as CP and HP. In patients undergoing orthodontic treatment, HP is a preferred agent where bleaching has to be followed by orthodontic bonding to the tooth surface.

  5. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys.

    PubMed

    Iijima, Masahiro; Endo, Kazuhiko; Yuasa, Toshihiro; Ohno, Hiroki; Hayashi, Kazuo; Kakizaki, Mitsugi; Mizoguchi, Itaru

    2006-07-01

    The purpose of this study was to provide a quantitative assessment of galvanic corrosion behavior of orthodontic archwire alloys coupled to orthodontic bracket alloys in 0.9% NaCl solution and to study the effect of surface area ratios. Two common bracket alloys, stainless steels and titanium, and four common wire alloys, nickel-titanium (NiTi) alloy, beta-titanium (beta-Ti) alloy, stainless steel, and cobalt-chromium-nickel alloy, were used. Three different area ratios, 1:1, 1:2.35, and 1:3.64, were used; two of them assumed that the multibracket appliances consists of 14 brackets and 0.016 inch of round archwire or 0.016 x 0.022 inch of rectangular archwire. The galvanic current was measured for 3 successive days using zero-impedance ammeter. When the NiTi alloy was coupled with Ti (1:1, 1:2.35, and 1:3.64 of the surface area ratio) or beta-Ti alloy was coupled with Ti (1:2.35 and 1:3.64 of the surface area ratio), Ti initially was the anode and corroded. However, the polarity reversed in 1 hour, resulting in corrosion of the NiTi or beta-Ti. The NiTi alloy coupled with SUS 304 or Ti exhibited a relatively large galvanic current density even after 72 hours. It is suggested that coupling SUS 304-NiTi and Ti-NiTi may remarkably accelerate the corrosion of NiTi alloy, which serves as the anode. The different anode-cathode area ratios used in this study had little effect on galvanic corrosion behavior.

  6. The impact of surface preparation on shear bond strength of metallic orthodontic brackets bonded with a resin-modified glass ionomer cement.

    PubMed

    Elnafar, Ayman A S; Alam, Mohammad K; Hasan, Rozita

    2014-09-01

    The aim of this study was to assess the effects of four enamel preparation techniques on shear bond strength (SBS) of brackets bonded with a resin-modified glass ionomer cement (RMGIC). Adhesive Remnant Index (ARI) and enamel surface roughness (Ra) were also investigated after cement removal. One hundred and forty-four human premolars were divided into four groups (n = 36 in each group) as follows: Group 1, 37% phosphoric acid (i.e. conventional); Group 2, sandblasting; Group 3, sodium hypochlorite and 37% phosphoric acid; and Group 4, sodium hypochlorite and sandblasting. Twenty-four hours after bonding, the brackets were debonded with an Instron machine using a crosshead speed of 1·0 mm/min; the ARI was evaluated by an image analyser system; the Ra was measured by profilometry; and the morphology of the tooth enamel surface was observed by scanning electron microscope evaluation. Data were submitted to ANOVA and the Kruskal-Wallis test (α = 0·05). Mean SBS values for Groups 1-4 were 13·86, 9·08, 17 and 9·63 MPa, respectively. Mean ARI for Groups 1-4 were 11·16, 2·06, 20·66 and 3·73%. The SBS and ARI showed statistically significant differences between the four groups (P<0·001). The Ra (μm) showed no significant differences between groups. Bracket bonding using RMGIC showed adequate adhesion for clinical use, and the type of enamel preparation had a significant influence. © 2014 British Orthodontic Society.

  7. Translucency and color match with a shade guide of esthetic brackets with the aid of a spectroradiometer

    PubMed Central

    Lee, Yong-Keun; Bin, Yu

    2016-01-01

    ABSTRACT Objective: Since the color of esthetic brackets should match that of teeth, the aims of this study were to determine the color and translucency of esthetic brackets by means of the clinically relevant use of a spectroradiometer, and to compare the color of brackets with that of a commercial shade guide. Methods: The color of central and tie-wing regions of four plastic and four ceramic brackets was measured according to the CIE L*a*b* color scale over white and black backgrounds. Brackets were classified into five groups based on their composition. The color of Vitapan Classical Shade Guide tabs was also measured. Translucency parameter (TP) and contrast ratio (CR) were calculated to determine translucency. Results: Color differences between brackets and the shade guide tabs were 10.4 - 34.5 ∆E*ab units. TP and CR values for the central region were 16.4 - 27.7 and 0.38 - 0.58, whereas for the tie-wings they were 24.0 - 39.9 and 0.25 - 0.45, respectively. The color coordinates, TP and CR values were significantly influenced by bracket composition and brand (p < 0.05). Conclusions: Esthetic brackets investigated herein showed unacceptable color differences (∆E*ab > 5.5) compared with the shade guide tabs. Differences in the translucency of brackets by brand were within the visually perceptible range (∆CR > 0.07). Therefore, brackets showing the best matching performance for each case should be selected considering esthetic and functional demands. PMID:27275619

  8. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    NASA Astrophysics Data System (ADS)

    Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.

  9. Qualitative and quantitative evaluation of human dental enamel after bracket debonding: a noncontact three-dimensional optical profilometry analysis.

    PubMed

    Ferreira, Fabiano G; Nouer, Darcy F; Silva, Nelson P; Garbui, Ivana U; Correr-Sobrinho, Lourenço; Nouer, Paulo R A

    2014-09-01

    The aim of this study was to undertake a qualitative and quantitative evaluation of changes on enamel surfaces after debonding of brackets followed by finishing procedures, using a high-resolution three-dimensional optical profiler and to investigate the accuracy of the technique. The labial surfaces of 36 extracted upper central incisors were examined. Before bonding, the enamel surfaces were subjected to profilometry, recording four amplitude parameters. Brackets were then bonded using two types of light-cured orthodontic adhesive: composite resin and resin-modified glass ionomer cement. Finishing was performed by three different methods: pumice on a rubber cup, fine and ultrafine aluminum oxide discs, and microfine diamond cups followed by silicon carbide brushes. The samples were subsequently re-analyzed by profilometry. Wilcoxon signed-rank test, Kruskal-Wallis test (p < 0.05) and a posteriori Mann-Whitney U test with Bonferroni correction (p < 0.0167) revealed a significant reduction of enamel roughness when diamond cups followed by silicon carbide brushes were used to finish surfaces that had remnants of resin-modified glass ionomer adhesive and when pumice was used to finish surfaces that had traces of composite resin. Enamel loss was minimal. The 3D optical profilometry technique was able to provide accurate qualitative and quantitative assessment of changes on the enamel surface after debonding. Morphological changes in the topography of dental surfaces, especially if related to enamel loss and roughness, are of considerable clinical importance. The quantitative evaluation method used herein enables a more comprehensive understanding of the effects of orthodontic bonding on teeth.

  10. Orthodontic Bracket Manufacturing Tolerances and Dimensional Differences between Select Self-Ligating Brackets

    PubMed Central

    Major, Thomas W.; Carey, Jason P.; Nobes, David S.; Major, Paul W.

    2010-01-01

    In all manufacturing processes there are tolerances; however, orthodontic bracket manufacturers seldom state the slot dimensional tolerances. This experiment develops a novel method of analyzing slot profile dimensions using photographs of the slot. Five points are selected along each wall, and lines are fitted to define a trapezoidal slot shape. This investigation measures slot height at the slot's top and bottom, angles between walls, slot taper, and the linearity of each wall. Slot dimensions for 30 upper right central incisor self-ligating stainless steel brackets from three manufacturers were evaluated. Speed brackets have a slot height 2% smaller than the nominal 0.559 mm size and have a slightly convergent taper. In-Ovation brackets have a divergent taper at an average angle of 1.47 degrees. In-Ovation is closest to the nominal value of slot height at the slot base and has the smallest manufacturing tolerances. Damon Q brackets are the most rectangular in shape, with nearly 90-degree corners between the slot bottom and walls. Damon slot height is on average 3% oversized. PMID:20981299

  11. Process qualification and testing of LENS deposited AY1E0125 D-bottle brackets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwood, Clinton J.; Smugeresky, John E.; Jew, Michael

    2006-11-01

    The LENS Qualification team had the goal of performing a process qualification for the Laser Engineered Net Shaping{trademark}(LENS{reg_sign}) process. Process Qualification requires that a part be selected for process demonstration. The AY1E0125 D-Bottle Bracket from the W80-3 was selected for this work. The repeatability of the LENS process was baselined to determine process parameters. Six D-Bottle brackets were deposited using LENS, machined to final dimensions, and tested in comparison to conventionally processed brackets. The tests, taken from ES1E0003, included a mass analysis and structural dynamic testing including free-free and assembly-level modal tests, and Haversine shock tests. The LENS brackets performedmore » with very similar characteristics to the conventionally processed brackets. Based on the results of the testing, it was concluded that the performance of the brackets made them eligible for parallel path testing in subsystem level tests. The testing results and process rigor qualified the LENS process as detailed in EER200638525A.« less

  12. Enamel resistance to demineralization following Er:YAG laser etching for bonding orthodontic brackets

    PubMed Central

    Ahrari, Farzaneh; Poosti, Maryam; Motahari, Pourya

    2012-01-01

    Background: Several studies have shown that laser-etching of enamel for bonding orthodontic brackets could be an appropriate alternative for acid conditioning, since a potential advantage of laser could or might be caries prevention. This study compared enamel resistance to demineralization following etching with acid phosphoric or Er:YAG laser for bonding orthodontic brackets. Materials and Methods: Fifty sound human premolars were divided into two equal groups. In the first group, enamel was etched with 37% phosphoric acid for 15 seconds. In the second group, Er:YAG laser (wavelength, 2 940 nm; 300 mJ/pulse, 10 pulses per second, 10 seconds) was used for tooth conditioning. The teeth were subjected to 4-day PH-cycling process to induce caries-like lesions. The teeth were then sectioned and the surface area of the lesion was calculated in each microphotographs and expressed in pixel. The total surface of each specimen was 196 608 pixels. Results: Mean lesion areas were 7 171 and 7532 pixels for Laser-etched and Acid-etched groups, respectively. The two sample t-test showed that there was no significant difference in lesion area between the two groups (P = 0.914). Conclusion: Although Er:YAG laser seems promising for etching enamel before bonding orthodontic brackets, it does not reduce enamel demineralization when exposed to acid challenge. PMID:23162591

  13. Strength Analysis and Process Simulation of Subway Contact Rail Support Bracket of Composite Materials

    NASA Astrophysics Data System (ADS)

    Fedulov, Boris N.; Safonov, Alexander A.; Sergeichev, Ivan V.; Ushakov, Andrey E.; Klenin, Yuri G.; Makarenko, Irina V.

    2016-10-01

    An application of composites for construction of subway brackets is a very effective approach to extend their lifetime. However, this approach involves the necessity to prevent process-induced distortions of the bracket due to thermal deformation and chemical shrinkage. At present study, a process simulation has been carried out to support the design of the production tooling. The simulation was based on the application of viscoelastic model for the resin. Simulation results were verified by comparison with results of manufacturing experiments. To optimize the bracket structure the strength analysis was carried out as well.

  14. Effect of two-step and one-step surface conditioning of glass ceramic on adhesion strength of orthodontic bracket and effect of thermo-cycling on adhesion strength.

    PubMed

    Asiry, Moshabab A; AlShahrani, Ibrahim; Alaqeel, Samer M; Durgesh, Bangalore H; Ramakrishnaiah, Ravikumar

    2018-08-01

    The adhesion strength of orthodontic brackets bonded to dental glass ceramics was evaluated after ceramic surface was treated with two-step and one-step surface conditioning systems, and subjecting to thermo-cycling. A total of forty specimens were fabricated from silica based glass ceramic (lithium disilicate) by duplicating the buccal surface of maxillary first premolar. The specimens were randomly assigned to two experimental groups (n = 20), group one specimens were treated with two-step surface conditioning system (IPS ceramic etching gel™ and Monobond plus™) and group two specimens were treated with one-step surface conditioning system (Monobond etch and prime™). The surface roughness of the specimens after treatment with two-step and one-step surface conditioning system was measured using non-contact surface profilometer. Ten randomly selected specimens from each group were subjected to thermo-cycling and the remaining ten served as baseline. The shear bond strength of the specimens was measured using universal material testing machine. The adhesive remnant index score was calculated, and the results of surface roughness and bond strength were tabulated and subjected to analysis of variance and post hoc tukey's test at a significance level of p < 0.05. The results of the study showed that the specimens treated with two-step conditioning system had higher surface roughness and bond strength than one-step conditioning system. The majority of the specimens treated with both two-step and one-step conditioned specimens showed adhesive failure after subjecting thermo-cycling. Traditional two-step conditioning provides better bond strength. The clinical importance of the study is that, the silane promoted adhesion significantly reduces on exposure to thermo-cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effects of intraoral aging on surface properties of coated nickel-titanium archwires.

    PubMed

    Rongo, Roberto; Ametrano, Gianluca; Gloria, Antonio; Spagnuolo, Gianrico; Galeotti, Angela; Paduano, Sergio; Valletta, Rosa; D'Antò, Vincenzo

    2014-07-01

    To evaluate the effects of intraoral aging on surface properties of esthetic and conventional nickel-titanium (NiTi) archwires. Five NiTi wires were considered for this study (Sentalloy, Sentalloy High Aesthetic, Superelastic Titanium Memory Wire, Esthetic Superelastic Titanium Memory Wire, and EverWhite). For each type of wire, four samples were analyzed as received and after 1 month of clinical use by an atomic force microscope (AFM) and a scanning electronic microscope (SEM). To evaluate sliding resistance, two stainless steel plates with three metallic or three monocrystalline brackets, bonded in passive configuration, were manufactured; four as-received and retrieved samples for every wire were pulled five times at 5 mm/min for 1 minute by means of an Instron 5566, recording the greatest friction value (N). Data were analyzed by one-way analysis of variance and by Student's t-test. After clinical use, surface roughness increased considerably. The SEM images showed homogeneity for the as-received control wires; however, after clinical use esthetic wires exhibited a heterogeneous surface with craters and bumps. The lowest levels of friction were observed with the as-received Superelastic Titanium Memory Wire on metallic brackets. When tested on ceramic brackets, all the wires exhibited an increase in friction (t-test; P < .05). Furthermore, all the wires, except Sentalloy, showed a statistically significant increase in friction between the as-received and retrieved groups (t-test; P < .05). Clinical use of the orthodontic wires increases their surface roughness and the level of friction.

  16. Influence of different methods of cleaning custom bases on the shear bond strength of indirectly bonded brackets.

    PubMed

    Kanashiro, Lylian K; Robles-Ruíz, Julissa J; Ciamponi, Ana L; Medeiros, Igor S; Tortamano, André; Paiva, João B

    2014-09-01

    To determine the influence on shear bond strength and bond failure location of four cleaning methods for orthodontic bracket custom bases. In vitro laboratory study. Eighty bovine teeth were divided at random into four groups. The bracket custom bases were cleaned with different methods: group 1 with methyl methacrylate monomer, group 2 with acetone, group 3 with 50 μm aluminium oxide particles and group 4 with detergent. The brackets were indirectly bonded onto the teeth with the Sondhi Rapid-Set self-curing adhesive. The maximum required shear bond strength to debond the brackets was recorded. The bond failure location was evaluated using the Adhesive Remnant Index (ARI). One-way analysis of variance (ANOVA) analysis (P<0·05) was used to detect significant differences in the bond strength. Kaplan-Meier survival plots and log-rank test were done to compare the survival distribution between the groups. The Kruskal-Wallis test (P<0·05) was used to evaluate the differences in the ARI scores. The mean bond strengths in groups 1, 2, 3 and 4 were 23·7±5·0, 25·3±5·1, 25·6±3·7 and 25·7±4·2 MPa, respectively. There were no significant statistically differences in either the bond strength or the ARI score between the groups. The four custom base-cleaning methods presented the same efficiencies on indirect bond of the brackets; thus, practitioners can choose the method that works best for them. © 2014 British Orthodontic Society.

  17. Calculation of four-particle harmonic-oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Germanas, D.; Kalinauskas, R. K.; Mickevičius, S.

    2010-02-01

    A procedure for precise calculation of the three- and four-particle harmonic-oscillator (HO) transformation brackets is presented. The analytical expressions of the four-particle HO transformation brackets are given. The computer code for the calculations of HO transformation brackets proves to be quick, efficient and produces results with small numerical uncertainties. Program summaryProgram title: HOTB Catalogue identifier: AEFQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1247 No. of bytes in distributed program, including test data, etc.: 6659 Distribution format: tar.gz Programming language: FORTRAN 90 Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix RAM: 8 MB Classification: 17.17 Nature of problem: Calculation of the three-particle and four-particle harmonic-oscillator transformation brackets. Solution method: The method is based on compact expressions of the three-particle harmonics oscillator brackets, presented in [1] and expressions of the four-particle harmonics oscillator brackets, presented in this paper. Restrictions: The three- and four-particle harmonic-oscillator transformation brackets up to the e=28. Unusual features: Possibility of calculating the four-particle harmonic-oscillator transformation brackets. Running time: Less than one second for the single harmonic-oscillator transformation bracket. References:G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barret, S. Mickevičius, D. Germanas, Nuclear Physics A 695 (2001) 191.

  18. Shear Bond Strength of Bracket Bases to Adhesives Based on Bracket Base Design

    DTIC Science & Technology

    2016-04-13

    moving in the right direction. And to my wife, Allyson, I’m forever grateful for your patience and support, enabling me to pursue dreams as we begin... intrusion and extrusion in Angle and post Angle eras. As a result, the strength and precision of systems to apply forces through teeth have also

  19. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes.

    PubMed

    Schiff, Nicolas; Boinet, Mickaël; Morgon, Laurent; Lissac, Michèle; Dalard, Francis; Grosgogeat, Brigitte

    2006-06-01

    The aim of this investigation was to determine the influence of fluoride in certain mouthwashes on the risk of corrosion through galvanic coupling of orthodontic wires and brackets. Two titanium alloy wires, nickel-titanium (NiTi) and copper-nickel-titanium (CuNiTi), and the three most commonly used brackets, titanium (Ti), iron-chromium-nickel (FeCrNi) and cobalt-chromium (CoCr), were tested in a reference solution of Fusayama-Meyer artificial saliva and in two commercially available fluoride (250 ppm) mouthwashes, Elmex and Meridol. Corrosion resistance was assessed by inductively coupled plasma-atomic emission spectrometry (ICP-MS), analysis of released metal ions, and a scanning electron microscope (SEM) study of the metal surfaces after immersion of different wire-bracket pairs in the test solutions. The study was completed by an electrochemical analysis. Meridol mouthwash, which contains stannous fluoride, was the solution in which the NiTi wires coupled with the different brackets showed the highest corrosion risk, while in Elmex mouthwash, which contains sodium fluoride, the CuNiTi wires presented the highest corrosion risk. Such corrosion has two consequences: deterioration in mechanical performance of the wire-bracket system, which would negatively affect the final aesthetic result, and the risk of local allergic reactions caused by released Ni ions. The results suggest that mouthwashes should be prescribed according to the orthodontic materials used. A new type of mouthwash for use during orthodontic therapy could be an interesting development in this field.

  20. Study of the composition, structure, and optical properties of a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket films erbium doped from the Er(pd){sub 3} complex compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudoyarova, V. Kh., E-mail: kudoyarova@mail.ioffe.ru; Tolmachev, V. A.; Gushchina, E. V.

    2013-03-15

    Rutherford backscattering, IR spectroscopy, ellipsometry, and atomic-force microscopy are used to perform an integrated study of the composition, structure and optical properties of a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films. The technique employed to obtain the a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films includes the high-frequency decomposition of a mixture of gases, (SiH{sub 4}){sub a} + (CH{sub 4}){sub b}, and the simultaneous thermal evaporation of a complex compound, Er(pd){sub 3}. It is demonstrated that raising the amount of CH{sub 4} in the gas mixture results in an increase in the carbon content of the films under study andmore » an increase in the optical gap E{sub g}{sup opt} from 1.75 to 2.2 eV. Changes in the composition of a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films, accompanied, in turn, by changes in the optical constants, are observed in the IR spectra. The ellipsometric spectra obtained are analyzed in terms of multiple-parameter models. The conclusion is made on the basis of this analysis that the experimental and calculated spectra coincide well when variation in the composition of the amorphous films with that of the gas mixture is taken into account. The existence of a thin (6-8 nm) silicon-oxide layer on the surface of the films under study and the validity of using the double-layer model in ellipsometric calculations is confirmed by the results of structural analyses by atomic-force microscopy.« less

  1. Effects of surface-conditioning methods on shear bond strength of brackets bonded to different all-ceramic materials.

    PubMed

    Saraç, Y Şinasi; Külünk, Tolga; Elekdağ-Türk, Selma; Saraç, Duygu; Türk, Tamer

    2011-12-01

    The aims of this study were to investigate the effects of two surface-conditioning methods on the shear bond strength (SBS) of metal brackets bonded to three different all-ceramic materials, and to evaluate the mode of failure after debonding. Twenty feldspathic, 20 fluoro-apatite, and 20 leucite-reinforced ceramic specimens were examined following two surface-conditioning methods: air-particle abrasion (APA) with 25 μm Al(2)O(3) and silica coating with 30 μm Al(2)O(3) particles modified by silica. After silane application, metal brackets were bonded with light cure composite and then stored in distilled water for 1 week and thermocycled (×1000 at 5-55°C for 30 seconds). The SBS of the brackets was measured on a universal testing machine. The ceramic surfaces were examined with a stereomicroscope to determine the amount of composite resin remaining using the adhesive remnant index. Two-way analysis of variance, Tukey's multiple comparison test, and Weibull analysis were used for evaluation of SBS. The lowest SBS was with APA for the fluoro-apatite ceramic (11.82 MPa), which was not significantly different from APA for the feldspathic ceramic (13.58 MPa). The SBS for the fluoro-apatite ceramic was significantly lower than that of leucite-reinforced ceramic with APA (14.82 MPa). The highest SBS value was obtained with silica coating of the leucite-reinforced ceramic (24.17 MPa), but this was not significantly different from the SBS for feldspathic and fluoro-apatite ceramic (23.51 and 22.18 MPa, respectively). The SBS values with silica coating showed significant differences from those of APA. For all samples, the adhesive failures were between the ceramic and composite resin. No ceramic fractures or cracks were observed. Chairside tribochemical silica coating significantly increased the mean bond strength values.

  2. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    PubMed Central

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  3. Detail view of bracket, arched window and eagle from building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of bracket, arched window and eagle from building 18 section. Jet Lowe, Haer staff photographer, summer 1995 - Naval Base Philadelphia-Philadelphia Naval Shipyard, Machine Shops, League Island, Philadelphia, Philadelphia County, PA

  4. Research and analysis on response characteristics of bracket-line coupling system under wind load

    NASA Astrophysics Data System (ADS)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  5. Image-Based 3d Reconstruction and Analysis for Orthodontia

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2012-08-01

    Among the main tasks of orthodontia are analysis of teeth arches and treatment planning for providing correct position for every tooth. The treatment plan is based on measurement of teeth parameters and designing perfect teeth arch curve which teeth are to create after treatment. The most common technique for teeth moving uses standard brackets which put on teeth and a wire of given shape which is clamped by these brackets for producing necessary forces to every tooth for moving it in given direction. The disadvantages of standard bracket technique are low accuracy of tooth dimensions measurements and problems with applying standard approach for wide variety of complex orthodontic cases. The image-based technique for orthodontic planning, treatment and documenting aimed at overcoming these disadvantages is proposed. The proposed approach provides performing accurate measurements of teeth parameters needed for adequate planning, designing correct teeth position and monitoring treatment process. The developed technique applies photogrammetric means for teeth arch 3D model generation, brackets position determination and teeth shifting analysis.

  6. Shear bond strength of two 2-step etch-and-rinse adhesives when bonding ceramic brackets to bovine enamel.

    PubMed

    Godard, Marion; Deuve, Benjamin; Lopez, Isabelle; Hippolyte, Marie-Pascale; Barthélemi, Stéphane

    2017-09-01

    The present study assessed a fracture analysis and compared the shear bond strength (SBS) of two 2-step etch-and-rinse (E&R) adhesives when bonding ceramic orthodontic brackets to bovine enamel. Thirty healthy bovine mandibular incisors were selected and were equally and randomly assigned to 2 experimental groups. Ceramic brackets (FLI Signature Clear ® , RMO) were bonded onto bovine enamel using an adhesive system. In group 1 (n=15), the conventional E&R adhesive (OrthoSolo ® +Enlight ® , Ormco) was used, and in group 2 (n=15), the new E&R adhesive limited to ceramic bracket bonding (FLI ceramic adhesive ® : FLI sealant resin ® +FLI adhesive paste ® , RMO) was used. In order to obtain appropriate enamel surfaces, the vestibular surfaces of mandibular bovine incisors were flat ground. After bonding, all the samples were stored in distilled water at room temperature for 21 days and subsequently tested for SBS, using the Instron ® universal testing machine. The Adhesive Remnant Index (ARI) scores were evaluated. Failure modes were assessed using optical microscopy at magnification ×40. A statistic data analysis was performed using the Mann-Whitney U-test (P<0.05). The test showed a significant difference (P=0.00155) between the two groups for the SBS values. Group 1 had significantly higher SBS values (9.79 to 20.83MPa) than group 2 (8.45 to 13.94MPa). Analysis of the ARI scores revealed that most of the failures occurred at the enamel/adhesive interface. A statistically significant difference was found for the ARI scores between the two groups (P=0.00996). Only two fractured brackets, which remained bonded onto the bovine enamel, were reported. Both occurred in group 1. When bonded to ceramic brackets, FLI ceramic adhesive ® (RMO) was demonstrated to be very predictable and safe for clinical application in enamel bonding, whereas the results obtained with the conventional adhesive system (OrthoSolo ® +Enlight ® , Ormco) were less reproducible and revealed slightly excessive shear bond strength values. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  7. (Super)hydrophobic coating of orthodontic dental devices and reduction of early oral biofilm retention.

    PubMed

    Oliveira, Adauê S; Kaizer, Marina R; Azevedo, Marina S; Ogliari, Fabrício A; Cenci, Maximiliano S; Moraes, Rafael R

    2015-11-03

    This study was designed to apply (super)hydrophobic crosslinked coatings by means of a sol-gel process on the surface of orthodontic devices and investigate the potential effect of these coatings in reducing the early retention of oral biofilm. Two organosilane-based hydrophobic solutions (HSs) were prepared containing hexadecyltrimethoxysilane diluted in ethanol (HS1) or 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane diluted in dimethyl sulfoxide (HS2). Stainless steel plates and ceramic discs were coated with HS1 or HS2 and heated at 150 °C for 2 h for condensation of a crosslinked SiO x network. Organosilane coatings were applied after previous, or no, surface sandblasting. Commercial stainless steel and ceramic brackets were used to evaluate oral biofilm retention after 12 h or 24 h of biofilm growth, using a microcosm model with human saliva as the inoculum. Surface roughness analysis (Ra, μm) indicated that sandblasting associated with organosilane coatings increased roughness for stainless steel brackets only. Analysis of the water contact angle showed that the stainless steel surface treated with HS1 was hydrophobic (~123°), while the ceramic surface treated with HS2 was superhydrophobic (~155°). Biofilm retention after 24 h was significantly lower in groups treated with hydrophobic coatings. An exponential reduction in biofilm accumulation was associated with increased water contact angle for both stainless steel and ceramic at 24 h. Application of (super)hydrophobic coatings on the surface of stainless steel and ceramic orthodontic devices might reduce the retention of oral biofilm.

  8. The use of easily debondable orthodontic adhesives with ceramic brackets.

    PubMed

    Ryu, Chiyako; Namura, Yasuhiro; Tsuruoka, Takashi; Hama, Tomohiko; Kaji, Kaori; Shimizu, Noriyoshi

    2011-01-01

    We experimentally produced an easily debondable orthodontic adhesive (EDA) containing heat-expandable microcapsules. The purpose of this in vitro study was to evaluate the best debondable condition when EDA was used for ceramic brackets. Shear bond strengths were measured before and after heating and were compared statistically. Temperatures of the bracket base and pulp wall were also examined during heating. Bond strengths of EDA containing 30 wt% and 40 wt% heat-expandable microcapsules were 13.4 and 12.9 MPa, respectively and decreased significantly to 3.8 and 3.7 MPa, respectively, after heating. The temperature of the pulp wall increased 1.8-3.6°C after heating, less than that required to induce pulp damage. Based on the results, we conclude that heating for 8 s during debonding of ceramic brackets bonded using EDA containing 40 wt% heat-expandable microcapsules is the most effective and safest method for the enamel and pulp.

  9. Self-ligating versus conventional metallic brackets on Streptococcus mutans retention: A systematic review.

    PubMed

    Longoni, Juliano N; Lopes, Beatriz M; Freires, Irlan A; Dutra, Kamile L; Franco, Ademir; Paranhos, Luiz R

    2017-01-01

    The present study aimed to review the literature systematically and assess comparatively whether self-ligating metallic brackets accumulate less Streptococcus mutans biofilm than conventional metallic brackets. The systematic search was performed following PRISMA guidelines and registration in PROSPERO. Seven electronic databases (Google Scholar, LILACS, Open Grey, PubMed, SciELO, ScienceDirect, and Scopus) were consulted until April 2016, with no restriction of language and time of publication. Only randomized clinical studies verifying S. mutans colonization in metallic brackets (self-ligating and conventional) were included. All steps were performed independently by two operators. The search resulted in 546 records obtained from the electronic databases. Additionally, 216 references obtained from the manual search of eligible articles were assessed. Finally, a total of 5 studies were included in the qualitative synthesis. In 1 study, the total bacterial count was not different among self-ligating and conventional brackets, whereas in 2 studies the amount was lower for self-ligating brackets. Regarding the specific count of S. mutans , 2 studies showed less accumulation in self-ligating than in conventional brackets. Based on the limited evidence, self-ligating metallic brackets accumulate less S. mutans than conventional ones. However, these findings must be interpreted in conjunction with particularities individual for each patient - such as hygiene and dietary habits, which are components of the multifactorial environment that enables S. Mutans to proliferate and keep retained in the oral cavity.

  10. Galvanic coupling of steel and gold alloy lingual brackets with orthodontic wires.

    PubMed

    Polychronis, Georgios; Al Jabbari, Youssef S; Eliades, Theodore; Zinelis, Spiros

    2018-03-06

    The aim of this research was to assess galvanic behavior of lingual orthodontic brackets coupled with representative types of orthodontic wires. Three types of lingual brackets: Incognito (INC), In-Ovation L (IOV), and STb (STB) were combined with a stainless steel (SS) and a nickel-titanium (NiTi) orthodontic archwire. All materials were initially investigated by scanning electron microscopy / x-ray energy dispersive spectroscopy (SEM/EDX) while wires were also tested by x-ray diffraction spectroscopy (XRD). All bracket-wire combinations were immersed in acidic 0.1M NaCl 0.1M lactic acid and neutral NaF 0.3% (wt) electrolyte, and the potential differences were continuously recorded for 48 hours. The SEM/EDX analysis revealed that INC is a single-unit bracket made of a high gold (Au) alloy while IOV and STB are two-piece appliances in which the base and wing are made of SS alloys. The SS wire demonstrated austenite and martensite iron phase, while NiTi wire illustrated an intense austenite crystallographic structure with limited martensite. All bracket wire combinations showed potential differences below the threshold of galvanic corrosion (200 mV) except for INC and STB coupled with NiTi wire in NaF media. The electrochemical results indicate that all brackets tested demonstrated galvanic compatibility with SS wire, but fluoride treatment should be used cautiously with NiTi wires coupled with Au and SS brackets.

  11. Influence of surface treatment on shear bond strength of orthodontic brackets.

    PubMed

    Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia

    2013-01-01

    The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  12. Evaluation of an alternative technique to optimize direct bonding of orthodontic brackets to temporary crowns.

    PubMed

    Dias, Francilena Maria Campos Santos; Pinzan-Vercelino, Célia Regina Maio; Tavares, Rudys Rodolfo de Jesus; Gurgel, Júlio de Araújo; Bramante, Fausto Silva; Fialho, Melissa Nogueira Proença

    2015-01-01

    To compare shear bond strength of different direct bonding techniques of orthodontic brackets to acrylic resin surfaces. The sample comprised 64 discs of chemically activated acrylic resin (CAAR) randomly divided into four groups: discs in group 1 were bonded by means of light-cured composite resin (conventional adhesive); discs in group 2 had surfaces roughened with a diamond bur followed by conventional direct bonding by means of light-cured composite resin; discs in group 3 were bonded by means of CAAR (alternative adhesive); and discs in group 4 had surfaces roughened with a diamond bur followed by direct bonding by means of CAAR. Shear bond strength values were determined after 24 hours by means of a universal testing machine at a speed of 0.5 mm/min, and compared by analysis of variance followed by post-hoc Tukey test. Adhesive remnant index (ARI) was measured and compared among groups by means of Kruskal-Wallis and Dunn tests. Groups 3 and 4 had significantly greater shear bond strength values in comparison to groups 1 and 2. Groups 3 and 4 yielded similar results. Group 2 showed better results when compared to group 1. In ARI analyses, groups 1 and 2 predominantly exhibited a score equal to 0, whereas groups 3 and 4 predominantly exhibited a score equal to 3. Direct bonding of brackets to acrylic resin surfaces using CAAR yielded better results than light-cured composite resin. Surface preparation with diamond bur only increased shear bond strength in group 2.

  13. [The clinic skill in fixed appliance based on characteristics of Chinese normal occlusion].

    PubMed

    Bai, Ding; Luo, Song-jiao; Chen, Yang-xi; Xiao, Li-wei

    2005-02-01

    To study the bracket placement and arch wire bending based on ethnic differences and individual differences of normal occlusion. The prominence, tip, torque, upper first molar offset of crown and arch form between Chinese and Caucasian normal occlusion were compared. The results showed the ethnic differences of prominence, tip, torque, upper first molar offset of crown and arch form between Chinese and Caucasian normal occlusion. The placement of bracket was influenced by the crown morphology. The adjustments of the bracket placement and arch wire bending with Edgewise and pre-adjusted appliance are necessary to adapt to ethnic difference and individual difference.

  14. Shadowing on Apollo 12 Solar Cells and Possible Movement of the ALSEP Central Station

    NASA Technical Reports Server (NTRS)

    Berman, Paul A.; Williams, David R.

    2014-01-01

    A fortuitous arrangement of a west-facing solar cell and a bracket on the Apollo 12 ALSEP (Apollo Lunar Surface Experiments Package) has allowed us to precisely determine the relative position of the Sun near sunset relative to the Apollo 12 central station over a period of nearly 8 years. The small bracket, mounted on the central station due west of the cell, casts a shadow on the cell near sunset, decreasing the output of the cell proportional to the area of shadow covering the cell. The pattern of shadowing by the bracket gives good agreement with the known change of solar azimuth on a yearly timescale, but the pattern gradually but constantly changed from year-to-year, in a manner inconsistent with the known and changing position of the Sun.

  15. An innovative approach for investigating the ceramic bracket-enamel interface - optical coherence tomography and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian

    2008-09-01

    Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.

  16. Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjiang; Jiang, Senlin; He, Xuefeng

    2017-05-01

    This letter proposes an impact-based piezoelectric energy harvester that uses a rolling bead contained in a bracket that is supported by a spring. Under either translational or rotational base excitation, the bead moves within the bracket and collides with piezoelectric cantilevers that are located around the bracket; these collisions cause the piezoelectric beams to vibrate and thus produce electrical outputs. The low rolling friction and the motion amplification effect of the spring make the resulting device suitable for collection of low-level vibration energy. Experiments show that the proposed harvester is promising for use in scavenging of energy from the multidimensional, low-level, broadband, and low-frequency vibrations that occur in natural environments.

  17. Analysis of the characteristics of slot design affecting resistance to sliding during active archwire configurations

    PubMed Central

    2013-01-01

    Background During orthodontic treatment, a low resistance to slide (RS) is desirable when sliding mechanics are used. Many studies showed that several variables affect the RS at the bracket-wire interface; among these, the design of the bracket slot has not been deeply investigated yet. This study aimed to clarify the effect of different slot designs on the RS expressed by five types of low-friction brackets in vertical and horizontal active configurations of the wire. Methods Five low-friction brackets (Damon SL II, Ormco, Orange, CA, USA; In-Ovation, GAC International, Bohemia, NY, USA; Quick, Forestadent, Pforzheim, Germany; Time 2, AO, Sheboygan, WI, USA; Synergy, RMO, Denver, CO, USA) coupled with an 0.014-in NiTi thermal wire (Therma-Lite, AO) were tested in two three-bracket experimental models simulating vertical and horizontal bracket displacements. A custom-made machine was used to measure frictional resistance with tests repeated on ten occasions for each bracket-wire combination. Design characteristics such as the mesio-distal slot width, slot depth, and presence of chamfered edges at the extremities of the slot were evaluated on SEM images (SUPRA, Carl Zeiss, Oberkochen, Germany) and analyzed in relation to the data of RS recorded. Results Time 2 was found to show the higher frictional forces (1.50 and 1.35 N) in both experimental models (p < 0.05), while Quick and Synergy brackets showed the lower frictional values in the vertical (0.66 N) and in the horizontal (0.68 N) bracket displacements, respectively. With vertically displaced brackets, the increased mesio-distal slot width and the presence of clear angle at mesial and distal slot edges increase the values of RS. With brackets horizontally displaced, the RS expressed by the wire is influenced simultaneously by the depth of the slot, the mesio-distal slot width, and the presence of clear angle at the extremities of the slot base, the clip, or the slide. Conclusion In order to select the proper low-friction bracket system, clinicians should consider specific characteristics of slot design apart from the wire engaging method. PMID:24325837

  18. Effects of Phylogenetic Tree Style on Student Comprehension

    NASA Astrophysics Data System (ADS)

    Dees, Jonathan Andrew

    Phylogenetic trees are powerful tools of evolutionary biology that have become prominent across the life sciences. Consequently, learning to interpret and reason from phylogenetic trees is now an essential component of biology education. However, students often struggle to understand these diagrams, even after explicit instruction. One factor that has been observed to affect student understanding of phylogenetic trees is style (i.e., diagonal or bracket). The goal of this dissertation research was to systematically explore effects of style on student interpretations and construction of phylogenetic trees in the context of an introductory biology course. Before instruction, students were significantly more accurate with bracket phylogenetic trees for a variety of interpretation and construction tasks. Explicit instruction that balanced the use of diagonal and bracket phylogenetic trees mitigated some, but not all, style effects. After instruction, students were significantly more accurate for interpretation tasks involving taxa relatedness and construction exercises when using the bracket style. Based on this dissertation research and prior studies on style effects, I advocate for introductory biology instructors to use only the bracket style. Future research should examine causes of style effects and variables other than style to inform the development of research-based instruction that best supports student understanding of phylogenetic trees.

  19. Bond strength of orthodontic light-cured resin-modified glass ionomer cement.

    PubMed

    Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan

    2011-04-01

    The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.

  20. Morphological characterization of as-received and in vivo orthodontic stainless steel archwires.

    PubMed

    Daems, Julie; Celis, Jean-Pierre; Willems, Guy

    2009-06-01

    This study was undertaken to evaluate the material degradation of clinical bracket-archwire-contacting surfaces after in vivo orthodontic use. Twenty-four stainless steel multiloop edgewise archwires with two different cross sections (0.016 x 0.016 and 0.016 x 0.022 inches) were used for at least 6 months in the mouths of 14 patients. The surfaces of both as-received (cross-section of 0.016 x 0.016, 0.016 x 0.022, and 0.017 x 0.025 inches) and the in vivo wires were examined using scanning electron microscopy. The as-received wires exhibited an inhomogeneous surface with different surface irregularities resulting from the manufacturing process. For the in vivo archwires, an increase in the variety, type, and number of surface irregularities were observed. Crevice corrosion occurred not only at surface irregularities formed during manufacturing and orthodontic handling but also at the bracket-archwire-contacting surfaces and at the archwire surfaces coated with plaque and food remnants. This corrosion may be linked to the formation of a micro-environment at these locations. In addition, a limited number of signs of degradation induced during in vivo testing due to wear and friction were observed.

  1. Self-ligating versus conventional metallic brackets on Streptococcus mutans retention: A systematic review

    PubMed Central

    Longoni, Juliano N.; Lopes, Beatriz M.; Freires, Irlan A.; Dutra, Kamile L.; Franco, Ademir; Paranhos, Luiz R.

    2017-01-01

    Objective: The present study aimed to review the literature systematically and assess comparatively whether self-ligating metallic brackets accumulate less Streptococcus mutans biofilm than conventional metallic brackets. Material and methods: The systematic search was performed following PRISMA guidelines and registration in PROSPERO. Seven electronic databases (Google Scholar, LILACS, Open Grey, PubMed, SciELO, ScienceDirect, and Scopus) were consulted until April 2016, with no restriction of language and time of publication. Only randomized clinical studies verifying S. mutans colonization in metallic brackets (self-ligating and conventional) were included. All steps were performed independently by two operators. Results: The search resulted in 546 records obtained from the electronic databases. Additionally, 216 references obtained from the manual search of eligible articles were assessed. Finally, a total of 5 studies were included in the qualitative synthesis. In 1 study, the total bacterial count was not different among self-ligating and conventional brackets, whereas in 2 studies the amount was lower for self-ligating brackets. Regarding the specific count of S. mutans, 2 studies showed less accumulation in self-ligating than in conventional brackets. Conclusion: Based on the limited evidence, self-ligating metallic brackets accumulate less S. mutans than conventional ones. However, these findings must be interpreted in conjunction with particularities individual for each patient – such as hygiene and dietary habits, which are components of the multifactorial environment that enables S. Mutans to proliferate and keep retained in the oral cavity. PMID:29279684

  2. Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials.

    PubMed

    Buyuk, S Kutalmış; Kucukekenci, Ahmet Serkan

    2018-03-01

    To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). CAD/CAM material types and bonding procedures affected bond strength ( P < .05), but the etching procedure did not ( P > .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.

  3. Friction behavior of self-ligating and conventional brackets with different ligature systems.

    PubMed

    Szczupakowski, Alexandra; Reimann, Susanne; Dirk, Cornelius; Keilig, Ludger; Weber, Anna; Jäger, Andreas; Bourauel, Christoph

    2016-07-01

    Self-ligating brackets are widely believed to offer better clinical efficiency and, in particular, less friction. Thus, the goal of this in vitro investigation was to assess the friction behavior of different bracket/archwire/ligature combinations during simulated canine retraction. An important aspect of this work was to determine whether conventional bracket systems behave differently in passive or active self-ligating brackets used with a Slide™ ligature, an elastic ligature, or a steel ligature. Three conventional (Contour, Class One; Discovery(®), Dentaurum; Mystique MB, GAC) and six self-ligating (Carriere SL, Class One; Clarity™ SL, 3M Unitek; Damon3, Ormco; In-Ovation(®) C, GAC; Speed Appliance, Speed System™; QuicKlear(®), Forestadent(®)) bracket systems were analyzed. All brackets featured a 0.022″ slot (0.56 mm). Each conventional system was tested with a steel ligature (0.25 mm; Remanium(®), Dentaurum), an elastic ligature (1.3 mm in diameter; Dentalastics, Dentaurum), and a modified elastic ligature (Slide™; Leone(®)). Each combination was used with four archwires, including rectangular stainless steel (0.46 × 0.64 mm, 0.018 × 0.025″, Dentaurum), rectangular nickel-titanium with Teflon coating (0.46 × 0.64 mm, 0.018 × 0.025″, Forestadent(®)), round coaxial nickel-titanium (0.46 mm, 0.018″, Speed), and half-round/half-square (D-profile) stainless steel (0.46 mm, 0.018″, Speed). In the orthodontic measurement and simulation system (OMSS), retraction of a canine was simulated on a Frasaco model replicated in resin. Based on the force systems, the respective friction values were determined. For each combination of materials, five brackets of the same type were tested and five single measurements performed. Friction values were found to vary distinctly with the different combinations, modifiers being the ligature systems and the archwire types. Any significant friction differences between the steel-ligated, Slide™-ligated, and self-ligated brackets were sporadic. All three systems were associated with average friction values of 40 %. Active self-ligating brackets and elastic-ligated conventional brackets, by contrast, generally differed significantly from the three above-mentioned bracket systems and showed distinctly higher friction values averaging 59 and 67 %, respectively. While passive self-ligating bracket systems have frequently been touted as advantageous in the literature, they should not be regarded as the only favorable system. Steel-ligated and Slide™-ligated conventional bracket systems are capable of offering similar friction performance.

  4. Four-dimensional gravity as an almost-Poisson system

    NASA Astrophysics Data System (ADS)

    Ita, Eyo Eyo

    2015-04-01

    In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.

  5. SEM-EDS-Based Elemental Identification on the Enamel Surface after the Completion of Orthodontic Treatment: In Vitro Studies

    PubMed Central

    Seeliger, Julia; Lipski, Mariusz; Wójcicka, Anna; Gedrange, Tomasz; Woźniak, Krzysztof

    2016-01-01

    Braces as foreign bodies in the mouth carry a risk of side effects and toxicity to the human body. This article presents the results indicating the possible toxic effects of tools used for cleaning the enamel after the completion of orthodontic treatment. The studies were carried out in vitro. The procedure of enamel etching, bonding orthodontic metal brackets, and enamel cleaning after their removal was performed under laboratory conditions. The enamel microstructure and elements present on its surface were evaluated using the scanning electron microscope (SEM). Silicon and aluminium were found in addition to the tooth building elements. PMID:27766265

  6. Investigation into the effects of stainless steel ligature ties on the mechanical characteristics of conventional and self-ligated brackets subjected to torque.

    PubMed

    Al Fakir, Hussam; Carey, Jason P; Melenka, Garrett W; Nobes, David S; Heo, Giseon; Major, Paul W

    2014-09-01

    Torque is applied to orthodontic brackets in order to alter the buccal-lingual angulation of a tooth. One factor that can affect torque is the ligation mode used to retain the archwire in the bracket slot. The objective of this study was to investigate the effects of stainless steel ligation on torque expression and bracket deformation. This study utilized 60 upper right central incisor Damon Q brackets and 60 Ormco Orthos Twin brackets. The brackets used in this study were subdivided into four groups: (1) Damon Q ligated with SS ligature; (2) Damon Q with the sliding bracket door; (3) Orthos Twin bracket ligated with SS wire; and (4) Orthos Twin ligated with elastic ties. All brackets were tested using an orthodontic torque simulating device that applied archwire rotation from 0° to 45°. All brackets ligated with stainless steel ties exhibited greater torque expression and less deformation than brackets without stainless steel ties. As well, Damon Q brackets exhibit less bracket deformation than Orthos Twin brackets. Stainless steel ties can reduce the amount of plastic deformation for both types of brackets used in this study. © 2014 British Orthodontic Society.

  7. Evaluation of a new nano-filled restorative material for bonding orthodontic brackets.

    PubMed

    Bishara, Samir E; Ajlouni, Raed; Soliman, Manal M; Oonsombat, Charuphan; Laffoon, John F; Warren, John

    2007-01-01

    To compare the shear bond strength of a nano-hybrid restorative material, Grandio (Voco, Cuxhaven, Germany), to that of a traditional adhesive material (Transbond XT; 3M Unitek, Monrovia, CA, USA) when bonding orthodontic brackets. Forty teeth were randomly divided into 2 groups: 20 teeth were bonded with the Transbond adhesive system and the other 20 teeth with the Grandio restorative system, following manufacturer's instructions. Student t test was used to compare the shear bond strength of the 2 systems. Significance was predetermined at P 5 .05. The t test comparisons (t = 0.55) of the shear bond strength between the 2 adhesives indicated the absence of a significant (P = .585) difference. The mean shear bond strength for Grandio was 4.1 +/- 2.6 MPa and that for Transbond XT was 4.6 +/- 3.2 MPa. During debonding, 3 of 20 brackets (15%) bonded with Grandio failed without registering any force on the Zwick recording. None of the brackets bonded with Transbond XT had a similar failure mode. The newly introduced nano-filled composite materials can potentially be used to bond orthodontic brackets to teeth if its consistency can be more flowable to readily adhere to the bracket base.

  8. Laboratory evaluations on thermal debonding of ceramic brackets.

    PubMed

    Sernetz, F; Kraut, J

    1991-01-01

    The purpose of this laboratory study was to define the working parameters and physiological safety and efficacy of the Dentaurum Ceramic Debonding Unit. Extracted mandibular incisors were utilized because of their low thermal mass and low heat sensitivity. The teeth were embedded in plastic and placed on a turning force measuring apparatus. An electrothermal element was placed in the pulp chamber (filled with a conducting paste). The thermoelement temperature was registered on y-t recorder as was the turning momentum required to remove the ceramic brackets with the Dentaurum Ceramic Debonding Unit. Ceramic brackets from GAC (Allure III), Unitek (Transcend) and Dentaurum (Fascination) using one and two component adhesives (Monolok, Concise), were tested. Scanning electron microscopic views taken after debonding showed predictable (and favorable) adhesive failure at the bracket base/resin interface. No enamel damage was demonstrated. All brackets were removable under three seconds with a clinically reproducible turning force of 85-100 Nmm allowing for intrapulpal temperature increases under the 5 degrees C biocompatible threshold. The Dentaurum Ceramic Debonding Unit provided a safe, reliable, efficient modality of removing ceramic brackets while maintaining a physiologically acceptable rise in pulpal temperature without damage to tooth enamel or pulpal tissue.

  9. Impact assisted segmented cutterhead

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1992-01-01

    An impact assisted segmented cutterhead device is provided for cutting various surfaces from coal to granite. The device comprises a plurality of cutting bit segments deployed in side by side relationship to form a continuous cutting face and a plurality of impactors individually associated with respective cutting bit segments. An impactor rod of each impactor connects that impactor to the corresponding cutting bit segment. A plurality of shock mounts dampening the vibration from the associated impactor. Mounting brackets are used in mounting the cutterhead to a base machine.

  10. Evaluation of mechanical properties of esthetic brackets.

    PubMed

    Matsui, Shigeyuki; Umezaki, Eisaku; Komazawa, Daigo; Otsuka, Yuichiro; Suda, Naoto

    2015-01-01

    Plastic brackets, as well as ceramic brackets, are used in various cases since they have excellent esthetics. However, their mechanical properties remain uncertain. The purpose of this study was to determine how deformation and stress distribution in esthetic brackets differ among materials under the same wire load. Using the digital image correlation method, we discovered the following: (1) the strain of the wings of plastic brackets is within 0.2% and that of ceramic and metal brackets is negligible, (2) polycarbonate brackets having a stainless steel slot show significantly smaller displacement than other plastic brackets, and (3) there is a significant difference between plastic brackets and ceramic and stainless steel brackets in terms of the displacement of the bracket wing.

  11. Dentoalveolar mandibular changes with self-ligating versus conventional bracket systems: A CBCT and dental cast study

    PubMed Central

    de Almeida, Marcio Rodrigues; Futagami, Cristina; Conti, Ana Cláudia de Castro Ferreira; Oltramari-Navarro, Paula Vanessa Pedron; Navarro, Ricardo de Lima

    2015-01-01

    OBJECTIVE: The aim of the present study was to compare dentoalveolar changes in mandibular arch, regarding transversal measures and buccal bone thickness, in patients undergoing the initial phase of orthodontic treatment with self-ligating or conventional bracket systems. METHODS: A sample of 25 patients requiring orthodontic treatment was assessed based on the bracket type. Group 1 comprised 13 patients bonded with 0.022-in self-ligating brackets (SLB). Group 2 included 12 patients bonded with 0.022-in conventional brackets (CLB). Cone-beam computed tomography (CBCT) scans and a 3D program (Dolphin) assessed changes in transversal width of buccal bone (TWBB) and buccal bone thickness (BBT) before (T1) and 7 months after treatment onset (T2). Measurements on dental casts were performed using a digital caliper. Differences between and within groups were analyzed by Student's t-test; Pearson correlation coefficient was also calculated. RESULTS: Significant mandibular expansion was observed for both groups; however, no significant differences were found between groups. There was significant decrease in mandibular buccal bone thickness and transversal width of buccal bone in both groups. There was no significant correlation between buccal bone thickness and dental arch expansion. CONCLUSIONS: There were no significant differences between self-ligating brackets and conventional brackets systems regarding mandibular arch expansion and changes in buccal bone thickness or transversal width of buccal bone. PMID:26154456

  12. The Effect of Two Soft Drinks on Bracket Bond Strength and on Intact and Sealed Enamel: An In Vitro Study.

    PubMed

    Pasha, Azam; Sindhu, D; Nayak, Rabindra S; Mamatha, J; Chaitra, K R; Vishwakarma, Swati

    2015-01-01

    This study was conducted to evaluate the effect of two soft drinks, Coca-Cola and Mirinda orange on bracket bond strength, on adhesive remnant on teeth after debonding the bracket, and to observe by means of scanning electron microscope (SEM) the effect of these drinks on intact and sealed enamel. 120 non-carious maxillary premolar teeth already extracted for Orthodontic purposes were taken and divided into three groups, i.e., Coca-Cola drink, Mirinda orange, and control (artificial saliva) group. Brackets were bonded using conventional methods. Teeth were kept in soft drinks for 15 days, for 15 min, 3 times a day, separated by intervals of 2 h. At other times, they were kept in artificial saliva. The samples, thus obtained were evaluated for shear bond strength using the universal testing machine and subsequently subjected for adhesive remnant index (ARI) scores. SEM study on all the three groups was done for evaluating enamel surface of the intact and sealed enamel. The lowest mean resistance to shearing forces was shown by Mirinda orange group (5.30 ± 2.74 Mpa) followed by Coca-Cola group (6.24 ± 1.59 Mpa) and highest resistance to shearing forces by control group (7.33 ± 1.72 Mpa). The ARI scores revealed a cohesive failure in control samples and an adhesive failure in Mirinda and cola samples. SEM results showed areas of defect due to erosion caused by acidic soft drinks on intact and sealed enamel surface. Mirinda group showed the lowest resistance to shearing forces, followed by Coca-Cola group and with the highest resistance to shearing forces by the control group. There were significant differences between the control group and the study groups. Areas of defects, which were caused by erosion related to acidic soft drinks on the enamel surface around the adhesive, were seen. Areas of defects caused by Coca-Cola were more extensive when compared to Mirinda orange drink.

  13. Evaluation of mechanical properties of esthetic brackets

    PubMed Central

    Umezaki, Eisaku; Komazawa, Daigo; Otsuka, Yuichiro; Suda, Naoto

    2015-01-01

    Plastic brackets, as well as ceramic brackets, are used in various cases since they have excellent esthetics. However, their mechanical properties remain uncertain. The purpose of this study was to determine how deformation and stress distribution in esthetic brackets differ among materials under the same wire load. Using the digital image correlation method, we discovered the following: (1) the strain of the wings of plastic brackets is within 0.2% and that of ceramic and metal brackets is negligible, (2) polycarbonate brackets having a stainless steel slot show significantly smaller displacement than other plastic brackets, and (3) there is a significant difference between plastic brackets and ceramic and stainless steel brackets in terms of the displacement of the bracket wing. PMID:25755677

  14. Effect of delayed polymerization time and bracket manipulation on orthodontic bracket bonding

    NASA Astrophysics Data System (ADS)

    Ponikvar, Michael J.

    This study examined the effect of bracket manipulation in combination with delayed polymerization times on orthodontic bracket shear bond strength and degree of resin composite conversion. Orthodontics brackets were bonded to extracted third molars in a simulated oral environment after a set period of delayed polymerization time and bracket manipulation. After curing the bracket adhesive, each bracket underwent shear bond strength testing followed by micro-Raman spectroscopy analysis to measure the degree of conversion of the resin composite. Results demonstrated the shear bond strength and the degree of conversion of ceramic brackets did not vary over time. However, with stainless steel brackets there was a significant effect (p ≤ 0.05) of delay time on shear bond strength between the 0.5 min and 10 min bracket groups. In addition, stainless steel brackets showed significant differences related to degree of conversion over time between the 0.5 min and 5 min groups, in addition to the 0.5 min and 10 min groups. This investigation suggests that delaying bracket adhesive polymerization up to a period of 10 min then adjusting the orthodontic bracket may increase both shear bond strength and degree of conversion of stainless steel brackets while having no effect on ceramic brackets.

  15. Coated Rectangular Composite Archwires: A Comparison Of Self-Ligating And Conventional Bracket Systems During Sliding Mechanics

    NASA Astrophysics Data System (ADS)

    Woods, David Keith

    The purpose of this study was to analyze the resistance to sliding of coated rectangular fiber reinforced composite archwires using various brackets systems and second-order bracket angulations. Resistance to sliding was investigated for eight bracket systems: six self-ligating brackets (four passive and two passive-active) and two conventional brackets. A rectangular fiber reinforced composite archwire of 0.019 x 0.025-in dimension from BiomersRTM SimpliClear was drawn through a three-bracket model system at ten millimeters per minute for 2.5 millimeters. For each bracket, the resistance to sliding was measured at four bracket angulations (0°, 2.5°, 5°, and 10°) in a dry state at room temperature. The fiber reinforced composite archwire produced the lowest sliding resistance with the passive self-ligating bracket system (Damon DQ) at each bracket angulation tested. Overall, self-ligating bracket systems generated lower sliding resistance than conventionally ligated systems, and one passive/active self-ligating bracket system (In-Ovation-R). There was a significant increase in resistance to sliding as bracket angulation increased for all bracket systems tested. Microscopic analysis revealed increased perforation of the archwire coating material as bracket angulations were increased. Our findings show that the rectangular fiber reinforced composite archwire may be acceptable for sliding mechanics during the intermediate stages of orthodontic tooth movement, however more long-term studies are needed.

  16. Comparison of the force levels among labial and lingual self-ligating and conventional brackets in simulated misaligned teeth.

    PubMed

    Alobeid, Ahmad; El-Bialy, Tarek; Khawatmi, Said; Dirk, Cornelius; Jäger, Andreas; Bourauel, Christoph

    2017-08-01

    The aim of this study was to evaluate force levels exerted by levelling arch wires with labial and lingual conventional and self-ligating brackets. The tested orthodontic brackets were of the 0.022-in slot size for labial and 0.018-in for lingual brackets and were as follows: 1. Labial brackets: (i) conventional bracket (GAC-Twin, Dentsply), (ii) passive self-ligating (SL) brackets (Damon-Q®, ORMCO; Ortho classic H4™, Orthoclassic; FLI®SL, Rocky Mountain Orthodontics) and (iii) active SL brackets (GAC In-Ovation®C, DENTSPLY and SPEED™, Strite). 2. Lingual brackets: (i) conventional brackets (Incognito, 3M and Joy™, Adenta); (ii) passive SL bracket (GAC In-Ovation®LM™, Dentsply and (iii) active SL bracket (Evolution SLT, Adenta). Thermalloy-NiTi 0.013-in and 0.014-in arch wires (Rocky Mountain Orthodontics) were used with all brackets. The simulated malocclusion represented a maxillary central incisor displaced 2 mm gingivally (x-axis) and 2 mm labially (z-axis). Lingual bracket systems showed higher force levels (2.4 ± 0.2 to 3.8 ± 0.2 N) compared to labial bracket systems (from 1.1 ± 0.1 to 2.2 ± 0.4 N). However, the differences between SL and conventional bracket systems were minor and not consistent (labial brackets: 1.2 ± 0.1 N for the GAC Twin and 1.1 ± 0.1 to 1.6 ± 0.1 N for the SL brackets with 0.013-in thermalloy; lingual brackets: 2.5 ± 0.2 to 3.5 ± 0.1 N for the conventional and 2.7 ± 0.3 to 3.4 ± 0.1 N for the SL brackets with 0.013-in Thermalloy). This is an in vitro study with different slot sizes in the labial and lingual bracket systems, results should be interpreted with caution. Lingual bracket systems showed higher forces compared to labial bracket systems that might be of clinical concern. We recommend highly flexible nickel titanium arch wires lower than 0.013-in for the initial levelling and alignment especially with lingual appliances. © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  17. Comparison of shear bond strength of brackets recycled using micro sandblasting and industrial methods.

    PubMed

    Montero, Manuela M Haro; Vicente, Ascensión; Alfonso-Hernández, Noelia; Jiménez-López, Manuel; Bravo-González, Luis-Alberto

    2015-05-01

    To evaluate in vitro the shear bond strength of brackets recycled by sandblasting with aluminum oxide particles of different sizes or reconditioned industrially after successive rebonding. Eighty brackets were bonded and debonded sequentially three times. After the first debonding, brackets were divided into four groups: (group 1) sandblasting with aluminum oxide particles of 25 μ, (group 2) 50 μ, and (group 3) 110 μ, and (group 4) industrial recycling. Bond strength and adhesive material remaining on debonded bracket bases were evaluated for each successive debond. No significant differences were detected between the four groups following the first recycle (P > .05). After the second recycle, bond strength was significantly greater for the industrially recycled group than the other groups (P < .016). When shear bond strength was compared within each recycling method, the bond strength of sandblasted brackets decreased with the increase of particle size and with each recycle; for the industrially recycled group, no significant differences were detected between the three sequences (P > .016). In the evaluation of bond material remnant, the industrially recycled group left significantly less bond material after successive recycling than the other groups did (P < .016). Within each recycling method, the adhesive remnant decreased significantly after successive debond (P < .016). Industrial recycling obtained better results than sandblasting after three successive debondings. The brackets' shear bond strength decreased as the size of the aluminum oxide particle used for sandblasting increased and as recycling was repeated.

  18. Frictional resistance of self-ligating versus conventional brackets in different bracket-archwire-angle combinations

    PubMed Central

    MONTEIRO, Maria Regina Guerra; da SILVA, Licinio Esmeraldo; ELIAS, Carlos Nelson; VILELLA, Oswaldo de Vasconcellos

    2014-01-01

    Objective To compare the influence of archwire material (NiTi, beta-Ti and stainless steel) and brackets design (self-ligating and conventional) on the frictional force resistance. Material and Methods Two types of brackets (self-ligating brackets - Smartclip, 3M/Unitek - and conventional brackets - Gemini, 3M/Unitek) with three (0, 5, and 10 degrees) slot angulation attached with elastomeric ligatures (TP Orthodontics) were tested. All brackets were tested with archwire 0.019"x0.025" nickel-titanium, beta-titanium, and stainless steel (Unitek/3M). The mechanical testing was performed with a universal testing machine eMIC DL 10000 (eMIC Co, Brazil). The wires were pulled from the bracket slots at a cross-head speed of 3 mm/min until 2 mm displacement. Results Self-ligating brackets produced significantly lower friction values compared with those of conventional brackets. Frictional force resistance values were directly proportional to the increase in the bracket/ wire angulation. With regard to conventional brackets, stainless steel wires had the lowest friction force values, followed by nickel-titanium and beta-titanium ones. With regard to self-ligating brackets, the nickel-titanium wires had the lowest friction values, significantly lower than those of other materials. Conclusion even at different angulations, the self-ligating brackets showed significantly lower friction force values than the conventional brackets. Combined with nickel-titanium wires, the self-ligating brackets exhibit much lower friction, possibly due to the contact between nickel-titanium clips and wires of the same material. PMID:25025564

  19. Photoelastic analysis of stress generated by wires when conventional and self-ligating brackets are used: A pilot study

    PubMed Central

    Sobral, Guilherme Caiado; Vedovello, Mário; Degan, Viviane Veroni; Santamaria, Milton

    2014-01-01

    OBJECTIVE: By means of a photoelastic model, this study analyzed the stress caused on conventional and self-ligating brackets with expanded arch wires. METHOD: Standard brackets were adhered to artificial teeth and a photoelastic model was prepared using the Interlandi 19/12 diagram as base. Successive activations were made with 0.014-in and 0.018-in rounded cross section Nickel-Titanium wires (NiTi) and 0.019 x 0.025-in rectangular stainless steel wires all of which made on 22/14 Interlandi diagram. The model was observed on a plane polariscope - in a dark field microscope configuration - and photographed at each exchange of wire. Then, they were replaced by self-ligating brackets and the process was repeated. Analysis was qualitative and observed stress location and pattern on both models analyzed. CONCLUSIONS: Results identified greater stress on the region of the apex of premolars in both analyzed models. Upon comparing the stress between models, a greater amount of stress was found in the model with conventional brackets in all of its wires. Therefore, the present pilot study revealed that alignment of wires in self-ligating brackets produced lower stress in periodontal tissues in expansive mechanics. PMID:25715719

  20. Comparison of Frictional Forces Generated by a New Ceramic Bracket with the Conventional Brackets using Unconventional and Conventional Ligation System and the Self-ligating Brackets: An In Vitro Study.

    PubMed

    Pasha, Azam; Vishwakarma, Swati; Narayan, Anjali; Vinay, K; Shetty, Smitha V; Roy, Partha Pratim

    2015-09-01

    Fixed orthodontic mechanotherapy is associated with friction between the bracket - wire - ligature interfaces during the sliding mechanics. A sound knowledge of the various factors affecting the magnitude of friction is of paramount importance. The present study was done to analyze and compare the frictional forces generated by a new ceramic (Clarity Advanced) bracket with the conventional, (metal and ceramic) brackets using unconventional and conventional ligation system, and the self-ligating (metal and ceramic) brackets in the dry condition. The various bracket wire ligation combinations were tested in dry condition. The brackets used were of 0.022″ × 0.028″ nominal slot dimension of MBT prescription: Stainless steel (SS) self-ligating bracket (SLB) of (SmartClip), SS Conventional bracket (CB) (Victory series), Ceramic SLB (Clarity SL), Conventional Ceramic bracket with metal slot (Clarity Bracket), Clarity Advanced Ceramic Brackets (Clarity(™) ADVANCED, 3M Unitek). These brackets were used with two types of elastomeric ligatures: Conventional Elastomeric Ligatures (CEL) (Clear medium mini modules) and Unconventional Elastomeric Ligatures (UEL) (Clear medium slide ligatures, Leone orthodontic products). The aligning and the retraction wires were used, i.e., 0.014″ nickel titanium (NiTi) wires and 0.019″ × 0.025″ SS wires, respectively. A universal strength testing machine was used to measure the friction produced between the different bracket, archwires, and ligation combination. This was done with the use of a custom-made jig being in position. Mean, standard deviation, and range were computed for the frictional values obtained. Results were subjected to statistical analysis through ANOVA. The frictional resistance observed in the new Clarity Advanced bracket with a conventional elastomeric ligature was almost similar with the Clarity metal slot bracket with a conventional elastomeric ligature. When using the UEL, the Clarity Advanced bracket produced lesser friction than the conventional metal bracket; but not less than the ceramic metal slot bracket. Ceramic SLB produced lesser friction when compared with the Clarity Advanced bracket with UEL, but the metal SLB produced the least friction among all the groups and subgroups. The present study concluded that the SS SLB produced least friction among all groups. Using the archwire and ligation method, frictional forces observed in the Clarity Advanced bracket and the conventional ceramic with metal slot bracket were almost similar; but the least resistance was determined in SS CB using both the ligation (CEL and UEL) system.

  1. 12 CFR 8.2 - Semiannual assessment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... over— Column A Column B Column C Column D Column E Million Million Million (dollars) (dollars) (dollars... into one of the asset-size brackets denoted by Columns A and B. A bank's or Federal savings association... the lower endpoint (Column A) of the bracket in which it falls. This base amount of the assessment is...

  2. 12 CFR 8.2 - Semiannual assessment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... over— Column A Column B Column C Column D Column E Million Million Million (dollars) (dollars) (dollars... into one of the asset-size brackets denoted by Columns A and B. A bank's or Federal savings association... the lower endpoint (Column A) of the bracket in which it falls. This base amount of the assessment is...

  3. 12 CFR 8.2 - Semiannual assessment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... over— Column A Column B Column C Column D Column E Million Million Million (dollars) (dollars) (dollars... into one of the asset-size brackets denoted by Columns A and B. A bank's or Federal savings association... the lower endpoint (Column A) of the bracket in which it falls. This base amount of the assessment is...

  4. PGI Bracket Positioner: A Novel Combination of Reverse Bracket Tweezer and Positioning Gauze.

    PubMed

    Singh, Sombir; Verma, Sanjeev; Bhupali, Nameksh Raj; Singh, Satinder Pal

    2018-01-01

    The accurate bracket positioning is essential for the expression of the bracket system that affects the treatment outcome considerably and is also essential for good functional occlusion as well as facial esthetics. The proper alignment cannot be achieved without proper bracket positioning. Thus, the brackets positioning devices are an integral part of orthodontic armamentarium. Here, we present a new innovation that provides a unique combination of reverse bracket tweezer and positioner and hence is very helpful in precise vertical positioning of brackets with increased efficiency.

  5. Torque expression in self-ligating orthodontic brackets and conventionally ligated brackets: A systematic review

    PubMed Central

    Al-Thomali, Yousef; Mohamed, Roshan-Noor; Basha, Sakeenabi

    2017-01-01

    Background To evaluate the torque expression of self ligating (SL) orthodontic brackets and conventionally ligated brackets and the torque expression in active and passive SL brackets. Material and Methods Our systematic search included MEDLINE, EMBASE, CINAHL, PsychINFO, Scopus, and key journals and review articles; the date of the last search was April 4th 2016. We graded the methodological quality of the studies by means of the Quality Assessment Tool for Quantitative Studies, developed for the Effective Public Health Practice Project (EPHPP). Results In total, 87 studies were identified for screening, and 9 studies were eligible. The quality assessment rated one of the study as being of strong quality, 7 (77.78%) of these studies as being of moderate quality. Three out of 7 studies which compared SL and conventionally ligated brackets showed, conventionally ligated brackets with highest torque expression compared to SL brackets. Badawi showed active SL brackets with highest torque expression compared to passive SL brackets. Major and Brauchli showed no significant differences in torque expression of active and passive SL brackets. Conclusions Conventionally ligated brackets presented with highest torque expression compared to SL brackets. Minor difference was recorded in a torque expression of active and passive SL brackets. Key words:Systematic review, self ligation, torque expression, conventional ligation. PMID:28149476

  6. Torque expression in self-ligating orthodontic brackets and conventionally ligated brackets: A systematic review.

    PubMed

    Al-Thomali, Yousef; Mohamed, Roshan-Noor; Basha, Sakeenabi

    2017-01-01

    To evaluate the torque expression of self ligating (SL) orthodontic brackets and conventionally ligated brackets and the torque expression in active and passive SL brackets. Our systematic search included MEDLINE, EMBASE, CINAHL, PsychINFO, Scopus, and key journals and review articles; the date of the last search was April 4th 2016. We graded the methodological quality of the studies by means of the Quality Assessment Tool for Quantitative Studies, developed for the Effective Public Health Practice Project (EPHPP). In total, 87 studies were identified for screening, and 9 studies were eligible. The quality assessment rated one of the study as being of strong quality, 7 (77.78%) of these studies as being of moderate quality. Three out of 7 studies which compared SL and conventionally ligated brackets showed, conventionally ligated brackets with highest torque expression compared to SL brackets. Badawi showed active SL brackets with highest torque expression compared to passive SL brackets. Major and Brauchli showed no significant differences in torque expression of active and passive SL brackets. Conventionally ligated brackets presented with highest torque expression compared to SL brackets. Minor difference was recorded in a torque expression of active and passive SL brackets. Key words: Systematic review, self ligation, torque expression, conventional ligation.

  7. Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets.

    PubMed

    Krishnan, Manu; Tiwari, Brijesh; Seema, Saraswathy; Kalra, Namitha; Biswas, Papiya; Rajeswari, Kotikalapudi; Suresh, Madireddy Buchi; Johnson, Roy; Gokhale, Nitin M; Iyer, Satish R; Londhe, Sanjay; Arora, Vimal; Tripathi, Rajendra P

    2014-11-01

    Adult orthodontics is recently gaining popularity due to its importance in esthetics, oral and general health. However, none of the currently available alumina or zirconia based ceramic orthodontic brackets meet the esthetic demands of adult patients. Inherent hexagonal lattice structure and associated birefringence limits the visible light transmission in polycrystalline alumina and make them appear white and non transparent. Hence focus of the present study was to assess the feasibility of using magnesium aluminate (MgAl2O4) spinel; a member of the transparent ceramic family for esthetic orthodontic brackets. Transparent spinel specimens were developed from commercially available white spinel powder through colloidal shaping followed by pressureless sintering and hot isostatic pressing at optimum conditions of temperature and pressure. Samples were characterized for chemical composition, phases, density, hardness, flexural strength, fracture toughness and optical transmission. Biocompatibility was evaluated with in-vitro cell line experiments for cytotoxicity, apoptosis and genotoxicity. Results showed that transparent spinel samples had requisite physico-chemical, mechanical, optical and excellent biocompatibility for fabricating orthodontic brackets. Transparent spinel developed through this method demonstrated its possibility as a prospective biomaterial for developing esthetic orthodontic brackets.

  8. Comparison of Self-Etch Primers with Conventional Acid Etching System on Orthodontic Brackets

    PubMed Central

    Zope, Amit; Zope-Khalekar, Yogita; Chitko, Shrikant S.; Kerudi, Veerendra V.; Patil, Harshal Ashok; Jaltare, Pratik; Dolas, Siddhesh G

    2016-01-01

    Introduction The self-etching primer system consists of etchant and primer dispersed in a single unit. The etching and priming are merged as a single step leading to fewer stages in bonding procedure and reduction in the number of steps that also reduces the chance of introduction of error, resulting in saving time for the clinician. It also results in smaller extent of enamel decalcification. Aim To compare the Shear Bond Strength (SBS) of orthodontic bracket bonded with Self-Etch Primers (SEP) and conventional acid etching system and to study the surface appearance of teeth after debonding; etching with conventional acid etch and self-etch priming, using stereomicroscope. Materials and Methods Five Groups (n=20) were created randomly from a total of 100 extracted premolars. In a control Group A, etching of enamel was done with 37% phosphoric acid and bonding of stainless steel brackets with Transbond XT (3M Unitek, Monrovia, California). Enamel conditioning in left over four Groups was done with self-etching primers and adhesives as follows: Group B-Transbond Plus (3M Unitek), Group C Xeno V+ (Dentsply), Group D-G-Bond (GC), Group E-One-Coat (Coltene). The Adhesive Remnant Index (ARI) score was also evaluated. Additionally, the surface roughness using profilometer were observed. Results Mean SBS of Group A was 18.26±7.5MPa, Group B was 10.93±4.02MPa, Group C was 6.88±2.91MPa while of Group D was 7.78±4.13MPa and Group E was 10.39±5.22MPa respectively. In conventional group ARI scores shows that over half of the adhesive was remaining on the surface of tooth (score 1 to 3). In self-etching primer groups ARI scores show that there was no or minor amount of adhesive remaining on the surface of tooth (score 4 and 5). SEP produces a lesser surface roughness on the enamel than conventional etching. However, statistical analysis shows significant correlation (p<0.001) of bond strength with surface roughness of enamel. Conclusion All groups might show clinically useful SBS values and Transbond XT can be successfully used for bracket bonding after enamel conditioning with any of the SEPs tested. The SEPs used in Groups C (Xeno V+) and D (G-Bond) have significantly lowered SBS. Although, the values might still be clinically acceptable. PMID:28208997

  9. The Effects of In-Office Reconditioning on the Slot Dimensions and Static Frictional Resistance of Stainless Steel Brackets

    PubMed Central

    Nellore, Chaitanya; Karnati, Praveen Kumar Reddy; Thalapaneni, Ashok Kumar; Myla, Vijay Bhaskar; Ramyasree, Konda; Prasad, Mandava

    2016-01-01

    Introduction Orthodontists are commonly faced with the decision of what to do with loose brackets, and with inaccurately located brackets that need repositioning during treatment. One solution is to recycle the brackets. The potential effects of reconditioning a bracket are dependent upon many factors which may result in physical changes like alteration in slot tolerance, which may influence sliding mechanics by affecting frictional resistance. Aim To study and compare the dimensional changes in the bracket slot width and depth in reconditioned brackets from unused brackets under scanning electronic microscope and to study and compare any consequent effects on the static frictional resistance of stainless steel brackets after reconditioning and in unused brackets. Materials and Methods Dentarum manufactured 90 stainless steel central incisors edgewise brackets of size 0.22 X 0.030″ inch and 0° tip and 0°angulation were taken. 60 samples for measuring frictional resistance and 30 samples for measuring slot dimensions. Ortho organizers manufactured stainless steel arch wires 0.019 X 0.025″ straight lengths 60 in number were considered for measuring static frictional resistance. Results The mean slot width and depth of new brackets were 0.0251″ and 0.0471″, which exceeded the manufacturers reported nominal size of 0.022″ X 0.030″, by 0.003″ and 0.017″. The reconditioned brackets demonstrated a further increase in mean slot width and depth to 0.028″ and 0.0518″ that is by 0.0035″ and 0.0047″ which is statistically significant (p=0.001, 0.002). The mean static frictional forces of the reconditioned brackets was nearly similar to that of new brackets that is 0.3167N for reconditioned brackets and 0.2613 N for new brackets. Conclusion Although the reconditioning process results in physical changes to bracket structure this does not appear to result in significant effect on ex-vivo static frictional resistance. PMID:26894182

  10. The Effects of In-Office Reconditioning on the Slot Dimensions and Static Frictional Resistance of Stainless Steel Brackets.

    PubMed

    Iluru, Rohini; Nellore, Chaitanya; Karnati, Praveen Kumar Reddy; Thalapaneni, Ashok Kumar; Myla, Vijay Bhaskar; Ramyasree, Konda; Prasad, Mandava

    2016-01-01

    Orthodontists are commonly faced with the decision of what to do with loose brackets, and with inaccurately located brackets that need repositioning during treatment. One solution is to recycle the brackets. The potential effects of reconditioning a bracket are dependent upon many factors which may result in physical changes like alteration in slot tolerance, which may influence sliding mechanics by affecting frictional resistance. To study and compare the dimensional changes in the bracket slot width and depth in reconditioned brackets from unused brackets under scanning electronic microscope and to study and compare any consequent effects on the static frictional resistance of stainless steel brackets after reconditioning and in unused brackets. Dentarum manufactured 90 stainless steel central incisors edgewise brackets of size 0.22 X 0.030″ inch and 0° tip and 0°angulation were taken. 60 samples for measuring frictional resistance and 30 samples for measuring slot dimensions. Ortho organizers manufactured stainless steel arch wires 0.019 X 0.025″ straight lengths 60 in number were considered for measuring static frictional resistance. The mean slot width and depth of new brackets were 0.0251″ and 0.0471″, which exceeded the manufacturers reported nominal size of 0.022″ X 0.030″, by 0.003″ and 0.017″. The reconditioned brackets demonstrated a further increase in mean slot width and depth to 0.028″ and 0.0518″ that is by 0.0035″ and 0.0047″ which is statistically significant (p=0.001, 0.002). The mean static frictional forces of the reconditioned brackets was nearly similar to that of new brackets that is 0.3167N for reconditioned brackets and 0.2613 N for new brackets. Although the reconditioning process results in physical changes to bracket structure this does not appear to result in significant effect on ex-vivo static frictional resistance.

  11. A comparative assessment of torque generated by lingual and conventional brackets.

    PubMed

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2013-06-01

    The aim of this study was to assess the effect of bracket type on the labiopalatal moments generated by lingual and conventional brackets. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), In-Ovation L lingual brackets (DENTSPLY GAC), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on identical maxillary acrylic resin models with levelled and aligned teeth. Each model was mounted on the orthodontic measurement and simulation system and 10 0.0175 × 0.0175 TMA wires were used for each bracket type. The wire was ligated with elastomerics into the Incognito, STb, and conventional brackets and each measurement was repeated once after religation. A 15 degrees buccal root torque (+15 degrees) and then a 15 degrees palatal root torque (-15 degrees) were gradually applied to the right central incisor bracket. After each activation, the bracket returned to its initial position and the moments in the sagittal plane were recorded during these rotations of the bracket. One-way analysis of variance with post hoc multiple comparisons (Tukey test at 0.05 error rate) was conducted to assess the effect on bracket type on the generated moments. The magnitude of maximum moment at +15 degrees ranged 8.8, 8.2, 7.1, and 5.8 Nmm for the Incognito, STb, conventional Gemini, and the In-Ovation L brackets, respectively; similar values were recorded at -15 degrees: 8.6, 8.1, 7.0, and 5.7 Nmm, respectively. The recorded differences of maximum moments were statistically significant, except between the Incognito and STb brackets. Additionally, the torque angles were evaluated at which the crown torque fell well below the minimum levels of 5.0 Nmm, as well as the moment/torque ratio at the last part of the activation/deactivation curve, between 10 and 15 degrees. The lowest torque expression was observed at the self-ligating lingual brackets, followed by the conventional brackets. The Incognito and STb lingual brackets generated the highest moments.

  12. Altered Passive Eruption Complicating Optimal Orthodontic Bracket Placement: A Case Report and Review of Literature.

    PubMed

    Pulgaonkar, Rohan; Chitra, Prasad

    2015-11-01

    An unusual case of altered passive eruption with gingival hyperpigmentation and a Class I malocclusion in a 12-year-old girl having no previous history of medication is presented. The patient reported with spacing in the upper arch, moderate crowding in the lower arch, anterior crossbite and excessive gingival tissue on the labial surfaces of teeth in both the arches. The inadequate crown lengths made placement of the orthodontic brackets difficult. Preadjusted orthodontic brackets have a very precise placement protocol which can affect tooth movement in all 3 planes of space if violated. The periodontal condition was diagnosed as altered passive eruption Type IA. Interdisciplinary treatment protocols including periodontal surgical and orthodontic procedures were used. The periodontal surgical procedures were carried out prior to orthodontic therapy and the results obtained were satisfactory. It is suggested that orthodontists should be aware of conditions like altered passive eruption and modalities of management. In most instances, orthodontic therapy is not hindered.

  13. Incidence of white spot lesions among patients treated with self- and conventional ligation systems.

    PubMed

    Akin, Mehmet; Tezcan, Mucella; Ileri, Zehra; Ayhan, Faruk

    2015-07-01

    The aim of this study was to investigate the incidence of white spot lesions (WSLs) and its relationship with various patient and treatment variables, in patients treated with self-ligation and conventional ligation orthodontic bracket systems. Two-hundred randomly selected patient records (136 female, 64 male) for self-ligation and (108 female, 92 male) for conventional ligation groups were examined to determine WSL development. In the self-ligation group, Damon 3MX (Ormco, Glendora, Calif) brackets had been used, and in the conventional ligation group, Equilibrium 2 (Dentaurum, Phorzeim, Germany) had been used. Labial surfaces of 24 teeth in the pre- and post-treatment photographic records were scored using the WSL index. The prevalence of patients who developed at least 1 WSL before treatment was 19%, whereas after treatment, it was 49% in the self-ligation and 54% in the conventional ligation groups. Before treatment, the patients had only mild WSL, but after treatment, severe WSL and cavitation were observed in both groups. Bracket type, age, and hygiene care were significantly associated with new WSL development (P = 0.008, P = 0.004, P = 0.013, respectively). Bracket type and more importantly, the hygiene care therapy provided appeared to influence the development of new WSLs. Ligation can promote plaque accumulation and thereby new WSL development in conventional bracket systems. This article investigates the incidence of WSLs in patients treated with self-ligation and conventional ligation. The present study showed that incidence of WSL less in the self-ligation than in the conventional ligation but hygiene care was mostly important factor in developed WSL.

  14. Effect of a two-year fluoride decay protection protocol on titanium brackets.

    PubMed

    Khoury, Elie S; Abboud, Maher; Bassil-Nassif, Nayla; Bouserhal, Joseph

    2011-12-01

    Fluoride ion can attack titanium, causing its corrosion. Orthodontic patients being high-risk caries developers and in need of fluoride protection, the Center for Disease Control has developed a Fluoride Decay Prevention (FDP) protocol, consisting of a 6-minute tooth-brushing, followed by a 1-minute daily mouthwash, in addition to an in-clinic trimestrial topical fluoride gel application. This study aimed at evaluating gravimetrically, by scanning electron microscopy (SEM), and by sliding mechanics analysis, the consequences of FDP at 6, 12, 18, and 24months on titanium brackets corrosion. One hundred and fifty titanium brackets were randomly divided into five groups of 30. Group 1 was the control group. Groups 2, 3, 4, and 5 each received an equivalent of 6, 12, 18, and 24months of FDP treatment respectively. All groups were placed in artificial saliva for 2months and then rinsed. Subsequently, the brackets were dried, for 48hours, using Silica gel in a desiccator maintained at 37°C before testing. SEM analysis showed that numbers and dimensions of pits gradually increased due to corrosion as we moved from group 1 to group 5. Gravimetrical and sliding mechanics results revealed no statistical difference between groups 2 and 3, and a significant difference between groups 4 and 5 upon comparison with the control group. Surface changes due to corrosion were detected at 6 and 12months of FDP but had no clinical effects. However, the increase in sliding resistance and bracket weight loss became significant at 18 and 24months of FDP. Copyright © 2011 CEO. Published by Elsevier Masson SAS. All rights reserved.

  15. [Comparison of root resorption between self-ligating and conventional brackets using cone-beam CT].

    PubMed

    Liu, Yun; Guo, Hong-ming

    2016-04-01

    To analyze the differences of root resorption between passive self-ligating and conventional brackets, and to determine the relationship between passive self-ligating brackets and root resorption. Fifty patients were randomly divided into 2 groups using passive self-ligating brackets or conventional straight wire brackets (0.022 system), respectively. Cone-beam CT was taken before and after treatment. The amount of external apical root resorption of maxillary incisors was measured on CBCT images. Student's t test was performed to analyze the differences of root apical resorption between the 2 groups with SPSS17.0 software package. No significant difference(P> 0.05) in root resorption of maxillary incisors was found between passive self-ligating brackets and conventional brackets. Passive self-ligating brackets and conventional brackets can cause root resorption, but the difference was not significant. Passive self-ligating brackets do not induce more root resorption.

  16. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  17. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  18. KommonBase - A precise direct bonding system for labial fixed appliances.

    PubMed

    Miyashita, Wataru; Komori, Akira; Takemoto, Kyoto

    2017-09-01

    "KommonBase" is a system designed to customize the bracket base by means of an extended resin base covering the tooth. This system enables precise bracket placement and accurate fit on teeth. Moreover, KommonBase can be easily fabricated in a laboratory and bonded on each tooth using simple clinical procedures. Straight-wire treatment without wire bending was achieved in the clinical cases presented in this article using the KommonBase system for a labial fixed appliance. The application of KommonBase to the vestibular side enables efficient orthodontic treatment using simple mechanics. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  19. Mechanical equilibrium of forces and moments applied on orthodontic brackets of a dental arch: Correlation with literature data on two and three adjacent teeth.

    PubMed

    Wagner, Delphine; Bolender, Yves; Rémond, Yves; George, Daniel

    2017-01-01

    Although orthodontics have greatly improved over the years, understanding of its associated biomechanics remains incomplete and is mainly based on two dimensional (2D) mechanical equilibrium and long-time clinical experience. Little experimental information exists in three dimensions (3D) about the forces and moments developed on orthodontic brackets over more than two or three adjacent teeth. We define here a simplified methodology to quantify 3D forces and moments applied on orthodontic brackets fixed on a dental arch and validate our methodology using existing results from the literature by means of simplified hypotheses.

  20. Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation

    NASA Astrophysics Data System (ADS)

    Melenka, G. W.; Nobes, D. S.; Major, P. W.; Carey, J. P.

    2013-12-01

    The design and testing of an orthodontic torque simulator that reproduces the effect of archwire rotation on orthodontic brackets is described. This unique device is capable of simultaneously measuring the deformation and loads applied to an orthodontic bracket due to archwire rotation. Archwire rotation is used by orthodontists to correct the inclination of teeth within the mouth. This orthodontic torque simulator will provide knowledge of the deformation and loads applied to orthodontic bracket that will aide clinicians by describing the effect of archwire rotation on brackets. This will also impact that design on new archwirebracket systems by providing an assessment of performance. Deformation of the orthodontic bracket tie wings is measured using a digital image correlation process to measure elastic and plastic deformation. The magnitude of force and moments applied to the bracket though the archwire is also measured using a six-axis load cell. Initial tests have been performed on two orthodontic brackets of varying geometry to demonstrate the measurement capability of the orthodontic torque simulator. The demonstration experiment shows that a Damon Q bracket had a final plastic deformation after a single loading of 0.022 mm while the Speed bracket deformed 0.071 mm. This indicates that the Speed bracket plastically deforms 3.2 times more than the Damon Q bracket for similar magnitude of applied moment. The demonstration experiment demonstrates that bracket geometry affect the deformation of orthodontic brackets and this difference can be detected using the orthodontic torque simulator.

  1. Microbial profile on metallic and ceramic bracket materials.

    PubMed

    Anhoury, Patrick; Nathanson, Dan; Hughes, Christopher V; Socransky, Sigmund; Feres, Magda; Chou, Laisheng Lee

    2002-08-01

    The placement of orthodontic appliances creates a favorable environment for the accumulation of a microbiota and food residues, which, in time, may cause caries or exacerbate any pre-existing periodontal disease. The purpose of the present study was to compare the total bacterial counts present on metallic and ceramic orthodontic brackets in order to clarify which bracket type has a higher plaque retaining capacity and to determine the levels of Streptococcus mutans and Lactobacillus spp on both types of brackets. Thirty-two metallic brackets and 24 ceramic brackets were collected from orthodontic patients at the day of debonding. Two brackets were collected from each patient; one from a maxillary central incisor and another from a maxillary second premolar. Sixteen patients who used metallic brackets and 12 patients who used ceramic brackets were sampled. Bacterial populations were studied using "checkerboard" DNA-DNA hybridization, which uses DNA probes to identify species in complex microbial samples. The significance of differences between groups was determined using the Mann-Whitney U-test. Results showed no significant differences between metallic and ceramic brackets with respect to the caries-inducing S mutans and L acidophilus spp counts. Mean counts of 8 of 35 additional species differed significantly between metallic and ceramic brackets with no obvious pattern favoring one bracket type over the other. This study showed higher mean counts of Treponema denticola, Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum ss vincentii, Streptococcus anginosus, and Eubacterium nodatum on metallic brackets while higher counts of Eikenella corrodens, Campylobacter showae, and Selenomonas noxia were found on ceramic brackets.

  2. Porcelain surface conditioning protocols and shear bond strength of orthodontic brackets.

    PubMed

    Lestrade, Ashley M; Ballard, Richard W; Xu, Xiaoming; Yu, Qingzhao; Kee, Edwin L; Armbruster, Paul C

    2016-05-01

    The objective of the present study was to determine which of six bonding protocols yielded a clinically acceptable shear bond strength (SBS) of metal orthodontic brackets to CAD/CAM lithium disilicate porcelain restorations. A secondary aim was to determine which bonding protocol produced the least surface damage at debond. Sixty lithium disilicate samples were fabricated to replicate the facial surface of a mandibular first molar using a CEREC CAD/CAM machine. The samples were split into six test groups, each of which received different mechanical/chemical pretreatment protocols to roughen the porcelain surface prior to bonding a molar orthodontic attachment. Shear bond strength testing was conducted using an Instron machine. The mean, maximum, minimal, and standard deviation SBS values for each sample group including an enamel control were calculated. A t-test was used to evaluate the statistical significance between the groups. No significant differences were found in SBS values, with the exception of surface roughening with a green stone prior to HFA and silane treatment. This protocol yielded slightly higher bond strength which was statistically significant. Chemical treatment alone with HFA/silane yielded SBS values within an acceptable clinical range to withstand forces applied by orthodontic treatment and potentially eliminates the need to mechanically roughen the ceramic surface.

  3. Planning Risk-Based SQC Schedules for Bracketed Operation of Continuous Production Analyzers.

    PubMed

    Westgard, James O; Bayat, Hassan; Westgard, Sten A

    2018-02-01

    To minimize patient risk, "bracketed" statistical quality control (SQC) is recommended in the new CLSI guidelines for SQC (C24-Ed4). Bracketed SQC requires that a QC event both precedes and follows (brackets) a group of patient samples. In optimizing a QC schedule, the frequency of QC or run size becomes an important planning consideration to maintain quality and also facilitate responsive reporting of results from continuous operation of high production analytic systems. Different plans for optimizing a bracketed SQC schedule were investigated on the basis of Parvin's model for patient risk and CLSI C24-Ed4's recommendations for establishing QC schedules. A Sigma-metric run size nomogram was used to evaluate different QC schedules for processes of different sigma performance. For high Sigma performance, an effective SQC approach is to employ a multistage QC procedure utilizing a "startup" design at the beginning of production and a "monitor" design periodically throughout production. Example QC schedules are illustrated for applications with measurement procedures having 6-σ, 5-σ, and 4-σ performance. Continuous production analyzers that demonstrate high σ performance can be effectively controlled with multistage SQC designs that employ a startup QC event followed by periodic monitoring or bracketing QC events. Such designs can be optimized to minimize the risk of harm to patients. © 2017 American Association for Clinical Chemistry.

  4. Enamel Deproteinization using Papacarie and 10% Papain Gel on Shear Bond Strength of Orthodontic Brackets Before and After Acid Etching.

    PubMed

    Agarwal, R M; Yeluri, R; Singh, C; Munshi, A K

    2015-01-01

    To suggest Papacarie(®) as a new deproteinizing agent in comparison with indigenously prepared 10% papain gel before and after acid etching that may enhance the quality of the bond between enamel surface and composite resin complex. One hundred and twenty five extracted human premolars were utilized and divided into five groups: In the group 1, enamel surface was etched and primer was applied. In group 2, treatment with papacarie(®) for 60 seconds followed by etching and primer application. In group 3, etching followed by treatment with papacarie(®) for 60 seconds and primer application. In group 4, treatment with 10% papain gel for 60 seconds followed by etching and primer application. In group 5, etching followed by treatment with 10% papain gel for 60 seconds and primer application . After bonding the brackets, the mechanical testing was performed using a Universal testing machine. The failure mode was analyzed using an adhesive remnant index. The etching patterns before and after application of papacarie(®) and 10% papain gel was also evaluated using SEM. The values obtained for shear bond strength were submitted to analysis of variance and Tukey test (p < 0.05). It was observed that group 2 and group 4 had the highest shear bond strength and was statistically significant from other groups (p=0.001). Regarding Adhesive remnant index no statistical difference was seen between the groups (p=0.538). Papacarie(®) or 10% papain gel can be used to deproteinize the enamel surface before acid etching to enhance the bond strength of orthodontic brackets.

  5. Adhesion of periodontal pathogens to self-ligating orthodontic brackets: An in-vivo prospective study.

    PubMed

    Jung, Woo-Sun; Kim, Kyungsun; Cho, Soha; Ahn, Sug-Joon

    2016-09-01

    Our aims were to analyze adhesion of periodontopathogens to self-ligating brackets (Clarity-SL [CSL], Clippy-C [CC] and Damon Q [DQ]) and to identify the relationships between bacterial adhesion and oral hygiene indexes. Central incisor brackets from the maxilla and mandible were collected from 60 patients at debonding after the plaque and gingival indexes were measured. Adhesions of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn), and Tannerella forsythia (Tf) were quantitatively determined using real-time polymerase chain reactions. Factorial analysis of variance was used to analyze bacterial adhesion in relation to bracket type and jaw position. Correlation coefficients were calculated to determine the relationships between bacterial adhesion and the oral hygiene indexes. Total bacteria showed greater adhesion to CSL than to DQ brackets, whereas Aa, Pg, and Pi adhered more to DQ than to CSL brackets. CC brackets showed an intermediate adhesion pattern between CSL and DQ brackets, but it did not differ significantly from either bracket type. Adhesion of Fn and Tf did not differ significantly among the 3 brackets. Most bacteria were detected in greater quantities in the mandibular than in the maxillary brackets. The plaque and gingival indexes were not strongly correlated with bacterial adhesion to the brackets. Because Aa, Pg, and Pi adhered more to the DQ brackets in the mandibular area, orthodontic patients with periodontal problems should be carefully monitored in the mandibular incisors where the distance between the bracket and the gingiva is small, especially when DQ brackets are used. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  6. Resistance to Sliding in Clear and Metallic Damon 3 and Conventional Edgewise Brackets: an In vitro Study.

    PubMed

    Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel

    2015-03-01

    Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator's saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction.

  7. Comparison of frictional resistance among conventional, active and passive selfligating brackets with different combinations of arch wires: a finite elements study.

    PubMed

    Gómez, Sandra L; Montoya, Yesid; Garcia, Nora L; Virgen, Ana L; Botero, Javier E

    2016-09-01

    The aim of this study was to compare frictional resistance among conventional, passive and active selfligating brackets using Finite Elements Analysis (FEA). Seventynine (79) slide tests were performed by combining an upper first bicuspid conventional bracket, 0.018" stainless steel wires and 0.010" ligature by means of an INSTRON 3345 load system to obtain average maximum static frictional resistance (MSFR). This value was compared to the FR (frictional resistance) obtained by simulation of a slide of the same combination by FEA following conventional bracket modeling by means of Computer Aided Design (CAD). Once the FEA was validated, bracket CADs were designed (upper right first bicuspid conventional, active and passive selfligating bracket) and bracket properties calculated. MSFR was compared among conventional, active and passive selfligating brackets with different alloys and archwire cross sections such as 0.018", 0.019" x 0.025"and 0.020" x 0.020". Passive selfligating brackets had the lowest MSFR, followed by conventional brackets and active selfligating brackets. In conventional brackets, a 0.018" archwire produced a linear pattern of stress with maximum concentration at the center. Conversely, stress in 0.020 x 0.020" and 0.019 x 0.025" archwires was distributed across the width of the slot. The highest normal forces were 1.53 N for the 0.018" archwire, 4.85 N for the 0.020 x 0.020" archwire and 8.18 N for the 0.019 x 0.025" archwire. Passive selfligating brackets presented less frictional resistance than conventional and active selfligating brackets. Regardless of bracket type, greater contact area between the slot and the archwire and the spring clip increased frictional resistance. Sociedad Argentina de Pediatría.

  8. An in vitro study into the efficacy of complex tooth alignment with conventional and self-ligating brackets.

    PubMed

    Montasser, M A; Keilig, L; Bourauel, C

    2015-02-01

    To evaluate the efficacy of tooth alignment achieved by various small cross-section archwire/bracket combinations using the orthodontic measurement and simulation system. The study comprised three types of orthodontic brackets 1) conventional ligating (Victory Series and Mini-Taurus), 2) self-ligating (SmartClip a passive self-ligating bracket and Time3 an active self-ligating bracket), and 3) a conventional low-friction bracket (Synergy). All brackets had a nominal 0.022″ slot size. Brackets were combined with 1) 0.012″ stainless steel, 2) 0.012″ Orthonol, 3) 0.012″ Thermalloy, and 4) 0.0155″ coaxial archwires. Archwires were tied to the conventional brackets with stainless steel ligatures and elastomeric rings. The malocclusion simulated represented a central upper incisor displaced 2 mm gingivally (x-axis) and 2 mm labially (z-axis). The inciso-gingival correction achieved by the different archwire/bracket combinations ranged from 15 to 95%, while the labio-lingual correction ranged from 10 to 95%. The smallest correction was achieved by coaxial, Orthonol, and thermally archwires when ligated with the elastomeric rings to conventional brackets. Stainless steel archwires achieved from 65 to 90% of inciso-gingival correction and from 60 to 90% of labio-lingual correction. The resultant tooth alignment was the product of interaction between the archwire type, bracket type, and bracket design including ligature type. Small cross-sectional archwires might produce up to 95% correction if combined properly with the bracket system. Elastomeric rings when used with conventional brackets limit the efficacy of malalignment correction. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Orthodontic bracket slot dimensions as measured from entire bracket series.

    PubMed

    Brown, Paul; Wagner, Warren; Choi, Hyden

    2015-07-01

    To measure the slot dimensions of an entire series of metal orthodontic brackets. Ten bracket series approximating five complete sets of brackets each were imaged and measured. Descriptive statistics were generated. Slot dimension varied significantly from series to series as well as within the series themselves. About one-third of the brackets would not accommodate a full-size wire, and 15% to 20% are 0.001 inches or larger than the nominal advertised size. The clinician is unlikely to have on hand complete sets (upper and lower 5-5) of ideal brackets and should both expect and be able to be accommodate tooth movement through wire bending in three planes of space to overcome any bracket deficiencies.

  10. Structural support bracket for gas flow path

    DOEpatents

    None

    2016-08-02

    A structural support system is provided in a can annular gas turbine engine having an arrangement including a plurality of integrated exit pieces (IEPs) forming an annular chamber for delivering gases from a plurality of combustors to a first row of turbine blades. A bracket structure is connected between an IEP and an inner support structure on the engine. The bracket structure includes an axial bracket member attached to an IEP and extending axially in a forward direction. A transverse bracket member has an end attached to the inner support structure and extends circumferentially to a connection with a forward end of the axial bracket member. The transverse bracket member provides a fixed radial position for the forward end of the axial bracket member and is flexible in the axial direction to permit axial movement of the axial bracket member.

  11. Comparative Analysis of Bracket Slot Dimensions Evaluating Different Manufacturing Techniques

    DTIC Science & Technology

    2015-04-24

    Bracket 1 (Avex Suite, Opal ) .......................................... 39 Appendix B: Raw data—Bracket 2 (Victory Series, 3M...32 viii LIST OF FIGURES Figure 1: Bracket 1 (Avex Suite, Opal ) ................................................................ 10...15 Figure 7: Example of points selected using Bracket 1 (Avex Suite, Opal

  12. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  13. Three-dimensional deformation of orthodontic brackets.

    PubMed

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  14. The Effect of Two Soft Drinks on Bracket Bond Strength and on Intact and Sealed Enamel: An In Vitro Study

    PubMed Central

    Pasha, Azam; Sindhu, D; Nayak, Rabindra S; Mamatha, J; Chaitra, K R; Vishwakarma, Swati

    2015-01-01

    Background and Objectives: This study was conducted to evaluate the effect of two soft drinks, Coca-Cola and Mirinda orange on bracket bond strength, on adhesive remnant on teeth after debonding the bracket, and to observe by means of scanning electron microscope (SEM) the effect of these drinks on intact and sealed enamel. Methods: 120 non-carious maxillary premolar teeth already extracted for Orthodontic purposes were taken and divided into three groups, i.e., Coca-Cola drink, Mirinda orange, and control (artificial saliva) group. Brackets were bonded using conventional methods. Teeth were kept in soft drinks for 15 days, for 15 min, 3 times a day, separated by intervals of 2 h. At other times, they were kept in artificial saliva. The samples, thus obtained were evaluated for shear bond strength using the universal testing machine and subsequently subjected for adhesive remnant index (ARI) scores. SEM study on all the three groups was done for evaluating enamel surface of the intact and sealed enamel. Results: The lowest mean resistance to shearing forces was shown by Mirinda orange group (5.30 ± 2.74 Mpa) followed by Coca-Cola group (6.24 ± 1.59 Mpa) and highest resistance to shearing forces by control group (7.33 ± 1.72 Mpa). The ARI scores revealed a cohesive failure in control samples and an adhesive failure in Mirinda and cola samples. SEM results showed areas of defect due to erosion caused by acidic soft drinks on intact and sealed enamel surface. Conclusion: Mirinda group showed the lowest resistance to shearing forces, followed by Coca-Cola group and with the highest resistance to shearing forces by the control group. There were significant differences between the control group and the study groups. Areas of defects, which were caused by erosion related to acidic soft drinks on the enamel surface around the adhesive, were seen. Areas of defects caused by Coca-Cola were more extensive when compared to Mirinda orange drink. PMID:26668477

  15. An in Vitro Evaluation of Remineralization Potential of Novamin(®) on Artificial Enamel Sub-Surface Lesions Around Orthodontic Brackets Using Energy Dispersive X-Ray Analysis (EDX).

    PubMed

    Mohanty, Pritam; Padmanabhan, Sridevi; Chitharanjan, Arun B

    2014-11-01

    To evaluate and compare the Ca/P ratio of enamel samples around the orthodontic brackets for time periods of 0, 2 and 10 days in two groups (control group and study group). Forty extracted teeth were randomly divided into control group and study group. All samples were demineralized and incubated in artificial saliva at 37°C for a period of 10 days after demineralization. During this phase the enamel samples in the study group were treated with remineralizing paste (NuproNusolution containing Novamin®-Dentsply) for 10 days. At the end of the incubation period, Ca/P ratios were analyzed for both the groupsby EDX analysis. Data obtained was subjected to statistical analysis using student t-test for paired samples and Student t- test for individual samples (p ≤ 0.05). It was found that the mean Ca/P ratio was significantly lower for the control group as compared to the study group (p-value < 0.05) after 10 d of incubation. Novamin(®) containing remineralization toothpaste showed significant remineralizing potential in inhibition of artificial enamel sub-surface lesion around bracket after 10 days of remineralization phase. EDX element analysis was found to be an efficient method to quantify the changes in mineral content of a sample during in vitro caries studies.

  16. An in Vitro Evaluation of Remineralization Potential of Novamin® on Artificial Enamel Sub-Surface Lesions Around Orthodontic Brackets Using Energy Dispersive X-Ray Analysis (EDX)

    PubMed Central

    Padmanabhan, Sridevi; Chitharanjan, Arun B

    2014-01-01

    Objective: To evaluate and compare the Ca/P ratio of enamel samples around the orthodontic brackets for time periods of 0, 2 and 10 days in two groups (control group and study group). Materials and Methods: Forty extracted teeth were randomly divided into control group and study group. All samples were demineralized and incubated in artificial saliva at 37°C for a period of 10 days after demineralization. During this phase the enamel samples in the study group were treated with remineralizing paste (NuproNusolution containing Novamin®-Dentsply) for 10 days. At the end of the incubation period, Ca/P ratios were analyzed for both the groupsby EDX analysis. Data obtained was subjected to statistical analysis using student t-test for paired samples and Student t- test for individual samples (p ≤ 0.05). Results: It was found that the mean Ca/P ratio was significantly lower for the control group as compared to the study group (p-value < 0.05) after 10 d of incubation. Conclusion: Novamin® containing remineralization toothpaste showed significant remineralizing potential in inhibition of artificial enamel sub-surface lesion around bracket after 10 days of remineralization phase. EDX element analysis was found to be an efficient method to quantify the changes in mineral content of a sample during in vitro caries studies. PMID:25584326

  17. Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.

    PubMed

    Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2016-05-01

    To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2)  =  93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.

  18. Effects of green tea on the shear bond strength of orthodontic brackets after in-office vital bleaching.

    PubMed

    Berger, Sandrine Bittencourt; Guiraldo, Ricardo Danil; Lopes, Murilo Baena; Oltramari-Navarro, Paula Vanessa; Fernandes, Thais Maria; Schwertner, Renata de Castro Alves; Ursi, Wagner José Silva

    2016-01-01

    The application of bleaching agents before placement of resin-bonded fixed appliances significantly, but temporarily, reduces bond strength to tooth structure. Antioxidants have been studied as a means to remove residual oxygen that compromises bonding to bleached enamel. This in vitro study evaluated whether green tea (GT) could restore the shear bond strength between bonded orthodontic brackets and bleached enamel. Six experimental groups were compared: group 1, no bleaching plus bracket bonding (positive control); group 2, bleaching with 35% hydrogen peroxide (HP) plus bracket bonding (negative control); group 3, 35% HP plus 10% sodium ascorbate (SA) plus bracket bonding; group 4, 35% HP plus 10% GT plus bracket bonding; group 5, no bleaching plus 10% SA plus bracket bonding; group 6, no bleaching plus 10% GT plus bracket bonding. Results suggested that GT, like SA, may be beneficial for bracket bonding immediately after bleaching.

  19. Laser debonding of ceramic orthodontic brackets: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Kearney, Kristine L.; Marangoni, Roy D.; Rickabaugh, Jeff L.

    1992-06-01

    Ceramic brackets are an esthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths which can lead to bracket breakage and enamel damage during debonding. It has been demonstrated that various lasers can facilitate ceramic bracket removal. One mechanism with the laser is through the softening of the bracket adhesive. The high energy density from the laser on the bracket and adhesive can have a resultant deleterious thermal effect on the pulp of the tooth which may lead to pulpal death. A theoretical computer model of bracket, adhesive, enamel and dentin has been generated for predicting heat flow through this system. Heat fluxes at varying intensities and modes have been input into the program and the resultant temperatures at various points or nodes were determined. Further pursuit should lead to optimum parameters for laser debonding which would have minimal effects on the pulp.

  20. Slot deformation of various stainless steel bracket due to the torque force of the beta-titanium wire

    NASA Astrophysics Data System (ADS)

    Huda, M. M.; Siregar, E.; Ismah, N.

    2017-08-01

    Stainless steel bracket slot deformation ffects the force applied to teeth and it can impede tooth movement and prolong orthodontic treatment time. The aim of this study is to determine the slot deformation due to torque of a 0.021 × 0.025 inch Beta Titanium wire with a torsional angle of 30° and 45° for five different bracket brands: y, 3M, Biom, Versadent, Ormco, and Shinye. The research also aims to compare the deformation and amount of torque among all five bracket brands at torsional angles of 30° and 45°. Fifty stainless steel edgewise brackets from the five bracket group brands (n=10) were attached to acrylic plates. The bracket slot measurements were carried out in two stages. In the first stage, the, deformation was measured by calculating the average bracket slot height using a stereoscopy microscope before and after application of torque. In the second stage, the torque was measured using a torque measurement apparatus. The statistical analysis shows that slot deformations were found on all five bracket brands with a clinical permanent deformation on the Biom (2.79 μm) and Shinye (2.29 μm) brackets. The most torque was observed on the 3M bracket, followed by the Ormco, Versadent, Shinye, and Biom brackets. When the brands were compared, a correlation between bracket slot deformation and the amount of torque was found, but the correlation was not statistically significant for the 3M and Ormco brackets and the Biom and Shinye brackets. There is a difference in the amount of torque between the five brands with a torsional angle of 30° (except the 3M and Ormco brackets) and those with a torsional angle of 45°. The composition of the metal and the manufacturing process are the factors that influence the occurrence of bracket slot deformation and the amount of torque. A manufacturing process using metal injection molding (MIM) and metal compositions of AISI 303 and 17-4 PH stainless steel reduce the risk of deformation.

  1. 49 CFR 180.403 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to appurtenances, such as fender attachments, lighting brackets, ladder brackets; and (2) Replacement..., lighting brackets, ladder brackets; and (2) Replacement of components such as valves, vents, and fittings...

  2. Assessment of dimensional accuracy of preadjusted metal injection molding orthodontic brackets.

    PubMed

    Alavi, Shiva; Tajmirriahi, Farnaz

    2016-09-01

    the aim of this study is to evaluate the dimensional accuracy of McLaughlin, Bennett, and Trevisi (MBT) brackets manufactured by two different companies (American Orthodontics and Ortho Organizers) and determine variations in incorporation of values in relation to tip and torque in these products. In the present analytical/descriptive study, 64 maxillary right central brackets manufactured by two companies (American Orthodontics and Ortho Organizers) were selected randomly and evaluated for the accuracy of the values in relation to torque and angulation presented by the manufacturers. They were placed in a video measuring machine using special revolvers under them and were positioned in a manner so that the light beams would be directed on the floor of the slot without the slot walls being seen. Then, the software program of the same machine was used to determine the values of each bracket type. The means of measurements were determined for each sample and were analyzed with independent t -test and one-sample t -test. Based on the confidence interval, it can be concluded that at 95% probability, the means of tip angles of maxillary right central brackets of these two brands were 4.1-4.3° and the torque angles were 16.39-16.72°. The tips in these samples were at a range of 3.33-4.98°, and the torque was at a range of 15.22-18.48°. In the present study, there were no significant differences in the angulation incorporated into the brackets from the two companies; however, they were significantly different from the tiP values for the MBT prescription. In relation to torque, there was a significant difference between the American Orthodontic brackets exhibited significant differences with the reported 17°, too.

  3. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    NASA Astrophysics Data System (ADS)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (p<0.05) in ARI score was detected between the 0.5-min and 4.0-min delay groups with more adhesive remaining on the bracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  4. Comparison of the frictional characteristics of aesthetic orthodontic brackets measured using a modified in vitro technique

    PubMed Central

    Arici, Nursel

    2015-01-01

    Objective The coefficients of friction (COFs) of aesthetic ceramic and stainless steel brackets used in conjunction with stainless steel archwires were investigated using a modified linear tribometer and special computer software, and the effects of the bracket slot size (0.018 inches [in] or 0.022 in) and materials (ceramic or metal) on the COF were determined. Methods Four types of ceramic (one with a stainless steel slot) and one conventional stainless steel bracket were tested with two types of archwire sizes: a 0.017 × 0.025-in wire in the 0.018-in slots and a 0.019 × 0.025-in wire in the 0.022-in slot brackets. For pairwise comparisons between the 0.018-in and 0.022-in slot sizes in the same bracket, an independent sample t-test was used. One-way and two-way analysis of variance (ANOVA) and Tukey's post-hoc test at the 95% confidence level (α = 0.05) were also used for statistical analyses. Results There were significant differences between the 0.022-in and 0.018-in slot sizes for the same brand of bracket. ANOVA also showed that both slot size and bracket slot material had significant effects on COF values (p < 0.001). The ceramic bracket with a 0.022-in stainless steel slot showed the lowest mean COF (µ = 0.18), followed by the conventional stainless steel bracket with a 0.022-in slot (µ = 0.21). The monocrystalline alumina ceramic bracket with a 0.018-in slot had the highest COF (µ = 0.85). Conclusions Brackets with stainless steel slots exhibit lower COFs than ceramic slot brackets. All brackets show lower COFs as the slot size increases. PMID:25667915

  5. Influence of ligation method on friction resistance of lingual brackets with different second-order angulations: an in vitro study

    PubMed Central

    Pereira, Graziane Olímpio; Gimenez, Carla Maria Melleiro; Prieto, Lucas; Prieto, Marcos Gabriel do Lago; Basting, Roberta Tarkany

    2016-01-01

    ABSTRACT Objective: To evaluate stainless steel archwire static friction in active and passive self-ligating lingual and conventional brackets with second-order angulations. Methods: Two conventional lingual brackets for canines (STb light/Ormco; PSWb/Tecnident), and two self-ligating brackets, one active (In-Ovation L/GAC) and the other passive (3D/ Forestadent), were evaluated. A stainless steel archwire was used at 0°, 3° and 5° angulations. Metal ligatures, conventional elastic ligatures, and low friction elastic ligatures were also tested. A universal testing machine applied friction between brackets and wires, simulating sliding mechanics, to produce 2-mm sliding at 3 mm/minute speed. Results: Two-way analysis of variance demonstrated a significant effect of the interaction between brackets and angulations (p < 0.001). Tukey test indicated that the highest frictional resistance values were observed at 5° angulation for In-Ovation L, PSWb bracket with non conventional ligature, and STb bracket with metal ligature. As for 3D, PSWb with conventional or metal ligatures, and STb brackets with non conventional ligature, showed significantly lower static frictional resistance with 0° angulation. At 0° angulation, STb brackets with metal ties, In-Ovation L brackets and 3D brackets had the lowest frictional resistance. Conclusions: As the angulation increased from 0° to 3°, static friction resistance increased. When angulation increased from 3° to 5°, static friction resistance increased or remained the same. Self-ligating 3D and In-Ovation L brackets, as well as conventional STb brackets, seem to be the best option when sliding mechanics is used to perform lingual orthodontic treatment. PMID:27653262

  6. Influence of ligation method on friction resistance of lingual brackets with different second-order angulations: an in vitro study.

    PubMed

    Pereira, Graziane Olímpio; Gimenez, Carla Maria Melleiro; Prieto, Lucas; Prieto, Marcos Gabriel do Lago; Basting, Roberta Tarkany

    2016-01-01

    To evaluate stainless steel archwire static friction in active and passive self-ligating lingual and conventional brackets with second-order angulations. Two conventional lingual brackets for canines (STb light/Ormco; PSWb/Tecnident), and two self-ligating brackets, one active (In-Ovation L/GAC) and the other passive (3D/ Forestadent), were evaluated. A stainless steel archwire was used at 0°, 3° and 5° angulations. Metal ligatures, conventional elastic ligatures, and low friction elastic ligatures were also tested. A universal testing machine applied friction between brackets and wires, simulating sliding mechanics, to produce 2-mm sliding at 3 mm/minute speed. Two-way analysis of variance demonstrated a significant effect of the interaction between brackets and angulations (p < 0.001). Tukey test indicated that the highest frictional resistance values were observed at 5° angulation for In-Ovation L, PSWb bracket with non conventional ligature, and STb bracket with metal ligature. As for 3D, PSWb with conventional or metal ligatures, and STb brackets with non conventional ligature, showed significantly lower static frictional resistance with 0° angulation. At 0° angulation, STb brackets with metal ties, In-Ovation L brackets and 3D brackets had the lowest frictional resistance. As the angulation increased from 0° to 3°, static friction resistance increased. When angulation increased from 3° to 5°, static friction resistance increased or remained the same. Self-ligating 3D and In-Ovation L brackets, as well as conventional STb brackets, seem to be the best option when sliding mechanics is used to perform lingual orthodontic treatment.

  7. Effect of laser-assisted bleaching with Nd:YAG and diode lasers on shear bond strength of orthodontic brackets.

    PubMed

    Mirhashemi, Amirhossein; Emadian Razavi, Elham Sadat; Behboodi, Sara; Chiniforush, Nasim

    2015-12-01

    The aim of the present study was to assess the effect of laser-assisted bleaching with neodymium:yttrium-aluminum-garnet (Nd:YAG) and diode lasers on shear bond strength (SBS) of orthodontic brackets. One hundred and four extracted human premolars were randomly divided into four groups: group 1: No bleaching applied (control group); group 2: Teeth bleached with 40 % hydrogen peroxide; group 3: Teeth treated with 30 % hydrogen peroxide activated with Nd:YAG laser (1064 nm, 2.5 W, 25 Hz, pulse duration of 100 μs, 6 mm distance); and group 4: Teeth treated with 30 % hydrogen peroxide activated with diode laser (810 nm, 1 W, CW, 6 mm distance). Equal numbers of teeth in groups 2, 3, and 4 were bonded at start, 1 h, 24 h, and 1 week after bleaching. A universal testing machine measured the SBS of the samples 24 h after bonding. After bracket debonding, the amount of residual adhesive on the enamel surface was observed under a stereomicroscope to determine the adhesive remnant index (ARI) scores. The SBS in the unbleached group was significantly higher than that in the bleached groups bonded immediately and 1 h after laser-assisted bleaching (P < 0.05). In groups 3 and 4 at start and group 2 at start and 1 h after laser-assisted bleaching, the SBS was found to be significantly lower than that in the control group. Significant differences in the ARI scores existed among groups as well. The SBS of brackets seems to increase quickly within an hour after laser-assisted bleaching and 24 h after conventional bleaching. Thus, this protocol can be recommended if it is necessary to bond the brackets on the same day of bleaching.

  8. Study of the phosphine plasma decomposition and its formation by ablation of red phosphorus in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Bruno, G.; Losurdo, M.; Capezzuto, P.

    1995-03-01

    Mass spectrometry and optical emission spectroscopy have been used to study the chemistry of PH(sub 3) plasma decomposition as well as its formation by ablation of red phosphorus in hydrogen plasma. It has been shown that PH(sub 3) decomposition easily equilibrates at low levels of PH(sub 3) depletion (15%-30%), this depending mainly on the rf power. The ablation of red phosphorus in H(sub 2) plasma produces phosphine in significant amount, depending mainly on the total pressure but also on the rf power. It has also been found that H(sup *) and PH(sup *) emitting species originate not only by the dissociative excitation of H(sub 2) and PH(sub 3), respectively, but also by the direct excitation of the same species in the ground state. Considerations are developed on how to derive the H-atom and PH radical densities by actinometry, under specific experimental conditions. Besides, the linear dependence of PH(sub 3) formation rate, r(sub PH(3)), on H-atom density, (left bracket) H (right bracket), leads to the definition of the kinetic equation r(sub PH(3)) = k (left bracket) H (right bracket), and to the hypothesis that the formation of PH radical on the surface or its desorption is the dominant mechanism for PH(sub 3) production.

  9. Evaluation of a novel approach in the prevention of white spot lesions around orthodontic brackets.

    PubMed

    Yap, J; Walsh, L J; Naser-Ud Din, S; Ngo, H; Manton, D J

    2014-03-01

    The purpose of this study was to evaluate and compare the relative efficacy of a resin fissure sealant, nano-filled self-adhesive protective coating, resin infiltrant, glass ionomer cement (GIC), and GIC containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in preventing the formation of subsurface lesions of enamel (SLE) adjacent to orthodontic brackets by acting as an enamel surface sealant (ESS). Eighty-five enamel specimens with molar tubes bonded at their centre were randomly divided into five groups, each treated with a different material at the bracket's periphery. Specimens were stored in an acetate demineralization solution at pH 4.5 for 7 days at 37 °C then imaged using quantitative light-induced fluorescence (QLF) to determine the difference in fluorescence (∆F) between sound- and acid-exposed enamel. Lesion cross-sections were then examined using backscattered scanning electron microscopy (SEM) to measure lesion depth. The use of GIC alone or incorporating CPP-ACP significantly reduced ∆F compared with other materials. Backscattered SEM images showed no measurable demineralization for enamel treated with either GIC material in contrast with other groups, which showed statistically significant demineralization levels. The fluoride-releasing effects and CPP-ACP benefits of the GIC materials show promise as an effective ESS in inhibiting enamel demineralization adjacent to orthodontic brackets. © 2014 Australian Dental Association.

  10. Apparatus for adapting an end effector device remotely controlled manipulator arm

    NASA Technical Reports Server (NTRS)

    Clark, K. H. (Inventor)

    1985-01-01

    Apparatus for adapting a general purpose and effector device to a special purpose and effector is disclosed which includes an adapter bracket assembly which provides a mechanical and electrical interface between the end effector devices. The adapter bracket assembly includes an adapter connector post which interlocks with a diamond shaped gripping channel formed in closed jaws of the general purpose end effector. The angularly intersecting surfaces of the connector post and gripping channel prevent any relative movement there between. Containment webs constrain the outer finger plates of the general purpose jaws to prevent pitch motion. Electrical interface is provided by conical, self aligning electrical connector components carried by respective ones of said end effectors.

  11. Evaluation of friction in orthodontics using various brackets and archwire combinations-an in vitro study.

    PubMed

    Kumar, Sujeet; Singh, Shamsher; Hamsa P R, Rani; Ahmed, Sameer; Prasanthma; Bhatnagar, Apoorva; Sidhu, Manreet; Shetty, Pramod

    2014-05-01

    The aim of this study was to compare frictional resistance which was produced between conventional brackets (0.022 slot Otho-Organiser) and self ligating brackets (active Forestadent and passive Damon III) by using various arch wire combinations (0.016 Niti, 0.018 Niti, 0.017 x 0.025 SS and 0.019 x 0.025 SS). An experimental model which consisted of 5 aligned stainless steel 0.022-in brackets was used to assess frictional forces which were produced by SLBs (self ligating brackets) and CELs (conventional elastomeric ligatures) with use of 0.016 nickel titanium, 0.018 nickel titanium, 0.017 X 0.025"stainless steel and 0.019 X 0.025"stainless steel wires. One way ANOVA test was used to study the effect of the bracket type, wire alloy and section on frictional resistance test . Conventional brackets produced highest levels of friction for all bracket/archwire combinations. Both Damon III and Forestadent brackets were found to produce significantly lower levels of friction when they were compared with elastomerically tied conventional brackets. SLBs are valid alternatives for low friction during sliding mechanics.

  12. Resistance to Sliding in Clear and Metallic Damon 3 and Conventional Edgewise Brackets: an In vitro Study

    PubMed Central

    Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel

    2015-01-01

    Statement of the Problem Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. Purpose The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. Materials and Method The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator’s saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. Results The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Conclusion Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction. PMID:26106630

  13. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials

    PubMed Central

    Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond™ and Scotchbond™) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™. Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120™ testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P ≤ 0.05). Results. Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended. PMID:27738633

  14. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials.

    PubMed

    Hellak, Andreas; Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond ™ and Scotchbond ™ ) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT ™ . Materials and Methods . A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120 ™ testing machine. The ARI and SBS were compared statistically using the Kruskal-Wallis test ( P ≤ 0.05). Results . Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions . Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  15. Bracketing as a skill in conducting unstructured qualitative interviews.

    PubMed

    Sorsa, Minna Anneli; Kiikkala, Irma; Åstedt-Kurki, Päivi

    2015-03-01

    To provide an overview of bracketing as a skill in unstructured qualitative research interviews. Researchers affect the qualitative research process. Bracketing in descriptive phenomenology entails researchers setting aside their pre-understanding and acting non-judgementally. In interpretative phenomenology, previous knowledge is used intentionally to create new understanding. A literature search of bracketing in phenomenology and qualitative research. This is a methodology paper examining the researchers' impact in creating data in creating data in qualitative research. Self-knowledge, sensitivity and reflexivity of the researcher enable bracketing. Skilled and experienced researchers are needed to use bracketing in unstructured qualitative research interviews. Bracketing adds scientific rigour and validity to any qualitative study.

  16. The Overestimation Phenomenon in a Skill-Based Gaming Context: The Case of March Madness Pools.

    PubMed

    Kwak, Dae Hee

    2016-03-01

    Over 100 million people are estimated to take part in the NCAA Men's Basketball Tournament Championship bracket contests. However, relatively little is known about consumer behavior in skill-based gaming situations (e.g., sports betting). In two studies, we investigated the overestimation phenomenon in the "March Madness" context. In Study 1 (N = 81), we found that individuals who were allowed to make their own predictions were significantly more optimistic about their performance than individuals who did not make their own selections. In Study 2 (N = 197), all subjects participated in a mock competitive bracket pool. In line with the illusion of control theory, results showed that higher self-ratings of probability of winning significantly increased maximum willingness to wager but did not improve actual performance. Lastly, perceptions of high probability of winning significantly contributed to consumers' enjoyment and willingness to participate in a bracket pool in the future.

  17. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash.

    PubMed

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05). Corrosion rate of brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them.

  18. Evaluation of the friction force generated by monocristalyne and policristalyne ceramic brackets in sliding mechanics.

    PubMed

    Pimentel, Roberta Ferreira; de Oliveira, Roberto Sotto Maior Fortes; Chaves, Maria das Graças Afonso Miranda; Elias, Carlos Nelson; Gravina, Marco Abdo

    2013-01-01

    To evaluate and compare "in vitro" the maximum friction force generated by three types of esthetic brackets, two types of polycrystalline conventional ceramic brackets (20/40 and InVu) and one type of sapphire monocrystalline bracket (Radiance) in dry and artificial saliva wet settings. Also, to evaluate the influence exerted by artificial saliva on the friction forces of those brackets. Tests were performed in dry and artificial saliva wet setting (Oral Balance) by using an EMIC DL 10000 testing machine, simulating a 2 mm slide of 0.019 x 0.025-in rectangular stainless steel wires over the pre-angulated and pre-torqued (right superior canine, Roth prescription, slot 0.022 x 0.030-in) brackets (n = 18 for each bracket). In order to compare groups in dry and wet settings, the ANOVA was used. For comparisons related to the dry versus wet setting, the student t test was used for each group. The results showed that in the absence of saliva the Radiance monocrystalline brackets showed the highest friction coefficients, followed by the 20/40 and the InVu polycrystalline brackets. In tests with artificial saliva, the Radiance and the 20/40 brackets had statistically similar friction coefficients and both were greater than that presented by the InVu brackets. The artificial saliva did not change the maximum friction force of the Radiance brackets, but, for the others (20/40 and InVu), an increase of friction was observed in its presence. The InVu brackets showed, in the absence and in the presence of saliva, the lowest friction coefficient.

  19. Torque efficiency of square and rectangular archwires into 0.018 and 0.022 in. conventional brackets.

    PubMed

    Papageorgiou, Spyridon N; Sifakakis, Iosif; Doulis, Ioannis; Eliades, Theodore; Bourauel, Christoph

    2016-01-01

    The aim of this study was to compare the torque efficacy of square and rectangular wires in 0.018- and 0.022-in. conventionally ligated brackets. Brackets of the same prescription were evaluated in both slot dimensions. Identical acrylic resin models of the maxilla were bonded with the brackets and mounted on the Orthodontic Measurement and Simulation System. Ten 0.018 × 0.018 in., 0.018 × 0.022 in., and 0.018 × 0.025 in. stainless steel wires were evaluated in the 0.018-in. brackets and ten 0.019 × 0.019 in., 0.019 × 0.025 in., and 0.019 × 0.026 in. stainless steel wires were evaluated in the 0.022-in. brackets. A 15° buccal root torque was gradually applied to the right central incisor bracket, and the moments were recorded at this position. One-way ANOVA was applied for both bracket slot sizes along with post hoc analysis for the various archwire sizes. The mean measured moments varied between 10.78 and 30.60 Nmm among the assessed wire-and-bracket combinations. Both square and rectangular archwires in the 0.018-in. bracket system exerted statistically significantly higher moments in comparison with their counterparts in the 0.022-in. bracket system. Rectangular archwires exerted statistically significantly higher moments than square archwires, both for the 0.018- and the 0.022-in. bracket system. Rectangular archwires seem to be more efficient in torque exertion, especially in 0.018-in. brackets.

  20. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash

    PubMed Central

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05). Corrosion rate of brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them. PMID:26697148

  1. Further Effects of Phylogenetic Tree Style on Student Comprehension in an Introductory Biology Course.

    PubMed

    Dees, Jonathan; Bussard, Caitlin; Momsen, Jennifer L

    2018-06-01

    Phylogenetic trees have become increasingly important across the life sciences, and as a result, learning to interpret and reason from these diagrams is now an essential component of biology education. Unfortunately, students often struggle to understand phylogenetic trees. Style (i.e., diagonal or bracket) is one factor that has been observed to impact how students interpret phylogenetic trees, and one goal of this research was to investigate these style effects across an introductory biology course. In addition, we investigated the impact of instruction that integrated diagonal and bracket phylogenetic trees equally. Before instruction, students were significantly more accurate with the bracket style for a variety of interpretation and construction tasks. After instruction, however, students were significantly more accurate only for construction tasks and interpretations involving taxa relatedness when using the bracket style. Thus, instruction that used both styles equally mitigated some, but not all, style effects. These results inform the development of research-based instruction that best supports student understanding of phylogenetic trees.

  2. Challenges of designing and testing a highly stable sensor platform: Cesic solves MTG star sensor bracket thermoelastic requirements

    NASA Astrophysics Data System (ADS)

    Kroedel, Matthias; Zauner, Christoph

    2017-09-01

    The Meteosat Third Generation's extreme pointing requirements call for a highly stable bracket for mounting the Star Trackers. HB-Cesic®, a chopped fibre reinforced silicon carbide, was selected as a base material for the sensor bracket. The high thermal conductivity and low thermal expansion of HB-Cesic® were the key properties to fulfil the demanding thermo-elastic pointing requirements of below 1μrad/K for the Star Trackers mounting interfaces. Dominated by thermoelastic stability requirements, the design and analysis of the Bracket required a multidisciplinary approach with the focus on thermal and thermo-elastic analyses. Dedicated modal and thermal post-processing strategies have been applied in the scope of the light weighting process. The experimental verification of this thermo-elastic stable system has been a challenging task of its own. A thermo-elastic distortion measurement rig was developed with a stability of <0.1μrad/K in all three rotational degrees of freedom.

  3. Electromechanical hand incorporates touch sensors and trigger function

    NASA Technical Reports Server (NTRS)

    Dane, D. H.

    1970-01-01

    Electromechanical hand incorporates touch sensors, concealed fingers, and a structure that allows the hand to hold a tool on a flat surface. The hands can be mounted on most types of existing manipulators either directly or by means of modified mounting brackets.

  4. Comparison of Galvanic Currents Generated Between Different Combinations of Orthodontic Brackets and Archwires Using Potentiostat: An In Vitro Study.

    PubMed

    Nayak, Rabindra S; Shafiuddin, Bareera; Pasha, Azam; Vinay, K; Narayan, Anjali; Shetty, Smitha V

    2015-07-01

    Technological advances in wire selection and bracket design have led to improved treatment efficiency and allowed longer time intervals between appliance adjustments. The wires remain in the mouth for a longer duration and are subjected to electrochemical reactions, mechanical forces of mastication and generalized wear. These cause different types of corrosion. This study was done to compare the galvanic currents generated between different combinations of brackets and archwires commonly used in orthodontic practices. The materials used for the study included different commercially available orthodontic archwires and brackets. The galvanic current generated by individual materials and different combinations of these materials was tested and compared. The orthodontic archwires used were 0.019″ × 0.025″ heat-activated nickel-titanium (3M Unitek), 0.019″ × 0.025″ beta-titanium (3M Unitek) and 0.019″ × 0.025″ stainless steel (3M Unitek). The orthodontic brackets used were 0.022″ MBT laser-cut (Victory Series, 3M Unitek) and metal-injection molded (Leone Company) maxillary central incisor brackets respectively. The ligature wire used for ligation was 0.009″ stainless steel ligature (HP Company). The galvanic current for individual archwires, brackets, and the different bracket-archwire-ligature combinations was measured by using a Potentiostat machine. The data were generated using the Linear Sweep Voltammetry and OriginPro 8.5 Graphing and Data Analysis Softwares. The study was conducted in two phases. Phase I comprised of five groups for open circuit potential (OCP) and galvanic current (I), whereas Phase II comprised of six groups for galvanic current alone. Mean, standard deviation and range were computed for the OCP and galvanic current (I) values obtained. Results were subjected to statistical analysis through ANOVA. In Phase I, higher mean OCP was recorded in stainless steel archwire, followed by beta-titanium archwire, heat-activated nickel titanium archwire, laser-cut bracket and metal-injection molded bracket, respectively. The difference in mean OCP recorded among the groups was found to be statistically significant in aerated phosphate buffered saline solution. The galvanic current (I) for metal-injection molded stainless steel brackets showed significantly higher values than all the other materials. Phase II results suggested that, in the couples formed by the archwire-bracket-ligature combinations, the bracket had more important contribution to the total galvanic current generated, since there were significant differences between galvanic current among the 2 brackets tested but not among the 3 wires. The galvanic current of the metal-injection molded bracket was significantly higher than that of laser-cut bracket. Highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire. The present study concluded that the bracket emerged to be the most important factor in determining the galvanic current (I). Higher mean current (I) was recorded in metal-injection molded bracket compared to laser-cut bracket. Among the three archwires, higher mean current (I) was recorded in heat-activated nickel-titanium, followed by stainless-steel and beta-titanium respectively. When coupled together; highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire.

  5. Effects of fixed orthodontic treatment using conventional versus metal-injection molding brackets on salivary nickel and chromium levels: a double-blind randomized clinical trial.

    PubMed

    Amini, Fariborz; Harandi, Saghar; Mollaei, Mobina; Rakhshan, Vahid

    2015-10-01

    Despite the importance of nickel and chromium release from orthodontic brackets, there are no in vivo or in vitro studies on this issue in the case of metal-injection molding (MIM) brackets. Saliva samples were collected from 30 orthodontic patients divided randomly into two groups of conventional and MIM brackets, before treatment and 2 months later. Approved attendees with odd and even numbers were, respectively, assigned to the control and treatment groups. For blinding, the patients were not informed of their bracket types, and the saliva samples were coded. Nickel and chromium levels were determined using atomic absorption spectrophotometry. Data were analysed using repeated-measures two-way analysis of covariance, independent-samples t-test, chi-squared, Spearman and point-biserial correlation coefficients, Mann-Whitney, and Wilcoxon tests (α = 0.05). Mean nickel level increased from 7.87±8.14 (pre-treatment) to 12.57±9.96 (2nd month) in the control group, and from 8.62±9.85 (pre-treatment) to 8.86±6.42 µg/l in the MIM group. Both of these increases were significant (Wilcoxon P < 0.03). Average chromium level changed from 0.25±0.56 (pre-treatment) to 0.35±0.62 and from 0.42±0.48 to 0.26±0.57 µg/l in the MIM group. Only the reduction observed in the MIM group was significant (Wilcoxon P = 0.0438). Age and gender had no significant influence on ion levels (P > 0.1). The differences between both ions' levels measured in the 60th day in both bracket groups were not significant (Mann-Whitney P > 0.05). The extents of changes over time were not significantly different between the bracket types (Mann-Whitney P > 0.05). The sample size was not predetermined based on power calculations. The spectrophotometer was limited to detecting chromium concentrations above 0.25 µg/l. Ion discharge from brackets might continuously change. The current in vivo methods are unable to take such fluctuations into account. Nickel might increase in patients undergoing treatment with both bracket types, although the rate of increase might be greater in patients under treatment with conventional brackets. Using MIM brackets might reduce salivary chromium for a trivial but generalizable amount. Still, ion levels leached from conventional versus MIM brackets might not show a difference after 2 months. Age and gender might not affect the ion levels in normal people or orthodontic patients. The protocol is registered offline at the university library. The protocol was not published before the trail commencement. Self-funded (S. H.). None to declare. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Impact of bracket displacement or rotation during bonding and time of removal of excess adhesive on the bracket-enamel bond strength.

    PubMed

    Oliveira, Adauê S; Barwaldt, Caroline K; Bublitz, Luana S; Moraes, Rafael R

    2014-06-01

    This study investigated the the influence of bracket displacement or rotation during fixation and the time of excess adhesive removal from around the bracket on bond strength to enamel. Stainless steel brackets were bonded to the buccal faces of bovine incisors using Transbond XT® adhesive resin. The teeth were divided into five groups (n = 20). In the control group, no displacement or rotation of the bracket was carried out. In the Displac-A group, excess adhesive was removed after the bracket was displaced 2 mm incisally. In the B-Displac group, excess adhesive was removed before the bracket was displaced incisally. In the Rotat-A group, excess adhesive was removed after the bracket was rotated 45°. In the B-Rotat group, excess adhesive was removed before the bracket was rotated. Photoactivation was carried out on the lateral sides of the bracket. A shear test was conducted 10 min after fixation using a knife-edged chisel. Bond strength data were analysed using ANOVA and Fisher's test (5%). The adhesive remnant index (ARI) was scored under magnification. ARI data were analysed using the Kruskal-Wallis test (5%). No significant differences were detected among the Control, Displac-A, Rotat-A and B-Rotat groups. The B-Displac group showed lower bond strength than all of the other groups, except Displac-A. No significant differences were observed in ARI scores across groups. Displacements of the brackets during fixation did not seem to affect the enamel bond strength when excess adhesive is removed after the final positioning of the bracket. © 2014 British Orthodontic Society.

  7. Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces.

    PubMed

    Erdur, Emire Aybuke; Basciftci, Faruk Ayhan

    2015-08-01

    With increasing demand for orthodontic treatments in adults, orthodontists continue to debate the optimal way to prepare ceramic surfaces for bonding. This study evaluated the effects of a Ti:sapphire laser on the shear bond strength (SBS) of orthodontic brackets bonded to two ceramic surfaces (feldspathic and IPS Empress e-Max) and the results were compared with those using two other lasers (Er:YAG and Nd:YAG) and 'conventional' techniques, i.e., sandblasting (50 µm) and hydrofluoric (HF) acid. In total, 150 ceramic discs were prepared and divided into two groups. In each group, the following five subgroups were prepared: Ti:sapphire laser, Nd:YAG laser, Er:YAG laser, sandblasting, and HF acid. Mandibular incisor brackets were bonded using a light-cured adhesive. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Extra samples were prepared and examined using scanning electron microscopy (SEM). SBS testing was performed and failure modes were classified. ANOVA and Tukey's HSD tests were used to compare SBS among the five subgroups (P < 0.05). Feldspathic and IPS Empress e-Max ceramics had similar SBS values. The Ti:sapphire femtosecond laser (16.76 ± 1.37 MPa) produced the highest mean bond strength, followed by sandblasting (12.79 ± 1.42 MPa) and HF acid (11.28 ± 1.26 MPa). The Er:YAG (5.43 ± 1.21 MPa) and Nd:YAG laser (5.36 ± 1.04 MPa) groups were similar and had the lowest SBS values. More homogeneous and regular surfaces were observed in the ablation pattern with the Ti:sapphire laser than with the other treatments by SEM analysis. Within the limitations of this in vitro study, Ti:sapphire laser- treated surfaces had the highest SBS values. Therefore, this technique may be useful for the pretreatment of ceramic surfaces as an alternative to 'conventional' techniques. © 2015 Wiley Periodicals, Inc.

  8. Comparison of frictional resistance of esthetic and semi-esthetic self-ligating brackets

    PubMed Central

    Kannan, M. S.; Murali, R. V.; Kishorekumar, S.; Gnanashanmugam, K.; Jayanth, V.

    2015-01-01

    Aim: The frictional resistance encountered during sliding mechanics has been well established in the orthodontic literature, and it consists of complex interactions between the bracket, archwire, and method of ligation the claim of reduced friction with self-ligating brackets is often cited as a primary advantage over conventional brackets. This study was done to compare and evaluate the frictional forces generated between fully esthetic brackets and semi-aesthetic self-ligating brackets, which are of passive form and SEM (scanning electron microscope) study of the Brackets after Frictional evaluation. Materials and Methods: Two types of self-ligating esthetic brackets, Damon clear (Ormco) made of fully ceramic and Opal (Ultradent Products, USA) and, Two types of self-ligating semi-esthetic brackets, Clarity SL (3M Unitek) and Damon 3 (Ormco) both of which are made of ceramic with metal slot. Arch wires with different dimensions and quality 17 × 25, 19 × 25 Titanium Molybdenum Alloy (TMA) and 17 × 25, 19 × 25 stainless steel that came from plain strands of wire were used for frictional comparison test. The brackets used in this study had 0.022 × 0.028 inch slot. Results: The statistical tests showed significantly smaller amount of kinetic frictional forces is generated by Damon 3 (semi-esthetic self-ligating brackets). For each wire used, Damon 3 displayed significantly lower frictional forces (P ≤ 0.05) than any of the self-ligating system, followed by Opal (fully esthetic self-ligating brackets) which generated smaller amount of frictional forces but relatively on the higher side when compared with Damon 3. Damon clear (fully esthetic self-ligating brackets) generated the maximum amount of kinetic forces with all types of wire dimensions and properties when compared to the other three types of self-ligating system. Clarity SL (semi-esthetic self-ligating brackets) generated smaller amount of frictional forces when compared with Damon clear and relatively higher amount of frictional forces when compared to Opal and Damon 3 PMID:26015687

  9. Shear bond strength and debonding characteristics of metal and ceramic brackets bonded with conventional acid-etch and self-etch primer systems: An in-vivo study.

    PubMed

    Mirzakouchaki, Behnam; Shirazi, Sajjad; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin

    2016-02-01

    Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch.

  10. Comparison of frictional resistance of esthetic and semi-esthetic self-ligating brackets.

    PubMed

    Kannan, M S; Murali, R V; Kishorekumar, S; Gnanashanmugam, K; Jayanth, V

    2015-04-01

    The frictional resistance encountered during sliding mechanics has been well established in the orthodontic literature, and it consists of complex interactions between the bracket, archwire, and method of ligation the claim of reduced friction with self-ligating brackets is often cited as a primary advantage over conventional brackets. This study was done to compare and evaluate the frictional forces generated between fully esthetic brackets and semi-aesthetic self-ligating brackets, which are of passive form and SEM (scanning electron microscope) study of the Brackets after Frictional evaluation. Two types of self-ligating esthetic brackets, Damon clear (Ormco) made of fully ceramic and Opal (Ultradent Products, USA) and, Two types of self-ligating semi-esthetic brackets, Clarity SL (3M Unitek) and Damon 3 (Ormco) both of which are made of ceramic with metal slot. Arch wires with different dimensions and quality 17 × 25, 19 × 25 Titanium Molybdenum Alloy (TMA) and 17 × 25, 19 × 25 stainless steel that came from plain strands of wire were used for frictional comparison test. The brackets used in this study had 0.022 × 0.028 inch slot. The statistical tests showed significantly smaller amount of kinetic frictional forces is generated by Damon 3 (semi-esthetic self-ligating brackets). For each wire used, Damon 3 displayed significantly lower frictional forces (P ≤ 0.05) than any of the self-ligating system, followed by Opal (fully esthetic self-ligating brackets) which generated smaller amount of frictional forces but relatively on the higher side when compared with Damon 3. Damon clear (fully esthetic self-ligating brackets) generated the maximum amount of kinetic forces with all types of wire dimensions and properties when compared to the other three types of self-ligating system. Clarity SL (semi-esthetic self-ligating brackets) generated smaller amount of frictional forces when compared with Damon clear and relatively higher amount of frictional forces when compared to Opal and Damon 3.

  11. Shear bond strength and debonding characteristics of metal and ceramic brackets bonded with conventional acid-etch and self-etch primer systems: An in-vivo study

    PubMed Central

    Mirzakouchaki, Behnam; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin

    2016-01-01

    Background Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. Material and Methods 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. Results The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. Conclusions The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Key words:Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch. PMID:26855704

  12. Debris and friction of self-ligating and conventional orthodontic brackets after clinical use.

    PubMed

    Araújo, Raíssa Costa; Bichara, Lívia Monteiro; Araujo, Adriana Monteiro de; Normando, David

    2015-07-01

    To compare the degree of debris and friction of conventional and self-ligating orthodontic brackets before and after clinical use. Two sets of three conventional and self-ligating brackets were bonded from the first molar to the first premolar in eight individuals, for a total of 16 sets per type of brackets. A passive segment of 0.019 × 0.025-inch stainless steel archwire was inserted into each group of brackets. Frictional force and debris level were evaluated as received and after 8 weeks of intraoral exposure. Two-way analysis of variance and Wilcoxon signed-rank test were applied at P < .05. After the intraoral exposure, there was a significant increase of debris accumulation in both systems of brackets (P < .05). However, the self-ligating brackets showed a higher amount of debris compared with the conventional brackets. The frictional force in conventional brackets was significantly higher when compared with self-ligating brackets before clinical use (P < .001). Clinical exposure for 8 weeks provided a significant increase of friction (P < .001) on both systems. In the self-ligating system, the mean of friction increase was 0.21 N (191%), while 0.52 N (47.2%) was observed for the conventional system. Self-ligating and conventional brackets, when exposed to the intraoral environment, showed a significant increase in frictional force during the sliding mechanics. Debris accumulation was higher for the self-ligating system.

  13. Dental Hygiene and Orthodontics: Effect of Ultrasonic Instrumentation on Bonding Efficacy of Different Lingual Orthodontic Brackets.

    PubMed

    Scribante, Andrea; Sfondrini, Maria Francesca; Collesano, Vittorio; Tovt, Gaia; Bernardinelli, Luisa; Gandini, Paola

    2017-01-01

    Dental hygienists are often faced with patients wearing lingual orthodontic therapy, as ultrasonic instrumentation (UI) is crucial for oral health. As the application of external forces can lead to premature bonding failure, the aim of this study was to evaluate the effect of UI on shear bond strength (SBS) and on adhesive remnant index (ARI) of different lingual orthodontic brackets. 200 bovine incisors were divided into 10 groups. Four different lingual (STB, Ormco; TTR, Rocky Mountain Orthodontics; Idea, Leone; 2D, Forestadent) and vestibular control (Victory, 3M) brackets were bonded. UI was performed in half of specimens, whereas the other half did not receive any treatment. All groups were tested with a universal testing machine. SBS and ARI values were recorded. Statistical analysis was performed (significance: P = 0.05). TTR, Idea, and 2D lingual brackets significantly lowered SBS after UI, whereas for other braces no effect was recorded. Appliances with lower mesh area significantly reduced their adhesion capacity after UI. Moreover groups subjected to UI showed higher ARI scores than controls. UI lowered SBS of lingual appliances of small dimensions so particular care should be posed avoiding prolonged instrumentation around bracket base during plaque removal. Moreover, UI influenced also ARI scores.

  14. Dental Hygiene and Orthodontics: Effect of Ultrasonic Instrumentation on Bonding Efficacy of Different Lingual Orthodontic Brackets

    PubMed Central

    Collesano, Vittorio; Tovt, Gaia; Bernardinelli, Luisa; Gandini, Paola

    2017-01-01

    Dental hygienists are often faced with patients wearing lingual orthodontic therapy, as ultrasonic instrumentation (UI) is crucial for oral health. As the application of external forces can lead to premature bonding failure, the aim of this study was to evaluate the effect of UI on shear bond strength (SBS) and on adhesive remnant index (ARI) of different lingual orthodontic brackets. 200 bovine incisors were divided into 10 groups. Four different lingual (STB, Ormco; TTR, Rocky Mountain Orthodontics; Idea, Leone; 2D, Forestadent) and vestibular control (Victory, 3M) brackets were bonded. UI was performed in half of specimens, whereas the other half did not receive any treatment. All groups were tested with a universal testing machine. SBS and ARI values were recorded. Statistical analysis was performed (significance: P = 0.05). TTR, Idea, and 2D lingual brackets significantly lowered SBS after UI, whereas for other braces no effect was recorded. Appliances with lower mesh area significantly reduced their adhesion capacity after UI. Moreover groups subjected to UI showed higher ARI scores than controls. UI lowered SBS of lingual appliances of small dimensions so particular care should be posed avoiding prolonged instrumentation around bracket base during plaque removal. Moreover, UI influenced also ARI scores. PMID:28904955

  15. Plaque retention by self-ligating vs elastomeric orthodontic brackets: quantitative comparison of oral bacteria and detection with adenosine triphosphate-driven bioluminescence.

    PubMed

    Pellegrini, Peter; Sauerwein, Rebecca; Finlayson, Tyler; McLeod, Jennifer; Covell, David A; Maier, Tom; Machida, Curtis A

    2009-04-01

    Enamel decalcification is a common problem in orthodontics. The objectives of this randomized clinical study were to enumerate and compare plaque bacteria surrounding 2 bracket types, self-ligating (SL) vs elastomeric ligating (E), and to determine whether adenosine triphosphate (ATP)-driven bioluminescence could be used for rapid assessment of bacterial load in plaque. Patients (ages, 11-17 years) were bonded with SL and E brackets in 14 maxillary and 12 mandibular arches by using a split-mouth design. Recall visits were at 1 and 5 weeks after bonding. Plaque specimens were assayed for oral bacteria and subjected to ATP-driven bioluminescence determinations with a luciferin-based assay. In most patients, teeth bonded with SL attachments had fewer bacteria in plaque than did teeth bonded with E brackets. At 1 and 5 weeks after bonding, the means for SL vs E brackets were statistically lower for total bacteria and oral streptococci (P <0.05). ATP bioluminescence values were statistically correlated to the total oral bacteria and oral streptococci, with correlation coefficients of 0.895 and 0.843, respectively. SL appliances promote reduced retention of oral bacteria, and ATP bioluminescence might be a useful tool in the rapid quantification of bacterial load and the assessment of oral hygiene during orthodontic treatment.

  16. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    PubMed

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  17. Microbial complexes levels in conventional and self-ligating brackets.

    PubMed

    Bergamo, Ana Zilda Nazar; Nelson-Filho, Paulo; Andrucioli, Marcela Cristina Damião; do Nascimento, Cássio; Pedrazzi, Vinícius; Matsumoto, Mírian Aiko Nakane

    2017-05-01

    The aims were to evaluate the levels of bacterial species in saliva and in situ and to assess whether the design of brackets influences the risk of developing periodontal disease. Twenty patients (13.3 mean age) were bonded with self-ligating brackets and a conventional bracket. Saliva was collected before bonding and 30 and 60 days after bonding. One sample of each bracket was removed 30 and 60 days after bonding. The analysis was determined by checkerboard DNA-DNA hybridization. The data was evaluated by the non-parametric test. A significant increase in the levels of bacterial species in the saliva occurred in 15 of the 22 analyzed species. The self-ligating brackets presented the highest incidence percentages for the orange and red complexes 60 days after bonding. In situ analyses showed different patterns according to the bracket design. The levels of Campylobacter rectus showed significant differences (p = 0.011) 60 days after bonding among the three brackets; the highest values were observed in the In-Ovation®R bracket. The bracket design seems to influence the levels of bacterial species involved in periodontal disease. Considering the wide variety of bacterial species, additional studies are needed to aid in the establishment of effective protocols to prevent the development of periodontal disease during orthodontic treatment. A dynamic alteration in the oral microbiota may lead to inflammatory reactions in the supporting soft and hard tissues. The different types of brackets interfere with bacterial adherence. Bracket design should be considered in orthodontic treatment.

  18. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi; Liu, Bin; Cao, Baocheng

    2014-08-01

    In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO2 thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.

  19. RSRM nozzle actuator bracket/lug fracture mechanics qualification test

    NASA Technical Reports Server (NTRS)

    Kelley, Peggy

    1993-01-01

    This is the final report for the actuator bracket/lug fracture mechanics qualification test. The test plan (CTP-0071) outlined a two-phase test program designed to answer questions about the fracture criticality of the redesigned solid rocket motor (RSRM) nozzle actuator bracket. An analysis conducted using the NASA/FLAGRO fracture mechanics computer program indicated that the actuator bracket might be a fracture critical component. In the NASA/FLAGRO analysis, a simple lug model was used to represent the actuator bracket. It was calculated that the bracket would fracture if subjected to an actuator stall load in the presence of a 0.10 in. corner crack at the actuator attachment hole. The 0.10 in. crack size corresponds to the nondestructive inspection detectability limit for the actuator bracket. The inspection method used is the dye penetrant method. The actuator stall load (103,424 lb) is the maximum load which the actuator bracket is required to withstand during motor operation. This testing was designed to establish the accuracy of the analytical model and to directly determine whether the actuator bracket is capable of meeting fracture mechanics safe-life requirements.

  20. In vitro physical, chemical, and biological evaluation of commercially available metal orthodontic brackets.

    PubMed

    Kim, Joo Hyoung; Cha, Jung Yul; Hwang, Chung Ju

    2012-12-01

    This in vitro study was undertaken to evaluate the physical, chemical, and biological properties of commercially available metal orthodontic brackets in South Korea, because national standards for these products are lacking. FOUR BRACKET BRANDS WERE TESTED FOR DIMENSIONAL ACCURACY, (MANUFACTURING ERRORS IN ANGULATION AND TORQUE), CYTOTOXICITY, COMPOSITION, ELUTION, AND CORROSION: Archist (Daeseung Medical), Victory (3M Unitek), Kosaka (Tomy), and Confidence (Shinye Odontology Materials). The tested rackets showed no significant differences in manufacturing errors in angulation, but Confidence brackets showed a significant difference in manufacturing errors in torque. None of the brackets were cytotoxic to mouse fibroblasts. The metal ion components did not show a regular increasing or decreasing trend of elution over time, but the volume of the total eluted metal ions increased: Archist brackets had the maximal Cr elution and Confidence brackets appeared to have the largest volume of total eluted metal ions because of excessive Ni elution. Confidence brackets showed the lowest corrosion resistance during potentiodynamic polarization. The results of this study could potentially be applied in establishing national standards for metal orthodontic brackets and in evaluating commercially available products.

  1. Corrosion behavior of 2205 duplex stainless steel.

    PubMed

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  2. [Friction: self-ligating brackets].

    PubMed

    Thermac, Guilhem; Morgon, Laurent; Godeneche, Julien

    2008-12-01

    The manufacturers of self-ligating brackets advertise a reduction of the friction engendered between the wire and the bracket, which is an essential parameter for treatment's speed and comfort. We have compared the friction obtained with four types of self-ligating brackets - In-Ovation R, Damon 3, Smart Clip and Quick - with that of a standard bracket Omniarch associated with an elastomeric ligature. All bracket were tested on a bench of traction with three types of wires: steel .019"x.025", TMA .019"x.025" and NEO sentalloy F300 .020"x.020". The results confirm a clear friction reduction for all tested wire.

  3. Torsional strength of computer-aided design/computer-aided manufacturing-fabricated esthetic orthodontic brackets.

    PubMed

    Alrejaye, Najla; Pober, Richard; Giordano Ii, Russell

    2017-01-01

    To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion. Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC). The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P < .05). The mean torques at failure ranged from 3467 g.mm for Mark II to 11,902 g.mm for YZ. The mean torsion angles at failure ranged from 15.3° to 40.9°. Zirconia had the highest torsional strength among the tested esthetic brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.

  4. Effect of different intracoronal bleaching methods on shear bond strength of ceramic brackets bonded to bleached enamel: An in-vitro study.

    PubMed

    Chauhan, Vikas; Kumar, Piush; Sharma, Payal; Shetty, Divya

    2017-01-01

    To investigate the effect of different intracoronal bleaching methods on the shear bond strength and site of failure of ceramic brackets. Sixty freshly extracted human maxillary incisors were randomly divided into four groups ( n = 15). Endodontic access cavity was prepared and root canals were filled, root fillings were removed 2mm apical to the cementoenamel junction, and a 2-mmthick layer of glass ionomer cement base was applied. Group 1 served as the control. Intracoronal bleaching was performed with 35% carbamide peroxide in group 2, sodium perborate in group 3, and 37.5% hydrogen peroxide in group 4. The teeth were immersed in artificial saliva for 4 weeks before bracket bonding. Ceramic brackets were bonded with composite resin and cured with LED light. After bonding, the shear bond strength of the brackets was tested with a universal testing machine. The site of bond failure was determined by modified ARI (Adhesive Remnant Index). The highest value of shear bond strength was measured in control group (18.67 ± 1.59 MPa), which was statistically significant from groups 2,3, and 4. There was no significant difference between groups 2 and 4. The lowest shear bond strength was measured in group 3. ARI scores were not significant from each other. Intracoronal bleaching significantly affected the shear bond strength of ceramic brackets even after 4 weeks of bleaching. Bleaching with sodium perborate affects shear bond strength more adversely than does bleaching with other agents like hydrogen peroxide and carbamide peroxide.

  5. CO2 laser debonding of a ceramic bracket bonded with orthodontic adhesive containing thermal expansion microcapsules.

    PubMed

    Saito, Ayano; Namura, Yasuhiro; Isokawa, Keitaro; Shimizu, Noriyoshi

    2015-02-01

    We have been studying an easy bracket debonding method using heating of an orthodontic adhesive containing thermal expansion microcapsules. However, heating with a high-temperature heater brings obvious risks of burns around the oral cavity. Thus, we examined safer and more effective bracket debonding methods. The purpose of this in vitro study was to examine the reduction in debonding strength and the time taken using a bracket bonded with an orthodontic adhesive containing thermal expansion microcapsules and a CO2 laser as the heating method while maintaining safety. Ceramic brackets were bonded to bovine permanent mandibular incisors using bonding materials containing various microcapsule contents (0, 30, and 40 wt%), and the bond strengths were measured after laser irradiation for 4, 5, and 6 s and compared with nonlaser-treated groups. Subsequently, the temperature in the pulp chamber during laser irradiation was measured. After laser irradiation for 5 or 6 s, the bond strengths of the adhesive containing 40 wt% microcapsules were significantly decreased to ∼0.40 - 0.48-fold (4.6-5.5 MPa) compared with the nonlaser groups. The mean temperature rise of the pulp chamber was 4.3 °C with laser irradiation for 6 s, which was less than that required to induce pulp damage. Based on these results, we conclude that the combined use of a CO2 laser and an orthodontic adhesive containing thermal expansion microcapsules can be effective and safe for debonding ceramic brackets with less enamel damage or tooth pain.

  6. Influence of bracket-slot design on the forces released by superelastic nickel-titanium alignment wires in different deflection configurations.

    PubMed

    Nucera, Riccardo; Gatto, Elda; Borsellino, Chiara; Aceto, Pasquale; Fabiano, Francesca; Matarese, Giovanni; Perillo, Letizia; Cordasco, Giancarlo

    2014-05-01

    To evaluate how different bracket-slot design characteristics affect the forces released by superelastic nickel-titanium (NiTi) alignment wires at different amounts of wire deflection. A three-bracket bending and a classic-three point bending testing apparatus were used to investigate the load-deflection properties of one superelastic 0.014-inch NiTi alignment wire in different experimental conditions. The selected NiTi archwire was tested in association with three bracket systems: (1) conventional twin brackets with a 0.018-inch slot, (2) a self-ligating bracket with a 0.018-inch slot, and (3) a self-ligating bracket with a 0.022-inch slot. Wire specimens were deflected at 2 mm and 4 mm. Use of a 0.018-inch slot bracket system, in comparison with use of a 0.022-inch system, increases the force exerted by the superelastic NiTi wires at a 2-mm deflection. Use of a self-ligating bracket system increases the force released by NiTi wires in comparison with the conventional ligated bracket system. NiTi wires deflected to a different maximum deflection (2 mm and 4 mm) release different forces at the same unloading data point (1.5 mm). Bracket design, type of experimental test, and amount of wire deflection significantly affected the amount of forces released by superelastic NiTi wires (P<.05). This phenomenon offers clinicians the possibility to manipulate the wire's load during alignment.

  7. A 12 month clinical study of bond failures of recycled versus new stainless steel orthodontic brackets.

    PubMed

    Cacciafesta, Vittorio; Sfondrini, Maria Francesca; Melsen, Birte; Scribante, Andrea

    2004-08-01

    The purpose of this prospective longitudinal randomized study was to compare the clinical performance of recycled brackets with that of new stainless steel brackets (Orthos). Twenty patients treated with fixed appliances were included in the investigation. Using a 'split-mouth' design, the dentition of each patient was divided into four quadrants. In 11 randomly selected patients, the maxillary left and mandibular right quadrants were bonded with recycled brackets, and the remaining quadrants with new stainless steel brackets. In the other nine patients the quadrants were inverted. Three hundred and ten stainless steel brackets were examined: 156 were recycled and the remaining 154 were new. All the brackets were bonded with a self-cured resin-modified glass ionomer (GC Fuji Ortho). The number, cause, and date of bracket failures were recorded over 12 months. Statistical analysis was performed by means of a paired t-test, Kaplan-Meier survival estimates, and the log-rank test. No statistically significant differences were found between: (a) the total bond failure rate of recycled and new stainless steel brackets; (b) the upper and lower arches; (c) the anterior and posterior segments. These findings demonstrate that recycling metallic orthodontic brackets can be of benefit to the profession, both economically and ecologically, as long as the orthodontist is aware of the various aspects of the recycling methods, and that patients are informed about the type of bracket that will be used for their treatment.

  8. Suitability of orthodontic brackets for rebonding and reworking following removal by air pressure pulses and conventional debracketing techniques.

    PubMed

    Knösel, Michael; Mattysek, Simone; Jung, Klaus; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza; Ziebolz, Dirk

    2010-07-01

    To test the null hypothesis that there are no significant differences in the reusability of debonded brackets with regard to debonding technique and adhesive used. Ninety-six osteotomed third molars were randomly assigned to two study groups (n = 48) for bonding of a 0.018-inch bracket (Ormesh, Ormco) with either a composite adhesive (Mono-Lok2; RMO) or a glass ionomer cement (GIC; Fuji Ortho LC;GC). Each of these two groups were then randomly divided into four subgroups (n = 12) according to the method of debonding using (1) bracket removal pliers (BRP; Dentaurum), (2) a side cutter (SC; Dentaurum), (3) a lift-off debracketing instrument (LODI; 3M-Unitek), or (4) an air pressure pulse device (CoronaFlex; KaVo). The brackets were subsequently assessed visually for reusability and reworkability with 2x magnification and by pull testing with a 0.017- x 0.025-inch steel archwire. The proportions of reusable brackets were individually compared in terms of mode of removal and with regard to adhesives using the Fisher exact test (alpha = 5%). The null hypothesis was rejected. Not taking into account the debonding method, brackets bonded with GIC were judged to a significant extent (81%; n = 39; P < .01) to be reworkable compared with those bonded with composite (56%; n = 27). All brackets in both adhesive groups removed with either the LODI or the CoronaFlex were found to be reusable, whereas 79% (46%) of the brackets removed with the BRP (SC) were not. The proportion of reusable brackets differed significantly between modes of removal (P < .01). With regard to bracket reusability, the SC and the BRP cannot be recommended for debonding brackets, especially in combination with a composite adhesive.

  9. Torque expression of 0.018 and 0.022 inch conventional brackets.

    PubMed

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2013-10-01

    The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond® Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. These brackets were bonded on identical maxillary acrylic resin models with levelled and aligned teeth and each model was mounted on the orthodontic measurement and simulation system (OMSS). Ten specimens of 0.017 × 0.025 inch and ten 0.019 × 0.025 inch stainless steel archwires (ORMCO) were evaluated in the low- and high-torque 0.018 inch and 0.022 inch brackets, respectively. The wires were ligated with elastomerics into the brackets and each measurement was repeated once after religation. Two-way analysis of variance and t-test were conducted to compare the generated moments between wires at low- and high-torque brackets separately. The maximum moment generated by the 0.017 × 0.025 inch stainless steel archwire in the 0.018 inch brackets at +15 degrees ranged from 14.33 and 12.95 Nmm for the high- and low-torque brackets, respectively. The measured torque in the 0.022 inch brackets with the 0.019 × 0.025 inch stainless steel archwire was 9.32 and 6.48 Nmm, respectively. The recorded differences of maximum moments between the high- and low-torque series were statistically significant. High-torque brackets produced higher moments compared with low-torque brackets. Additionally, in both high- and low-torque configurations, the thicker 0.019 × 0.025 inch steel archwire in the 0.022 inch slot system generated lower moments in comparison with the 0.017 × 0.025 inch steel archwire in the 0.018 inch slot system.

  10. Bracketing mid-pliocene sea surface temperature: maximum and minimum possible warming

    USGS Publications Warehouse

    Dowsett, Harry

    2004-01-01

    Estimates of sea surface temperature (SST) from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Mega-annums (Ma). Pollen records from land based cores and sections, although not as well dated, also show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport is the leading candidates for the underlying cause of Pliocene global warmth. However, despite being a period of global warmth, there exists considerable variability within this interval. Two new SST reconstructions have been created to provide a climatological error bar for warm peak phases of the Pliocene. These data represent the maximum and minimum possible warming recorded within the 3.3 to 3.0 Ma interval.

  11. Influence of orthodontic adhesives and clean-up procedures on the stain susceptibility of enamel after debonding.

    PubMed

    Joo, Hyun-Jin; Lee, Yong-Keun; Lee, Dong-Yul; Kim, Yae-Jin; Lim, Yong-Kyu

    2011-03-01

    To determine the influence of the type of orthodontic adhesive system, such as conventional acid-etching (CE) and self-etching primers (SEPs), on the stain susceptibility of enamel surface after debonding. Effects of clean-up procedures on the enamel surface were also determined. Two types and four brands of adhesive systems were investigated using 135 human premolars. Unbonded teeth were used as controls. Three-dimensional scanning of the enamel surface was performed before bracket bonding, after debonding, and after clean-up procedures. The color of each tooth was measured before bracket bonding and again after debonding and clean-up procedures. This was followed by methylene blue staining. The stain susceptibility of the enamel surface was measured after finishing only (F-condition) and after finishing/polishing (FP-condition). After debonding, the amount of residual adhesive resins in CE materials was greater than that in SEP materials. For the F-condition, staining color change in SEP materials was significantly higher than that in CE materials. For the FP-condition, staining color change in both CE and SEP materials was not different from those of the control. The SEP system would show less stain susceptibility if the thin residual adhesive resin layer after debonding is removed by polishing.

  12. Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets.

    PubMed

    Francisconi, Manoela Fávaro; Janson, Guilherme; Henriques, José Fernando Castanha; Freitas, Karina Maria Salvatore de

    2016-01-01

    The purpose of this study was to evaluate the deflection forces of Nitinol orthodontic wires placed in different types of brackets: metallic, reinforced polycarbonate with metallic slots, sapphire, passive and active self-ligating, by assessing strength values variation according to gradual increase in wire diameter and deflection and comparing different combinations in the different deflections. Specimens were set in a clinical simulation model and evaluated in a Universal Testing Machine (INSTRON 3342), using the ISO 15841 protocol. Data were subjected to One-way ANOVA, followed by Tukey tests (p<0.05). Self-ligating brackets presented the most similar behavior to each other. For conventional brackets there was no consistent behavior for any of the deflections studied. Self-ligating brackets presented the most consistent and predictable results while conventional brackets, as esthetic brackets, showed very different patterns of forces. Self-ligating brackets showed higher strength in all deflections when compared with the others, in 0.020-inch wires.

  13. Adhesion of mutans streptococci to self-ligating ceramic brackets: in vivo quantitative analysis with real-time polymerase chain reaction.

    PubMed

    Jung, Woo-Sun; Yang, Il-Hyung; Lim, Won Hee; Baek, Seung-Hak; Kim, Tae-Woo; Ahn, Sug-Joon

    2015-12-01

    To analyze in vivo mutans streptococci (MS) adhesion to self-ligating ceramic brackets [Clarity-SL (CSL) and Clippy-C (CC)] and the relationships between bacterial adhesion and oral hygiene indices. Four central incisor brackets from the maxilla and mandible were collected from 40 patients (20 patients per each bracket type) at debonding immediately after plaque and gingival indices were measured. Adhesions of Streptococcus mutans, S. sobrinus, and total bacteria were quantitatively determined using real-time polymerase chain reaction after genomic DNA was extracted. Factorial analysis of variance was used to analyze bacterial adhesion to the brackets with respect to the bracket type and jaw position. Correlation coefficients were calculated to determine the relationships of bacterial adhesion to oral hygiene indices. Adhesion of total bacteria and S. mutans to CSL was higher than that to CC (P < 0.001). Adhesion of total bacteria to the mandibular brackets was higher than that to the maxillary ones (P < 0.001), while adhesion of S. mutans to the maxillary brackets were higher than that in the mandibular ones (P < 0.001). In particular, the proportion of S. mutans to total bacteria in CSL was higher than CC (P < 0.05) in the maxillary anterior teeth (P < 0.001). There were no significant differences in adhesion of S. sobrinus between the brackets and jaw positions. Interestingly, no significant relationships were found between bacterial adhesions and oral hygiene indices. Complex bracket configurations may significantly influence bacterial adhesion to orthodontic brackets. Further in vivo study using bracket raw materials will help to define the relationships between bacteria adhesion and enamel demineralization. Because oral hygiene indices were not significantly correlated with adhesions of MS to self-ligating ceramic brackets, careful examinations around the brackets should be needed to prevent enamel demineralization, regardless of oral hygiene status. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. In vitro evaluation of microbial contamination of orthodontic brackets as received from the manufacturer using microbiological and molecular tests.

    PubMed

    Dos Santos Gerzson, Darlene R; Simon, Daniel; Dos Anjos, Aline Lima; Freitas, Maria Perpétua Mota

    2015-11-01

    To test the null hypothesis that orthodontic brackets as supplied by manufacturers do not have microbial contamination. The sample comprised 140 brackets of four different commercially available brands, used directly from the manufacturer's packaging, divided into 14 groups (n  =  10 brackets each). Of the 140 pieces, 60 were full cases and 80 were replacement brackets. Materials were tested to detect bacterial growth, analyze types of bacteria present (biochemical test), and identify bacteria (molecular test with polymerase chain reaction [PCR]). In two of 12 groups the brackets showed microbial contamination: group 1, Morelli full case brackets, and group 12, Abzil-3M Unitek replacement brackets. Staphylococcus aureus and Staphylococcus epidermidis were the bacteria identified in groups 1 and 12, respectively (suggested by the biochemical test and confirmed by PCR). Brackets of two brands (Morelli and Abzil-3M Unitek) were found to be contaminated by bacteria in the original packages supplied by the manufacturers, which suggests a risk for patient contamination. These data suggest that the manufacturers of these materials should improve the quality control of the packaging used, including sterilization, for the security of patient health.

  15. Tiedown Bracket

    NASA Technical Reports Server (NTRS)

    Mashburn, D.; Wald, J. E.; Helmsin, F. K.

    1982-01-01

    Tiedown bracket secured to concrete slab with lag anchor and lag bolt. A trailer or other heavy equipment can be anchored by tethering it to strapping bolt. When bracket is no longer needed, it can be removed, leaving behind only lag anchor. Bracket is easily installed and removed without damage to concrete slab.

  16. The influence of bracket design on frictional losses in the bracket/arch wire system.

    PubMed

    Schumacher, H A; Bourauel, C; Drescher, D

    1999-01-01

    In arch guided tooth movement, the essential role played by bracket configuration with respect to sliding friction has been recognized by the manufacturers, a fact which has had an increasing impact on the design and marketing of new bracket models in recent years. The aim of the present in-vitro study was to investigate the influence of different bracket designs on sliding mechanics. Five differently shaped stainless steel brackets (Discovery: Dentaurum, Damon SL: A-Company, Synergy: Rocky Mountain Orthodontics, Viazis bracket and Omni Arch appliance: GAC) were compared in the 0.022"-slot system. The Orthodontic Measurement and Simulation System (OMSS) was used to quantify the difference between applied force (NiTi coil spring, 1.0 N) and orthodontically effective force and to determine leveling losses occurring during the sliding process in arch guided tooth movement. Simulated canine retraction was performed using continuous arch wires with the dimensions 0.019" x 0.025" (Standard Steel, Unitek) and 0.020" x 0.020" (Ideal Gold, GAC). Comparison of the brackets revealed friction-induced losses ranging from 20 to 70%, with clear-cut advantages resulting from the newly developed bracket types. However, an increased tendency towards leveling losses in terms of distal rotation (maximum 15 degrees) or buccal root torque (maximum 20 degrees) was recorded, especially with those brackets giving the arch wire increased mobility due to their shaping or lack of ligature wire.

  17. Influence of fibre and filler reinforcement of plastic brackets: an in vitro study.

    PubMed

    Faltermeier, Andreas; Rosentritt, Martin; Faltermeier, Rupert; Müssig, Dieter

    2007-06-01

    In spite of their popularity in fulfilling aesthetic requirements, plastic brackets still present some disadvantages because of their low elastic modulus, decreased fracture toughness, and reduced wear resistance. Fibre-reinforced composites are well established in dentistry and consist of a polymer matrix in which reinforcing fibres are embedded. Stress is transferred from the polymer matrix to the fibres which present a high tensile strength. Hence, the mechanical properties of polymers could be improved. The purpose of this study was to compare fracture strength, fracture toughness and flexural strength of an experimental fibre-reinforced bracket material, an SiO(2) filler-reinforced bracket and an unfilled plastic bracket material (control group). Experimental brackets and specialized bars were manufactured. Tests were performed after thermal cycling (5 degrees C/55 degrees C) the samples in an artificial oral environment of a device to simulate mastication. Statistical evaluation was undertaken. The median, 25th and 75th percentiles were calculated and a Mann-Whitney U-test was performed. In this study two findings were obvious. (1) Filler reinforcement of plastic brackets improved fracture strength and fracture toughness in comparison with the unfilled bracket material. (2) Glass fibre reinforcement of orthodontic bracket materials resulted in the greatest enhancement of the mechanical properties in comparison with the other test groups. Therefore, the application of glass fibres in plastic brackets is a successful method to enhance fracture strength.

  18. 10Be dating of late-glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Thompson, L. G.

    2004-12-01

    The surface exposure method, based on the measurement of cosmogenic 10Be produced in quartz, is applied to determine the age of deposition of glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap (about 13° S, 70° W) in southeastern Peru. These data are useful for examining the timing of past glaciation in the tropical Andes and for comparison with chronologies of glaciation at higher latitudes. The preliminary data set consists of more than ten surface exposure ages. Samples used for dating are from the surfaces of boulders on a set of prominent moraines about four kilometers away from the present ice margins. The age of the moraine set was previously bracketed by radiocarbon dating of peat associated with the glacial deposits. Based on radiocarbon ages, these moraines were formed during the late-glacial period, just prior to the last glacial-interglacial transition. The surface exposure dating method enables the direct dating of the moraines. Surface exposure dates are cross-checked with the previously existing radiocarbon dates and provide a means to improve the chronology of past glaciation in the tropical Andes.

  19. Generalized centripetal force law and quantization of motion constrained on 2D surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Zhang, J.; Lian, D. K.; Hu, L. D.; Li, Z.

    2017-03-01

    For a particle of mass μ moves on a 2D surface f(x) = 0 embedded in 3D Euclidean space of coordinates x, there is an open and controversial problem whether the Dirac's canonical quantization scheme for the constrained motion allows for the geometric potential that has been experimentally confirmed. We note that the Dirac's scheme hypothesizes that the symmetries indicated by classical brackets among positions x and momenta p and Hamiltonian Hc remain in quantum mechanics, i.e., the following Dirac brackets [ x ,Hc ] D and [ p ,Hc ] D holds true after quantization, in addition to the fundamental ones [ x , x ] D, [ x , p ] D and [ p , p ] D. This set of hypotheses implies that the Hamiltonian operator is simultaneously determined during the quantization. The quantum mechanical relations corresponding to the classical mechanical ones p / μ =[ x ,Hc ] D directly give the geometric momenta. The time t derivative of the momenta p ˙ =[ p ,Hc ] D in classical mechanics is in fact the generalized centripetal force law for particle on the 2D surface, which in quantum mechanics permits both the geometric momenta and the geometric potential.

  20. 78 FR 24985 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... (L-126A,B,C), 195A, and 195B airplanes that are equipped with certain inboard aileron hinge brackets... 4, 2013), currently requires you to repetitively inspect the affected inboard aileron hinge brackets... brackets. Replacement with aluminum brackets would terminate the need for the repetitive inspections...

  1. Universal Cable Brackets

    NASA Technical Reports Server (NTRS)

    Vanvalkenburgh, C.

    1985-01-01

    Concept allows routing easily changed. No custom hardware required in concept. Instead, standard brackets cut to length and installed at selected locations along cable route. If cable route is changed, brackets simply moved to new locations. Concept for "universal" cable brackets make it easy to route electrical cable around and through virtually any structure.

  2. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... composed of an adhesive compound, such as polymethylmethacrylate, intended to cement an orthodontic bracket... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin...

  3. 21 CFR 872.5470 - Orthodontic plastic bracket.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...

  4. Using a Bracketed Analysis as a Learning Tool.

    ERIC Educational Resources Information Center

    Main, Keith

    1995-01-01

    Bracketed analysis is an examination of experiences within a defined time frame or "bracket." It assumes the ability to learn from any source: behaviors, emotions, rational and irrational thought, insights, reflections, and reactions. A bracketed analysis to determine what went wrong with a grant proposal that missed deadlines…

  5. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device...

  6. 21 CFR 872.5470 - Orthodontic plastic bracket.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...

  7. 21 CFR 872.5470 - Orthodontic plastic bracket.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...

  8. 21 CFR 872.5470 - Orthodontic plastic bracket.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...

  9. 21 CFR 872.5470 - Orthodontic plastic bracket.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...

  10. 77 FR 34281 - Airworthiness Directives; Schweizer Aircraft Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... brackets, inspecting the mounting brackets for wear greater than 0.002-inch deep, and replacing the mounting bracket if the bracket wear exceeds 0.002-inch deep. [cir] Modifying the aft fuselage assembly by... areas, and replacing the spar if the wear exceeds 0.002-inch deep. [cir] Inspecting for rivet...

  11. Comparison of Shear Bond Strength of Orthodontic Brackets Bonded to Enamel Prepared By Er:YAG Laser and Conventional Acid-Etching

    PubMed Central

    Hosseini, M.H.; Namvar, F.; Chalipa, J.; Saber, K.; Chiniforush, N.; Sarmadi, S.; Mirhashemi, A.H.

    2012-01-01

    Introduction: The purpose of this study was to compare shear bond strength (SBS) of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching. Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI) scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types. Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively. Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning. PMID:22924098

  12. Design of a Prototype Autonomous Amphibious WHEGS(Trademark) Robot for Surf-Zone Operations

    DTIC Science & Technology

    2005-06-01

    Control Loop ........................................................................ 9 Figure 7. Physical Layout (without GPS bracket ...12 Figure 8. Side View showing GPS Bracket ........................................................ 13 Figure 9...without GPS bracket ) 13 Figure 8. Side View showing GPS Bracket 1. Body Construction The design of the robot body for this thesis was made to

  13. [Individual indirect bonding technique (IIBT) using set-up model].

    PubMed

    Kyung, H M

    1989-01-01

    There has been much progress in Edgewise Appliance since E.H. Angle. One of the most important procedures in edgewise appliance is correct bracket position. Not only conventional edgewise appliance but also straight wire appliance & lingual appliance cannot be used more effectively unless the bracket position is accurate. Improper bracket positioning may reveal much problems during treatment, especially in finishing state. It may require either rebonding after the removal of the malpositioned bracket or the greater number of arch wire and the more complex wire bending, causing much difficulty in performing effective treatments. This made me invent Individual Indirect Bonding Technique with the use of multi-purpose set-up model in order to determine a correct and objective bracket position according to individual patients. This technique is more accurate than former indirect bonding techniques in bracket positioning, because it decides the bracket position on a set-up model which has produced to have the occlusal relationship the clinician desired. This technique is especially effective in straight wire appliance and lingual appliance in which the correct bracket positioning is indispensible.

  14. Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets

    PubMed Central

    Francisconi, Manoela Fávaro; Janson, Guilherme; Henriques, José Fernando Castanha; de Freitas, Karina Maria Salvatore

    2016-01-01

    ABSTRACT Objective: The purpose of this study was to evaluate the deflection forces of Nitinol orthodontic wires placed in different types of brackets: metallic, reinforced polycarbonate with metallic slots, sapphire, passive and active self-ligating, by assessing strength values variation according to gradual increase in wire diameter and deflection and comparing different combinations in the different deflections. Material and Methods: Specimens were set in a clinical simulation model and evaluated in a Universal Testing Machine (INSTRON 3342), using the ISO 15841 protocol. Data were subjected to One-way ANOVA, followed by Tukey tests (p<0.05). Results: Self-ligating brackets presented the most similar behavior to each other. For conventional brackets there was no consistent behavior for any of the deflections studied. Conclusions: Self-ligating brackets presented the most consistent and predictable results while conventional brackets, as esthetic brackets, showed very different patterns of forces. Self-ligating brackets showed higher strength in all deflections when compared with the others, in 0.020-inch wires. PMID:27812620

  15. The Marine Light-Mixed Layer Experiment Cruise and Data Report: R/V Endeavor Cruise EN-224, Mooring Deployment, 27 April-1 May 1991: Cruise EN-227, Mooring Recovery, 5-23 September 1991

    DTIC Science & Technology

    1993-05-01

    C 1/2 time average Thermometrics Measured during first 4K@ 250 C half of avg. period. Air Temperature Thermistor -10 to +350 C 1/2 time average...lack of a neoprene pad oil the bottom mounting bracket base plate, allowing tLe aluminum case to directly touch the bracket. The mooring 3 hardware

  16. Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study

    PubMed Central

    Crincoli, Vito; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio

    2013-01-01

    Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. PMID:23533364

  17. Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets.

    PubMed

    Sfondrini, Maria Francesca; Cacciafesta, Vittorio; Maffia, Elena; Massironi, Sarah; Scribante, Andrea; Alberti, Giancarla; Biesuz, Raffaela; Klersy, Catherine

    2009-03-01

    To test the hypothesis that there is no difference in the amounts of chromium released from new stainless steel brackets, recycled stainless steel brackets, and nickel-free (Ni-free) orthodontic brackets. This in vitro study was performed using a classic batch procedure by immersion of the samples in artificial saliva at various acidities (pH 4.2, 6.5, and 7.6) over an extended time interval (t(1) = 0.25 h, t(2) = 1 h, t(3) = 24 h, t(4) = 48 h, t(5) = 120 h). The amount of chromium release was determined using an atomic absorption spectrophotometer and an inductively coupled plasma atomic emission spectrometer. Statistical analysis included a linear regression model for repeated measures, with calculation of Huber-White robust standard errors to account for intrabracket correlation of data. For post hoc comparisons the Bonferroni correction was applied. The greatest amount of chromium was released from new stainless steel brackets (0.52 +/- 1.083 microg/g), whereas the recycled brackets released 0.27 +/- 0.38 microg/g. The smallest release was measured with Ni-free brackets (0.21 +/- 0.51 microg/g). The difference between recycled brackets and Ni-free brackets was not statistically significant (P = .13). For all brackets, the greatest release (P = .000) was measured at pH 4.2, and a significant increase was reported between all time intervals (P < .002). The hypothesis is rejected, but the amount of chromium released in all test solutions was well below the daily dietary intake level.

  18. In vitro assessment of competency for different lingual brackets in sliding mechanics.

    PubMed

    Lalithapriya, S; Kumaran, N Kurunji; Rajasigamani, K

    2015-01-01

    To determine the static frictional resistance of different lingual brackets at different second order angulations when coupled with stainless steel (SS) archwire in dry and wet conditions. Using a modified jig, frictional resistance was evaluated under different conditions for a total of 270 upper premolar lingual brackets (0.018″ × 0.025″ - conventional - 7(th) generation and STb, self-ligating - evolution) with no in-built tip or torque together with 0.016″ × 0.022″ straight length SS archwires. For conventional brackets, the archwire was secured with 0.008″ preformed SS short ligature ties. One way analysis of variance with Tukey HSD as post-hoc test was applied for degree wise and bracket wise comparison within dry condition and wet condition. For pair wise comparison Student's t-test was used. Under both conditions the static frictional resistance is significantly higher for self-ligating brackets at 0°, while at 5° and 10° it is higher for 7(th) generation brackets. Statistically, significant difference does not exist at 0° between conventional brackets and the same was found at 5° and 10° between STb and self-ligating brackets. With an increase in second order angulations, all the evaluated samples exhibited an increased frictional value. Wet condition samples obtained a higher value than their corresponding dry condition. The self-ligating bracket evaluated in this in vitro study is not beneficial in reducing friction during en-mass retraction due to its interactive clip type.

  19. Effect of light-curable fluoride varnish on enamel demineralization adjacent to orthodontic brackets: an in-vivo study.

    PubMed

    Mehta, Anurag; Paramshivam, Ganesh; Chugh, Vinay Kumar; Singh, Surjit; Halkai, Sudha; Kumar, Santosh

    2015-11-01

    The purpose of this in-vivo study was to evaluate the effect of a single application of Clinpro XT (3M ESPE, Pymble, New South Wales, Australia), a light-curable fluoride varnish, on enamel demineralization adjacent to orthodontic brackets. Thirty-eight patients (152 teeth) whose orthodontic treatment involved extraction of 4 first premolars were recruited. Two premolars each were assigned to the control group (no treatment) and the experimental group (received fluoride varnish application). The study was designed as a nonrandomized split-mouth study in which diagonally opposite quadrants received the same treatment. After the bonding procedures, a sectional T-loop was ligated into each bracket to serve as a site for plaque retention for enhanced demineralization. Clinpro XT was applied on the buccal surfaces adjacent to the brackets on all teeth in the experimental group only. Teeth in both groups were extracted after 15 days (n = 30), 30 days (n = 30), 45 days (n = 30), 90 days (n = 18), and 120 days (n = 18). Buccolingual sections were then evaluated under polarized light microscopy. After we excluded the dropouts, the mean depth of the demineralized enamel lesions was measured in final sample of 126 teeth. The Mann-Whitney test was used for comparison of the groups. In the control group, the depths of the demineralized enamel lesions increased from 30 to 120 days, whereas in the experimental group no sign of demineralization was noted throughout the observation period except for 3 teeth. Significant differences in the depths of demineralized lesions were found between the study groups. Clinpro XT light-curable fluoride varnish may be a reasonable alternative in the reduction of enamel demineralization around orthodontic brackets, especially in noncompliant and high-risk patients. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Effects of near infrared laser radiation associated with photoabsorbing cream in preventing white spot lesions around orthodontic brackets: an in vitro study.

    PubMed

    Lacerda, Ângela Sueli Soares Braga; Hanashiro, Fernando Seishim; de Sant'Anna, Giselle Rodrigues; Steagall Júnior, Washington; Barbosa, Patrícia Silva; de Souza-Zaroni, Wanessa Christine

    2014-12-01

    The present study aims to investigate the effect of a low-power infrared laser on the inhibition of bovine enamel demineralization around orthodontic brackets. Near infrared lasers have been suggested as alternative approaches because they may produce an increase in resistance to dental caries. Forty-eight blocks of enamel obtained from bovine incisor teeth were divided into six groups: Group 1 (control), without treatment; Group 2 (C), photoabsorbing cream; Group 3 (CF), photoabsorbing cream with fluoride; Group 4 (L), irradiation with low-level infrared laser (λ=830 nm) at an energy density of 4.47 J/cm2; Group 5 (L+C), photoabsorbing cream followed by low-level infrared laser irradiation; and Group 6 (L+CF), photoabsorbing cream with fluoride followed by low-level infrared laser irradiation. After these procedures, the enamel blocks received an assortment of orthodontic brackets and were then submitted to pH cycling to simulate a highly cariogenic challenge. The enamel surface demineralization around the orthodontic brackets, according to the different treatments, was quantified by fluorescence loss analysis by quantitative light-induced fluorescence (QLF). The fluorescence loss, expressed as ΔF (percentage of loss fluorescence), was statistically examined by analysis of variance and the Tukey test. The control group (-10.48±2.85) was statistically similar to Group C (-14.52±7.80), which presented the lowest values of ΔF when compared with Groups FC (-3.67±3.21), L (-2.79±1.68), CL (-1.05±0:50), and CFL (-0.60±0:43). However, Groups FC, L, CL, and CFL showed no statistically significant differences among them. It can be concluded that both the low-level infrared laser and photoabsorbing cream with fluoride were effective in inhibiting the development of caries in enamel around orthodontic brackets, even in situations of high cariogenic challenge.

  1. Clinical acceptability of two self-etch adhesive resins for the bonding of orthodontic brackets to enamel.

    PubMed

    Schnebel, Bradley; Mateer, Scott; Maganzini, Anthony Louis; Freeman, Katherine

    2012-12-01

    To determine whether two self-adhesive resin cements, Clearfil SA and RelyX, can be used to successfully bond orthodontic brackets to enamel. Seventy extracted premolars were custom mounted, cleaned and randomly divided into three groups. In group 1 (control), orthodontic brackets were bonded to 25 premolars using the Transbond Plus and Transbond XT two step adhesive systerm adhesive. In group 2, brackets were bonded to 25 premolars using Clearfil SA. In group 3, brackets were bonded to 20 premolars using RelyX. The brackets were debonded using a universal testing machine and shear bond strengths recorded. After debonding, each tooth was examined under 20× magnification to evaluate the residual adhesive remaining. An ANOVA with Duncan's Multiple Range Test was used to determine whether there were significant differences in shear bond strength between the groups. A Kruskal-Wallis Test and a Bonferroni multiple comparison procedure were used to compare the bond failure modes (adhesive remnant index scores) between the groups. The mean shear bond strengths for the brackets bonded using Clearfil SA and RelyX were 5·930±1·840 and 3·334±1·953 MPa, respectively. Both were significantly lower than that for the brackets bonded using Transbond (7·875±3·611 MPa). Both self-etch adhesive resin cement groups showed a greater incidence of bracket failure at the enamel/adhesive interface while the Transbond group showed a higher incidence at the bracket/adhesive interface. The shear bond strengths of the self-etch adhesive resin cements may be inadequate to successfully bond orthodontic brackets to enamel.

  2. Effect of eliminating the residual fluoride gel on titanium bracket corrosion.

    PubMed

    Khoury, Elie S; Abboud, Maher; Bassil-Nassif, Nayla; Bouserhal, Joseph

    2011-09-01

    Fluoride ions, in long-term applications on titanium brackets, cause their corrosion. Fluoride gel used for caries prevention during orthodontic treatment has a very high concentration in fluoride ions, and therefore has the potential for causing bracket corrosion. The main aim of this study was to determine the effect of eliminating the residual fluoride gel, by rinsing it, on the corrosion of titanium brackets. The secondary aim was to evaluate the corrosion of titanium brackets in the presence of fluoride gel. One hundred titanium brackets were divided into five groups of 20 brackets each. Group 1 being the control group, the rest of the groups were immersed in fluoride gel: Group 2 for 4 minutes and kept for 30 minutes with the residual fluoride gel on; Group 3 for 4 minutes followed by immediate water rinsing; Group 4 for 12 minutes and kept for 90 minutes with the residual fluoride gel on and Group 5 for 12 minutes followed by immediate water rinsing. All groups were rinsed then dried, for 20 hours, using Silica gel in a desiccator maintained at 37°C before testing. Gravimetrical results and SEM analysis showed no significant difference between Groups 2, 3 and 5 compared to each other and to the control group. Only Group 4 showed significant weight loss and pitting corrosion in four of the 20 brackets. In sliding resistance, no significant difference was detected between any of the groups. Short time applications of fluoride gel do not affect sliding resistance of titanium brackets. No titanium corrosion was detected for one application of concentrated fluoride gel and some brackets showed pitting corrosion for three applications. The rinsing of residual fluoride gel eliminates completely the risk of bracket corrosion. Copyright © 2011 CEO. Published by Elsevier Masson SAS. All rights reserved.

  3. Friction between various self-ligating brackets and archwire couples during sliding mechanics.

    PubMed

    Stefanos, Sennay; Secchi, Antonino G; Coby, Guy; Tanna, Nipul; Mante, Francis K

    2010-10-01

    The aim of this study was to evaluate the frictional resistance between active and passive self-ligating brackets and 0.019 × 0.025-in stainless steel archwire during sliding mechanics by using an orthodontic sliding simulation device. Maxillary right first premolar active self-ligating brackets In-Ovation R, In-Ovation C (both, GAC International, Bohemia, NY), and SPEED (Strite Industries, Cambridge, Ontario, Canada), and passive self-ligating brackets SmartClip (3M Unitek, Monrovia, Calif), Synergy R (Rocky Mountain Orthodontics, Denver, Colo), and Damon 3mx (Ormco, Orange, Calif) with 0.022-in slots were used. Frictional force was measured by using an orthodontic sliding simulation device attached to a universal testing machine. Each bracket-archwire combination was tested 30 times at 0° angulation relative to the sliding direction. Statistical comparisons were performed with 1-way analysis of variance (ANOVA) followed by Dunn multiple comparisons. The level of statistical significance was set at P <0.05. The Damon 3mx brackets had significantly the lowest mean static frictional force (8.6 g). The highest mean static frictional force was shown by the SPEED brackets (83.1 g). The other brackets were ranked as follows, from highest to lowest, In-Ovation R, In-Ovation C, SmartClip, and Synergy R. The mean static frictional forces were all statistically different. The ranking of the kinetic frictional forces of bracket-archwire combinations was the same as that for static frictional forces. All bracket-archwire combinations showed significantly different kinetic frictional forces except SmartClip and In-Ovation C, which were not significantly different from each other. Passive self-ligating brackets have lower static and kinetic frictional resistance than do active self-ligating brackets with 0.019 × 0.025-in stainless steel wire. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. Spectrophotometric evaluation of dental bleaching under orthodontic bracket in enamel and dentin

    PubMed Central

    Correr, Americo-Bortolazzo; Rastelli, Alessandra-Nara-Souza; Lima, Débora-Alves-Nunes-Leite; Consani, Rafael-Leonardo-Xediek

    2014-01-01

    Aware of the diffusion capacity of bleaching in the dental tissues, many orthodontists are subjecting their patients to dental bleaching during orthodontic treatment for esthetic purposes or to anticipate the exchange of esthetic restorations after the orthodontic treatment. For this purpose specific products have been developed in pre-loaded whitening trays designed to fit over and around brackets and wires, with clinical efficacy proven. Objective: The objective of this study was to evaluate, through spectrophotometric reflectance, the effectiveness of dental bleaching under orthodontic bracket. Material and Methods: Thirty-two bovine incisors crown blocks of 8 mm x 8 mm height lengths were used. Staining of tooth blocks with black tea was performed for six days. They were distributed randomly into 4 groups (1-home bleaching with bracket, 2- home bleaching without bracket, 3- office bleaching with bracket, 4 office bleaching without bracket). The color evaluation was performed (CIE L * a * b *) using color reflectance spectrophotometer. Metal brackets were bonded in groups 1 and 3. The groups 1 and 2 samples were subjected to the carbamide peroxide at 15%, 4 hours daily for 21 days. Groups 3 and 4 were subjected to 3 in-office bleaching treatment sessions, hydrogen peroxide 38%. After removal of the brackets, the second color evaluation was performed in tooth block, difference between the area under the bracket and around it, and after 7 days to verified color stability. Data analysis was performed using the paired t-test and two-way variance analysis and Tukey’s. Results: The home bleaching technique proved to be more effective compared to the office bleaching. There was a significant difference between the margin and center color values of the specimens that were subjected to bracket bonding. Conclusions: The bracket bond presence affected the effectiveness of both the home and office bleaching treatments. Key words:Tooth bleaching, spectrophotometry, orthodontics. PMID:25593650

  5. Influence of long-term in vivo exposure, debris accumulation and archwire material on friction force among different types of brackets and archwires couples.

    PubMed

    Mezeg, Uroš; Primožic, Jasmina

    2017-11-30

    The aim was to assess the influence of long-term in vivo exposure, debris accumulation and archwire material on static and kinetic friction force among different types of brackets and archwires couples. Friction testing was performed among four lower incisors' brackets, conventional and self-ligating (SL), coupled with either nickel-titanium or stainless steel archwires, as-received and in vivo exposed in 18 subjects. The friction testing was performed for a sliding distance of 14 mm at a speed of 10 mm/min, with a starting force of 0.2 N. Wear and quantitative assessment of debris accumulation was performed on pictures of brackets obtained using a scanning electron microscope. Non parametric tests were used for statistical analysis. Only bracket type, but not exposure duration, amount of debris accumulation, archwire material or their manufacturer, was significantly correlated with both static (rho = 0.602, P < 0.001) and kinetic (rho = 0.584, P < 0.001) friction force. Within each bracket type no significant difference was observed between as-received and in vivo exposed brackets for any friction parameter except for the SL brackets in which significantly higher static and kinetic (P = 0.001, at least) friction forces were seen in in vivo exposed SL brackets (164.9 cN and 217.63 cN, respectively) in comparison with as-received SL brackets (19.69 cN and 55.72 cN, respectively). The frictional testing was performed in the dry condition which might have influenced the results. A significant correlation was seen between friction force and bracket type, while treatment duration, amount of debris accumulation, archwire material or their manufacturer was not significantly correlated to it. Nevertheless, higher friction forces were measured among in vivo aged SL brackets in comparison with as-received ones. © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  6. Testing Machine for Biaxial Loading

    NASA Technical Reports Server (NTRS)

    Demonet, R. J.; Reeves, R. D.

    1985-01-01

    Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.

  7. Evaluation of the effect of three innovative recyling methods on the shear bond strength of stainless steel brackets-an in vitro study.

    PubMed

    Gupta, Neeraj; Kumar, Dilip; Palla, Aparna

    2017-04-01

    Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer's instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming/sandblasting/acid bath solution. 3. Sandblasting with 90µm aluminium oxide particle air-abrasion is the simplest, most efficient and hence, the preferred method of recycling debonded brackets. Key words: Orthodontic bracket, recycling, shear bond strength.

  8. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.

    PubMed

    Wichelhaus, Andrea; Geserick, Marc; Hibst, Raimund; Sander, Franz G

    2005-10-01

    Since the low friction of NiTi wires allows a rapid and efficient orthodontic tooth movement, the aim of this research was to investigate the friction and surface roughness of different commercially available superelastic NiTi wires before and after clinical use. The surface of all of the wires had been pre-treated by the manufacturer. Forty superelastic wires (Titanol Low Force, Titanol Low Force River Finish Gold, Neo Sentalloy, Neo Sentalloy Ionguard) of diameter 0.016 x 0.022 in. were tested. The friction for each type of NiTi archwire ligated into a commercial stainless steel bracket was determined with a universal testing machine. Having ligated the wire into the bracket, it could then be moved forward and backwards along a fixed archwire whilst a torquing moment was applied. The surface roughness was investigated using a profilometric measuring device on defined areas of the wire. Statistical data analysis was conducted by means of the Wilcoxon test. The results showed that initially, the surface treated wires demonstrated significantly (p < 0.01) less friction than the non-treated wires. The surface roughness showed no significant difference between the treated and the non-treated surfaces of the wires. All 40 wires however showed a significant increase in friction and surface roughness during clinical use. Whilst the Titanol Low Force River Finish Gold (Forestadent, Pforzheim, Germany) wires showed the least friction of all the samples and consequently should be more conservative on anchorage, the increase in friction of all the surface treated wires during orthodontic treatment almost cancels out this initial effect on friction. It is therefore recommended that surface treated NiTi orthodontic archwires should only be used once.

  9. Etching of enamel for direct bonding with a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Kabaş Sarp, Ayşe S.; Gülsoy, Murat

    2011-03-01

    Background: Laser etching of enamel for direct bonding can decrease the risk of surface enamel loss and demineralization which are the adverse effects of acid etching technique. However, in excess of +5.5°C can cause irreversible pulpal responses. In this study, a 1940- nm Thulium Fiber Laser in CW mode was used for laser etching. Aim: Determination of the suitable Laser parameters of enamel surface etching for direct bonding of ceramic brackets and keeping that intrapulpal temperature changes below the threshold value. Material and Method: Polycrystalline ceramic orthodontic brackets were bonded on bovine teeth by using 2 different kinds of etching techniques: Acid and Laser Etching. In addition to these 3 etched groups, there was also a group which was bonded without etching. Brackets were debonded with a material testing machine. Breaking time and the load at the breaking point were measured. Intrapulpal temperature changes were recorded by a K-type Thermocouple. For all laser groups, intrapulpal temperature rise was below the threshold value of 5.5°C. Results and Conclusion: Acid-etched group ( 11.73 MPa) significantly required more debonding force than 3- second- irradiated ( 5.03 MPa) and non-etched groups ( 3.4 MPa) but the results of acid etched group and 4- second- irradiated group (7.5 MPa) showed no significant difference. Moreover, 4- second irradiated group was over the minimum acceptable value for clinical use. Also, 3- second lasing caused a significant reduction in time according to acid-etch group. As a result, 1940- nm laser irradiation is a promising method for laser etching.

  10. [Precision of three-dimensional printed brackets].

    PubMed

    Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J

    2017-08-18

    This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and length of the buccal tubes obtained experimentally were slightly larger than the test value,this may not reduce the accuracy of indirect bonding procedure in clinic necessarily. Whether the differences which range in 0.04-0.17 mm would actually affect the retention and positioning of brackets needs to be confirmed by further studies.

  11. Friction behavior of ceramic injection-molded (CIM) brackets.

    PubMed

    Reimann, Susanne; Bourauel, Christoph; Weber, Anna; Dirk, Cornelius; Lietz, Thomas

    2016-07-01

    Bracket material, bracket design, archwire material, and ligature type are critical modifiers of friction behavior during archwire-guided movement of teeth. We designed this in vitro study to compare the friction losses of ceramic injection-molded (CIM) versus pressed-ceramic (PC) and metal injection-molded (MIM) brackets-used with different ligatures and archwires-during archwire-guided retraction of a canine. Nine bracket systems were compared, including five CIM (Clarity™ and Clarity™ ADVANCED, both by 3M Unitek; discovery(®) pearl by Dentaurum; Glam by Forestadent; InVu by TP Orthodontics), two PC (Inspire Ice by Ormco; Mystique by DENTSPLY GAC), and two MIM (discovery(®) and discovery(®) smart, both by Dentaurum) systems. All of these were combined with archwires made of either stainless steel or fiberglass-reinforced resin (remanium(®) ideal arch or Translucent pearl ideal arch, both by Dentaurum) and with elastic ligatures or uncoated or coated stainless steel (all by Dentaurum). Archwire-guided retraction of a canine was simulated with a force of 0.5 N in the orthodontic measurement and simulation system (OMSS). Friction loss was determined by subtracting the effective orthodontic forces from the applied forces. Based on five repeated measurements performed on five brackets each, weighted means were calculated and evaluated by analysis of variance and a Bonferroni post hoc test with a significance level of 0.05. Friction losses were significantly (p < 0.05) higher (58-79 versus 20-30 %) for the combinations involving the steel versus the resin archwire in conjunction with the elastic ligature. The uncoated steel ligatures were associated with the lowest friction losses with Clarity™ (13 %) and discovery(®) pearl (16 %) on the resin archwire and the highest friction losses with Clarity™ ADVANCED (53 %) and Mystique (63 %) on the steel archwire. The coated steel ligatures were associated with friction losses similar to the uncoated steel ligatures on the steel archwire. Regardless of ligature types, mild signs of abrasion were noted on the resin archwire. The lowest friction losses were measured with rounded ceramic brackets used with a stainless-steel ligature and the resin archwire. No critical difference to friction behavior was apparent between the various manufacturing technologies behind the bracket systems.

  12. Comparison of two methods of visual magnification for removal of adhesive flash during bracket placement using two types of orthodontic bonding agents

    PubMed Central

    Alencar, Estefania Queiroga de Santana e; Nobrega, Maria de Lourdes Martins; Dametto, Fabio Roberto; dos Santos, Patrícia Bittencourt Dutra; Pinheiro, Fabio Henrique de Sá Leitão

    2016-01-01

    ABSTRACT Objective: This study aimed to evaluate the effectiveness of two methods of visual magnification (operating microscope and light head magnifying glass) for removal of composite flash around orthodontic metal brackets. Material and Methods: Brackets were bonded in the center of the clinical crown of sixty well-preserved human premolars. Half of the sample was bonded with conventional Transbond XT (3M Unitek TM, USA), whereas the other half was bonded with Transbond TM Plus Color Change (3M Unitek TM, USA). For each type of composite, the choice of method to remove the flash was determined by randomly distributing the teeth into the following subgroups: A (removal by naked eye, n = 10), B (removal with the aid of light head magnifying glass, under 4x magnification, n = 10), and C (removal with the aid of an operating microscope, under 40x magnification, n = 10). Brackets were debonded and teeth taken to a scanning electron microscope (SS-x-550, Shimadzu, Japan) for visualization of their buccal surface. Quantification of composite flash was performed with Image Pro Plus software, and values were compared by Kruskal-Wallis test and Dunn’s post-hoc test at 5% significance level. Results: Removal of pigmented orthodontic adhesive with the aid of light head magnifying glass proved, in general, to be advantageous in comparison to all other methods. Conclusion: There was no advantage in using Transbond TM Plus Color Change alone. Further studies are necessary to draw a more definitive conclusion in regards to the benefits of using an operating microscope. PMID:28125139

  13. Pulpal response in electrothermal debonding.

    PubMed

    Takla, P M; Shivapuja, P K

    1995-12-01

    An alternative method to conventional bracket removal that minimizes the potential for ceramic bracket failure as well as trauma to the enamel surface is electrothermal debonding (ETD). However, the potential for pulpal damage using ETD on ceramic brackets still needs assessment. The purpose of this research is to investigate and assess any pulpal damage caused by ETD. Ten patients requiring four premolar extractions each were randomly selected (5 boys and 5 girls). Ceramic brackets were bonded to experimental and control teeth. A total of 30 teeth were used to provide histologic material of the human pulp. Fifteen teeth were extracted 24 hours after ETD, seven were extracted 28 to 32 days after ETD, and eight were the control teeth and debonded by a conventional method, with pliers. The pulp was normal in most cases in the control group. There was significant hyperemia seen 24 hours after debonding in teeth debonded by ETD. Teeth extracted 30 days afer ETD showed varied responses, ranging from complete recovery in some cases to persistence of inflammation and pulpal fibrosis. Teeth subjected to the conventional debonding were normal histologically. The teeth in our research were healthy teeth with a rich blood supply and were from a younger age group. Patients with compromised teeth that have large restorations or a questionable pulpal status could behave more adversely to this significant amount of heat applied. In compromised cases and on older patients, performing pulp vitality tests before ETD may inform the operator about the status of the pulp and thereby prevent the potential for pulpal damage.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans.

    PubMed

    Ramazanzadeh, Baratali; Jahanbin, Arezoo; Yaghoubi, Masoud; Shahtahmassbi, Nasser; Ghazvini, Kiarash; Shakeri, Mohammadtaghi; Shafaee, Hooman

    2015-09-01

    During the orthodontic treatment, microbial plaques may accumulate around the brackets and cause caries, especially in high-risk patients. Finding ways to eliminate this microbial plaque seems to be essential. The aim of this study was to compare the antibacterial effects of nano copper oxide (CuO) and nano zinc oxide (ZnO) coated brackets against Streptococcus mutans (S.mutans) in order to decrease the risk of caries around the orthodontic brackets during the treatment. Sixty brackets were coated with nanoparticles of ZnO (n=20), CuO (n=20) and CuO-ZnO (n=20). Twelve uncoated brackets constituted the control group. The brackets were bonded to the crowns of extracted premolars, sterilized and prepared for antimicrobial tests (S.mutans ATCC35668). The samples taken after 0, 2, 4, 6 and 24 hours were cultured on agar plates. Colonies were counted 24 hours after incubation. One-way ANOVA and Tukey tests were used for statistical analysis. In CuO and CuO-ZnO coated brackets, no colony growth was seen after two hours. Between 0-6 hours, the mean colony counts were not significantly different between the ZnO and the control group (p>0.05). During 6-24 hours, the growth of S.mutans was significantly reduced by ZnO nanoparticles in comparison with the control group (p< 0.001). However, these bacteria were not totally eliminated. CuO and ZnO-CuO nanoparticles coated brackets have better antimicrobial effect on S.mutans than ZnO coated brackets.

  15. Is laser conditioning a valid alternative to conventional etching for aesthetic brackets?

    PubMed

    Sfondrini, M F; Calderoni, G; Vitale, M C; Gandini, P; Scribante, A

    2018-03-01

    ER:Yag lasers have been described as a more conservative alternative to conventional acid-etching enamel conditioning technique, when bonding conventional metallic orthodontic brackets. Since the use of aesthetic orthodontic brackets is constantly increasing, the purpose of the present report has been to test laser conditioning with different aesthetic brackets. Study Design: Five different aesthetic brackets (microfilled copolymer, glass fiber, sapphire, polyoxymethylene and sintered ceramic) were tested for shear bond strength and Adhesive Remnant Index scores using two different enamel conditioning techniques (acid etching and ER:Yag laser application). Two hundred bovine incisors were extracted, cleaned and embedded in resin. Specimens were then divided into 10 groups with random tables. Half of the specimens were conditioned with conventional orthophosphoric acid gel, the other half with ER:Yag laser. Different aesthetic brackets (microfilled copolymer, glass fiber, sapphire, polyoxymethylene and sintered ceramic) were then bonded to the teeth. Subsequently all groups were tested in shear mode with a Universal Testing Machine. Shear bond strength values and adhesive remnant index scores were recorded. Statistical analysis was performed. When considering conventional acid etching technique, sapphire, polyoxymethylene and sintered ceramic brackets exhibited the highest SBS values. Lowest values were reported for microfilled copolymer and glass fiber appliances. A significant decrease in SBS values after laser conditioning was reported for sapphire, polyoxymethylene and sintered ceramic brackets, whereas no significant difference was reported for microfilled copolymer and glass fiber brackets. Significant differences in ARI scores were also reported. Laser etching can significantly reduce bonding efficacy of sapphire, polyoxymethylene and sintered ceramic brackets.

  16. Root resorption during orthodontic treatment with self-ligating or conventional brackets: a systematic review and meta-analysis.

    PubMed

    Yi, Jianru; Li, Meile; Li, Yu; Li, Xiaobing; Zhao, Zhihe

    2016-11-21

    The aim of this study was to compare the external apical root resorption (EARR) in patients receiving fixed orthodontic treatment with self-ligating or conventional brackets. Studies comparing the EARR between orthodontic patients using self-ligating or conventional brackets were identified through electronic search in databases including CENTRAL, PubMed, EMBASE, China National Knowledge Infrastructure (CNKI) and SIGLE, and manual search in relevant journals and reference lists of the included studies until Apr 2016. The extraction of data and risk of bias evaluation were conducted by two investigators independently. The original outcome underwent statistical pooling by using Review Manager 5. Seven studies were included in the systematic review, out of which, five studies were statistically pooled in meta-analysis. The value of EARR of maxillary central incisors in the self-ligating bracket group was significantly lower than that in the conventional bracket group (SMD -0.31; 95% CI: -0.60--0.01). No significant differences in other incisors were observed between self-ligating and conventional brackets. Current evidences suggest self-ligating brackets do not outperform conventional brackets in reducing the EARR in maxillary lateral incisors, mandible central incisors and mandible lateral incisors. However, self-ligating brackets appear to have an advantage in protecting maxillary central incisor from EARR, which still needs to be confirmed by more high-quality studies.

  17. 75 FR 50856 - Airworthiness Directives; Airbus Model A380-800 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... been found on the Droop Nose (DN) 1 master sidestay bracket on the inboard leading edge of an Airbus A380 flight test aeroplane. In case of failure of the master bracket, the sub-master bracket would be... been found on the Droop Nose (DN) 1 master sidestay bracket on the inboard leading edge of an Airbus...

  18. Deformation of metal brackets: a comparative study.

    PubMed

    Flores, D A; Choi, L K; Caruso, J M; Tomlinson, J L; Scott, G E; Jeiroudi, M T

    1994-01-01

    The purpose of this study was to determine the effect of material and design on the force and stress required to permanently deform metal brackets. Fourteen types of metal brackets were categorized according to raw material composition, slot torque degree, and wing type. Five types of raw materials, three types of slot torque degree, and four types of wing design were tested using an archwire torque test developed by Flores. An analysis of variance (ANOVA) and t-test showed that all three categories had a significant effect on the force and stress needed to permanently deform metal brackets. Of the three, raw material had the greatest effect on the amount of force. Results showed that 17-4PH and 303S had higher yield strengths and regular twin brackets had higher resistance to deformation. Also, as slot torque degree increased, brackets deformed with less force. Result confirmed that brackets requiring the greatest stress to permanently deform were made of steel with the greatest hardness.

  19. Robot cable-compliant devices

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr. (Inventor)

    1990-01-01

    A cable compliant robotic joint includes two U configuration cross section brackets with their U cross sections lying in different planes, one of their brackets being connected to a robot arm and the other to a tool. Additional angle brackets are displaced from the other brackets at corners of the robotic joint. All the brackets are connected by cable segments which lie in one or more planes which are perpendicular to the direction of tool travel as it approaches a work object. The compliance of the joint is determined by the cable segment characteristics, such as their length, material, angle, stranding, pretwisting, and prestressing.

  20. A comparative anchorage control study between conventional and self-ligating bracket systems using differential moments.

    PubMed

    de Almeida, Marcio Rodrigues; Herrero, Francisco; Fattal, Amine; Davoody, Amirparviz R; Nanda, Ravindra; Uribe, Flavio

    2013-11-01

    To compare the efficiency in anchorage preservation of conventional and self-ligating brackets after the extraction of first maxillary premolars using differential moment mechanics. Thirty-eight patients requiring extraction of maxillary first premolars and maximum anchorage during space closure were evaluated based on bracket type. Group 1, comprising 23 patients, was bonded with preadjusted conventional brackets (CBs) with a slot of 0.022-inch × 0.030-inch. Group 2 comprised 15 patients who were bonded with 0.022 inch preadjusted self-ligating brackets (SLBs). Patients in both groups received a nickel titanium (NiTi) intrusion arch and a 150 g NiTi closing coil spring for separate canine retraction, followed by a continuous mushroom loop archwire to retract the incisors. Lateral cephalograms were available at the start of treatment (T1) and at the completion of space closure (T2). Statistical comparisons were performed with paired and unpaired Student's t-tests. No significant differences were found between the groups in maxillary molars anchorage loss (3.87 ± 1.35 mm and 3.65 ± 1.73 mm for the CB and SLB groups, respectively). Only the mean vertical movement of the tip of the incisor was significantly different between the groups (CB  =  -0.92 ± 1.46 mm; SLB  =  0.56 ± 1.65 mm). There were no significant differences in the amount of anchorage loss of the maxillary first molars between SLB and CB systems during space closure using differential moments.

  1. Microscopic morphological changes of the tooth surface in relation to fixed orthodontic treatment.

    PubMed

    Preoteasa, Cristina Teodora; NiŢoi, Dan Florin; Preoteasa, Elena

    2015-01-01

    Orthodontic treatment has, as any other medical intervention, in addition to its benefits, side effects, some of them being perceived as unavoidable. The aim of this case series was to microscopically evaluate the changes of the tooth surface in relation to fixed orthodontic treatment. A case series study was implemented by the usage of four extracted first maxillary premolars, from patients with previous orthodontic treatment, of 12 and 23 months. Analysis was performed using the high precision stereomicroscope (Axiovert, Carl Zeiss, Germany), at magnifications from 10× to 50×. The tooth surface corresponding to the bracket bonding area registered numerous disorderly grooves and cracks, with various directions and depths, and was flattened, having lower convexity compared to teeth surfaces where brackets were not bonded. Root resorption lacunae were more frequently observed in teeth under orthodontic treatment, these having various depths, and sizes considerably larger than those observed in teeth without orthodontic treatment. Following orthodontic treatment, teeth exhibit changes that can be perceived as being directly linked to this medical intervention. These teeth changes usually have low or moderate severity, which can be influenced at some degree by the clinical conduct of the orthodontic treatment. The stereomicroscope proved to be a high sensitivity tool for the analysis of morphological changes of teeth in relation to the fixed orthodontic treatment.

  2. Evaluation of the effect of three innovative recyling methods on the shear bond strength of stainless steel brackets-an in vitro study

    PubMed Central

    Kumar, Dilip; Palla, Aparna

    2017-01-01

    Background Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Material and Methods Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer’s instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Results Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. Conclusions The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming/sandblasting/acid bath solution. 3. Sandblasting with 90µm aluminium oxide particle air-abrasion is the simplest, most efficient and hence, the preferred method of recycling debonded brackets. Key words:Orthodontic bracket, recycling, shear bond strength. PMID:28469821

  3. Recognition of fiducial surfaces in lidar surveys of coastal topography

    USGS Publications Warehouse

    Brock, J.C.; Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Wright, C.W.

    2001-01-01

    A new method for the recognition and mapping of surfaces in coastal landscapes that provide accurate and low variability topographic measurements with respect to airborne lidar surveys is described and demonstrated in this paper. Such surfaces are herein termed "fiducial" because they can represent reference baseline morphology in Studies of coastal change due to natural or anthropogenic causes. Non-fiducial surfaces may also be identified in each separate lidar survey to be used in a given geomorphic change analysis. Sites that are non-fiducial in either or both lidar surveys that bracket the time period under investigation may be excluded from consideration in subsequent calculations of survey-to-survey elevation differences to eliminate spurious indications of landscape change. This new analysis method, or lidar fiducial surface recognition (LFSR) algorithm, is intended to more fully enable the non-ambiguous Use of topographic lidar in a range of coastal investigations. The LFSR algorithm may be widely applied, because it is based solely on the information inherent in the USGS/NASA/NOAA airborne topographic lidar coverage that exists for most of the contiguous U.S. coastline.

  4. Effect of archwire cross-section changes on force levels during complex tooth alignment with conventional and self-ligating brackets.

    PubMed

    Montasser, Mona A; Keilig, Ludger; El-Bialy, Tarek; Reimann, Susanne; Jäger, Andreas; Bourauel, Christoph

    2015-04-01

    Our objective was to investigate the effect of archwire cross-section increases on the levels of force applied to teeth during complex malalignment correction with various archwire-bracket combinations using an experimental biomechanical setup. The study comprised 3 types of orthodontic brackets: (1) conventional ligating brackets (Victory Series [3M Unitek, Monrovia, Calif] and Mini-Taurus [Rocky Mountain Orthodontics, Denver, Colo]), (2) self-ligating brackets (SmartClip, a passive self-ligating bracket [3M Unitek]; and Time3 [Rocky Mountain Orthodontics, Denver, Colo] and SPEED [Strite Industries, Cambridge, Ontario, Canada], both active self-ligating brackets), and (3) a conventional low-friction bracket (Synergy [Rocky Mountain Orthodontics]). All brackets had a nominal 0.022-in slot size. The brackets were combined with 0.014-in and 0.016-in titanium memory wires, Therma-Ti archwires (American Orthodontics, Sheboygan, Wis). The archwires were tied to the conventional brackets with both stainless steel ligatures of size 0.010-in and elastomeric rings. A malocclusion of the maxillary central incisor displaced 2 mm gingivally (x-axis) and 2 mm labially (z-axis) was simulated. The forces recorded when using the 0.014-in archwires ranged from 1.7 ± 0.1 to 5.0 ± 0.3 N in the x-axis direction, and from 1.2 ± 0.1 to 5.5 ± 0.3 N in the z-axis direction. When we used the 0.016-in archwires, the forces ranged from 2.6 ± 0.1 to 6.0 ± 0.3 N in the x-axis direction, and from 2.0 ± 0.2 to 6.0 ± 0.4 N in the z-axis direction. Overall, the increases ranged from 16.0% to 120.0% in the x-axis and from 10.4% to 130.0% in the z-axis directions. Increasing the cross section of the wire increased the force level invariably with all brackets. Wires of size 0.014 in produced relatively high force levels, and the force level increased with 0.016-in wires. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. Depth enhancement of S3D content and the psychological effects

    NASA Astrophysics Data System (ADS)

    Hirahara, Masahiro; Shiraishi, Saki; Kawai, Takashi

    2012-03-01

    Stereoscopic 3D (S3D) imaging technologies are widely used recently to create content for movies, TV programs, games, etc. Although S3D content differs from 2D content by the use of binocular parallax to induce depth sensation, the relationship between depth control and the user experience remains unclear. In this study, the user experience was subjectively and objectively evaluated in order to determine the effectiveness of depth control, such as an expansion or reduction or a forward or backward shift in the range of maximum parallactic angles in the cross and uncross directions (depth bracket). Four types of S3D content were used in the subjective and objective evaluations. The depth brackets of comparison stimuli were modified in order to enhance the depth sensation corresponding to the content. Interpretation Based Quality (IBQ) methodology was used for the subjective evaluation and the heart rate was measured to evaluate the physiological effect. The results of the evaluations suggest the following two points. (1) Expansion/reduction of the depth bracket affects preference and enhances positive emotions to the S3D content. (2) Expansion/reduction of the depth bracket produces above-mentioned effects more notable than shifting the cross/uncross directions.

  6. Bond strength of composites on Er:YAG and Er,Cr:YSGG laser-irradiated enamel

    NASA Astrophysics Data System (ADS)

    Apel, Christian; Gutknecht, Norbert

    1999-02-01

    In an in vitro study the bond strength of composite materials on Er:YAG and Er,Cr:YSGG laser-radiated enamel was examined. The results achieved on enamel surfaces conditioned conventionally using the acid etching method served as a control. On 80 extracted cariesfree third molars an enamel area of 4 X 4 mm was conditioned with three different systems. The Er:YAG laser was used at pulse frequencies of 8 Hz, 10 Hz, 12 Hz and 15 Hz using an energy of 120 mJ at each setting. The Er,Cr:YSGG laser was used at the settings of 20 Hz/50 mJ, 20 Hz/100 mJ and 20 Hz/150 mJ. The repetition rate for this device is constantly 20 Hz. In the reference group 10 teeth were etched with 37% phosphoric acid. In order to be able to perform the tensile tests under standard conditions metal brackets were placed on the conditioned surfaces. The 'Orthodontic-Bonding-System' was used as an adhesive system. The brackets were pulled off from the etched surfaces vertically to the tooth using a tensile testing machine. The results confirmed the highest bond strengths in the group of enamel surfaces which have been conditioned with acid etching gel. The bond strength of the Er:YAG laser (8, 10 and 12 Hz)- and Er,Cr:YSGG laser (20 Hz/150 mJ)-conditioned enamel surfaces was not significantly lower.

  7. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging.

    PubMed

    Dalili Kajan, Zahra; Khademi, Jalil; Alizadeh, Ahmad; Babaei Hemmaty, Yasamin; Atrkar Roushan, Zahra

    2015-09-01

    This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo T1 -weighted images, fast spin-echo T2 -weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires.

  8. Gingival crevicular fluid volume and periodontal parameters alterations after use of conventional and self-ligating brackets.

    PubMed

    Bergamo, Ana Zn; Nelson-Filho, Paulo; Romano, Fábio L; da Silva, Raquel Ab; Saraiva, Maria Cp; da Silva, Lea Ab; Matsumoto, Mirian An

    2016-12-01

    The aim of this study was to evaluate the alterations on plaque index (PI), gingival index (GI), gingival bleeding index (GBI), and gingival crevicular fluid (GCF) volume after use of three different brackets types for 60 days. Setting Participants: The sample comprised 20 patients of both sexes aged 11-15 years (mean age: 13.3 years), with permanent dentition, adequate oral hygiene, and mild tooth crowding, overjet, and overbite. A conventional metallic bracket Gemini™, and two different brands of self-ligating brackets - In-Ovation ® R and SmartClip™ - were bonded to the maxillary incisors and canines. PI, GI, GBI scores, and GCF volume were measured before and 30 and 60 days after bonding of the brackets. Data were analysed statistically using non-parametric tests coefficient at a 5% significance level. There was no statistically significant correlation (P > 0.05) between tooth crowding, overjet, and overbite and the PI, GI, GBI scores, and GCF volume before bonding, indicating no influence of malocclusion on the clinical parameters. Regardless of the bracket design, no statistically significant difference (P > 0.05) was found for GI, GBI scores. PI and GCF volume showed a significant difference among the brackets in different periods. In pairwise comparisons a significant difference was observed when compared before with 60 days after bonding, for the teeth bonded with SmartClip™ self-ligating bracket, (PI P = 0.009; GCF volume P = 0.001). There was an increase in PI score and GCF volume 60 days after bonding of SmartClip™ self-ligating brackets, indicating the influence of bracket design on these clinical parameters.

  9. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging

    PubMed Central

    Khademi, Jalil; Alizadeh, Ahmad; Babaei Hemmaty, Yasamin; Atrkar Roushan, Zahra

    2015-01-01

    Purpose This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Materials and Methods A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo T1-weighted images, fast spin-echo T2-weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Results Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. Conclusion With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires. PMID:26389058

  10. Accuracy of four different digital intraoral scanners: effects of the presence of orthodontic brackets and wire.

    PubMed

    Jung, Yoo-Ran; Park, Ji-Man; Chun, Youn-Sic; Lee, Kkot-Nim; Kim, Minji

    The objective of this study was to compare the accuracy of four different digital intraoral scanners and the effects of buccal brackets and orthodontic wire. For this study, three sets of models (Control model, BKT model with buccal bracket, and WBKT model with buccal bracket and orthodontic wire) were scanned using four different types of intraoral scanners: E4D dentist, iTero, Trios, and Zfx IntraScan. The mesiodistal width of the teeth, intercanine width, and intermolar width measured by four scanners were compared. Three-dimensional (3D) images of the brackets were taken using the four scanners. Data were analyzed with one-way ANOVA, independent t test, and post-hoc Tukey test at a significance level of P < 0.05. When comparing the 3D images with manual measurements using a traditional caliper, iTero and Trios showed the highest accuracy in horizontal measurements.iTero had the lowest values in Devmax-min of maxillary intermolar and intercanine widths (0.16 mm and 0.20 mm, respectively), whereas Trios had the lowest values in Devmax-min of mandibular intermolar and intercanine widths (0.36 mm and 0.14 mm, respectively). The horizontal variables were barely affected by the presence of buccal brackets and orthodontic wire. Comparison of 3D bracket images scanned by the four scanners showed differences in image distortion among the scanners. Bracket characteristics did not affect the 3D bracket images. The four intraoral scanners used in this study differed in accuracy. However, the results acquired by iTero and Trios were more reliable. Effects of buccal brackets and orthodontic wire on the 3D images taken by intraoral scanners were not clinically significant.

  11. Electrothermal debonding of ceramic brackets. An in vitro study.

    PubMed

    Brouns, E M; Schopf, P M; Kocjancic, B

    1993-04-01

    Two different kinds of devices for electrothermal debonding of ceramic brackets are evaluated. Thirty human premolars were bonded with two types of ceramic brackets. Both devices were tested for electrothermal removal of the two bracket types. The pulpal wall temperature increase during electrothermal debonding was recorded in vitro under various circumstances. After debonding, the fracture site was located. The data were compared to the temperature rise after simulated exposure of the teeth to warm beverages. Irreversible pulp damage due to electrothermal debonding of ceramic brackets with both instruments is not to be expected because the obtained results stayed below established primate threshold temperatures and significantly below that of the stimulated control groups. A significant difference was noted when air cooling was initiated during electrothermal debonding. Fracture site location was significantly different in the two ceramic bracket types after electrothermal debonding.

  12. Liquid crystalline epoxy nanocomposite material for dental application.

    PubMed

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  13. Comparative evaluation of nickel discharge from brackets in artificial saliva at different time intervals.

    PubMed

    Jithesh, C; Venkataramana, V; Penumatsa, Narendravarma; Reddy, S N; Poornima, K Y; Rajasigamani, K

    2015-08-01

    To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P < 0.05). The descriptive method of statistics was used to calculate the mean, standard deviation, minimum and maximum. SPSS 18 software ((SPSS.Ltd, Quarry bay, Hong Kong, PASW-statistics 18) was used to analyze the study. The analysis shows a significant difference between three groups. The study shows that the nickel releases from the recycled stainless steel brackets have the highest at all 4.2 pH except in 120 h. The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable.

  14. Comparative evaluation of nickel discharge from brackets in artificial saliva at different time intervals

    PubMed Central

    Jithesh, C.; Venkataramana, V.; Penumatsa, Narendravarma; Reddy, S. N.; Poornima, K. Y.; Rajasigamani, K.

    2015-01-01

    Objectives: To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Materials and Methods: Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P < 0.05). The descriptive method of statistics was used to calculate the mean, standard deviation, minimum and maximum. SPSS 18 software ((SPSS.Ltd, Quarry bay, Hong Kong, PASW-statistics 18) was used to analyze the study. Result: The analysis shows a significant difference between three groups. The study shows that the nickel releases from the recycled stainless steel brackets have the highest at all 4.2 pH except in 120 h. Conclusion: The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable. PMID:26538924

  15. Clinical and microbiological parameters in patients with self-ligating and conventional brackets during early phase of orthodontic treatment.

    PubMed

    Pejda, Slavica; Varga, Marina Lapter; Milosevic, Sandra Anic; Mestrovic, Senka; Slaj, Martina; Repic, Dario; Bosnjak, Andrija

    2013-01-01

    To determine the effect of different bracket designs (conventional brackets and self-ligating brackets) on periodontal clinical parameters and periodontal pathogens in subgingival plaque. The following inclusion criteria were used: requirement of orthodontic treatment plan starting with alignment and leveling, good general health, healthy periodontium, no antibiotic therapy in the previous 6 months before the beginning of the study, and no smoking. The study sample totaled 38 patients (13 male, 25 female; mean age, 14.6 ± 2.0 years). Patients were divided into two groups with random distribution of brackets. Recording of clinical parameters was done before the placement of the orthodontic appliance (T0) and at 6 weeks (T1), 12 weeks (T2), and 18 weeks (T3) after full bonding of orthodontic appliances. Periodontal pathogens of subgingival microflora were detected at T3 using a commercially available polymerase chain reaction test (micro-Dent test) that contains probes for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, and Treponema denticola. There was a statistically significant higher prevalence of A actinomycetemcomitans in patients with conventional brackets than in patients with self-ligating brackets, but there was no statistically significant difference for other putative periodontal pathogens. The two different types of brackets did not show statistically significant differences in periodontal clinical parameters. Bracket design does not seem to have a strong influence on periodontal clinical parameters and periodontal pathogens in subgingival plaque. The correlation between some periodontal pathogens and clinical periodontal parameters was weak.

  16. Split-tapered joint clamping device

    DOEpatents

    Olsen, Max J.; Schwartz, Jr., John F.

    1988-01-01

    This invention relates to a clamping device for removably attaching a tool element to a bracket element wherein a bracket element is disposed in a groove in the tool and a clamping member is disposed in said groove and in engagement with a clamping face of the bracket and a wall of the groove and with the clamping member having pivot means engaging the bracket and about which the clamping member rotates.

  17. An in vitro comparison of nickel and chromium release from brackets.

    PubMed

    Haddad, Ana Cristina Soares Santos; Tortamano, Andre; Souza, Alexandre Luís de; Oliveira, Pedro Vitoriano de

    2009-01-01

    This study aimed at comparing amounts of nickel (Ni) and chromium (Cr) released from brackets from different manufacturers in simulated oral environments. 280 brackets were equally divided into 7 groups according to manufacturer. 6 groups of brackets were stainless steel, and 1 group of brackets was made of a cobalt-chromium alloy with low Ni content (0.5%). International standard ISO 10271/2001 was applied to provide test methods. Each bracket was immersed in 0.5 ml of synthetic saliva (SS) or artificial plaque fluid (PF) over a period of 28 days at 37 degrees Celsius. Solutions were replaced every 7 days, and were analyzed by spectrometry. The Kruskal-Wallis test was applied. Amounts of Ni release in SS (microg L(-1) per week) varied between groups from 'bellow detection limits' to 694, and from 49 to 5,948.5 in PF. The group of brackets made of cobalt-chromium alloy, with the least nickel content, did not release the least amounts of Ni. Amounts of Cr detected in SS and in PF (microg L(-1) per week) were from 1 to 10.4 and from 50.5 to 8,225, respectively. It was therefore concluded that brackets from different manufacturers present different corrosion behavior. Further studies are necessary to determine clinical implications of the findings.

  18. In vitro evaluation of corrosion and cytotoxicity of orthodontic brackets.

    PubMed

    Costa, M T; Lenza, M A; Gosch, C S; Costa, I; Ribeiro-Dias, F

    2007-05-01

    The corrosion resistance of AISI 304 stainless steel (AISI 304 SS) and manganese stainless steel (low-nickel SS) brackets in artificial saliva was investigated. The cytotoxic effects of their corrosion products on L929 cell culture were compared by two assays, crystal violet, to evaluate cell viability, and MTT (3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide), for cell metabolism and proliferation. The atomic absorption spectroscopic analysis of the corrosion products demonstrated that nickel and manganese ion concentrations were higher for the AISI 304 SS-bracket immersion solution as compared with the low-nickel SS brackets. Scanning electron microscopy and energy-dispersive spectroscopy demonstrated less corrosion resistance for the AISI 304 SS brackets. Although none of the bracket extracts altered L929 cell viability or morphology, the AISI 304 SS-bracket extracts decreased cellular metabolism slightly. The results indicated that the low-nickel SS presents better in vitro biocompatibility than AISI 304 SS brackets. Abbreviations used: AISI, American Iron and Steel Institute; EDS, energy-dispersive spectroscopy; OD, optical density; ISO, International Organization for Standardization; MTT, (3-{4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NiSO(4), nickel sulfate; SEM, standard error of the mean; WHO, World Health Organization; and TNF, tumor necrosis factor.

  19. Assessment of antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of titanium oxide: An in-vitro study.

    PubMed

    Baby, Roshen Daniel; Subramaniam, Siva; Arumugam, Ilakkiya; Padmanabhan, Sridevi

    2017-04-01

    Our objective was to assess the antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of photocatalytic titanium oxide. From a total sample of 115 brackets, 68 orthodontic stainless steel brackets were coated with titanium oxide using a radiofrequency magnetron sputtering machine. The coated brackets were then converted into 34 each of the anatase and rutile phases of titanium oxide. These brackets were subdivided into 4 groups for antibacterial study and 3 groups for cytotoxicity study. Brackets for the antibacterial study were assessed against the Streptococcus mutans species using microbiologic tests. Three groups for the cytotoxicity study were assessed using the thiazolyl tetrazolium bromide assay. The antibacterial study showed that both phases were effective, but the rutile phase of photocatalytic titanium oxide had a greater bactericidal effect than did the anatase phase. The cytotoxicity study showed that the rutile phase had a greater decrease in viability of cells compared with the anatase phase. It is recommended that orthodontic brackets be coated with the anatase phase of titanium oxide since they exhibited a significant antibacterial property and were only slightly cytotoxic. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study.

    PubMed

    Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra

    2016-01-01

    Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. As-received rectangular 0.019" × 0.025" stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t -test and Pearson correlation tests were used for statistical analysis ( P < 0.05 level of significance). Significant increase was observed in the level of debris ( P = 0.0001), surface roughness ( P = 0.0001), and friction resistance ( P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations ( P < 0.05) were also observed between these three variables. Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended.

  1. Increase in detectable opportunistic bacteria in the oral cavity of orthodontic patients.

    PubMed

    Kitada, K; de Toledo, A; Oho, T

    2009-05-01

    This study was performed to detect the opportunistic bacteria and fungi from the oral cavities of orthodontic patients and examine the ability of the organisms to adhere to saliva-coated metallic brackets. Opportunistic bacteria and fungi were isolated from 58 patients (orthodontic group: 42; non-orthodontic group: 16) using culture methods and were identified based on their biochemical and enzymatic profiles. Seven opportunistic and four streptococcal strains were tested for their ability to adhere to saliva-coated metallic brackets. More opportunistic bacteria and fungi were detected in the orthodontic group than in the non-orthodontic group (P < 0.05). Opportunistic bacteria adhered to saliva-coated metallic brackets to the same degree as oral streptococci. The isolation frequencies of opportunistic bacteria and fungi increase during orthodontic treatment, suggesting the importance of paying special attention to oral hygiene in orthodontic patients to prevent periodontal disease and the aggravation of systemic disease in immunocompromised conditions.

  2. 19 CFR 208.6 - Service, filing, and certification of documents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... confidential business information in brackets and have the following warning marked on every page: “Bracketing... version of the document is due to be filed. If the submitter discovers it has failed to bracket correctly...

  3. [Self-ligating edgewise brackets. An overview].

    PubMed

    Katsaros, C; Dijkman, J F

    2003-01-01

    During the last years both the manufactures and the orthodontists seem to show an increased interest in self-ligating brackets. This paper aims to present the history of self-ligating systems, to describe the three mostly used bracketsystems and to review the relevant literature. It seems from the existing data that self-ligating brackets have certain advantages over conventionally ligated brackets. However, the data are still thin and a high need for well designed clinical trials exist.

  4. Uniform Geometrical Theory of Diffraction

    DTIC Science & Technology

    1987-06-01

    synbolically by 6 0’A) elb + nrn] P e ( 55 )S... j.+sr),(.psr) where the points 0 and 0 and the distances sr and sd are indicated in Figure 10. The surface...diffracted ray caustic distance P5 iN shown in Figure 11. The quantities within brackets involving and.Cr In ( 55 ) ands~ 9A A (56) may be viewed as...gereralized dyadic coefficients for surface reflection and diffraction. respectively. It is noted that ( 55 ) and (56) are expressed inWariantly in terms of

  5. Effect of adhesive remnant removal on enamel topography after bracket debonding

    PubMed Central

    Cardoso, Larissa Adrian Meira; Valdrighi, Heloísa Cristina; Vedovello, Mario; Correr, Américo Bortolazzo

    2014-01-01

    INTRODUCTION: At orthodontic treatment completion, knowledge about the effects of adhesive remnant removal on enamel is paramount. OBJECTIVE: This study aimed at assessing the effect of different adhesive remnant removal methods on enamel topography (ESI) and surface roughness (Ra) after bracket debonding and polishing. METHODS: A total of 50 human premolars were selected and divided into five groups according to the method used for adhesive remnant removal: high speed tungsten carbide bur (TCB), Sof-Lex discs (SL), adhesive removing plier (PL), ultrasound (US) and Fiberglass burs (FB). Metal brackets were bonded with Transbond XT, stored at 37oC for 24 hours before debonding with adhesive removing plier. Subsequently, removal methods were carried out followed by polishing with pumice paste. Qualitative and quantitative analyses were conducted with pre-bonding, post-debonding and post-polishing analyses. Results were submitted to statistical analysis with F test (ANOVA) and Tukey's (Ra) as well as with Kruskal-Wallis and Bonferroni tests (ESI) (P < 0.05). RESULTS: US Ra and ESI were significantly greater than TCB, SL, PL and FB. Polishing minimized Ra and ESI in the SL and FB groups. CONCLUSION: Adhesive remnant removal with SL and FB associated with polishing are recommended due to causing little damage to the enamel. PMID:25628087

  6. Finite element analysis of the convergence of the centers of resistance and rotation in extreme moment-to-force ratios.

    PubMed

    Geramy, Allahyar; Tanne, Kazuo; Moradi, Meisam; Golshahi, Hamid; Farajzadeh Jalali, Yasamin

    2016-06-01

    The aim of this study was to investigate how very high and very low M/F ratios affect the location of the center of rotation (CRo). A 3D model of a mesiodistal slice of the mandible was used for this purpose. The model comprised the lower right central incisor, its PDL, the spongy and cortical bone, and a bracket on the labial surface of the bracket. A couple of 1N was applied to the bracket slot to find the level of the center of resistance (Cre). In a second stage, we attempted to produce bodily movement by applying the appropriate M/F ratio. M/F ratios of ±100, 200, 400, and 800 were applied to the last tenths of a millimeter of a pre-activated loop. Higher M/F ratios with positive or negative values, at constant force, increased both incisal and apical movements. The change in the tooth inclination before and after force application matched the difference produced by the different M/F ratios. It was found that a single center of rotation can be constructed for any tooth position. However, this single point does not act as the center of rotation during the entire movement. Copyright © 2016 CEO. Published by Elsevier Masson SAS. All rights reserved.

  7. Biocompatibility of nanosilver-coated orthodontic brackets: an in vivo study.

    PubMed

    Metin-Gürsoy, Gamze; Taner, Lale; Barış, Emre

    2016-12-01

    Nanosilver particles of which antibacterial and antifungal properties have been shown in various in vitro and in vivo studies are used in many medical and dental fields for the prevention of infection. In this study, it is intended to evaluate the biocompatibility of nanosilver-coated brackets. Nanosilver coating process was applied to the standard orthodontic brackets by a physical vapor deposition system. Brackets were coated with nanosilver particles of 1 μ thickness. A total of 12 Wistar Albino rats were included in the study (six) and control (six) groups. For the study and control groups, four nanosilver-coated and four standard brackets were aseptically implanted subcutaneously in the dorsal region of each rat. The brackets were removed with the surrounding tissues on days 7, 14, 30, and 60. The specimens were evaluated for inflammatory response. No significant difference was found in terms of tissue reaction between the study and control groups. On day 7, randomly distributed brown-black granules were seen in the granulation tissue adjacent to the bracket in the study group. These foreign particles continued along the bracket cavity in a few samples, but the inflammatory response was insignificant between the groups. Mast cell count was found to be significantly smaller only on day 7 in the study group than in the control group. Nanosilver-coated orthodontic brackets were found to be similar with the standard type concerning inflammation. Further researches are needed with regard to the assessment of the brown-black granules, especially on the deposition of the vessel walls.

  8. Biomechanical characteristics of self-ligating brackets in a vertically displaced canine model: a finite element analysis.

    PubMed

    Kim, S-J; Kwon, Y-H; Hwang, C-J

    2016-05-01

    The objective of this study was to compare the biomechanical characteristics between two types of self-ligating brackets and conventional metal brackets using finite element analysis of a vertically displaced canine model focusing on the desired force on the canine and undesirable forces on adjacent teeth. Three-dimensional finite element models of the maxillary dentition with 1-mm, 2-mm, and 3-mm vertically displaced canines were constructed. Two different self-ligating brackets (In-Ovation C and Smart clip) and a conventional metal bracket (Micro-arch) were modeled. After a 0.016-inch NiTi (0.40 mm, round) wire was engaged, the displacement of each tooth was calculated using x-, y-, and z-coordinates, and the tensile and compressive stresses were calculated. The extrusion and maximal tensile stress of the canine differed little between the three brackets, but the intrusion and minimal compressive stress values of the adjacent teeth differed considerably and were highest in the Smart clip and least in the In-Ovation C. The extrusion and maximal tensile stress of the canine in the 3-mm displacement model was less than that in the 2-mm displacement model, and the intrusion and minimal compressive stress of the adjacent teeth increased with the degree of displacement. Self-ligating brackets were not superior to conventional brackets in leveling a vertically displaced canine. A continuous arch wire may not be recommended for leveling of severely displaced canines whether using self-ligating or conventional brackets. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Interior view, detail to show typical bracket with gold leaf ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, detail to show typical bracket with gold leaf ornament, here the bracket is located the north of the speaker on the second floor - National Park Seminary, Ballroom, Linden Lane, Silver Spring, Montgomery County, MD

  10. Shear bond strength of orthodontic brackets bonded with different self-etching adhesives.

    PubMed

    Scougall Vilchis, Rogelio José; Yamamoto, Seigo; Kitai, Noriyuki; Yamamoto, Kohji

    2009-09-01

    The purpose of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded with 4 self-etching adhesives. A total of 175 extracted premolars were randomly divided into 5 groups (n = 35). Group I was the control, in which the enamel was etched with 37% phosphoric acid, and stainless steel brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif). In the remaining 4 groups, the enamel was conditioned with the following self-etching primers and adhesives: group II, Transbond Plus and Transbond XT (3M Unitek); group III, Clearfil Mega Bond FA and Kurasper F (Kuraray Medical, Tokyo, Japan); group IV, Primers A and B, and BeautyOrtho Bond (Shofu, Kyoto, Japan); and group V, AdheSE and Heliosit Orthodontic (Ivoclar Vivadent AG, Liechtenstein). The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The adhesive remnant index (ARI) including enamel fracture score was also evaluated. Additionally, the conditioned enamel surfaces were observed under a scanning electron microscope. The SBS values of groups I (19.0 +/- 6.7 MPa) and II (16.6 +/- 7.3 MPa) were significantly higher than those of groups III (11.0 +/- 3.9 MPa), IV (10.1 +/- 3.7 MPa), and V (11.8 +/- 3.5 MPa). Fluoride-releasing adhesives (Kurasper F and BeautyOrtho Bond) showed clinically acceptable SBS values. Significant differences were found in the ARI and enamel fracture scores between groups I and II. The 4 self-etching adhesives yielded SBS values higher than the bond strength (5.9 to 7.8 MPa) suggested for routine clinical treatment, indicating that orthodontic brackets can be successfully bonded with any of these self-etching adhesives.

  11. 3D Viscous Free-Surface Flow around a Combatant Ship Hull

    NASA Astrophysics Data System (ADS)

    Pacuraru, Florin; Lungu, Adrian; Maria, Viorel

    2009-09-01

    The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise and their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship hull is presented in the paper. For practical reasons, the technique couples a body forces method and a RANS-based finite volume solver to account for the interactions between the hull and the appendages mounted on it: propellers, rudders, shaft lines, bossings and brackets. The chimera approach has been found the most versatile way for grid generation of hull and appendages.

  12. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    NASA Astrophysics Data System (ADS)

    Nutku, Yavuz

    2003-07-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.

  13. Laser debonding of ceramic brackets: a comprehensive review.

    PubMed

    Azzeh, Ezz; Feldon, Paul J

    2003-01-01

    Since the invention of the ruby laser in the early 1960s, tremendous advances have been made in optic laser technology. Orthodontists have found various uses for lasers, including the debonding of ceramic brackets. Laser energy degrades the adhesive resin used to bond brackets. Consequently, lower forces can be used than when mechanical debonding is performed, reducing the risk of enamel damage. However, the heat produced by some lasers can damage the tooth pulp. Selecting the appropriate laser, resin, and bracket combination can minimize risks and make debonding more efficient. The purpose of this article is to give the clinician an up-to-date, comprehensive literature review about the clinical characteristics of debonding ceramic brackets with lasers.

  14. Refining fault slip rates using multiple displaced terrace risers-An example from the Honey Lake fault, NE California, USA

    NASA Astrophysics Data System (ADS)

    Gold, Ryan D.; Briggs, Richard W.; Crone, Anthony J.; DuRoss, Christopher B.

    2017-11-01

    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4-1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced sites can refine slip-rate estimates on strike-slip faults.

  15. Refining fault slip rates using multiple displaced terrace risers—An example from the Honey Lake fault, NE California, USA

    USGS Publications Warehouse

    Gold, Ryan D.; Briggs, Richard; Crone, Anthony J.; Duross, Christopher

    2017-01-01

    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4–1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced sites can refine slip-rate estimates on strike-slip faults.

  16. Comparative study of torque expression among active and passive self-ligating and conventional brackets

    PubMed Central

    Franco, Érika Mendonça Fernandes; Valarelli, Fabrício Pinelli; Fernandes, João Batista; Cançado, Rodrigo Hermont; de Freitas, Karina Maria Salvatore

    2015-01-01

    Abstract Objective: The aim of this study was to compare torque expression in active and passive self-ligating and conventional brackets. Methods: A total of 300 segments of stainless steel wire 0.019 x 0.025-in and six different brands of brackets (Damon 3MX, Portia, In-Ovation R, Bioquick, Roth SLI and Roth Max) were used. Torque moments were measured at 12°, 24°, 36° and 48°, using a wire torsion device associated with a universal testing machine. The data obtained were compared by analysis of variance followed by Tukey test for multiple comparisons. Regression analysis was performed by the least-squares method to generate the mathematical equation of the optimal curve for each brand of bracket. Results: Statistically significant differences were observed in the expression of torque among all evaluated bracket brands in all evaluated torsions (p < 0.05). It was found that Bioquick presented the lowest torque expression in all tested torsions; in contrast, Damon 3MX bracket presented the highest torque expression up to 36° torsion. Conclusions: The connection system between wire/bracket (active, passive self-ligating or conventional with elastic ligature) seems not to interfere in the final torque expression, the latter being probably dependent on the interaction between the wire and the bracket chosen for orthodontic mechanics. PMID:26691972

  17. Static-dynamic friction transition of FRP esthetic orthodontic wires on various brackets by suspension-type friction test.

    PubMed

    Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M

    2003-11-15

    A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.

  18. Color stability of ceramic brackets immersed in potentially staining solutions

    PubMed Central

    Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas

    2015-01-01

    OBJECTIVE: To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. METHODS: Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. RESULTS: The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. CONCLUSIONS: Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions. PMID:26352842

  19. Static and kinetic frictional forces of silica-insert ceramic brackets with coated archwires in artificial saliva.

    PubMed

    Shahabi, Mostafa; Salari, Soheil; Poosti, Maryam; Abtahi, Mostafa

    2017-01-01

    During sliding mechanics, the frictional force (FF) is an important counterforce to orthodontic tooth movement. The purpose of this in vitro study was to investigate the static and kinetic FFs of S silica-insert ceramic (SIC) brackets with Teflon-coated (TC) and conventional S stainless steel (SS) archwires. The target group of this study included 80 maxillary canine 0.022 inch slot SIC brackets. Forty SS brackets were used as the control. TC and conventional uncoated SS archwires of different dimensions (0.016, 0.018, 0.016 × 0.022, and 0.018 × 0.025 inch) were examined. All tests were carried out under artificial saliva injected condition. Scanning Electron Micrographs were prepared for two samples of coated and uncoated archwires. Analysis of variance and Tukey post hoc tests were used for statistical purposes (level of significance P < 0.05). SIC brackets showed significantly lower levels of FFs than SS brackets. TC archwires had greater frictional values than conventional uncoated ones. They also exhibited an unusual behavior of increasing kinetic FFs with time. Indentation and delamination of coating were obvious under scanning electron microscopy observations. From the standpoint of friction, SIC brackets may serve well, even better than SS brackets, in sliding mechanics. The coating layer of the archwires may delaminate and lost, causing an impediment to tooth movement.

  20. Static and kinetic frictional forces of silica-insert ceramic brackets with coated archwires in artificial saliva

    PubMed Central

    Shahabi, Mostafa; Salari, Soheil; Poosti, Maryam; Abtahi, Mostafa

    2017-01-01

    Background: During sliding mechanics, the frictional force (FF) is an important counterforce to orthodontic tooth movement. The purpose of this in vitro study was to investigate the static and kinetic FFs of S silica-insert ceramic (SIC) brackets with Teflon-coated (TC) and conventional S stainless steel (SS) archwires. Materials and Methods: The target group of this study included 80 maxillary canine 0.022 inch slot SIC brackets. Forty SS brackets were used as the control. TC and conventional uncoated SS archwires of different dimensions (0.016, 0.018, 0.016 × 0.022, and 0.018 × 0.025 inch) were examined. All tests were carried out under artificial saliva injected condition. Scanning Electron Micrographs were prepared for two samples of coated and uncoated archwires. Analysis of variance and Tukey post hoc tests were used for statistical purposes (level of significance P < 0.05). Results: SIC brackets showed significantly lower levels of FFs than SS brackets. TC archwires had greater frictional values than conventional uncoated ones. They also exhibited an unusual behavior of increasing kinetic FFs with time. Indentation and delamination of coating were obvious under scanning electron microscopy observations. Conclusion: From the standpoint of friction, SIC brackets may serve well, even better than SS brackets, in sliding mechanics. The coating layer of the archwires may delaminate and lost, causing an impediment to tooth movement. PMID:29238380

  1. Color stability of ceramic brackets immersed in potentially staining solutions.

    PubMed

    Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas

    2015-01-01

    To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions.

  2. Influence of orthodontic appliance-derived artifacts on 3-T MRI movies.

    PubMed

    Ozawa, Erika; Honda, Ei-Ichi; Parakonthun, Kulthida Nunthayanon; Ohmori, Hiroko; Shimazaki, Kazuo; Kurabayashi, Tohru; Ono, Takashi

    2018-02-19

    Magnetic resonance imaging (MRI) has been used to study configurations of speech organs in the resting state. However, MRI is sensitive to metals, and numerous types of metallic appliances, most of which have a large magnetic susceptibility, are used in orthodontic treatment and may cause severe artifacts on MRI. We have developed techniques for obtaining MRI movies of the oral region, to evaluate articulatory changes, especially movement of the tongue, palate, and teeth, pre- and post-orthodontic/orthognathic treatment. We evaluated the influence of artifacts caused by orthodontic appliances, including fixed retainers, metal brackets, and wires, on measurements in 3-T MRI movies. Sixteen healthy young adults (nine males, seven females; average age, 27 years) with normal occlusion were recruited. Four types of customized maxillary and mandibular plates were prepared by incorporating one of the following into the plate: (a) nothing, (b) a fixed canine-to-canine retainer, (c) metal brackets for the anterior and molar teeth, or (d) clear brackets for the anterior teeth and metal brackets for molars. A 3-T MRI movie, in segmented cine mode, was generated for each plate condition while participants pronounced a vowel-consonant-vowel syllable (/asa/). The size of the artifact due to the metallic brackets was measured. The face size and orthodontically important anatomical structures, such as the velum, the hard palate, and the laryngeal ventricle, were also measured. A large artifact was observed over the entire oral region around orthodontic appliances, altering regional visibility. The velopharyngeal height was measured as significantly longer in the presence of metal brackets. The maximum artifact size due to a metallic bracket was > 8 cm. Our results show that even if it is possible to obtain the measurements of palate length, nasion to sella, and nasion to basion in individuals wearing metal brackets for molars, the measurements might be affected due to the presence of artifacts. Orthodontic appliances, including metallic materials, sometimes produce significant measurement error in speech evaluation using MRI movies, which often become invisible or distorted by metallic orthodontic appliances. When the distorted image is measured, caution should be exercised, as the measurement may be affected. Based on the study, it is concluded that orthodontists should not necessarily remove all metallic appliances before MRI examination because the influence varies among the appliances and should also know that a significant measurement error in speech evaluation using MRI movie may occur by image distortion caused by metallic artifacts.

  3. The Micro Fourier Transform Interferometer (muFTIR) - A New Field Spectrometer for Acquisition of Infrared Data of Natural Surfaces

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.

    1995-01-01

    A lightweight, rugged, high-spectral-resolution interferometer has been built by Designs and Prototypes based on a set of specifications provided by the Jet Propulsion Laboratory and Dr. J. W. Salisbury (Johns Hopkins University). The instrument, the micro Fourier Transform Interferometer (mFTIR), permits the acquisition of infrared spectra of natural surfaces. Such data can be used to validate low and high spectral resolution data acquired remotely from aircraft and spacecraft in the 3-5 mm and 8-14 mm atmospheric window. The instrument has a spectral resolutions of 6 wavenumbers, weighs 16 kg including batteries and computer, and can be operated easily by two people in the field. Laboratory analysis indicates the instrument is spectrally calibrated to better than 1 wavenumber and the radiometric accuracy is <0.5 K if the radiances from the blackbodies used for calibration bracket the radiance from the sample.

  4. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study

    PubMed Central

    Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep

    2014-01-01

    Background: Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. Materials & Methods: In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. Results: The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. Conclusion: The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83. PMID:24876706

  5. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study.

    PubMed

    Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep

    2014-04-01

    Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83.

  6. The influence of different types of brackets and efficacy of two chlorhexidine mouthwashes on oral hygiene and the incidence of white spot lesions in adolescents during the orthodontic therapy.

    PubMed

    Jurišić, Sanja; Kozomara, Davorin; Jurić, Hrvoje; Verzak, Željko; Jurišić, Gordan

    2016-12-01

    To detect the effect of two different types of brackets (ceramic and stainless steel) and investigate the effectiveness of two chlorhexidine mouthwashes 0.2% (CHX) on oral hygiene status and incidence of white spot lesions (WSLs) in adolescents wearing fixed orthodontic appliance. One hundred and twenty subjects (aged 11 to 18 years, mean age 14.5 years) were divided into six equal groups according to brackets type and to different mouthwashes: Group 1: metal brackets and conventional CHX, Group 2: metal brackets and CHX with anti-discoloration system (CHX-ADS), Group 3: ceramic brackets and conventional CHX, Group 4: ceramic brackets and CHX-ADS, Group 5: metal brackets and water correction flavors mouthwash (placebo), Group 6: ceramic brackets and placebo. Four weeks after the placement of fixed orthodontic appliance the subjects were provided with three different mouthwashes for use during the next two weeks. Assessment was carried out according to oral hygiene index-simplified (OHI-S) and WSL index performed: prior to placement of the appliance (baseline), four weeks, six weeks, eighteen weeks, and thirty weeks after the placement. The data were then subjected to statistical analysis. Group 4 showed reduction in the OHI-S scores when compared to the Group 5 (in the 6 th week), and Group 6 (in the 6 th and 18 th week), which was statistically significant, P<0.05. Group 4 showed decrease in the WSLs scores when compared to the Group 1 (in the 4 th , 6 th , 18 th and 30 th week), Group 5 (in the 18 th and 30 th week) and Group 6 (in the 6 th , 18 th and 30 th week), which was statistically significant, P<0.05. The ceramic brackets and the usage of CHX-ADS resulted in better oral hygiene status and lower incidence of WSLs.

  7. An in vitro Evaluation of Friction Characteristics of Conventional Stainless Steel and Self-ligating Stainless Steel Brackets with different Dimensions of Archwires in Various Bracket-archwire Combination.

    PubMed

    Sridharan, K; Sandbhor, Shailesh; Rajasekaran, U B; Sam, George; Ramees, M Mohamed; Abraham, Esther A

    2017-08-01

    The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and self-ligating stainless steel brackets with different dimensions of archwires. The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel-titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots.

  8. Torque efficiency of different archwires in 0.018- and 0.022-inch conventional brackets.

    PubMed

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2014-01-01

    To compare the archwires inserted during the final stages of the orthodontic treatment with the generated moments at 0.018- and 0.022-inch brackets. The same bracket type, in terms of prescription, was evaluated in both slot dimensions. The brackets were bonded on two identical maxillary acrylic resin models, and each model was mounted on the orthodontic measurement and simulation system. Ten 0.017 × 0.025-inch TMA and ten 0.017 × 0.025-inch stainless steel archwires were evaluated in the 0.018-inch brackets. In the 0.022-inch brackets, ten 0.019 × 0.025-inch TMA and ten 0.019 × 0.025-inch stainless steel archwires were measured. A 15° buccal root torque (+15°) and then a 15° palatal root torque (-15°) were gradually applied to the right central incisor bracket, and the moments were recorded at these positions. A t-test was conducted to compare the generated moments between wires within the 0.018- and 0.022-inch bracket groups separately. The 0.017 × 0.025-inch archwire in the 0.018-inch brackets generated mean moments of 9.25 Nmm and 14.2 Nmm for the TMA and stainless steel archwires, respectively. The measured moments in the 0.022-inch brackets with the 0.019 × 0.025-inch TMA and stainless steel archwires were 6.6 Nmm and 9.3 Nmm, respectively. The 0.017 × 0.025-inch stainless steel and β-Ti archwires in the 0.018-inch slot generated higher moments than the 0.019 × 0.025-inch archwires because of lower torque play. This difference is exaggerated in steel archwires, in comparison with the β-Ti, because of differences in stiffness. The differences of maximum moments between the archwires of the same cross-section but different alloys were statistically significant at both slot dimensions.

  9. Effect of archwire size and material on the resistance to sliding of self-ligating brackets with second-order angulation in the dry state.

    PubMed

    Thorstenson, Glenys A; Kusy, Robert P

    2002-09-01

    When paired with a particular self-ligating bracket design, the material and the geometric characteristics of an archwire influence its resistance to sliding. Four designs of self-ligating brackets (1 with a slide, 3 with clips) were coupled with 5 types of archwires: 14-mil round austenitic nickel-titanium, 16 x 22-mil rectangular austenitic nickel-titanium, 19 x 25-mil rectangular austenitic nickel-titanium, 19 x 25-mil rectangular martensitic nickel-titanium, and 19 x 25-mil rectangular stainless steel. The resistance to sliding (RS) of each archwire-bracket couple was measured at second-order angles between -9 degrees and 9 degrees. Interbracket distances of 8 and 18 mm between the test bracket and the adjacent brackets mimicked closure of a premolar extraction. When clearance exists, the RS is negligible for self-ligating brackets with slides coupled to any size of wire as well as for those with clips when coupled to wires that do not contact the clip. Once the wire attains a certain size and contacts the clip, the RS depends on the archwire size, the bracket design, and the materials of the couple. When coupled with the 16 x 22-mil wire, the brackets with clips applied normal forces ranging from a low of 5.6 centi-Newtons (cN) (1 cN = 1 g) to a high of 230 cN. When clearance disappears, the RS increased proportionally with the second-order angle. The 19 x 25-mil stainless steel wires, which were the most stiff, increased at rates between 75 and 84 cN/degree; the 14-mil austenitic nickel-titanium wires, which were the least stiff, increased at rates from 2.6 to 5.4 cN/degree. The treatment objectives for a particular patient at a specific stage should determine the appropriate archwire-bracket combination.

  10. In vitro evaluation of microleakage under orthodontic brackets bonded with different adhesive systems.

    PubMed

    Atash, Ramin; Fneiche, Ali; Cetik, Sibel; Bahrami, Babak; Balon-Perin, Alain; Orellana, Maria; Glineur, Régine

    2017-01-01

    Adhesives systems have a drawback when utilized for bonding orthodontic brackets: they shrink during photopolymerization creating microleakage. The aim of this study was to assess the stability of different orthodontic adhesives around brackets and enamel. Sixty noncarious mandibular premolars extracted for orthodontic reasons were randomly divided into six groups of adhesives used for bonding brackets to dental enamel: NeoBond ® Light Cure Adhesive Kit, Transbond™ Plus Self-Etching, Victory V-Slot APC PLUS ® + Transbond™ MIP, Rely-A-Bond ® Kit, Light Cure Orthodontic Adhesive Kit (OptiBond ® ), and Transbond™ MIP. Following bonding, all teeth underwent 2500 cycles of thermal cycling in baths ranging from 5°C to 55°C before being immersed in 2% methylene blue for 24 h. All samples were examined under a binocular microscope to assess the degree of microleakage at the "bracket-adhesive" and "adhesive-enamel" interfaces in the gingival and occlusal regions of the bracket. A significant difference was found at the "occlusal bracket-adhesive" interface. The highest microleakage values were found in the occlusal region, although no significant. Microleakage was observed in all groups. Group 2 had the highest microleakage values whereas Group 6 had the lowest values.

  11. Torsion bar stabilizer for a vehicle and method for mounting the stabilizer on the vehicle frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauber, C.J.

    This patent describes a method of mounting a stabilizing mechanism on a vehicle frame which is supported and biased on a suspension assembly at opposite sides of the frame. The frame includes overload stops riveted to opposite sides of the frame and the suspension assembly includes bracket assemblies which secure the vehicle's suspension springs to a wheel axle. The method comprises the following steps: removing an overload stop from each side of the vehicle frame; mounting a modified overload stop on each side of the frame which serves as both an overload stop and a support for the stabilizing mechanismmore » wherein the modified overload stop is mounted into the holes in the frame left from the removal of the overload stop; removing from each side of the vehicle the top bracket from the bracket assembly; inserting a modified top bracket into each bracket assembly wherein the top bracket assembly is modified to couple with the stabilizing mechanism; and mounting on the modified overload stops a torsion bar whose opposite ends are coupled to the modified top bracket by way of linkages.« less

  12. A Risk-Based Approach to Variable Load Configuration Validation in Steam Sterilization: Application of PDA Technical Report 1 Load Equivalence Topic.

    PubMed

    Pavell, Anthony; Hughes, Keith A

    2010-01-01

    This article describes a method for achieving the load equivalence model, described in Parenteral Drug Association Technical Report 1, using a mass-based approach. The item and load bracketing approach allows for mixed equipment load size variation for operational flexibility along with decreased time to introduce new items to the operation. The article discusses the utilization of approximately 67 items/components (Table IV) identified for routine sterilization with varying quantities required weekly. The items were assessed for worst-case identification using four temperature-related criteria. The criteria were used to provide a data-based identification of worst-case items, and/or item equivalence, to carry forward into cycle validation using a variable load pattern. The mass approach to maximum load determination was used to bracket routine production use and allows for variable loading patterns. The result of the item mapping and load bracketing data is "a proven acceptable range" of sterilizing conditions including loading configuration and location. The application of these approaches, while initially more time/test-intensive than alternate approaches, provides a method of cycle validation with long-term benefit of ease of ongoing qualification, minimizing time and requirements for new equipment qualification for similar loads/use, and for rapid and rigorous assessment of new items for sterilization.

  13. Selective removal of dental composite using a rapidly scanned carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.

  14. Effectiveness of varnish with CPP-ACP in prevention of caries lesions around orthodontic brackets: an OCT evaluation.

    PubMed

    Pithon, Matheus M; Dos Santos, Mariana J; Andrade, Camilla S S; Leão Filho, Jorge César B; Braz, Ana Karla S; de Araujo, Renato E; Tanaka, Orlando M; Fidalgo, Tatiana K S; Dos Santos, Adrielle M; Maia, Lucianne C

    2015-04-01

    To evaluate the in vitro efficiency of applying varnish containing casein phosphopeptide (CPP) and amorphous calcium phosphate (ACP) in prevention of caries lesions around orthodontic brackets. For this purpose, brackets were bonded to the vestibular surface of bovine incisors, and eight groups were formed (n = 15) according to exposure of oral hygiene substances and enamel varnish: 1 (control) brushing only performed, 2 (control) brushing + use of mouth wash with fluoride, 3 Duraphat varnish application only (Colgate-Palmolive Ind. E Com. Ltda, São Paulo, SP, Brazil), 4 Duraphat + brushing, 5 Duraphat + brushing + mouth wash, 6 MI Varnish application (GC America, USA), 7 MI + brushing, and 8 MI + brushing + mouth wash. The experimental groups alternated between pH cycling and the procedures described and were kept in an oven at temperature of 37°C. Both brushing and immersion in solutions was performed in a time interval of 1 minute, followed by washing in deionized water three times a day for 28 days of experimentation. Afterwards, evaluation by optical coherence tomography (OCT) of the special type (Ganymede OCT/Thorlabs, Newton, USA) was performed. In each group, a scanning exam of the white spot lesion area (around the region where brackets were bonded) and depth measurement of caries lesions were performed. Groups 1 and 3 were shown to differ statistically from groups 5, 6, 7, and 8 (p = 0.000). MI Varnish was shown to be more effective in diminishing caries lesion depth, compared with Duraphat, irrespective of being associated with brushing and mouth wash, or not. The major limitation of this study is that it is a study in which demineralization was obtained with the use of chemical products, and did not occur due to the presence of Streptococcus mutans and its acid byproducts. Application CPP-ACP-containing varnish irrespective of being associated with brushing and mouthwash, or not, reduced depth of caries lesions around orthodontic brackets. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Effect of bromelain and papain gel on enamel deproteinisation before orthodontic bracket bonding.

    PubMed

    Pithon, Matheus Melo; Campos, Matheus Souza; Coqueiro, Raildo da Silva

    2016-05-01

    To test the hypothesis that enamel surface deproteinisation with different concentrations of bromelain in association with 10% papain increases the shear bond strength (SBS) of brackets bonded with orthodontic composite and resin modified glass ionomer cement (RMGIC). Orthodontic brackets were attached according to the following protocols to 195 bovine incisors, which were acquired and divided into 13 groups: 1) Transbond XT (TXT) according to the manufacturer's recommendations; 2) Deproteinisation with 3% bromelain (BD) plus 10% papain and TXT; 3) 6% BD plus 10% Papain and TXT; 4) RMGIC, without enamel deproteinisation and without acid etching; 5) RMGIC, with 3% BD plus 10% papain and without acid etching; 6) RMGIC, with 6% BD plus 10% papain and without acid etching; 7) attachment using RMGIC following etching with polyacrylic acid; 8) 3% BD plus 10% papain, attachment using RMGIC and etching with polyacrylic acid; 9) 6% BD plus 10% papain, and attachment using RMGIC following etching with polyacrylic acid; 10) etching with 37% phosphoric acid and attachment using RMGIC; 11) 3% BD plus 10% papain, etching with 37% phosphoric acid and attachment using RMGIC; 12) 6% BD plus 10% papain, etching with 37% phosphoric acid and attachment using RMGIC; 13) deproteinisation with 2.5% sodium hypochlorite (NaOCl), etching with polyacrylic acid and RMGIC. After bonding, the brackets were removed by a universal mechanical testing machine, which recorded shear bond strength at failure. The material remaining on the tooth was assessed using the adhesive remnant index (ARI). Deproteinisation with 3% and 6% bromelain gel plus papain significantly increased the shear bond strength (p < 0.05), when acid etching was performed with phosphoric acid, followed by primer application and attachment using Transbond XT (Group 3) and when attached with RMGIC without etching. Deproteinisation with 6% bromelain gel plus papain significantly increased (p < 0.05) the ARI score only when attachment was performed using RMGIC, without etching (Group 6). Deproteinisation with bromelain associated with papain in a gel increased the shear bond strength and is recommended before orthodontic bracket attachment.

  16. Dental plaque associated with self-ligating brackets during the initial phase of orthodontic treatment: A 3-month preliminary study

    PubMed Central

    Al-Anezi, Saud A

    2014-01-01

    Background: To compare changes in the amount and distribution of dental plaque associated with placement of elastomeric modules over a self-ligating bracket during orthodontic treatment and to relate these changes to the periodontal inflammation. Materials and Methods: A cross-arch randomization trial was carried out at Bristol Dental School, United Kingdom. Clinical measurements of periodontal inflammation and plaque accumulation and microbiological test were done on 24 patients aged 11-14 years [Mean (SD) age = 12.6 (1.01) years] wearing fixed appliances (Damon 2 brackets, Ormco, Orange, CA, USA) at the start and 3 months into fixed orthodontic treatment. Results: In the first 3 months of treatment there was no statistically significant difference in bleeding on probing between incisors with and without elastomeric modules (P = 0.125 and 0.508, respectively). The difference in plaque accumulation was not statistically significant (P = 0.78). The difference in probing depths between the incisors was not statistically significant (P = 0.84). The microbiological analysis showed no difference. Conclusions: Based on this preliminary 3 months study, elastomeric modules were not significantly associated with any increased risk during treatment when compared to self-ligating brackets. The longer term studies are needed to further confirm the findings of the present study. PMID:24987657

  17. A normative study to evaluate inclination and angulation of teeth in North Indian population and comparision of expression of torque in preadjusted appliances

    PubMed Central

    Verma, Sanjeev; Singh, SP; Utreja, Ashok

    2014-01-01

    Aim: The aim of this study was to evaluate angulation and inclination of teeth from the study models of individuals with normal occlusion and evaluation of actual expression of torque expressed by three different bracket systems. Materials and Methods: In this study, the inclination and angulation were measured on 30 study models of North Indian individuals. A self-developed instrument (torque angle gauge) was used for the measurement. Fifteen study models were duplicated for the evaluation of torque expression in the bracket of three different manufacturers with different shape and size of bases. Results: The results give the mean, minimum and maximum, standard deviation of the normative data individually for each tooth. A significant correlation was noted in the angulation of maxillary canine and first premolar, and between premolars; and between mandibular central incisor with lateral incisor and canine, and between premolars. Conclusions: There was a highly significant correlation of teeth angulation and inclination in the maxillary and mandibular arch. Though the error in expression of torque was not significant, but it showed a large range, indicating the need to vary the position of brackets in different bracket systems for achieving optimum torque. PMID:25143932

  18. Comparison of some dietary habits on corrosion behavior of stainless steel brackets: an in vitro study.

    PubMed

    Shahabi, M; Jahanbin, A; Esmaily, H; Sharifi, H; Salari, S

    2011-01-01

    Resistance to corrosion is an advantageous property of orthodontic brackets; however, due to low levels of pH found in the mouth of a patient, localized corrosion may occur This can affect tooth movement by increasing friction between the arch wire and bracket slot and initiate enamel discoloration. Additionally, corrosion causes the release of elements that may lead to cytotoxic and biological side effects. The aim of this study was to compare the amount of corrosion caused by lemon juice, vinegar and Coca-Cola on orthodontic brackets in vitro and then to recommend the most suitable diet during orthodontic treatment. Sixty orthodontic brackets in three groups of twenty were immersed in a test solution (Fusamaya-Meyer artificial saliva plus lemon juice, vinegar or Coca-Cola) at a temperature of 37 degrees C +/- 1. Moreover, a negative control consisting of twenty brackets were put in pure artificial saliva. After 6 weeks the amount of corrosion was determined by measuring delta W of mean weights of brackets and the results were analyzed by general linear models (repeated measurement). Significant differences were seen during different weeks of the study (P < 0.001) and different solutions (P < 0.001). This study showed the amount of corrosion in orthodontic brackets was the most for cola followed by vinegar and then lemon juice. In addition, mean differences for cola versus lemon juice was -0.010 (sig. <0.001), vinegar versus lemon juice was -0.006 (sig. = 0.001) and cola versus vinegar was -0.004 (sig. = 0.013). Acidic effervescent soft drinks such as cola have to be eliminated or minimized in the nutritional diet of orthodontic patients because of their harmful effects on their brackets.

  19. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque.

    PubMed

    Magesh, Varadaraju; Harikrishnan, Pandurangan; Kingsly Jeba Singh, Devadhas

    2018-04-01

    Torque applied on anterior teeth is vital for root positioning and stability. The aim of this study was to evaluate the detailed slot wall deformation in stainless steel (SS) and titanium (Ti) edgewise brackets during palatal root torque using finite element analysis. A finite element model was developed from a maxillary central incisor SS bracket (0.022 in). The generated torque values from an SS rectangular archwire (0.019 × 0.025 in) while twisting from 5° to 40° were obtained experimentally by a spine tester, and the calculated torque force was applied in the bracket slot. The deformations of the slot walls in both SS and Ti brackets were measured at various locations. There were gradual increases in the deformations of both bracket slot walls from the bottom to top locations. In the SS bracket slot for the 40° twist, the deformations were 9.28, 36.8, and 44.8 μm in the bottom, middle, and top slot wall locations, respectively. Similarly, in the Ti bracket slot for the 40° twist, the deformations were 39.2, 62.4, and 76.2 μm in the bottom, middle, and top slot wall locations, respectively. The elastic limits were reached at 28° for SS and at 37° for Ti. Both SS and Ti bracket slots underwent deformation during torque application. There are variations in the deformations at different locations in the slot walls and between the materials. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Efficiency of compensatory orthodontic treatment of mild Class III malocclusion with two different bracket systems

    PubMed Central

    Aragón, Mônica L. C.; Bichara, Lívia M.; Flores-Mir, Carlos; Almeida, Guilherme; Normando, David

    2017-01-01

    ABSTRACT Objective: The purpose of this study was to assess the efficiency of compensatory orthodontic treatment of patients with mild Class III malocclusion with two preadjusted bracket systems. Method: Fifty-six matched patients consecutively treated for mild Class III malocclusion through compensatory dentoalveolar movements were retrospectively evaluated after analysis of orthodontic records. The sample was divided into two groups according to the brackets used: Group 1 = non-Class III compensated preadjusted brackets, Roth prescription (n = 28); Group 2 = compensated Class III preadjusted brackets, Capelozza III prescription (n = 28). Cephalometric analysis, number of appointments and missed appointments, months using Class III elastics, and bond/band failures were considered. Treatment time, Peer Assessment Rating (PAR) index at the beginning (PAR T1) and end of treatment (PAR T2) were used to calculate treatment efficiency. Comparison was performed using a MANOVA at p< 0.05. Results: Missed appointments, bond or band failures, number of months using the Class III intermaxillary elastics, and cephalometric measurements showed no statistically significant difference (p> 0.05) between groups. Patients treated with Roth brackets had a treatment time 7 months longer (p= 0.01). Significant improvement in the patient’s occlusion (PAR T2-T1) was observed for both groups without difference (p= 0.22). Conclusions: Orthodontic brackets designed for compensation of mild Class III malocclusions appear to be more efficient than non-compensated straight-wire prescription brackets. Treatment time for Class III patients treated with brackets designed for compensation was shorter than with Roth prescription and no difference in the quality of the occlusal outcome was observed. A prospective randomized study is suggested to provide a deeper look into this subject. PMID:29364379

  1. Esthetic perception of orthodontic appliances by Brazilian children and adolescents.

    PubMed

    Kuhlman, Deise Caldas; Lima, Tatiana Araújo de; Duplat, Candice Belchior; Capelli, Jonas

    2016-01-01

    The objective of this present study was to understand how children and adolescents perceive esthetic attractiveness of a variety of orthodontic appliances. It also analyzed preferences according to patients' age, sex and socioeconomic status. A photograph album consisting of eight photographs of different orthodontic appliances and clear tray aligners placed in a consenting adult with pleasing smile was used. A sample of children or adolescents aged between 8 and 17 years old (n = 276) was asked to rate each image for its attractiveness on a visual analog scale. Comparisons between the appliances attractiveness were performed by means of nonparametric statistics with Friedman's test followed by Dunn's multiple comparison post-hoc test. Correlation between appliances and individuals' socioeconomic status, age, sex, and esthetic perception was assessed by means of Spearman's correlation analysis. Attractiveness ratings of orthodontic appliances varied nonsignificantly for children in the following hierarchy: traditional metallic brackets with green elastomeric ligatures > traditional metallic brackets with gray elastomeric ligatures > sapphire esthetic brackets; and for adolescents, as follows: sapphire esthetic brackets > clear aligner without attachments > traditional metallic brackets with green elastomeric ligatures. The correlation between individuals' socioeconomic status and esthetic perception of a given appliance was negative and statistically significant for appliances such as the golden orthodontic brackets and traditional metallic brackets with green elastomeric ligatures. Metal appliances were considered very attractive, whereas aligners were classified as less attractive by children and adolescents. The correlation between esthetic perception and socioeconomic status revealed that individuals with a higher socioeconomic level judged esthetics as the most attractive attribute. For those with higher economic status, golden orthodontic brackets and traditional metallic brackets with green elastomeric ligatures were assessed as the worst esthetic option.

  2. Esthetic perception of orthodontic appliances by Brazilian children and adolescents

    PubMed Central

    Kuhlman, Deise Caldas; de Lima, Tatiana Araújo; Duplat, Candice Belchior; Capelli, Jonas

    2016-01-01

    ABSTRACT Objective: The objective of this present study was to understand how children and adolescents perceive esthetic attractiveness of a variety of orthodontic appliances. It also analyzed preferences according to patients' age, sex and socioeconomic status. Methods: A photograph album consisting of eight photographs of different orthodontic appliances and clear tray aligners placed in a consenting adult with pleasing smile was used. A sample of children or adolescents aged between 8 and 17 years old (n = 276) was asked to rate each image for its attractiveness on a visual analog scale. Comparisons between the appliances attractiveness were performed by means of nonparametric statistics with Friedman's test followed by Dunn's multiple comparison post-hoc test. Correlation between appliances and individuals' socioeconomic status, age, sex, and esthetic perception was assessed by means of Spearman's correlation analysis. Results: Attractiveness ratings of orthodontic appliances varied nonsignificantly for children in the following hierarchy: traditional metallic brackets with green elastomeric ligatures > traditional metallic brackets with gray elastomeric ligatures > sapphire esthetic brackets; and for adolescents, as follows: sapphire esthetic brackets > clear aligner without attachments > traditional metallic brackets with green elastomeric ligatures. The correlation between individuals' socioeconomic status and esthetic perception of a given appliance was negative and statistically significant for appliances such as the golden orthodontic brackets and traditional metallic brackets with green elastomeric ligatures. Conclusion: Metal appliances were considered very attractive, whereas aligners were classified as less attractive by children and adolescents. The correlation between esthetic perception and socioeconomic status revealed that individuals with a higher socioeconomic level judged esthetics as the most attractive attribute. For those with higher economic status, golden orthodontic brackets and traditional metallic brackets with green elastomeric ligatures were assessed as the worst esthetic option. PMID:27901230

  3. A comparison between two lingual orthodontic brackets in terms of speech performance and patients' acceptance in correcting Class II, Division 1 malocclusion: a randomized controlled trial

    PubMed Central

    Haj-Younis, Samiha; Khattab, Tarek Z.; Hajeer, Mohammad Y.; Farah, Hassan

    2016-01-01

    ABSTRACT Objective: To compare speech performance and levels of oral impairment between two types of lingual brackets. Methods: A parallel-group randomized controlled trial was carried out on patients with Class II, Division 1 malocclusion treated at the University of Hama School of Dentistry in Hama, Syria. A total of 46 participants (mean age: 22.3 ± 2.3 years) with maxillary dentoalveolar protrusion were randomly distributed into two groups with 23 patients each (1:1 allocation ratio). Either STb (Ormco) or 7th Generation (Ormco) lingual brackets were applied. Fricative sound/s/ spectrograms were analyzed directly before intervention (T0), one week following premolar extraction prior to bracket placement (T1), within 24 hours of bracket bonding (T2), one month after (T3), and three months after (T4) bracket placement. Patients′ acceptance was assessed by means of standardized questionnaires. Results: After bracket placement, significant deterioration in articulation was recorded at all assessment times in the 7th Generation group, and up to T3 in the STb group. Significant intergroup differences were detected at T2 and T3. No statistically significant differences were found between the two groups in reported tongue irritation levels, whereas chewing difficulty was significantly higher in the 7th Generation group one month after bracket placement. Conclusions: 7th Generation brackets have more interaction with sound production than STb ones. Although patients in both groups complained of some degree of oral impairment, STb appliances appeared to be more comfortable than the 7th Generation ones, particularly within the first month of treatment. PMID:27653268

  4. A comparison between two lingual orthodontic brackets in terms of speech performance and patients' acceptance in correcting Class II, Division 1 malocclusion: a randomized controlled trial.

    PubMed

    Haj-Younis, Samiha; Khattab, Tarek Z; Hajeer, Mohammad Y; Farah, Hassan

    2016-01-01

    To compare speech performance and levels of oral impairment between two types of lingual brackets. A parallel-group randomized controlled trial was carried out on patients with Class II, Division 1 malocclusion treated at the University of Hama School of Dentistry in Hama, Syria. A total of 46 participants (mean age: 22.3 ± 2.3 years) with maxillary dentoalveolar protrusion were randomly distributed into two groups with 23 patients each (1:1 allocation ratio). Either STb (Ormco) or 7th Generation (Ormco) lingual brackets were applied. Fricative sound/s/ spectrograms were analyzed directly before intervention (T0), one week following premolar extraction prior to bracket placement (T1), within 24 hours of bracket bonding (T2), one month after (T3), and three months after (T4) bracket placement. Patients' acceptance was assessed by means of standardized questionnaires. After bracket placement, significant deterioration in articulation was recorded at all assessment times in the 7th Generation group, and up to T3 in the STb group. Significant intergroup differences were detected at T2 and T3. No statistically significant differences were found between the two groups in reported tongue irritation levels, whereas chewing difficulty was significantly higher in the 7th Generation group one month after bracket placement. 7th Generation brackets have more interaction with sound production than STb ones. Although patients in both groups complained of some degree of oral impairment, STb appliances appeared to be more comfortable than the 7th Generation ones, particularly within the first month of treatment.

  5. In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets

    PubMed Central

    de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini Júnior, Luiz Gonzaga

    2014-01-01

    Objective The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. Methods Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a spectrophotometer. Data were assessed by Multivariate Profile Analysis, Analysis of Variance (ANOVA) and Multiple Comparison Tests of means. Results There was a perceptible change of color in all ceramic brackets immersed in coffee (ΔE* Allure = 7.61, Inspire Ice = 6.09, Radiance = 6.69, Transcend = 7.44), black tea (ΔE* Allure = 6.24, Inspire Ice = 5.21, Radiance = 6.51, Transcend = 6.14) and red wine (ΔE* Allure = 6.49, Inspire Ice = 4.76, Radiance = 5.19, Transcend = 5.64), but no change was noticed in Coke and artificial saliva (ΔE < 3.7). Conclusion Ceramic brackets undergo color change when exposed to solutions of coffee, black tea and red wine. However, the same crystalline structure, either monocrystalline or polycrystalline, do not follow the same or a similar pattern in color change, varying according to the bracket fabrication, which shows a lack of standardization in the manufacturing process. Coffee dye produced the most marked color changes after 21 days of immersion for most ceramic brackets evaluated. PMID:25279530

  6. Bracket slot and archwire dimensions: manufacturing precision and third order clearance.

    PubMed

    Joch, Astrid; Pichelmayer, Margit; Weiland, Frank

    2010-12-01

    To determine the accuracy of different manufacturer's dimensions of bracket slots and stainless steel archwires and compare these against the tolerance limits given by DIN 13971 and 13971-2. Further to calculate torque play and effective torque and to compare the results to nominal torque. A laboratory investigation. The Department of Orthodontics and Dentofacial Orthopedics at Medical University of Graz, Austria. Ten upper central incisor brackets (0·022 inch) from five different bracket systems were investigated. Bracket slot height was measured with leaf gauges. The height and width of 10 stainless steel archwires with dimensions either 0·019×0·022 or 0·020×0·025 inch were measured using a micrometer. All measured bracket slot heights were within the upper and lower tolerance limits given by DIN 13971-2. Archwires showed measurements outside the upper and lower tolerance limits given by DIN 13971. The smallest effective torque loss (4·5°) resulted from the combination of the 0·022-inch SPEED System bracket with the 0·020×0·025-inch SPEED Wire small upper. The highest torque loss (11·7°) was found with the 0·022-inch Damon 2 bracket and the 0·019×0·025-inch ECO Charge 1 archwire. The accuracy of the manufacturers dimension is not to be taken for granted. A perfect 'finishing' still requires correction bends put in by the orthodontist.

  7. In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets.

    PubMed

    de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini Junior, Luiz Gonzaga

    2014-01-01

    The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a spectrophotometer. Data were assessed by Multivariate Profile Analysis, Analysis of Variance (ANOVA) and Multiple Comparison Tests of means. There was a perceptible change of color in all ceramic brackets immersed in coffee (ΔE* Allure = 7.61, Inspire Ice = 6.09, Radiance = 6.69, Transcend = 7.44), black tea (ΔE* Allure = 6.24, Inspire Ice = 5.21, Radiance = 6.51, Transcend = 6.14) and red wine (ΔE* Allure = 6.49, Inspire Ice = 4.76, Radiance = 5.19, Transcend = 5.64), but no change was noticed in Coke and artificial saliva (ΔE < 3.7). Ceramic brackets undergo color change when exposed to solutions of coffee, black tea and red wine. However, the same crystalline structure, either monocrystalline or polycrystalline, do not follow the same or a similar pattern in color change, varying according to the bracket fabrication, which shows a lack of standardization in the manufacturing process. Coffee dye produced the most marked color changes after 21 days of immersion for most ceramic brackets evaluated.

  8. 37 CFR 1.121 - Manner of making amendments in applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... strike-through except that double brackets placed before and after the deleted characters may be used to... shown by being placed within double brackets if strike-through cannot be easily perceived; (iii) The... deleted must not be presented with strike-through or placed within double brackets. The instruction to...

  9. Tool Releases Optical Elements From Spring Brackets

    NASA Technical Reports Server (NTRS)

    Gum, J. S.

    1984-01-01

    Threaded hooks retract bracket arms holding element. Tool uses three hooks with threaded shanks mounted in ring-shaped holder to pull on tabs to release optical element. One person can easily insert or remove optical element (such as prism or lens) from spring holder or bracket with minimal risk of damage.

  10. Bracket formulations and energy- and helicity-preserving numerical methods for incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Suzuki, Yukihito

    2018-03-01

    A diffuse interface model for three-dimensional viscous incompressible two-phase flows is formulated within a bracket formalism using a skew-symmetric Poisson bracket together with a symmetric negative semi-definite dissipative bracket. The budgets of kinetic energy, helicity, and enstrophy derived from the bracket formulations are properly inherited by the finite difference equations obtained by invoking the discrete variational derivative method combined with the mimetic finite difference method. The Cahn-Hilliard and Allen-Cahn equations are employed as diffuse interface models, in which the equalities of densities and viscosities of two different phases are assumed. Numerical experiments on the motion of periodic arrays of tubes and those of droplets have been conducted to examine the properties and usefulness of the proposed method.

  11. Assessing the effects of hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets.

    PubMed

    Andrighetto, Augusto Ricardo; de Leão Withers, Eduardo Henrique; Grando, Karlos Giovani; Ambrosio, Aldrieli Regina; Shimizu, Roberto Hideo; Melo, Ana Cláudia

    2016-01-01

    Tooth bleaching is, today, one of the most widespread cosmetic treatments in dental practice,  so it is important to determine whether it can interfere with orthodontic bonding or not. The aim of this study was to assess the in vitro effects of 35% hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets. Forty-five upper bicuspids were divided into three groups (n = 15). In the control Group (C), the brackets were bonded without previous bleaching treatment. Group 1 (G1) was treated with 35% hydrogen peroxide bleaching agent 24 h before bracket bonding. Group 2 was also bleached, and the brackets were bonded after 30 days. The shear bond strength of the brackets was measured using an EMIC machine, and the results were analyzed by ANOVA. There were no statistically significant differences between the three groups (P > 0.05), with Group C showing a mean bond strength of 9.72 ± 2.63 MPa, G1 of 8.09 ± 2.63 MPa, and G2 of 11.15 ± 4.42 MPa. It was possible to conclude that 35% hydrogen peroxide bleaching agent does not affect the shear strength of orthodontic brackets bonded 24 h and 30 days after bleaching.

  12. Evaluation of force released by deflection of orthodontic wires in conventional and self-ligating brackets.

    PubMed

    Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Henriques, José Fernando Castanha; Janson, Guilherme; Sathler, Renata; Fernandes, Thais Maria Freire

    2016-01-01

    The aim of the study was to evaluate deflection forces of rectangular orthodontic wires in conventional (MorelliTM), active (In-Ovation RTM) and passive (Damon 3MXTM) self-ligating brackets. Two brands of stainless steel and nickel-titanium (NiTi) wires (MorelliTM and GACTM), in addition to OrmcoTM copper-nickel-titanium wires were used. Specimens were assembled in a clinical simulation device especially designed for this study and tested in an Instron universal testing machine. For the testing procedures, an acrylic structure representative of the maxillary right central incisor was lingually moved in activations of 0 to 1 mm, with readings of the force released by deflection in unloading of 0.5, 0.8 and 1 mm at a constant speed of 2 mm/min. Inter-bracket forces with stainless steel, NiTi and CuNiTi were individually compared by two-way ANOVA, followed by Tukey's tests. Results showed that there were lower forces in conventional brackets, followed by active and passive self-ligating brackets. Within the brands, only for NiTi wires, the MorelliTM brand presented higher forces than GACTM wires. Bracket systems provide different degrees of deflection force, with self-ligating brackets showing the highest forces.

  13. The effect of ligation method on friction in sliding mechanics.

    PubMed

    Hain, Max; Dhopatkar, Ashish; Rock, Peter

    2003-04-01

    During orthodontic tooth movement with the preadjusted edgewise system, friction generated at the bracket/archwire interface tends to impede the desired movement. The method of ligation is an important contributor to this frictional force. This in vitro study investigated the effect of ligation method on friction and evaluated the efficacy of the new slick elastomeric modules from TP Orthodontics (La Porte, Ind), which are claimed to reduce friction at the module/wire interface. Slick modules were compared with regular nonslick modules, stainless steel ligatures, and the SPEED self-ligating bracket system (Strite Industries, Cambridge, Ontario, Canada). The effect of using slick modules with metal-reinforced ceramic (Clarity, 3M Unitek, Monrovia, Calif) and miniature brackets (Minitwin, 3M Unitek) was also examined. Results showed that, when considering tooth movement along a 0.019 x 0.025-in stainless steel archwire, saliva-lubricated slick modules can reduce static friction at the module/archwire interface by up to 60%, regardless of the bracket system. The SPEED brackets produced the lowest friction compared with the 3 other tested bracket systems when regular modules were used. The use of slick modules, however, with all of the ligated bracket types tested significantly reduced friction to below the values recorded in the SPEED groups. Loosely tied stainless steel ligatures were found to generate the least friction.

  14. [Analysis of individual spending on smoking based on the Brazilian Family Budget Survey, 2002-2003].

    PubMed

    Kroeff, Locimara Ramos; Mengue, Sotero Serrate

    2010-12-01

    In order to discuss new parameters for assessing personal spending on smoking in Brazil, this study aimed to describe the population's socio-demographic characteristics and the proportions of spending on smoking. The sample included individuals that spend money on smoking, according to the Brazilian Family Budget Survey for 2002-2003, conducted by the Brazilian Institute of Geography and Statistics. In the lowest income bracket, the proportion of spending on smoking for expenses greater than the median varied negatively by as much as 10% as compared to the proportion of spending on smoking for income greater than the median. For intermediate income brackets, the two proportions were similar, and in the higher income brackets there was a reversal, with a positive difference of up to 15%. The percentage of spending on smoking doubled for all the groups with low schooling. As income and schooling increased, there was a proportional reduction in spending on smoking.

  15. GEMPIC: geometric electromagnetic particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Kraus, Michael; Kormann, Katharina; Morrison, Philip J.; Sonnendrücker, Eric

    2017-08-01

    We present a novel framework for finite element particle-in-cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov-Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from finite element exterior calculus ensure conservation of the divergence of the magnetic field and Gauss' law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the finite element basis, as long as the corresponding finite element spaces satisfy certain compatibility conditions.

  16. Easy Debonding of Ceramic Brackets Bonded with a Light-Cured Orthodontic Adhesive Containing Microcapsules with a CO2 Laser.

    PubMed

    Arima, Shiori; Namura, Yasuhiro; Tamura, Takahiko; Shimizu, Noriyoshi

    2018-03-01

    An easy debonding method for ceramic brackets using a light-cured Bis-GMA resin containing heat-expandable microcapsules and CO 2 laser was investigated. Ceramic brackets are used frequently in orthodontic treatment because of their desirable esthetic properties. However, the application of heavy force to ceramic brackets in debonding can fracture the tooth enamel and ceramic brackets, causing tooth pain. In total, 60 freshly extracted bovine permanent mandibular incisors were divided randomly into 10 groups of 6 specimens each, corresponding to the number of variables tested. Ceramic brackets were bonded to bovine permanent mandibular incisors using an orthodontic bonding agent containing heat-expandable microcapsules at different levels (0-30 wt%) and resin composite paste, and cured by a curing device. The bond strengths were measured before and after CO 2 laser irradiation, and the temperature increase in the pulp chamber in fresh human first premolars was also evaluated. With CO 2 laser irradiation for 5 sec to the bracket, the bond strength in the 25% microcapsule group decreased significantly, to ∼0.17-fold, compared with that of the no-laser group (p < 0.05). The maximum temperature increase in the pulp chamber was 5.3°C with laser irradiation, which was less than the level that induces pulp damage. From these results, it seems likely that the combined use of a light-cured orthodontic bonding agent containing microcapsules and a CO 2 laser is a simple debonding system for ceramic brackets, with less debonding time and enamel damage.

  17. Light energy attenuation through orthodontic ceramic brackets at different irradiation times.

    PubMed

    Santini, Ario; Tiu, Szu Hui; McGuinness, Niall J P; Aldossary, Mohammed Saeed

    2016-09-01

    To evaluate the total light energy (TLE) transmission through three types of ceramic brackets with, bracket alone and with the addition of orthodontic adhesive, at different exposure durations, and to compare the microhardness of the cured adhesive. Three different makes of ceramic brackets, Pure Sapphire(M), Clarity™ ADVANCED(P) and Dual Ceramic(P) were used. Eighteen specimens of each make were prepared and allocated to three groups (n = 6). MARC(®)-resin calibrator was used to determine the light curing unit (LCU) tip irradiance (mW/cm(2)) and TLE (J/cm(2)) transmitted through the ceramic brackets, and through ceramic bracket plus Transbond™ XT Light Cure Adhesive, for 5, 10 and 20 s. Vickers-hardness values at the bottom of the cured adhesive were determined. Statistical analysis used one-way analysis of variance (ANOVA); P = 0.05. TLE transmission rose significantly among all samples with increasing exposure durations. TLE reaching the adhesive- enamel interface was less than 10 J/cm(2), and through monocrystalline and polycrystalline ceramic brackets was significantly different (P < 0.05). Pure Sapphire(M) showed the highest amount of TLE transmission and Vickers-hardness values for 5, 10 and 20 s. Following manufacturer's recommendations, insufficient TLE may be delivered to the adhesive: increasing the exposure durations may be required when adhesive is cured through ceramic brackets. Clinicians are advised to measure the tip irradiance of their LCUs and increase curing time beyond 5 s. Orthodontic clinicians should understand the type of light curing device and the orthodontic adhesive used in their practice.

  18. A multi-center randomized controlled trial to compare a self-ligating bracket with a conventional bracket in a UK population: Part 1: Treatment efficiency.

    PubMed

    O'Dywer, Lian; Littlewood, Simon J; Rahman, Shahla; Spencer, R James; Barber, Sophy K; Russell, Joanne S

    2016-01-01

    To use a two-arm parallel trial to compare treatment efficiency between a self-ligating and a conventional preadjusted edgewise appliance system. A prospective multi-center randomized controlled clinical trial was conducted in three hospital orthodontic departments. Subjects were randomly allocated to receive treatment with either a self-ligating (3M SmartClip) or conventional (3M Victory) preadjusted edgewise appliance bracket system using a computer-generated random sequence concealed in opaque envelopes, with stratification for operator and center. Two operators followed a standardized protocol regarding bracket bonding procedure and archwire sequence. Efficiency of each ligation system was assessed by comparing the duration of treatment (months), total number of appointments (scheduled and emergency visits), and number of bracket bond failures. One hundred thirty-eight subjects (mean age 14 years 11 months) were enrolled in the study, of which 135 subjects (97.8%) completed treatment. The mean treatment time and number of visits were 25.12 months and 19.97 visits in the SmartClip group and 25.80 months and 20.37 visits in the Victory group. The overall bond failure rate was 6.6% for the SmartClip and 7.2% for Victory, with a similar debond distribution between the two appliances. No significant differences were found between the bracket systems in any of the outcome measures. No serious harm was observed from either bracket system. There was no clinically significant difference in treatment efficiency between treatment with a self-ligating bracket system and a conventional ligation system.

  19. Effects of various debonding and adhesive clearance methods on enamel surface: an in vitro study.

    PubMed

    Fan, Xiao-Chuan; Chen, Li; Huang, Xiao-Feng

    2017-02-27

    The purpose of this study was to evaluate orthodontic debonding methods by comparing the surface roughness and enamel morphology of teeth after applying two different debonding methods and three different polishing techniques. Forty eight human maxillary premolars, extracted for orthodontic reasons, were randomly divided into three groups. Brackets were bonded to teeth with RMGIC (Fuji Ortho LC, GC, Tokyo, Japan) (two groups, n = 18 each) after acid etching (30s), light cured for 40 s, exposed to thermocycling, then underwent 2 different bracket debonding methods: debonding pliers (Shinye, Hangzhou, China) or enamel chisel (Jinzhong, Shanghai, China); the third group (n = 12) comprised of untreated controls, with normal enamel surface roughness. In each debonded group, three cleanup techniques (n = 6 each) were tested, including (I) diamond bur (TC11EF, MANI, Tochigi, Japan) and One-Gloss (Midi, Shofu, Kyoto, Japan), (II) a Super-Snap disk (Shofu, Kyoto, Japan), and (III) One-Gloss polisher. The debonding methods were compared using the modified adhesive remnant index (ARI, 1-5). Cleanup efficiencies were assessed by recording operating times. Enamel surfaces were qualitatively and quantitatively evaluated with scanning electron microscopy (SEM) and surface roughness tester, respectively. Two surface roughness variables were evaluated: Ra (average roughness) and Rz (10-point height of irregularities). The ARI scores of debonded teeth were similar with debonding pliers and enamel chisel (Chi-square = 2.19, P > 0.05). There were significant differences between mean operating time in each group (F = 52.615, P < 0.01). The diamond bur + One-Gloss took the shortest operating time (37.92 ± 3.82 s), followed by the Super-Snap disk (56.67 ± 7.52 s), and the One-Gloss polisher (63.50 ± 6.99 s). SEM appearance provided by the One-Gloss polisher was the closest to the intact enamel surface, and surface roughness (Ra: 0.082 ± 0.046 μm; Rz: 0.499 ± 0.200 μm) was closest to the original enamel (Ra: 0.073 ± 0.048 μm; Rz: 0.438 ± 0.213 μm); the next best was the Super-Snap disk (Ra: 0.141 ± 0.073 μm; Rz: 1.156 ± 0.755 μm); then, the diamond bur + One-Gloss (Ra: 0.443 ± 0.172 μm; Rz: 2.202 ± 0.791 μm). Debonding pliers were safer than enamel chisels for removing brackets. Cleanup with One-Gloss polisher provided enamel surfaces closest to the intact enamel, but took more time, and Super-Snap disks provided acceptable enamel surfaces and efficiencies. The diamond bur was not suitable for removing adhesive remnant.

  20. 77 FR 41895 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... bushing with a new bushing and deactivation pin, and installing a new or serviceable stowage bracket for... installation of a new bracket for stowing the deactivation pin. We are issuing this AD to prevent failure of... installing a new or serviceable stowage bracket for the deactivation pins on all airplanes powered by Pratt...

Top