Science.gov

Sample records for bradykinin b1 receptor

  1. B1 bradykinin receptors and sensory neurones.

    PubMed Central

    Davis, C. L.; Naeem, S.; Phagoo, S. B.; Campbell, E. A.; Urban, L.; Burgess, G. M.

    1996-01-01

    1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors. PMID:8832074

  2. Synthesis and biological evaluation of bradykinin B(1)/B(2) and selective B(1) receptor antagonists.

    PubMed

    Amblard, M; Bedos, P; Olivier, C; Daffix, I; Luccarini, J M; Dodey, P; Pruneau, D; Paquet, J L; Martinez, J

    2000-06-15

    We recently described a potent bradykinin B(2) receptor agonist (JMV1116) obtained by replacing the D-Tic-Oic dipeptide moiety of HOE140 by a (3S)-amino-5-(carbonylmethyl)-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety. This compound inhibited the specific binding of [(3)H]BK on membranes of CHO cells expressing the human cloned B(2) receptor with nanomolar affinity and contracted both isolated rat uterus and human umbilical vein. These data demonstrated that D-BT could be a good mimic of the Pro-Phe dipeptide. In the present study we characterized B(1) receptor antagonists containing the D-BT moiety. We prepared an analogue of compound JMV1116 deleting the C-terminal arginine residue. The resulting compound (1) had an affinity of 83 nM for the human cloned B(1) receptor. The most remarkable property of 1 is its ability to bind also the B(2) receptor with an affinity of 4.4 nM despite the absence of the C-terminal arginine residue. Modifications at the N-terminal part of 1 associated with the substitution of the thienylalanine residue by alpha-(2-indanyl)glycine resulted in analogues selectively binding to the B(1) receptor with an affinity in the picomolar range.

  3. A rational approach to the design and synthesis of a new bradykinin B(1) receptor antagonist.

    PubMed

    Bedos, P; Amblard, M; Subra, G; Dodey, P; Luccarini, J M; Paquet, J L; Pruneau, D; Aumelas, A; Martinez, J

    2000-06-15

    We have previously synthesized a potent and selective B(1) bradykinin receptor antagonist, JMV1645 (H-Lys-Arg-Pro-Hyp-Gly-Igl-Ser-D-BT-OH), containing a dipeptide mimetic ((3S)-amino-5-carbonylmethyl-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety) at the C-terminal. Analogues of this potent B(1) bradykinin receptor antagonist in which the central Pro(2)-Hyp(3)-Gly(4)-Igl(5) tetrapeptide has been replaced by constrained N-1-substituted-1,3,8-triazaspiro¿4. 5decan-4-one ring system were synthesized. Among these analogues, compound JMV1640 (1) was found to have an affinity of 24.10 +/- 9.48 nM for the human cloned B(1) receptor. It antagonized the ¿des-Arg(10)-kallidin-induced contraction of the human umbilical vein (pA(2) = 6.1 +/- 0.1). Compound 1 was devoid of agonist activity at the kinin B(1) receptor. Moreover, it did not bind to the human cloned B(2) receptor. Therefore, JMV1640 constitutes a lead compound for the rational search of nonpeptide B(1) receptor analogues based on the BK sequence.

  4. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    PubMed

    Charest-Morin, Xavier; Marceau, François

    2016-01-01

    The bradykinin (BK) B1 receptor (B1R) is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP) (enhanced green FP [EGFP] or mCherry) prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively). The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy). Both assays indicated that the best design was FP-(Asn-Gly)n-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly)15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology).

  5. Expression and functional pharmacology of the bradykinin B1 receptor in the normal and inflamed human gallbladder.

    PubMed

    Andre, E; Gazzieri, D; Bardella, E; Ferreira, J; Mori, M A; Saul, V V; Bader, M; Calixto, J B; De Giorgio, R; Corinaldesi, R; Geppetti, P; Trevisani, M

    2008-05-01

    It has recently been described that bradykinin B(2) receptors are expressed in the human gallbladder and that their activation induces a powerful contraction, especially in acute cholecystitis tissues. Here the role of the B(1) receptor in the contractility of control and inflamed human gallbladder was investigated. Strips of human gallbladder from either acute gallstone cholecystitis or elective gastro-entero-pancreatic surgery (control) were assessed in vitro and processed for reverse transcription-PCR analysis. Cumulative concentration-response curves with the selective B(1) receptor agonist, Lys-Des-Arg(9)-bradykinin, cholecystokinin and carbachol were performed in control and cholecystitis specimens. Lys-Des-Arg(9)-bradykinin concentration-dependently contracted strips of control gallbladders and its motor effect was higher in inflamed gallbladders. Lys-Des-Arg(9)-bradykinin-induced contraction was not altered by pretreatment with the selective bradykinin B(2) receptor antagonist, HOE140 (1 microM), the NK(1) (SR140333), NK(2) (SR48968) and NK(3) (SR142801) tachykinin receptor antagonists (all 1 microM), the muscarinic acetylcholine receptor antagonist, atropine (1 microM), and the cyclo-oxygenase inhibitor, indomethacin (5 microM). In contrast, the Lys-Des-Arg(9)-bradykinin-induced motor response was significantly reduced by the selective B(1) receptor antagonist, R-715. Finally, quantitative real-time PCR analysis indicated that B(1) receptor mRNA levels were significantly higher in cholecystitis smooth muscle specimens, when compared with that observed in control tissues. Bradykinin B(1) receptor has an important role as a spasmogen of human gallbladder, and selective antagonists of the B(1) receptor may represent a valid therapeutic option to control pain in patients with acute cholecystitis.

  6. Generation and characterization of a human bradykinin receptor B1 transgenic rat as a pharmacodynamic model.

    PubMed

    Hess, J Fred; Ransom, Richard W; Zeng, Zhizhen; Chang, Raymond S L; Hey, Patricia J; Warren, Lee; Harrell, Charles M; Murphy, Kathryn L; Chen, Tsing-Bau; Miller, Patricia J; Lis, Edward; Reiss, Duane; Gibson, Raymond E; Markowitz, M Kristine; DiPardo, Robert M; Su, Dai-Shi; Bock, Mark G; Gould, Robert J; Pettibone, Douglas J

    2004-08-01

    Antagonists of the B1 bradykinin receptor (B1R) offer the promise of novel therapeutic agents for the treatment of inflammatory and neuropathic pain. However, the in vivo characterization of the pharmacodynamics of B1R antagonists is hindered by the low level of B1R expression in healthy tissue and the profound species selectivity exhibited by many compounds for the human B1R. To circumvent these issues, we generated a transgenic rat expressing the human B1R under the control of the neuron-specific enolase promoter. Membranes prepared from whole brain homogenates of heterozygous transgenic rats indicate a B1R expression level of 30 to 40 fmol/mg; there is no detectable B1R expression in control nontransgenic rats. The pharmacological profile of the B1R expressed in the transgenic rat matches that expected of the human, but not the rat receptor. The mapping of the transgene insertion site to rat chromosome 1 permitted the development of a reliable assay for the identification of homozygous transgenic rats. Significantly, homozygous transgenic rats express 2-fold more B1R than heterozygous animals. Autoradiographic analyses of tissue sections from transgenic rats reveal that the B1R is broadly expressed in both the brain and spinal cord. The human B1R expressed in the transgenic rat functions in an in vitro contractile assay and thus has the potential to elicit a functional response in vivo. Using the humanized B1R transgenic rat, an assay was developed that is suitable for the routine evaluation of a test compound's ability to occupy the human B1R in the central nervous system.

  7. Inhibition of RNA synthesis by bradykinin involves both the B1 and B2 receptor subtypes.

    PubMed

    Yau, L; Pinsk, M; Zahradka, P

    1996-04-01

    The efficacy of angiotensin converting enzyme inhibitors in the treatment of heart disease is due in part to the accumulation of bradykinin (BK). Since BK can exert its effect by influencing cell proliferation, we chose to study the effect of BK on the growth of A10 vascular smooth muscle cells. Ligand binding studies to determine which BK receptor subtypes are present on A10 cells showed that both B1 and B2 receptors were present in approximately equal numbers. Examination of RNA synthesis demonstrated that BK inhibits uridine incorporation in a dose-dependent manner. This decrease in RNA synthesis was blocked by both B1 and B2 receptor antagonists, as well as by addition of indomethacin, a cyclooxygenase inhibitor. The latter result suggested that prostaglandins mediate the biological actions of BK. Consequently, we examined the direct effect of two prostaglandins, PGE2 and PGI2 (prostacyclin), on A10 cells. PGE2 caused a decrease in RNA synthesis, thus mimicking the effect of BK, while PGI2 did not. Therefore, the inhibition of RNA synthesis in A10 vascular smooth muscle cells by BK requires both B1 and B2 receptor subtypes and this action of BK is apparently mediated by de novo synthesis of prostaglandins.

  8. Benzodiazepines as potent and selective bradykinin B1 antagonists.

    PubMed

    Wood, Michael R; Kim, June J; Han, Wei; Dorsey, Bruce D; Homnick, Carl F; DiPardo, Robert M; Kuduk, Scott D; MacNeil, Tanya; Murphy, Kathy L; Lis, Edward V; Ransom, Richard W; Stump, Gary L; Lynch, Joseph J; O'Malley, Stacey S; Miller, Patricia J; Chen, Tsing-Bau; Harrell, Charles M; Chang, Raymond S L; Sandhu, Punam; Ellis, Joan D; Bondiskey, Peter J; Pettibone, Douglas J; Freidinger, Roger M; Bock, Mark G

    2003-05-08

    Antagonism of the bradykinin B(1) receptor was demonstrated to be a potential treatment for chronic pain and inflammation. Novel benzodiazepines were designed that display subnanomolar affinity for the bradykinin B(1) receptor (K(i) = 0.59 nM) and high selectivity against the bradykinin B(2) receptor (K(i) > 10 microM). In vivo efficacy, comparable to morphine, was demonstrated for lead compounds in a rodent hyperalgesia model.

  9. Blockade of hippocampal bradykinin B1 receptors improves spatial learning and memory deficits in middle-aged rats.

    PubMed

    Bitencourt, Rafael M; Guerra de Souza, Ana C; Bicca, Maíra A; Pamplona, Fabrício A; de Mello, Nelson; Passos, Giselle F; Medeiros, Rodrigo; Takahashi, Reinaldo N; Calixto, João B; Prediger, Rui D

    2017-01-01

    Previous studies have demonstrated that targeting bradykinin receptors is a promising strategy to counteract the cognitive impairment related with aging and Alzheimer's disease (AD). The hippocampus is critical for cognition, and abnormalities in this brain region are linked to the decline in mental ability. Nevertheless, the impact of bradykinin signaling on hippocampal function is unknown. Therefore, we sought to determine the role of hippocampal bradykinin receptors B1R and B2R on the cognitive decline of middle-aged rats. Twelve-month-old rats exhibited impaired ability to acquire and retrieve spatial information in the Morris water maze task. A single intra-hippocampal injection of the selective B1R antagonist des-Arg(9)-[Leu(8)]-bradykinin (DALBK, 3 nmol), but not the selective B2R antagonist D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-BK (Hoe 140, 3 nmol), reversed the spatial learning and memory deficits on these animals. However, both drugs did not affect the cognitive function in 3-month-old rats, suggesting absence of nootropic properties. Molecular biology analysis revealed an up-regulation of B1R expression in the hippocampal CA1 sub-region and in the pre-frontal cortex of 12-month-old rats, whereas no changes in the B2R expression were observed in middle-aged rats. These findings provide new evidence that inappropriate hippocampal B1R expression and activation exert a critical role on the spatial learning and memory deficits in middle-aged rats. Therefore, selective B1R antagonists, especially orally active non-peptide antagonists, may represent drugs of potential interest to counteract the age-related cognitive decline.

  10. Non-selectivity of new bradykinin antagonists for B1 receptors.

    PubMed

    Rhaleb, N E; Gobeil, F; Regoli, D

    1992-01-01

    Two new B1 receptor antagonists, [Hyp3,Thi5,DTic7,Oic8]desArg9-BK and DArg[Hyp3,Thi5,DTic7,Oic8]desArg9-BK were tested in vitro on the rabbit jugular vein and the guinea pig ileum (preparations containing B2 receptors) and on the rabbit aorta (preparation containing B1 receptors) for pharmacological characterization. The results indicate that both compounds are antagonists on both B1 and B2 receptors, are competitive and discriminate between B2A and B2B receptor subtypes.

  11. Identification of a nonpeptidic and conformationally restricted bradykinin B1 receptor antagonist with anti-inflammatory activity.

    PubMed

    D'Amico, Derin C; Aya, Toshi; Human, Jason; Fotsch, Christopher; Chen, Jian Jeffrey; Biswas, Kaustav; Riahi, Bobby; Norman, Mark H; Willoughby, Christopher A; Hungate, Randall; Reider, Paul J; Biddlecome, Gloria; Lester-Zeiner, Dianna; Staden, Carlo Van; Johnson, Eileen; Kamassah, Augustus; Arik, Leyla; Wang, Judy; Viswanadhan, Vellarkad N; Groneberg, Robert D; Zhan, James; Suzuki, Hideo; Toro, Andras; Mareska, David A; Clarke, David E; Harvey, Darren M; Burgess, Laurence E; Laird, Ellen R; Askew, Benny; Ng, Gordon

    2007-02-22

    We report the discovery of chroman 28, a potent and selective antagonist of human, nonhuman primate, rat, and rabbit bradykinin B1 receptors (0.4-17 nM). At 90 mg/kg s.c., 28 decreased plasma extravasation in two rodent models of inflammation. A novel method to calculate entropy is introduced and ascribed approximately 30% of the gained affinity between "flexible" 4 (Ki = 132 nM) and "rigid" 28 (Ki = 0.77 nM) to decreased conformational entropy.

  12. Design, synthesis and evaluation of (18)F-labeled bradykinin B1 receptor-targeting small molecules for PET imaging.

    PubMed

    Zhang, Zhengxing; Kuo, Hsiou-Ting; Lau, Joseph; Jenni, Silvia; Zhang, Chengcheng; Zeisler, Jutta; Bénard, François; Lin, Kuo-Shyan

    2016-08-15

    Two fluorine-18 ((18)F) labeled bradykinin B1 receptor (B1R)-targeting small molecules, (18)F-Z02035 and (18)F-Z02165, were synthesized and evaluated for imaging with positron emission tomography (PET). Z02035 and Z02165 were derived from potent antagonists, and showed high binding affinity (0.93±0.44 and 2.80±0.50nM, respectively) to B1R. (18)F-Z02035 and (18)F-Z02165 were prepared by coupling 2-[(18)F]fluoroethyl tosylate with their respective precursors, and were obtained in 10±5 (n=4) and 22±14% (n=3), respectively, decay-corrected radiochemical yield with >99% radiochemical purity. (18)F-Z02035 and (18)F-Z02165 exhibited moderate lipophilicity (LogD7.4=1.10 and 0.59, respectively), and were stable in mouse plasma. PET imaging and biodistribution studies in mice showed that both tracers enabled visualization of the B1R-positive HEK293T::hB1R tumor xenografts with better contrast than control B1R-negative HEK293T tumors. Our data indicate that small molecule antagonists can be used as pharmacophores for the design of B1R-targeting PET tracers.

  13. Nociceptive tolerance is improved by bradykinin receptor B1 antagonism and joint morphology is protected by both endothelin type A and bradykinin receptor B1 antagonism in a surgical model of osteoarthritis

    PubMed Central

    2011-01-01

    Introduction Endothelin-1, a vasoconstrictor peptide, influences cartilage metabolism mainly via endothelin receptor type A (ETA). Along with the inflammatory nonapeptide vasodilator bradykinin (BK), which acts via bradykinin receptor B1 (BKB1) in chronic inflammatory conditions, these vasoactive factors potentiate joint pain and inflammation. We describe a preclinical study of the efficacy of treatment of surgically induced osteoarthritis with ETA and/or BKB1 specific peptide antagonists. We hypothesize that antagonism of both receptors will diminish osteoarthritis progress and articular nociception in a synergistic manner. Methods Osteoarthritis was surgically induced in male rats by transection of the right anterior cruciate ligament. Animals were subsequently treated with weekly intra-articular injections of specific peptide antagonists of ETA and/or BKB1. Hind limb nociception was measured by static weight bearing biweekly for two months post-operatively. Post-mortem, right knee joints were analyzed radiologically by X-ray and magnetic resonance, and histologically by the OARSI histopathology assessment system. Results Single local BKB1 antagonist treatment diminished overall hind limb nociception, and accelerated post-operative recovery after disease induction. Both ETA and/or BKB1 antagonist treatments protected joint radiomorphology and histomorphology. Dual ETA/BKB1 antagonism was slightly more protective, as measured by radiology and histology. Conclusions BKB1 antagonism improves nociceptive tolerance, and both ETA and/or BKB1 antagonism prevents joint cartilage degradation in a surgical model of osteoarthritis. Therefore, they represent a novel therapeutic strategy: specific receptor antagonism may prove beneficial in disease management. PMID:21575197

  14. Effect of Bushenwenyanghuayu decoction on nerve growth factor and bradykinin/bradykinin B1 receptor in a endometriosis dysmenorrhea mouse model.

    PubMed

    Jingwei, Chen; Huilan, Du; Ruixiao, Tong; Hua, Yang; Huirong, Ma

    2015-04-01

    To observe the effects of Bushenwenyanghuayu decoction (BD), a Traditional Chinese Medicine (TCM), on the serum concentration of nerve growth factor (NGF) and bradykinin (BK), and protein and mRNA levels of NGF and bradykinin B1 receptor (BKB1R) in a mouse model of endometriosis dysmenorrhea. Seventy-five experimental female BALB/c mice were randomly divided into five groups, 15 mice each: sham, model, BD high dose (61.67 g/kg), BD low dose (15.42 g/kg), and gestrinone (0.4 mg/kg) groups. All the mice except for those in the sham group underwent auto-transplantation surgery and were gavaged estradiol valerate (0.5 mg/kg, daily for 12 days) after surgery. On the 12th day, 1 h after administration, writhing response was induced by intraperitoneal injection of oxytocin at 2 U/mouse. The writhing frequency and latency were recorded and the volume of the ectopic foci was measured. The concentration of serum NGF and BK was detected by enzyme-linked immunosorbent assay, the protein expression of NGF and BKB1R was tested by immunohistochemistry and western blotting, and NGF and BKB1R mRNAs were detected by real-time PCR. Compared with the model group, the volume of the ectopic foci in the treatment groups was significantly lower (P < 0.01), the writhing frequency was decreased (P < 0.05), and the writhing latency was prolonged (P < 0.01). Compared with the sham group, serum NGF and BK levels in the model group were significantly increased (P < 0.01). There were positive correlations for writhing frequency among the NGF and BK groups (P < 0.01). The serum NGF and BK levels were significantly lower in the treatment groups than the model group (P < 0.05). The protein expression of NGF, BKB1R was significantly decreased in the treatment groups compared with the model group (P < 0.01). NGF and BKB1R mRNA expression was significantly decreased in the treatment groups compared with the model group (P < 0.01). NGF and BK/BKB1R may play an important role in the development of

  15. B1 receptor involvement in the effect of bradykinin on venular endothelial cell proliferation and potentiation of FGF-2 effects

    PubMed Central

    Morbidelli, Lucia; Parenti, Astrid; Giovannelli, Lisa; Granger, Harris J; Ledda, Fabrizio; Ziche, Marina

    1998-01-01

    Bradykinin (BK) contributes to the inflammatory response inducing vasodilation of postcapillary venules and has been demonstrated to induce neovascular growth in subcutaneous rat sponges. In this study the ability of BK to stimulate cell growth and migration in cultured endothelium from coronary postcapillary venules (CVEC) has been investigated. [3H]-thymidine incorporation in subconfluent and synchronised CVEC was used to monitor DNA synthesis over 24 h. BK promoted a concentration-dependent increase of DNA synthesis with maximal activity at 100 nM. At this concentration BK also induced 18 fold accumulation of c-Fos protein immunoreactivity in the nucleus within 1 h from peptide exposure. The total number of cells recovered after 48 h exposure to BK was increased in a concentration-dependent manner. Maximal effect was produced by 100 nM concentration of the peptide which produced 50% increase in cell number. The selective B1 receptor agonist Des-Arg9-BK mimicked the proliferative effect of BK, while the B2 receptor agonist kallidin was devoid of any activity. The proliferation induced by BK was abolished in a concentration-dependent manner by the addition of the B1 selective antagonist Des-Arg9-Leu8-BK, while the selective B2 receptor antagonist HOE140 did not modify BK-induced growth. DNA synthesis and growth promoted by a threshold concentration of fibroblast growth factor-2 (FGF-2) (0.25 nM) were potentiated by increasing concentrations of BK and Des-Arg9-BK. Endothelial cell migration assessed by the Boyden Chamber procedure was not promoted by BK or the selective B1 and B2 receptor agonists. These data are the first demonstration that BK promotes growth of endothelial cells from postcapillary venules. The mitogenic activity of BK involves c-Fos expression and potentiates the growth promoting effect of FGF-2. Only the B1 receptor appears to be responsible for the proliferation induced by BK and suggests that this type of receptor might be

  16. An Orally Active Bradykinin B1 Receptor Antagonist Engineered as a Bifunctional Chimera of Sunflower Trypsin Inhibitor.

    PubMed

    Qiu, Yibo; Taichi, Misako; Wei, Na; Yang, Huan; Luo, Kathy Qian; Tam, James P

    2017-01-12

    An orally active and metabolically stable peptide TIBA was successfully engineered as a chimera by fusing an analgesic bradykinin receptor antagonist peptide and the trypsin inhibitory loop of sunflower trypsin inhibitor-1. As a fusion cyclic peptide, the metabolically labile analgesic peptide is protected from degradation by exopeptidases as well as the endopeptidases, and its serum half-life extended from <5 min to >6 h as a chimera. Moreover, the chimera TIBA was also found to be orally active in an animal pain model using a hot plate assay.

  17. Blocking of bradykinin receptor B1 protects from focal closed head injury in mice by reducing axonal damage and astroglia activation.

    PubMed

    Albert-Weissenberger, Christiane; Stetter, Christian; Meuth, Sven G; Göbel, Kerstin; Bader, Michael; Sirén, Anna-Leena; Kleinschnitz, Christoph

    2012-09-01

    The two bradykinin receptors B1R and B2R are central components of the kallikrein-kinin system with different expression kinetics and binding characteristics. Activation of these receptors by kinins triggers inflammatory responses in the target organ and in most situations enhances tissue damage. We could recently show that blocking of B1R, but not B2R, protects from cortical cryolesion by reducing inflammation and edema formation. In the present study, we investigated the role of B1R and B2R in a closed head model of focal traumatic brain injury (TBI; weight drop). Increased expression of B1R in the injured hemispheres of wild-type mice was restricted to the later stages after brain trauma, i.e. day 7 (P<0.05), whereas no significant induction could be observed for the B2R (P>0.05). Mice lacking the B1R, but not the B2R, showed less functional deficits on day 3 (P<0.001) and day 7 (P<0.001) compared with controls. Pharmacological blocking of B1R in wild-type mice had similar effects. Reduced axonal injury and astroglia activation could be identified as underlying mechanisms, while inhibition of B1R had only little influence on the local inflammatory response in this model. Inhibition of B1R may become a novel strategy to counteract trauma-induced neurodegeneration.

  18. Alpha-hydroxy amides as a novel class of bradykinin B1 selective antagonists.

    PubMed

    Wood, Michael R; Schirripa, Kathy M; Kim, June J; Kuduk, Scott D; Chang, Ronald K; Di Marco, Christina N; DiPardo, Robert M; Wan, Bang-Lin; Murphy, Kathy L; Ransom, Richard W; Chang, Raymond S L; Holahan, Marie A; Cook, Jacquelynn J; Lemaire, Wei; Mosser, Scott D; Bednar, Rodney A; Tang, Cuyue; Prueksaritanont, Thomayant; Wallace, Audrey A; Mei, Qin; Yu, Jian; Bohn, Dennis L; Clayton, Frank C; Adarayn, Emily D; Sitko, Gary R; Leonard, Yvonne M; Freidinger, Roger M; Pettibone, Douglas J; Bock, Mark G

    2008-01-15

    Antagonism of the bradykinin B(1) receptor represents a potential treatment for chronic pain and inflammation. Novel antagonists incorporating alpha-hydroxy amides were designed that display low-nanomolar affinity for the human bradykinin B(1) receptor and good bioavailability in the rat and dog. In addition, these functionally active compounds show high passive permeability and low susceptibility to phosphoglycoprotein mediated efflux, predictive of good CNS exposure.

  19. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    PubMed

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Functional studies of bradykinin receptors in Chinese hamster ovary cells stably expressing the human B2 bradykinin receptor.

    PubMed

    Zhang, S P; Wang, H Y; Lovenberg, T W; Codd, E E

    2001-05-01

    Bradykinin B1 and B2 receptors, members of the G-protein coupled receptor superfamily, are involved in inflammation and pain. Chinese hamster ovary (CHO) cells stably expressing the human B2 bradykinin receptor (CHO-B2) were used to characterize the signal transduction pathways associated with this receptor and its regulation. The selective B2 antagonist [3H]NPC17731 but not the selective B1 antagonist [3,4-prolyl-3,4-(3)H(N)]-[des-Arg10,Leu9]kallidin ([3H]DALKD) bound to CHO-B2 cell membranes with a Kd of 0.77 nM and a Bmax of 1087 fmol/mg protein. [3H]NPC17731 binding was inhibited by bradykinin ligands in the order: NPC17731 > bradykinin > kallidin > DALKD > [des-Arg10] kallidin (DAKD), consistent with the pharmacological profile of B2 bradykinin receptors. The B2 agonist bradykinin and the B1/B2 agonist kallidin, but not the B1 agonist DAKD, increased [35S]GTP gamma S binding to the CHO-B2 cell membranes. The B2 bradykinin receptors were co-immunoprecipitated with G alpha q/11. In response to bradykinin stimulation, coupling of the B2 receptors to G alpha q/11 was increased by 10-fold. Bradykinin and kallidin, but not DAKD, induced intracellular calcium release in CHO-B2 cells, which was blocked by NPC17731 but not by DALKD. These results demonstrate that B2 bradykinin receptors directly coupled to G alpha q/11 to regulate intracellular calcium release. CHO-B2 cell is a useful system that can be applied to study the effect of potential agents that may influence the B2 receptor function.

  1. Does zaltoprofen antagonize the bradykinin receptors?

    PubMed

    Bawolak, Marie-Thérèse; Marceau, François

    2007-05-03

    Zaltoprofen is a nonsteroidal antiinflammatory drug that has been proposed to inhibit with some selectivity the nociception mediated by the bradykinin (BK) B(2) receptor. In order to test the predictive power of this claim, we applied the drug to vascular smooth muscle assays previously found useful to characterize B(2) receptor antagonists (contractility, human isolated umbilical vein) or B(1) receptor antagonists (contraction, rabbit aorta; relaxation, rabbit mesenteric artery). Zaltoprofen (up to 30 microM) failed to antagonize BK or des-Arg(9)-BK-induced contraction in the umbilical vein and aorta, respectively. The drug (1 microM) abated des-Arg(9)-BK-induced, prostaglandin-mediated relaxation of the precontracted mesenteric artery, consistent with its known activity as a cyclooxygenase (COX) inhibitor. However, zaltoprofen (10 microM) did not inhibit kinin-stimulated phospholipase A(2) activity in HEK 293 cells expressing recombinant forms of the rabbit B(1) or B(2) receptors. Nonpeptide antagonists of either receptor subtype were active in this respect. The results do not support that zaltoprofen, a COX inhibitor, antagonizes kinin receptors or influences their signaling with selectivity in the tested systems.

  2. Pharmacological and functional characterization of bradykinin B2 receptor in human prostate.

    PubMed

    Srinivasan, Dinesh; Kosaka, Alan H; Daniels, Donald V; Ford, Anthony P D W; Bhattacharya, Anindya

    2004-11-19

    The objective of this study was to pharmacologically characterize bradykinin receptors, a component of the kallikrein-kinin system, in normal human prostate cells. In primary cultured human prostate stromal cells, bradykinin, but not [des-Arg9]bradykinin or [des-Arg10]kallidin, produced calcium mobilization or inositol phosphates accumulation with potencies (pEC50) of 8.8+/-0.2 and 8.2+/-0.2, respectively. This was consistent with abundance of bradykinin B2 mRNA over bradykinin B1 mRNA in prostate stromal cells. Although the prostate epithelial cells (prostate epithelium, BPH-1, and PC-3) expressed mRNA for bradykinin B2 receptors (albeit in lesser amounts than stromal cells), bradykinin was not functionally efficacious in the epithelial cells. Increasing concentrations of D-arginyl-L-arginyl-L-prolyl-trans-4-hydroxy-L-prolylglycyl-3-(2-thienyl)-L-alanyl-L-seryl-D-1,2,3,4-tetrahhydro-3-isoquinolinecarbonyl-L-(2alpha,3beta,7alphabeta)-octahydro-1H-indole-2-carbonyl-L-arginine (HOE-140), a bradykinin B2-selective peptide antagonist, attenuated bradykinin concentration-response curves in human prostate stromal cells with apparent estimate of affinity similar to that for the human bradykinin B2 receptor. Bradykinin (10 nM) caused proliferation of prostate stromal cells and phosphorylated extracellular signal-regulated kinases (ERK-1 and ERK-2) that were blocked by HOE-140 (1 microM). This study demonstrated that, in primary cultures of normal human prostate stromal cells, bradykinin activates bradykinin B2 receptors that may play a significant role in proliferation via activation of ERK-1/2 pathways.

  3. Pronociceptive Actions of Dynorphin via Bradykinin Receptors

    PubMed Central

    Lai, Josephine; Luo, Miaw-chyi; Chen, Qingmin; Porreca, Frank

    2008-01-01

    The endogenous opioid peptide dynorphin A is distinct from other endogenous opioid peptides in having significant neuronal excitatory and neurotoxic effects that are not mediated by opioid receptors. Some of these non-opioid actions of dynorphin contribute to the development of abnormal pain resulting from a number of pathological conditions. Identifying the mechanisms and the sites of action of dynorphin is essential for understanding the pathophysiology of dynorphin and for exploring novel therapeutic targets for pain. This review will discuss the mechanisms that have been proposed and the recent finding that spinal dynorphin may be an endogenous ligand of bradykinin receptors under pathological conditions to promote pain. PMID:18450375

  4. Synthesis and pharmacological evaluation of dimer derivatives of the bradykinin receptor antagonist HOE-140.

    PubMed

    Daffix, I; Amblard, M; Bergé, G; Dodey, P; Pruneau, D; Paquet, J L; Fouchet, C; Franck, R M; Defrêne, E; Luccarini, J M; Bélichard, P; Martinez, J

    1998-07-01

    The synthesis and pharmacological evaluation of dimer derivatives of the C-terminal fragments of the potent bradykinin antagonist HOE-140, linked through their N-termini, were performed. The influence of peptide moiety length was studied using the succinyl moiety as a linker. Our attention focused on the dimer of the C-terminal tetrapeptide of HOE-140 (compound JMV 980), which displayed some inhibiting activity (IC50 = 247 nM) for bradykinin B2 receptors. Unexpectedly, it was orally active in inhibiting bradykinin-induced hypotension in the rat. Based on this tetrapeptide dimer model, we synthesized pseudotetrapeptide dimer bradykinin antagonists 29 and 33, which exhibited high affinity (Ki = 76 and 61 nM, respectively) for the human cloned B2 receptor. In addition, compound 29 inhibited bradykinin-induced contraction of the human umbilical vein giving a pKB value of 6.45. Compounds 29 and 33 were selective toward B2 receptors because they did not bind to the cloned human B1 receptor up to 10 microM.

  5. Regulation of bradykinin B2-receptor expression by oestrogen

    PubMed Central

    Madeddu, Paolo; Emanueli, Costanza; Varoni, Maria Vittoria; Demontis, Maria Piera; Anania, Vittorio; Gorioso, Nicola; Chao, Julie

    1997-01-01

    Tissue kallikrein is overexpressed in the kidney of female rats, this sexual dimorphism being associated with a greater effect of early blockade of bradykinin B2-receptors on female blood pressure phenotype. We evaluated the effect of ovariectomy and oestradiol benzoate (50 μg kg−1 every two days for two weeks) on the vasodepressor response to intra-arterial injection of bradykinin (150–900 ng kg−1) and on the expression of bradykinin B2-receptors.Ovariectomy reduced the magnitude of the vasodepressor response to bradykinin and unmasked a secondary vasopressor effect. Oestrogen replacement restored the vasodepressor response to bradykinin in ovariectomized rats.The vasodepressor responses to sodium nitroprusside (3–18 μg kg−1), acetylcholine (30–600 ng kg−1), desArg9-bradykinin (150–900 ng kg−1) or prostaglandin E2 (30–600 ng kg−1) were significantly reduced by ovariectomy. Oestrogen restored to normal the responses to desArg9-bradykinin, acetylcholine and prostaglandin E2, but not that to sodium nitroprusside.B2-receptor mRNA levels were decreased by ovariectomy in the aorta and kidney and they were restored to normal levels by oestrogen. Neither ovariectomy nor oestradiol affected receptor expression in the heart and uterus.These results indicate that oestrogen regulates B2-receptor gene expression and function. Since kinins exert a cardiovascular protective action, reduction in their vasodilator activity after menopause might contribute to the increased risk of pathological cardiovascular events. Conversely, the cardioprotective effects of oestrogen replacement might be, at least in part, mediated by activation of the kallikrein-kinin system. PMID:9283715

  6. Noradrenaline release from rat sympathetic neurones triggered by activation of B2 bradykinin receptors.

    PubMed

    Boehm, S; Huck, S

    1997-10-01

    1. The role of bradykinin receptors in the regulation of sympathetic transmitter release was investigated in primary cultures of neurones dissociated from superior cervical ganglia of neonatal rats. These cultures were loaded with [3H]-noradrenaline and the outflow of radioactivity was determined under continuous superfusion. 2. Bradykinin (100 nmol l[-1] applied for 10 min) caused a transient increase in tritium outflow that reached a peak within four minutes after the beginning of the application and then declined towards the baseline, despite the continuing presence of the peptide. ATP (100 micromol l[-1]) and nicotine (10 micromol l[-1]) caused elevations in 3H outflow with similar kinetics, whereas outflow remained elevated during a 10 min period of electrical field stimulation (0.5 ms, 50 mA, 50 V cm[-1], 1.0 Hz). 3. When bradykinin was applied for periods of 2 min, the evoked 3H overflow was half-maximal at 12 nmol l(-1) and reached a maximum of 2.3% of cellular radioactivity. The preferential B1 receptor agonist des-Arg9-bradykinin failed to alter 3H outflow. The B2 receptor antagonists, [D-Phe7]-bradykinin (1 micromol l[-1]) and Hoe 140 (10 nmol l[-1]), per se did not alter 3H outflow, but shifted the concentration-response curve for bradykinin-evoked 3H overflow to the right by a factor of 7.9 and 4.3, respectively. 4. Bradykinin-induced overflow was abolished in the absence of extracellular Ca2+ and in the presence of either 1 micromol l(-1) tetrodotoxin or 300 micromol l(-1) Cd2+, as was electrically-induced overflow. Activation of alpha2-adrenoceptors by 1 micromol l(-1) UK 14,304 reduced both bradykinin- and electrically-triggered overflow. The Ca2+-ATPase inhibitor thapsigargin (0.3 micromol l[-1]) failed to alter either type of stimulated overflow. Caffeine (10 mmol l[-1]) enhanced bradykinin-induced overflow, but reduced overflow triggered by electrical field stimulation. 5. Inclusion of Ba2+ (0.1 to 1 mmol l[-1]) in the superfusion medium enhanced

  7. Role of ERK1/2 activation on itch sensation induced by bradykinin B1 activation in inflamed skin

    PubMed Central

    Chen, Yuanzhen; Jiang, Shuyan; Liu, Yuying; Xiong, Jialing; Liang, Jiexian; Ji, Wenjin

    2016-01-01

    It has previously been demonstrated that bradykinin receptor B1 (B1R) agonists evoke an itch-related scratching response in inflamed skin via the B1 receptor; however, the mechanisms responsible for this abnormal itch sensation remain unclear. Therefore, the present study utilized a complete Freund's adjuvant (CFA)-induced mouse model of inflammation to elucidate the mechanisms responsible. Over a period of 30 min, scratching behavior was quantified by the number of hind limb scratches of the area surrounding the drug injection site on the neck. Furthermore, western blot analysis was used to investigate the potential role of extracellular signal-regulated kinase (ERK) 1/2 signaling as a mediator of itch in CFA-treated mice. The results demonstrated that CFA-induced inflammation at the back of the neck is associated with sustained enhancement of ERK1/2 activation in the spinal cord. Moreover, B1R agonist treatment resulted in increased expression of phosphorylated ERK1/2 in the spinal cord, which peaked at 45 min. Consistent with these findings, inhibition of either mitogen-activated protein/ERK kinase or ERK1/2, as well as inhibition of ERK1/2 activation following inflammation, attenuated B1 receptor-mediated scratching responses to a greater extent, as compared with control mice. Collectively, the results of the present study indicated that enhanced and persistent ERK1/2 activation in the spinal cord may be required to induce a scratching response to B1R agonists following CFA-induced inflammation. PMID:27446253

  8. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions

    SciTech Connect

    Steranka, L.R.; Manning, D.C.; DeHaas, C.J.; Ferkany, J.W.; Borosky, S.A.; Connor, J.R.; Vavrek, R.J.; Stewart, J.M.; Snyder, S.H.

    1988-05-01

    Autoradiographic studies localize (/sup 3/H)bradykinin receptor binding sites to the substantia gelatinosa, dorsal root, and a subset of small cells in both the dorsal root and trigeminal ganglia of the guinea pig. (/sup 3/H)Bradykinin labeling is also observed over myocardinal/coronary visceral afferent fibers. The localization of (/sup 3/H)bradykinin receptors to nociceptive pathways supports a role for bradykinin in pain mediation. Several bradkykinin antagonists block bradykinin-induced acute vascular pain in the rat. The bradykinin antagonists also relieve bradykinin- and urate-induced hyperalgesia in the rat paw. These results indicate that bradykinin is a physiologic mediator of pain and that bradykinin antagonists have analgesic activity in both acute and chronic pain models.

  9. Receptors for bradykinin and related kinins: a critical analysis.

    PubMed

    Regoli, D; Jukic, D; Gobeil, F; Rhaleb, N E

    1993-08-01

    Kinins exert a variety of biological actions and have been implicated in the pathogenesis of inflammation, pain, asthma, and other diseases. Kinins act through specific receptors that are widespread and belong to two major categories, B1 and B2. B2 has been cloned and shown to be of the rhodopsin type, consisting of seven hydrophobic membrane domains connected by extracellular and intracellular loops. Recent pharmacological findings from various laboratories suggest the existence of new receptor types, which have been named B3, B4, and B5. These findings are analysed critically, especially with respect to the criteria that have been used for affirming the existence of new receptor entities. The analysis is restricted to data obtained in isolated organs, almost exclusively smooth muscle preparations. Criteria for receptor characterization and classification are the order of potency of agonists and the apparent affinities of antagonists. The analysis reveals that receptors for bradykinin and related kinins are of two types, B1 and B2. B1 mediates the rapid acute response (smooth muscle contraction or relaxation) as well as some effects occurring more slowly (e.g., collagen synthesis). B1 receptor functions have been shown to be modulated by interleukins. B2 receptors are responsible for most of the kinins' biological effects, including arterial vasodilatation, plasma extravasation, venoconstriction, activation of sensory fibers (e.g., fibers for pain), and stimulation of the release of prostaglandins, endothelium-dependent relaxing factor (from endothelia), noradrenaline (from nerve terminals and adrenals), and other endogenous agents. The pharmacological characteristics of the receptor sites (B2) mediating this array of biological effects show differences between species, and two B2 receptor subtypes are proposed, namely B2A (rabbit, dog, and possibly man) and B2B (guinea pig, hamster, rat). B2A and B2B receptor subtypes have been characterized by using fairly

  10. Autoregulation of bradykinin receptors and bradykinin-induced prostacyclin formation in human fibroblasts.

    PubMed Central

    Roscher, A A; Manganiello, V C; Jelsema, C L; Moss, J

    1984-01-01

    The interaction of bradykinin (BK) with its specific receptors on intact cultured human fibroblasts results in production of prostaglandins, including prostacyclin (PGI2), and accumulation of cyclic AMP. Incubation of cells with 1 microM BK for 5 min at 37 degrees C led to a marked reduction (75-90%) in BK-induced PGI2 release and in total number of [3H]BK-binding sites with no change in dissociation constant (6.1 and 7.6 nM for control and BK-treated cells, respectively). The decrease in receptor number did not result from BK transferred from the first incubation into the binding assay. BK-induced receptor loss was temperature dependent; exposure of cells to BK at 4 degrees C had little or no effect on receptor number. After incubation with BK for approximately equal to 15 min, further incubation in the absence of BK for 30 min at 37 degrees C almost completely restored both receptor number and BK-induced PGI2 release. With more prolonged exposure to BK (greater than 1 h), restoration of receptors was inversely related to the length of exposure and the concentration of BK. Recovery was unaffected by cycloheximide. During prolonged incubation without removal of BK, cells began to recover receptors by 5 h; greater than 99% of the bradykinin initially present disappeared by 3 h. Bacitracin greatly retarded BK disappearance and totally prevented recovery. These observations provide direct evidence that the number of BK receptors on cultured human fibroblasts can be regulated by BK itself. In addition, it appears that BK-degrading systems, by influencing local concentrations of the peptide, may play an important role in the autoregulation of BK receptors. The presence of highly active degradation systems might serve to protect target tissues from developing chronic insensitivity to BK and, perhaps, similar peptides. PMID:6146639

  11. Ecotin-Like ISP of L. major Promastigotes Fine-Tunes Macrophage Phagocytosis by Limiting the Pericellular Release of Bradykinin from Surface-Bound Kininogens: A Survival Strategy Based on the Silencing of Proinflammatory G-Protein Coupled Kinin B2 and B1 Receptors

    PubMed Central

    Svensjö, Erik; Vellasco, Lucas; Scharfstein, Julio

    2014-01-01

    Inhibitors of serine peptidases (ISPs) expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE), a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS). Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants) potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R). Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R. PMID:25294952

  12. Angiotensin-converting enzyme inhibitors reduce oxidative stress intensity in hyperglicemic conditions in rats independently from bradykinin receptor inhibitors

    PubMed Central

    Mikrut, Kinga; Kupsz, Justyna; Koźlik, Jacek; Krauss, Hanna; Pruszyńska-Oszmałek, Ewa; Gibas-Dorna, Magdalena

    2016-01-01

    Aim To investigate whether bradykinin-independent antioxidative effects of angiotensin-converting enzyme inhibitors (ACEIs) exist in acute hyperglycemia. Methods Male Wistar rats were divided into the normoglycemic group (n = 40) and the hyperglycemic group (n = 40). Hyperglycemia was induced by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) dissolved in 0.1 mol/L citrate buffer (pH 4.5) 72 hours before sacrifice. The normoglycemic group received the same volume of citrate buffer. Each group was divided into five subgroups (n = 8): control group, captopril group, captopril + bradykinin B1 and B2 receptor antagonists group, enalapril group, and enalapril + bradykinin B1 and B2 receptor antagonists group. Captopril, enalapril, B1 and B2 receptor antagonists, or 0.15 mol/L NaCl were given at 2 and 1 hour before sacrifice. Oxidative status was determined by measuring the concentration of malondialdehyde and H2O2, and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Results In STZ-induced hyperglycemic rats ACEIs significantly reduced H2O2 and MDA concentration, while they significantly enhanced SOD and GPx activity. The hyperglycemic group treated simultaneously with ACEIs and bradykinin B1 and B2 receptor antagonists showed a significant decrease in H2O2 concentration compared to the control hyperglycemic group. Conclusion These results suggest the existence of additional antioxidative effect of ACEIs in hyperglycemic conditions, which is not related to the bradykinin mediation and the structure of the drug molecule. PMID:27586552

  13. Upregulation of bradykinin receptors is implicated in the pain associated with caerulein-induced acute pancreatitis.

    PubMed

    Takemura, Yoshinori; Furuta, Sadayoshi; Hirayama, Shigeto; Miyashita, Kazuhiko; Imai, Satoshi; Narita, Michiko; Kuzumaki, Naoko; Tsukiyama, Yoshi; Yamazaki, Mitsuaki; Suzuki, Tsutomu; Narita, Minoru

    2011-07-01

    Although the way for pain management associated with acute pancreatitis has been searched for, there are not enough medications available for it. The aim of the present study was to investigate the role of bradykinin (BK) in pain related to acute pancreatitis. After repeated injections of caerulein (50 μg/kg and 6 times), mice showed edema in the pancreas, and blood concentrations of pancreatic enzymes (amylase and lipase) were clearly elevated. A histopathological study demonstrated that caerulein caused tissue damage characterized by edema, acinar cell necrosis, interstitial hemorrhage, and inflammatory cell infiltrates. Furthermore, the mRNA levels of interleukin-1β and monocyte chemotactic protein (MCP)-1 were significantly increased in the pancreas of caerulein-treated mice. The sensitivity of abdominal organs as measured by abdominal balloon distension was enhanced in caerulein-injected mice, suggesting that caerulein caused pancreatic hyperalgesia. Moreover, repeated treatment with caerulein resulted in cutaneous tactile allodynia of the upper abdominal region as demonstrated by the use of von Frey filaments, indicating that caerulein-treated mice exhibited referred pain. Under this condition, the mRNA levels of bradykinin B1 receptor (BKB1R) and bradykinin B2 receptor (BKB2R) were significantly increased in the dorsal root ganglion (DRG). Finally, we found that des-Arg⁹-(Leu⁸)-bradykinin (BKB1R antagonist) and HOE-140 (BKB2R antagonist) attenuated the acute pancreatitis pain-like state in caerulein-treated mice. These findings suggest that the upregulation of BK receptors in the DRG may, at least in part, contribute to the development of the acute pancreatitis pain-like state in mice.

  14. Enhancement of blood-tumor barrier permeability by Sar-[D-Phe8]des-Arg9BK, a metabolically resistant bradykinin B1 agonist, in a rat C6 glioma model

    PubMed Central

    Cardoso, Ronie Cleverson; Lobão-Soares, Bruno; Bianchin, Marino Muxfeldt; Carlotti, Carlos Gilberto; Walz, Roger; Alvarez-Silva, Márcio; Trentin, Andréa Gonçalves; Nicolau, Mauro

    2004-01-01

    Background While it is well known that bradykinin B2 agonists increase plasma protein extravasation (PPE) in brain tumors, the bradykinin B1 agonists tested thus far are unable to produce this effect. Here we examine the effect of the selective B1 agonist bradykinin (BK) Sar-[D-Phe8]des-Arg9BK (SAR), a compound resistant to enzymatic degradation with prolonged activity on PPE in the blood circulation in the C6 rat glioma model. Results SAR administration significantly enhanced PPE in C6 rat brain glioma compared to saline or BK (p < 0.01). Pre-administration of the bradykinin B1 antagonist [Leu8]-des-Arg (100 nmol/Kg) blocked the SAR-induced PPE in the tumor area. Conclusions Our data suggest that the B1 receptor modulates PPE in the blood tumor barrier of C6 glioma. A possible role for the use of SAR in the chemotherapy of gliomas deserves further study. PMID:15458573

  15. Bradykinin promotes Toll like receptor-4 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Arreguín-Cano, Juan Antonio; Hernández-Bermúdez, Cristina

    2012-12-01

    Bacterial infections are a potent mechanism for enzymatic generation of kinins such as bradykinin (BK), a universal mediator for inducing inflammatory reaction by associating with the B2 receptor and stimulating liberation of arachidonic acid and synthesis of prostaglandin E2 (PGE2). In this study we evaluate the role of bradykinin in regulating the expression of TLR4 receptor in human gingival fibroblasts. We examine the ability of bradykinin to modulate inflammatory response of human gingival fibroblasts to Gram-negative components and evaluated the role of Toll-like receptors (TLR)-4 in the co-operation between bradykinin and bacterial pathogens. We show that treatment with bradykinin promotes TLR4 receptor expression in human gingival fibroblasts (HGF) and amplifies inflammatory responses to the bacterial components of Gram-negative bacteria. The TLR4 expression induced by bradykinin was blocked with Hoe 140, a B2R antagonist. When HGF cells were incubated with BK resulted of an increased in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 synthesis. Bradykinin and lipopolysaccharide, a specific TLR4 ligand stimulated COX-2 expression. In other series of experiments we found that ERK, phosphatidylinositol-3 kinase, protein kinase C and NFkB are involved in BK promoted-increased in TLR4 expression. The results demonstrate that bradykinin up-regulates the expression of TLR4 and promotes an additive increase in inflammatory responses to lipopolysaccharides.

  16. Hereditary Angioedema Therapy: Kallikrein Inhibition and Bradykinin Receptor Antagonism

    PubMed Central

    2010-01-01

    Current strategies for the treatment of hereditary angioedema (HAE) include targeted inhibition or antagonism of the contact system, which is dysregulated in HAE patients by a C1 esterase inhibitor deficiency. Ecallantide, a plasma kallikrein inhibitor, and icatibant, a selective bradykinin-2 receptor antagonist, have recently been evaluated in clinical studies for the treatment of acute HAE attacks. Both drugs have demonstrated evidence of efficacy and safety in treating acute HAE episodes, with ecallantide approved for use in the United States and icatibant approved for use in Europe. As therapeutic options for HAE expand for both for prophylactic and acute treatment strategies, a number of patient-specific and drug-specific factors have emerged as important considerations when developing individualized HAE management plans. Optimization of HAE therapy will require further integration of new therapies into the current treatment paradigm. PMID:23282868

  17. Loss of Myocardial Ischemic Postconditioning in Adenosine A1 and Bradykinin B2 Receptors Gene Knockout Mice

    PubMed Central

    Xi, Lei; Das, Anindita; Zhao, Zhi-Qing; Merino, Vanessa F.; Bader, Michael; Kukreja, Rakesh C.

    2011-01-01

    Background Ischemic postconditioning (PostC) is a recently described cardioprotective modality against reperfusion injury, through series of brief re-flow interruptions applied at the very onset of reperfusion. It is proposed that PostC can activate a complex cellular signaling cascade, in which cell membrane receptors could serve as the upstream triggers of PostC. However, the exact subtypes of such receptors remain controversial or uninvestigated. To this context, the purpose of present study was to determine the definitive role of adenosine A1, bradykinin B1 and B2 receptors in PostC. Methods and Results The hearts isolated from adult male C57BL/6J wild-type mice or the mice lacking adenosine A1, or bradykinin B1 or B2 receptors subjected to zero-flow global ischemia and reperfusion in a Langendorff model. PostC, consisting of 6 cycles of 10 sec of reperfusion and 10 sec of ischemia, demonstrated significantly reduced myocardial infarct size (22.8±3.1%, Mean±SEM) as compared with the non-PostC wild-type controls (35.1±2.8%, P<0.05). The infarct-limiting protection of PostC was absent in adenosine A1 receptor knockout mice (34.9±2.7%) or bradykinin B2 receptor knockout mice (33.3±1.7%) and was partially attenuated in bradykinin B1 receptor deficient mice (25.6±2.9%; P>0.05). On the other hand, PostC did not significantly alter post-ischemic cardiac contractile function and coronary flow. Conclusions With the use of three distinctive strains of gene knockout mice, the current study has provided the first conclusive evidence showing PostC-induced infarct-limiting cardioprotection could be triggered by activation of multiple types of cell membrane receptors, which include adenosine A1 and bradykinin B2 receptors. PMID:18824766

  18. Ranakinestatin-PPF from the skin secretion of the Fukien gold-striped pond frog, Pelophylax plancyi fukienensis: a prototype of a novel class of bradykinin B2 receptor antagonist peptide from ranid frogs.

    PubMed

    Ma, Jie; Luo, Yu; Ge, Lilin; Wang, Lei; Zhou, Mei; Zhang, Yingqi; Duan, Jinao; Chen, Tianbao; Shaw, Chris

    2014-01-01

    The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin-a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10(-6)M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10(-11)M and 10(-5)M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin-PPF-thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

  19. Heterodimerization of human apelin and bradykinin 1 receptors: novel signal transduction characteristics.

    PubMed

    Bai, Bo; Liu, Lulu; Zhang, Ning; Wang, Chunmei; Jiang, Yunlu; Chen, Jing

    2014-07-01

    Apelin receptor (APJ) and bradykinin 1 receptor (B1R) are involved in a variety of important physiological processes, which share many similar characteristics in distribution and functions in the cardiovascular system. This study explored the possibility of heterodimerization between APJ and B1R, and investigated the impact of heterodimer on the signal transduction characteristics and the physiological functions in human endothelial cells after stimulation with their agonists. We first identified the endogenous expression of APJ and B1R in HUVECs and their co-localization on HEK293 membrane. The constitutive heterodimerization between the APJ and B1R was then demonstrated by BRET and FRET assays. Stimulation with Apelin-13 and des -Arg(9)-BK enhanced the phosphorylation of eNOS in HUVECs, which could be dampened by the knockdown of APJ or B1R, indicating the co-existence of APJ and B1R is critical for eNOS phosphorylation in HUVECs. Furthermore, APJ/B1R heterodimers were found to enhance the activity of PKC signaling pathway and increase intracellular Ca(2+) concentration in HEK293 cells, which might be the mechanism of APJ/B1R heterodimers promoting the phosphorylation of eNOS and leads to increased Gαq, PKC signal pathway activities and a significant increase in cell proliferation. The results provide a new theoretical and experimental base for revealed intracellular molecular mechanisms of physiological function involved in the APJ and B1R and provide potential new targets for the development of drugs and treating cardiovascular disease.

  20. Existence of three subtypes of bradykinin B2 receptors in guinea pig.

    PubMed

    Seguin, L; Widdowson, P S; Giesen-Crouse, E

    1992-12-01

    We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Brabykinin B1 Receptor Antagonism Is Beneficial in Renal Ischemia-Reperfusion Injury

    PubMed Central

    Wang, Pamella H. M.; Campanholle, Gabriela; Cenedeze, Marcos A.; Feitoza, Carla Q.; Gonçalves, Giselle M.; Landgraf, Richardt G.; Jancar, Sonia; Pesquero, João B.; Pacheco-Silva, Alvaro; Câmara, Niels O. S.

    2008-01-01

    Previously we have demonstrated that bradykinin B1 receptor deficient mice (B1KO) were protected against renal ischemia and reperfusion injury (IRI). Here, we aimed to analyze the effect of B1 antagonism on renal IRI and to study whether B1R knockout or antagonism could modulate the renal expression of pro and anti-inflammatory molecules. To this end, mice were subjected to 45 minutes ischemia and reperfused at 4, 24, 48 and 120 hours. Wild-type mice were treated intra-peritoneally with antagonists of either B1 (R-954, 200 µg/kg) or B2 receptor (HOE140, 200 µg/kg) 30 minutes prior to ischemia. Blood samples were collected to ascertain serum creatinine level, and kidneys were harvested for gene transcript analyses by real-time PCR. Herein, B1R antagonism (R-954) was able to decrease serum creatinine levels, whereas B2R antagonism had no effect. The protection seen under B1R deletion or antagonism was associated with an increased expression of GATA-3, IL-4 and IL-10 and a decreased T-bet and IL-1β transcription. Moreover, treatment with R-954 resulted in lower MCP-1, and higher HO-1 expression. Our results demonstrated that bradykinin B1R antagonism is beneficial in renal IRI. PMID:18725957

  2. Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: Possible involvement of bradykinin in information flow.

    PubMed

    Pillat, Micheli M; Oliveira, Mona N; Motaln, Helena; Breznik, Barbara; Glaser, Talita; Lah, Tamara T; Ulrich, Henning

    2016-04-01

    The most aggressive subtype of brain tumors is glioma WHO grade IV, the glioblastoma (GBM). The present work aims to elucidate the role of kinin receptors in interactions between GBM cells and mesenchymal stem cells (MSC). The GBM cell line U87-MG was stably transfected to express dsRed protein, single cell cloned, expanded, and cultured with MSC, both in the direct co-cultures (DC) and indirect co-cultures (IC) at equal cell number ratio for 72 h. Up- and down-regulation of matrix metalloproteases (MMP)-9 expression in U87-MG and MSC cells, respectively, in direct co-culture points to possible MSC participation in tumor invasion. MMP9 expression is in line with significantly increased expression of kinin B1 (B1R) and B2 receptor (B2R) in U87-MG cells and their decreased levels in MSC, as confirmed by quantitative assessment using flow cytometric analysis. Similarly, in indirect cultures (IC), lacking the contact between GBM and MSC cells, an increase of B1 and B2 receptor expression was again noted in U87-MG cells, and no significant changes in kinin receptors in MSC was observed. Functionality of kinin-B1 and B2 receptors was evidenced by stimulation of intracellular calcium fluxes by their respective agonists, des-Arg9-bradykinin (DBK) and bradykinin (BK). Moreover, BK showed a feedback control on kinin receptor expression in mono-cultures, direct and indirect co-cultures. The treatment with BK resulted in down-regulation of B1 and B2 receptors in MSC, with simultaneous up-regulation of these receptors in U87-MG cells, suggesting that functions of BK in information flow between these cells is important for tumor progression and invasion. © 2015 International Society for Advancement of Cytometry.

  3. Kinin-B1 and B2 receptor activity in proliferation and neural phenotype determination of mouse embryonic stem cells.

    PubMed

    Nascimento, Isis C; Glaser, Talita; Nery, Arthur A; Pillat, Micheli M; Pesquero, João B; Ulrich, Henning

    2015-11-01

    The kinins bradykinin and des-arg(9) -bradykinin cleaved from kininogen precursors by kallikreins exert their biological actions by stimulating kinin-B2 and B1 receptors, respectively. In vitro models of neural differentiation such as P19 embryonal carcinoma cells and neural progenitor cells have suggested the involvement of B2 receptors in neural differentiation and phenotype determination; however, the involvement of B1 receptors in these processes has not been established. Here, we show that B1 and B2 receptors are differentially expressed in mouse embryonic E14Tg2A stem cells undergoing neural differentiation. Proliferation and differentiation assays, performed in the presence of receptor subtype-selective agonists and antagonists, revealed that B1 receptor activity is required for the proliferation of embryonic and differentiating cells as well as for neuronal maturation at later stages of differentiation, while the B2 receptor acts on neural phenotype choice, promoting neurogenesis over gliogenesis. Besides the elucidation of bradykinin functions in an in vitro model reflecting early embryogenesis and neurogenesis, this study contributes to the understanding of B1 receptor functions in this process.

  4. Bradykinin receptor subtypes in rat lung: effect of interleukin-1 beta.

    PubMed

    Tsukagoshi, H; Haddad, E B; Barnes, P J; Chung, K F

    1995-06-01

    We have characterized bradykinin (BK) receptors in the rat lung and studied the effect of recombinant human interleukin-1 beta (IL-1 beta) on BK receptors in vitro and in vivo. In lung membranes, saturation studies with [3]BK revealed a single class of specific and saturable binding sites. The BK B1 antagonist des-Arg9[Leu8]-BK was less effective in displacing [3H]BK binding sites from lung membranes. In contrast, the selective BK B2 antagonists, Hoe 140 (D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-BK) and NPC 567 (D-Arg-[Hyp3,D-Phe7]-BK) fully inhibited the binding of [3H]BK to lung membranes with Ki values of 96.7 +/- 17.8 pM and 9.0 +/- 2.5 nM, respectively. Intratracheal administration of 500 U of IL-1 beta induced airway hyper-responsiveness to inhaled BK and neutrophilia in bronchoalveolar lavage fluid 18 to 24 hr later. Compared to naive or saline-treated animals, IL-1 beta had no effect on [3H]BK binding characteristics at 4, 12 or 24 hr after IL-1 beta administration. Twenty-four hours after IL-1 beta instillation, there was no change in the affinity of the selective BK B1 or B2 antagonists when compared to control animals. In vivo, the selective BK B2 receptor antagonists, NPC 567 (3 mumol kg-1 i.v.) and Hoe 140 (100 nmol kg-1 i.v.), inhibited BK-induced increase in lung resistance, whereas the selective BK B1 antagonist, des-Arg9[Leu8]-BK (10 mumol kg-1 i.v.), was without effect. These data suggest that the action of BK in the rat lung is dependent mainly on the activation of the BK B2 receptor subtype.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Kinin B1 Receptor in Adipocytes Regulates Glucose Tolerance and Predisposition to Obesity

    PubMed Central

    Motta, Fabiana Louise; Fonseca, Raphael Gomes; Alenina, Natalia; Guadagnini, Dioze; Schadock, Ines; Silva, Elton Dias; Torres, Hugo A. M.; dos Santos, Edson Lucas; Castro, Charlles Heldan; D’Almeida, Vânia; Andreotti, Sandra; Campaña, Amanda Baron; Sertié, Rogério A. L.; Saad, Mario J. A.; Lima, Fabio Bessa; Bader, Michael; Pesquero, João Bosco

    2012-01-01

    Background Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B1 receptor knockout mice (B1−/−) are leaner and exhibit improved insulin sensitivity. Methodology/Principal Findings Here we show that kinin B1 receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B1 receptors. In these cells, treatment with the B1 receptor agonist des-Arg9-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B1−/− mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B1 receptor was limited to cells of the adipose tissue (aP2-B1/B1−/−). Similarly to B1−/− mice, aP2-B1/B1−/− mice were leaner than wild type controls. However, exclusive expression of the kinin B1 receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B1−/− mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B1 receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B1/B1−/− when compared to B1−/− mice. When subjected to high fat diet, aP2-B1/B1−/− mice gained more weight than B1−/− littermates, becoming as obese as the wild types. Conclusions/Significance Thus, kinin B1 receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity. PMID:23024762

  6. Early Increased Bradykinin 1 Receptor Contributes to Hemorrhagic Transformation After Ischemic Stroke in Type 1 Diabetic Rats.

    PubMed

    Sang, Hongfei; Qiu, Zhongming; Cai, Jin; Lan, Wenya; Yu, Linjie; Zhang, Hao; Li, Min; Xie, Yi; Guo, Ruibing; Ye, Ruidong; Liu, Xinfeng; Liu, Ling; Zhang, Renliang

    2017-07-19

    Hemorrhagic transformation (HT) is a major complication of ischemic stroke and further deteriorates neurological outcomes. Bradykinin 1 receptor (B1R) has been proven to mediate vasculo-toxicity in various experimental models. However, its role in the development of HT after stroke remains unclear. We detected the B1R expression in brain tissues with or without HT in a rat model of cerebral ischemia/reperfusion (I/R) with type 1 diabetes, showing higher B1R expression in the hemorrhagic areas than the ischemic tissues. Then, B1R agonist or antagonist was administrated intravenously just before reperfusion to investigate its effect on HT and the underlying molecular mechanism. Administration of low (300 nmol/kg) or high (1 μmol/kg) dose of B1R antagonist mitigated hemorrhage, improved neurobehavioral deficits, and preserved blood-brain-barrier (BBB) integrity after reperfusion for 8 h whereas the 300 nmol/kg of B1R agonist aggravated these outcomes, though only the high does of B1R antagonist affected the infarction volume. Extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation was increased by B1R activation but decreased by B1R inhibition, which mediated B1R toxicity on BBB disruption and ischemia-related HT. Furthermore, B1R activation facilitated the mRNA and protein expressions of MMP-9 in the hemorrhagic tissues, and these increases were blocked by both ERK inhibitor U0126 and NF-κB inhibitor PDTC. U0126 also remarkably decreased the B1R-induced NF-κB/p65 activation. We concluded that upregulated B1R may contribute to early HT after I/R in type 1 diabetic rats via ERK1/2/NF-κB/MMP-9 pathway. B1R inhibition could be an encouraging therapeutic strategy to withstand HT after ischemic stroke in diabetic patients.

  7. Ranakinestatin-PPF from the Skin Secretion of the Fukien Gold-Striped Pond Frog, Pelophylax plancyi fukienensis: A Prototype of a Novel Class of Bradykinin B2 Receptor Antagonist Peptide from Ranid Frogs

    PubMed Central

    Ma, Jie; Ge, Lilin; Zhang, Yingqi; Duan, Jinao; Shaw, Chris

    2014-01-01

    The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle. PMID:25161395

  8. Bradykinin B2 receptor contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion

    PubMed Central

    Lu, Jian; Xing, Jihong

    2013-01-01

    each group). In contrast, there was no significant difference in B1 receptor expression in both experimental groups, and arterial injection of R-715, a B1 receptors blocker, had no significant effects on RSNA and MAP responses evoked by muscle stretch. Accordingly, results obtained from this study support our hypothesis that heightened kinin B2 receptor expression in the sensory nerves contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion. PMID:23417862

  9. Differential Distribution of Bradykinin B(2) Receptors in the Rat and Human Cardiovascular System.

    PubMed

    Figueroa, Carlos D.; Marchant, Alejandra; Novoa, Ulises; Förstermann, Ulrich; Jarnagin, Kurt; Schölkens, Bernward; Müller-Esterl, Werner

    2001-01-01

    -Bradykinin, a major vasodilator peptide, plays an important role in the local regulation of blood pressure, blood flow, and vascular permeability; however, the cellular distribution of the major bradykinin B(2) receptor in the cardiovascular system is not precisely known. Immunoblot analysis with an anti-peptide antibody to the bradykinin B(2) receptor or chemical cross-linkage with [(125)I]Tyr(0)-bradykinin revealed a band of 69+/-3 kDa at varying intensity in the homogenates of the endothelium and tunica media of the rat aorta and endocardium. Immunostaining showed that the B(2) receptor is abundant in the endothelial linings of the aorta, other elastic arteries, muscular arteries, capillaries, venules, and large veins, where it localizes preferentially to the luminal face of the endothelial cells. In marked contrast, small arterioles (ie, the principal blood-pressure regulating vessels) of the mesenterium, heart, urinary bladder, brain, salivary gland, and kidney had a different staining pattern in which B(2) receptor was prominent in the perivascular smooth muscle cells of the tunica media. A similar distribution pattern was found in mouse as well as in human tissues, indicating that the particular distribution pattern of the B(2) receptor in arterioles is not a species-specific phenomenon. During development, the distribution of B(2) receptor in the heart changes; for example, in the heart of newborn rats, the B(2) receptor was abundant in the myocardium, whereas in the adult heart, the receptor was present in the endocardium of atria, atrioventricular valves, and ventricles but not in the myocardium. Thus, B(2) receptors are localized differentially in different parts of the cardiovascular system: the arterioles have smooth muscle-localized B(2) receptors, and large elastic vessels have endothelium-localized receptors.

  10. Synthesis and characterization of bradykinin B(2) receptor agonists containing constrained dipeptide mimics.

    PubMed

    Amblard, M; Daffix, I; Bergé, G; Calmès, M; Dodey, P; Pruneau, D; Paquet, J L; Luccarini, J M; Bélichard, P; Martinez, J

    1999-10-07

    We have previously shown that substitution of the D-Tic-Oic dipeptide by a (3S)-[amino]-5-(carbonylmethyl)-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety in the bradykinin B(2) receptor antagonist HOE 140 resulted in a full potent and selective bradykinin B(2) receptor agonist (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-D-BT-Arg-OH, JMV1116) exhibiting a high affinity for the human receptor (K(i) 0.7 nM). In the present study, we have investigated the effects of replacement of the D-Tic-Oic moiety by various constrained dipeptide mimetics. The resulting compounds were tested for their binding affinity toward the cloned human B(2) receptor and for their functional interaction with the bradykinin-induced contraction of isolated human umbilical vein. Subsequently, we have designed novel bradykinin B(2) receptor agonists which are likely to be resistant to enzymatic cleavage by endopeptidases and which might represent interesting new pharmacological tools. In an attempt to increase the potency of compound JMV1116, both its N-terminal part and the D-BT moiety were modified. Substitution of the D-arginine residue by a L-lysine residue led to a 10-fold more potent bradykinin B(2) ligand [compound 22 (JMV1465) (K(i) 0.07 nM)], retaining full agonist activity on human umbilical vein. Substitution of the D-BT moiety by a (3S)-[amino]-5-(carbonylmethyl)-2,3-dihydro-8-methyl-1, 5-benzothiazepin-4(5H)-one [D-BT(Me)] moiety led to compound 23 (JMV1609) which exhibited a higher agonist activity (pD(2) = 7.4) than JMV1116 (pD(2) = 6.8).

  11. Inhibition of bradykinin-evoked trigeminal nerve stimulation by the non-peptide bradykinin B2 receptor antagonist WIN 64338 in vivo and in vitro.

    PubMed Central

    Hall, J. M.; Figini, M.; Butt, S. K.; Geppetti, P.

    1995-01-01

    1. This study investigated the effect of the recently described non-peptide bradykinin B2 receptor antagonist, WIN 64338 ([[4-[[2- [[bis(cyclohexylamino)methylene]amino]-3-(2-naphthalenyl)-1-oxopropyl] amino]phenyl]methyl]tributylphosphoniumchloride monohydrochloride), in experimental models of bradykinin-evoked sensory nerve stimulation. 2. In the rabbit isolated iris sphincter in vitro, bradykinin-evoked contractile responses are mediated via tachykinins released from peripheral endings of the trigeminal sensory nerve. WIN 64338 (1-10 microM) competitively antagonised contractile responses to bradykinin with a pKB estimate of 6.6 +/- 0.1 (n = 11). The antagonism was selective since WIN 64338 (10 microM) did not significantly inhibit submaximal contractile responses to the direct-acting spasmogens substance P (10 nM), neurokinin A (3 nM), substance P methyl ester (10 nM) or senktide (100 nM); nor by sensory non-adrenergic non-cholinergic nerve stimulation evoked by capsaicin (10 microM), or electrical field-stimulation (3, 10, 30 Hz) (P > 0.05; n = 3-11). 3. Topical application of bradykinin to the conjunctiva and to the nasal mucosa of the guinea-pig in vivo causes plasma extravasation predominantly via the release of tachykinins from peripheral endings of the trigeminal nerve. The increases in plasma extravasation (measured by extravasation of Evans blue dye) induced by bradykinin in the guinea-pig conjunctiva (20 nmol) and nasal mucosa (50 nmol) were markedly reduced (by 81 +/- 3% and 69 +/- 5%, respectively) following pretreatment with WIN 64338 (30 nmol kg-1, i.v.) (n = 5-6; P < 0.05), with almost complete inhibition at a higher dose of WIN 64338 (300 nmol kg-1, i.v.; n = 5-6). This inhibition was selective since at 300 nmol kg-1, WIN 64338 did not inhibit plasma extravasation evoked by substance P in the conjunctiva (5 nmol; P > 0.05; n = 6) or in the nasal mucosa (50 nmol; P > 0.05; n = 5). 4. This study demonstrates that WIN 64338 is a selective and

  12. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    NASA Astrophysics Data System (ADS)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new

  13. Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes.

    PubMed

    Seguin, L; Widdowson, P S

    1993-02-01

    We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 microM) and the nonmetabolized analogue of GTP, guanyl-5'-yl-imidodiphosphate (GppNHp; 100 microM). Competition studies with bradykinin and with [Hyp3]bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 microM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 microM) and GDP (100 microM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 microM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Pre- and post-junctional bradykinin B2 receptors regulate smooth muscle tension to the pig intravesical ureter.

    PubMed

    Ribeiro, Ana S F; Fernandes, Vítor S; Martínez, María Pilar; López-Oliva, María Elvira; Barahona, María Victoria; Recio, Paz; Martínez, Ana Cristina; Blaha, Igor; Orensanz, Luis M; Bustamante, Salvador; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2016-01-01

    Neuronal and non-neuronal bradykinin (BK) receptors regulate the contractility of the bladder urine outflow region. The current study investigates the role of BK receptors in the regulation of the smooth muscle contractility of the pig intravesical ureter. Western blot and immunohistochemistry were used to show the expression of BK B1 and B2 receptors and myographs for isometric force recordings. B2 receptor expression was consistently detected in the intravesical ureter urothelium and smooth muscle layer, B1 expression was not detected where a strong B2 immunoreactivity was observed within nerve fibers among smooth muscle bundles. On ureteral strips basal tone, BK induced concentration-dependent contractions, were potently reduced by extracellular Ca(2+) removal and by B2 receptor and voltage-gated Ca(2+) (VOC) channel blockade. BK contraction did not change as a consequence of urothelium mechanical removal or cyclooxygenase and Rho-associated protein kinase inhibition. On 9,11-dideoxy-9a,11a-methanoepoxy prostaglandin F2α (U46619)-precontracted samples, under non-adrenergic non-cholinergic (NANC) and nitric oxide (NO)-independent NANC conditions, electrical field stimulation-elicited frequency-dependent relaxations which were reduced by B2 receptor blockade. Kallidin, a B1 receptor agonist, failed to increase preparation basal tension or to induce relaxation on U46619-induced tone. The present results suggest that BK produces contraction of pig intravesical ureter via smooth muscle B2 receptors coupled to extracellular Ca(2+) entry mainly via VOC (L-type) channels. Facilitatory neuronal B2 receptors modulating NO-dependent or independent NANC inhibitory neurotransmission are also demonstrated. © 2014 Wiley Periodicals, Inc.

  15. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition.

    PubMed Central

    Bouaziz, H; Joulin, Y; Safar, M; Benetos, A

    1994-01-01

    1. The aim of this study was to determine the participation of endogenous bradykinin (BK) in the antihypertensive effects of the angiotensin converting enzyme inhibitor (ACEI), perindoprilat, in the spontaneously hypertensive rat (SHR) on different salt diets. 2. Conscious SHRs receiving either a low or a high NaCl diet were used in order to evaluate the respective roles of angiotensin II suppression and bradykinin stimulation in the acute hypotensive effects of perindoprilat. Two different B2 receptor antagonists (B 4146 and Hoe 140) were used after bolus administration of 7 mg kg-1 of the ACEI, perindoprilat. In separate animals, Hoe 140 was administered before the injection of perindoprilat. In other experiments, the effects of Hoe 140 on the hypotensive effects of the calcium antagonist, nicardipine, were tested. 3. The different NaCl diets had no effect on baseline blood pressure. Hoe 140 injection before ACE inhibition did not modify blood pressure. Perindoprilat caused more marked hypotension in the low salt-fed rats than in the high salt animals (P < 0.01). Administration of Hoe 140 or B4146 after perindoprilat significantly reduced the antihypertensive effects of perindoprilat in the different groups, but this effect was more pronounced in high salt-fed rats. However, in SHRs receiving Hoe 140 before perindoprilat, the antihypertensive effect of perindoprilat was completely abolished in both high or low salt diet rats. In separate experiments we confirmed that Hoe 140 did not affect the hypotensive efficacy of the calcium antagonist, nicardipine. 4. Our study shows that inhibition of endogenous bradykinin degradation participates in the acute antihypertensive effects of perindoprilat in SHRs. The role of bradykinin is more pronounced following exposure to a high salt diet i.e., when the renin-angiotensin system is suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858859

  16. Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis.

    PubMed

    de Oliveira, Vanessa Lima Cavalcante; Silva, José Antonio; Serra, Andrey Jorge; Pallotta, Rodney Capp; da Silva, Evela Aparecida Pereira; de Farias Marques, Anna Cristina; Feliciano, Regiane Dos Santos; Marcos, Rodrigo Labat; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2017-01-01

    The objective of this study was to evaluate the effects of photobiomodulation therapy (PBMT) on inflammatory indicators, i.e., inflammatory mediators (TNF-α and CINC-1), and pain characterized by hyperalgesia and B1 and B2 receptor activation at 6, 24, and 48 h after papain-induced osteoarthritis (OA) in rats. Fifty-four rats were subjected to hyperalgesia evaluations and then divided randomly into three groups-a control group and two groups OA and OA PBMT group by using laser parameters at wavelength (808 nm), output power (50 mW), energy per point (4 Joules), power density (1.78 W/cm(2)), laser beam (0.028 cm(2)), and energy density (144 J/cm(2))-the induction of osteoarthritis was then performed with 20-μl injections of a 4 % papain solution dissolved in 10 μl of saline solution, to which 10 μl of cysteine solution (0.03 M). The statistical analysis was performed using two-way ANOVA with Bonferroni's post hoc test for comparisons between the 6, 24, and 48 h and team points within each group, and between the control, injury, and PBMT groups, and p < 0.05 was considered to indicate a significant difference. The hyperalgesia was evaluated at 6, 24, and 48 h after the injury. PBMT at a wavelength of 808 nm and doses of 4 J, administered afterward, promotes increase at the threshold of pressure stimulus at 6, 24, and 48 h after application and promote cytokine attenuation levels (TNF and CINC-1) and bradykinin receptor (B1 and B2) along the experimental period. We conclude that photobiomodulation therapy was able to promote the reduction of proinflammatory cytokines such as TNF-α and CINC-1, to reduce the gene and protein expression of the bradykinin receptor (B1 and B2), as well as increasing the stimulus response threshold of pressure in an experimental model of acute osteoarthritis.

  17. Close association of B2 bradykinin receptors with P2Y2 ATP receptors.

    PubMed

    Yashima, Sayo; Shimazaki, Ayaka; Mitoma, Junya; Nakagawa, Tetsuto; Abe, Maya; Yamada, Hiroyuki; Higashi, Hideyoshi

    2015-08-01

    Two G-protein-coupled receptors (GPCRs) that couple with Gαq/11, B2 bradykinin (BK) receptor (B2R) and ATP/UTP receptor P2Y2 (P2Y2R), are ubiquitously expressed and responsible for vascular tone, inflammation, and pain. We analysed the cellular signalling of P2Y2Rs in cells that express B2Rs. B2R desensitization induced by BK or B2R internalization-inducing glycans cross-desensitized the P2Y2R response to ATP/UTP. Fluorescence resonance energy transfer from P2Y2R-AcGFP to B2R-DsRed was detected in the cells and on the cell surfaces, showing the close association of these GPCRs. BK- and ATP-induced cross-internalization of P2Y2R and B2R, respectively, was shown in a β-galactosidase complementation assay using P2Y2R or B2R fused to the H31R substituted α donor peptide of a β-galactosidase reporter enzyme (P2Y2R-α or B2R-α) with coexpression of the FYVE domain of endofin, an early endosome protein, fused to the M15 acceptor deletion mutant of β-galactosidase (the ω peptide, FYVE-ω). Arrestin recruitment to the GPCRs by cross-activation was also shown with the similar way. Coimmunoprecipitation showed that B2R and P2Y2R were closely associated in the cotransfected cells. These results indicate that B2R couples with P2Y2R and that these GPCRs act together to fine-tune cellular responsiveness. The collaboration between these receptors may permit rapid onset and turning off of biological events. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  18. Gangliosides stimulate bradykinin B2 receptors to promote calmodulin kinase II-mediated neuronal differentiation.

    PubMed

    Kanatsu, Yoshinori; Chen, Nai Hong; Mitoma, Junya; Nakagawa, Tetsuto; Hirabayashi, Yoshio; Higashi, Hideyoshi

    2012-07-01

    Gangliosides mediate neuronal differentiation and maturation and are indispensable for the maintenance of brain function and survival. As part of our ongoing efforts to understand signaling pathways related to ganglioside function, we recently demonstrated that neuronal cells react to exogenous gangliosides GT1b and GD1b. Both of these gangliosides are enriched in the synapse-forming area of the brain and induce Ca(2+) release from intracellular stores, activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and activation of cdc42 to promote reorganization of cytoskeletal actin and dendritic differentiation. Here, we show that bradykinin B2 receptors transduce these reactions as a mediator for ganglioside glycan signals. The B2 antagonist Hoe140 inhibited ganglioside-induced CaMKII activation, actin reorganization and early development of axon- and dendrite-like processes of primary cultured hippocampal neurons. Furthermore, we confirmed by yeast reporter assay that major b-series gangliosides, GT1b, GD1b and GD3, stimulated B2 bradykinin receptors. We hypothesize that this B2 receptor-mediated ganglioside signal transduction pathway is one mechanism that modulates neuronal differentiation and maturation.

  19. The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice.

    PubMed

    Meotti, Flavia Carla; Figueiredo, Cláudia Pinto; Manjavachi, Marianne; Calixto, João B

    2017-02-01

    The kinin receptor B1 and the transient receptor potential ankyrin 1 (TRPA1) work as initiators and gatekeepers of nociception and inflammation. This study reports that the nociceptive transmission induced by activation of B1 receptor is dependent on TRPA1 ion channel. The mechanical hyperalgesia was induced by intrathecal (i.t.) injection of B1 agonist des-Arginine(9)-bradykinin (DABK) or TRPA1 agonist cinnamaldehyde and was evaluated by the withdrawal response after von Frey Hair application in the hind paw. After behavioral experiments, lumbar spinal cord and dorsal root ganglia (DRG) were harvested to assess protein expression and mRNA by immunohistochemistry and real time-PCR, respectively. The pharmacological antagonism (HC030031) or the down-regulation of TRPA1 greatly inhibited the mechanical hyperalgesia induced by DABK. Intrathecal injection of DABK up regulated the ionized calcium binding adaptor molecule (Iba-1) in lumbar spinal cord (L5-L6); TRPA1 protein and mRNA in lumbar spinal cord; and B1 receptor mRNA in both lumbar spinal cord and DRG. The knockdown of TRPA1 prevented microglia activation induced by DABK. Furthermore, the mechanical hyperalgesia induced by either DABK or by cinnamaldehyde was significantly reduced by inhibition of cyclooxygenase (COX), protein kinase C (PKC) or phospholipase C (PLC). In summary, this study revealed that TRPA1 positively modulates the mechanical hyperalgesia induced by B1 receptor activation in the spinal cord and that the classical GPCR downstream molecules PLC, diacylglycerol (DAG), 3,4,5-inositide phosphate (IP3) and PKC are involved in the nociceptive transmission triggered by these two receptors.

  20. Heteromerization Between the Bradykinin B2 Receptor and the Angiotensin-(1-7) Mas Receptor: Functional Consequences.

    PubMed

    Cerrato, Bruno D; Carretero, Oscar A; Janic, Brana; Grecco, Hernán E; Gironacci, Mariela M

    2016-10-01

    Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the cyan fluorescent protein and MasR fused to the yellow fluorescent protein were transiently coexpressed in human embryonic kidney293T cells. Fluorescence resonance energy transfer analysis showed that B2R and MasR formed a constitutive heteromer, which was not modified by their agonists. B2R or MasR antagonists decreased fluorescence resonance energy transfer efficiency, suggesting that the antagonist promoted heteromer dissociation. B2R-MasR heteromerization induced an 8-fold increase in the MasR ligand-binding affinity. On agonist stimulation, the heteromer was internalized into early endosomes with a slower sequestration rate from the plasma membrane, compared with single receptors. B2R-MasR heteromerization induced a greater increase in arachidonic acid release and extracellular signal-regulated kinase phosphorylation after angiotensin-(1-7) stimulation, and this effect was blocked by the B2R antagonist. Concerning serine/threonine kinase Akt activity, a significant bradykinin-promoted activation was detected in B2R-MasR but not in B2R-expressing cells. Angiotensin-(1-7) and bradykinin elicited antiproliferative effects only in cells expressing B2R-MasR heteromers, but not in cells expressing each receptor alone. Proximity ligation assay confirmed B2R-MasR interaction in human glomerular endothelial cells supporting the interaction between both receptors in vivo. Our findings provide an explanation for the cross talk between bradykinin B2R and angiotensin-(1-7) MasR-mediated effects. B2R-MasR heteromerization induces functional changes in the receptor that may lead to long-lasting protective properties.

  1. The effects of bradykinin and sequence-related analogs on the response properties of cutaneous nociceptors in monkeys.

    PubMed

    Khan, A A; Raja, S N; Manning, D C; Campbell, J N; Meyer, R A

    1992-01-01

    The endogenous peptide bradykinin is found in plasma and inflammatory exudates and has been implicated as a chemical mediator of inflammatory pain and hyperalgesia. Two subtypes of bradykinin receptors, B1 and B2, have been described, and antagonists for the receptor subtypes have been synthesized. The bradykinin analogs [desArg9,Leu8]BK and DArg[Hyp3,DPhe7]BK have been reported to have antagonist activity at the B1 and B2 bradykinin receptors in smooth muscle, respectively. Behavioral studies in rats indicate that the bradykinin analogs can block the algesic effects of bradykinin. We wished to determine the effects of bradykinin and the bradykinin analogs (B1 and B2 analogs, respectively) on cutaneous nociceptors in the monkey. In addition, we wished to determine the type of bradykinin receptor that mediates the sensitizing effects of bradykinin. Recordings were made from single C-fiber and A-fiber nociceptive afferents (CMHs and AMHs) that innervated hairy skin. Heat sensitivity before and after the injections was determined with a heat test sequence consisting of stimuli that ranged, in 1 degree C increments, from 41 degrees to 49 degrees C. Intradermal injections of vehicle (neutral normal saline) failed to alter the heat response of CMHs. Bradykinin (10 nmol in 10 microliters) evoked activity in 6 of 10 CMHs and sensitized all the fibers to heat stimuli. After the bradykinin injection, the mean heat threshold of the CMHs decreased from 44 +/- 0.5 degrees to 42.7 +/- 0.5 degrees C (mean +/- SEM, p less than 0.02), and the total response to the heat test sequence increased by 87% (p less than 0.002). In a related psychophysical study in human volunteers, the same dose of bradykinin resulted in a comparable (115%) increase in ratings of pain (Manning et al., 1991). Bradykinin also evoked activity in 10 of 17 AMHs and sensitized 8 AMHs to heat stimuli. Bradykinin failed to alter the threshold for activation of CMHs to mechanical stimuli as measured by application

  2. Investigation of the cardiomyocyte dysfunction in bradykinin type 2 receptor knockout mice.

    PubMed

    Roman-Campos, Danilo; Duarte, Hugo Leonardo; Gomes, Enéas Ricardo; Castro, Carlos Henrique; Guatimosim, Silvia; Natali, Antonio José; Almeida, Alvair Pinto; Pesquero, João Bosco; Pesquero, Jorge Luiz; Cruz, Jader Santos

    2010-12-18

    Bradykinin type 2 receptor (B(2)R) is the key component to trigger the intracellular signaling pathway in response to bradykinin under physiological conditions. The present study sought to investigate whether the B(2)R gene deletion will have an impact on myocardial function. Isolated cell shortening, patch-clamp technique, Western blot and confocal microscopy. Isolated cell shortening measurements showed significant reduction in B(2)R knockout (B(2)R(-/-)) left ventricular cardiac myocytes' shortening. Whole-cell recordings were used to study the electrophysiological aspects of the left ventricular B(2)R(-/-) cardiomyocytes. Results showed: 1) action potential lengthening; 2) unchanged inwardly rectifying K(+) current; 3) reduced transient outward K(+) (I(to)) and L-type Ca(2+) current densities; 5) changes in kinetic properties related to I(to) and I(Ca,L). In addition, transient sarcoplasmic reticulum (SR) Ca(2+) release was found to be smaller in B(2)R(-/-) cardiomyocytes. Importantly, evidence is provided that NO constitutive production is, at least in part, responsible for the reported electrophysiological modifications observed in cardiomyocytes from B(2)R(-/-) mice. Surprisingly, NO is not involved in the SR Ca(2+) release reduction as demonstrated in the present study. Taken together, our findings indicate that B(2)R plays a fundamental role in the regulation of cardiac function and Ca(2+) homeostasis, probably through a NO dependent pathway. These results may contribute to our understanding of the kinins participation in the control of cardiac function. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Interaction between bradykinin B2 and Ang-(1-7) Mas receptors regulates erythrocyte invasion by Plasmodium falciparum.

    PubMed

    Silva, Leandro de Souza; Peruchetti, Diogo de Barros; Silva, Claudio Teixeira Ferreira-Da; Ferreira-DaSilva, André Teixeira; Perales, Jonas; Caruso-Neves, Celso; Pinheiro, Ana Acacia Sá

    2016-11-01

    The molecular mechanisms involved in erythrocyte invasion by malaria parasite are well understood, but the contribution of host components is not. We recently reported that Ang-(1-7) impairs the erythrocytic cycle of P. falciparum through Mas receptor-mediated reduction of protein kinase A (PKA) activity. The effects of bradykinin (BK), a peptide of the kallikrein-kinin system (KKS), can be potentiated by Ang-(1-7), or angiotensin-converting enzyme (ACE) inhibitors, such as captopril. We investigated the coordinated action between renin-angiotensin system (RAS) and KKS peptides in the erythrocyte invasion by P. falciparum. We used human erythrocytes infected with P. falciparum to assess the influence of RAS and KKS peptides in the invasion of new erythrocytes. The inhibitory effects of Ang-(1-7) were mimicked by captopril. 10(-8)M BK decreased new ring forms and this effect was sensitive to 10(-8)M HOE-140 and 10(-7)M A779, B2 and Mas receptor antagonists, respectively. However, DALBK, a B1 receptor blocker, had no effect. The inhibitory effect of Ang-(1-7) was reversed by HOE-140 and A779 at the same concentrations. Co-immunoprecipitation assay revealed an association between B2 and Mas receptors. BK also inhibited PKA activity, which was sensitive to both HOE-140 and A779. The results suggest that B2 and Mas receptors are mediators of Ang-(1-7) and BK inhibitory effects, through a cross-signaling pathway, possibly by the formation of a heterodimer. Our results describe new elements in host signaling that could be involved in parasite invasion during the erythrocyte cycle of P. falciparum. Copyright © 2016. Published by Elsevier B.V.

  4. Bradykinin B2-receptor-mediated modulation of membrane currents in guinea-pig cardiomyocytes

    PubMed Central

    Sakamoto, Naoya; Uemura, Hiroko; Hara, Yukio; Saito, Toshihiro; Masuda, Yoshiaki; Nakaya, Haruaki

    1998-01-01

    In order to define the electrophysiological mechanism(s) responsible for bradykinin (BK)-induced positive inotropic and chronotropic responses in isolated guinea-pig atria, effects of BK on the membrane currents were examined in isolated atrial cells using patch clamp techniques.BK (0.1–1000 nM) increased the L-type Ca2+ current (ICa), which was recorded from enzymatically-dissociated atrial myocytes by the nystatin-perforated patch method, in a concentration-dependent fashion, and the calculated EC50 value for increasing ICa was 5.2 nM. In conventional ruptured patch experiments, BK inhibited the muscarinic acetylcholine receptor-operated K+ current (IK.ACh) that was activated by the muscarinic agonist carbachol (1 μM) with an EC50 value of 0.57 nM. Both the increase in ICa and the decrease in IK.ACh were blocked by HOE140, a selective bradykinin B2 receptor antagonist.The BK-induced inhibition of IK.ACh was significantly attenuated by staurosporine and calphostin C, protein kinase C inhibitors. In addition, the IK.ACh inhibition by BK was also attenuated by the tyrosine kinase inhibitor genistein or tyrphostin but not by daidzein, an inactive analogue of genistein. However, neither protein kinase C inhibitor nor tyrosine kinase inhibitor affected the BK-induced increase in ICa.In the presence and absence of muscarinic stimulation, BK prolonged the action potential recorded from the atrial cells in the current clamp mode.We conclude that BK increases ICa and decreases IK.ACh in atrial cells, resulting in positive inotropic and chronotropic responses in atrial preparations. Protein kinase C activation, and possibly tyrosine kinase activation, may be involved in the B2-receptor-mediated IK.ACh inhibition. PMID:9786500

  5. B-9972 (D-Arg-[Hyp3,Igl5,Oic7,Igl8]-bradykinin) is an inactivation-resistant agonist of the bradykinin B2 receptor derived from the peptide antagonist B-9430 (D-Arg-[Hyp3,Igl5,D-Igl7,Oic8]-bradykinin): pharmacologic profile and effective induction of receptor degradation.

    PubMed

    Bawolak, Marie-Thérèse; Gera, Lajos; Morissette, Guillaume; Stewart, John M; Marceau, François

    2007-11-01

    The bradykinin B(2) receptor is a heptahelical receptor regulated by a cycle of phosphorylation, endocytosis, and extensive recycling at the cell surface following agonist stimulation. B-9430 (d-Arg-[Hyp(3),Igl(5),D-Igl(7),Oic(8)]-bradykinin) is a second generation peptide antagonist found to be competitive at the human B(2) receptor and insurmountable at the rabbit B(2) receptor (contractility assays, isolated human umbilical and rabbit jugular veins). Two isomers of this peptide were prepared: B-10344 (D-Arg-[Hyp(3),Igl(5),Oic(7),D-Igl(8)]-bradykinin; inverted sequence Oic(7), D-Igl(8)) and B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-bradykinin); they are low- and high-potency agonists, respectively, in vascular preparations. The potency gap between bradykinin and B-9972 is narrow in contractility assays, despite the fact that B-9972 affinity is 7-fold inferior at the rabbit B(2) receptor (radioligand binding competition assay). The effects of agonists on receptors were compared using two chimerical constructions based on rabbit B(2) receptors: conjugate of the B(2) receptor with green fluorescent protein (B(2)R-GFP) and the N-terminally tagged conjugate of the myc epitope with the B(2) receptor. Imaging and immunoblotting showed that B-9972 induced a persistent endocytosis of cell surface B(2) receptors in human embryonic kidney 293 cells with slow receptor degradation (weak after 3 h of treatment, important at 12 h) and B(2)R-GFP desensitization ([(3)H]bradykinin endocytosis and extracellular signal-regulated kinase 1/2 phosphorylation assays). Bradykinin was not active in this respect but when combined with captopril, induced some degradation. B-9430 reduced the endocytosis and degradation of B(2) receptors by the agonists. The results illustrate the agonist-antagonist transition in B(2) receptor peptide ligands with a constrained C-terminal structure, the importance of species in their pharmacological profile, and the possibility of selectively degrading

  6. The nonpeptide B2 receptor antagonist FR173657: inhibition of effects of bradykinin related to its role in nociception

    PubMed Central

    Griesbacher, Thomas; Amann, Rainer; Sametz, Wolfgang; Diethart, Sabine; Juan, Heinz

    1998-01-01

    The nonpeptide bradykinin B2 receptor antagonist, FR173657 ((E)-3-(6-acetamido-3-pyridyl)-N-[N-(2, 4-dichloro-3-[(2-methyl-8-quinolinyl) oxymethyl] phenyl]-N-methylaminocarbonylmethyl] acrylamide), was tested in models involving bradykinin-induced activation of primary afferent neurones in vitro and in vivo. Bradykinin-induced contractions of the rabbit isolated iris sphincter muscle mediated by tachykinin release from trigeminal afferent neurones were inhibited in a non-competitive manner by FR173657. A pKB value of 7.9 was calculated. Effects of substance P were unaffected by FR173657. Nociceptive behavioural responses following intraplantar injection of bradykinin in unanaesthetized rats were reduced by 0.3 μmol kg−1 FR173657 s.c. (P<0.05), and completely abolished by 3 μmol kg−1 (P<0.05). Peroral administration of 5 μmol kg−1 FR173657 abolished the bradykinin effects (P<0.05); lower doses had no significant effect. Shortening by intraplantar injection of bradykinin of the paw withdrawal latency in response to radiant heat was abolished by 3 μmol kg−1 FR173657 s.c. (P<0.05), while 300 nmol kg−1 had an intermediate effect. Hyperalgesia induced by prostaglandin E2 remained unaffected by FR173657. Blood pressure reflexes following i.p. instillation of bradykinin in anaesthetized rats were inhibited by FR173657 s.c. with an ID50 of 1.1 μmol kg−1, while the peptidic B2 antagonist icatibant (Hoe-140; D-Arg0-[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin) caused inhibition at significantly lower doses (ID50 8.5 nmol kg−1 P<0.001). Responses to hydrochloric acid i.p. remained unaffected by FR173657. FR173657 or similar nonpeptide compounds may be useful for the development of drugs for diseases involving pain induced by the release of endogenous kinins, i.e. especially in acute inflammatory conditions. PMID:9720808

  7. Nerve growth factor regulates the expression of bradykinin binding sites on adult sensory neurons via the neurotrophin receptor p75.

    PubMed

    Petersen, M; Segond von Banchet, G; Heppelmann, B; Koltzenburg, M

    1998-03-01

    Neurotrophins mediate specific effects on sensory neurons through tyrosine kinase receptors. Most of these neurons also co-express the neurotrophin receptor p75 (p75NTR), but its function has remained obscure. We now show that nerve growth factor but not brain-derived neurotrophic factor or neurotrophin-3 selectively increases the expression of bradykinin binding sites on cultured dorsal root ganglion neurons from adult mouse via p75NTR. This up-regulation of bradykinin binding sites did not occur in neurons from mice lacking p75NTR or in neurons from wild-type mice treated with p75NTR-blocking antibody, indicating that tyrosine kinase receptors alone are not sufficient to trigger this physiological neuronal response. Thus, the interaction of nerve growth factor with p75NTR is an important factor contributing to chronic pain conditions.

  8. Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation

    PubMed Central

    2013-01-01

    Background Chronic musculoskeletal pain involves connective tissue remodeling triggered by inflammatory mediators, such as bradykinin. Fibroblast cells signaling involve changes in intracellular Ca2+ ([Ca2+]i). ATP has been related to connective tissue mechanotransduction, remodeling and chronic inflammatory pain, via P2 purinoceptors activation. Here, we investigated the involvement of ATP in bradykinin-induced Ca2+ signals in human subcutaneous fibroblasts. Results Bradykinin, via B2 receptors, caused an abrupt rise in [Ca2+]i to a peak that declined to a plateau, which concentration remained constant until washout. The plateau phase was absent in Ca2+-free medium; [Ca2+]i signal was substantially reduced after depleting intracellular Ca2+ stores with thapsigargin. Extracellular ATP inactivation with apyrase decreased the [Ca2+]i plateau. Human subcutaneous fibroblasts respond to bradykinin by releasing ATP via connexin and pannexin hemichannels, since blockade of connexins, with 2-octanol or carbenoxolone, and pannexin-1, with 10Panx, attenuated bradykinin-induced [Ca2+]i plateau, whereas inhibitors of vesicular exocytosis, such as brefeldin A and bafilomycin A1, were inactive. The kinetics of extracellular ATP catabolism favors ADP accumulation in human fibroblast cultures. Inhibition of ectonucleotidase activity and, thus, ADP formation from released ATP with POM-1 or by Mg2+ removal from media reduced bradykinin-induced [Ca2+]i plateau. Selective blockade of the ADP-sensitive P2Y12 receptor with AR-C66096 attenuated bradykinin [Ca2+]i plateau, whereas the P2Y1 and P2Y13 receptor antagonists, respectively MRS 2179 and MRS 2211, were inactive. Human fibroblasts exhibited immunoreactivity against connexin-43, pannexin-1 and P2Y12 receptor. Conclusions Bradykinin induces ATP release from human subcutaneous fibroblasts via connexin and pannexin-1-containing hemichannels leading to [Ca2+]i mobilization through the cooperation of B2 and P2Y12 receptors. PMID

  9. Multiple mechanisms in the motor responses of the guinea-pig isolated urinary bladder to bradykinin.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Santicioli, P.; Geppetti, P.; Cecconi, R.; Giuliani, S.; Meli, A.

    1989-01-01

    1. Bradykinin (1 nm-1 microM) produced a contraction of bladder strips excised from the dome of the guinea-pig urinary bladder, an effect which was greatly enhanced by removal of the mucosal layer or by thiorphan (10 microM). All subsequent experiments were performed in mucosa-free strips and in the presence of thiorphan. 2. In carbachol (5 microM)-contracted strips, bradykinin produced a concentration (1 nm-1 microM)-dependent transient relaxation. 3. Kallidin was slightly more potent than bradykinin in producing a contraction and a relaxation of the carbachol-induced tone. By contrast, [des-Arg9]-bradykinin, a selective B1 receptor agonist was barely effective up to 1 microM. 4. The contractile response to bradykinin was: (a) unaffected by either tetrodotoxin (1 microM), in vitro capsaicin desensitization (10 microM for 30 min) or apamin (0.1 microM); (b) antagonized by indomethacin (5 microM), the prostaglandin receptor antagonist SC-19220 (100 microM) or the B2 receptor antagonist [D-Arg0, Hyp3, Thi5,8, Phe7]-bradykinin (10 micron) and (c) almost abolished by nifedipine (1 microM). 5. The antagonism of the contractile response to bradykinin produced by indomethacin and SC-19220 was non-additive while that produced by indomethacin and the B2 receptor antagonist was additive. 6. The relaxant response to bradykinin was unaffected by tetrodotoxin, in vitro capsaicin desensitization or indomethacin but antagonized in a competitive manner by the B2 receptor antagonist. Further, this response was abolished by apamin (0.1 microM) but unaffected by glibenclamide (1 microM). 7. Bradykinin (10 microM) produced a consistent release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) but not substance P-LI from the guinea-pig bladder muscle. CGRP-LI release by bradykinin was greatly reduced in bladders exposed to indomethacin. [des-Arg9]-bradykinin (10 microM) was ineffective. 8. We conclude that: (a) bradykinin-induced contraction involves activation of both

  10. Induction of B(1)-kinin receptors in vascular smooth muscle cells: cellular mechanisms of map kinase activation.

    PubMed

    Christopher, J; Velarde, V; Jaffa, A A

    2001-09-01

    Vascular smooth muscle cell (VSMC) proliferation is a prominent feature of the atherosclerotic process that occurs after endothelial injury. Although a vascular wall kallikrein-kinin system has been described, its contribution to vascular disease remains undefined. Because the B(1)-kinin receptor subtype (B1KR) is induced in VSMCs only in response to injury, we hypothesize that this receptor may be mediating critical events in the progression of vascular disease. In the present study, we provide evidence that des-Arg(9)-bradykinin (dABK) (10(-8) M), acting through B1KR, stimulates the phosphorylation of mitogen-activated protein kinase (MAPK) (p42(mapk) and p44(mapk)). Activation of MAPK by dABK is mediated via a cholera toxin-sensitive pathway and appears to involve protein kinase C, Src kinase, and MAPK kinase. These findings demonstrate that the activation of B1KR in VSMCs leads to the generation of second messengers that converge to activate MAPK and provide a rationale to investigate the mitogenic actions of dABK in vascular injury.

  11. Bradykinin-mediated cell proliferation depends on transactivation of EGF receptor in corneal fibroblasts.

    PubMed

    Cheng, Ching-Yi; Tseng, Hui-Ching; Yang, Chuen-Mao

    2012-04-01

    In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  12. Induction of kinin B1 receptor-dependent vasoconstriction following balloon catheter injury to the rabbit carotid artery.

    PubMed Central

    Pruneau, D.; Luccarini, J. M.; Robert, C.; Bélichard, P.

    1994-01-01

    1. Balloon catheter injury to the rabbit carotid artery damaged the endothelium and induced neointima formation over 7 days. The area of intima, expressed as a percentage of the media, was 16.2 +/- 4.2% and 8.2 +/- 0.1% in balloon catheter-injured and sham-operated arteries. 2. Seven days after arterial injury, carotid arteries were isolated and set up as ring preparations in organ baths for isometric tension measurements. Balloon catheter-injured arteries first contracted with noradrenaline (0.01-0.1 microM), contracted further in a concentration-dependent manner to bradykinin (BK; pD2, 5.98 +/- 0.22; Emax, 41.3 +/- 5.2% of KCl) and to des-Arg9-BK (pD2, 7.12 +/- 0.36; Emax, 46.0 +/- 9.9% of KCl). In contrast, vessel segments with endothelium either intact or acutely removed were unresponsive to both BK receptor agonists. 3. The concentration-contraction curves for BK and for des-Arg9-BK were shifted to the right by the B1 receptor antagonist, [Leu8]des-Arg9-BK (3 microM), but not by the selective B2 receptor antagonist, Hoe 140 (1 microM). 4. Thus, BK and its metabolite, des-Arg9-BK act as vasoconstrictor agents following balloon catheter injury. These effects appear to be mediated by activation of B1 receptors. Images Figure 4 PMID:8032586

  13. IL-4 and IL-13 inhibit IL-1β and TNF-α induced kinin B1 and B2 receptors through a STAT6-dependent mechanism

    PubMed Central

    Souza, PPC; Brechter, AB; Reis, RI; Costa, CAS; Lundberg, P; Lerner, UH

    2013-01-01

    Background and Purpose Bone resorption induced by interleukin-1β (IL-1β) and tumour necrosis factor (TNF-α) is synergistically potentiated by kinins, partially due to enhanced kinin receptor expression. Inflammation-induced bone resorption can be impaired by IL-4 and IL-13. The aim was to investigate if expression of B1 and B2 kinin receptors can be affected by IL-4 and IL-13. Experimental Approach We examined effects in a human osteoblastic cell line (MG-63), primary human gingival fibroblasts and mouse bones by IL-4 and IL-13 on mRNA and protein expression of the B1 and B2 kinin receptors. We also examined the role of STAT6 by RNA interference and using Stat6-/- mice. Key Results IL-4 and IL-13 decreased the mRNA expression of B1 and B2 kinin receptors induced by either IL-1β or TNF-α in MG-63 cells, intact mouse calvarial bones or primary human gingival fibroblasts. The burst of intracellular calcium induced by either bradykinin (B2 agonist) or des-Arg10-Lys-bradykinin (B1 agonist) in gingival fibroblasts pretreated with IL-1β was impaired by IL-4. Similarly, the increased binding of B1 and B2 ligands induced by IL-1β was decreased by IL-4. In calvarial bones from Stat6-deficient mice, and in fibroblasts in which STAT6 was knocked down by siRNA, the effect of IL-4 was decreased. Conclusions and Implications These data show, for the first time, that IL-4 and IL-13 decrease kinin receptors in a STAT6-dependent mechanism, which can be one important mechanism by which these cytokines exert their anti-inflammatory effects and impair bone resorption. PMID:23351078

  14. The synthesis and distribution of the kinin B1 and B2 receptors are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy.

    PubMed

    Argañaraz, Gustavo Adolfo; Silva, José Antônio; Perosa, Sandra Regina; Pessoa, Luciana Gilbert; Carvalho, Fátima Ferreira; Bascands, Jean Loup; Bader, Michael; da Silva Trindade, Edivaldo; Amado, Débora; Cavalheiro, Esper Abrão; Pesquero, João Bosco; da Graça Naffah-Mazzacoratti, Maria

    2004-04-23

    Kinins, a special class of polypeptides, are represented by bradykinin (BK), kallidin (Lys-BK), as well as their metabolites. The biological actions of these polypeptides binding on their receptors (B1 and B2) have been related to inflammation process, cytokines action, glutamate release and prostaglandins production. Usually, kinin B1 receptor is not expressed at a significant level under physiologic conditions in most tissues, but its expression is induced by injury, or upon exposure in vivo or in vitro to pro-inflammatory mediators. The kinin B2 receptor subtype is constitutively and widely expressed throughout the central and peripheral nervous system. These data raise the possibility for de novo expression of those receptors during the temporal lobe epilepsy (TLE), which has been related to cell death, gliosis and hippocampal reorganization. To correlate kinin system and TLE, adult male Wistar rats were submitted to pilocarpine model of epilepsy. The hippocampi were removed 6 h, 5 and 60 days after status epilepticus (SE) onset. The collected tissues were used to study the expression of kinin B1 and B2 mRNA receptors, using Real-Time PCR. Immunohistochemistry assay was also employed to visualize kinin B1 and B2 distribution in the hippocampus. The results show increased kinin B1 and B2 mRNA levels during acute, silent and chronic periods and changes in the kinin B1 and B2 receptors distribution. In addition, the immunoreactivity against kinin B1 receptor was increased mainly during the silent period, where neuron clusters of could be visualized. The kinin B2 receptor immunoreactivity also showed augmentation but mainly during the acute and silent periods. Our results suggest that kinin B1 and B2 receptors play an important role in the epileptic phenomena.

  15. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines.

    PubMed

    Catalioto, Rose-Marie; Valenti, Claudio; Maggi, Carlo Alberto; Giuliani, Sandro

    2015-09-15

    Kallikrein, kininogen and kinin receptors are present in human ocular tissues including the retinal pigment epithelium (RPE), suggesting a possible role of bradykinin (BK) in physiological and/or pathological conditions. To test this hypothesis, kinin receptors expression and function was investigated for the first time in human fetal RPE cells, a model close to native RPE, in both control conditions and after treatment with proinflammatory cytokines. Results showed that BK evoked intracellular Ca(2+) transients in human RPE cells by activating the kinin B2 receptor. Pretreatment of the cells with TNF-α and/or IL-1β enhanced Ca(2+) response in a time- and concentration-dependent additive manner, whereas the potency of BK and that of the selective B2 receptor antagonist, fasitibant chloride, both in the nanomolar range, remained unaffected. Cytokines have no significant effect on cell number and viability and on the activity of other GPCRs such as the kinin B1, acetylcholine, ATP and thrombin receptors. Immunoblot analysis and immunofluorescence studies revealed that cytokines treatment was associated with an increase in both kinin B2 receptor and COX-2 expression and with the secretion of prostaglandin E1 and E2 into the extracellular medium. BK, through activation of the kinin B2 receptor, potentiated the COX-2 mediated prostaglandin release in cytokines-primed RPE cells while new protein synthesis and prostaglandin production contribute to the potentiating effect of cytokines on BK-induced Ca(2+) response. In conclusion, overall data revealed a cross-talk between the kinin B2 receptor and cytokines in human RPE in promoting inflammation, a key feature in retinal pathologies including diabetic retinopathy and macular edema. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors

    PubMed Central

    Kakoki, Masao; Kizer, Catherine M.; Yi, Xianwen; Takahashi, Nobuyuki; Kim, Hyung-Suk; Bagnell, C. Robert; Edgell, Cora-Jean S.; Maeda, Nobuyo; Jennette, J. Charles; Smithies, Oliver

    2006-01-01

    We have previously reported that genetically increased angiotensin-converting enzyme levels, or absence of the bradykinin B2 receptor, increase kidney damage in diabetic mice. We demonstrate here that this is part of a more general phenomenon — diabetes and, to a lesser degree, absence of the B2 receptor, independently but also largely additively when combined, enhance senescence-associated phenotypes in multiple tissues. Thus, at 12 months of age, indicators of senescence (alopecia, skin atrophy, kyphosis, osteoporosis, testicular atrophy, lipofuscin accumulation in renal proximal tubule and testicular Leydig cells, and apoptosis in the testis and intestine) are virtually absent in WT mice, detectable in B2 receptor–null mice, clearly apparent in mice diabetic because of a dominant mutation (Akita) in the Ins2 gene, and most obvious in Akita diabetic plus B2 receptor–null mice. Renal expression of several genes that encode proteins associated with senescence and/or apoptosis (TGF-β1, connective tissue growth factor, p53, α-synuclein, and forkhead box O1) increases in the same progression. Concomitant increases occur in 8-hydroxy-2′-deoxyguanosine, point mutations and deletions in kidney mitochondrial DNA, and thiobarbituric acid–reactive substances in plasma, together with decreases in the reduced form of glutathione in erythrocytes. Thus, absence of the bradykinin B2 receptor increases the oxidative stress, mitochondrial DNA damage, and many senescence-associated phenotypes already present in untreated Akita diabetic mice. PMID:16604193

  17. Bradykinin Enhances AMPA and NMDA Receptor Activity in Spinal Cord Dorsal Horn Neurons by Activating Multiple Kinases to Produce Pain Hypersensitivity

    PubMed Central

    Kohno, Tatsuro; Wang, Haibin; Amaya, Fumimasa; Brenner, Gary J.; Cheng, Jen-Kun; Ji, Ru-Rong; Woolf, Clifford J.

    2009-01-01

    Bradykinin potentiates synaptic glutamate release and action in the spinal cord via presynaptic and postsynaptic B2 receptors, contributing thereby to activity-dependent central sensitization and pain hypersensitivity (Wang et al., 2005). We have now examined the signaling pathways that are responsible for the postsynaptic modulatory actions of bradykinin on glutamatergic action and transmission in superficial dorsal horn neurons. B2 receptors are coexpressed in dorsal horn neurons with protein kinase A (PKA) and the δ isoform of protein kinase C (PKC), and we find that the augmentation by bradykinin of AMPA and NMDA receptor-mediated currents in lamina II neurons requires coactivation of both PKC and PKA. The activation of PKA is downstream of COX1 (cyclooxygenase-1). Extracellular signal-regulated kinase (ERK) activation is involved after the PKC and PKA coactivation, and intrathecal administration of bradykinin induces a thermal hyperalgesia in vivo, which is reduced by inhibition of ERK, PKA, and PKC. We conclude that bradykinin, by activating multiple kinases in dorsal horn neurons, potentiates glutamatergic synaptic transmission to produce pain hypersensitivity. PMID:18434532

  18. Pharmacological characterisation of the first non-peptide bradykinin B2 receptor agonist FR 190997: an in vitro study on human, rabbit and pig vascular B2 receptors.

    PubMed

    Rizzi, A; Rizzi, C; Amadesi, S; Calo', G; Varani, K; Inamura, N; Regoli, D

    1999-10-01

    FR 190997, a new kinin B2 receptor agonist of non-peptide nature, has been studied in three isolated vessels: the human umbilical vein (hUV), the rabbit jugular vein (rbJV), and the pig coronary artery (pCA). Bradykinin (BK) contracts the hUV and rbJV through smooth muscle B2 receptors, while it relaxes the pCA through endothelial receptors of the B2 type. Contractions of the hUV and rbJV in response to FR 190997 show slow onset and are not reproducible compared to the rapid and reproducible effect of BK. They reach only 70% and 30% of the BK-induced maximal contractions in the hUV and rbJV, respectively. The effects of FR 190997 are antagonised by HOE 140 and this antagonist shows similar pK(B) values against BK and FR 190997, indicating that the non-peptide agent interacts with the kinin B2 receptor. FR 190997 is inactive as relaxant of the pCA; in this tissue, it acts as a pure and competitive antagonist, with a pK(B) value of 7.6, while HOE 140 acts as an insurmountable antagonist (pK(B) 9.3). When tested as an antagonist, FR 190997 inhibits also the contractile effects of BK in the hUV (pK(B) 7.8) and in the rbJV (pK(B) 7.6). FR 190997 is selective for the B2 receptor since it does not interact with the B1, and is specific since it does not affect the contraction evoked by 5-hydroxytryptamine, endothelin-1, and noradrenaline in the hUV, or the relaxation induced by substance P in the pCA. FR 190997 shows therefore different pharmacological profiles in various preparations, acting as a partial agonist in the hUV and especially in the rbJV and as a pure antagonist in the pCA. This new compound could be of interest in understanding how non-peptide agonists may activate receptors for peptides.

  19. Lys-[Leu8,des-Arg9]-bradykinin blocks lipopolysaccharide-induced SHR aorta hyperpolarization by inhibition of Ca(++)- and ATP-dependent K+ channels.

    PubMed

    Farias, Nelson C; Feres, Teresa; Paiva, Antonio C M; Paiva, Therezinha B

    2004-09-13

    The mediators involved in the hyperpolarizing effects of lipopolysaccharide and of the bradykinin B1 receptor agonist des-Arg9-bradykinin on the rat aorta were investigated by comparing the responses of aortic rings of spontaneously hypertensive and normotensive Wistar rats. Endothelized rings from hypertensive rats were hyperpolarized by des-Arg9-bradykinin and lipopolysaccharide, whereas de-endothelized rings responded to lipopolysaccharide but not to des-Arg9-bradykinin. In endothelized preparations, the responses to des-Arg9-bradykinin were inhibited by Nomega-nitro-L-arginine and iberiotoxin. De-endothelized ring responses to lipopolysaccharide were inhibited by iberiotoxin, glibenclamide and B1 antagonist Lys-[Leu8,des-Arg9]-bradykinin. This antagonist also inhibited hyperpolarization by des-Arg9-bradykinin and by the á2-adrenoceptor agonist, brimonidine. Our results indicate that Ca(2+)-sensitive K+ channels are the final mediators of the responses to des-Arg9-bradykinin, whereas both Ca(2+)- and ATP-sensitive K+ channels mediate the responses to lipopolysaccharide. The inhibitory effects of Lys-[Leu8,des-Arg9]-bradykinin is due to a direct action on Ca(2+)- and ATP-sensitive potassium channels.

  20. A novel physiological property of snake bradykinin-potentiating peptides-reversion of MK-801 inhibition of nicotinic acetylcholine receptors.

    PubMed

    Nery, Arthur A; Trujillo, Cleber A; Lameu, Claudiana; Konno, Katsuhiro; Oliveira, Vitor; Camargo, Antonio C M; Ulrich, Henning; Hayashi, Mirian A F

    2008-10-01

    The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [receptors expressed in blood vessels have been related to blood pressure regulation. Therefore, we have studied the effects of BPP-10c on acetylcholine receptor function in the PC12 pheochromocytoma cell line, which following induction to neuronal differentiation expresses most of the nicotinic receptor subtypes. BPP-10c did not induce receptor-mediated ion flux, nor potentiated carbamoylcholine-provoked receptor activity as determined by whole-cell recording. This peptide, however, alleviated MK-801-induced inhibition of nicotinic acetylcholine receptor activity. Although more data are needed for understanding the mechanism of the BPP-10c effect on nicotinic receptor activity and its relationship with the anti-hypertensive activity, this work reveals possible therapeutic applications for BPP-10c in establishing normal acetylcholine receptor activity.

  1. Design and synthesis of potent bradykinin agonists containing a benzothiazepine moiety.

    PubMed

    Amblard, M; Daffix, I; Bedos, P; Bergé, G; Pruneau, D; Paquet, J L; Luccarini, J M; Bélichard, P; Dodey, P; Martinez, J

    1999-10-07

    A bradykinin analogue (H-Arg-Pro-Pro-Gly-Phe-Ser-D-BT-Arg-OH, 3) in which the Pro-Phe dipeptide was replaced by the (3S)[amino]-5-(carbonylmethyl)-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety has been synthesized. The same modification was performed on the potent bradykinin B(2) receptor antagonist HOE 140 (H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH), in which the -D-Tic-Oic- moiety was replaced by D-BT to yield H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-BT-Arg-OH, 1 (JMV1116). These compounds were examined in vitro for their binding affinity toward bradykinin B(1) and B(2) receptors as well as for their ability to interfere with bradykinin-induced contraction of both human umbilical vein and rat uterus. The two compounds 3 and 1 competed with [(3)H]bradykinin binding to the human cloned B(2) receptor giving K(i) values of 13 +/- 2 and 0.7 +/- 0.1 nM, respectively. Unexpectedly, both compounds were full bradykinin B(2) receptor agonists on the human umbilical vein (pD(2) = 6.60 +/- 0.07 for 3 and 6.80 +/- 0.08 for 1) and rat uterus (pD(2) = 7.20 +/- 0.09 for 3 and 7.50 +/- 0.09 for 1) preparations with the same efficacy as bradykinin. In addition 1 induced a concentration-dependent phosphoinositide production in CHO cells expressing the human cloned B(2) receptor. These data provide evidence for a bioactive conformation of bradykinin constrained at the dipeptide Pro-Phe.

  2. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling.

    PubMed

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A

    2015-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions.

  3. [Bradykinin and ventricular function].

    PubMed

    Trochu, J N

    2002-03-01

    Kinins are vasodilator peptides implicated in many physiological and physiopathological processes such as blood pressure regulation and that of the coronary circulation and inflammatory reactions. Kinins play an essential role in ventricular function as they counteract the effects of angiotensin II during myocardial ischaemia, ventricular remodelling and severe cardiac failure, emphasising the value of treatment favouring local endogenic production of bradykinin such as ACE inhibitors, neutral endopeptidase inhibitors and antagonists of AT1 receptors of angiotensin II.

  4. In various tumour cell lines the peptide bradykinin B(2) receptor antagonist, Hoe 140 (Icatibant), may act as mitogenic agonist.

    PubMed

    Drube, S; Liebmann, C

    2000-12-01

    This study examined the mitogenic effects of bradykinin (BK, Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg), the peptide bradykinin B(2) receptor antagonist Hoe 140 (D-Arg(0)[Hyp(3)-Thi(6)-D-Tic(7)-Oic(8)]BK, and the orally active, nonpeptide B(2) receptor antagonist FR 173657 ((E)-3-(6-acetamido-3-pyridyl)-N-[N-2-4-dichloro-3-[(2-methyl-8-quino linyl) oxymethyl]phenyl]-N-methylaminocarbonyl-methyl]acrylamide) in three different human tumour cell lines: the small cell lung carcinoma (SCLC) cell line H-69, the breast carcinoma cell line EFM-192A, and the colon carcinoma cell line SW-480. In these cell lines activation of mitogen-activated protein kinase (MAPK) is involved in BK-induced stimulation of cell proliferation and may be mediated by both G(q) proteins (SW-480) and G(i) proteins (EFM-192A; H-69). In these cells BK as well as Hoe 140 increased the rate of DNA synthesis measured with the [(3)H]-thymidine uptake assay. Hoe 140 did neither antagonize nor potentiate the effect of BK. FR 173657 did not stimulate [(3)H]-thymidine incorporation but clearly antagonized the mitogenic effects of BK as well as Hoe 140. In H-69 cells, FR 173657 induced a decrease in the basal rate of DNA synthesis. In all three cell lines BK and Hoe 140 stimulated the activity of MAPK. Their effect on MAPK activity was completely abolished by FR 173657 which itself did not increase the activity of MAPK. In H-69 cells, the basal activity of MAPK was slightly inhibited by FR 173657. In the cell lines SW-480 and H-69 both BK and Hoe 140 but not FR 173657 stimulated phosphatidylinositol hydrolysis. In H-69 cells, FR 173657 decreased basal inositol phosphate formation. Our results show that in certain tumour cell lines the classical peptide B(2) receptor antagonist, Hoe 140, may act as mitogenic B(2) receptor agonist whereas the nonpeptide B(2) receptor antagonist, FR 173657, does not. In H-69 cells FR 173657 was found to exhibit properties of an inverse agonist.

  5. Involvement of B2 receptor in bradykinin-induced proliferation and proinflammatory effects in human nasal mucosa-derived fibroblasts isolated from chronic rhinosinusitis patients.

    PubMed

    Tsai, Yih-Jeng; Hao, Sheng-Po; Chen, Chih-Li; Lin, Brian J; Wu, Wen-Bin

    2015-01-01

    Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinonasal mucosa either accompanied by polyp formation (CRSwNP) or without polyps (CRSsNP). CRSsNP accounts for the majority of CRS cases and is characterized by fibrosis and neutrophilic inflammation. However, the pathogenesis of CRS, especially CRSsNP, remains unclear. Immunohistochemistry of CRSsNP specimens in the present study showed that the submucosa, perivascular areas, and the mucous glands were abundant in fibroblasts. Therefore, we investigated the effects bradykinin (BK), an autacoid known to participate in inflammation, on human CRSsNP nasal mucosa-derived fibroblasts (NMDFs). BK increased CXCL1 and -8 secretion and mRNA expression with EC50 ranging from 0.15~0.35 μM. Moreover, BK enhanced cell proliferation and upregulated the expressions of proinflammatory molecules, including cell adhesion molecules (CAMs) and cyclooxygenase (COX)-1 and -2. These functionally caused an increase in monocyte adhesion to fibroblast monolayer. Using pharmacological intervention and BKR siRNA knockdown, we demonstrated that the BK-induced CXCL chemokine release, cell proliferation and COX and CAM expressions were mainly through the B2 receptor (B2R). Accordingly, the B2R was preferentially expressed in the NMDFs than B1R. The B2R was highly expressed in the CRSsNP than the control specimens, while the B1R and kininogen (KNG)/BK expression slightly increased in the CRSsNP mucosa. Collectively, we report here for the first time that fibroblasts, KNG/BK, and BKRs are overexpressed in CRSsNP mucosa and BK upregulates chemokine expression, proliferation, and proinflammatory molecule expression in NMDFs via B2R activation, which lead to a functional increase in monocyte-fibroblast interaction. Our findings reveal a critical role of fibroblast, KNG/BK, and BKRs in the development of CRSsNP.

  6. Metallopeptidase inhibition potentiates bradykinin-induced hyperalgesia

    PubMed Central

    Gomez, Ruben; Por, Elaine D.; Berg, Kelly A.; Clarke, William P.; Glucksman, Marc J.; Jeske, Nathaniel A.

    2011-01-01

    The neuropeptide bradykinin (BK) sensitizes nociceptor activation following its release in response to inflammatory injury. Thereafter, the bioactivity of bradykinin is controlled by the enzymatic activities of circulating peptidases. One such enzyme, the metalloendopeptidase EC3.4.24.15 (EP24.15), is co-expressed with bradykinin receptors in primary afferent neurons. In this study, utilizing approaches encompassing pharmacology, biochemistry, cell biology and behavioral animal models, we discover a crucial role for EP24.15 and the closely-related EP24.16 in modulating bradykinin-mediated hyperalgesia. Pharmacological analyses indicate that EP24.15 and EP24.16 inhibition significantly enhances bradykinin type-2 receptor activation by bradykinin in primary trigeminal ganglia cultures. In addition, bradykinin-induced sensitization of TRPV1 activation is increased in the presence of the EP24.15/16 inhibitor JA-2. Furthermore, behavioral analyses illustrate a significant dose-response relationship between JA-2 and bradykinin-mediated thermal hyperalgesia. These results indicate an important physiological role for the metallopeptidases EP24.15 and EP24.16 in regulating bradykinin-mediated sensitization of primary afferent nociceptors. PMID:21458920

  7. Ca(2+) signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca(2+) channel blockade.

    PubMed

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H

    2016-01-15

    Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions. In this study, we have investigated bradykinin-elicited Ca(2+) signal generation in normal mouse pancreatic lobules. We found complete separation of Ca(2+) signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca(2+) signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca(2+) signals in PACs, never elicited Ca(2+) signals in PSCs. The bradykinin-elicited Ca(2+) signals were due to initial Ca(2+) release from inositol trisphosphate-sensitive stores followed by Ca(2+) entry through Ca(2+) release-activated channels (CRACs). The Ca(2+) entry phase was effectively inhibited by a CRAC blocker. B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis-promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca(2+) signals. We have compared Ca(2+) signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca(2+) signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto-digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca(2+) signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca(2+) signals in PSCs. The BK-induced Ca(2+) signals were mediated by B2 receptors and B2

  8. Bradykinin modulates spontaneous nerve growth factor production and stretch-induced ATP release in human urothelium.

    PubMed

    Ochodnický, Peter; Michel, Martina B; Butter, Jan J; Seth, Jai; Panicker, Jalesh N; Michel, Martin C

    2013-04-01

    The urothelium plays a crucial role in integrating urinary bladder sensory outputs, responding to mechanical stress and chemical stimulation by producing several diffusible mediators, including ATP and, possibly, neurotrophin nerve growth factor (NGF). Such urothelial mediators activate underlying afferents and thus may contribute to normal bladder sensation and possibly to the development of bladder overactivity. The muscle-contracting and pain-inducing peptide bradykinin is produced in various inflammatory and non-inflammatory pathologies associated with bladder overactivity, but the effect of bradykinin on human urothelial function has not yet been characterized. The human urothelial cell line UROtsa expresses mRNA for both B1 and B2 subtypes of bradykinin receptors, as determined by real-time PCR. Bradykinin concentration-dependently (pEC50=8.3, Emax 4434±277nM) increased urothelial intracellular calcium levels and induced phosphorylation of the mitogen-activated protein kinase (MAPK) ERK1/2. Activation of both bradykinin-induced signaling pathways was completely abolished by the B2 antagonist icatibant (1μM), but not the B1 antagonist R715 (1μM). Bradykinin-induced (100nM) B2 receptor activation markedly increased (192±13% of control levels) stretch-induced ATP release from UROtsa in hypotonic medium, the effect being dependent on intracellular calcium elevations. UROtsa cells also expressed mRNA and protein for NGF and spontaneously released NGF to the medium in the course of hours (11.5±1.4pgNGF/mgprotein/h). Bradykinin increased NGF mRNA expression and accelerated urothelial NGF release to 127±5% in a protein kinase C- and ERK1/2-dependent manner. Finally, bradykinin up-regulated mRNA for transient-receptor potential vanilloid (TRPV1) sensory ion channel in UROtsa. In conclusion, we show that bradykinin represents a versatile modulator of human urothelial phenotype, accelerating stretch-induced ATP release, spontaneous release of NGF, as well as

  9. Activation of kinin B1 receptor increases the release of metalloproteases-2 and -9 from both estrogen-sensitive and -insensitive breast cancer cells.

    PubMed

    Ehrenfeld, Pamela; Conejeros, Ivan; Pavicic, Maria F; Matus, Carola E; Gonzalez, Carlos B; Quest, Andrew F G; Bhoola, Kanti D; Poblete, Maria T; Burgos, Rafael A; Figueroa, Carlos D

    2011-02-01

    The kinin B(1) receptor (B(1)R) agonist Lys-des[Arg(9)]-bradykinin (LDBK) increases proliferation of estrogen-sensitive breast cancer cells by a process involving activation of the epidermal growth factor receptor (EGFR) and downstream signaling via the ERK1/2 mitogen-activated protein kinase pathway. Here, we investigated whether B(1)R stimulation induced release of the extracellular matrix metalloproteases MMP-2 and MMP-9 via ERK-dependent pathway in both estrogen-sensitive MCF-7 and -insensitive MDA-MB-231 breast cancer cells. Cells were stimulated with 1-100nM of the B(1)R agonist for variable time-points. Western blotting and gelatin zymography were used to evaluate the presence of MMP-2 and MMP-9 in the extracellular medium. Stimulation of B(1)R with as little as 1 nM LDBK induced the accumulation of these metalloproteases in the medium within 5-30min of stimulation. In parallel, immunocytochemistry revealed that metalloprotease levels in the breast cancer cells declined after stimulation. This effect was blocked either by pre-treating the cells with a B(1)R antagonist or by transfecting with B(1)R-specific siRNA. Activation of the ERK1/2 pathway and EGFR transactivation was required for release of metalloproteases because both the MEK1 inhibitor, PD98059, and AG1478, an inhibitor of the EGFR-tyrosine kinase activity, blocked this event. The importance of EGFR-dependent signaling was additionally confirmed since transfection of cells with the dominant negative EGFR mutant HERCD533 blocked the release of metalloproteases. Thus, activation of B(1)R is likely to enhance breast cancer cells invasiveness by releasing enzymes that degrade the extracellular matrix and thereby favor metastasis.

  10. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy

    PubMed Central

    Andrade, Daniele; Serra, Rafaela; Svensjö, Erik; Lima, Ana Paula C; Ramos Junior, Erivan S; Fortes, Fabio S; Morandini, Ana Carolina F; Morandi, Verônica; Soeiro, Maria de N; Tanowitz, Herbert B; Scharfstein, Julio

    2012-01-01

    BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ETAR and ETBR) and bradykinin B2 receptors (B2R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B2R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B2R (HOE-140), ETAR (BQ-123) and ETBR (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ETAR or ETBR genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ETAR and ETBR antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B2R, whereas RNA interference of ETAR and ETBR genes conversely reduced parasite internalization. ETRs/B2R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-β-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin- or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells. LINKED ARTICLE This paper is commented on by D'Orléans-Juste et al

  11. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors.

    PubMed

    Pesquero, J B; Araujo, R C; Heppenstall, P A; Stucky, C L; Silva, J A; Walther, T; Oliveira, S M; Pesquero, J L; Paiva, A C; Calixto, J B; Lewin, G R; Bader, M

    2000-07-05

    Kinins are important mediators in cardiovascular homeostasis, inflammation, and nociception. Two kinin receptors have been described, B1 and B2. The B2 receptor is constitutively expressed, and its targeted disruption leads to salt-sensitive hypertension and altered nociception. The B1 receptor is a heptahelical receptor distinct from the B2 receptor in that it is highly inducible by inflammatory mediators such as bacterial lipopolysaccharide and interleukins. To clarify its physiological function, we have generated mice with a targeted deletion of the gene for the B1 receptor. B1 receptor-deficient animals are healthy, fertile, and normotensive. In these mice, bacterial lipopolysaccharide-induced hypotension is blunted, and there is a reduced accumulation of polymorphonuclear leukocytes in inflamed tissue. Moreover, under normal noninflamed conditions, they are analgesic in behavioral tests of chemical and thermal nociception. Using whole-cell patch-clamp recordings, we show that the B1 receptor was not necessary for regulating the noxious heat sensitivity of isolated nociceptors. However, by using an in vitro preparation, we could show that functional B1 receptors are present in the spinal cord, and their activation can facilitate a nociceptive reflex. Furthermore, in B1 receptor-deficient mice, we observed a reduction in the activity-dependent facilitation (wind-up) of a nociceptive spinal reflex. Thus, the kinin B1 receptor plays an essential physiological role in the initiation of inflammatory responses and the modulation of spinal cord plasticity that underlies the central component of pain. The B1 receptor therefore represents a useful pharmacological target especially for the treatment of inflammatory disorders and pain.

  12. Panicolytic-like action of bradykinin in the dorsal periaqueductal gray through μ-opioid and B2-kinin receptors.

    PubMed

    Sestile, Caio César; Maraschin, Jhonatan Christian; Gama, Vanessa Scalco; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-09-01

    A wealth of evidence has shown that opioid and kinin systems may control proximal defense in the dorsal periaqueductal gray matter (dPAG), a critical panic-associated area. Studies with drugs that interfere with serotonin-mediated neurotransmission suggest that the μ-opioid receptor (MOR) synergistically interacts with the 5-HT1A receptor in the dPAG to inhibit escape, a panic-related behavior. A similar inhibitory effect has also been reported after local administration of bradykinin (BK), which is blocked by the non-selective opioid receptor antagonist naloxone. The latter evidence, points to an interaction between BK and opioids in the dPAG. We further explored the existence of this interaction through the dPAG electrical stimulation model of panic. We also investigated whether intra-dPAG injection of captopril, an inhibitor of the angiotensin-converting enzyme (ACE) that also degrades BK, causes a panicolytic-like effect. Our results showed that intra-dPAG injection of BK inhibited escape performance in a dose-dependent way, and this panicolytic-like effect was blocked by the BK type 2 receptor (B2R) antagonist HOE-140, and by the selective MOR antagonist CTOP. Conversely, the panicolytic-like effect caused by local administration of the selective MOR agonist DAMGO was antagonized by pre-treatment with either CTOP or HOE-140, indicating cross-antagonism between MOR and B2R. Finally, intra-dPAG injection of captopril also impaired escape in a dose-dependent way, and this panicolytic-like effect was blocked by pretreatment with HOE-140, suggesting mediation by endogenous BK. The panicolytic-like effect of captopril indicates that the use of ACE inhibitors in the clinical management of panic disorder may be worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Complete blockade of the vasorelaxant effects of angiotensin-(1–7) and bradykinin in murine microvessels by antagonists of the receptor Mas

    PubMed Central

    Peiró, Concepción; Vallejo, Susana; Gembardt, Florian; Palacios, Erika; Novella, Susana; Azcutia, Verónica; Rodríguez-Mañas, Leocadio; Hermenegildo, Carlos; Sánchez-Ferrer, Carlos F; Walther, Thomas

    2013-01-01

    The heptapeptide angiotensin-(1–7) is a biologically active metabolite of angiotensin II, the predominant peptide of the renin–angiotensin system. Recently, we have shown that the receptor Mas is associated with angiotensin-(1–7)-induced signalling and mediates, at least in part, the vasodilatory properties of angiotensin-(1–7). However, it remained controversial whether an additional receptor could account for angiotensin-(1–7)-induced vasorelaxation. Here, we used two different angiotensin-(1–7) antagonists, A779 and d-Pro-angiotensin-(1–7), to address this question and also to study their influence on the vasodilatation induced by bradykinin. Isolated mesenteric microvessels from both wild-type and Mas-deficient C57Bl/6 mice were precontracted with noradrenaline, and vascular reactivity to angiotensin-(1–7) and bradykinin was subsequently studied using a small-vessel myograph. Furthermore, mechanisms for Mas effects were investigated in primary human umbilical vein endothelial cells. Both angiotensin-(1–7) and bradykinin triggered a concentration-dependent vasodilatation in wild-type microvessels, which was absent in the presence of a nitric oxide synthase inhibitor. In these vessels, the pre-incubation with the Mas antagonists A779 or d-Pro-angiotensin-(1–7) totally abolished the vasodilatory capacity of both angiotensin-(1–7) and bradykinin, which was nitric oxide mediated. Accordingly, Mas-deficient microvessels lacked the capacity to relax in response to either angiotensin-(1–7) or bradykinin. Pre-incubation of human umbilical vein endothelial cells with A779 prevented bradykinin-mediated NO generation and NO synthase phosphorylation at serine 1177. The angiotensin-(1–7) antagonists A779 and d-Pro-angiotensin-(1–7) equally block Mas, which completely controls the angiotensin-(1–7)-induced vasodilatation in mesenteric microvessels. Importantly, Mas also appears to be a critical player in NO-mediated vasodilatation induced by

  14. Complete blockade of the vasorelaxant effects of angiotensin-(1-7) and bradykinin in murine microvessels by antagonists of the receptor Mas.

    PubMed

    Peiró, Concepción; Vallejo, Susana; Gembardt, Florian; Palacios, Erika; Novella, Susana; Azcutia, Verónica; Rodríguez-Mañas, Leocadio; Hermenegildo, Carlos; Sánchez-Ferrer, Carlos F; Walther, Thomas

    2013-05-01

    The heptapeptide angiotensin-(1-7) is a biologically active metabolite of angiotensin II, the predominant peptide of the renin-angiotensin system. Recently, we have shown that the receptor Mas is associated with angiotensin-(1-7)-induced signalling and mediates, at least in part, the vasodilatory properties of angiotensin-(1-7). However, it remained controversial whether an additional receptor could account for angiotensin-(1-7)-induced vasorelaxation. Here, we used two different angiotensin-(1-7) antagonists, A779 and d-Pro-angiotensin-(1-7), to address this question and also to study their influence on the vasodilatation induced by bradykinin. Isolated mesenteric microvessels from both wild-type and Mas-deficient C57Bl/6 mice were precontracted with noradrenaline, and vascular reactivity to angiotensin-(1-7) and bradykinin was subsequently studied using a small-vessel myograph. Furthermore, mechanisms for Mas effects were investigated in primary human umbilical vein endothelial cells. Both angiotensin-(1-7) and bradykinin triggered a concentration-dependent vasodilatation in wild-type microvessels, which was absent in the presence of a nitric oxide synthase inhibitor. In these vessels, the pre-incubation with the Mas antagonists A779 or d-Pro-angiotensin-(1-7) totally abolished the vasodilatory capacity of both angiotensin-(1-7) and bradykinin, which was nitric oxide mediated. Accordingly, Mas-deficient microvessels lacked the capacity to relax in response to either angiotensin-(1-7) or bradykinin. Pre-incubation of human umbilical vein endothelial cells with A779 prevented bradykinin-mediated NO generation and NO synthase phosphorylation at serine 1177. The angiotensin-(1-7) antagonists A779 and d-Pro-angiotensin-(1-7) equally block Mas, which completely controls the angiotensin-(1-7)-induced vasodilatation in mesenteric microvessels. Importantly, Mas also appears to be a critical player in NO-mediated vasodilatation induced by renin-angiotensin system

  15. MATE-1 modulation by kinin B1 receptor enhances cisplatin efflux from renal cells.

    PubMed

    Estrela, Gabriel R; Wasinski, Frederick; Felizardo, Raphael J F; Souza, Laura L; Câmara, Niels O S; Bader, Michael; Araujo, Ronaldo C

    2017-04-01

    Cisplatin is a drug widely used in chemotherapy that frequently causes severe renal dysfunction. Organic transporters have an important role to control the absorption and excretion of cisplatin in renal cells. Deletion and blockage of kinin B1 receptor has already been show to protect against cisplatin-induced acute kidney injury. To test whether it exerts its protective function by modulating the organic transporters in kidney, we studied kinin B1 receptor knockout mice and treatment with a receptor antagonist at basal state and in presence of cisplatin. Cisplatin administration caused downregulation of renal organic transporters; in B1 receptor knockout mice, this downregulation of organic transporters in kidney was absent; and treatment by a B1 receptor antagonist attenuated the downregulation of the transporter MATE-1. Moreover, kinin B1 receptor deletion and blockage at basal state resulted in higher renal expression of MATE-1. Moreover we observed that kinin B1 receptor deletion and blockage result in less accumulation of platinum in renal tissue. Thus, we propose that B1 receptor deletion and blockage protect the kidney from cisplatin-induced acute kidney injury by upregulating the expression of MATE-1, thereby increasing the efflux of cisplatin from renal cells.

  16. Null mutations at the p66 and bradykinin 2 receptor loci induce divergent phenotypes in the diabetic kidney

    PubMed Central

    Vashistha, Himanshu; Singhal, Pravin C.; Malhotra, Ashwani; Husain, Mohammad; Mathieson, Peter; Saleem, Moin A.; Kuriakose, Cyril; Seshan, Surya; Wilk, Anna; DelValle, Luis; Peruzzi, Francesca; Giorgio, Marco; Pelicci, Pier Giuseppe; Smithies, Oliver; Kim, Hyung-Suk; Kakoki, Masao; Reiss, Krzysztof

    2012-01-01

    Candidate genes have been identified that confer increased risk for diabetic glomerulosclerosis (DG). Mice heterozygous for the Akita (Ins2+/C96Y) diabetogenic mutation with a second mutation introduced at the bradykinin 2 receptor (B2R−/−) locus express a disease phenotype that approximates human DG. Src homology 2 domain transforming protein 1 (p66) controls mitochondrial metabolism and cellular responses to oxidative stress, aging, and apoptosis. We generated p66-null Akita mice to test whether inactivating mutations at the p66 locus will rescue kidneys of Akita mice from disease-causing mutations at the Ins2 and B2R loci. Here we show null mutations at the p66 and B2R loci interact with the Akita (Ins2+/C96Y) mutation, independently and in combination, inducing divergent phenotypes in the kidney. The B2R−/− mutation induces detrimental phenotypes, as judged by increased systemic and renal levels of oxidative stress, histology, and urine albumin excretion, whereas the p66-null mutation confers a powerful protection phenotype. To elucidate the mechanism(s) of the protection phenotype, we turned to our in vitro system. Experiments with cultured podocytes revealed previously unrecognized cross talk between p66 and the redox-sensitive transcription factor p53 that controls hyperglycemia-induced ROS metabolism, transcription of p53 target genes (angiotensinogen, angiotensin II type-1 receptor, and bax), angiotensin II generation, and apoptosis. RNA-interference targeting p66 inhibits all of the above. Finally, protein levels of p53 target genes were upregulated in kidneys of Akita mice but unchanged in p66-null Akita mice. Taken together, p66 is a potential molecular target for therapeutic intervention in DG. PMID:23019230

  17. Kinin B1 receptor participates in the control of cardiac function in mice.

    PubMed

    Lauton-Santos, Sandra; Guatimosim, Silvia; Castro, Carlos H; Oliveira, Fernando A; Almeida, Alvair P; Dias-Peixoto, Marco Fabrício; Gomes, Maria Aparecida; Pessoa, Phillipe; Pesquero, Jorge L; Pesquero, João B; Bader, Michael; Cruz, Jader S

    2007-08-16

    The kinins have an important role in control of the cardiovascular system. They have been associated with protective effects in the heart tissue. Kinins act through stimulation of two 7-transmembrane G protein-coupled receptors, denoted B(1) and B(2) receptors. However, the physiological relevance of B(1) receptor in the heart has not been clearly established. Using B(1) kinin receptor gene knock-out mice we tested the hypothesis that the B(1) receptor plays an important role in the control of baseline cardiac function. We examined the functional aspects of the intact heart and also in the isolated cardiomyocytes to study intracellular Ca(2+) cycling by using confocal microscopy and whole-cell voltage clamp techniques. We measured heart rate, diastolic and systolic tension, contraction and relaxation rates and, coronary perfusion pressure. Whole-cell voltage clamp was performed to measure L-type Ca(2+) current (I(Ca,L)). The hearts from B(1)(-/-) mice showed smaller systolic tension. The average values for WT and B(1)(-/-) mice were 2.6+/-0.04 g vs. 1.6+/-0.08 g, respectively. This result can be explained, at least in part, by the decrease in the Ca(2+) transient (3.1+/-0.06 vs. 3.4+/-0.09 for B(1)(-/-) and WT, respectively). There was an increase in I(Ca,L) at depolarized membrane potentials. Interestingly, the inactivation kinetics of I(Ca,L) was statistically different between the groups. The coronary perfusion pressure was higher in the hearts from B(1)(-/-) mice indicating an increase in coronary resistance. This result can be explained by the significant reduction of eNOS (NOS-3) expression in the aorta of B(1)(-/-) mice. Collectively, our results demonstrate that B(1) receptor exerts a fundamental role in the mammalian cardiac function.

  18. Kinin-B2 Receptor Exerted Neuroprotection After Diisopropylfluorophosphate-induced Neuronal Damage

    PubMed Central

    Torres-Rivera, Wilmarie; Pérez, Dinely; Park, Keon-Young; Carrasco, Marimée; Platt, Manu O.; Eterović, Vesna A.; Ferchmin, Pedro A.; Ulrich, Henning; Martins, Antonio H.

    2013-01-01

    The kinin-B2 receptor (B2BKR) activated by its endogenous ligand bradykinin participates in various metabolic processes including control of arterial pressure and inflammation. Recently, functions for this receptor in brain development and protection against glutamate-provoked excitotoxicity have been proposed. Here, we report neuroprotective properties for bradykinin against organophosphate poisoning using acute hippocampal slices as an in vitro model. Following slice perfusion for 10 min with diisopropylfluorophosphate (DFP) to initiate the noxious stimulus, responses of pyramidal neurons upon an electric impulse were reduced to less than 30 % of control amplitudes. Effects on synaptic-elicited population spikes were reverted when preparations had been exposed to bradykinin 30 min after challenging with DFP. Accordingly, bradykinin-induced population spike recovery was abolished by HOE-140, a B2BKR antagonist. However, the kinin-B1 receptor (B1BKR) agonist Lys-des-Arg9-bradykinin, inducing phosphorylation of MEK/MAPK and cell death, abolished bradykinin-mediated neuroprotection, an effect, which was reverted by the ERK inhibitor PD98059. In agreement with pivotal B1BKR functions in this process, antagonism of endogenous B1BKR activity alone was enough for restoring population spike activity. On the other hand pralidoxime, an oxime, reactivating AChE after organophosphate poisoning, induced population spike recovery after DFP exposure in the presence of bradykinin and Lys-des-Arg9-bradykinin. Lys-des-Arg9-bradykinin did not revert protection exerted by pralidoxime, however when instead bradykinin and Ly-des-Arg9-bradykinin were superfused together, recovery of population spikes diminished. These findings again confirm the neuroprotective feature of bradykinin, which is, diminished by its endogenous metabolites, stimulating the B1BKR, providing a novel understanding of physiological roles of these receptors. PMID:23735753

  19. Primary Role for Kinin B1 and B2 Receptors in Glioma Proliferation.

    PubMed

    Nicoletti, Natália Fontana; Sénécal, Jacques; da Silva, Vinicius Duval; Roxo, Marcelo R; Ferreira, Nelson Pires; de Morais, Rafael Leite T; Pesquero, João Bosco; Campos, Maria Martha; Couture, Réjean; Morrone, Fernanda Bueno

    2016-11-16

    This study investigated the role of kinins and their receptors in malignant brain tumors. As a first approach, GL-261 glioma cells were injected (2 × 10(5) cells in 2 μl/2 min) into the right striatum of adult C57/BL6 wild-type, kinin B1 and B2 receptor knockout (KOB1R and KOB2R) and B1 and B2 receptor double knockout mice (KOB1B2R). The animals received the selective B1R (SSR240612) and/or B2R (HOE-140) antagonists by intracerebroventricular (i.c.v.) route at 5, 10, and 15 days. The tumor size quantification, mitotic index, western blot analysis, quantitative autoradiography, immunofluorescence, and confocal microscopy were carried out in brain tumor samples, 20 days after tumor induction. Our results revealed an uncontrolled tumor growing in KOB1R or SSR240612-treated mice, which was blunted by B2R blockade with HOE-140, suggesting a crosstalk between B1R and B2R in tumor growing. Combined treatment with B1R and B2R antagonists normalized the upregulation of tumor B1R and decreased the tumor size and the mitotic index, as was seen in double KOB1B2R. The B1R was detected on astrocytes in the tumor, indicating a close relationship between this receptor and astroglial cells. Noteworthy, an immunohistochemistry analysis of tumor samples from 16 patients with glioma diagnosis revealed a marked B1R immunopositivity in low-grade gliomas or in older glioblastoma individuals. Furthermore, the clinical data revealed a significantly higher immunopositivity for B1R, when compared to a lower B2R immunolabeling. Taken together, our results show that blocking simultaneously both kinin receptors or alternatively stimulating B1R may be of therapeutic value in the treatment of brain glioblastoma growth and malignancy.

  20. Activation of the Kinin B1 Receptor Attenuates Melanoma Tumor Growth and Metastasis

    PubMed Central

    Dillenburg-Pilla, Patricia; Maria, Andrea G.; Reis, Rosana I.; Floriano, Elaine Medeiros; Pereira, Cacilda Dias; De Lucca, Fernando Luiz; Ramos, Simone Gusmão; Pesquero, João B.; Jasiulionis, Miriam G.; Costa-Neto, Claudio M.

    2013-01-01

    Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2 receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response, lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and provide new opportunities for therapeutic targeting. PMID:23691222

  1. Activation of the kinin B1 receptor attenuates melanoma tumor growth and metastasis.

    PubMed

    Dillenburg-Pilla, Patricia; Maria, Andrea G; Reis, Rosana I; Floriano, Elaine Medeiros; Pereira, Cacilda Dias; De Lucca, Fernando Luiz; Ramos, Simone Gusmão; Pesquero, João B; Jasiulionis, Miriam G; Costa-Neto, Claudio M

    2013-01-01

    Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2 receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response, lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and provide new opportunities for therapeutic targeting.

  2. Icatibant, an inhibitor of bradykinin receptor 2, for hereditary angioedema attacks: prospective experimental single-cohort study.

    PubMed

    Campos, Regis Albuquerque; Valle, Solange Oliveira Rodrigues; França, Alfeu Tavares; Cordeiro, Elisabete; Serpa, Faradiba Sarquis; Mello, Yara Ferreira; Malheiros, Teresinha; Toledo, Eliana; Mansour, Elie; Fusaro, Gustavo; Grumach, Anete Sevciovic

    2014-01-01

    Hereditary angioedema (HAE) with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil. Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients. Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored. 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age). The symptoms were: subcutaneous edema (22/24); abdominal pain (15/24) and upper airway obstruction (10/24). The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%); 10-20 (5/24; 20.8%); 20-30 (8/24; 33.4%); 30-60 (5/24; 20.8%); and 2 hours (1/24; 4.3%). The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6. HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.

  3. The Role of Scavenger Receptor B1 in Infection with Mycobacterium tuberculosis in a Murine Model

    PubMed Central

    Schäfer, Georgia; Guler, Reto; Murray, Graeme; Brombacher, Frank; Brown, Gordon D.

    2009-01-01

    Background The interaction between Mycobacterium tuberculosis (Mtb) and host cells is complex and far from being understood. The role of the different receptor(s) implicated in the recognition of Mtb in particular remains poorly defined, and those that have been found to have activity in vitro were subsequently shown to be redundant in vivo. Methods and Findings To identify novel receptors involved in the recognition of Mtb, we screened a macrophage cDNA library and identified scavenger receptor B class 1 (SR-B1) as a receptor for mycobacteria. SR-B1 has been well-described as a lipoprotein receptor which mediates both the selective uptake of cholesteryl esters and the efflux of cholesterol, and has also recently been implicated in the recognition of other pathogens. We show here that mycobacteria can bind directly to SR-B1 on transfected cells, and that this interaction could be inhibited in the presence of a specific antibody to SR-B1, serum or LDL. We define a variety of macrophage populations, including alveolar macrophages, that express this receptor, however, no differences in the recognition and response to mycobacteria were observed in macrophages isolated from SR-B1−/− or wild type mice in vitro. Moreover, when wild type and SR-B1−/− animals were infected with a low dose of Mtb (100 CFU/mouse) there were no alterations in survival, bacterial burdens, granuloma formation or cytokine production in the lung. However, significant reduction in the production of TNF, IFNγ, and IL10 were observed in SR-B1−/− mice following infection with a high dose of Mtb (1000 CFU/mouse), which marginally affected the size of inflammatory foci but did not influence bacterial burdens. Deficiency of SR-B1 also had no effect on resistance to disease under conditions of varying dietary cholesterol. We did observe, however, that the presence of high levels of cholesterol in the diet significantly enhanced the bacterial burdens in the lung, but this was independent of SR-B

  4. Bradykinin promotes migration and invasion of human immortalized trophoblasts

    PubMed Central

    2011-01-01

    Having demonstrated that the bradykinin B2 receptor (B2R) is expressed in cells that participate in trophoblast invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK) on cell migration and invasion in the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0 microMol/L) for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated with the B2R antagonist HOE-140. BK (10.0 microMol/L) incubation yielded a similar number of proliferating and viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells. Incubation with BK (10.0 microMol/L) for 18 hours increased the invasion index 2-fold in comparison to controls or to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist Lys-(des-Arg9-Leu8), modified migration and invasion. Further support for the stimulatory effect of B2R activation on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies. PMID:21729302

  5. Research resource: Comparative nuclear receptor atlas: basal and activated peritoneal B-1 and B-2 cells.

    PubMed

    Diehl, Cody J; Barish, Grant D; Downes, Michael; Chou, Meng-Yun; Heinz, Sven; Glass, Christopher K; Evans, Ronald M; Witztum, Joseph L

    2011-03-01

    Naïve murine B cells are typically divided into three subsets based on functional and phenotypic characteristics: innate-like B-1 and marginal zone B cells vs. adaptive B-2 cells, also known as follicular or conventional B cells. B-1 cells, the innate-immune-like component of the B cell lineage are the primary source of natural antibodies and have been shown to modulate autoimmune diseases, human B-cell leukemias, and inflammatory disorders such as atherosclerosis. On the other hand, B-2 cells are the principal mediators of the adaptive humoral immune response and represent an important pharmacological target for various conditions including rheumatoid arthritis, lupus erythematosus, and lymphomas. Using the resources of the Nuclear Receptor Signaling Atlas program, we used quantitative real-time PCR to assess the complement of the 49 murine nuclear receptor superfamily expressed in quiescent and toll-like receptor (TLR)-stimulated peritoneal B-1 and B-2 cells. We report the expression of 24 nuclear receptors in basal B-1 cells and 25 nuclear receptors in basal B-2 cells, with, in some cases, dramatic changes in response to TLR 4 or TLR 2/1 stimulation. Comparative nuclear receptor profiling between B-1 and peritoneal B-2 cells reveals a highly concordant expression pattern, albeit at quantitatively dissimilar levels. We also found that splenic B cells express 23 nuclear receptors. This catalog of nuclear receptor expression in B-1 and B-2 cells provides data to be used to better understand the specific roles of nuclear receptors in B cell function, chronic inflammation, and autoimmune disease.

  6. Research Resource: Comparative Nuclear Receptor Atlas: Basal and Activated Peritoneal B-1 and B-2 Cells

    PubMed Central

    Diehl, Cody J.; Barish, Grant D.; Downes, Michael; Chou, Meng-Yun; Heinz, Sven; Glass, Christopher K.; Evans, Ronald M.

    2011-01-01

    Naïve murine B cells are typically divided into three subsets based on functional and phenotypic characteristics: innate-like B-1 and marginal zone B cells vs. adaptive B-2 cells, also known as follicular or conventional B cells. B-1 cells, the innate-immune-like component of the B cell lineage are the primary source of natural antibodies and have been shown to modulate autoimmune diseases, human B-cell leukemias, and inflammatory disorders such as atherosclerosis. On the other hand, B-2 cells are the principal mediators of the adaptive humoral immune response and represent an important pharmacological target for various conditions including rheumatoid arthritis, lupus erythematosus, and lymphomas. Using the resources of the Nuclear Receptor Signaling Atlas program, we used quantitative real-time PCR to assess the complement of the 49 murine nuclear receptor superfamily expressed in quiescent and toll-like receptor (TLR)-stimulated peritoneal B-1 and B-2 cells. We report the expression of 24 nuclear receptors in basal B-1 cells and 25 nuclear receptors in basal B-2 cells, with, in some cases, dramatic changes in response to TLR 4 or TLR 2/1 stimulation. Comparative nuclear receptor profiling between B-1 and peritoneal B-2 cells reveals a highly concordant expression pattern, albeit at quantitatively dissimilar levels. We also found that splenic B cells express 23 nuclear receptors. This catalog of nuclear receptor expression in B-1 and B-2 cells provides data to be used to better understand the specific roles of nuclear receptors in B cell function, chronic inflammation, and autoimmune disease. PMID:21273443

  7. Ca2+ signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca2+ channel blockade

    PubMed Central

    Gryshchenko, Oleksiy; Gerasimenko, Julia V.

    2015-01-01

    Key points Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions.In this study, we have investigated bradykinin‐elicited Ca2+ signal generation in normal mouse pancreatic lobules.We found complete separation of Ca2+ signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca2+ signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca2+ signals in PACs, never elicited Ca2+ signals in PSCs.The bradykinin‐elicited Ca2+ signals were due to initial Ca2+ release from inositol trisphosphate‐sensitive stores followed by Ca2+ entry through Ca2+ release‐activated channels (CRACs). The Ca2+ entry phase was effectively inhibited by a CRAC blocker.B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis‐promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. Abstract Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca2+ signals. We have compared Ca2+ signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca2+ signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto‐digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca2+ signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca2+ signals in PSCs. The BK‐induced Ca2+ signals were mediated by B2 receptors and B2

  8. Kinin B(1) and B(2) receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats.

    PubMed

    Luiz, Ana Paula; Schroeder, Samilla Driessen; Chichorro, Juliana Geremias; Calixto, João Batista; Zampronio, Aleksander Roberto; Rae, Giles Alexander

    2010-04-01

    Mechanisms coupled to kinin B(1) and B(2) receptors have been implicated in sensory changes associated to various models of neuropathy. The current study aimed to investigate if kinins also participate in orofacial thermal hyperalgesia induced by constriction of the infraorbital nerve (CION), a model of trigeminal neuropathic pain which displays persistent hypersensitivity to orofacial sensory stimulation, in rats and mice. Male Swiss mice (30-35g) or Wistar rats (200-250g; n=6-10 per group in both cases) underwent CION or sham surgery and were submitted repeatedly to application of heat ( approximately 50 degrees C) to the ipsilateral or contralateral snout, delivered by a heat source placed 1cm from the vibrissal pad. Decreases in latency to display head withdrawal or vigorous snout flicking were considered indicative of heat hyperalgesia. CION caused long-lasting heat hyperalgesia which started on Day 2 after surgery in both species and lasted up to Day 17 in mice and Day 10 in rats. Administration of DALBK or HOE-140 (peptidic B(1) and B(2) receptor antagonists, respectively; each at 3nmol in 10microl) onto the exposed infraorbital nerve of mice at the moment of surgery delayed the development of the thermal hyperalgesia. Systemic treatment on Day 5 (mice) or Day 4 (rats) with Des-Arg(9), Leu(8)-Bradykinin (DALBK, B(1) receptor antagonist, 0.1-1micromol/kg, i.p.) or HOE-140 (B(2) receptor antagonist, 0.001-1micromol/kg, i.p.) transiently reduced heat hyperalgesia in both species. Due to the peptidic nature of DALBK and HOE-140, it is likely that their effects reported herein resulted from blockade of peripheral kinin receptors. Thus, mechanisms operated by kinin B(1) and B(2) receptors, contribute to orofacial heat hyperalgesia induced by CION in both mice and rats. Perhaps kinin B(1) and B(2) receptor antagonists might constitute effective preventive and curative treatments for orofacial thermal hyperalgesia induced by nerve injury.

  9. Toxicity of aflatoxin B1 towards the vitamin D receptor (VDR).

    PubMed

    Costanzo, Paola; Santini, Antonello; Fattore, Luigi; Novellino, Ettore; Ritieni, Alberto

    2015-02-01

    This research describes an unexpected toxicity of the aflatoxin B1 towards the vitamin D receptors. Rickets is a childhood disease, and calcium deficiency is the aetiological cause in Africa, being primarily associated with nutritional problems; in this research the contribution of aflatoxin B1 exposure during the early months of life is an interesting factor to deepen in order to prevent liver damages or the development of rickets. The results show that the expression of vitamin D receptor in osteosarcoma cell line SAOS-2 is significantly down-modulated by exposure to aflatoxin B1. This seems to suggest that Aflatoxin B1, toxic towards the vitamin D receptor, interferes with the actions of the vitamin D on calcium binding gene expression in the kidney and intestine. Experimental data indicate a 58% and 86% decrease if the cells are exposed to 5 ng/mL and 50 ng/mL of aflatoxin B1, respectively. These results seem to indicate that natural occurrence of the aflatoxin B1 and allelic variant of vitamin D receptor on (F allele) increase the risk of developing rickets of African children.

  10. BAFF receptor and TACI in B-1b cell maintenance and antibacterial responses.

    PubMed

    Dickinson, Gregory S; Akkoyunlu, Mustafa; Bram, Richard J; Alugupalli, Kishore R

    2015-12-01

    Although evidence of the protective immunity conferred by B-1b cells (CD19(+) B220(+) IgM(hi) Mac1(+) CD5(-)) has been established, the mechanisms governing the maintenance and activation of B-1b cells following pathogen encounter remain unclear. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) mediate their function in mature B cells through the BAFF receptor (BAFFR) and transmembrane activator and CAML interactor (TACI). BAFFR-deficient mice have lower numbers of B-1b cells, and this reduction is directly proportional to BAFFR levels. The generation of B-1b cells is also dependent on the strength of B cell receptor (BCR) signaling. Mice with impaired BCR signaling, such as X-linked immunodeficient (xid) mice, have B-1b cell deficiency, indicating that both BCR- and BAFFR-mediated signaling are critical for B-1b cell homeostasis. Borrelia hermsii induces expansion and persistence of B-1b cells in xid mice, and these B-1b cells provide a heightened protective response. Toll-like receptor (TLR)-mediated stimulation of xid B cells results in a significant increase in TACI expression and restoration of TACI-mediated functions. The activation of TLR signaling by B. hermsii and BCR/TLR costimulation-mediated upregulation of BAFFR and TACI on B-1b cells suggests that B-1b cell maintenance and function following bacterial exposure may depend on BAFFR- and TACI-mediated signaling. In fact, the loss of both BAFFR and TACI results in a greater impairment in anti-B. hermsii responses compared to deficiency of BAFFR or TACI alone. © 2015 New York Academy of Sciences.

  11. Inhibition of kinin B1 receptors attenuates pulmonary hypertension and vascular remodeling.

    PubMed

    Murugesan, Priya; Hildebrandt, Tobias; Bernlöhr, Christian; Lee, Dongwon; Khang, Gilson; Doods, Henri; Wu, Dongmei

    2015-10-01

    This study examined whether the kinin B1 receptor is involved in the pathogenesis of pulmonary hypertension, and whether its inhibition could reduce inflammation, pulmonary hypertension, vascular remodeling, and right heart dysfunction. Male Wistar rats underwent left pneumonectomy. Seven days later, the rats were injected subcutaneously with monocrotaline (60 mg/kg). The rats were then randomly assigned to receive treatment with vehicle or with BI113823 (a selective B1 receptor antagonist, 30 mg/kg, twice per day) via oral gavage from the day of monocrotaline injection to day 28. By day 28, BI113823-treated rats had significantly lower mean pulmonary artery pressure, less right ventricular hypertrophy, and pulmonary arterial neointimal formation than that of the vehicle-treated rats. Real-time polymerase chain reaction revealed that there was a significant increase in mRNA expression of B1 receptors in the lungs of monocrotaline-challenged pneumonectomized rats. Treatment with BI113823 significantly reduced macrophage recruitment, as measured via bronchoalveolar lavage. It also markedly reduced CD-68 positive macrophages and proliferating cell nuclear antigen positive cells in the perivascular areas, reduced expression of inducible nitric oxide synthase, matrix metalloproteinase 2 and 9, and B1 receptors compared with measurements in vehicle-treated rats. These findings demonstrate that kinin B1 receptors represent a novel therapeutic target for pulmonary arterial hypertension.

  12. Kinin B1 receptor regulates interactions between neutrophils and endothelial cells by modulating the levels of Mac-1, LFA-1 and intercellular adhesion molecule-1.

    PubMed

    Figueroa, Carlos D; Matus, Carola E; Pavicic, Francisca; Sarmiento, Jose; Hidalgo, Maria A; Burgos, Rafael A; Gonzalez, Carlos B; Bhoola, Kanti D; Ehrenfeld, Pamela

    2015-04-01

    Kinins are pro-inflammatory peptides that mimic the cardinal features of inflammation. We examined the concept that expression levels of endothelial intercellular adhesion molecule-1 (ICAM-1) and neutrophil integrins Mac-1 and LFA-1 are modulated by the kinin B1 receptor (B1R) agonist, Lys-des[Arg(9)]bradykinin (LDBK). Stimulation of endothelial cells with LDBK increased the levels of ICAM-1 mRNA transcripts/protein, and also of E-selectin and platelet endothelial adhesion molecule-1. ICAM-1 levels increased in a magnitude comparable with that produced by TNF-α. This stimulatory effect was reduced when endothelial cells, which had been previously transfected with a B1R small interfering RNA, were stimulated with LDBK, under comparable conditions. Similarly, LDBK produced a significant increase in protein levels of LFA-1 and Mac-1 integrins in human neutrophils, an effect that was reversed by pretreatment of cells with 10 µg/ml cycloheximide or a B1R antagonist. Functional experiments performed with post-confluent monolayers of endothelial cells stimulated with LDBK and neutrophils primed with TNF-α, and vice versa, resulted in enhanced adhesiveness between both cells. Neutralizing Abs to ICAM-1 and Mac-1 reduced the adhesion between them. Our results indicate that kinin B1R is a novel modulator that promotes adhesion of leukocytes to endothelial cells, critically enhancing the movement of neutrophils from the circulation to sites of inflammation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Administration of angiotensin II and a bradykinin B2 receptor blocker in midpregnancy impairs gestational outcome in guinea pigs

    PubMed Central

    2014-01-01

    Background The opposing renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) are upregulated in pregnancy and localize in the utero-placental unit. To test their participation as counter-regulators, circulating angiotensin II (AII) was exogenously elevated and the bradykinin B2 receptor (B2R) was antagonized in pregnant guinea-pigs. We hypothesized that disrupting the RAS/KKS balance during the period of maximal trophoblast invasion and placental development would provoke increased blood pressure, defective trophoblast invasion and a preeclampsia-like syndrome. Methods Pregnant guinea-pigs received subcutaneous infusions of AII (200 μg/kg/day), the B2R antagonist Bradyzide (BDZ; 62.5 microg/kg/day), or both (AII + BDZ) from gestational day 20 to 34. Non-pregnant cycling animals were included in a control group (C NP) or received AII + BDZ (AII + BDZ NP) during 14 days. Systolic blood pressure was determined during cycle in C NP, and on the last day of infusion, and 6 and 26 days thereafter in the remaining groups. Twenty six days after the infusions blood and urine were extracted, fetuses, placentas and kidneys were weighed, and trophoblast invasion of spiral arteries was defined in the utero-placental units by immunocytochemistry. Results Systolic blood pressure transiently rose in a subgroup of the pregnant females while receiving AII + BDZ infusion, but not in AII + BDZ NP. Plasma creatinine was higher in AII- and BDZ-treated dams, but no proteinuria or hyperuricemia were observed. Kidney weight increased in AII + BDZ-treated pregnant and non-pregnant females. Aborted and dead fetuses were increased in dams that received AII and AII + BDZ. The fetal/placental weight ratio was reduced in litters of AII + BDZ-treated mothers. All groups that received interventions during pregnancy showed reduced replacement of endothelial cells by extravillous trophoblasts in lateral and myometrial spiral arteries. Conclusions The acute effects on fetal viability, and

  14. Ramipril-induced delayed myocardial protection against free radical injury involves bradykinin B2 receptor-NO pathway and protein synthesis

    PubMed Central

    Jin, Zhu-Qiu; Chen, Xiu

    1998-01-01

    The aim of the present study was to examine whether ramipril induces delayed myocardial protection against free radical injuries ex vivo and to determine the possible role of the bradykinin B2–nitric oxide (NO) pathway, prostaglandins(PGs) and protein synthesis in this delayed adaptive response.Rats were pretreated with ramipril (10 or 50 μg kg−1, i.v.) and hearts were isolated after 24, 48 and 72 h. Langendorff hearts were subjected to 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical-induced injury.Left ventricular developed pressure (LVDP) and its maximal increase velocity (+dP/dtmax), coronary flow (CF), heart rate (HR), lactate dehydrogenase (LDH) in coronary effluent and thiobarbituric acid reactive substances (TBARS) in the myocardium were measured.The results showed that in the DPPH control group, 20 min after free radical-induced injury, LVDP, +dP/dtmax, CF, HR declined, whereas TBARS and LDH increased significantly. The above cardiac function parameters were significantly improved in RAM-pretreated rats after 24 and 48 h.Pretreatment with HOE 140, the selective bradykinin B2 receptor antagonist, NG-nitro-L-arginine, the NO synthase inhibitor, and actinomycin D, the RNA transcription inhibitor, prior to ramipril injection abolished the beneficial effects of ramipril at 24 h while indomethacin, a cyclooxygenase inhibitor, pretreatment had no effect on ramipril-induced delayed protection.In conclusion, ramipril induces delayed myocardial protection against free radical injury in the rat heart. This delayed protection was sustained for 48 h, is associated with the bradykinin B2 receptor–NO pathway and depends on protein but not prostaglandin synthesis. PMID:9806340

  15. Effects of bradykinin on venous capacitance in health and treated chronic heart failure

    PubMed Central

    Gunaruwan, Prasad; Maher, Abdul; Williams, Lynne; Sharman, James; Schmitt, Matthias; Campbell, Ross; Frenneaux, Michael

    2008-01-01

    In the present study, we investigated the effects of basal and intra-arterial infusion of bradykinin on unstressed forearm vascular volume (a measure of venous tone) and blood flow in healthy volunteers (n=20) and in chronic heart failure patients treated with ACEIs [ACE (angiotensin-converting enzyme) inhibitors] (n=16) and ARBs (angiotensin receptor blockers) (n=14). We used radionuclide plethysmography to examine the effects of bradykinin and of the bradykinin antagonists B9340 [B1 (type 1)/B2 (type 2) receptor antagonist] and HOE140 (B2 antagonist). Bradykinin infusion increased unstressed forearm vascular volume in a similar dose-dependent manner in healthy volunteers and ARB-treated CHF patients (healthy volunteers maximum 12.3±2.1%, P<0.001 compared with baseline; ARB-treated CHF patients maximum 9.3±3.3%, P<0.05 compared with baseline; P=not significant for difference between groups), but the increase in unstressed volume in ACEI-treated CHF patients was higher (maximum 28.8±7.8%, P<0.001 compared with baseline; P<0.05 for the difference between groups). In contrast, while the increase in blood flow in healthy volunteers (maximum 362±9%, P<0.001) and in ACEI-treated CHF patients (maximum 376±12%, P<0.001) was similar (P=not significant for the difference between groups), the increase in ARB-treated CHF patients was less (maximum 335±7%, P<0.001; P<0.05 for the difference between groups). Infusion of each receptor antagonist alone similarly reduced basal unstressed volume and blood flow in ACEI-treated CHF patients, but not in healthy volunteers or ARB-treated CHF patients. In conclusion, bradykinin does not contribute to basal venous tone in health, but in ACEI-treated chronic heart failure it does. In ARB-treated heart failure, venous responses to bradykinin are preserved but arterial responses are reduced compared with healthy controls. Bradykinin-mediated vascular responses in both health and heart failure are mediated by the B2, rather than the B1

  16. Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression

    PubMed Central

    1996-01-01

    The hyaluronan (HA) receptor RHAMM is an important regulator of cell growth. Overexpression of RHAMM is transforming and is required for H- ras transformation. The molecular mechanism underlying growth control by RHAMM and other extracellular matrix receptors remains largely unknown. We report that soluble RHAMM induces G2/M arrest by suppressing the expression of Cdc2/Cyclin B1, a protein kinase complex essential for mitosis. Down-regulation of RHAMM by use of dominant negative mutants or antisense of mRNA also decreases Cdc2 protein levels. Suppression of Cdc2 occurs as a result of an increased rate of cdc2 mRNA degradation. Moreover, tumor cells treated with soluble RHAMM are unable to form lung metastases. Thus, we show that mitosis is directly linked to RHAMM through control of Cdc2 and Cyclin B1 expression. Failure to sustain levels of Cdc2 and Cyclin B1 proteins leads to cell cycle arrest. PMID:8666924

  17. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    NASA Astrophysics Data System (ADS)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  18. Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors without Dipsogenic Effect

    PubMed Central

    Ishida, Akio; Ohya, Yusuke

    2017-01-01

    Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response. PMID:28421141

  19. Effects of CYP7B1-mediated catalysis on estrogen receptor activation.

    PubMed

    Pettersson, Hanna; Lundqvist, Johan; Norlin, Maria

    2010-09-01

    Most of the many biological effects of estrogens are mediated via the estrogen receptors ERalpha and beta. The current study examines the role of CYP7B1-mediated catalysis for activation of ER. Several reports suggest that CYP7B1 may be important for hormonal action but previously published studies are contradictory concerning the manner in which CYP7B1 affects ERbeta-mediated response. In the current study, we examined effects of several CYP7B1-related steroids on ER activation, using an estrogen response element (ERE) reporter system. Our studies showed significant stimulation of ER by 5-androstene-3beta,17beta-diol (Aene-diol) and 5alpha-androstane-3beta,17beta-diol (3beta-Adiol). In contrast, the CYP7B1-formed metabolites from these steroids did not activate the receptor, indicating that CYP7B1-mediated metabolism abolishes the ER-stimulating effect of these compounds. The mRNA level of HEM45, a gene known to be stimulated by estrogens, was strongly up-regulated by Aene-diol but not by its CYP7B1-formed metabolite, further supporting this concept. We did not observe stimulation by dehydroepiandrosterone (DHEA) or 7alpha-hydroxy-DHEA, previously suggested to affect ERbeta-mediated response. As part of these studies we examined metabolism of Aene-diol in pig liver which is high in CYP7B1 content. These experiments indicate that CYP7B1-mediated metabolism of Aene-diol is of a similar rate as the metabolism of the well-known CYP7B1 substrates DHEA and 3beta-Adiol. CYP7B1-mediated metabolism of 3beta-Adiol has been proposed to influence ERbeta-mediated growth suppression. Our results indicate that Aene-diol also might be important for ER-related pathways. Our data indicate that low concentrations of Aene-diol can trigger ER-mediated response equally well for both ERalpha and beta and that CYP7B1-mediated conversion of Aene-diol into a 7alpha-hydroxymetabolite will result in loss of action.

  20. Chicken TREM-B1, an Inhibitory Ig-Like Receptor Expressed on Chicken Thrombocytes.

    PubMed

    Turowski, Vanessa; Sperling, Beatrice; Hanczaruk, Matthias A; Göbel, Thomas W; Viertlboeck, Birgit C

    2016-01-01

    Triggering receptors expressed on myeloid cells (TREM) form a multigene family of immunoregulatory Ig-like receptors and play important roles in the regulation of innate and adaptive immunity. In chickens, three members of the TREM family have been identified on chromosome 26. One of them is TREM-B1 which possesses two V-set Ig-domains, an uncharged transmembrane region and a long cytoplasmic tail with one ITSM and two ITIMs indicating an inhibitory function. We generated specific monoclonal antibodies by immunizing a Balb/c mouse with a TREM-B1-FLAG transfected BWZ.36 cell line and tested the hybridoma supernatants on TREM-B1-FLAG transfected 2D8 cells. We obtained two different antibodies specific for TREM-B1, mab 7E8 (mouse IgG1) and mab 1E9 (mouse IgG2a) which were used for cell surface staining. Single and double staining of different tissues, including whole blood preparations, revealed expression on thrombocytes. Next we investigated the biochemical properties of TREM-B1 by using the specific mab 1E9 for immunoprecipitation of either lysates of surface biotinylated peripheral blood cells or stably transfected 2D8 cells. Staining with streptavidin coupled horse radish peroxidase revealed a glycosylated monomeric protein of about 50 kDa. Furthermore we used the stably transfected 2D8 cell line for analyzing the cytoplasmic tyrosine based signaling motifs. After pervanadate treatment, we detected phosphorylation of the tyrosine residues and subsequent recruitment of the tyrosine specific protein phosphatase SHP-2, indicating an inhibitory potential for TREM-B1. We also showed the inhibitory effect of TREM-B1 in chicken thrombocytes using a CD107 degranulation assay. Crosslinking of TREM-B1 on activated primary thrombocytes resulted in decreased CD107 surface expression of about 50-70%.

  1. Chicken TREM-B1, an Inhibitory Ig-Like Receptor Expressed on Chicken Thrombocytes

    PubMed Central

    Turowski, Vanessa; Sperling, Beatrice; Hanczaruk, Matthias A.; Göbel, Thomas W.; Viertlboeck, Birgit C.

    2016-01-01

    Triggering receptors expressed on myeloid cells (TREM) form a multigene family of immunoregulatory Ig-like receptors and play important roles in the regulation of innate and adaptive immunity. In chickens, three members of the TREM family have been identified on chromosome 26. One of them is TREM-B1 which possesses two V-set Ig-domains, an uncharged transmembrane region and a long cytoplasmic tail with one ITSM and two ITIMs indicating an inhibitory function. We generated specific monoclonal antibodies by immunizing a Balb/c mouse with a TREM-B1-FLAG transfected BWZ.36 cell line and tested the hybridoma supernatants on TREM-B1-FLAG transfected 2D8 cells. We obtained two different antibodies specific for TREM-B1, mab 7E8 (mouse IgG1) and mab 1E9 (mouse IgG2a) which were used for cell surface staining. Single and double staining of different tissues, including whole blood preparations, revealed expression on thrombocytes. Next we investigated the biochemical properties of TREM-B1 by using the specific mab 1E9 for immunoprecipitation of either lysates of surface biotinylated peripheral blood cells or stably transfected 2D8 cells. Staining with streptavidin coupled horse radish peroxidase revealed a glycosylated monomeric protein of about 50 kDa. Furthermore we used the stably transfected 2D8 cell line for analyzing the cytoplasmic tyrosine based signaling motifs. After pervanadate treatment, we detected phosphorylation of the tyrosine residues and subsequent recruitment of the tyrosine specific protein phosphatase SHP-2, indicating an inhibitory potential for TREM-B1. We also showed the inhibitory effect of TREM-B1 in chicken thrombocytes using a CD107 degranulation assay. Crosslinking of TREM-B1 on activated primary thrombocytes resulted in decreased CD107 surface expression of about 50–70%. PMID:26967520

  2. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor.

    PubMed

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L

    2012-07-27

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling.

  3. Exploiting scavenger receptors in cancer immunotherapy: Lessons from CD5 and SR-B1.

    PubMed

    Vasquez, Marcos; Simões, Inês; Consuegra-Fernández, Marta; Aranda, Fernando; Lozano, Francisco; Berraondo, Pedro

    2017-07-01

    Scavenger receptors (SRs) are structurally heterogeneous cell surface receptors characterized by their capacity to remove extraneous or modified self-macromolecules from circulation, thus avoiding the accumulation of noxious agents in the extracellular space. This scavenging activity makes SRs important molecules for host defense and homeostasis. In turn, SRs keep the activation of the steady-state immune response in check, and participate as co-receptors in the priming of the effector immune responses when the macromolecules are associated with a threat that might compromise host homeostasis. Therefore, SRs built up sophisticated sensor mechanisms controlling the immune system, which may be exploited to develop novel drugs for cancer immunotherapy. In this review, we focus on the regulation of the anti-tumor immune response by two paradigmatic SRs: the lymphocyte receptor CD5 and the more broadly distributed scavenger receptor class B type 1 (SR-B1). Cancer immunity can be boosted by blockade of SRs working as immune checkpoint inhibitors (CD5) and/or by proper engagement of SRs working as innate danger receptor (SR-B1). Thus, these receptors illustrate both the complexity of targeting SRs in cancer immunotherapy and also the opportunities offered by such an approach. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Steroid and Xenobiotic Receptor Negatively Regulates B-1 Cell Development in the Fetal Liver

    PubMed Central

    Casey, Stephanie C.

    2012-01-01

    The steroid and xenobiotic receptor (SXR) (also known as pregnane X receptor or PXR) is a broad-specificity nuclear hormone receptor that is well known for its role in drug and xenobiotic metabolism. SXR is activated by a wide variety of endobiotics, dietary compounds, pharmaceuticals, and xenobiotic chemicals. SXR is expressed at its highest levels in the liver and intestine yet is found in lower levels in other tissues, where its roles are less understood. We previously demonstrated that SXR−/− mice demonstrate elevated nuclear factor (NF)-κB activity and overexpression of NF-κB target genes and that SXR−/− mice develop lymphoma derived from B-1 lymphocytes in an age-dependent manner. In this work, we show that fetal livers in SXR−/− mice display elevated expression of NF-κB target genes and possess a significantly larger percentage of B-1 progenitor cells in the fetal liver. Furthermore, in utero activation of SXR in wild-type mice reduces the B-1 progenitor populations in the embryonic liver and reduces the size of the B-1 cell compartment in adult animals that were treated in utero. This suggests that activation of SXR during development may permanently alter the immune system of animals exposed in utero, demonstrating a novel role for SXR in the generation of B-1 cell precursors in the fetal liver. These data support our previous findings that SXR functions as a tumor suppressor in B-1 lymphocytes and establish a unique role for SXR as a modulator of developmental hematopoiesis in the liver. PMID:22496360

  5. Targeting the SR-B1 Receptor as a Gateway for Cancer Therapy and Imaging

    PubMed Central

    Mooberry, Linda K.; Sabnis, Nirupama A.; Panchoo, Marlyn; Nagarajan, Bhavani; Lacko, Andras G.

    2016-01-01

    Malignant tumors display remarkable heterogeneity to the extent that even at the same tissue site different types of cells with varying genetic background may be found. In contrast, a relatively consistent marker the scavenger receptor type B1 (SR-B1) has been found to be consistently overexpressed by most tumor cells. Scavenger Receptor Class B Type I (SR-BI) is a high density lipoprotein (HDL) receptor that facilitates the uptake of cholesterol esters from circulating lipoproteins. Additional findings suggest a critical role for SR-BI in cholesterol metabolism, signaling, motility, and proliferation of cancer cells and thus a potential major impact in carcinogenesis and metastasis. Recent findings indicate that the level of SR-BI expression correlate with aggressiveness and poor survival in breast and prostate cancer. Moreover, genomic data show that depending on the type of cancer, high or low SR-BI expression may promote poor survival. This review discusses the importance of SR-BI as a diagnostic as well as prognostic indicator of cancer to help elucidate the contributions of this protein to cancer development, progression, and survival. In addition, the SR-B1 receptor has been shown to serve as a potential gateway for the delivery of therapeutic agents when reconstituted high density lipoprotein nanoparticles are used for their transport to cancer cells and tumors. Opportunities for the development of new technologies, particularly in the areas of cancer therapy and tumor imaging are discussed. PMID:28018216

  6. Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes.

    PubMed

    Mughal, Muhammad Jameel; Xi, Peng; Yi, Zhou; Jing, Fang

    2017-01-31

    The fungal metabolites produced by Aspergillus flavus and Aspergillus parasiticus cause detrimental health effects on humans and animals. Particularly aflatoxin B1 (AFB1) is the most studied and a well-known global carcinogen, producing hepatotoxic, genotoxic and immunotoxic effects in multiple species. AFB1 is shown to provoke liver dysfunctioning by causing hepatocytes apoptosis and disturbing cellular enzymatic activities. In liver, AFB1 causes apoptosis via extrinsic mechanism because of high expression of death receptor pathway. The detailed mechanism of AFB1 induced hepatocytes apoptosis, via death receptor pathway still remains elusive. So the present study was conducted to explore apoptotic mechanism initiated by death receptors and associated genes in aflatoxin B1 induced liver apoptosis in chickens fed with AFB1 for 3 weeks. Results from the present study displayed histopathological and ultrastructural changes in liver such as hydropic degeneration, fatty vacuolar degeneration and proliferation of bile duct in hepatocytes in AFB1 group, along with imbalance between reactive oxygen species (ROS) and antioxidant defense system upon AFB1 ingestion. Moreover, AFB1 intoxicated chickens showed upregulation of death receptors FAS, TNFR1 and associated genes and downregulation of inhibitory apoptotic proteins XIAP and BCL-2. The results obtained from this novel and comprehensive study including histopathological, ultrastructural, flow cytometrical and death receptor pathway gene expression profiles, will facilitate better understanding of mechanisms and involvement of death receptor pathway in hepatocytes apoptosis induced by AFB1 and ultimately may be helpful in bringing down the toxigenic potential of AFB1.

  7. B1-kinin receptors modulate Mesobuthus tamulus venom-induced vasosensory reflex responses in anesthetized rats

    PubMed Central

    Singh, Sanjeev K.; Deshpande, Shripad B.

    2016-01-01

    Objective: Intra-arterial injection of Mesobuthus tamulus (BT) venom produces reflex vasosensory responses modulating cardiorespiratory parameters in albino rats. The present study was conducted to understand the role of kinin receptors in modulating vasosensory reflexes evoked by BT venom. Materials and Methods: In urethane-anesthetized rats, tracheostomy was performed to keep the airway patent. The femoral artery was cannulated proximally, as well as distally, to record the blood pressure (BP) and to inject the chemicals, respectively. Electrocardiographic and respiratory excursions were recorded to compute the heart rate (HR) and respiratory rate (RR). A group of animals was pretreated with saline/kinin receptor antagonists intra-arterially (B1/B2 receptor antagonists) before the injection of venom. Results: After intra-arterial injection of BT venom (1 mg/kg), there was an immediate increase in RR, which reached to 40% within 30 s, followed by a decrease of 40%. Further, there was sustained increase in RR (50%) up to 60 min. The BP started to increase at 40 s, peaking at 5 min (50%), and remained above the initial level up to 60 min. The bradycardiac response started after 5 min which peaked (50% of initial) at 25 min and remained at that level up to 60 min. In B1 receptor antagonist (des-Arg) pretreated animals, venom-induced cardiovascular responses were attenuated (by 20–25% in mean arterial pressure and HR) significantly but not in B2 receptor antagonist (Hoe-140) pretreated animals. Either of the antagonists failed to alter the RR responses. Conclusions: BT venom-induced vasosensory reflex responses modulating cardiovascular parameters are mediated via B1-kinin receptors in anesthetized rats. PMID:27756949

  8. The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1

    PubMed Central

    Chi, Xiaofeng; Li, Xiaochong; Jiang, Min; Fang, Jing; Cui, Hengmin; Lai, Weimin; Zhou, Yi; Zhou, Shan

    2016-01-01

    Aflatoxin B1 (AFB1) is a potent immunosuppressive agent in endotherms, which can be related to the up-regulated apoptosis of immune organs. In this study, we investigated the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in Aflatoxin B1 induced thymocytes apoptosis. Chickens were fed an aflatoxin B1 containing diet (0.6 mg/kg AFB1) for 3 weeks. Our results showed that (1) AFB1 diet induced the decrease of T-cell subsets, morphological changes, and excessive apoptosis of thymus. (2) The excessive apoptosis involved the mitochondrial pathway (up-regulation of Bax, Bak, cytC and down-regulation of Bcl-2 and Bcl-xL) and death receptor pathway (up-regulation of FasL, Fas and FADD). (3) Oxidative stress, an apoptosis inducer, was confirmed in the thymus. In conclusion, this is the first study to demonstrate that mitochondrial and death receptor pathways involved in AFB1 induced thymocytes apoptosis in broilers. PMID:26933817

  9. OS059. Blockade of the bradykinin B2 receptor in early pregnancy reduces fetal growth and trophoblast invasion in guinea-pigs.

    PubMed

    Valdes, G; Schneider, D; Corthorn, J; Ortiz, R

    2012-07-01

    Research in preeclampsia (PE) is hampered by the difficulty of sampling the placental bed in early pregnancies followed to delivery to be defined as normal or preeclamptic. Thus, animal models contribute to the understanding of its physiopathology. The guinea-pig shares with humans extensive vascular remodelling, a hemomonochorial placenta [1] and a vasodilator and angiogenic utero-placental repertoire [2]. In pregnancy it expresses bradykinin (BK) B1R and B2R receptors in cells related to invasion, angiogenesis and vasodilatation. In addition, in HTR-8/SVneo cells, BK induces a B2R-mediated increase in migration and invasion [3]. To test whether blocking the B2R with a rodent-selective non-peptide antagonist Bradyzide (BDZ) from days 20 to 34 of an ≈65 day gestation - period of maximal trophoblast invasion and placental development - induces PE-like morphological and functional alterations. Virgin Pirbright guinea-pigs (Cavia Porcellus) after mating and echographic confirmation of pregnancy, were allocated in gestational day 20 to to subcutaneous implantation of Alzet pumps that delivered for 14 days saline (Control; n=7), BDZ0,875mg/kg/day (BDZ0,87; n=6) and BDZ 1,2mg/kg/day (BDZ1,2; n=7). Systolic pressure was acquired in the right hindlimb with a Power Lab 8 SP and analyzed with Labchart at day 34. On that day dams were sacrificed, vesical urine was extracted for protein determination, the fetuses and corresponding placentas weighed and the cephalo-caudal length measured. The placentas were studied by HE and immunohistochemistry for cytokeratin to identify trophoblasts. Results are expressed as means±SE. Statistical analysis was performed with Graphpad Prism 5.1, using one-way ANOVA, the recommended post hoc tests and χ2 test. Maternal systolic pressure tended to increase in BDZ0,875 and BDZ1,2 versus controls (63±567±6 versus 56±2,mm Hg respectively; NS). Proteinuria was not observed in any group. The number of viable fetuses tended to be reduced in

  10. Bradykinin regulates cell growth and migration in cultured human cardiac c-Kit+ progenitor cells.

    PubMed

    Li, Gang; Wang, Yan; Li, Gui-Rong

    2017-02-14

    Bradykinin is a well-known endogenous vasoactive peptide. The present study investigated the bradykinin receptor expression in human cardiac c-Kit+ progenitor cells and the potential role of bradykinin in regulating cell cycling progression and mobility. It was found that mRNA and protein of bradykinin type 2 receptors, but not bradykinin type 1 receptors, were abundant in cultured human cardiac c-Kit+ progenitor cells. Bradykinin (1-10 nM) stimulated cell growth and migration in a concentration-dependent manner. The increase of cell proliferation was related to promoting G0/G1 transition into G2/M and S phase. Western blots revealed that bradykinin significantly increased pAkt and pERK1/2 as well as cyclin D1, which were countered by HOE140 (an antagonist of bradykinin type 2 receptors) or by silencing bradykinin type 2 receptors. The increase of pAkt, pERK1/2 and cyclin D1 by bradykinin was prevented by the PI3K inhibitor Ly294002, the PLC inhibitors U73122 and neomycin, and/or the PKC inhibitor chelerythrine and the MAPK inhibitor PD98059. Our results demonstrate the novel information that bradykinin promotes cell cycling progression and migration in human cardiac c-Kit+ progenitor cells via activating PI3K, PLC, PKC, cyclin D1, pERK1/2, and pAkt.

  11. [Skin reactions to bradykinin].

    PubMed

    Rihoux, J P; Ramboer, I; Fadel, R

    1995-10-01

    A large series of experiments carried out in animals and humans suggest that histamine release is not involved in the leakage phenomenon induced by bradykinin (BK) challenge. These experiments comprise in vitro studies on skin and bronchial human mast cells and in vivo studies on guinea pig airways and human skin using mepyramine, chlorpheniramine and terfenadine as reference H1-anti-histamines. Nevertheless, it has been shown recently that the H1 antagonist cetirizine 10 mg p.o. markedly inhibits skin reactions induced by BK challenge (intradermal injection of 212 micrograms BK in 10 microL saline and prick test with a solution of 21.2 micrograms/microL). In a guinea pig model, this drug also inhibited the bronchospasm induced by increasing concentrations of BK given by iv route (0.25 to 2 micrograms/Kg) and aerosol (3 to 300 micrograms/Kg). This inhibition was similar to the one obtained with the specific BK antagonist HOE 140 (15 pM/Kg). New data in the literature suggest the existence of various pharmacological mediators possibly involved in the BK-induced reaction: neuromediators, nitric oxyde and PAF. They also suggest that this reaction presents itself as a well defined sequence of pharmacological events. Since we could show that there is no binding of cetirizine to a human recombinant B2 receptor in vitro, some hypotheses are raised in order to explain this unexpected inhibiting effect of cetirizine.

  12. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment

    PubMed Central

    Jelinic, Maria; Leo, Chen-Huei; Uiterweer, Emiel D. Post; Sandow, Shaun L.; Gooi, Jonathan H.; Wlodek, Mary E.; Conrad, Kirk P.; Parkington, Helena; Tare, Marianne; Parry, Laura J.

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 μg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.—Jelinic, M., Leo, C-H., Post Uiterweer, E. P., Sandow, S. L., Gooi, J. H., Wlodek, M. E., Conrad, K. P., Parkington, H., Tare, M., Parry, L. J. Localization of relaxin receptors

  13. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    SciTech Connect

    Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said

    2011-06-10

    Highlights: {yields} A new FRET-based method detects AT1/B2 receptor heterodimerization. {yields} First time application of AT1-Cerulean as a FRET donor. {yields} Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. {yields} A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. {yields} AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization

  14. Interruption of the ionic lock in the bradykinin B2 receptor results in constitutive internalization and turns several antagonists into strong agonists.

    PubMed

    Leschner, Jasmin; Wennerberg, Goeran; Feierler, Jens; Bermudez, Marcel; Welte, Benjamin; Kalatskaya, Irina; Wolber, Gerhard; Faussner, Alexander

    2013-01-01

    The DRY motif with the highly conserved R3.50 is a hallmark of family A G protein-coupled receptors (GPCRs). The crystal structure of rhodopsin revealed a salt bridge between R135(3.50) and another conserved residue, E247(6.30), in helix 6. This ionic lock was shown to maintain rhodopsin in its inactive state. Thus far, little information is available on how interruption of this ionic bond affects signaling properties of nonrhodopsin GPCRs, because the focus has been on mutations of R3.50, although this residue is indispensable for G protein activation. To investigate the importance of an ionic lock for overall receptor activity in a nonrhodopsin GPCR, we mutated R128(3.50) and E238(6.30) in the bradykinin (BK) B(2) receptor (B(2)R) and stably expressed the constructs in HEK293 cells. As expected, mutation of R3.50 resulted in lack of G protein activation. In addition, this mutation led to considerable constitutive receptor internalization. Mutation of E6.30 (mutants E6.30A and E6.30R) also caused strong constitutive internalization. Most intriguingly, however, although the two E6.30 mutants displayed no increased basal phosphatidylinositol hydrolysis, they gave a response to three different B(2)R antagonists that was almost comparable to that obtained with BK. In contrast, swapping of R3.50 and E6.30, thus allowing the formation of an inverse ionic bond, resulted in rescue of the wild type phenotype. These findings demonstrate for the first time, to our knowledge, that interruption of the ionic lock in a family A GPCR can have distinctly different effects on receptor internalization and G protein stimulation, shedding new light on its role in the activation process.

  15. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester.

    PubMed

    Gillard, Baiba K; Bassett, G Randall; Gotto, Antonio M; Rosales, Corina; Pownall, Henry J

    2017-05-26

    Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[(3)H]CE labeled with [(125)I]apoAI or [(125)I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR(-/-)) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase.

    PubMed

    Stein, E; Huynh-Do, U; Lane, A A; Cerretti, D P; Daniel, T O

    1998-01-16

    Eph family receptor tyrosine kinases signal axonal guidance, neuronal bundling, and angiogenesis; yet the signaling systems that couple these receptors to targeting and cell-cell assembly responses are incompletely defined. Functional links to regulators of cytoskeletal structure are anticipated based on receptor mediated cell-cell aggregation and migratory responses. We used two-hybrid interaction cloning to identify EphB1-interactive proteins. Six independent cDNAs encoding the SH2 domain of the adapter protein, Nck, were recovered in a screen of a murine embryonic library. We mapped the EphB1 subdomain that binds Nck and its Drosophila homologue, DOCK, to the juxtamembrane region. Within this subdomain, Tyr594 was required for Nck binding. In P19 embryonal carcinoma cells, activation of EphB1 (ELK) by its ligand, ephrin-B1/Fc, recruited Nck to native receptor complexes and activated c-Jun kinase (JNK/SAPK). Transient overexpression of mutant EphB1 receptors (Y594F) blocked Nck recruitment to EphB1, attenuated downstream JNK activation, and blocked cell attachment responses. These findings identify Nck as an important intermediary linking EphB1 signaling to JNK.

  17. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury

    PubMed Central

    2009-01-01

    Background Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. Methods Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). Results 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0·76 to 2·46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. Conclusion This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious

  18. Involvement of bradykinin B2 and muscarinic receptors in the prolonged diuretic and antihypertensive properties of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli.

    PubMed

    Prando, Thiago Buno Lima; Barboza, Lorena Neris; Araújo, Valdinei de Oliveira; Gasparotto, Francielly Mourão; de Souza, Lauro Mera; Lourenço, Emerson Luiz Botelho; Gasparotto Junior, Arquimedes

    2016-10-15

    -EG. The 7-day treatment with ES-EG resulted in increased plasma nitrite levels. All other parameters were not affected by treatment with ES-EG. Our results suggest that the mechanisms through which Echinodorus grandiflorus extracts induce prolonged diuresis and reduce blood pressure in normotensive and 2K1C rats are mainly related to activation of muscarinic and bradykinin receptors with direct effects on prostaglandins and nitric oxide pathways. Copyright © 2015. Published by Elsevier GmbH.

  19. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury.

    PubMed

    Shakur, Haleema; Andrews, Peter; Asser, Toomas; Balica, Laura; Boeriu, Cristian; Quintero, Juan Diego Ciro; Dewan, Yashbir; Druwé, Patrick; Fletcher, Olivia; Frost, Chris; Hartzenberg, Bennie; Mantilla, Jorge Mejia; Murillo-Cabezas, Francisco; Pachl, Jan; Ravi, Ramalingam R; Rätsep, Indrek; Sampaio, Cristina; Singh, Manmohan; Svoboda, Petr; Roberts, Ian

    2009-12-03

    Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0.76 to 2.46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious adverse events was reduced. This trial

  20. Green fluorescent protein fused to peptide agonists of two dissimilar G protein-coupled receptors: novel ligands of the bradykinin B2 (rhodopsin family) receptor and parathyroid hormone PTH1 (secretin family) receptor

    PubMed Central

    Charest-Morin, Xavier; Fortin, Jean-Philippe; Bawolak, Marie-Thérèse; Lodge, Robert; Marceau, François

    2013-01-01

    We hypothesized that peptide hormone sequences that stimulate and internalize G protein-coupled receptors (GPCRs) could be prolonged with a functional protein cargo. To verify this, we have selected two widely different pairs of peptide hormones and GPCRs that nevertheless share agonist-induced arrestin-mediated internalization. For the parathyroid hormone (PTH) PTH1 receptor (PTH1R) and the bradykinin (BK) B2 receptor (B2R), we have designed fusion proteins of the agonists PTH1-34 and maximakinin (MK, a BK homologue) with the enhanced green fluorescent protein (EGFP), thus producing candidate high molecular weight ligands. According to docking models of each hormone to its receptor, EGFP was fused either at the N-terminus (MK) or C-terminus (PTH1-34) of the ligand; the last construction is also secretable due to inclusion of the preproinsulin signal peptide and has been produced as a conditioned medium. EGFP-MK has been produced as a lysate of transfected cells. Using an enzyme-linked immunosorbent assay (ELISA) for GFP, average concentrations of 1.5 and 1670 nmol/L, respectively, of ligand were found in these preparations. The functional properties and potential of these analogs for imaging receptor-expressing cells were examined. Microscopic and cytofluorometric evidence of specific binding and internalization of both fusion proteins was obtained using recipient HEK 293a cells that expressed the cognate recombinant receptor. Endosomal colocalization studies were conducted (Rab5, Rab7, β-arrestin1). Evidence of agonist signaling was obtained (expression of c-Fos, cyclic AMP responsive element (CRE) reporter gene for PTH1-34-EGFP). The constructs PTH1-34-EGFP and EGFP-MK represent bona fide agonists that support the feasibility of transporting protein cargoes inside cells using GPCRs. PMID:25505558

  1. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment.

    PubMed

    Jelinic, Maria; Leo, Chen-Huei; Post Uiterweer, Emiel D; Sandow, Shaun L; Gooi, Jonathan H; Wlodek, Mary E; Conrad, Kirk P; Parkington, Helena; Tare, Marianne; Parry, Laura J

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 μg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.

  2. Segmental Expression of the Bradykinin Type 2 Receptor in Rat Efferent Ducts and Epididymis and Its Role in the Regulation of Aquaporin 91

    PubMed Central

    Belleannée, C.; Silva, N. Da; Shum, W.W.C.; Marsolais, M.; Laprade, R.; Brown, D.; Breton, S.

    2008-01-01

    Water and solute transport in the efferent ducts and epididymis are important for the establishment of the appropriate luminal environment for sperm maturation and storage. Aquaporin 9 (AQP9) is the main water channel in the epididymis, but its regulation is still poorly understood. Components of the kinin-kallikrein system (KKS), leading to the production of bradykinin (BK), are highly expressed in the lumen of the male reproductive tract. We report here that the epididymal luminal fluid contains a significant amount of BK (2 nM). RT-PCR performed on epididymal epithelial cells isolated by laser capture microdissection (LCM) showed abundant BK type 2 receptor (Bdkrb2) mRNA expression but no type 1 receptor (Bdkrb1). Double-immunofluorescence staining for BDKRB2 and the anion exchanger AE2 (a marker of efferent duct ciliated cells) or the V-ATPase E subunit, official symbol ATP6V1E1 (a marker of epididymal clear cells), showed that BDKRB2 is expressed in the apical pole of nonciliated cells (efferent ducts) and principal cells (epididymis). Triple labeling for BDKRB2, AQP9, and ATP6V1E1 showed that BDKRB2 and AQP9 colocalize in the apical stereocilia of principal cells in the cauda epididymidis. While uniform Bdkrb2 mRNA expression was detected in the efferent ducts and along the epididymal tubule, marked variations were detected at the protein level. BDKRB2 was highest in the efferent ducts and cauda epididymidis, intermediate in the distal initial segment, moderate in the corpus, and undetectable in the proximal initial segment and the caput. Functional assays on tubules isolated from the distal initial segments showed that BK significantly increased AQP9-dependent glycerol apical membrane permeability. This effect was inhibited by BAPTA-AM, demonstrating the participation of calcium in this process. This study, therefore, identifies BK as an important regulator of AQP9. PMID:18829705

  3. Ex Vivo Smooth Muscle Pharmacological Effects of a Novel Bradykinin-Related Peptide, and Its Analogue, from Chinese Large Odorous Frog, Odorrana livida Skin Secretions

    PubMed Central

    Xiang, Jie; Wang, Hui; Ma, Chengbang; Zhou, Mei; Wu, Yuxin; Wang, Lei; Guo, Shaodong; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Bradykinin-related peptides (BRPs) are one of the most extensively studied frog secretions-derived peptide families identified from many amphibian species. The diverse primary structures of BRPs have been proven essential for providing valuable information in understanding basic mechanisms associated with drug modification. Here, we isolated, identified and characterized a dodeca-BRP (RAP-L1, T6-BK), with primary structure RAPLPPGFTPFR, from the skin secretions of Chinese large odorous frogs, Odorrana livida. This novel peptide exhibited a dose-dependent contractile property on rat bladder and rat ileum, and increased the contraction frequency on rat uterus ex vivo smooth muscle preparations; it also showed vasorelaxant activity on rat tail artery smooth muscle. In addition, the analogue RAP-L1, T6, L8-BK completely abolished these effects on selected rat smooth muscle tissues, whilst it showed inhibition effect on bradykinin-induced rat tail artery relaxation. By using canonical antagonist for bradykinin B1 or B2 type receptors, we found that RAP-L1, T6-BK -induced relaxation of the arterial smooth muscle was very likely to be modulated by B2 receptors. The analogue RAP-L1, T6, L8-BK further enhanced the bradykinin inhibitory activity only under the condition of co-administration with HOE140 on rat tail artery, suggesting a synergistic inhibition mechanism by which targeting B2 type receptors. PMID:27690099

  4. Species-specific pharmacology of maximakinin, an amphibian homologue of bradykinin: putative prodrug activity at the human B2 receptor and peptidase resistance in rats

    PubMed Central

    Jean, Melissa

    2017-01-01

    Maximakinin (MK), an amphibian peptide possessing the C-terminal sequence of bradykinin (BK), is a BK B2 receptor (B2R) agonist eliciting prolonged signaling. We reinvestigated this 19-mer for species-specific pharmacologic profile, in vivo confirmation of resistance to inactivation by angiotensin converting enzyme (ACE), value as a module for the design of fusion proteins that bind to the B2R in mammalian species and potential activity as a histamine releaser. Competition of the binding of [3H]BK to recombinant human myc-B2Rs in cells that express these receptors revealed that MK possessed a tenuous fraction (<0.1%) of the affinity of BK, despite being only ∼20-fold less potent than BK in a contractility assay based on the human isolated umbilical vein. These findings are reconciled by the generation of C-terminal fragments, like Lys-Gly-Pro-BK and Gly-Pro-BK, when the latent MK is incubated with human venous tissue (LC-MS), supporting activation via hydrolysis upstream of the BK sequence. At the rat recombinant myc-B2R, MK had a lesser affinity than that of BK, but with a narrower margin (6.2-fold, radioligand binding competition). Accordingly, MK (10 nM) stimulated calcium transients in cells that expressed the rat receptors, but not the human B2R. Recombinant MRGPRX2, a receptor that mediates cationic peptide-induced mast cell secretion, minimally responded by increased [Ca+2]i to MK at 10 µM. Enhanced green fluorescent protein fused to MK (EGFP-MK) labeled cells that expressed rat, but not human B2Rs. Intravenous MK induced dose-dependent hypotensive, vasodilator and tachycardic responses in anesthetized rats and the effects were antagonized by pretreatment with icatibant but not modified by pyrilamine or enalaprilat. Strong species-specific responses to the toxin-derived peptide MK and its prodrug status in the isolated human vein were evidenced. Accordingly, MK in the EGFP-MK fusion protein is a pharmacophore module that confers affinity for the rat B2R

  5. Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men

    PubMed Central

    2012-01-01

    Background Bradykinin type 2 receptor (B2BRK) genotype was reported to be associated with changes in the left-ventricular mass as a response to aerobic training, as well as in the regulation of the skeletal muscle performance in both athletes and non-athletes. However, there are no reports on the effect of B2BRK 9-bp polymorphism on the response of the skeletal muscle to strength training, and our aim was to determine the relationship between the B2BRK SNP and triceps brachii functional and morphological adaptation to programmed physical activity in young adults. Methods In this 6-week pretest-posttest exercise intervention study, twenty nine healthy young men (21.5 ± 2.7 y, BMI 24.2 ± 3.5 kg/m2) were put on a 6-week exercise protocol using an isoacceleration dynamometer (5 times a week, 5 daily sets with 10 maximal elbow extensions, 1 minute rest between sets). Triceps brachii muscle volumes were assessed by using magnetic resonance imaging before and after the strength training. Bradykinin type 2 receptor 9 base pair polymorphism was determined for all participants. Results Following the elbow extensors training, an average increase in the volume of both triceps brachii was 5.4 ± 3.4% (from 929.5 ± 146.8 cm3 pre-training to 977.6 ± 140.9 cm3 after training, p<0.001). Triceps brachii volume increase was significantly larger in individuals homozygous for −9 allele compared to individuals with one or two +9 alleles (−9/-9, 8.5 ± 3.8%; vs. -9/+9 and +9/+9 combined, 4.7 ± 4.5%, p < 0.05). Mean increases in endurance strength in response to training were 48.4 ± 20.2%, but the increases were not dependent on B2BRK genotype (−9/-9, 50.2 ± 19.2%; vs. -9/+9 and +9/+9 combined, 46.8 ± 20.7%, p > 0.05). Conclusions We found that muscle morphological response to targeted training – hypertrophy – is related to polymorphisms of B2BRK. However, no significant influence of different B2BRK genotypes on functional muscle properties after strength training in

  6. Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men.

    PubMed

    Popadic Gacesa, Jelena Z; Momcilovic, Milica; Veselinovic, Igor; Brodie, David A; Grujic, Nikola G

    2012-11-06

    Bradykinin type 2 receptor (B2BRK) genotype was reported to be associated with changes in the left-ventricular mass as a response to aerobic training, as well as in the regulation of the skeletal muscle performance in both athletes and non-athletes. However, there are no reports on the effect of B2BRK 9-bp polymorphism on the response of the skeletal muscle to strength training, and our aim was to determine the relationship between the B2BRK SNP and triceps brachii functional and morphological adaptation to programmed physical activity in young adults. In this 6-week pretest-posttest exercise intervention study, twenty nine healthy young men (21.5 ± 2.7 y, BMI 24.2 ± 3.5 kg/m(2)) were put on a 6-week exercise protocol using an isoacceleration dynamometer (5 times a week, 5 daily sets with 10 maximal elbow extensions, 1 minute rest between sets). Triceps brachii muscle volumes were assessed by using magnetic resonance imaging before and after the strength training. Bradykinin type 2 receptor 9 base pair polymorphism was determined for all participants. Following the elbow extensors training, an average increase in the volume of both triceps brachii was 5.4 ± 3.4% (from 929.5 ± 146.8 cm(3) pre-training to 977.6 ± 140.9 cm(3) after training, p<0.001). Triceps brachii volume increase was significantly larger in individuals homozygous for -9 allele compared to individuals with one or two +9 alleles (-9/-9, 8.5 ± 3.8%; vs. -9/+9 and +9/+9 combined, 4.7 ± 4.5%, p < 0.05). Mean increases in endurance strength in response to training were 48.4 ± 20.2%, but the increases were not dependent on B2BRK genotype (-9/-9, 50.2 ± 19.2%; vs. -9/+9 and +9/+9 combined, 46.8 ± 20.7%, p > 0.05). We found that muscle morphological response to targeted training - hypertrophy - is related to polymorphisms of B2BRK. However, no significant influence of different B2BRK genotypes on functional muscle properties after strength training in young healthy non athletes was found. This

  7. Role of Mas Receptor Antagonist A799 in Renal Blood Flow Response to Ang 1-7 after Bradykinin Administration in Ovariectomized Estradiol-Treated Rats.

    PubMed

    Dehghani, Aghdas; Saberi, Shadan; Nematbakhsh, Mehdi

    2015-01-01

    Background. The accompanied role of Mas receptor (MasR), bradykinin (BK), and female sex hormone on renal blood flow (RBF) response to angiotensin 1-7 is not well defined. We investigated the role of MasR antagonist (A779) and BK on RBF response to Ang 1-7 infusion in ovariectomized estradiol-treated rats. Methods. Ovariectomized Wistar rats received estradiol (OVE) or vehicle (OV) for two weeks. Catheterized animals were subjected to BK and A799 infusion and mean arterial pressure (MAP), RBF, and renal vascular resistance (RVR) responses to Ang 1-7 (0, 100, and 300 ng kg(-1) min(-1)) were determined. Results. Percentage change of RBF (%RBF) in response to Ang1-7 infusion increased in a dose-dependent manner. In the presence of BK, when MasR was not blocked, %RBF response to Ang 1-7 in OVE group was greater than OV group significantly (P < 0.05). Infusion of 300 ng kg(-1) min(-1) Ang 1-7 increased RBF by 6.9 ± 1.9% in OVE group versus 0.9 ± 1.8% in OV group. However when MasR was blocked, %RBF response to Ang 1-7 in OV group was greater than OVE group insignificantly. Conclusion. Coadministration of BK and A779 compared to BK alone increased RBF response to Ang 1-7 in vehicle treated rats. Such observation was not seen in estradiol treated rats.

  8. Role of Mas Receptor Antagonist A799 in Renal Blood Flow Response to Ang 1-7 after Bradykinin Administration in Ovariectomized Estradiol-Treated Rats

    PubMed Central

    Dehghani, Aghdas; Saberi, Shadan; Nematbakhsh, Mehdi

    2015-01-01

    Background. The accompanied role of Mas receptor (MasR), bradykinin (BK), and female sex hormone on renal blood flow (RBF) response to angiotensin 1-7 is not well defined. We investigated the role of MasR antagonist (A779) and BK on RBF response to Ang 1-7 infusion in ovariectomized estradiol-treated rats. Methods. Ovariectomized Wistar rats received estradiol (OVE) or vehicle (OV) for two weeks. Catheterized animals were subjected to BK and A799 infusion and mean arterial pressure (MAP), RBF, and renal vascular resistance (RVR) responses to Ang 1-7 (0, 100, and 300 ng kg−1 min−1) were determined. Results. Percentage change of RBF (%RBF) in response to Ang1-7 infusion increased in a dose-dependent manner. In the presence of BK, when MasR was not blocked, %RBF response to Ang 1-7 in OVE group was greater than OV group significantly (P < 0.05). Infusion of 300 ng kg−1 min−1 Ang 1-7 increased RBF by 6.9 ± 1.9% in OVE group versus 0.9 ± 1.8% in OV group. However when MasR was blocked, %RBF response to Ang 1-7 in OV group was greater than OVE group insignificantly. Conclusion. Coadministration of BK and A779 compared to BK alone increased RBF response to Ang 1-7 in vehicle treated rats. Such observation was not seen in estradiol treated rats. PMID:26421009

  9. Kinin B1 and B2 receptors are overexpressed in the hippocampus of humans with temporal lobe epilepsy.

    PubMed

    Perosa, Sandra Regina; Argañaraz, Gustavo Adolfo; Goto, Eduardo Massatoshi; Costa, Luciana Gilbert Pessoa; Konno, Ana Carla; Varella, Pedro Paulo Vasconcellos; Santiago, Joselita Ferreira Carvalho; Pesquero, João Bosco; Canzian, Mauro; Amado, Debora; Yacubian, Elza Marcia; Carrete, Henrique; Centeno, Ricardo Silva; Cavalheiro, Esper Abrão; Silva, Jose Antonio; Mazzacoratti, Maria da Graça Naffah

    2007-01-01

    Molecular biology tools have been employed to investigate the participation of peptides in human temporal lobe epilepsy (TLE). Active polypeptides and their receptors have been related to several brain processes, such as inflammation, apoptosis, brain development, K(+) and Ca(2+) channels' activation, cellular growth, and induction of neuronal differentiation. Previous works have shown a neuroprotector effect for kinin B2 receptor and a deleterious, pro-epileptogenic action for kinin B1 receptor in animal models of TLE. The present work was delineated to analyze the kinin B1 and B2 receptors expression in the hippocampus of patients presenting refractory mesial TLE. The hippocampi were removed during the patients surgery in a procedure used for seizure control and compared with tissues obtained after autopsy. Nissl staining was performed to study the tissue morphology and immunohistochemistry, and Western blot was used to compare the distribution and levels of both receptors in the hippocampus. In addition, real time PCR was employed to analyze the gene expression of these receptors. Nissl staining showed sclerotic hippocampi with hilar, granular, and pyramidal cell loss in TLE patients. Immunohistochemistry and Western blot analyses showed increased expression of kinin B1 and B2 receptors but the real-time PCR data demonstrated increased mRNA level only for kinin B2 receptors, when compared with controls. These data show for the first time a relationship between human TLE and the kallikrein-kinin system, confirming ours previous results, obtained from experimental models of epilepsy.

  10. Inflammatory muscle pain is dependent on the activation of kinin B1 and B2 receptors and intracellular kinase pathways

    PubMed Central

    Meotti, FC; Campos, R; da Silva, KABS; Paszcuk, AF; Costa, R; Calixto, JB

    2012-01-01

    BACKGROUND AND PURPOSE B1 and B2 kinin receptors are involved in pain transmission but they may have different roles in the muscle pain induced by intense exercise or inflammation. We investigated the contribution of each of these receptors, and the intracellular pathways involved, in the initial development and maintenance of the muscle pain associated with inflammation-induced tissue damage. EXPERIMENTAL APPROACH Mechanical hyperalgesia was measured using the Randall–Selitto apparatus after injecting 5% formalin solution into the gastrocnemius muscle in mice treated with selective antagonists for B1 or B2 receptors. The expression of kinin receptors and cytokines and the activation of intracellular kinases were monitored by real-time PCR and immunohistochemistry. KEY RESULTS The i.m. injection of formalin induced an overexpression of B1 and B2 receptors. This overexpression was associated with the mechanical hyperalgesia induced by formalin because treatment with B1 receptor antagonists (des-Arg9[Leu8]-BK, DALBK, and SSR240612) or B2 receptor antagonists (HOE 140 and FR173657) prevented the hyperalgesia. Formalin increased myeloperoxidase activity, and up-regulated TNF-α, IL-1β and IL-6 in gastrocnemius. Myeloperoxidase activity and TNF-α mRNA expression were inhibited by either DALBK or HOE 140, whereas IL-6 was inhibited only by HOE 140. The hyperalgesia induced by i.m. formalin was dependent on the activation of intracellular MAPKs p38, JNK and PKC. CONCLUSIONS AND IMPLICATIONS Inflammatory muscle pain involves a cascade of events that is dependent on the activation of PKC, p38 and JNK, and the synthesis of IL-1β, TNF-α and IL-6 associated with the up-regulation of both B1 and B2 kinin receptors. PMID:22220695

  11. The CYP1B1_1358_GG genotype is associated with estrogen receptor-negative breast cancer.

    PubMed

    Justenhoven, Christina; Pierl, Christiane B; Haas, Susanne; Fischer, Hans-Peter; Baisch, Christian; Hamann, Ute; Harth, Volker; Pesch, Beate; Brüning, Thomas; Vollmert, Caren; Illig, Thomas; Dippon, Jürgen; Ko, Yon-Dschun; Brauch, Hiltrud

    2008-09-01

    Cytochrome P450 1B1 (CYP1B1) is a major enzyme in the initial catabolic step of estradiol (E2) metabolism and belongs to the multitude of genes regulated by the estrogen receptor alpha (ERalpha). The common non-synonymous polymorphisms CYP1B1_1358_A>G and CYP1B1_1294_C>G increase CYP1B1 enzymatic activity. Given a relationship between CYP1B1 and breast tumor E2 level as well as E2 level and breast tumor ERalpha expression it is of interest to know whether CYP1B1 polymorphisms have an impact on the ERalpha status of breast cancer. We genotyped the GENICA population-based breast cancer case-control collection (1,021 cases, 1,015 controls) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and investigated in cases the association between genotypes and tumor ERalpha status (739 ERalpha positive cases; 212 ERalpha negative cases) by logistic regression. We observed a significant association between the homozygous variant CYP1B1_1358_GG genotype and negative ERalpha status (P = 0.005; OR 2.82, 95% CI: 1.37-5.82) with a highly significant Ptrend for CYP1B1_1358_A>G and negative ERalpha status (P = 0.003). We also observed an association of CYP1B1_1358_GG and negative PR status (P = 0.015; OR 2.36, 95% CI: 1.18-4.70) and a Ptrend of 0.111 for CYP1B1_1358_A>G and negative progesterone receptor (PR) status. We conclude that the CYP1B1_1358_A>G polymorphism has an impact on ERalpha status in breast cancer in that the CYP1B1_1358_GG genotype known to encode higher CYP1B1 activity is associated with ERalpha negativity.

  12. The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner

    PubMed Central

    Vikis, Haris G.; Li, Weiquan; He, Zhigang; Guan, Kun-Liang

    2000-01-01

    Semaphorin molecules serve as axon guidance signals that regulate the navigation of neuronal growth cones. Semaphorins have also been implicated in other biological processes, including the immune response. Plexins, acting either alone or in complex with neuropilins, have recently been identified as functional semaphorin receptors. However, the mechanisms of signal transduction by plexins remain largely unknown. We have demonstrated a direct interaction between plexin-B1 and activated Rac. Rac specifically interacts with the cytosolic domain of plexin-B1, but not with that of plexin-A3 or -C1. Neither RhoA nor Cdc42 interacts with plexin-B1, indicating that the Rac/plexin-B1 interaction is highly specific. The binding of GTP and the integrity of the Rac effector domain are required for the interaction with plexin-B1. Furthermore, we have identified that a Cdc42/Rac interactive binding (CRIB) motif in the cytosolic domain of plexin-B1 is essential for its interaction with active Rac. We have also observed that the semaphorin CD100, a ligand for plexin-B1, stimulates the interaction between plexin-B1 and active Rac. Our results support a model by which activated Rac plays a role in mediating semaphorin signals, resulting in reorganization of actin cytoskeletal structure. PMID:11035813

  13. Angiotensin-(1-7)-dependent vasorelaxation of the renal artery exhibits unique angiotensin and bradykinin receptor selectivity.

    PubMed

    Yousif, Mariam H M; Benter, Ibrahim F; Diz, Debra I; Chappell, Mark C

    2017-02-10

    Angiotensin-(1-7) [Ang-(1-7)] exhibits blood pressure lowering actions, inhibits cell growth, and reduces tissue inflammation and fibrosis which may functionally antagonize an activated Ang II-AT1 receptor axis. Since the vascular actions of Ang-(1-7) and the associated receptor/signaling pathways vary in different vascular beds, the current study established the vasorelaxant properties of the heptapeptide in the renal artery of male Wistar male rats. Ang-(1-7) produced an endothelium-dependent vasodilator relaxation of isolated renal artery segments pre-contracted by a sub-maximal concentration of phenylephrine (PE) (3×10(-7)M). Ang-(1-7) induced vasodilation of the rat renal artery with an ED50 of 3±1nM and a maximal response of 42±5% (N=10). The two antagonists (10(-5)M each) for the AT7/Mas receptor (MasR) [D-Pro(7)]-Ang-(1-7) and [D-Ala(7)]-Ang-(1-7) significantly reduced the maximal response to 12±1% and 18±3%, respectively. Surprisingly, the AT2R receptor antagonist PD123319, the AT1R antagonist losartan and B2R antagonist HOE140 (10(-6)M each) also significantly reduced Ang-(1-7)-induced relaxation to 12±2%, 22±3% and 14±7%, respectively. Removal of the endothelium or addition of the soluble guanylate cyclase (sGC) inhibitor ODQ (10(-5)M) essentially abolished the vasorelaxant response to Ang-(1-7) (10±4% and 10±2%, P <0.05). Finally, the NOS inhibitor LNAME (10(-4)M) reduced the response to 13±2% (p<0.05), but the cyclooxygenase inhibitor indomethacin failed to block the Ang-(1-7) response. We conclude that Ang-(1-7) exhibits potent vasorelaxant actions in the isolated renal artery that are dependent on an intact endothelium and the apparent stimulation of a NO-sGC pathway. Moreover, Ang-(1-7)-dependent vasorelaxation was sensitive to antagonists against the AT7/Mas, AT1, AT2 and B2 receptor subtypes.

  14. Characterization of 5-HT receptors mediating constriction of porcine carotid arteriovenous anastomoses; involvement of 5-HT1B/1D and novel receptors

    PubMed Central

    De Vries, Peter; Villalón, Carlos M; Heiligers, Jan P C; Saxena, Pramod R

    1998-01-01

    It was previously shown that porcine cranial arteriovenous anastomoses (AVAs) constrict to 5-hydroxytryptamine (5-HT), ergotamine, dihydroergotamine, as well as sumatriptan and that sumatriptan acts exclusively via 5-HT1B/1D receptors. The present study was devoted to establish the contribution of 5-HT1B/1D receptors in the constriction of AVAs elicited by 5-HT (in presence of 0.5 mg kg−1 ketanserin), ergotamine and dihydroergotamine in anaesthetized pigs.Intracarotid infusion of 5-HT (2 μg kg−1 min−1) and intravenous doses of ergotamine (2.5–20 μg kg−1) and dihydroergotamine (3–100 μg kg−1) reduced AVA and increased nutrient blood flows and vascular conductances. The vasodilator response to 5-HT, observed mainly in the skin and ear, was much more prominent than that of the ergot alkaloids.Treatment with the 5-HT1B/1D receptor antagonist GR127935 (0.5 mg kg−1, i.v.) significantly attenuated both ergot-induced AVA constriction and arteriolar dilatation, whereas GR127935 only slightly affected the carotid vascular effects of 5-HT.The results suggest that 5-HT constricts carotid AVAs primarily via receptors, which seem to differ from those (5-HT1B/1D) stimulated by sumatriptan. The ergot alkaloids produce AVA constriction for a substantial part via 5-HT1B/1D receptors, but also stimulate unidentified receptors. Both these non-5-HT1B/1D receptors may be targets for the development of novel antimigraine drugs.The moderate vasodilator response to the ergot derivatives seems to be mediated, at least in part, by 5-HT1B/1D receptors, whereas the arteriolar dilatation caused by 5-HT may be mediated by other, possibly 5-HT7 receptors. PMID:9605562

  15. The mechanism of action of two bradykinin-potentiating peptides on isolated smooth muscle.

    PubMed

    Ufkes, J G; Aarsen, P N; van der Meer, C

    1977-07-15

    Bradykinin-induced contractions in the guinea-pig ileum were potentiated by the peptides A-VI-5 (Val-Glu-Ser-Ser-Lys) and BPP5a (Pyr-Lys-Trp-Ala-Pro), while the contractions induced by other agonists were not affected. Neither peptide added alone caused any response. Previous addition of the peptides shortened the latent period following the addition of bradykinin to a value corresponding to the contraction height with an equivalent dose of bradykinin added alone. Bradykinin in contact with a piece of ileum was inactivated at a relatively slow rate. This inactivation was not inhibited by either A-VI-5 or BPP5a in doses causing potentiation. Suppression of the cholinergic activity by cooling, atropine, morphine or tetrodotoxin did not influence the potentiating activity. Addition of the peptides at the moment a submaximal contraction due to bradykinin had been fully established, increased the contraction height within seconds. The two peptides caused a parallel shift to the left of the dose-effect curve of bradykinin, whereas the maximum bradykinin effect remained unchanged. It is concluded that sensitization of bradykinin receptors due to an increased affinity of the receptor for bradykinin is the hypothesis which best fits the experimental findings.

  16. Polymorphisms of the nuclear receptor pregnane X receptor and organic anion transporter polypeptides 1A2, 1B1, 1B3, and 2B1 are not associated with breast cancer risk.

    PubMed

    Justenhoven, Christina; Schaeffeler, Elke; Winter, Stefan; Baisch, Christian; Hamann, Ute; Harth, Volker; Rabstein, Sylvia; Spickenheuer, Anne; Pesch, Beate; Brüning, Thomas; Ko, Yon-Dschun; Schwab, Matthias; Brauch, Hiltrud

    2011-01-01

    Organic anion transporter polypeptides (OATPs, SLCOs) are involved in the uptake of conjugates steroid hormones such as estrone-3-sulfate. It has been suggested that the expression of OATPs in breast tissues could impact breast carcinogenesis and tumor pathology. The nuclear receptor pregnane X receptor (PXR) is involved in the regulation of SLCO1A2 expression. We investigated 31 variants located in PXR, SLCO1A2, SLCO1B1, SLCO1B3, and SLCO2B1 for an association with breast cancer risk and/or histo-pathological tumor characteristics. Polymorphisms were selected on the basis of a known or potential functional consequence and an allele frequency >2%. Genotyping was performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the GENICA population-based breast cancer case-control collection comprising 1,021 cases and 1,015 age-matched controls. Statistical analysis was performed by SAS, and all tests were two-sided. None of the 31 analyzed transporter and PXR polymorphisms showed an association with breast cancer risk or tumor characteristics. Our data suggest that among the many known transporters common variations of PXR, SLCO1A2, SLCO1B1, SLCO1B3, and SLCO2B1 do not contribute to breast carcinogenesis.

  17. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors

    PubMed Central

    Kuhr, F.; Lowry, J.; Zhang, Y.; Brovkovych, V.; Skidgel, R.A.

    2010-01-01

    Kinins are vasoactive peptides that play important roles in cardiovascular homeostasis, pain and inflammation. After release from their precursor kininogens, kinins or their C-terminal des-Arg metabolites activate two distinct G protein-coupled receptors (GPCR), called B2 (B2R) or B1 (B1R). The B2R is expressed constitutively with a wide tissue distribution. In contrast, the B1R is not expressed under normal conditions but is upregulated by tissue insult or inflammatory mediators. The B2R is considered to mediate many of the acute effects of kinins while the B1R is more responsible for chronic responses in inflammation. Both receptors can couple to Gαi and Gαq families of G proteins to release mediators such as nitric oxide (NO), arachidonic acid, prostaglandins, leukotrienes and endothelium derived hyperpolarizing factor and can induce the release of other inflammatory agents. The focus of this review is on the different transduction events that take place upon B2R and B1R activation in human endothelial cells that leads to generation of NO via activation of different NOS isoforms. Importantly, B2R-mediated eNOS activation leads to a transient (~ 5 min) output of NO in control endothelial cells whereas in cytokine-treated endothelial cells, B1R activation leads to very high and prolonged (~90 min) NO production that is mediated by a novel signal transduction pathway leading to post-translational activation of iNOS. PMID:20045558

  18. Pharmacological characterisation of a cell line expressing GABA B1b and GABA B2 receptor subunits.

    PubMed

    Hirst, Warren D; Babbs, Adam J; Green, Andrew; Minton, Jayne A L; Shaw, Tracy E; Wise, Alan; Rice, Simon Q; Pangalos, Menelas N; Price, Gary W

    2003-04-01

    The gamma-aminobutyric acid (GABA(B)) receptor has been shown to be a heterodimer consisting of two receptor subunits, GABA(B1) and GABA(B2). We have stably co-expressed these two subunits in a CHO cell line, characterised its pharmacology and compared it to the native receptor in rat brain membranes. Radioligand binding using [3H]CGP54626A demonstrated a similar rank order of potency between recombinant and native receptors: CGP62349>CGP54626A>SCH 50911>3-aminopropylphosphinicacid(3-APPA)>GABA>baclofen>saclofen>phaclofen. However, differences were observed in the affinity of agonists, which were higher at the native receptor, suggesting that in the recombinant system a large number of the receptors were in the low agonist affinity state. In contrast, [35S]GTPgammaS binding studies did not show any differences between recombinant and native receptors with the full agonists GABA and 3-APPA. Measurement of cAMP accumulation in the cells revealed a degree of endogenous coupling of the receptors to G-proteins. This is most likely to be due to the high expression levels of receptors (B(max)=22.5+/-2.5pmol/mg protein) in this experimental system. There was no evidence of GABA(B2) receptors, when expressed alone, binding [3H]CGP54626A, [3H]GABA, [3H]3-APPA nor of GABA having any effect on basal [35S]GTPgammaS binding or cAMP levels.

  19. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor.

    PubMed

    Bartosch, Birke; Vitelli, Alessandra; Granier, Christelle; Goujon, Caroline; Dubuisson, Jean; Pascale, Simona; Scarselli, Elisa; Cortese, Riccardo; Nicosia, Alfredo; Cosset, François-Loïc

    2003-10-24

    Several cell surface molecules have been proposed as receptor candidates, mediating cell entry of hepatitis C virus (HCV) on the basis of their physical association with virions or with soluble HCV E2 glycoproteins. However, due to the lack of infectious HCV particles, evidence that these receptor candidates support infection was missing. Using our recently described infectious HCV pseudotype particles (HCVpp) that display functional E1E2 glycoprotein complexes, here we show that HCV is a pH-dependent virus, implying that its receptor component(s) mediate virion internalization by endocytosis. Expression of the CD81 tetraspanin in non-permissive CD81-negative hepato-carcinoma cells was sufficient to restore susceptibility to HCVpp infection, confirming its critical role as a cell attachment factor. As a cell surface molecule likely to mediate endosomal trafficking, we demonstrate that the human scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein-internalization molecule that we previously proposed as a novel HCV receptor candidate due to its affinity with E2 glycoproteins, is required for infection of CD81-expressing hepatic cells. By receptor competition assays, we found that SR-B1 antibodies that blocked binding of soluble E2 could prevent HCVpp infectivity. Furthermore, we establish that the hyper-variable region 1 of the HCV E2 glycoprotein is a critical determinant mediating entry in SR-B1-positive cells. Finally, by correlating expression of HCV receptors and infectivity, we suggest that, besides CD81 and SR-B1, additional hepatocyte-specific co-factor(s) are necessary for HCV entry.

  20. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors

    PubMed Central

    Mathivanan, Sakthikumar; Devesa, Isabel; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2016-01-01

    Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced TRPV1 sensitization in peptidergic nociceptors involves the exocytotic release of channels trafficked by large dense core vesicles (LDCVs) that cargo alpha-calcitonin gene related peptide alpha (αCGRP). We hypothesized that, similar to ATP, bradykinin may also use different mechanisms to sensitize TRPV1 channels in peptidergic and non-peptidergic nociceptors. We found that bradykinin notably enhances the excitability of peptidergic nociceptors, and sensitizes TRPV1, primarily through the bradykinin receptor 2 pathway. Notably, bradykinin sensitization of TRPV1 in peptidergic nociceptors was significantly blocked by inhibiting Ca2+-dependent neuronal exocytosis. In addition, silencing αCGRP gene expression, but not substance P, drastically reduced bradykinin-induced TRPV1 sensitization in peptidergic nociceptors. Taken together, these findings indicate that bradykinin-induced sensitization of TRPV1 in peptidergic nociceptors is partially mediated by the exocytotic mobilization of new channels trafficked by αCGRP-loaded LDCVs to the neuronal membrane. Our findings further imply a central role of αCGRP peptidergic nociceptors in peripheral algesic sensitization, and substantiate that inhibition of LDCVs exocytosis is a valuable therapeutic strategy to treat pain, as it concurrently reduces the release of pro-inflammatory peptides and the membrane recruitment of thermoTRP channels. PMID:27445816

  1. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors.

    PubMed

    Mathivanan, Sakthikumar; Devesa, Isabel; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2016-01-01

    Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced TRPV1 sensitization in peptidergic nociceptors involves the exocytotic release of channels trafficked by large dense core vesicles (LDCVs) that cargo alpha-calcitonin gene related peptide alpha (αCGRP). We hypothesized that, similar to ATP, bradykinin may also use different mechanisms to sensitize TRPV1 channels in peptidergic and non-peptidergic nociceptors. We found that bradykinin notably enhances the excitability of peptidergic nociceptors, and sensitizes TRPV1, primarily through the bradykinin receptor 2 pathway. Notably, bradykinin sensitization of TRPV1 in peptidergic nociceptors was significantly blocked by inhibiting Ca(2+)-dependent neuronal exocytosis. In addition, silencing αCGRP gene expression, but not substance P, drastically reduced bradykinin-induced TRPV1 sensitization in peptidergic nociceptors. Taken together, these findings indicate that bradykinin-induced sensitization of TRPV1 in peptidergic nociceptors is partially mediated by the exocytotic mobilization of new channels trafficked by αCGRP-loaded LDCVs to the neuronal membrane. Our findings further imply a central role of αCGRP peptidergic nociceptors in peripheral algesic sensitization, and substantiate that inhibition of LDCVs exocytosis is a valuable therapeutic strategy to treat pain, as it concurrently reduces the release of pro-inflammatory peptides and the membrane recruitment of thermoTRP channels.

  2. Aflatoxin B1 disrupts transient receptor potential channel activity and increases COX-2 expression in JEG-3 placental cells.

    PubMed

    Zhu, Yun; Tan, Yan Qin; Leung, Lai K

    2016-12-25

    Aflatoxins are fungal metabolites which pose a major threat to food safety. Although these mycotoxins are established hepatocarcinogens, their effect on the reproductive organ is unknown. Transient Receptor Potential Channels (TRPs) are ubiquitously expressed in human tissues, including the placenta. These channels are associated with various functions in the placenta. The fetus and the placenta are especially sensitive to xenobiotic assault; therefore, exposure to the aflatoxins during gestation might lead to the undesirable outcome. Previously we have shown that aflatoxin B1 administered in late gestation may increase cox-2 expression in mouse placentae. In the present study, we examined the effect of aflatoxin B1 on COX-2 by using the placental cell model JEG-3 and the respective signaling pathway. In our result, COX-2 expression was induced by the mycotoxin administration. The intracellular calcium levels were also increased in cells by aflatoxin B1 treatment as little as 1 nM. Immunoblot result showed that some TRP expressions were elevated. As inflated intracellular calcium might activate MAPKs, the underlying signaling pathway was investigated. With the help of TRP-specific inhibitors, the mycotoxin appeared to increase the expression of TRPC-3 and activate PKCβ and ERK. The significance of COX-2 in pregnancy has been well established. Exposure to this mycotoxin may perturb the physiological processes dictated by COX-2 in pregnancy.

  3. Allosteric Inhibition of a Semaphorin 4D Receptor Plexin B1 by a High-Affinity Macrocyclic Peptide.

    PubMed

    Matsunaga, Yukiko; Bashiruddin, Nasir K; Kitago, Yu; Takagi, Junichi; Suga, Hiroaki

    2016-11-17

    Semaphorin axonal guidance factors are multifunctional proteins that play important roles in immune response, cancer cell proliferation, and organogenesis, making semaphorins and their signaling receptor plexins important drug targets for various diseases. However, the large and flat binding surface of the semaphorin-plexin interaction interface is difficult to target by traditional small-molecule drugs. Here, we report the discovery of a high-affinity plexin B1 (PlxnB1)-binding macrocyclic peptide, PB1m6 (KD = 3.5 nM). PB1m6 specifically inhibited the binding of physiological ligand semaphorin 4D (Sema4D) in vitro and completely suppressed Sema4D-induced cell collapse. Structural studies revealed that PB1m6 binds at a groove between the fifth and sixth blades of the sema domain in PlxnB1 distant from the Sema4D-binding site, indicating the non-competitive and allosteric nature of the inhibitory activity. The discovery of this novel allosteric site can potentially be used to target plexin family proteins for the development of drugs that modulate semaphorin and plexin signaling.

  4. Exploring the link between scavenger receptor B1 expression and chronic obstructive pulmonary disease pathogenesis.

    PubMed

    Valacchi, Giuseppe; Maioli, Emanuela; Sticozzi, Claudia; Cervellati, Franco; Pecorelli, Alessandra; Cervellati, Carlo; Hayek, Joussef

    2015-03-01

    Chronic obstructive pulmonary disease (COPD) has been recognized as one of the major causes of morbidity and mortality in the United States; it is the third leading cause of deaths in the United States, with approximately 15 million Americans affected with COPD. Although exposure to cigarette smoke has been shown to be the main, if not the only, risk factor for COPD, the mechanisms underlying this association remain unclear. Most smokers do not develop COPD, suggesting that a combination of exposure and susceptibility (genetic background) is required. Several mechanisms contribute to the pathogenesis of COPD, such as influx of inflammatory cells into the lung, imbalance between proteolytic and antiproteolytic molecules, disruption of the balance between apoptosis and replenishment of structural cells in the lung, and disruption of oxidant/antioxidant balance. The scavenger receptor BI (SRB1) plays an important role in mediating the uptake of high-density lipoprotein (HDL)-derived cholesterol and cholesteryl ester in tissues. In addition to its role as the HDL receptor, SRB1 is also involved in pathogen recognition, identification of apoptotic cells, tissue antioxidant uptake (tocopherol and carotenoids), and lung surfactant composition, all factors involved in COPD pathogenesis. Therefore, it is possible that lung SRB1 levels are involved in the development of COPD.

  5. Comparative study on the mechanism of bradykinin potentiation induced by bradykinin-potentiating peptide 9a, enalaprilat and kinin-potentiating peptide.

    PubMed

    Rodrigues, M S; Schaffel, R; Assreuy, J

    1992-06-17

    The action of a kinin-potentiating peptide (KPP) obtained from tryptic digestion of human serum proteins was compared with that of bradykinin-potentiating peptide 9a (BPP9a; obtained from snake venom) and enalaprilat (a synthetic inhibitor of angiotensin-converting enzyme; ACE) as a means of understanding the mechanism of action of KPP on smooth muscle. KPP potentiated bradykinin-induced contractile effects in guinea-pig ileum and rat uterus, but not the bradykinin-induced relaxation of pre-contracted ileum, whereas BPP9a and enalaprilat potentiated both bradykinin effects. The receptor mediating both the contraction and the relaxation elicited by bradykinin in the ileum was found to be of the B2 type. KPP retained its potentiating effect in the presence of enalaprilat in the guinea-pig ileum and rat uterus, whereas the potentiation evoked by BPP9a was abolished. Enalaprilat inhibited the activity of purified ACE, whereas KPP was completely devoid of such an effect. The potentiating effect of KPP, but not that of BPP9a or enalaprilat, was blocked by compounds that inhibit phospholipase A2 and lipoxygenase activity but not by inhibitors of cyclo-oxygenase or phosphodiesterases. The results suggest that the potentiating effect of KPP (i) does not involve inhibition of ACE; (ii) is not due to an increased affinity of the receptor for bradykinin, and (iii) probably involves post-receptor events linked to phospholipase A2 and to the lipoxygenase pathway.

  6. TGF-α/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor

    SciTech Connect

    Mei Teh, Bing; Redmond, Sharon L.; Shen, Yi; Atlas, Marcus D.; Marano, Robert J.; Dilley, Rodney J.

    2013-04-01

    Tympanic membrane perforations are common and represent a management challenge to clinicians. Current treatments for chronic perforations involve a graft surgery and require general anaesthesia, including associated costs and morbidities. Bioactive molecules (e.g. growth factors, cytokines) play an important role in promoting TM wound healing following perforation and the use of growth factors as a topical treatment for tympanic membrane perforations has been suggested as an alternative to surgery. However, the choice of bioactive molecules best suited to promote wound healing has yet to be identified. We investigated the effects of hyaluronic acid, vitronectin, TGF-α, IL-24 and their combinations on migration, proliferation and adhesion of cultured human tympanic membrane-derived keratinocytes (hTM), in addition to their possible mechanisms of action. We found that TGF-α, TGF-α/HA and TGF-α/IL-24 promoted wound healing by significantly increasing both migration and proliferation. TGF-α and/or HA treated cells showed comparable cell–cell adhesion whilst maintaining an epithelial cell phenotype. With the use of receptor binding inhibitors for ErbB1 (AG1478) and CD44 (BRIC235), we revealed that the activation of ErbB1 is required for TGF-α/HA-mediated migration and proliferation. These results suggest factors that may be incorporated into a tissue-engineered membrane or directly as topical treatment for tympanic membrane perforations and hence reduce the need for a surgery. - Highlights: ► TGF-α, TGF-α/HA and TGF-α/IL-24 improved hTM keratinocyte migration and proliferation. ► TGF-α and/or HA maintained epithelial cell phenotype. ► TGF-α/HA-mediated migration and proliferation requires activation of ErbB1 receptor.

  7. Frovatriptan succinate, a 5-HT1B/1D receptor agonist for migraine.

    PubMed

    Balbisi, E A

    2004-07-01

    Frovatriptan succinate is one of the most recent serotonin receptor agonists to receive FDA, approved labelling for use in the acute management of migraine with or without aura in adults. The mechanism of action of frovatriptan is thought to be similar to that of a serotonin agonist. However, frovatriptan has distinctive pharmacokinetic and pharmacologic properties, chiefly, a high affinity for serotonin receptors 1B and 1D and a long elimination half-life; frovatriptan was shown to be more selective for cerebral than coronary arteries, a property which makes frovatriptan more favourable in patients at risk of coronary artery disease. Additionally, frovatriptan has a half-life of approximately 25 h, substantially longer than that of any other agent within its class. This property makes frovatriptan suitable for patients who typically suffer migraines of long duration and/or those who suffer migraine recurrence. The efficacy of frovatriptan in the treatment of acute migraine was demonstrated in five double-blind, randomised, placebo-controlled trials. At 2h, headache response rates for frovatriptan 2.5 mg ranged from 38 to 40% compared to 22-35% for placebo. Headache recurrence for frovatriptan 2.5 mg at 24h ranged from 9 to 14% compared with 18% in placebo subjects. Frovatriptan has no clinically significant pharmacokinetic interactions with drugs used for migraine prophylaxis or with commonly prescribed medications. Adverse effects of frovatriptan including dizziness, paresthesia, dry mouth, fatigue and flushing were generally mild and well tolerated. Given the fact that patient response to serotonin agonists is individualised, and selecting an effective agent may involve trial and error, frovatriptan is a welcome alternative in the acute management of migraine.

  8. The influence of angiotensin converting enzyme and bradykinin receptor B2 gene variants on voluntary fluid intake and fluid balance in healthy men during moderate-intensity exercise in the heat.

    PubMed

    Yau, Adora M W; Moss, Andrew D; James, Lewis John; Gilmore, William; Ashworth, Jason J; Evans, Gethin H

    2015-02-01

    Angiotensin converting enzyme (ACE) and bradykinin receptor B2 (B2R) genetic variation may affect thirst because of effects on angiotensin II production and bradykinin activity, respectively. To examine this, 45 healthy Caucasian men completed 60 min of cycle exercise at 62% ± 5% peak oxygen uptake in a room heated to 30.5 ± 0.3 °C with ad libitum fluid intake. Blood samples were collected pre-, mid-, and immediately post-cycle. Fluid intake, body mass loss (BML), sweat loss (determined via changes in body mass and fluid intake), and thirst sensation were recorded. All participants were genotyped for the ACE insert fragment (I) and the B2R insert sequence (P). Participants were homozygous for the wild-type allele (WW or MM), heterozygous (WI or MP) or homozygous for the insert (II or PP). No differences between genotype groups were found in mean (±SD) voluntary fluid intake (WW: 613 ± 388, WI: 753 ± 385, II: 862 ± 421 mL, p = 0.31; MM: 599 ± 322, MP: 745 ± 374, PP: 870 ± 459 mL, p = 0.20), percentage BML or any other fluid balance variables for both the ACE and B2R genes, respectively. Mean thirst perception in the B2R PP group, however, was higher (p < 0.05) than both MM and MP at 30, 45, and 60 min. In conclusion, the results of this study suggest that voluntary fluid intake and fluid balance in healthy men performing 60 min of moderate-intensity exercise in the heat are not predominantly influenced by ACE or B2R genetic variation.

  9. Bradykinin-related peptides (BRPs) from skin secretions of three genera of phyllomedusine leaf frogs and their comparative pharmacological effects on mammalian smooth muscles.

    PubMed

    Jiang, Yingchun; Xi, Xinping; Ge, Lilin; Yang, Nan; Hou, Xiaojuan; Ma, Jie; Ma, Chengbang; Wu, Yuxin; Guo, Xiaoxiao; Li, Renjie; Zhou, Mei; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2014-02-01

    While bradykinin has been identified in the skin secretions from several species of amphibian, bradykinin-related peptides (BRPs) are more common constituents. These peptides display a plethora of primary structural variations from the type peptide which include single or multiple amino acid substitutions, N- and/or C-terminal extensions and post-translational modifications such as proline hydroxylation and tyrosine sulfation. Such modified peptides have been reported in species from many families, including Bombinatoridae, Hylidae and Ranidae. The spectrum of these peptides in a given species is thought to be reflective of its predator profile from different vertebrate taxa. Here we report the isolation of BRPs and parallel molecular cloning of their respective biosynthetic precursor-encoding cDNAs from the skin secretions of the Mexican leaf frog (Pachymedusa dacnicolor), the Central American red-eyed leaf frog (Agalychnis callidryas) and the South American orange-legged leaf frog (Phyllomedusa hypochondrialis). Additionally, the eight different BRPs identified were chemically synthesized and screened for bioactivity using four different mammalian smooth muscle preparations and their effects and rank potencies were found to be radically different in these with some acting preferentially through bradykinin B1-type receptors and others through B(2)-type receptors.

  10. Bradykinin and histamine-induced cytosolic calcium increase in capillary endothelial cells of bovine adrenal medulla.

    PubMed

    Vinet, Raúl; Cortés, Magdalena P; Alvarez, Rocío; Delpiano, Marco A

    2014-09-01

    We have assessed the effect of bradykinin and histamine on the cytosolic free calcium concentration ([Ca(2+)]i ) of bovine adrenal medulla capillary endothelial cells (BAMCECs). To measure [Ca(2+)]i changes in BAMCECs the intracellular fluorescent probe, fluo-3 AM, was used. Bradykinin (3 µM) produced a transient monophasic increase in [Ca(2+)]i , which was depressed by B1650 (0.1 µM), a B2-bradykinin receptor antagonist (D-Arg-[Hyp(3), Thi(5,8) , D-Phe(7)]-Bradykinin). Similarly, increase in [Ca(2+)]i induced by histamine was also depressed by tripolidine (0.1 µM), an H1-histamine receptor antagonist. [Ca(2+)]i increase induced by both agonists was unaffected in the absence of extracellular Ca(2+) or presence of antagonists of voltage operated Ca(2+) channels (VOCCs). Thapsigargin (1 µM) did not abolish the increase of [Ca(2+)]i produced by bradykinin, but abolished that of histamine. In contrast, caffeine (100 µM), abolished the [Ca(2+)]i response induced by bradykinin (3 µM), but did not affect the [Ca(2+)]i increase induced by histamine (100 µM). The results indicate the presence of B2 bradykinin- and H1 histamine-receptors in BAMCECs. Liberation of Ca(2+) induced by both agonists occurs through 2 different intracellular mechanisms. While bradykinin activates a sarco(endo) plasmic reticulum (SER) containing a SER Ca(2+) -ATPase (SERCA) thapsigargin-insensitive, histamine activates a SER containing a SERCA thapsigargin-sensitive. We suggest that the increase in [Ca(2+)]i induced by bradykinin and histamine could be of physiological relevance, modulating adrenal gland microcirculation.

  11. Bradykinin Release Avoids High Molecular Weight Kininogen Endocytosis

    PubMed Central

    Nascimento, Fabio D.; Souza, Daianne S. P.; Araujo, Mariana S.; Souza, Sinval E. G.; Sampaio, Misako U.; Nader, Helena B.; Tersariol, Ivarne L. S.; Motta, Guacyara

    2015-01-01

    Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present

  12. Characterisation and mechanisms of bradykinin-evoked pain in man using iontophoresis

    PubMed Central

    Paterson, Kathryn J.; Zambreanu, Laura; Bennett, David L.H.; McMahon, Stephen B.

    2013-01-01

    Bradykinin (BK) is an inflammatory mediator that can evoke oedema and vasodilatation, and is a potent algogen signalling via the B1 and B2 G-protein coupled receptors. In naïve skin, BK is effective via constitutively expressed B2 receptors (B2R), while B1 receptors (B1R) are purported to be upregulated by inflammation. The aim of this investigation was to optimise BK delivery to investigate the algesic effects of BK and how these are modulated by inflammation. BK iontophoresis evoked dose- and temperature-dependent pain and neurogenic erythema, as well as thermal and mechanical hyperalgesia (P < 0.001 vs saline control). To differentiate the direct effects of BK from indirect effects mediated by histamine released from mast cells (MCs), skin was pretreated with compound 4880 to degranulate the MCs prior to BK challenge. The early phase of BK-evoked pain was reduced in degranulated skin (P < 0.001), while thermal and mechanical sensitisation, wheal, and flare were still evident. In contrast to BK, the B1R selective agonist des-Arg9-BK failed to induce pain or sensitise naïve skin. However, following skin inflammation induced by ultraviolet B irradiation, this compound produced a robust pain response. We have optimised a versatile experimental model by which BK and its analogues can be administered to human skin. We have found that there is an early phase of BK-induced pain which partly depends on the release of inflammatory mediators by MCs; however, subsequent hyperalgesia is not dependent on MC degranulation. In naïve skin, B2R signaling predominates, however, cutaneous inflammation results in enhanced B1R responses. PMID:23422725

  13. Bradykinin does not acutely sensitize the reflex pressor response during hindlimb skeletal muscle stretch in decerebrate rats.

    PubMed

    Rollins, Korynne S; Smith, Joshua R; Esau, Peter J; Kempf, Evan A; Hopkins, Tyler D; Copp, Steven W

    2017-10-01

    Hindlimb skeletal muscle stretch (i.e., selective activation of the muscle mechanoreflex) in decerebrate rats evokes reflex increases in blood pressure and sympathetic nerve activity. Bradykinin has been found to sensitize mechanogated channels through a bradykinin B2 receptor-dependent mechanism. Moreover, bradykinin B2 receptor expression on sensory neurons is increased following chronic femoral artery ligation in the rat (a model of simulated peripheral artery disease). We tested the hypothesis that injection of bradykinin into the arterial supply of a hindlimb in decerebrate, unanesthetized rats would acutely augment (i.e., sensitize) the increase in blood pressure and renal sympathetic nerve activity during hindlimb muscle stretch to a greater extent in rats with a ligated femoral artery than in rats with a freely perfused femoral artery. The pressor response during static hindlimb muscle stretch was compared before and after hindlimb arterial injection of 0.5 µg of bradykinin. Injection of bradykinin increased blood pressure to a greater extent in "ligated" (n = 10) than "freely perfused" (n = 10) rats. The increase in blood pressure during hindlimb muscle stretch, however, was not different before vs. after bradykinin injection in freely perfused (14 ± 2 and 15 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.62) or ligated (15 ± 3 and 14 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.80) rats. Likewise, the increase in renal sympathetic nerve activity during stretch was not different before vs. after bradykinin injection in either group of rats. We conclude that bradykinin did not acutely sensitize the pressor response during hindlimb skeletal muscle stretch in freely perfused or ligated decerebrate rats. Copyright © 2017 the American Physiological Society.

  14. The expression of GABA(B1) and GABA(B2) receptor subunits in the cNS differs from that in peripheral tissues.

    PubMed

    Calver, A R; Medhurst, A D; Robbins, M J; Charles, K J; Evans, M L; Harrison, D C; Stammers, M; Hughes, S A; Hervieu, G; Couve, A; Moss, S J; Middlemiss, D N; Pangalos, M N

    2000-01-01

    GABA(B) receptors are G-protein-coupled receptors that mediate the slow and prolonged synaptic actions of GABA in the CNS via the modulation of ion channels. Unusually, GABA(B) receptors form functional heterodimers composed of GABA(B1) and GABA(B2) subunits. The GABA(B1) subunit is essential for ligand binding, whereas the GABA(B2) subunit is essential for functional expression of the receptor dimer at the cell surface. We have used real-time reverse transcriptase-polymerase chain reaction to analyse expression levels of these subunits, and their associated splice variants, in the CNS and peripheral tissues of human and rat. GABA(B1) subunit splice variants were expressed throughout the CNS and peripheral tissues, whereas surprisingly GABA(B2) subunit splice variants were neural specific. Using novel antisera specific to individual GABA(B) receptor subunits, we have confirmed these findings at the protein level. Analysis by immunoblotting demonstrated the presence of the GABA(B1) subunit, but not the GABA(B2) subunit, in uterus and spleen. Furthermore, we have shown the first immunocytochemical analysis of the GABA(B2) subunit in the brain and spinal cord using a GABA(B2)-specific antibody. We have, therefore, identified areas of non-overlap between GABA(B1) and GABA(B2) subunit expression in tissues known to contain functional GABA(B) receptors. Such areas are of interest as they may well contain novel GABA(B) receptor subunit isoforms, expression of which would enable the GABA(B1) subunit to reach the cell surface and form functional GABA(B) receptors.

  15. Brain kinin B1 receptor is upregulated by the oxidative stress and its activation leads to stereotypic nociceptive behavior in insulin-resistant rats.

    PubMed

    Dias, Jenny Pena; Gariépy, Helaine De Brito; Ongali, Brice; Couture, Réjean

    2015-07-01

    Kinin B1 receptor (B1R) is virtually absent under physiological condition, yet it is highly expressed in models of diabetes mellitus. This study aims at determining: (1) whether B1R is induced in the brain of insulin-resistant rat through the oxidative stress; (2) the consequence of B1R activation on stereotypic nocifensive behavior; (3) the role of downstream putative mediators in B1R-induced behavioral activity. Sprague-Dawley rats were fed with 10% D-glucose in their drinking water or tap water (controls) for 4 or 12 weeks, combined either with a standard chow diet or a diet enriched with α-lipoic acid (1 g/kg feed) for 4 weeks. The distribution and density of brain B1R binding sites were assessed by autoradiography. Behavioral activity evoked by i.c.v. injection of the B1R agonist Sar-[D-Phe(8)]-des-Arg(9)-BK (10 μg) was measured before and after i.c.v. treatments with selective antagonists (10 μg) for kinin B1 (R-715, SSR240612), tachykinin NK1 (RP-67580) and glutamate NMDA (DL-AP5) receptors or with the inhibitor of NOS (L-NNA). Results showed significant increases of B1R binding sites in various brain areas of glucose-fed rats that could be prevented by the diet containing α-lipoic acid. The B1R agonist elicited head scratching, grooming, sniffing, rearing, digging, licking, face washing, wet dog shake, teeth chattering and biting in glucose-fed rats, which were absent after treatment with α-lipoic acid or antagonists/inhibitors. Data suggest that kinin B1R is upregulated by the oxidative stress in the brain of insulin-resistant rats and its activation causes stereotypic nocifensive behavior through the release of substance P, glutamate and NO. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning.

    PubMed

    Meneses, A; Terrón, J A; Hong, E

    1997-12-01

    We have previously reported that 5-HT1B/1D and 5-HT2A/2B/2C receptors play a role in learning and memory. The present investigation was devoted to analyze further in the autoshaping learning task: (1) the effects of the 5-HT1A/1B/1D receptor agonist, GR46611, the 5-HT1B/1D receptor antagonist, GR127935, and the selective 5-HT2A receptor antagonist, MDL100907. Consistent with a role of 5-HT1B/1D receptors in learning, the post-training injection of GR46611 (1-10 mg/kg) decreased the consolidation of learning whereas GR127935 (10 mg/kg) increased it; the effects of both drugs were reversed by PCA pretreatment. GR127935 abolished the decrease induced by GR46611, TFMPP and mCPP, whereas MDL100907 (0.1-3.0 mg/kg) had no effect by itself but abolished the effects of DOI, ketanserin and TFMPP and moderately inhibited the effects elicited by mCPP, 1-NP and mesulergine. Neither did GR127935 nor MDL100907 significantly modify the increase in the consolidation of learning induced by 8-OH-DPAT. Thus, the present findings suggest that stimulation of presynaptic 5-HT1B/1D receptors impairs the consolidation of learning whilst stimulation of 5-HT2A/2C receptors enhances it; the blockade of 5-HT2A receptors has no effects. In addition, 5-HT2 receptors seem to modulate this cognitive stage.

  17. Bradykinin stimulation of phosphoinositide hydrolysis in guinea-pig ileum longitudinal muscle.

    PubMed Central

    Ransom, R. W.; Goodman, C. B.; Young, G. S.

    1992-01-01

    1. Bradykinin (BK)-induced contraction of ileal smooth muscle is assumed to be due to phosphoinositide hydrolysis but this has never been reported. We have investigated whether BK receptors are linked to this transduction mechanism in guinea-pig ileum longitudinal muscle and determined whether these receptors are equivalent to those labelled in [3H]-BK binding assays. 2. In membranes prepared from longitudinal muscle, [3H]-BK bound to a single class of sites with high affinity. Characterization of the binding with BK analogues indicated that the radioligand selectivity labelled a B2 type receptor. 3. BK significantly elevated tissue levels of [3H]-inositol phosphates in longitudinal muscle slices preincubated with [3H]-myo-inositol. The agonists potencies of BK, Lys-BK, Met-Lys-BK, Tyr5-BK and Tyr8-BK were in agreement with their relative potencies in the binding assay. The B1 receptor agonist des-Arg9-BK, did not stimulate inositol phosphate production. The response to BK was blocked by known B2 receptor antagonists but not by the B1 antagonist des-Arg9, Leu8-BK. 4. BK-induced phosphoinositide hydrolysis was unaffected by exposure of muscle slices to either atropine or indomethacin. 5. The results indicate that the B2 receptors linked to phosphoinositide turnover in ileal longitudinal muscle exhibit properties similar to those involved in contractile responses. Also, the receptor mediating the phosphoinositide response is likely to be that labelled in the [3H]-BK binding studies. PMID:1324057

  18. Frovatriptan: a selective type 1B/1D serotonin receptor agonist for the treatment of migraine headache.

    PubMed

    Cole, Patrick; Rabasseda, Xavier

    2002-09-01

    Frovatriptan belongs to an innovative family of compounds aimed at breaking through the long-standing barrier of migraine headache understanding and treatment. While a typology of headaches has been recognized for some time, and a number of therapies have been introduced for reduction of headache pain and duration, the causes of migraine remain a subject of debate. Those prone to attacks continue to endure them and suffer the related symptoms such as nausea and disorientation. Frovatriptan, like all the triptans, acts by inducing vasoconstriction of the meningeal arteries. It has been shown in pharmacological tests to act selectively as a potent agonist of serotonin 5-HT1B/1D receptors. Frovatriptan has been well tolerated in humans and efficacious in reducing headache pain and duration in clinical trials, which have also indicated that dose adjustments for age or gender are not necessary for the drug. Patients have found the use of frovatriptan acceptable over the long-term, and overall a low-incidence of adverse effects has been reported. Though not a prophylactic, frovatriptan has demonstrated the potential to significantly improve the therapeutic approaches to the treatment of migraine. Copyright 2002 Prous Science

  19. Ketamine alleviates bradykinin-induced disruption of the mouse cerebrovascular endothelial cell-constructed tight junction barrier via a calcium-mediated redistribution of occludin polymerization.

    PubMed

    Chen, Jui-Tai; Lin, Yi-Ling; Chen, Ta-Liang; Tai, Yu-Ting; Chen, Cheng-Yu; Chen, Ruei-Ming

    2016-08-10

    Following brain injury, a sequence of mechanisms leads to disruption of the blood-brain barrier (BBB) and subsequent cerebral edema, which is thought to begin with activation of bradykinin. Our previous studies showed that ketamine, a widely used intravenous anesthetic agent, can suppress bradykinin-induced cell dysfunction. This study further aimed to evaluate the protective effects of ketamine against bradykinin-induced disruption of the mouse cerebrovascular endothelial cell (MCEC)-constructed tight junction barrier and the possible mechanisms. Exposure of MCECs to bradykinin increased intracellular calcium (Ca(2+)) concentrations in a time-dependent manner. However, pretreatment of MCECs with ketamine time- and concentration-dependently lowered the bradykinin-induced calcium influx. As to the mechanisms, although exposure of MCECs to ketamine induced bradykinin R1 receptor protein and mRNA expression, this anesthetic did not change levels of the bradykinin R2 receptor, a major receptor that responds to bradykinin stimulation. Bradykinin increased amounts of soluble occludin in MCECs, but pretreatment with ketamine alleviated this disturbance in occludin polymerization. Consequently, exposure to bradykinin decreased the transendothelial electronic resistance in the MCEC-constructed tight junction barrier. However, pretreatment with ketamine attenuated the bradykinin-induced disruption of the tight junction barrier. Taken together, this study shows that ketamine at a therapeutic concentration can protect against bradykinin-induced breakage of the BBB via suppressing calcium-dependent redistribution of occludin tight junctions. Thus, ketamine has the potential for maintaining the BBB in critically ill patients with severe brain disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Substance P release evoked by capsaicin or potassium from rat cultured dorsal root ganglion neurons is conversely modulated with bradykinin.

    PubMed

    Tang, He-Bin; Inoue, Atsuko; Iwasa, Mikiko; Hide, Izumi; Nakata, Yoshihiro

    2006-06-01

    To clarify the molecular mechanism of substance P (SP) release from dorsal root ganglion (DRG) neurons, we investigated the involvement of several intracellular effectors in the regulation of SP release evoked by capsaicin, potassium or/and bradykinin. Bradykinin-evoked SP release from cultured adult rat DRG neurons was attenuated by either the mitogen-activated protein kinase kinase (MEK) inhibitor (U0126) or cycloheximide. As the long-term exposure of DRG neurons to bradykinin (3 h) resulted in extracellular signal-regulated kinase (ERK) phosphorylation at an early stage and thereafter induced cyclooxygenase-2 (COX-2) protein expression, which both contribute to the SP release triggered by bradykinin B2 receptor. The long-term exposure of DRG neurons to bradykinin enhanced the SP release by capsaicin, but attenuated that by potassium. Interestingly, the inositol 1,4,5-triphosphate (IP3)-induced calcium release blocker [2-aminoethyl diphenylborinate (2-APB)] not only inhibited the potassium-evoked SP release, but also completely abolished the enhancement of capsaicin-induced SP release by bradykinin from cultured DRG neurons. Together, these findings suggest that the molecular mechanisms of SP release by bradykinin involve the activation of MEK, and also require the de novo protein synthesis of COX-2 in DRG neurons. The IP3-dependent calcium release could be involved in the processes of the regulation by bradykinin of capsaicin-triggered SP release.

  1. The physiological expression of scavenger receptor SR-B1 in canine endometrial and placental epithelial cells and its potential involvement in pathogenesis of pyometra.

    PubMed

    Gabriel, C; Becher-Deichsel, A; Hlavaty, J; Mair, G; Walter, I

    2016-06-01

    Pyometra, the purulent inflammation of the uterus, is a common uterine disease of bitches that has potentially life-threatening consequences. The opportunistic bacterial infection of the uterus often progresses into the serious systemic inflammatory response syndrome. In a previous study, we characterized epithelial foam cells in the canine endometrial surface occurring in metestrus, and we regularly observed pronounced epithelial foam-cell formations in pyometra-affected uteri. Therefore, it was assumed that the mechanism behind lipid droplet accumulation in surface epithelial cells might even increase bacterial binding capacity and promote pyometra development. Lipid droplet accumulation in epithelial cells is accomplished via specialized lipid receptors called scavenger receptors (SR). Scavenger receptor class B type 1 (SR-B1) is an important receptor for lipid accumulation in diverse cell types, but it is also a strong binding partner for bacteria, and thereby enhances bacterial adhesion and clinical signs of systemic inflammatory response syndrome. In the present study, after the isolation of metestrous surface epithelial cells from canine uteri by laser capture microdissection, SR-B1 was identified at the messenger RNA (mRNA) level by quantitative real time polymerase chain reaction and also at the protein level by means of immunohistochemistry. In pyometra-affected uteri, SR-B1 mRNA expression was higher than that in the healthy control samples, and SR-B1 protein was expressed in the surface and crypt epithelial cells. Furthermore, to understand the physiological role of SR-B1 expression in the metestrus surface epithelial cells, we investigated its expression in the epithelial cells of the glandular chambers of canine placenta in different stages of gestation because these cells are also characterized by lipid droplet accumulation. SR-B1 was present in the placental epithelial cells of the glandular chambers from 25 to 30 and 45 to 50 days of gestation

  2. Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation.

    PubMed

    Pillat, Micheli M; Lameu, Claudiana; Trujillo, Cleber A; Glaser, Talita; Cappellari, Angélica R; Negraes, Priscilla D; Battastini, Ana M O; Schwindt, Telma T; Muotri, Alysson R; Ulrich, Henning

    2016-09-15

    During brain development, cells proliferate, migrate and differentiate in highly accurate patterns. In this context, published results indicate that bradykinin functions in neural fate determination, favoring neurogenesis and migration. However, mechanisms underlying bradykinin function are yet to be explored. Our findings indicate a previously unidentified role for bradykinin action in inducing neuron-generating division in vitro and in vivo, given that bradykinin lengthened the G1-phase of the neural progenitor cells (NPC) cycle and increased TIS21 (also known as PC3 and BTG2) expression in hippocampus from newborn mice. This role, triggered by activation of the kinin-B2 receptor, was conditioned by ERK1/2 activation. Moreover, immunohistochemistry analysis of hippocampal dentate gyrus showed that the percentage of Ki67(+) cells markedly increased in bradykinin-treated mice, and ERK1/2 inhibition affected this neurogenic response. The progress of neurogenesis depended on sustained ERK phosphorylation and resulted in ERK1/2 translocation to the nucleus in NPCs and PC12 cells, changing expression of genes such as Hes1 and Ngn2 (also known as Neurog2). In agreement with the function of ERK in integrating signaling pathways, effects of bradykinin in stimulating neurogenesis were reversed following removal of protein kinase C (PKC)-mediated sustained phosphorylation. © 2016. Published by The Company of Biologists Ltd.

  3. Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family

    PubMed Central

    On, Jason S.W.; Duan, Cumming; Chow, Billy K.C.; Lee, Leo T.O.

    2015-01-01

    Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand–receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand–receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates. PMID:25841489

  4. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    PubMed

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.

  5. Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model

    PubMed Central

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites. PMID:22629405

  6. Salt-dependent inhibition of ENaC-mediated sodium reabsorption in the aldosterone-sensitive distal nephron by bradykinin

    PubMed Central

    Mamenko, Mykola; Zaika, Oleg; Doris, Peter A.; Pochynyuk, Oleh

    2012-01-01

    We have recently documented that Bradykinin (BK) directly inhibits activity of the Epithelial Na+ Channel (ENaC) via B2R-Gq/11-PLC pathway. In this study, we took advantage of mice genetically engineered to lack bradykinin receptors (B1R,B2R-/-) to probe a physiological role of BK cascade in regulation of ENaC in native tissue, aldosterone-sensitive distal nephron (ASDN). Under normal sodium intake (0.32%Na+), ENaC open probability (Po) was modestly elevated in B1R,B2R-/- mice compared to WT mice. This difference is augmented during elevated Na+ intake (2%Na+) and negated during Na+ restriction (<0.01%Na+). Saturation of systemic mineralocorticoid status with deoxycorticosterone acetate (DOCA) similarly increased ENaC activity in both mouse strains suggesting that the effect of BK on ENaC is independent of aldosterone. It is accepted that angiotensin converting enzyme (ACE) represents the major pathway of BK degradation. Systemic inhibition of ACE with captopril (30 mg/kgBW for 7 days) significantly decreases ENaC activity and Po in WT mice but this effect is diminished in B1R,B2R-/- mice. At the cellular level, acute captopril (100 μM) treatment sensitized BK signaling cascade and greatly potentiated the inhibitory effect of 100 nM BK on ENaC. We concluded that BK cascade has its own specific role in blunting ENaC activity particularly under conditions of elevated sodium intake. Augmentation of BK signaling in the ASDN inhibits ENaC-mediated Na+-reabsorption contributing to the natriuretic and antihypertensive effects of ACE inhibition. PMID:23033373

  7. Ah receptor, CYP1A1, CYP1A2 and CYP1B1 gene polymorphisms are not involved in the risk of recurrent pregnancy loss.

    PubMed

    Saijo, Y; Sata, F; Yamada, H; Suzuki, K; Sasaki, S; Kondo, T; Gong, Y Y; Kato, E H; Shimada, S; Morikawa, M; Minakami, H; Kishi, R

    2004-10-01

    The etiology of recurrent pregnancy loss (RPL) remains unclear, but it may be related to a possible genetic predisposition together with involvement of environmental factors. We examined the relation between RPL and polymorphisms in four genes, human aryl hydrocarbon (Ah) receptor, cytochrome P450 (CYP) 1A1, CYP1A2 and CYP1B1, which are involved in the metabolism of a wide range of environmental toxins and carcinogens. All cases and controls were women resident in Sapporo, Japan and the surrounding area. The Ah receptor, CYP1A1, CYP1A2 and CYP1B1 genotypes were assessed in 113 Japanese women with recurrent pregnancy loss (RPL) and 203 ethnically matched women experiencing at least one live birth and no spontaneous abortion (control). No significant differences in Ah receptor, CYP1A1, CYP1A2 and CYP1B1 genotype frequencies were found between the women with RPL and the controls [Ah receptor: Arg/Arg (reference); Arg/Lys and Lys/Lys, odds ratio (OR)=0.67; 95% confidence interval (CI)=0.40-1.11, CYP1A1: m1m1 (reference); m1m2 and m2m2, OR = 0.86; 95% CI = 0.53-1.40, CYP1A2: C/C and C/A (reference); A/A, OR = 1.16; 95% CI = 0.71-1.88, CYP1B1: Leu/Leu (reference); Leu/Val and Val/Val, OR = 1.18; 95% CI = 0.68-2.02]. The present study suggests that the Ah receptor, CYP1A1, CYP1A2 and CYP1B1 gene polymorphisms are not major genetic regulators in RPL.

  8. Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats.

    PubMed

    Avila-Rojas, Sabino Hazael; Velázquez-Lagunas, Isabel; Salinas-Abarca, Ana Belen; Barragán-Iglesias, Paulino; Pineda-Farias, Jorge Baruch; Granados-Soto, Vinicio

    2015-10-05

    Serotonin (5-HT) participates in pain modulation by interacting with different 5-HT receptors. The role of 5-HT5A receptor in neuropathic pain has not previously studied. The purpose of this study was to investigate: A) the role of 5-HT5A receptors in rats subjected to spinal nerve injury; B) the expression of 5-HT5A receptors in dorsal spinal cord and dorsal root ganglia (DRG). Neuropathic pain was induced by L5/L6 spinal nerve ligation. Tactile allodynia in neuropathic rats was assessed with von Frey filaments. Western blot methodology was used to determine 5-HT5A receptor protein expression. Intrathecal administration (on day 14th) of 5-HT (10-100 nmol) or 5-carboxamidotryptamine (5-CT, 0.03-0.3 nmol) reversed nerve injury-induced tactile allodynia. Intrathecal non-selective (methiothepin, 0.1-0.8 nmol) and selective (SB-699551, 1-10 nmol) 5-HT5A receptor antagonists reduced, by ~60% and ~25%, respectively, the antiallodynic effect of 5-HT (100 nmol) or 5-CT (0.3 nmol). Moreover, both selective 5-HT1A and 5-HT1B/1D receptor antagonists, WAY-100635 (0.3-1 nmol) and GR-127935 (0.3-1 nmol), respectively, partially diminished the antiallodynic effect of 5-HT or 5-CT by about 30%. Injection of antagonists, by themselves, did not affect allodynia. 5-HT5A receptors were expressed in the ipsilateral dorsal lumbar spinal cord and DRG and L5/L6 spinal nerve ligation did not modify 5-HT5A receptor protein expression in those sites. Results suggest that 5-HT5A receptors reduce pain processing in the spinal cord and that 5-HT and 5-CT reduce neuropathic pain through activation of 5-HT5A and 5-HT1A/1B/1D receptors. These receptors could be an important part of the descending pain inhibitory system.

  9. Cardiovascular actions of lungfish bradykinin in the unanaesthetised African lungfish, Protopterus annectens.

    PubMed

    Balment, Richard J; Masini, Maria A; Vallarino, Mauro; Conlon, J Michael

    2002-02-01

    Bradykinin (BK) isolated from plasma of the African lungfish, Protopterus annectens, contains four amino acid substitutions compared with BK from mammals (Arg(1)-->Tyr, Pro(2)-->Gly, Pro(7)-->Ala, Phe(8)-->Pro). Bolus intra-arterial injections of synthetic lungfish BK (1-1000 pmol/kg body wt.) into unanaesthetised, juvenile lungfish (n=5) produced a dose-dependent increase in arterial blood pressure and pulse pressure. The maximum pressor response occurred 2-3 min after injection and persisted for up to 15 min. The threshold dose producing a significant (P<0.01) rise in pressure was 50 pmol/kg and the maximum increase, following injection of 300 pmol/kg, was 9.3 +/- 2.3 mmHg. Injection of the higher doses of lungfish BK produced a significant (P<0.05) increase in heart rate (2.8 +/- 0.8 beats/min at 100 pmol/kg). In contrast, bolus intra-arterial injections of mammalian BK, in doses up to 1000 pmol/kg, produced no significant cardiovascular effects in the lungfish. The data support the existence of a functioning kallikrein-kinin system in the lungfish and demonstrate that the ligand-binding properties of the receptor(s) mediating the cardiovascular actions of lungfish BK are appreciably different from mammalian B1 and B2 receptors.

  10. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  11. Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan)

    PubMed Central

    Martin, G R; Robertson, A D; MacLennan, S J; Prentice, D J; Barrett, V J; Buckingham, J; Honey, A C; Giles, H; Moncada, S

    1997-01-01

    311C90 (zolmitriptan zomig: (S)-4[[3-[2-(dimethylamino)ethyl]-1H-indol-5-yl]methyl]-2-oxazolidinone) is a novel 5-HT1B/1D receptor agonist with proven efficacy in the acute treatment of migraine. Here, we describe the receptor specificity of the drug and its actions on trigeminal-evoked plasma protein extravasation into the dura mater of the anaesthetized guinea-pig. At the ‘5-HT1B-like' receptor mediating vascular contraction (rabbit saphenous vein), the compound was a potent (p[A50]=6.79±0.06) partial agonist achieving 77±4% of the maximum effect to 5-hydroxytryptamine (5-HT). In the same experiments, sumatriptan (p[A50]=6.48±0.04) was half as potent as 311C90 and produced 97±2% of the 5-HT maximum effect. Studies in which receptor inactivation methods were used to estimate the affinity (pKA) and efficacy relative to 5-HT (τrel.) for each agonist confirmed that 311C90 exhibits higher affinity than sumatriptan (pKA=6.63±0.04 and 6.16±0.03, respectively) and that both drugs are partial agonists relative to 5-HT (τrel=0.61±0.03 and 0.63±0.10, respectively, compared to 5-HT=1.0). Consistent with its effects in rabbit saphenous vein, 311C90 also produced concentration-dependent contractions of primate basilar artery and human epicardial coronary artery rings. In basilar artery, agonist potency (p[A50]=6.92±0.07) was similar to that demonstrated in rabbit saphenous vein, again being 2–3 fold higher than for sumatriptan (p[A50]=6.46±0.03). Both agonists produced about 50% of the maximum response obtained with 5-HT in the same preparations. In rings of human coronary artery, the absolute potency of 311C90 and sumatriptan was higher than in primate basilar artery (p[A50]=7.3±0.1 and 6.7±0.1, respectively), but maximum effects relative to 5-HT were lower (37±8% and 35±7%, respectively). In both types of vessel, the inability of 5-HT1B/1D agonists to achieve the same maximum as the endogenous agonist 5-HT is explained by the additional presence of 5-HT2A

  12. Clofibric acid induces hepatic CYP 2B1/2 via constitutive androstane receptor not via peroxisome proliferator activated receptor alpha in rat.

    PubMed

    Ibrahim, Zein Shaban; Ahmed, Mohamed Mohamed; El-Shazly, Samir Ahmed; Ishizuka, Mayumi; Fujita, Shoichi

    2014-01-01

    Peroxisome proliferator activated receptor α (PPARα) ligands, fibrates used to control hyperlipidemia. We demonstrated CYP2B induction by clofibric acid (CFA) however, the mechanism was not clear. In this study, HepG2 cells transfected with expression plasmid of mouse constitutive androstane receptor (CAR) or PPARα were treated with CFA, phenobarbital (PB) or TCPOBOP. Luciferase assays showed that CFA increased CYP2B1 transcription to the same level as PB, or TCPOBOP in HepG2 transfected with mouse CAR But failed to induce it in PPARα transfected cells. CYP2B expressions were increased with PB or CFA in Wistar female rats (having normal levels of CAR) but not in Wistar Kyoto female rats (having low levels of CAR). The induction of CYP2B by PB or CFA was comparable to nuclear CAR levels. CAR nuclear translocation was induced by CFA in both rat strains. This indicates that fibrates can activate CAR and that fibrates-insulin sensitization effect may occur through CAR, while hypolipidemic effect may operate through PPARα.

  13. Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1.

    PubMed

    Angeloni, Nicholas L; McMahon, Kaylin M; Swaminathan, Suchitra; Plebanek, Michael P; Osman, Iman; Volpert, Olga V; Thaxton, C Shad

    2016-03-11

    Exosomes are produced by cells to mediate intercellular communication, and have been shown to perpetuate diseases, including cancer. New tools are needed to understand exosome biology, detect exosomes from specific cell types in complex biological media, and to modify exosomes. Our data demonstrate a cellular pathway whereby membrane-bound scavenger receptor type B-1 (SR-B1) in parent cells becomes incorporated into exosomes. We tailored synthetic HDL-like nanoparticles (HDL NP), high-affinity ligands for SR-B1, to carry a fluorescently labeled phospholipid. Data show SR-B1-dependent transfer of the fluorescent phospholipid from HDL NPs to exosomes. Modified exosomes are stable in serum and can be directly detected using flow cytometry. As proof-of-concept, human serum exosomes were found to express SR-B1, and HDL NPs can be used to label and isolate them. Ultimately, we discovered a natural cellular pathway and nanoparticle-receptor pair that enables exosome modulation, detection, and isolation.

  14. Mitogenic activation of human prostate-derived fibromuscular stromal cells by bradykinin

    PubMed Central

    Walden, Paul D; Lefkowitz, Gary K; Ittmann, Michael; Lepor, Herbert; Monaco, Marie E

    1999-01-01

    Biologically active kinin peptides are released from precursor kininogens by kallikreins. Kinins act on kinin receptors to mediate diverse biological functions including smooth muscle contraction, inflammation, pain and mitogenicity. All components of the kallikrein-kinin system exist in human male genital secretions suggesting that these molecules participate in physiological and pathophysiological genitourinary function. The objective of this study was to assess the consequences of kinin action on prostate cells.Primary cultures of prostate secretory epithelial (PE) and prostate fibromuscular stromal (PS) cells were established from human prostate tissue. Transcripts encoding both the human B1 and B2 bradykinin receptor subtypes were detected in human prostate transition-zone tissue and in cultured cells by RT–PCR. In receptor binding assays, the B1 subtype predominated on PE cell membranes and the B2 subtype predominated on PS cell membranes. In PS cells, but not in PE cells, BK induced significant inositol phosphate accumulation and [3H]-thymidine uptake. These responses were mediated through the B2 receptor subtype.The use of signal transduction inhibitors indicated that mitogenic activation by BK occurred through both protein kinase C (PKC) and protein tyrosine kinase dependent mechanisms. PMA (phorbol 12-myristate 13-acetate) produced maximal [3H]-thymidine uptake by PS cells, resulted in cell elongation and caused the α-actin fibres present in PS smooth muscle cells to became organized into parallel arrays along the length of the elongated cells.In summary, the prostate contains a functional kallikrein-kinin system, which could be significant in physiological and pathophysiological prostate function. PMID:10369476

  15. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A/sub 2/

    SciTech Connect

    Burch, R.M.; Axelrod, J.

    1987-09-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E/sub 2/ (PGE/sub 2/) synthesis. The EC/sub 50/ values for stimulation of PGE/sub 2/ synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-(..gamma..-thio)triphosphate stimulated PGE/sub 2/ synthesis and InsP formation, and guanosine-5'-(..beta..-thio)diphosphate inhibited both PGE/sub 2/ synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE/sub 2/ synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE/sub 2/ synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE/sub 2/ synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE/sub 2/ synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with (/sup 3/H) choline, the phospholipase A/sub 2/ products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A/sub 2/ and that phospholipase A/sub 2/ is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis.

  16. Blockade of kinin B(1) receptor reverses plasma fatty acids composition changes and body and tissue fat gain in a rat model of insulin resistance.

    PubMed

    Dias, J P; Couture, R

    2012-03-01

    Kinin B(1) receptor (B(1) R) contributes to insulin resistance through a mechanism involving oxidative stress. This study examined the effect of B(1) R blockade on the changes in plasma fatty acids composition, body and tissue fat mass and adipose tissue inflammation that influence insulin resistance. Sprague-Dawley rats were fed with 10% D-glucose or tap water (Control) for 13 weeks and during the last week, rats were administered the B(1) R antagonist SSR240612 (10 mg/kg/day, gavage) or vehicle. The following parameters were assessed: plasma fatty acids (by gas chromatography), body composition (by EchoMRI), metabolic hormone levels (by radioimmunoassay), expression of B(1) R and inflammatory markers in adipose tissue (by Western blot and qRT-PCR). Glucose feeding significantly increased plasma levels of glucose, insulin, leptin, palmitoleic acid (16:1n-7), oleic acid (18:1n-9), Δ6 and Δ9 desaturases while linoleic acid (18:2n-6), arachidonic acid (20:4n-6) and Δ5 desaturase were decreased. SSR240612 reduced plasma levels of insulin, glucose, the homeostasis model assessment index of insulin resistance, palmitoleic acid and n-7 family. Alterations of Δ5, Δ6 and Δ9 desaturases were normalized by SSR240612. The B(1) R antagonist also reversed the enhancing effect of glucose feeding on whole body and epididymal fat mass and on the expression of macrophage CD68, interleukin-1β, tumour necrosis factor-α and inducible nitric oxide synthase in retroperitoneal adipose tissue. B(1) R protein and mRNA were not detected in retroperitoneal adipose tissue. Insulin resistance in glucose-fed rats is associated with low state inflammation in adipose tissue and plasma fatty acids changes which are reversed by B(1) R blockade. These beneficial effects may contribute to insulin sensitivity improvement and the prevention of obesity. © 2011 Blackwell Publishing Ltd.

  17. Protein kinase mediated upregulation of endothelin A, endothelin B and 5-hydroxytryptamine 1B/1D receptors during organ culture in rat basilar artery

    PubMed Central

    Hansen-Schwartz, Jacob; Svensson, Carl-Lennart; Xu, Cang-Bao; Edvinsson, Lars

    2002-01-01

    Organ culture has been shown to upregulate both endothelin (ET) and 5-hydroxytryptamine 1B/1D (5-HT1B/1D) receptors in rat cerebral arteries. The purpose of the present study was to investigate the involvement of protein kinases, especially protein kinases C (PKC) and A (PKA) in this process. The effect of inhibiting protein kinases during organ culture with staurosporine (unspecific protein kinase inhitor), RO 31-7549 (specific inhibitor of classical PKC's) and H 89 (specific inhibitor of PKA) was examined using in vitro pharmacological examination of cultured vessel segments with ET-1 (unspecific ETA and ETB agonist), S6c (specific ETB agonist) and 5-CT (5-HT1 agonist). Levels of mRNA coding for the ETA, ETB, 5-HT1B and 5-HT1D receptors were analysed using real-time RT–PCR. Classical PKC's are critically involved in the appearance of the ETB receptor; co-culture with RO 31-7549 abolished the contractile response (6.9±1.8%) and reduced the ETB receptor mRNA by 44±4% as compared to the cultured control. Correlation between decreased ETB receptor mRNA and abolished contractile function indicates upstream involvement of PKC. Inhibition of PKA generally had an enhancing effect on the induced changes giving rise to a 7–25% increase in Emax in response to ET-1, S6c and 5-CT as compared to the cultured control. Staurosporine inhibited the culture induced upregulation of the response of both the ETA and the 5-HT1B/1D receptors, but had no significant effect on the mRNA levels of these receptors. This lack of correlation indicates an additional downstream involvement of protein kinases. PMID:12183337

  18. Central nervous system activity associated with the pain evoked by bradykinin and its alteration by morphine and aspirin.

    PubMed

    Lim, R K; Krauthamer, G; Guzman, F; Fulp, R R

    1969-07-01

    Synthetic bradykinin, a nonapeptide formed from alpha-2 globulin in plasma, injected intra-arterially or intraperitoneally in cats in doses of 10-50 mug, evoked activity in the central nervous system in pathways associated with the signaling of pain. Similar injections of bradykinin in intact normal cats and dogs evoked manifestations of pain, and in conscious humans elicited verbal reports of pain perceived in the area of injection. Single unit activity was recorded in the medial reticular formation of the brainstem, in the medial thalamus and, more laterally, among the posterior group nuclei and the suprageniculate nucleus. Bradykinin did not evoke any cortical or subcortical slow potentials such as those evoked by electrical stimulation of the foot pads. When bradykinin was given together with the electrical stimulus, the responses evoked by the latter were blocked. Morphines uppressed bradykinin-evoked activity. Aspirin caused marked fluctuations in activity, unrelated to the bradykinin injection; the bradykinin block of evoked potentials could no longer be observed after aspirin dosage. The results are discussed in terms of the peripheral and central sites of analgesic action and the likelihood of the existence of chemosensitive pain receptors.

  19. CENTRAL NERVOUS SYSTEM ACTIVITY ASSOCIATED WITH PAIN EVOKED BY BRADYKININ AND ITS ALTERATION BY MORPHINE AND ASPIRIN

    PubMed Central

    Lim, R. K. S.; Krauthamer, G.; Guzman, F.; Fulp, R. R.

    1969-01-01

    Synthetic bradykinin, a nonapeptide formed from α-2 globulin in plasma, injected intra-arterially or intraperitoneally in cats in doses of 10-50 μg, evoked activity in the central nervous system in pathways associated with the signaling of pain. Similar injections of bradykinin in intact normal cats and dogs evoked manifestations of pain, and in conscious humans elicited verbal reports of pain perceived in the area of injection. Single unit activity was recorded in the medial reticular formation of the brainstem, in the medial thalamus and, more laterally, among the posterior group nuclei and the suprageniculate nucleus. Bradykinin did not evoke any cortical or subcortical slow potentials such as those evoked by electrical stimulation of the foot pads. When bradykinin was given together with the electrical stimulus, the responses evoked by the latter were blocked. Morphines uppressed bradykinin-evoked activity. Aspirin caused marked fluctuations in activity, unrelated to the bradykinin injection; the bradykinin block of evoked potentials could no longer be observed after aspirin dosage. The results are discussed in terms of the peripheral and central sites of analgesic action and the likelihood of the existence of chemosensitive pain receptors. PMID:5259760

  20. Inhibitory effect of fentanyl citrate on the release of endothlin-1 induced by bradykinin in melanoma cells.

    PubMed

    Andoh, Tsugunobu; Shinohara, Akira; Kuraishi, Yasushi

    2017-02-01

    Our previous study showed that the μ-opioid receptor agonist fentanyl citrate inhibits endothelin-1-and bradykinin-mediated pain responses in mice orthotopically inoculated with melanoma cells. We also demonstrated that bradykinin induces endothelin-1 secretion in melanoma cells. However, the analgesic mechanisms of fentanyl citrate remain unclear. Thus, the present study was conducted to determine whether fentanyl citrate affects bradykinin-induced endothelin-1 secretion in B16-BL6 melanoma cells. The amount of endothelin-1 in the culture medium was measured using an enzyme immunoassay. The expression of endothelin-1, kinin B2 receptors, and μ-opioid receptors in B16-BL/6 melanoma cells was determined using immunocytochemistry. Fentanyl citrate inhibited bradykinin-induced endothelin-1 secretion. The inhibitory effect of fentanyl citrate on the secretion of endothelin-1 was attenuated by the μ-opioid receptor antagonist naloxone methiodide. The immunoreactivities of endothelin-1, kinin B2 receptors, and μ-opioid receptors in B16-BL6 melanoma cells were observed. These results suggest that fentanyl citrate regulates bradykinin-induced endothelin-1 secretion through μ-opioid receptors in melanoma cells. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Design and synthesis of novel sulfonamide-containing bradykinin hB(2) receptor antagonists. Synthesis and structure-relationships of α,α-tetrahydropyranylglycine.

    PubMed

    Fincham, Christopher I; Bressan, Alessandro; D'Andrea, Piero; Ettorre, Alessandro; Giuliani, Sandro; Mauro, Sandro; Meini, Stefania; Paris, Marielle; Quartara, Laura; Rossi, Cristina; Squarcia, Antonella; Valenti, Claudio; Daniela, Fattori; Maggi, Carlo Alberto

    2012-03-15

    A series of α,α-cycloalkylglycine sulfonamide compounds of general formula 1 has previously been identified by our group as selective human B(2)(hB(2)) receptor antagonists. Here we report the in vitro and in vivo BK antagonist activity of a further evolution of the series, consisting in compounds of the general formula 2, containing either an alkyl piperazine or a 4-alkyl piperidine ring bearing various positively charged groups (R'). These studies unexpectedly revealed quite a flat nanomolar/subnanomolar SAR for the binding affinity, while differences were seen in the in vitro functional activities. We propose that variations in the residence time may explain these results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family.

    PubMed

    On, Jason S W; Duan, Cumming; Chow, Billy K C; Lee, Leo T O

    2015-08-01

    Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand-receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand-receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells.

    PubMed

    Zhao, Xiao-Dan; Dong, Ni; Man, Hong-Tao; Fu, Zhong-Lin; Zhang, Mei-Hong; Kou, Shuang; Ma, Shi-Liang

    2013-09-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway.

  4. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells

    PubMed Central

    ZHAO, XIAO-DAN; DONG, NI; MAN, HONG-TAO; FU, ZHONG-LIN; ZHANG, MEI-HONG; KOU, SHUANG; MA, SHI-LIANG

    2013-01-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway. PMID:24649031

  5. Modeling the Effects of HER/ErbB1-3 Coexpression on Receptor Dimerization and Biological Response

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.; Resat, Haluk

    2006-06-01

    The human epidermal growth factor receptor (HER/ErbB) system comprises the epidermal growth factor receptor (EGFR/HER1) and three other homologues viz. HERs2-4. This receptor system plays a critical role in cell proliferation and differentiation. Over-expression of these receptors can be associated with poor prognosis in cancers of the epithelium. It is believed that the dimerization pattern among members of the HER family may play a key role in controlling downstream signaling and the eventual biological response. Here, we examine the effect of co-expressing varying levels of HERs1-3 on the receptor dimerization patterns using mathematical modeling. The model integrates biochemical reactions such as ligand binding, receptor dimerization and phosphorylation with biophysical trafficking reactions to predict the concentrations of activated receptors in various cellular compartments. Our results indicate that co-expression of EGFR with HER2 or HER3 biases signaling to the cell surface and retards signal down-regulation. In addition, simultaneous co-expression of HERs1-3 leads to preferential formation of HER2-HER3 heterodimers, which are known to be potent inducers of cell growth and transformation. We further examined the effect of receptor dimerization patterns on cell phenotype using a simple phenomenological model. Results indicate that co-expression of HER2 and HER3 at low to moderate levels may enable cells to match the phenotype of a high HER2 expresser.

  6. Role of 5-HT5A and 5-HT1B/1D receptors in the antinociception produced by ergotamine and valerenic acid in the rat formalin test.

    PubMed

    Vidal-Cantú, Guadalupe C; Jiménez-Hernández, Mildred; Rocha-González, Héctor I; Villalón, Carlos M; Granados-Soto, Vinicio; Muñoz-Islas, Enriqueta

    2016-06-15

    Sumatriptan, dihydroergotamine and methysergide inhibit 1% formalin-induced nociception by activation of peripheral 5-HT1B/1D receptors. This study set out to investigate the pharmacological profile of the antinociception produced by intrathecal and intraplantar administration of ergotamine (a 5-HT1B/1D and 5-HT5A/5B receptor agonist) and valerenic acid (a partial agonist at 5-HT5A receptors). Intraplantar injection of 1% formalin in the right hind paw resulted in spontaneous flinching behavior of the injected hindpaw of female Wistar rats. Intrathecal ergotamine (15nmol) or valerenic acid (1 nmol) blocked in a dose dependent manner formalin-induced nociception. The antinociception by intrathecal ergotamine (15nmol) or valerenic acid (1nmol) was partly or completely blocked by intrathecal administration of the antagonists: (i) methiothepin (non-selective 5-HT5A/5B; 0.01-0.1nmol); (ii) SB-699551 (selective 5-HT5A; up to 10nmol); (iii) anti-5-HT5A antibody; (iv) SB-224289 (selective 5-HT1B; 0.1-1nmol); or (v) BRL-15572 (selective 5-HT1D; 0.1-1nmol). Likewise, antinociception by intraplantar ergotamine (15nmol) and valerenic acid (10nmol) was: (i) partially blocked by methiothepin (1nmol), SB-699551 (10nmol) or SB-224289 (1nmol); and (ii) abolished by BRL-15572 (1nmol). The above doses of antagonists (which did not affect per se the formalin-induced nociception) were high enough to completely block their respective receptors. Our results suggest that ergotamine and valerenic acid produce antinociception via 5-HT5A and 5-HT1B/1D receptors located at both spinal and peripheral sites. This provides new evidence for understanding the modulation of nociceptive pathways in inflammatory pain.

  7. Modeling the effects of HER/ErbB1-3 co-expression on receptor dimerization and biological response

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.; Resat, Haluk

    2006-06-01

    The human epidermal growth factor receptor (HER/ErbB) system comprises the epidermal growth factor receptor (EGFR/HER1) and three other homologues viz. HER2-4. This receptor system plays a critical role in cell proliferation and differentiation and receptor over-expression can be associated with poor prognosis in cancers of the epithelium. Here, we examine the effect of co-expressing varying levels of HER1-3 on the receptor dimerization patterns using a detailed kinetic model for ErbB heterodimerization and trafficking. Our results indicate that co-expression of EGFR with HER2 or HER3 biases signaling to the cell surface and retards signal down-regulation. In addition, simultaneous co-expression of HER1-3 leads to preferential formation of HER2-HER3 heterodimers, which are known to be potent inducers of cell growth and transformation. Analysis of the parameter dependencies in the model reveals that measurements of HER3 phosphorylation and HER2 internalization ratio may prove to be especially useful for the estimation of critical model parameters. Further, we examined the effect of receptor dimerization patterns on cell phenotype using a simple phenomenological model. Results indicate that co-expression of EGFR with HER2 and HER3 at low to moderate levels may enable cells to match the phenotype of a high HER2 expresser.

  8. Requirement of UNC93B1 reveals a critical role for Toll-Like Receptor 7 in host resistance to primary infection with Trypanosoma cruzi1,2

    PubMed Central

    Caetano, Braulia C.; Carmo, Bianca B.; Melo, Mariane B.; Cerny, Anna; dos Santos, Sara L.; Bartholomeu, Daniella C.; Golenbock, Douglas T.; Gazzinelli, Ricardo T.

    2011-01-01

    UNC93B1 associates with Toll-Like Receptor (TLR) 3, 7 and 9, mediating their translocation from the endoplasmic reticulum to the endolysosome, thus allowing proper activation by microbial nucleic acids. We found that the triple deficient ‘3d’ mice, which lack functional UNC93B1 as well as functional endossomal TLRs, are highly susceptible to infection with Trypanosoma cruzi. The enhanced parasitemia and mortality in 3d animals were associated with impaired pro-inflammatory response, including reduced levels of IL-12p40 and IFN-γ. Importantly, the phenotype of 3d mice was intermediary between MyD88−/− (highly susceptible) and TLR9−/− (less susceptible), indicating the involvement of an additional UN93B1-dependent-TLR(s) on host resistance to T. cruzi. Hence, our experiments also revealed that TLR7 is a critical innate immune receptor involved in recognition of parasite RNA, induction of IL-12p40 by dendritic cells, and consequent IFN-γ by T lymphocytes. Furthermore, we show that upon T. cruzi infection triple TLR3/7/9−/− mice had similar phenotype than 3d mice. These data imply that the nucleic acid-sensing TLRs are critical determinants of host resistance to primary infection with T. cruzi. PMID:21753151

  9. Fasitibant chloride, a kinin B2 receptor antagonist, and dexamethasone interact to inhibit carrageenan-induced inflammatory arthritis in rats

    PubMed Central

    Valenti, Claudio; Giuliani, Sandro; Cialdai, Cecilia; Tramontana, Manuela; Maggi, Carlo Alberto

    2012-01-01

    BACKGROUND AND PURPOSE Bradykinin, through the kinin B2 receptor, is involved in inflammatory processes related to arthropathies. B2 receptor antagonists inhibited carrageenan-induced arthritis in rats in synergy with anti-inflammatory steroids. The mechanism(s) underlying this drug interaction was investigated. EXPERIMENTAL APPROACH Drugs inhibiting inflammatory mediators released by carrageenan were injected, alone or in combination, into the knee joint of pentobarbital anaesthetized rats 30 min before intra-articular administration of carrageenan. Their effects on the carrageenan-induced inflammatory responses (joint pain, oedema and neutrophil recruitment) and release of inflammatory mediators (prostaglandins, IL-1β, IL-6 and the chemokine GRO/CINC-1), were assessed after 6 h. KEY RESULTS The combination of fasitibant chloride (MEN16132) and dexamethasone was more effective than each drug administered alone in inhibiting knee joint inflammation and release of inflammatory mediators. Fasitibant chloride, MK571, atenolol, des-Arg9-[Leu8]-bradykinin (B2 receptor, leukotriene, catecholamine and B1 receptor antagonists, respectively) and dexketoprofen (COX inhibitor), reduced joint pain and, except for the latter, also diminished joint oedema. A combination of drugs inhibiting joint pain (fasitibant chloride, des-Arg9-[Leu8]-bradykinin, dexketoprofen, MK571 and atenolol) and oedema (fasitibant chloride, des-Arg9-[Leu8]-bradykinin, MK571 and atenolol) abolished the respective inflammatory response, producing inhibition comparable with that achieved with the combination of fasitibant chloride and dexamethasone. MK571 alone was able to block neutrophil recruitment. CONCLUSIONS AND IMPLICATIONS Bradykinin-mediated inflammatory responses to intra-articular carrageenan were not controlled by steroids, which were not capable of preventing bradykinin effects either by direct activation of the B2 receptor, or through the indirect effects mediated by release of eicosanoids

  10. Bradykinin promotes TLR2 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Arreguín-Cano, Juan Antonio

    2011-12-01

    Bradykinin (BK) is implicated in the sensation of pain, vasodilation, increases in vascular permeability and pathogenic processes associated with inflammation. Studies have shown that BK promotes the intracellular movement of calcium in human gingival fibroblasts by binding to the B2 receptor. In this study we investigated the effect of BK on regulation of Toll-like receptor 2 (TLR2) expression. Our results show that BK stimulates TLR2 receptor transcription and translation by activation of protein kinase C as well as AKT. Our study contributes important information on the regulation and expression of molecules that promote chronic inflammatory processes, which lead to periodontitis and consequently to loss of the dental organ. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Thermodynamic characterization of two homologous protein complexes: Associations of the semaphorin receptor plexin-B1 RhoGTPase binding domain with Rnd1 and active Rac1

    PubMed Central

    Hota, Prasanta K; Buck, Matthias

    2009-01-01

    Plexin receptors function in response to semaphorin guidance cues in a variety of developmental processes involving cell motility. Interactions with Rho, as well as Ras family small GTPases are critical events in the cell signaling mechanism. We have recently determined the structure of a cytoplasmic domain (RBD) of plexin-B1 and mapped its binding interface with several Rho-GTPases, Rac1, Rnd1, and RhoD. All three GTPases associate with a similar region of this plexin domain, but show different functional behavior in cells. To understand whether thermodynamic properties of the GTPase–RBD interaction contribute to such different behavior, we have examined the interaction at different temperatures, buffer, and pH conditions. Although the binding affinity of both Rnd1 and Rac1 with the plexin-B1 RBD is similar, the detailed thermodynamic properties of the interactions are considerably different. These data suggest that on Rac1 binding to the plexin-B1 RBD, the proteins become more rigid in the complex. By contrast, Rnd1 binding is consistent with unchanged or slightly increased flexibility in one or both proteins. Both GTPases show an appreciable reduction in affinity for the dimeric plexin-B1 RBD indicating that GTPase binding is not cooperative with dimer formation, but that a partial steric hindrance destabilizes the dimer. However, a reduced affinity binding mode to a disulphide stabilized model for the dimeric RBD is also possible. Consistent with cellular studies, the interaction thermodynamics imply that further levels of regulation involving additional binding partners and/or regions outside of the RhoGTPase binding domain are required for receptor activation. PMID:19388051

  12. Carnosol, a Constituent of Zyflamend, Inhibits Aryl Hydrocarbon Receptor-Mediated Activation of CYP1A1 and CYP1B1 Transcription and Mutagenesis

    PubMed Central

    Mohebati, Arash; Guttenplan, Joseph B.; Kochhar, Amit; Zhao, Zhong-Lin; Kosinska, Wieslawa; Subbaramaiah, Kotha; Dannenberg, Andrew J.

    2012-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated member of the basic-helix-loop-helix family of transcription factors, plays a significant role in polycyclic aromatic hydrocarbon (PAH) induced carcinogenesis. In the upper aerodigestive tract of humans, tobacco smoke, a source of PAHs, activates the AhR leading to increased expression of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. Inhibitors of Hsp90 ATPase cause a rapid decrease in levels of AhR, an Hsp90 client protein, and thereby block PAH-mediated induction of CYP1A1 and CYP1B1. The main objective of this study was to determine whether Zyflamend, a polyherbal preparation, suppressed PAH-mediated induction of CYP1A1 and CYP1B1 and inhibited DNA adduct formation and mutagenesis. We also investigated whether carnosol, one of multiple phenolic antioxidants in Zyflamend, had similar inhibitory effects. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) and skin (HaCaT) with benzo[a]pyrene (B[a]P), a prototypic PAH, induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Both Zyflamend and carnosol suppressed these effects of B[a]P. Notably, both Zyflamend and carnosol inhibited Hsp90 ATPase activity and caused a rapid reduction in AhR levels. The formation of B[a]P induced DNA adducts and mutagenesis were also inhibited by Zyflamend and carnosol. Collectively, these results show that Zyflamend and carnosol inhibit Hsp90 ATPase leading to reduced levels of AhR, suppression of B[a]P-mediated induction of CYP1A1 and CYP1B1 and inhibition of mutagenesis. Carnosol-mediated inhibition of Hsp90 ATPase activity can help explain the chemopreventive activity of herbs such as Rosemary, which contain this phenolic antioxidant. PMID:22374940

  13. Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and α2-adrenoceptors

    PubMed Central

    Villalón, Carlos M; De Vries, Peter; Rabelo, Gonzalo; Centurión, David; Sánchez-López, Araceli; Saxena, Pramod

    1999-01-01

    The antimigraine drugs methysergide, ergotamine and dihydroergotamine (DHE) produce selective vasoconstriction in the external carotid bed of vagosympathectomized dogs anaesthetized with pentobarbital and artificially respired, but the receptors involved have not yet been completely characterized. Since the above drugs display affinity for several binding sites, including α-adrenoceptors and several 5-HT1 and 5-HT2 receptor subtypes, this study has analysed the mechanisms involved in the above responses. Intracarotid (i.c.) infusions during 1 min of methysergide (31–310 μg min−1), ergotamine (0.56–5.6 μg min−1) or DHE (5.6–31 μg min−1) dose-dependently reduced external carotid blood flow (ECBF) by up to 46±4, 37±4 and 49±5%, respectively. Blood pressure and heart rate remained unchanged. The reductions in ECBF by methysergide were abolished and even reversed to increases in animals pre-treated with GR127935 (10 μg kg−1, i.v.). The reductions in ECBF by ergotamine and DHE remained unchanged in animals pre-treated (i.v.) with prazosin (300 μg kg−1), but were partly antagonized in animals pre-treated with either GR127935 (10 or 30 μg kg−1) or yohimbine (1000 μg kg−1). Pre-treatment with a combination of GR127935 (30 μg kg−1) and yohimbine (1000 μg kg−1) abolished the responses to both ergotamine and DHE. The above doses of antagonists were shown to produce selective antagonism at their respective receptors. These results suggest that the external carotid vasoconstrictor responses to methysergide primarily involve 5-HT1B/1D receptors, whereas those to ergotamine and DHE are mediated by 5-HT1B/1D receptors as well as α2-adrenoceptors. PMID:10188968

  14. Antidiabetic efficacy of bradykinin antagonist R-954 on glucose tolerance test in diabetic type 1 mice.

    PubMed

    Catanzaro, Orlando L; Dziubecki, Damian; Obregon, Pablo; Rodriguez, Ricardo R; Sirois, Pierre

    2010-04-01

    Insulin-dependent diabetes mellitus (type 1 diabetes) is an inflammatory autoimmune disease associated with many complications including nephropathy, retinopathy, neuropathy and hyperalgesia. Experimental evidence has shown that the bradykinin B1 receptor (BKB1-R) is involved in the development of type 1 diabetes and found to be upregulated alongside the disease. In the present study the effects of the selective BKB1-R antagonist the R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8) ]des-Arg(9)-BK and the BKB1-R agonist des Arg(9)-BK (DBK) were studied on diabetic hyperglycemia. Diabetic type 1 was induced in C57 BL/KsJ mdb male mice by five consecutives doses of STZ (45mg/kg i.p.). A glucose tolerance test (GTT) was performed by an intraperitoneal administration of glucose, 8, 12 and 18days after the diabetes induction. The induction of type 1 diabetes provoked a significant hyperglycemia levels in diabetic mice at 12 and 18days after STZ. The administration of R-954 (400microg/kg i.p.) at 12 and 18days after STZ returned the glycemia levels of this animals to normal values. In addition the administration of DKB (300microg/kg i.p.) significantly potentiated the diabetes-induced hyperglycemia; this effect that was totally reversed by R-954. These results provide further evidence for the implication of BKB1-R in the type 1 diabetes mellitus (insulitis).

  15. Bradykinin and angiotensin-converting enzyme inhibition in cardioprotection

    PubMed Central

    Jancso, G; Jaberansari, MT; Gasz, B; Szanto, Z; Cserepes, B; Röth, E

    2004-01-01

    OBJECTIVES: To show that angiotensin-converting enzyme (ACE) inhibition potentiates subthreshold ischemic preconditioning (IPC) via the elevation of bradykinin activity, leading to a fully delayed cardioprotective response. METHODS: On day 1 of the experiment, pigs were subjected to sham (group 1, controls) or IPC protocols. In groups 2 and 3, 4×5 min and 2×2 min of IPC, respectively, were elicited by occluding the left anterior descending coronary artery with percutaneous transluminal coronary angioplasty inflatable balloon catheter. Group 4 was subjected to the ACE inhibitor perindoprilate only. In group 5, the pigs were pretreated with perindoprilate (0.06 mg/kg) and then subjected to 2×2 min IPC. In group 6, intracoronary HOE 140 (a selective bradykinin B2 receptor antagonist) was added before the perindoprilateaugmented subthreshold (2×2 min) PC stimulus. On the second day, all animals underwent 40 min left anterior descending coronary artery ligation and 3 h reperfusion, followed by infarct size analysis using triphenyl tetrazolium chloride staining. RESULTS: The rates of infarct size and risk zone were the following in the experimental groups: group 1, 42.8%; group 2,19.5% (P<0.05); group 3, ischemia/reperfusion (I/R) 33.4%; group 4, I/R 18.4% (P<0.05); group 5, I/R 31.2%; and group 6, I/R 36.3%. A significant increase of nuclear factor kappa B activation in groups 2 and 4 was seen. CONCLUSIONS: Results confirm that ACE inhibitors do not give total pharmacological IPC, but they enhance the induction effect of small ischemic insults, which raises the ischemic tolerance of myocardium. It was determined that enhanced bradykinin activity leads to downstream nuclear factor kappa B activation in this model. PMID:19641692

  16. Plasma Kallikrein Promotes Epidermal Growth Factor Receptor Transactivation and Signaling in Vascular Smooth Muscle through Direct Activation of Protease-activated Receptors*

    PubMed Central

    Abdallah, Rany T.; Keum, Joo-Seob; Lee, Mi-Hye; Wang, Bing; Gooz, Monika; Luttrell, Deirdre K.; Luttrell, Louis M.; Jaffa, Ayad A.

    2010-01-01

    The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus. PMID:20826789

  17. Comparison of the cardiovascular effects of the novel 5-HT(1B/1D) receptor agonist, SB 209509 (VML251), and sumatriptan in dogs.

    PubMed

    Parsons, A A; Parker, S G; Raval, P; Campbell, C A; Lewis, V A; Griffiths, R; Hunter, A J; Hamilton, T C; King, F D

    1997-07-01

    The systemic cardiovascular effects of a novel 5-hydroxtryptamine (5-HT)(1B/1D)-receptor agonist were investigated in the anaesthetised dog. SB 209509 (VML 251) was more potent than sumatriptan in producing increases in carotid vascular resistance after intravenous administration and was similar in potency to sumatriptan after sequential intraduodenal administration at 30-min intervals. In open-chest dogs, sequential intravenous administration of SB 209509 or sumatriptan produced marked increases in carotid vascular resistance without changing coronary vascular resistance. In contrast to sumatriptan, after administration of high doses of SB 209509 (>790 nmol/kg), a reduction in coronary vascular resistance was observed. After a single bolus intraduodenal dose of SB 209509 (260, 520, or 790 nmol/kg), increases in carotid vascular resistance could be detected over a 5-h period. Sumatriptan (i.d.), 2.4 micromol/kg but not 700 nmol/kg, produced a sustained effect similar to the effects of SB 209509 (790 nmol/kg). In all experiments, SB 209509 and sumatriptan had minimal effects on arterial blood pressure or heart rate but produced marked changes in carotid vascular resistance over the same concentration range. SB 209509 was rapidly absorbed after intraduodenal administration in conscious dogs and had good bioavailability. These data indicate that SB 209509 is a potent 5-HT(1B/1D)-receptor agonist that is rapidly absorbed from the duodenum. The effects of SB 209509 are long lasting and selective for the carotid vascular bed.

  18. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  19. Increased circulating bradykinin during hypothermia and cardiopulmonary bypass in children.

    PubMed

    Pang, L M; Stalcup, S A; Lipset, J S; Hayes, C J; Bowman, F O; Mellins, R B

    1979-12-01

    To determine whether cold could activate the kallikrein-kinin system in vivo as it does in vitro, the circulating systemic concentrations of bradykinin were serially measured in 10 cyildren with congenital diseases of the heart undergoing corrective cardiac surgery. Bradykinin was measured by radioimmunoassay in blood samples obtained before, during and after profound hypothermia (to 18 degrees C) and cardiopulmonary bypass. The circulating concentrations of bradykinin increased significantly as body temperature decreased during surface cooling. The increase in circulating bradykinin was associated with a decrease in the circulating level of bradykininogen, the precursor of bradykinin. With the onset of cardiopulmonary bypass and hence, removal of the lung and pulmonary converting enzyme from the circulation, there was a further rise in the already elevated concentrations of bradykinin. This is the first in vivo demonstration that hypothermia leads to an increase in the circulating concentrations of bradykinin.

  20. Bradykinin-potentiating peptides: beyond captopril.

    PubMed

    Camargo, Antonio C M; Ianzer, Danielle; Guerreiro, Juliano R; Serrano, Solange M T

    2012-03-15

    The identification of novel endogenous and exogenous molecules acting in the complex mechanism of regulating the vascular tonus has always been of great interest. The discovery of bradykinin (1949) and the bradykinin-potentiating peptides (1965) had a pivotal influence in the field, respectively, in understanding cardiovascular pathophysiology and in the development of captopril, the first active-site directed inhibitor of angiotensin-converting enzyme, and used worldwide to treat human hypertension. Both discoveries originated from studies of envenoming by the snake Bothrops jararaca. The aim of the present article is to reveal that the snake proline-rich oligopeptides, known as bradykinin-potentiating peptides, are still a source of surprising scientific discoveries, some of them useful not only to reveal potential new targets but also to introduce prospective lead molecules for drug development. In particular, we emphasize argininosuccinate synthetase as a new functional target for one of bradykinin-potentiating peptides found in B. jararaca, Bj-BPP-10c. This decapeptide leads to argininosuccinate synthetase activation, consequently sustaining increased nitric oxide production, a critical endogenous molecule to reduce the arterial blood pressure.

  1. Hepatic lipase promotes the selective uptake of high density lipoprotein-cholesteryl esters via the scavenger receptor B1.

    PubMed

    Lambert, G; Chase, M B; Dugi, K; Bensadoun, A; Brewer, H B; Santamarina-Fojo, S

    1999-07-01

    Hepatic lipase (HL) plays a major role in high-density lipoprotein (HDL) metabolism both as a lipolytic enzyme and as a ligand. To investigate whether HL enhances the uptake of HDL-cholesteryl ester (CE) via the newly described scavenger receptor BI (SR-BI), we measured the effects of expressing HL and SR-BI on HDL-cell association as well as uptake of 125I-labeled apoA-I and [3H]CE-HDL, by embryonal kidney 293 cells. As expected, HDL cell association and CE selective uptake were increased in SR-BI transfected cells by 2- and 4-fold, respectively, compared to controls (P < 0.001). Cells transfected with HL alone or in combination with SR-BI expressed similar amounts of HL, 20% of which was bound to cell surface proteoglycans. HL alone increased HDL cell association by 2-fold but had no effect on HDL-CE uptake in 293 cells. However, in cells expressing SR-BI, HL further enhanced the selective uptake of CE from HDL by 3-fold (P < 0.001). To determine whether the lipolytic and/or ligand function of HL are required in this process, we generated a catalytically inactive form of HL (HL-145G). Cells co-transfected with HL-145G and SR-BI increased their HDL cell association and HDL-CE selective uptake by 1.4-fold compared to cells expressing SR-BI only (P < 0.03). Heparin abolished the effect of HL-145G on SR-BI-mediated HDL-CE selective uptake.Thus, the enhanced uptake of HDL-CE by HL is mediated by both its ligand role, which requires interaction with proteoglycans, and by lipolysis with subsequent HDL particle remodeling. These results establish HL as a major modulator of SR-BI mediated selective uptake of HDL-CE.

  2. Evidence for 5-HT1B/1D and 5-HT2A receptors mediating constriction of the canine internal carotid circulation

    PubMed Central

    Centurión, David; Ortiz, Mario I; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1–10 μg min−1), sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), 5-methoxytryptamine (1–100 μg min−1; 5-HT1, 5-HT2, 5-HT4, 5-ht6 and 5-HT7) or DOI (0.31–10 μg min−1; 5-HT2), but not 5-carboxamidotryptamine (0.01–0.3 μg min−1; 5-HT1, 5-ht5A and 5-HT7), 1-(m-chlorophenyl)-biguanide (mCPBG; 1–1000 μg min−1; 5-HT3) or cisapride (1–1000 μg min−1; 5-HT4), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 μg kg−1; 5-HT2A/2B/2C) in combination with tropisetron (3000 μg kg−1; 5-HT3/4) or the cyclo-oxygenase inhibitor, indomethacin (5000 μg kg−1), but were abolished by the 5-HT1B/1D receptor antagonist, GR127935 (30 μg kg−1). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 μg kg−1) or ketanserin (100 μg kg−1; 5-HT2A), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT1B/1D and 5-HT2A receptors

  3. Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation.

    PubMed

    Hughes, Duncan; Guttenplan, Joseph B; Marcus, Craig B; Subbaramaiah, Kotha; Dannenberg, Andrew J

    2008-11-01

    The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (HSP90), plays a significant role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke, a source of PAHs, activates the AhR, leading to enhanced transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. The main objectives of this study were to determine whether HSP90 inhibitors suppress PAH-mediated induction of CYP1A1 and CYP1B1 or block benzo(a)pyrene [B(a)P]-induced formation of DNA adducts. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) or esophageal squamous cell carcinoma (KYSE450) with a saline extract of tobacco smoke, B(a)P, or dioxin induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Inhibitors of HSP90 [17-allylamino-17-demethoxygeldanamycin (17-AAG); celastrol] suppressed these inductive effects of PAHs. Treatment with 17-AAG and celastrol also caused a rapid and marked decrease in amounts of AhR protein without modulating levels of HSP90. The formation of B(a)P-induced DNA adducts in MSK-Leuk1 cells was inhibited by 17-AAG, celastrol, and alpha-naphthoflavone, a known AhR antagonist. The reduction in B(a)P-induced DNA adducts was due, at least in part, to reduced metabolic activation of B(a)P. Collectively, these results suggest that 17-AAG and celastrol, inhibitors of HSP90, suppress the activation of AhR-dependent gene expression, leading, in turn, to reduced formation of B(a)P-induced DNA adducts. Inhibitors of HSP90 may have a role in chemoprevention in addition to cancer therapy.

  4. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    PubMed

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  5. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1

    PubMed Central

    El-Diwany, Ramy; Mankowski, Madeleine C.; Wasilewski, Lisa N.; Brady, Jillian K.; Snider, Anna E.; Osburn, William O.; Murrell, Ben; Ray, Stuart C.

    2017-01-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes. PMID:28235087

  6. Effects of the Novel High-affinity 5-HT(1B/1D)-receptor Ligand Frovatriptan on the Rat Carotid Artery.

    PubMed

    Saracheva, Kremena E; Prissadova, Natalia A; Turiiski, Valentin I; Slavchev, Valeri I; Krastev, Atanas D; Getova, Damianka P

    2017-03-01

    In blood vessels 5-HT stimulates sympathetic nerves, the endothelium and vascular smooth muscle cells. Triptans are specific anti-migraine drugs and they activate the serotoninergic 5HT1b/d receptors causing vasoconstriction of the cerebral vessels. To evaluate the effect of frovatriptan on isolated rat carotid artery. Contractile activity of the preparations was registered isometrically. Krebs solution (pH = 7.4) was used for washing smooth muscle (SM) preparations aerated with 95% O2 and 5% CO2 at 37°C. The 60-minute adaptation of tone level of preparations was taken as a starting tone and the changes such as contraction or relaxation were calculated using it. Frovatriptan (1×10-6 mol/l - 1×10-5 mol/l) induced a contraction, but at higher concentrations it caused relaxation of the carotid artery. The L-norepinephrine contractile reaction was enhanced in the presence of frovatriptan. In the presence of 5-HT2 receptor antagonist, methysergide, frovatriptan increased the relaxation. In the presence of the specific α-1 receptor antagonist, prazosin, the frovatriptan-induced relaxation decreased. The observed contractile effect of frovatriptan is probably associated with the main effect of the drug - activation of the serotoninergic 5HT1B /1D receptors causing vasoconstriction of the cerebral vessels and their anti-migraine effect. At higher concentrations, frovatriptan, most likely via some non-specific mechanism, could activate the following intracellular chain reaction: stimulation of α1D could activate eNOS which may increase in the concentration of NO which results in the final effect of relaxation.

  7. Zonal heterogeneity in action of angiotensin-converting enzyme inhibitor on renal microcirculation: role of intrarenal bradykinin.

    PubMed

    Matsuda, H; Hayashi, K; Arakawa, K; Naitoh, M; Kubota, E; Honda, M; Matsumoto, A; Suzuki, H; Yamamoto, T; Kajiya, F; Saruta, T

    1999-11-01

    The present study examined the role of intrarenal bradykinin in angiotensin-converting enzyme inhibitor (ACEI)-induced dilation of renal afferent (AFF) and efferent arterioles (EFF) in vivo, and further evaluated whether ACEI-stimulated bradykinin activity differed in superficial (SP) and juxtamedullary nephrons (JM). Arterioles of canine kidneys were visualized with an intravital charge-coupled device camera microscope. E4177 (an angiotensin receptor antagonist, 30 microg/kg) dilated AFF and EFF in SP (15 +/- 3% and 19 +/- 5%) and JM (15 +/- 3% and 18 +/- 4%). Subsequently, cilazaprilat (30 microg/kg) caused further dilation of both AFF (29 +/- 4%) and EFF (36 +/- 4%) in JM, whereas in SP it dilated only EFF (29 +/-3%). Similarly, in the presence of E4177, cilazaprilat caused further increases in sodium excretion. This cilazaprilat-induced vasodilation and natriuresis was abolished by a bradykinin antagonist (N(alpha)-adamantaneacetyl-D-Arg-[Hyp3,Thi5,8,D-Phe7]b radykinin). In parallel with these results, cilazaprilat increased renal bradykinin content, more greatly in the medulla than in the cortex (5.7 +/- 0.4 versus 4.6 +/- 0.1 ng/g). Similarly, cilazaprilat elicited greater bradykinin-dependent increases of nitrite/nitrate in the medulla. In conclusion, zonal heterogeneity in renal bradykinin/nitric oxide levels and segmental differences in reactivity to bradykinin contribute to the diverse responsiveness of renal AFF and EFF to ACEI. ACEI-enhanced kinin action would participate in the amelioration of glomerular hemodynamics and renal sodium excretion by ACEI.

  8. The antimigraine 5-HT1B/1D receptor agonists, sumatriptan, zolmitriptan and dihydroergotamine, attenuate pain-related behaviour in a rat model of trigeminal neuropathic pain

    PubMed Central

    Kayser, Valérie; Aubel, Bertrand; Hamon, Michel; Bourgoin, Sylvie

    2002-01-01

    Peripheral lesion to the trigeminal nerve may induce severe pain states. Several lines of evidence have suggested that the antimigraine effect of the triptans with 5-HT1B/1D receptor agonist properties may result from inhibition of nociceptive transmission in the spinal nucleus of the trigeminal nerve by these drugs. On this basis, we have assessed the potential antinociceptive effects of sumatriptan and zolmitriptan, compared to dihydroergotamine (DHE), in a rat model of trigeminal neuropathic pain. Chronic constriction injury was produced by two loose ligatures of the infraorbital nerve on the right side. Responsiveness to von Frey filament stimulation of the vibrissal pad was used to evaluate allodynia. Two weeks after ligatures, rats with a chronic constriction of the right infraorbital nerve displayed bilateral mechanical hyper-responsiveness to von Frey filament stimulation of the vibrissal pad with a mean threshold of 0.38±0.04 g on the injured side and of 0.43±0.04 g on the contralateral (left) side (versus ⩾12.5 g on both sides in the same rats prior to nerve constriction injury). Sumatriptan at a clinically relevant dose (100 μg kg−1, s.c.) led to a significant reduction of the mechanical allodynia-like behaviour on both the injured and the contralateral sides (peak-effects 6.3±1.1 g and 4.4±0.7 g, respectively). A more pronounced effect was obtained with zolmitriptan (100 μg kg−1, s.c.) (peak-effects: 7.4±0.9 g and 3.2±1.3 g) whereas DHE (50–100 μg kg−1, i.v.) was less active (peak-effect ∼1.5 g). Subcutaneous pretreatment with the 5-HT1B/1D receptor antagonist, GR 127935 (3 mg kg−1), prevented the anti-allodynia-like effects of triptans and DHE. Pretreatment with the 5-HT1A receptor antagonist, WAY 100635 (2 mg kg−1, s.c.), did not alter the effect of triptans but significantly enhanced that of DHE (peak effect 4.3±0.5 g). In a rat model of peripheral neuropathic pain, which consisted of a unilateral loose constriction of the

  9. Hoe 140 a new potent and long acting bradykinin-antagonist: in vitro studies

    PubMed Central

    Hock, F.J.; Wirth, K.; Albus, U.; Linz, W.; Gerhards, H.J.; Wiemer, G.; Henke, St.; Breipohl, G.; König, W.; Knolle, J.; Schölkens, B.A.

    1991-01-01

    1 Hoe 140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]bradykinin) is a new bradykinin (BK)-antagonist. It was tested in several in vitro assays and compared with D-Arg-[Hyp2, Thi5,8,D-Phe7]BK. 2 In receptor binding studies in guinea-pig ileum preparations, Hoe 140 showed an IC50 of 1.07 × 10-9 moll-1 and a K1 value of 7.98 × 10-10 moll-1. 3 In isolated organ preparations Hoe 140 and D-Arg-[Hyp2, Thi5,8, D-Phe7]BK inhibited bradykinin-induced contractions concentration dependently, with IC50-values in the guinea-pig ileum preparation of 1.1 × 10-8moll-1 and 3 × 10-5 moll-1, respectively. pA2 values in this tissue were 8.42 and 6.18, respectively. In the rat uterus preparation the IC50 value was 4.9 × 10-9 moll-1 for Hoe 140. D-Arg-[Hyp2, Thi5,8, D-Phe7]BK showed an IC50 of 4.0 × 10-6moll-1. The IC50 values in the guinea-pig isolated pulmonary artery were 5.4 × 10-9 moll-1 and 6.4 × 10-6 moll-1, respectively. In the rabbit aorta no inhibitory effects on Des-Arg9-BK induced contractions were observed. 4 In cultured bovine endothelial cells, Hoe 140 antagonized (IC50 = 10-8 moll-1) bradykinin-induced endothelium-derived relaxing factor (EDRF) release and the bradykinin-induced increase in cytosolic free calcium (IC50 = 10-9 moll-1). 5 Hoe 140 (10-7 moll-1) totally suppressed the bradykinin-induced (10-8 to 10-4 moll-1) prostacyclin (PGI2) release from cultured endothelial cells of bovine aorta. D-Arg-[Hyp2, Thi5,8, D-Phe7]BK (10-7 moll-1) showed a weaker antagonism. 6 Taken together these results show that Hoe 140 is a highly potent bradykinin antagonist. It was two to three orders of magnitude more potent than D-Arg-[Hyp2, Thi5,8, D-Phe7]BK. PMID:1364851

  10. Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration

    PubMed Central

    Seifert, Stefanie; Sontheimer, Harald

    2014-01-01

    Abstract The molecular and cellular mechanisms governing cell motility and directed migration in response to the neuropeptide bradykinin are largely unknown. Here, we demonstrate that human glioma cells whose migration is guided by bradykinin generate bleb-like protrusions. We found that activation of the B2 receptor leads to a rise in free Ca2+ from internal stores that activates actomyosin contraction and subsequent cytoplasmic flow into protrusions forming membrane blebs. Furthermore Ca2+ activates Ca2+-dependent K+ and Cl− channels, which participate in bleb regulation. Treatment of gliomas with bradykinin in situ increased glioma growth by increasing the speed of cell migration at the periphery of the tumour mass. To test if bleb formation is related to bradykinin-promoted glioma invasion we blocked glioma migration with blebbistatin, a blocker of myosin kinase II, which is necessary for proper bleb retraction. Our findings suggest a pivotal role of bradykinin during glioma invasion by stimulating amoeboid migration of glioma cells. PMID:25194042

  11. Endoplasmic reticulum is a key organella in bradykinin-triggered ATP release from cultured smooth muscle cells.

    PubMed

    Zhao, Yumei; Migita, Keisuke; Sato, Chiemi; Usune, Sadaharu; Iwamoto, Takahiro; Katsuragi, Takeshi

    2007-09-01

    ATP has broad functions as an autocrine/paracrine molecule. The mode of ATP release and its intracellular source, however, are little understood. Here we show that bradykinin via B(2)-receptor stimulation induces the extracellular release of ATP via the inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]-signaling pathway in cultured taenia coli smooth muscle cells. It was found that bradykinin also increased the production of Ins(1,4,5)P(3) and 2-APB-inhibitable [Ca(2+)](i). The evoked release of ATP was suppressed by the Ca(2+)-channel blockers, nifedipine, and verapamil. Moreover, the extracellular release of ATP was elicited by photoliberation of Ins(1,4,5)P(3). Bradykinin caused a quick and transient accumulation of intracellular ATP from cells treated with 1% perchloric acid solution (PCA), but not with the cell lysis buffer. Peak accumulation was prevented by 2-APB and thapsigargin, but not by nifedipine or verapamil, inhibitors of extracellular release of ATP. These findings suggest that bradykinin elicits the extracellular release of ATP that is mediated by the Ins(1,4,5)P(3)-induced Ca(2+) signaling and, finally, leads to a Ca(2+)-dependent export of ATP from the cells. Furthermore, the bradykinin-induced transient accumulation of ATP in the cells treated with PCA may imply a possible release of ATP from the endoplasmic reticulum.

  12. Study of bradykinin conformation in the presence of model membrane by Nuclear Magnetic Resonance and molecular modelling.

    PubMed

    Bonechi, Claudia; Ristori, Sandra; Martini, Giacomo; Martini, Silvia; Rossi, Claudio

    2009-03-01

    The conformation of bradykinin (BK), Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9, was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and Monte Carlo simulation in two different media, i.e. in pure aqueous solution and in the presence of phospholipid vesicles. Monolamellar liposomes are a good model for biological membranes and mimic the environment experienced by bradykinin when interacting with G-protein coupled receptors (GPCRs). The NMR spectra showed that lipid bilayers induced a secondary structure in the otherwise inherently flexible peptide. The results of ensemble calculations revealed conformational changes occurring rapidly on the NMR time scale and allowed for the identification of different families of conformations that were averaged to reproduce the NMR observables. These structural results supported the hypothesis of the central role played by the peptide C-terminal domain in biological environments, and provided an explanation for the different biological behaviours observed for bradykinin

  13. Endothelium-dependent relaxation and hyperpolarization evoked by bradykinin in canine coronary arteries: enhancement by exercise-training.

    PubMed Central

    Mombouli, J. V.; Nakashima, M.; Hamra, M.; Vanhoutte, P. M.

    1996-01-01

    bradykinin were also shifted to the left by perindoprilat. The shift induced by the ACE-inhibitor in either type of preparation was not significantly different. 8. These findings demonstrate that exercise-training augments the sensitivity of the coronary artery of the dog to the endothelium-dependent effects of bradykinin. This sensitization to bradykinin may reflect an increased role of both NO and EDHF, and is not the consequence of differences in ACE activity in the receptor compartment. PMID:8821528

  14. Bradykinin-stimulated cyclooxygenase activity stimulates vas deferens epithelial anion secretion in vitro in swine and humans.

    PubMed

    Pierucci-Alves, Fernando; Schultz, Bruce D

    2008-09-01

    Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (I SC; indicating net anion secretion), an effect that was 60%-93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase I SC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in I SC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion.

  15. MRP transporters as membrane machinery in the bradykinin-inducible export of ATP.

    PubMed

    Zhao, Yumei; Migita, Keisuke; Sun, Jing; Katsuragi, Takeshi

    2010-04-01

    Adenosine triphosphate (ATP) plays the role of an autocrine/paracrine signal molecule in a variety of cells. So far, however, the membrane machinery in the export of intracellular ATP remains poorly understood. Activation of B2-receptor with bradykinin-induced massive release of ATP from cultured taenia coli smooth muscle cells. The evoked release of ATP was unaffected by gap junction hemichannel blockers, such as 18alpha-glycyrrhetinic acid and Gap 26. Furthermore, the cystic fibrosis transmembrane regulator (CFTR) coupled Cl(-) channel blockers, CFTR(inh)172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3(+) and glibenclamide, failed to suppress the export of ATP by bradykinin. On the other, the evoked release of ATP was greatly reduced by multidrug resistance protein (MRP) transporter inhibitors, MK-571, indomethacin, and benzbromarone. From western blotting analysis, blots of MRP 1 protein only, but not MRP 2 and MRP 3 protein, appeared at 190 kD. However, the MRP 1 protein expression was not enhanced after loading with 1 muM bradykinin for 5 min. Likewise, niflumic acid and fulfenamic acid, Ca2(+)-activated Cl(-) channel blockers, largely abated the evoked release of ATP. The possibility that the MRP transporter system couples with Ca2(+)-activated Cl(-) channel activities is discussed here. These findings suggest that MRP transporters, probably MRP 1, unlike CFTR-Cl(-) channels and gap junction hemichannels, may contribute as membrane machinery to the export of ATP induced by G-protein-coupled receptor stimulation.

  16. SH2B1beta (SH2-Bbeta) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10.

    PubMed

    Chen, Linyi; Maures, Travis J; Jin, Hui; Huo, Jeffrey S; Rabbani, Shafaat A; Schwartz, Jessica; Carter-Su, Christin

    2008-02-01

    Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.

  17. Inhibition of acute nociceptive responses in rats after i.c.v. injection of Thr6-bradykinin, isolated from the venom of the social wasp, Polybia occidentalis.

    PubMed

    Mortari, M R; Cunha, A O S; Carolino, R O G; Coutinho-Netto, J; Tomaz, J C; Lopes, N P; Coimbra, N C; Dos Santos, W F

    2007-07-01

    In this work, a neuroactive peptide from the venom of the neotropical wasp Polybia occidentalis was isolated and its anti-nociceptive effects were characterized in well-established pain induction models. Wasp venom was analysed by reverse-phase HPLC and fractions screened for anti-nociceptive activity. The structure of the most active fraction was identified by electron-spray mass spectrometry (ESI-MS/MS) and it was further assessed in two tests of anti-nociceptive activity in rats: the hot plate and tail flick tests. The most active fraction contained a peptide whose structure was Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg-OH, which corresponds to that of Thr(6)-BK, a bradykinin analogue. This peptide was given by i.c.v. injection to rats. In the tail flick test, Thr(6)-BK induced anti-nociceptive effects, approximately twice as potent as either morphine or bradykinin also given i.c.v. The anti-nociceptive activity of Thr(6)-BK peaked at 30 min after injection and persisted for 2 h, longer than bradykinin. The primary mode of action of Thr(6)-BK involved the activation of B(2) bradykinin receptors, as anti-nociceptive effects of Thr(6)-BK were antagonized by a selective B(2) receptor antagonist. Our data indicate that Thr(6)-BK acts through B(2) bradykinin receptors in the mammalian CNS, evoking antinociceptive behaviour. This activity is remarkably different from that of bradykinin, despite the structural similarities between both peptides. In addition, due to the increased metabolic stability of Thr(6)-BK, relative to that of bradykinin, this peptide could provide a novel tool in the investigation of kinin pathways involved with pain.

  18. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes

    PubMed Central

    Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  19. Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS) stem/progenitor cell activity regardless of ErbB2 status.

    PubMed

    Farnie, Gillian; Willan, Pamela M; Clarke, Robert B; Bundred, Nigel J

    2013-01-01

    Pathways involved in DCIS stem and progenitor signalling are poorly understood yet are critical to understand DCIS biology and to develop new therapies. Notch and ErbB1/2 receptor signalling cross talk has been demonstrated in invasive breast cancer, but their role in DCIS stem and progenitor cells has not been investigated. We have utilised 2 DCIS cell lines, MCF10DCIS.com (ErbB2-normal) and SUM225 (ErbB2-overexpressing) and 7 human primary DCIS samples were cultured in 3D matrigel and as mammospheres in the presence, absence or combination of the Notch inhibitor, DAPT, and ErbB1/2 inhibitors, lapatinib or gefitinib. Western blotting was applied to assess downstream signalling. In this study we demonstrate that DAPT reduced acini size and mammosphere formation in MCF10DCIS.com whereas there was no effect in SUM225. Lapatinb reduced acini size and mammosphere formation in SUM225, whereas mammosphere formation and Notch1 activity were increased in MCF10DCIS.com. Combined DAPT/lapatinib treatment was more effective at reducing acini size in both DCIS cell lines. Mammosphere formation in cell lines and human primary DCIS was reduced further by DAPT/lapatinib or DAPT/gefitinib regardless of ErbB2 receptor status. Our pre-clinical human models of DCIS demonstrate that Notch and ErbB1/2 both play a role in DCIS acini growth and stem cell activity. We report for the first time that cross talk between the two pathways in DCIS occurs regardless of ErbB2 receptor status and inhibition of Notch and ErbB1/2 was more efficacious than either alone. These data provide further understanding of DCIS biology and suggest treatment strategies combining Notch and ErbB1/2 inhibitors should be investigated regardless of ErbB2 receptor status.

  20. The effect of the juvenile hormone analog, fenoxycarb, on ecdysone receptor B1 expression in the midgut of Bombyx mori during larval-pupal metamorphosis.

    PubMed

    Goncu, Ebru; Parlak, Osman

    2012-04-24

    The Bombyx mori (Lepidoptera: Bombycidae) midgut undergoes remodeling during the larval-pupal metamorphosis. All metamorphic events in insects are controlled by mainly two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). Fenoxycarb, O-ethyl N-(2-(4-phenoxyphenoxy)-ethyl) carbamate, has been shown to be one of the most potent juvenile hormone analogs against a variety of insect species. In this study, the effect of fenoxycarb on EcR-B1 protein expression in the midgut of Bombyx mori during the remodeling processwas investigated. Fenoxycarb was topically treated to the beginning of the fifth instar Bombyx larvae. Its application prolonged the last instar and prevented metamorphic events. Analyses were performed from day 6 of the fifth instar to 24 hr after pupation in controls and to day 14 of the fifth instar in the fenoxycarb treated group. According to our results, the presence of EcR-B1 in the midguts of the fenoxycarb treated group during the feeding period suggested that EcR-B1 was involved in the functioning of larval cells and during this period fenoxycarb did not affect EcR-B1 status. Immediately after termination of the feeding stage, the amount of EcR-B1 protein increased, which indicated that it may strengthen the ecdysone signal for commitment of remodeling process. In the fenoxycarb treated group, its upregulation was delayed, which may be related to the inhibition of ecdysone secretion from the prothoracic gland.

  1. Analysis of erectile responses to bradykinin in the anesthetized rat

    PubMed Central

    Edward, Justin A.; Pankey, Edward A.; Jupiter, Ryan C.; Lasker, George F.; Yoo, Daniel; Reddy, Vishwaradh G.; Peak, Taylor C.; Chong, Insun; Jones, Mark R.; Feintech, Samuel V.; Lindsey, Sarah H.

    2015-01-01

    The kallikrein-kinin system is expressed in the corpus cavernosa, and bradykinin (BK) relaxes isolated corpora cavernosal strips. However, erectile responses to BK in the rat have not been investigated in vivo. In the present study, responses to intracorporal (ic) injections of BK were investigated in the anesthetized rat. BK, in doses of 1–100 μg/kg ic, produced dose-related increases in intracavernosal pressure (ICP) and dose-related deceases in mean arterial pressure (MAP). When decreases in MAP were prevented by intravenous injections of angiotensin II (Ang II), increases in ICP, in response to BK, were enhanced. Increases in ICP, ICP/MAP ratio, and area under the curve and decreases in MAP in response to BK were inhibited by the kinin B2 receptor antagonist HOE-140 and enhanced by the angiotensin-converting enzyme (ACE) inhibitor captopril and by Ang-(1–7). Increases in ICP, in response to BK, were not attenuated by the nitric oxide (NO) synthase inhibitor (Nω-nitro-l-arginine methyl ester) or the soluble guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) but were attenuated by the cyclooxygenase inhibitor, sodium meclofenamate. Decreases in MAP were not attenuated by either inhibitor. These data suggest that erectile responses are mediated by kinin B2 receptors and modulated by decreases in MAP. These data indicate that ACE is important in the inactivation of BK and that erectile and hypotensive responses are independent of NO in the penis or the systemic vascular bed. Erectile responses to cavernosal nerve stimulation are not altered by BK or HOE-140, suggesting that BK and B2 receptors do not modulate nerve-mediated erectile responses under physiologic conditions. These data suggest that erectile responses to BK are mediated, in part, by the release of cyclooxygenase products. PMID:26055796

  2. The preservation of bradykinin by phenothiazines in vitro

    PubMed Central

    Krivoy, W.; Kroeger, D.

    1964-01-01

    Chlorpromazine and phenoxybenzamine have been shown to potentiate the actions of bradykinin in vivo. To test whether this phenomenon could be due to inhibition of the enzymatic destruction of bradykinin, bradykinin was incubated with either tissue extracts or with carboxypeptidase B. Bradykinin was rapidly destroyed by acetonedried powders of brain and serum of various animals as well as by purified carboxypeptidase B. The rate of disappearance of bradykinin activity was decreased in the presence of phenothiazine derivatives, phenoxybenzamine and hydroxyzine, but not by compounds of a larger group including other psychotropic drugs, tranquillizers and ganglionic and adrenergic blocking agents. Spectrophotometric studies of the hydrolysis of hippuryl-L-arginine confirmed the presence of a carboxypeptidase B-like activity in brain. The substances that acted as inhibitors of bradykinin destruction were also enzyme inhibitors as measured by this technique. Previous incubation of carboxypeptidase B with phenothiazines and zinc ions greatly reduced the enzymatic inhibition by the phenothiazines, which indicated a possible chelating action by these inhibitors on the metalo-enzyme carboxypeptidase B. PMID:14190467

  3. Thiamine (Vitamin B1)

    MedlinePlus

    ... B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin/niacinamide), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin ... in appropriate amounts, although rare allergic reactions and skin irritation have occurred. It is also LIKELY SAFE ...

  4. Cardiovascular actions of rattlesnake bradykinin ([Val1,Thr6]bradykinin) in the anesthetized South American rattlesnake Crotalus durissus terrificus.

    PubMed

    Galli, Gina L J; Skovgaard, Nini; Abe, Augusto S; Taylor, Edwin W; Conlon, J Michael; Wang, Tobias

    2005-02-01

    Incubation of heat-denatured plasma from the rattlesnake Crotalus atrox with trypsin generated a bradykinin (BK) that contained two amino acid substitutions (Arg1 --> Val and Ser6 --> Thr) compared with mammalian BK. Bolus intra-arterial injections of synthetic rattlesnake BK (0.01-10 nmol/kg) into the anesthetized rattlesnake, Crotalus durissus terrificus, produced a pronounced and concentration-dependent increase in systemic vascular conductance (Gsys). This caused a fall in systemic arterial blood pressure (Psys) and an increase in blood flow. Heart rate and stroke volume also increased. This primary response was followed by a significant rise in Psys and pronounced tachycardia (secondary response). Pretreatment with N(G)-nitro-L-arginine methyl ester reduced the NK-induced systemic vasodilatation, indicating that the effect is mediated through increased NO synthesis. The tachycardia associated with the late primary and secondary response to BK was abolished with propranolol and the systemic vasodilatation produced in the primary phase was also significantly attenuated by pretreatment, indicating that the responses are caused, at least in part, by release of cathecholamines and subsequent stimulation of beta-adrenergic receptors. In contrast, the pulmonary circulation was relatively unresponsive to BK.

  5. Divergent evolution of cis-acting peroxisome proliferator-activated receptor elements that differentially control the tandemly duplicated fatty acid-binding protein genes, fabp1b.1 and fabp1b.2, in zebrafish.

    PubMed

    Laprairie, Robert B; Denovan-Wright, Eileen M; Wright, Jonathan M

    2016-06-01

    Gene duplication is thought to facilitate increasing complexity in the evolution of life. The fate of most duplicated genes is nonfunctionalization: functional decay resulting from the accumulation of mutations. According to the duplication-degeneration-complementation (DDC) model, duplicated genes are retained by subfunctionalization, where the functions of the ancestral gene are sub-divided between duplicate genes, or by neofunctionalization, where one of the duplicates acquires a new function. Here, we report the differential regulation of the zebrafish tandemly duplicated fatty acid-binding protein genes, fabp1b.1 and fabp1b.2, by peroxisome proliferator-activated receptors (PPAR). fabp1b.1 mRNA levels were induced in tissue explants of liver, but not intestine, by PPAR agonists. fabp1b.1 promoter activity was induced to a greater extent by rosiglitazone (PPARγ-selective agonist) compared to WY 14,643 (PPARα-selective agonist) in HEK293A cells. Mutation of a peroxisome proliferator response element (PPRE) at -1232 bp in the fabp1b.1 promoter reduced PPAR-dependent activation. fabp1b.2 promoter activity was not affected by PPAR agonists. Differential regulation of the duplicated fabp1b promoters may be the result of PPRE loss in fabp1b.2 during a meiotic crossing-over event. Retention of PPAR inducibility in fabp1b.1 and not fabp1b.2 suggests unique regulation and function of the fabp1b duplicates.

  6. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain.

    PubMed

    Wang, Shenglan; Dai, Yi; Fukuoka, Tetsuo; Yamanaka, Hiroki; Kobayashi, Kimiko; Obata, Koichi; Cui, Xiuyu; Tominaga, Makoto; Noguchi, Koichi

    2008-05-01

    Bradykinin is an inflammatory mediator that plays a pivotal role in pain and hyperalgesia in inflamed tissues by exciting and/or sensitizing nociceptors. TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain. Here, using electrophysiological, immunocytochemical and behavioural analyses, we showed a functional interaction of these two inflammation-related molecules in both heterologous expressing systems and primary sensory neurons. We found that bradykinin increased the TRPA1 currents evoked by allyl isothiocyanate (AITC) or cinnamaldehyde in HEK293 cells expressing TRPA1 and bradykinin receptor 2 (B2R). This potentiation was inhibited by phospholipase C (PLC) inhibitor or protein kinase A (PKA) inhibitor, and mimicked by PLC or PKA activator. The functional interaction between B2R and TRPA1, as well as the modulation mechanism, was also observed in rat dorsal root ganglia neurons. In an occlusion experiment, the PLC activator could enhance AITC-induced TRPA1 current further even in saturated PKA-mediated potentiation, indicating the additive potentiating effects of the PLC and PKA pathways. These data for the first time indicate that a cAMP-PKA signalling is involved in the downstream from B2R in dorsal root ganglia neurons in addition to PLC. Finally, subcutaneous pre-injection of a sub-inflammatory dose of bradykinin into rat hind paw enhanced AITC-induced pain behaviours, which was consistent with the observations in vitro. Collectively, these results represent a novel mechanism through which bradykinin released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.

  7. Bradykinin regulates human colonic ion transport in vitro

    PubMed Central

    Baird, A W; Skelly, M M; O'Donoghue, D P; Barrett, K E; Keely, S J

    2008-01-01

    Background and purpose: Kinins are acknowledged as important regulators of intestinal function during inflammation; however, their effects on human intestinal ion transport have not been reported. Here, we used muscle-stripped human colonic tissue and cultured T84-cell monolayers to study bradykinin (BK) actions on human intestinal ion transport. Experimental approach: Ion transport was measured as changes in short-circuit current (Isc) across colonic epithelia mounted in Ussing chambers. Key results: In intact tissue, there was a distinct polarity to BK-elicited Isc responses. Whereas basolateral BK stimulated sustained responses (EC50=0.5±0.1 μM), those to apical BK were more rapid and transient (EC50=4.1±1.2 nM). In T84 cells, responses to both apical and basolateral BK were similar to those seen upon apical addition to intact tissues. Cross-desensitization between apical and basolateral domains was not observed. BK-induced responses were largely due to Cl− secretion as shown by their sensitivity to bumetanide and removal of Cl− from the bathing solution. Studies using selective agonists and antagonists indicate responses to BK are mediated by B2 receptors. Finally, responses to basolateral BK in intact tissues were inhibited by tetrodotoxin (1 μM), atropine (1 μM), capsaicin (100 μM) and piroxicam (10 μM). BK-stimulated prostaglandin (PG)E2 release from colonic tissue. Conclusions: BK stimulates human colonic Cl− secretion by activation of apical and basolateral B2 receptors. Responses to apical BK reflect a direct action on epithelial cells, whereas those to basolateral BK are amplified by stimulation of enteric nerves and PG synthesis. PMID:18604228

  8. Involvement of bradykinin and prostaglandins in the diuretic effects of Achillea millefolium L. (Asteraceae).

    PubMed

    de Souza, Priscila; Crestani, Sandra; da Silva, Rita de Cássia Vilhena; Gasparotto, Francielli; Kassuya, Cândida Aparecida Leite; da Silva-Santos, José Eduardo; Gasparotto, Arquimedes

    2013-08-26

    Achillea millefolium L. (Asteraceae), popularly known as "mil-folhas", is well recognized and widely used in Brazilian folk medicine to treat heart and kidney disorders. Among its popularly described effects are diuretic and hypotensive actions. The diuretic activity of Achillea millefolium L. extracts and its semi-purified fractions, as well as the mechanisms involved, were evaluated in male Wistar rats. An aqueous extract (AEAM, 125-500 mg/kg), hydroethanolic extract (HEAM, 30-300 mg/kg), dichloromethane subfractions (DCM-2, 10 and 30 mg/kg), or hydrochlorothiazide (10mg/kg), were orally administered and the animals were kept in metabolic cages for 8h for urine collection. To evaluate the involvement of bradykinin and prostaglandins in the diuretic action of Achillea millefolium, selected groups of rats received HOE-140 (1.5mg/kg, i.p.) or indomethacin (5mg/kg, p.o.), before treatment with a DCM-2 subfraction (30 mg/kg). The urinary volume, conductivity, pH, density and electrolyte excretion were measured. Similar to hydrochlorothiazide, both HEAM and DCM-2, but not AEAM, increased urinary volume and the excretion of Na(+) and K(+) when compared with the control group (vehicle). The diuretic effect of DCM-2 was abolished by HOE-140 (a bradykinin B2 receptor antagonist), as well as by indomethacin (a cyclooxygenase inhibitor). The present study reveals that extracts obtained from Achillea millefolium are able to effectively increase diuresis when orally administered in rats. This effect depends on both the activation of bradykinin B2 receptors and the activity of cyclooxygenases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Avermectin B1

    Integrated Risk Information System (IRIS)

    Avermectin B1 ; CASRN 65195 - 55 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  10. Bradykinin may be involved in neuropeptide Y-induced diuresis, natriuresis, and calciuresis.

    PubMed

    Bischoff, A; Rascher, W; Michel, M C

    1998-10-01

    Neuropeptide Y (NPY) can cause diuresis, natriuresis, and calciuresis in rats independently of the pressure-natriuresis mechanism (A. Bischoff and M. C. Michel. Pflügers Arch. 435: 443-453, 1998). Because this is seen in systemic but not intrarenal NPY infusion, we have investigated the possible mediator of tubular NPY effects in anesthetized rats. In the present study, infusion of NPY (2 micrograms . kg-1 . min-1) enhanced renovascular resistance by approximately 8 mmHg . ml-1 . min and enhanced urine and sodium excretion by approximately 450 microliter/15 min and approximately 60-85 micromol/15 min, respectively. Acute renal denervation did not alter renovascular or tubular NPY effects, indicating that a neuronally released mediator is not involved. Treatment with the angiotensin II-receptor antagonist losartan prevented the decline of the renovascular response with time but did not modify tubular NPY effects. The bradykinin B2-receptor antagonist icatibant accelerated the decline of the renovascular NPY effects with time; concomitantly, it attenuated NPY-induced diuresis and natriuresis and abolished NPY-induced calciuresis. The converting-enzyme inhibitor ramiprilat prevented the decline of the renovascular response with time; concomitantly, it magnified the NPY-induced diuresis, natriuresis, and calciuresis. We conclude that bradykinin may be involved in NPY-induced diuresis, natriuresis, and, in particular, calciuresis.

  11. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons.

    PubMed

    Szychowski, Konrad A; Wnuk, Agnieszka; Kajta, Małgorzata; Wójtowicz, Anna K

    2016-11-01

    Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed

  12. Diabetes modulates the expression of glomerular kinin receptors.

    PubMed

    Christopher, Julie; Jaffa, Ayad A

    2002-12-01

    The localization of kinin receptors within the kidney implicates this system in the regulation of glomerular hemodynamics. We reported that diabetes alters the activity of the renal kallikrein-kinin system, and that these alterations contribute to the development of microvascular complications of diabetes. The present study examined the influence of diabetes on the expression of glomerular B1 and B2-kinin receptors, and assessed the cellular signaling of kinin receptor activation. Rats made diabetic with streptozocin (85 mg/kg), displayed plasma glucose levels in the range of 350-500 mg/dl. At 3, 7, and 21 days, B1 and B2-kinin receptor mRNA levels were measured in isolated glomeruli from control and diabetic rats by RT-PCR. Glomeruli revealed a differential pattern of expression between the two kinin receptors. The constitutively expressed B2-receptor was increased three-fold at day 3, but returned to normal levels at day 7; whereas, the inducible B1-receptor was maximally expressed (20-fold) at day 7 and remained elevated (10-fold) at day 21. To test whether the induction of kinin receptors by diabetes translates into increased responsiveness, we measured mitogen-activated protein kinase (MAPK) phosphorylation (p42, p44) in glomeruli isolated from control and diabetic rats stimulated with B1-receptor agonist (des-Arg9-bradykinin, 10(-8) M). A three-fold increase in phosphorylation of MAPK was observed in response to B1-receptor agonist challenge in glomeruli isolated form diabetic rats compared to controls. These findings demonstrate for the first time that glomerular kinin receptors are induced by diabetes, and provide a rationale to study the contribution of these receptors to the development of glomerular injury in diabetes.

  13. Effects of chlorobutanol and bradykinin on myocardial excitation.

    PubMed

    Hermsmeyer, K; Aprigliano, O

    1976-02-01

    The negative inotropic effect of a commonly used formulation of bradykinin (Sandoz BRS-640) was found to be due to chlorobutanol, a constituent of the preparation. Solutions containing up to 100 mug of crystalline bradykinin/ml had no effect on tension or action-potential shape. Chlorobutanol (500 mug/ml) caused a 30% decrease in contraction amplitude and a 20% increase in action-potential duration. Chlorobutanol lowered conduction velocity and induced conduction failure and automaticity within isolated ventricular muscle strips. Chlorobutanol affected neither positive nor negative treppe. We conclude that bradykinin has no direct action on toad, frog, or rat myocardium. However, chlorobutanol does have direct effects on myocardial cells, acting on the cell membrane and decreasing isometric tension produced by the heart.

  14. Adverse Signaling of Scavenger Receptor Class B1 and PGC1s in Alcoholic Hepatosteatosis and Steatohepatitis and Protection by Betaine in Rat

    PubMed Central

    Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C.; Arellanes-Robledo, Jaime; Reyes-Gordillo, Karina; Shah, Ruchi; Lakshman, M. Raj

    2015-01-01

    Because scavenger receptor class B type 1 is the cholesterol uptake liver receptor, whereas peroxisome proliferator–activated receptor γ coactivator-1β (PGC-1β) and PGC-1α are critical for lipid synthesis and degradation, we investigated the roles of these signaling molecules in the actions of ethanol-polyunsaturated fatty acids and betaine on hepatosteatosis and steatohepatitis. Ethanol-polyunsaturated fatty acid treatment caused the following: i) hepatosteatosis, as evidenced by increased liver cholesterol and triglycerides, lipid score, and decreased serum adiponectin; ii) marked inhibition of scavenger receptor class B type 1 glycosylation, its plasma membrane localization, and its hepatic cholesterol uptake function; and iii) moderate steatohepatitis, as evidenced by histopathological characteristics, increased liver tumor necrosis factor α and IL-6, decreased glutathione, and elevated serum alanine aminotransferase. These actions of ethanol involved up-regulated PGC-1β, sterol regulatory element-binding proteins 1c and 2, acetyl-CoA carboxylase, and HMG-CoA reductase mRNAs/proteins and inactive non-phosphorylated AMP kinase; and down-regulated silence regulator gene 1 and PGC-1α mRNA/proteins and hepatic fatty acid oxidation. Betaine markedly blunted all these actions of ethanol on hepatosteatosis and steatohepatitis. Therefore, we conclude that ethanol-mediated impaired post-translational modification, trafficking, and function of scavenger receptor class B type 1 may account for alcoholic hyperlipidemia. Up-regulation of PGC-1β and lipid synthetic genes and down-regulation of silence regulator gene 1, PGC-1α, adiponectin, and lipid degradation genes account for alcoholic hepatosteatosis. Induction of proinflammatory cytokines and depletion of endogenous antioxidant, glutathione, account for alcoholic steatohepatitis. We suggest betaine as a potential therapeutic agent because it effectively protects against adverse actions of ethanol. PMID

  15. Adverse signaling of scavenger receptor class B1 and PGC1s in alcoholic hepatosteatosis and steatohepatitis and protection by betaine in rat.

    PubMed

    Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C; Arellanes-Robledo, Jaime; Reyes-Gordillo, Karina; Shah, Ruchi; Lakshman, M Raj

    2014-07-01

    Because scavenger receptor class B type 1 is the cholesterol uptake liver receptor, whereas peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) and PGC-1α are critical for lipid synthesis and degradation, we investigated the roles of these signaling molecules in the actions of ethanol-polyunsaturated fatty acids and betaine on hepatosteatosis and steatohepatitis. Ethanol-polyunsaturated fatty acid treatment caused the following: i) hepatosteatosis, as evidenced by increased liver cholesterol and triglycerides, lipid score, and decreased serum adiponectin; ii) marked inhibition of scavenger receptor class B type 1 glycosylation, its plasma membrane localization, and its hepatic cholesterol uptake function; and iii) moderate steatohepatitis, as evidenced by histopathological characteristics, increased liver tumor necrosis factor α and IL-6, decreased glutathione, and elevated serum alanine aminotransferase. These actions of ethanol involved up-regulated PGC-1β, sterol regulatory element-binding proteins 1c and 2, acetyl-CoA carboxylase, and HMG-CoA reductase mRNAs/proteins and inactive non-phosphorylated AMP kinase; and down-regulated silence regulator gene 1 and PGC-1α mRNA/proteins and hepatic fatty acid oxidation. Betaine markedly blunted all these actions of ethanol on hepatosteatosis and steatohepatitis. Therefore, we conclude that ethanol-mediated impaired post-translational modification, trafficking, and function of scavenger receptor class B type 1 may account for alcoholic hyperlipidemia. Up-regulation of PGC-1β and lipid synthetic genes and down-regulation of silence regulator gene 1, PGC-1α, adiponectin, and lipid degradation genes account for alcoholic hepatosteatosis. Induction of proinflammatory cytokines and depletion of endogenous antioxidant, glutathione, account for alcoholic steatohepatitis. We suggest betaine as a potential therapeutic agent because it effectively protects against adverse actions of ethanol. Copyright

  16. Interactions of histamine and bradykinin on polymodal C-fibres in isolated rat skin.

    PubMed

    Koppert, W; Martus, P; Reeh, P W

    2001-01-01

    Patients suffering from pruritus due to atopic dermatitis show, in asymptomatic skin, reduced itch and flare responses to histamine, the major pruritogenic mediator. We hypothesized that this apparent loss in histamine sensitivity may be overcompensated in inflamed skin and investigated the interactions between histamine and bradykinin, the major inflammatory mediator. The studies were performed using the isolated rat skin-nerve preparation. Forty-two fibres were tested following four different experimental protocols. After characterization of the sensory properties, six fibres were treated repetitively with histamine (HIS1, HIS2) to exclude the possibility that the responses (spikes/min) increase simply by repetition. In 12 other units, histamine (HIS1) was followed by a wash-out period prior to bradykinin (BK) stimulation; in another 12 units, BK followed immediately after HIS1. A further 12 fibres were examined without preceding heat stimulation in order to avoid possible sensitization. If BK was administered after a wash-out period following HIS1, the BK responses were significantly higher than the HIS1 response. The BK response showed a peak discharge which was absent if BK followed directly upon HIS1. If HIS2 was applied directly following BK, the induced discharge was significantly larger than the first histamine response and not different from the BK response, whereas a washout period before HIS2 abolished the sensitizing effect of previous BK.A unidirectional sensitization by previous bradykinin or heat stimulation on the histamine responsiveness of polymodal nociceptors has been demonstrated. If 'itch fibres' in humans were subject to similar interactions of histamine with inflammatory mediators, this may compensate for a down-regulation of histamine receptors in eczematic skin and possibly account for the pruritus.

  17. Cloning of the GABAB Receptor Subunits B1 and B2 and their Expression in the Central Nervous System of the Adult Sea Lamprey

    PubMed Central

    Romaus-Sanjurjo, Daniel; Fernández-López, Blanca; Sobrido-Cameán, Daniel; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2016-01-01

    In vertebrates, γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the central nervous system (CNS) acting through ionotropic (GABAA) and metabotropic (GABAB) receptors. The GABAB receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins [G-protein-coupled receptors (GPCRs)]. Lampreys are a key reference to understand molecular evolution in vertebrates. The importance of the GABAB receptor for the modulation of the circuits controlling locomotion and other behaviors has been shown in pharmacological/physiological studies in lampreys. However, there is no data about the sequence of the GABAB subunits or their expression in the CNS of lampreys. Our aim was to identify the sea lamprey GABAB1 and GABAB2 transcripts and study their expression in the CNS of adults. We cloned two partial sequences corresponding to the GABAB1 and GABAB2 cDNAs of the sea lamprey as confirmed by sequence analysis and comparison with known GABAB sequences of other vertebrates. In phylogenetic analyses, the sea lamprey GABAB sequences clustered together with GABABs sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. We observed a broad and overlapping expression of both transcripts in the entire CNS. Expression was mainly observed in neuronal somas of the periventricular regions including the identified reticulospinal cells. No expression was observed in identifiable fibers. Comparison of our results with those reported in other vertebrates indicates that a broad and overlapping expression of the GABAB subunits in the CNS is a conserved character shared by agnathans and gnathostomes. PMID:28008311

  18. Estrogen Receptor α Increases Basal and Cigarette Smoke Extract-Induced Expression of CYP1A1 and CYP1B1, but not GSTP1, in Normal Human Bronchial Epithelial Cells

    PubMed Central

    Han, W; Pentecost, BT; Pietropaolo, RL; Fasco, MJ; Spivack, SD

    2005-01-01

    Gender-specific estrogen receptor α (ERα) expression may plausibly influence lung carcinogenesis in females. Initial genome-wide microarray studies confirmed that carcinogen metabolism genes (CYP1A1, CYP1B1) were those most responsive to cigarette smoke extract (CSE) in normal bronchial epithelial (NHBE) cells. These two genes encoding phase I bioactivating enzymes and the GSTP1 gene encoding a phase II deactivating enzyme were then tested for induction by ERα. NHBE cells (native ERα−) were transfected with wild-type ERα-adenoviral constructs, and then exposed to CSE, 17β-estradiol (E2), and/or the ERα inhibitor, ICI 182,780. The expression levels of CYP1A1, CYP1B1 and GSTP1 were then determined by RNA-specific quantitative RT-PCR and immunoassay. ERα increased the basal expression of CYP1B1 4.04-fold (p<0.01) at the mRNA level and 6.5-fold at the protein level. ERα also increased the CSE-induced mRNA expression of CYP1B1 2.26-fold (p<0.01), but not the protein expression. ERα did not alter the CYP1A1 mRNA levels, but did increase protein expression 2.0-fold (p<0.01) on CSE exposure, and 6.2-fold (p<0.01) upon E2 exposure. These effects could be inhibited by ICI 182,780. ERα did not alter the expression of GSTP1. ChIP assay confirmed ERα binding to CYP1B1 promoter near the transcription start site. These results suggest that ERα regulates the CYP1B1 expression at a transcriptional level, and CYP1A1 expression at a translational level. These data raise the possibility that inter-gender differences in expression of ERα that are known to exist in human lung may contribute to inter-individual expression differences in CYP1A1 and CYP1B1, and to differences in carcinogen metabolism and mutation. PMID:16010691

  19. Acute and subchronic exposure to air particulate matter induces expression of angiotensin and bradykinin-related genes in the lungs and heart: Angiotensin-II type-I receptor as a molecular target of particulate matter exposure.

    PubMed

    Aztatzi-Aguilar, Octavio Gamaliel; Uribe-Ramírez, Marisela; Arias-Montaño, José Antonio; Barbier, Olivier; De Vizcaya-Ruiz, Andrea

    2015-06-26

    Particulate matter (PM) adverse effects on health include lung and heart damage. The renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) endocrine systems are involved in the pathophysiology of cardiovascular diseases and have been found to impact lung diseases. The aim of the present study was to evaluate whether PM exposure regulates elements of RAAS and KKS. Sprague-Dawley rats were acutely (3 days) and subchronically (8 weeks) exposed to coarse (CP), fine (FP) or ultrafine (UFP) particulates using a particulate concentrator, and a control group exposed to filtered air (FA). We evaluated the mRNA of the RAAS components At1, At2r and Ace, and of the KKS components B1r, B2r and Klk-1 by RT-PCR in the lungs and heart. The ACE and AT1R protein were evaluated by Western blot, as were HO-1 and γGCSc as indicators of the antioxidant response and IL-6 levels as an inflammation marker. We performed a binding assay to determinate AT1R density in the lung, also the subcellular AT1R distribution in the lungs was evaluated. Finally, we performed a histological analysis of intramyocardial coronary arteries and the expression of markers of heart gene reprogramming (Acta1 and Col3a1). The PM fractions induced the expression of RAAS and KKS elements in the lungs and heart in a time-dependent manner. CP exposure induced Ace mRNA expression and regulated its protein in the lungs. Acute and subchronic exposure to FP and UFP induced the expression of At1r in the lungs and heart. All PM fractions increased the AT1R protein in a size-dependent manner in the lungs and heart after subchronic exposure. The AT1R lung protein showed a time-dependent change in subcellular distribution. In addition, the presence of AT1R in the heart was accompanied by a decrease in HO-1, which was concomitant with the induction of Acta1 and Col3a1 and the increment of IL-6. Moreover, exposure to all PM fractions increased coronary artery wall thickness. We demonstrate that exposure to PM induces

  20. Determination of bradykinin and arg-bradykinin in rat muscle tissue by microdialysis and capillary column-switching liquid chromatography with mass spectrometric detection.

    PubMed

    Wilson, Steven Ray; Boix, Fernando; Holm, Anders; Molander, Pål; Lundanes, Elsa; Greibrokk, Tyge

    2005-09-01

    Quantification of bradykinin peptides in limited amounts of rat muscle tissue dialysate has been performed using a packed capillary LC-ESI-TOF-MS method. The micro dialysate samples (450 microL) with added internal standard were loaded onto a 1 mm x 5 mm loading column packed with 5 microm Kromasil C18 particles by a carrier solution of 0.1% formic acid in ACN/water (5:95, v/v) at a flow rate of 250 microL/min for online preconcentration of the analytes. Back-flushed elution onto a 150 mm x 0.5 mm Zorbax C18 column packed with 5 microm particles was conducted using a linear solvent ACN/H2O gradient containing 0.1% formic acid. (Tyr8)-bradykinin was used as an internal standard and was added to the dialysis sample prior to injection. Baseline separation of bradykinin, arg-bradykinin and (tyr8)-bradykinin was achieved within 10 min. Positive ESI was performed in the m/z range of 200-1300. The method was validated in the range 0.2-1.0 ng/mL dialysate, yielding correlation coefficients of 0.995 and 0.990 for bradykinin and arg-bradykinin, respectively. The within-assay and between-assay precisions were between 4.3-9.6% and 6.2-10.6%, respectively. Both arg-bradykinin and bradykinin were detected in dialysate from rat muscle tissue, at concentrations of 0.1 and 0.4 ng/mL for bradykinin and arg-bradykinin, respectively, confirming the presence of arg-bradykinin in rat muscles.

  1. Boeing XF2B-1 (F2B-1)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Boeing XF2B-1 (F2B-1): Serving as the prototype for the F2B-1 shipboard fighter, the XF2B-1 differed visually in having a pointed spinner and an unbalanced rudder. Like many aircraft of its day, the Boeing model 69 was powered by a Pratt & Whitney Wasp radial engine.

  2. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers

    SciTech Connect

    James Graham, Robert Leslie . E-mail: rl.graham@ulster.ac.uk; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-12-23

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

  3. Bradykinin-activated transmembrane signals are coupled via N/sub o/ or N/sub i/ to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells

    SciTech Connect

    Higashida, H.; Streaty, R.A.; Klee, W.; Nirenberg, M.

    1986-02-01

    The addition of bradykinin to NG108-15 cells results in a transient hyperpolarization followed by prolonged cell depolarization. Injection of inositol 1,4,5-trisphosphate or CaS into the cytoplasm of NG108-15 cells also elicits cell hyperpolarization followed by depolarization. Tetraethylammonium ions inhibit the hyperpolarizing response of cells to bradykinin or inositol 1,4,5-trisphosphate. Thus, the hyperpolarizing phase of the cell response may be due to inositol 1,4,5-trisphosphate-dependent release of stored UVCa-labelled CaS into the cytoplasm, which activates CaS -dependent K channels. The depolarizing phase of the cell response to bradykinin is due largely to inhibition of M channels, thereby decreasing the rate of K efflux from cells and, to a lesser extent, to activation of CaS -dependent ion channels and CaS channels. In contrast, injection of inositol 1,4,5-trisphosphate or CaS into the cytosol did not alter M channel activity. Incubation of NG108-15 cells with pertussis toxin inhibits bradykinin-dependent cell hyperpolarization and depolarization. Bradykinin stimulates low K/sub m/ GTPase activity and inhibits adenylate cyclase in NG108-15 membrane preparations but not in membranes prepared from cells treated with pertussis toxin. These results show that (bradykinin-receptor) complexes interact with N/sub o/ or N/sub i/ and suggest that N/sub o/ and/or N/sub i/ mediate the transduction of signals from bradykinin receptors to phospholipase C and adenylate cyclase.

  4. Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice.

    PubMed

    Costa, Robson; Bicca, Maíra A; Manjavachi, Marianne N; Segat, Gabriela C; Dias, Fabiana Chaves; Fernandes, Elizabeth S; Calixto, João B

    2017-03-10

    Kinin B1 (B1R) and B2 receptors (B2R) and the transient receptor potential vanilloid 4 (TRPV4) channel are known to play a critical role in the peripheral neuropathy induced by paclitaxel (PTX) in rodents. However, the downstream pathways activated by kinin receptors as well as the sensitizers of the TRPV4 channel involved in this process remain unknown. Herein, we investigated whether kinins sensitize TRPV4 channels in order to maintain PTX-induced peripheral neuropathy in mice. The mechanical hyperalgesia induced by bradykinin (BK, a B2R agonist) or des-Arg(9)-BK (DABK, a B1R agonist) was inhibited by the selective TRPV4 antagonist HC-067047. Additionally, BK was able to sensitize TRPV4, thus contributing to mechanical hyperalgesia. This response was dependent on phospholipase C/protein kinase C (PKC) activation. The selective kinin B1R (des-Arg(9)-[Leu(8)]-bradykinin) and B2R (HOE 140) antagonists reduced the mechanical hyperalgesia induced by PTX, with efficacies and time response profiles similar to those observed for the TRPV4 antagonist (HC-067047). Additionally, both kinin receptor antagonists inhibited the overt nociception induced by hypotonic solution in PTX-injected animals. The same animals presented lower PKCε levels in skin and dorsal root ganglion samples. The selective PKCε inhibitor (εV1-2) reduced the hypotonicity-induced overt nociception in PTX-treated mice with the same magnitude observed for the kinin receptor antagonists. These findings suggest that B1R or B2R agonists sensitize TRPV4 channels to induce mechanical hyperalgesia in mice. This mechanism of interaction may contribute to PTX-induced peripheral neuropathy through the activation of PKCε. We suggest these targets represent new opportunities for the development of effective analgesics to treat chronic pain.

  5. Effects of the novel high-affinity 5-HT(1B/1D)-receptor ligand frovatriptan in human isolated basilar and coronary arteries.

    PubMed

    Parsons, A A; Raval, P; Smith, S; Tilford, N; King, F D; Kaumann, A J; Hunter, J

    1998-08-01

    The contractile actions of the novel high-affinity 5-hydroxytryptamine (5-HT(1B/1D)) ligand, frovatriptan (formerly VML 251/SB-209509) were investigated in human isolated basilar and coronary arteries in which the endothelium had been removed. Basilar arteries were obtained post mortem, and coronary arteries were obtained from patients undergoing heart transplant (recipient) or from donor hearts that were not suitable for transplant. Frovatriptan was a potent contractile agent in isolated basilar artery with a -log mean effective concentration (EC50) value of 7.86 +/- 0.07 and intrinsic activity of 1.25 +/- 0.10 relative to 5-HT (n = 4). Frovatriptan was 8.5-fold more potent than sumatriptan, which produced a -log EC50 value of 6.93 +/- 0.09 and intrinsic activity 11.1 +/- 0.08 relative to 5-HT (n = 4). In coronary arteries, frovatriptan produced contraction with -log EC50 values of 7.38 +/- 0.12 and 7.81 +/- 0.2 in recipient (n = 7) and donor (n = 3) arteries, respectively. The relative degree of contraction of frovatriptan was lower than that of 5-HT, with relative intrinsic activities of 0.42 +/- 0.06 and 0.40 +/- 0.09, respectively. Sumatriptan produced contraction of human recipient and donor arteries with -log EC50 values (intrinsic activity) of 6.57 +/- 0.13 (0.79 +/- 0.27; n = 6) and 7.35 (1.41; n = 2), respectively. Furthermore, marked bell-shaped responses were apparent for frovatriptan in coronary arteries, with relaxation occurring at concentrations >6 microM in some tissues. In contrast, no bell-shaped concentration-response curves were apparent for sumatriptan or 5-HT. Threshold concentrations for frovatriptan-induced contractions were also different between basilar (>2 nM) and coronary arteries (>20 nM). No separation of threshold activity was observed with sumatriptan or 5-HT. These data show that frovatriptan produces constriction of human isolated basilar and coronary arteries. However, frovatriptan produces a complex pharmacologic response in the

  6. DNA-Encoded Library Screening Identifies Benzo[b][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors.

    PubMed

    Harris, Philip A; King, Bryan W; Bandyopadhyay, Deepak; Berger, Scott B; Campobasso, Nino; Capriotti, Carol A; Cox, Julie A; Dare, Lauren; Dong, Xiaoyang; Finger, Joshua N; Grady, LaShadric C; Hoffman, Sandra J; Jeong, Jae U; Kang, James; Kasparcova, Viera; Lakdawala, Ami S; Lehr, Ruth; McNulty, Dean E; Nagilla, Rakesh; Ouellette, Michael T; Pao, Christina S; Rendina, Alan R; Schaeffer, Michelle C; Summerfield, Jennifer D; Swift, Barbara A; Totoritis, Rachel D; Ward, Paris; Zhang, Aming; Zhang, Daohua; Marquis, Robert W; Bertin, John; Gough, Peter J

    2016-03-10

    The recent discovery of the role of receptor interacting protein 1 (RIP1) kinase in tumor necrosis factor (TNF)-mediated inflammation has led to its emergence as a highly promising target for the treatment of multiple inflammatory diseases. We screened RIP1 against GSK's DNA-encoded small-molecule libraries and identified a novel highly potent benzoxazepinone inhibitor series. We demonstrate that this template possesses complete monokinase selectivity for RIP1 plus unique species selectivity for primate versus nonprimate RIP1. We elucidate the conformation of RIP1 bound to this benzoxazepinone inhibitor driving its high kinase selectivity and design specific mutations in murine RIP1 to restore potency to levels similar to primate RIP1. This series differentiates itself from known RIP1 inhibitors in combining high potency and kinase selectivity with good pharmacokinetic profiles in rodents. The favorable developability profile of this benzoxazepinone template, as exemplified by compound 14 (GSK'481), makes it an excellent starting point for further optimization into a RIP1 clinical candidate.

  7. The Efficacy of Eslicarbazepine Acetate in Models of Trigeminal, Neuropathic, and Visceral Pain: The Involvement of 5-HT1B/1D Serotonergic and CB1/CB2 Cannabinoid Receptors.

    PubMed

    Tomić, Maja A; Pecikoza, Uroš B; Micov, Ana M; Stepanović-Petrović, Radica M

    2015-12-01

    Many clinical pain states that are difficult to treat share a common feature of sensitization of nociceptive pathways. Drugs that could normalize hyperexcitable neural activity (e.g., antiepileptic drugs) may be useful in relieving these pain states. Eslicarbazepine acetate (ESL) is a novel antiepileptic drug derived from carbamazepine/oxcarbazepine with a more favorable metabolic profile and potentially better tolerability. We examined the efficacy of ESL in models of inflammatory and neuropathic pain and the potential mechanism involved in its action. The antinociceptive effects of ESL were assessed in mice models of trigeminal (orofacial formalin test), neuropathic (streptozotocin-induced diabetic neuropathy model), and visceral pain (writhing test). The influence of 5-HT1B/1D serotonin receptor (GR 127935) and CB1 (AM251) and CB2 cannabinoid receptor (AM630) antagonists on the antinociceptive effect of ESL was tested in the model of trigeminal pain. ESL exhibited significant and dose-dependent antinociceptive effects in the second phase of the orofacial formalin test (P ≤ 0.011), in the tail-flick test in diabetic mice (P ≤ 0.013), and in the writhing test (P ≤ 0.003). GR 127935 (P ≤ 0.038) and AM251 and AM630 (P ≤ 0.013 for both antagonists) significantly inhibited the antinociceptive effect of ESL in a dose-related manner. ESL exhibited efficacy in models of trigeminal, neuropathic, and visceral pain. In the trigeminal pain model, the antinociceptive effect of ESL is, at least in part, mediated by 5-HT1B/1D serotonin and CB1/CB2 cannabinoid receptors. This study indicates that ESL could be useful in the clinical treatment of inflammatory and neuropathic pain.

  8. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes.

    PubMed

    Miao, Ji; Choi, Sung-E; Seok, Sun Mi; Yang, Linda; Zuercher, William J; Xu, Yong; Willson, Timothy M; Xu, H Eric; Kemper, Jongsook Kim

    2011-07-01

    Small heterodimer partner (SHP) plays important roles in diverse biological processes by directly interacting with transcription factors and inhibiting their activities. SHP has been designated an orphan nuclear receptor, but whether its activity can be modulated by ligands has been a long-standing question. Recently, retinoid-related molecules, including 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3Cl-AHPC), were shown to bind to SHP and enhance apoptosis. We have examined whether 3Cl-AHPC acts as an agonist and increases SHP activity in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes and delineated the underlying mechanisms. Contrary to this expectation, micromolar concentrations of 3Cl-AHPC increased CYP7A1 expression but indirectly via p38 kinase signaling. Nanomolar concentrations, however, repressed CYP7A1 expression and decreased bile acid levels in HepG2 cells, and little repression was observed when SHP was down-regulated by small hairpin RNA. Mechanistic studies revealed that 3Cl-AHPC bound to SHP, increased the interaction of SHP with liver receptor homologue (LRH)-1, a hepatic activator for CYP7A1 and CYP8B1 genes, and with repressive cofactors, Brahma, mammalian Sin3a, and histone deacetylase-1, and, subsequently, increased the occupancy of SHP and these cofactors at the promoters. Mutation of Leu-100, predicted to contact 3Cl-AHPC within the SHP ligand binding pocket by molecular modeling, severely impaired the increased interaction with LRH-1, and repression of LRH-1 activity mediated by 3Cl-AHPC. 3Cl-AHPC repressed SHP metabolic target genes in a gene-specific manner in human primary hepatocytes and HepG2 cells. These data suggest that SHP may act as a ligand-regulated receptor in metabolic pathways. Modulation of SHP activity by synthetic ligands may be a useful therapeutic strategy.

  9. Regulation of glucose transport by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts: Involvement of protein kinase C-dependent and -independent mechanisms

    SciTech Connect

    Dettori, C.; Meldolesi, J. )

    1989-05-01

    Glucose transport stimulation by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts was compared with the phosphoinositide hydrolysis effects of the same stimulants in a variety of experimental paradigms known to affect generation and/or functioning of intracellular second messengers: short- and long-term treatments with phorbol dibutyrate, that cause activation and down-regulation of protein kinase C, respectively; cell loading with high (quin2), that causes clamping of (Ca{sup 2+}){sub i} near the resting level; poisoning with pertussis toxin, that affects the GTP binding proteins of the Go/Gi class; treatment with Ca{sup 2+} ionophores. ({sup 14}C) glucose transport stimulation by maximal (insulin) was affected by neither pertussis toxin nor protein kinase C down-regulation. This result correlates with the lack of effect of insulin on phosphoinositide hydrolysis. In contrast, part of the glucose transport responses induced by bombesin and bradykinin appeared to be mediated by protein kinase C in proportion with the stimulation induced by these peptides on the phosphoinositide hydrolysis. The protein kinase C-independent portion of the response to bradykinin was found to be inhibitable by pertussis toxin. This latter result might suggest an interaction between the bradykinin receptor and a glucose transporter, mediated by a protein of the Go/Gi class.

  10. Interactive contribution of NK1 and kinin receptors to the acute inflammatory oedema observed in response to noxious heat stimulation: studies in NK1 receptor knockout mice

    PubMed Central

    Rawlingson, Andrew; Gerard, Norma P; Brain, Susan D

    2001-01-01

    Scald injury in Sv129+C57BL/6 mice induced a temperature and time dependent oedema formation as calculated by the extravascular accumulation of [125I]-albumin. Oedema formation was suppressed in NK1 knockout mice compared to wildtypes at 10 (P<0.01) and 30 min (P<0.001). However, at 60 min a similar degree of extravasation was observed in the two groups. Kinin B1 (des-Arg10 Hoe 140; 1 μmol kg−1) and B2 (Hoe 140; 100 nmol kg−1) antagonists caused an inhibition of oedema in wildtype mice at 10 and 30 min (P<0.001), but not at 60 min or at 30 min in NK1 receptor knockout mice. The inhibition of thermic oedema by des-Arg10 Hoe 140 was reversed by des-Arg9 bradykinin (0.1 μmol kg−1; P<0.01) and also observed with a second B1 receptor antagonist (des-Arg9 Leu8 bradykinin; 3 μmol kg−1; P<0.01). Furthermore des-Arg10 Hoe 140 had no effect on capsaicin (200 μg ear−1) ear oedema, but this was significantly reduced with Hoe 140 (P<0.05). Scalding induced a large neutrophil accumulation at 4 h, as assessed by myeloperoxidase assay (P<0.001). This was not suppressed by NK1 receptor deletion or kinin antagonists. These results confirm an essential role for the NK1 receptor in mediating the early, but not the delayed phase of oedema formation or neutrophil accumulation in response to scalding. The results also demonstrate a pivotal link between the kinins and sensory nerves in the microvascular response to burn injury, and for the first time show a rapid involvement of the B1 receptor in murine skin. PMID:11739258

  11. The chromatographic behaviour of wasp venom kinin, kallidin and bradykinin.

    PubMed

    MATHIAS, A P; SCHACHTER, M

    1958-09-01

    Wasp venom kinin which has hitherto appeared to be homogeneous can be resolved by ionexchange chromatography into a single major and two minor components. These are indistinguishable by their action on smooth muscle and by their rapid inactivation by chymotrypsin. All three components of wasp kinin are chromatographically different from kallidin or bradykinin. The close similarity of the latter compounds is confirmed by their identical behaviour on an ion-exchange resin.

  12. Relationship between bradykinin-induced relaxation and endogenous epoxyeicosanoid synthesis in human bronchi.

    PubMed

    Tabet, Yacine; Sirois, Marco; Sirois, Chantal; Rizcallah, Edmond; Rousseau, Éric

    2013-04-15

    Epoxyeicosanoids (EETs) are produced by cytochrome P-450 epoxygenase; however, it is not yet known what triggers their endogenous production in epithelial cells. The relaxing effects of bradykinin are known to be related to endogenous production of epithelial-derived hyperpolarizing factors (EpDHF). Because of their effects on membrane potential, EETs have been reported to be EpDHF candidates (Benoit C, Renaudon B, Salvail D, Rousseau E. Am J Physiol Lung Cell Mol Physiol 280: L965-L973, 2001.). Thus, we hypothesized that bradykinin (BK) may stimulate endogenous EET production in human bronchi. To test this hypothesis, the relaxing and hyperpolarizing effects of BK and 14,15-EET were quantified on human bronchi, as well as the effects of various enzymatic inhibitors on these actions. One micromolar BK or 1 μM 14,15-EET induced a 45% relaxation on the tension induced by 30 nM U-46619 [a thromboxane-prostanoid (TP)-receptor agonist]. These BK-relaxing effects were reduced by 42% upon addition of 10 nM iberiotoxin [a large-conductance Ca(2+)-sensitive K(+) (BK(Ca)) channel blocker], by 27% following addition of 3 μM 14,15-epoxyeicosa-5(Z)-enoic acid (an EET antagonist), and by 32% with 3 μM N-methanesulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH, an epoxygenase inhibitor). Hence, BK and 14,15-EET display net hyperpolarizing effects on airway smooth muscle cells that are related to the activation of BK(Ca) channels and ultimately yielding to relaxation. Data also indicate that 3 μM MS-PPOH reduced the hyperpolarizing effects of BK by 43%. Together, the present data support the current hypothesis suggesting a direct relationship between BK and the production of EET regioisomers. Because of its potent anti-inflammatory and relaxing properties, epoxyeicosanoid signaling may represent a promising target in asthma and chronic obstructive pulmonary disease.

  13. Mechanism of contraction induced by bradykinin in the rabbit saphenous vein

    PubMed Central

    Eguchi, Daihiko; Nishimura, Junji; Kobayashi, Sei; Komori, Kimihiro; Sugimachi, Keizo; Kanaide, Hideo

    1997-01-01

    By using fura-PE3 fluorometry and receptor-coupled permeabilization by α-toxin, the mechanism of the bradykinin (BK)-induced contraction was determined in the rabbit saphenous vein (RSV). The receptor subtype responsible for the BK-induced contraction of RSV was determined by means of a pharmacological blocker study and reverse transcription polymerase chain reaction (RT-PCR).In the presence of extracellular Ca2+ (1.25 mM), BK (10−11–3×10−7 M) induced increases in both the cytosolic Ca2+ concentration ([Ca2+]i) and force, in a concentration-dependent manner. Both the release of Ca2+ from the store site and the influx of extracellular Ca2+ contribute to an increase in [Ca2+]i induced by BK.In the absence of extracellular Ca2+, the application of 10−7 M BK induced transient elevations of [Ca2+]i and force, both of which thereafter declined to the levels observed before the application of BK. When extracellular Ca2+ was replenished (1.25 mM), [Ca2+]i and force increased to form a peak, followed by a sustained elevation in the presence of BK. When an RSV strip was pretreated with 10−5 M thapsigargin for 20 min, the BK-induced transient increases in both [Ca2+]i and force were markedly inhibited.These responses induced by BK were inhibited by Hoe 140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8] bradykinin), a highly specific bradykinin B2 receptor antagonist, in a concentration-dependent manner. In RT-PCR, B2-receptor mRNA was expressed in the smooth muscle of RSV.The [Ca2+]i-force relationships, which were determined by cumulative applications of extracellular Ca2+ (0–5 mM) during 118 mM K+-depolarization, shifted to the upper left in the presence of BK, thus indicating that BK induced a greater force than 118 mM K+-depolarization for a given level of [Ca2+]i.In α-toxin-permeabilized preparations of RSV, application of 10−7 M BK after a steady state contraction had been induced by a mixture of 5×10−7 M Ca2+, 10−6 M GTP and 10−6

  14. Neurophysiological mechanisms of bradykinin-evoked mucosal chloride secretion in guinea pig small intestine

    PubMed Central

    Qu, Mei-Hua; Ji, Wan-Sheng; Zhao, Ting-Kun; Fang, Chun-Yan; Mao, Shu-Mei; Gao, Zhi-Qin

    2016-01-01

    AIM: To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion. METHODS: Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA). RESULTS: Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production. CONCLUSION: The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK. PMID:26909238

  15. Boeing F3B-1

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Boeing F3B-1: While most Boeing F3B-1s served aboard the U. S. Navy aircraft carriers Lexington and Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was powered by a Pratt & Whitney Wasp radial engine.

  16. Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3

    PubMed Central

    Cuddapah, Vishnu Anand; Turner, Kathryn L.; Seifert, Stefanie; Sontheimer, Harald

    2013-01-01

    Previous reports demonstrate that cell migration in the nervous system is associated with stereotypic changes in intracellular calcium concentration ([Ca2+]i), yet the target of these changes are largely unknown. We examined chemotactic migration/invasion of human gliomas to study how [Ca2+]i regulates cellular movement and to identify downstream targets. Gliomas are primary brain cancers which spread exclusively within the brain, frequently migrating along blood vessels to which they are chemotactically attracted by bradykinin activating G protein-coupled receptors. Using simultaneous Fura-2 Ca2+ imaging and amphotericin B perforated patch-clamp electrophysiology, we find that bradykinin raises [Ca2+]i and induces a biphasic voltage response. This voltage response is mediated by the coordinated activation of Ca2+-dependent, TRAM-34-sensitive KCa3.1 channels, and Ca2+-depdenent, DIDS- and gluconate-sensitive Cl− channels. A significant portion of these Cl− currents can be attributed to Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation of ClC-3, a voltage-gated Cl−channel/transporter, since pharmacological inhibition of CaMKII or shRNA-mediated knockdown of ClC-3 inhibited Ca2+-activated Cl− currents. Western blots show that KCa3.1 and ClC-3 are expressed in tissue samples obtained from patients diagnosed with Grade IV gliomas. Both KCa3.1 and ClC-3 co-localize to the invading processes of glioma cells. Importantly, inhibition of either channel abrogates bradykinin-induced chemotaxis and reduces tumor expansion in mouse brain slices in situ. These channels should be further explored as future targets for anti-invasive drugs. Furthermore, this data elucidates a novel mechanism placing cation and anion channels downstream of ligand-mediated [Ca2+]i increases, which likely play similar roles in other migratory cells in the nervous system. PMID:23345219

  17. A Novel Bradykinin-Related Dodecapeptide (RVALPPGFTPLR) from the Skin Secretion of the Fujian Large-Headed Frog (Limnonectes fujianensis) Exhibiting Unusual Structural and Functional Features

    PubMed Central

    Shi, Daning; Luo, Yu; Du, Qiang; Wang, Lei; Zhou, Mei; Ma, Jie; Li, Renjie; Chen, Tianbao; Shaw, Chris

    2014-01-01

    Bradykinin-related peptides (BRPs) are significant components of the defensive skin secretions of many anuran amphibians, and these secretions represent the source of the most diverse spectrum of such peptides so far encountered in nature. Of the many families of bioactive peptides that have been identified from this source, the BRPs uniquely appear to represent homologues of counterparts that have specific distributions and receptor targets within discrete vertebrate taxa, ranging from fishes through mammals. Their broad spectra of actions, including pain and inflammation induction and smooth muscle effects, make these peptides ideal weapons in predator deterrence. Here, we describe a novel 12-mer BRP (RVALPPGFTPLR-RVAL-(L1, T6, L8)-bradykinin) from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis). The C-terminal 9 residues of this BRP (-LPPGFTPLR) exhibit three amino acid substitutions (L/R at Position 1, T/S at Position 6 and L/F at Position 8) when compared to canonical mammalian bradykinin (BK), but are identical to the kinin sequence present within the cloned kininogen-2 from the Chinese soft-shelled turtle (Pelodiscus sinensis) and differ from that encoded by kininogen-2 of the Tibetan ground tit (Pseudopodoces humilis) at just a single site (F/L at Position 8). These data would imply that the novel BRP is an amphibian defensive agent against predation by sympatric turtles and also that the primary structure of the avian BK, ornithokinin (RPPGFTPLR), is not invariant within this taxon. Synthetic RVAL-(L1, T6, L8)-bradykinin was found to be an antagonist of BK-induced rat tail artery smooth muscle relaxation acting via the B2-receptor. PMID:25268979

  18. Endothelium-Derived Hyperpolarizing Factor Mediates Bradykinin Stimulated Tissue Plasminogen Activator Release In Humans

    PubMed Central

    Rahman, Ayaz M.; Murrow, Jonathan R.; Ozkor, Muhiddin A.; Kavtaradze, Nino; Lin, Ji; De Staercke, Christine; Hooper, W. Craig; Manatunga, Amita; Hayek, Salim; Quyyumi, Arshed A.

    2014-01-01

    Aims Bradykinin stimulates tissue plasminogen activator (t-PA) release from human endothelium. Although bradykinin stimulates both nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) release, the role of EDHF in t-PA release remains unexplored. This study sought to determine the mechanisms of bradykinin-stimulated t-PA release in the forearm vasculature of healthy human subjects. Methods In 33 healthy subjects (age 40.3±1.9 years) forearm blood flow (FBF) and t-PA release were measured at rest, and after intra-arterial infusions of bradykinin (400ng/min) and sodium nitroprusside (3.2 mg/min). Measurements were repeated after intra-arterial infusion of TEA (1 μmol/min), fluconazole (0.4 μmol.min-1.L-1), and NG-monomethyl-L-arginine (L-NMMA, 8 μmol/min) to block nitric oxide, and their combination in separate studies. Results Bradykinin significantly increased net t-PA release across the forearm (P<0.0001). Fluconazole attenuated both bradykinin-mediated vasodilation (-23.3±2.7% FBF, P<0.0001) and t-PA release (from 50.9±9.0 to 21.3±8.9 ng/min/100ml, P=0.02). TEA attenuated FBF (-14.7±3.2%, P=0.002) and abolished bradykinin-stimulated t-PA release (from 22.9+5.7 to - 0.8±3.6 ng/min/100ml, P=0.0002). L-NMMA attenuated FBF (P<0.0001), but did not inhibit bradykinin-induced t-PA release (P=NS). Conclusion Bradykinin-stimulated t-PA release is partly due to cytochrome P450-derived epoxides, and is inhibited by K+ca channel blockade. Thus, bradykinin stimulates both EDHF-dependent vasodilation and t-PA release. PMID:24925526

  19. Central site of the hypertensive action of bradykinin.

    PubMed

    Corrêa, F M; Graeff, F G

    1975-03-01

    The intraventricular injection of 1 mug of bradykinin (BK) in rats anesthetized with urethane (1.5 g/kg i.p.) caused an increase in mean arterial blood pressure with little or no change in pulse pressure or heart rate. A similar hypertensive response followed the local administration of 0.5 mug of BK at the pars ventralis of the lateral septal area, whereas local application at other subcortical regions, known to be involved in cardiovascular regulation, caused no effect. Injections of 0.5 or 1 mug of synthetic substance P or 1 mug of 9-desarginine-bradykinin at the pars ventralis of the lateral septal area caused no change in blood pressure. In addition, bilateral electrolytical lesions placed in the lateral septal area either markedly reduced or completely blocked the pressor response to intraventricular BK. These results suggest that the pars ventralis of the lateral septal area is involved in the pressor action of BK in the central nervous system. They also indicate that this brain region responds fairly specifically to BK and that local vascular changes are unlikely to be involved in the mediation of the central action of BK.

  20. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.

    PubMed

    Bandell, Michael; Story, Gina M; Hwang, Sun Wook; Viswanath, Veena; Eid, Samer R; Petrus, Matt J; Earley, Taryn J; Patapoutian, Ardem

    2004-03-25

    Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.

  1. Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells.

    PubMed

    Yu, Hsin-Shan; Wang, Shih-Wei; Chang, An-Chen; Tai, Huai-Ching; Yeh, Hung-I; Lin, Yu-Min; Tang, Chih-Hsin

    2014-01-15

    Prostate cancer is the most commonly diagnosed malignancy in men and shows a tendency for metastasis to distant organs. Angiogenesis is required for metastasis. Bradykinin (BK) is an inflammatory mediator involved in tumor growth and metastasis, but its role in vascular endothelial growth factor (VEGF) expression and angiogenesis in human prostate cancer remains unknown. The aim of this study was to examine whether BK promotes prostate cancer angiogenesis via VEGF expression. We found that exogenous BK increased VEGF expression in prostate cancer cells and further promoted tube formation in endothelial progenitor cells and human umbilical vein endothelial cells. Pretreatment of prostate cancer with B2 receptor antagonist or small interfering RNA (siRNA) reduced BK-mediated VEGF production. The Akt and mammalian target of rapamycin (mTOR) pathways were activated after BK treatment, and BK-induced VEGF expression was abolished by the specific inhibitor and siRNA of the Akt and mTOR cascades. BK also promoted nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) activity. Importantly, BK knockdown reduced VEGF expression and abolished prostate cancer cell conditional medium-mediated angiogenesis. Taken together, these results indicate that BK operates through the B2 receptor, Akt, and mTOR, which in turn activate NF-κB and AP-1, activating VEGF expression and contributing to angiogenesis in human prostate cancer cells.

  2. Cardiovascular actions of python bradykinin and substance P in the anesthetized python, Python regius.

    PubMed

    Wang, T; Axelsson, M; Jensen, J; Conlon, J M

    2000-08-01

    The cardiovascular actions of python bradykinin (BK) and substance P (SP) have been investigated in the anesthetized ball python, Python regius. Bolus intra-arterial injections of python BK (0.03-3 nmol/kg) produced concentration-dependent increases in arterial blood pressure, heart rate (HR), and cardiac output concomitant with small decreases in systemic resistance and stroke volume. Intra-arterial injection of 3 nmol/kg python BK produced a tenfold increase in circulating concentration of norepinephrine, but epinephrine levels did not change. BK-induced tachycardia was attenuated (>90%) by the beta-adrenergic receptor antagonist sotalol, and the hypertensive response was attenuated (>70%) by the alpha-adrenergic receptor antagonist prazosin, indicating that effects of python BK are mediated at least in part by activation of the extensive network of adrenergic neurons present in vascular tissues. Bolus intra-arterial injections of python SP in the range 0. 01-30 pmol/kg produced concentration-dependent decreases in arterial blood pressure and systemic peripheral resistance concomitant with increases in cardiac output and stroke volume but with only minor effects on HR. The data suggest that kinins play a physiologically important role in cardiovascular regulation in the python.

  3. Vibrational and ab initio molecular dynamics studies of bradykinin

    NASA Astrophysics Data System (ADS)

    Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta

    2016-07-01

    In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.

  4. Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin

    PubMed Central

    Bouhadfane, Mouloud; Kaszás, Attila; Rózsa, Balázs; Harris-Warrick, Ronald M; Vinay, Laurent; Brocard, Frédéric

    2015-01-01

    Bradykinin (Bk) is a potent inflammatory mediator that causes hyperalgesia. The action of Bk on the sensory system is well documented but its effects on motoneurons, the final pathway of the motor system, are unknown. By a combination of patch-clamp recordings and two-photon calcium imaging, we found that Bk strongly sensitizes spinal motoneurons. Sensitization was characterized by an increased ability to generate self-sustained spiking in response to excitatory inputs. Our pharmacological study described a dual ionic mechanism to sensitize motoneurons, including inhibition of a barium-sensitive resting K+ conductance and activation of a nonselective cationic conductance primarily mediated by Na+. Examination of the upstream signaling pathways provided evidence for postsynaptic activation of B2 receptors, G protein activation of phospholipase C, InsP3 synthesis, and calmodulin activation. This study questions the influence of motoneurons in the assessment of hyperalgesia since the withdrawal motor reflex is commonly used as a surrogate pain model. DOI: http://dx.doi.org/10.7554/eLife.06195.001 PMID:25781633

  5. Characterization of kinin receptors by bioassays.

    PubMed

    Gobeil, F; Regoli, D

    1994-08-01

    1. Using the classical pharmacological criteria recommended by Schild, namely the order of potency of selective agonists (e.g., bradykinin, desArg9-bradykinin, [Hyp3]BK and [Aib7]BK) and the apparent affinity of competitive antagonists (e.g., DArg[Hyp3,DPhe7,Leu8]BK and WIN 64338), we have attempted to characterize B2 receptor subtypes. It has been shown that vascular tissues (e.g., dog carotid and renal arteries, rabbit jugular vein and rabbit aorta) are very sensitive to kinin agonists and antagonists (pD2 and pA2 values for BK and HOE 140 on B2 receptors are 8.5-10.1 and 9.2-9.4, respectively, and for desArg9BK and desArg9[Leu8]BK on B1 receptors they are 7.3-8.6 and 7.3-7.8, respectively). Mechanisms of action of kinins differ between pharmacological preparations. Kinin may act directly on the smooth muscle (e.g., rabbit jugular vein and rabbit aorta) as well as indirectly through other endogenous mediators such as nitric oxide (EDRF) (e.g., dog carotid and renal arteries) and prostaglandins (e.g., dog renal artery). 2. Pharmacological analysis of rabbit jugular vein (RJV) and guinea pig ileum (GPI) has revealed different sensitivities to certain synthetic analogs of BK and to competitive B2 receptor antagonists between the two tissues. 3. Agonist order of potency ([Hyp3]BK > BK > [Aib7]BK) obtained for RJV differed from that obtained for GPI (BK > or = [Aib7]BK > [Hyp3]BK). Competitive antagonists such as DArg[Hyp3, DPhe7, Leu8]BK and WIN 64338 discriminate in favor of B2A (RJV) and B2B (GPI) receptor subtypes, respectively. These data demonstrate the existence of B2 receptor subtypes. Correlation between data obtained in the present study and those reported for binding to the human B2 receptor support the view that the human receptor is similar to that of the rabbit.

  6. Multiple bradykinin-related peptides from the capture web of the spider Nephila clavipes (Araneae, Tetragnatidae).

    PubMed

    Volsi, Evelyn C F R; Mendes, Maria Anita; Marques, Maurício Ribeiro; dos Santos, Lucilene Delazari; Santos, Keity Souza; de Souza, Bibiana Monson; Babieri, Eduardo Feltran; Palma, Mario Sergio

    2006-04-01

    Three bradykinin-related peptides (nephilakinins-I to -III) and bradykinin itself were isolated from the aqueous washing extract of the capture web of the spider Nephila clavipes by gel permeation chromatography on a Sephacryl S-100 column, followed by chromatography in a Hi-Trap Sephadex-G25 Superfine column. The novel peptides occurred in low concentrations and were sequenced through ESI-MS/MS analysis: nephilakinin-I (G-P-N-P-G-F-S-P-F-R-NH2), nephilakinin-II (E-A-P-P-G-F-S-P-F-R-NH2) and nephilakinin-III (P-S-P-P-G-F-S-P-F-R-NH2). Synthetic peptides replicated the novel bradykinin-related peptides, which were submitted to biological characterizations. Nephilakinins were shown to cause constriction on isolated rat ileum preparations and relaxation on rat duodenum muscle preparations at amounts higher than bradykinin; apparently these peptides constitute B2-type agonists of ileal and duodenal smooth muscles. All peptides including the bradykinin were moderately lethal to honeybees. These bradykinin peptides may be related to the predation of insects by the webs of N. clavipes.

  7. Intrapericardial capsaicin and bradykinin induce different cardiac-somatic and cardiovascular reflexes in rats.

    PubMed

    Liu, Xiaohua; Zhang, Qi; Han, Man; Du, Jianqing

    2016-07-01

    Patients with myocardial infarction experience various types of chest pain and autonomic disturbance symptoms. Studies in rats have shown that pericardial infusions of certain chemicals induce cardiac-related muscle pain and cardiovascular reflexes. In the present study, bradykinin or capsaicin was injected into the pericardial sac and the resulting cardiac-somatic reflexes and blood pressure (BP) alterations were record. We found that the cardiac-somatic reflex induced by bradykinin had a longer latency, shorter duration, and lower firing rate than that induced by capsaicin (p<0.05). We also found that bradykinin induced a hypertensive response (p<0.05), while capsaicin induced a hypotensive response (p<0.05). Bilateral vagotomy had no effect on the cardiac-somatic reflex induced by bradykinin (p>0.05) but reduced the reflex induced by capsaicin (p<0.05). However, vagotomy had no effect on the BP alterations induced by both bradykinin and capsaicin (p>0.05). These results suggest that bradykinin and capsaicin activate different pathways to induce cardiac-somatic and cardiovascular reflexes and that the vagus nerve is involved in TRPV1-related muscle pain modulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Acute effect of inhaled bradykinin on tracheobronchial clearance in normal humans.

    PubMed Central

    Polosa, R; Hasani, A; Pavia, D; Agnew, J E; Lai, C K; Clarke, S W; Holgate, S T

    1992-01-01

    BACKGROUND: Bradykinin, a nonapeptide that contributes as a mediator to the pathogenesis of asthma, may affect lung mucociliary clearance, as it has been shown to be a potent secretagogue in canine airways and in human nasal mucosa in vivo. To evaluate this possibility the effect of inhaled bradykinin on mucociliary clearance has been studied in 10 healthy volunteers. METHODS: Subjects attended the laboratory on two occasions to take part in tracheobronchial clearance studies using a non-invasive radioisotopic technique. Inhalation of radioaerosol was followed 30 minutes later by inhalation of either bradykinin (8 mg/ml) or vehicle placebo in a randomised, double blind fashion. After each inhalation the number of coughs was recorded. Whole lung radioactivity was measured every half hour for six hours with two collimated scintillation counters, and a tracheobronchial clearance curve was plotted for each subject on each occasion. RESULTS: Mucociliary clearance, expressed as the area under the tracheobronchial radioaerosol retention curve calculated for the first six hours (AUC0-6h), was greater in nine out of 10 subjects after inhalation of bradykinin than after placebo. The median values (range) for AUC0-6h were significantly reduced from 126% (78-232%)/h with placebo to 87% (51-133%)/h with bradykinin. CONCLUSION: It is concluded that acute exposure to inhaled bradykinin accelerates tracheobronchial clearance in normal human airways. PMID:1465754

  9. Metalloendopeptidases EC 3.4.24.15/16 regulate bradykinin activity in the cerebral microvasculature.

    PubMed

    Norman, M Ursula; Lew, Rebecca A; Smith, A Ian; Hickey, Michael J

    2003-06-01

    Bradykinin is a vasoactive peptide that has been shown to increase the permeability of the cerebral microvasculature to blood-borne macromolecules. The two zinc metalloendopeptidases EC (EP 24.15) and EC (EP 24.16) degrade bradykinin in vitro and are highly expressed in the brain. However, the role that these enzymes play in bradykinin metabolism in vivo remains unclear. In the present study, we investigated the role of EP 24.15 and EP 24.16 in the regulation of bradykinin-induced alterations in microvascular permeability. Permeability of the cerebral microvasculature was assessed in anesthetized Sprague-Dawley rats by measuring the clearance of 70-kDa FITC dextran from the brain. Inhibition of EP 24.15 and EP 24.16 by the specific inhibitor N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA-2) resulted in the potentiation of bradykinin-induced increases in cerebral microvessel permeability. The level of potentiation was comparable to that achieved by the inhibition of angiotensin-converting enzyme. These findings provide the first evidence of an in vivo role for EP 24.15/EP 24.16 in brain function, specifically in regulating alterations in microvessel permeability induced by exogenous bradykinin.

  10. Pharmacology of kinin receptors: recent developments.

    PubMed

    Regoli, D; Gobeil, F

    1995-07-01

    Fifteen years after the classification of kinin receptors into B1 and B2, both receptors have been shown to differ between species. New receptor types have been proposed and named B3, B4, and B5. However, it is not established whether different pharmacologic profiles describing B2 receptors in various species are indicative of different receptor types or of different subtypes (species dependent) subserving the same biological functions. To answer these questions, a systematic search of new pharmacologic tools was undertaken to find monoreceptor systems (isolated organs whose responses are contributed by a single receptor) as well as new selective agonists and competitive or noncompetitive antagonists. Classical pharmacologic experiments were performed in isolated organs for quantifying agonist activities in terms of pD2 and antagonist affinities in terms of pA2. Competitivity of antagonists was established from Schild plots. Results obtained in tissues from rabbits or guinea pigs indicate the existence of two different pharmacological entities, well characterized by selective agonists and competitive antagonists. In vivo experiments performed on anesthetized rabbits and guinea pigs have confirmed the B2 receptor heterogeneity between the two species. Correlations have been established between data obtained in rabbit and guinea pig tissues (biological assays) and in human receptors raised by genic transfection in Chinese hamster ovary (CHO) cells. A good correlation has been found between the IC50 values of kinins and derivatives to displace [3H]bradykinin from the membranes of CHO cells containing the human receptor and the pD2 or pA4 values of the same compounds in the rabbit jugular vein.

  11. A novel bradykinin-like peptide from skin secretions of rufous-spotted torrent frog, Amolops loloensis.

    PubMed

    Liang, Jianguo; Han, Yaoping; Li, Jianxu; Xu, Xueqing; Rees, Huw H; Lai, Ren

    2006-11-01

    A bradykinin-like peptide has been isolated from skin secretions of rufous-spotted torrent frog, Amolops loloensis. This bradykinin-like peptide was named amolopkinin. Its primary structure, RAPVPPGFTPFR, was determined by Edman degradation and mass spectrometry. It is structurally related to bradykinin-like peptides identified from skin secretions of other amphibians. Amolopkinin is composed of 12 amino acid residues and is related to bradykinin composed of nine amino acid residues, identified from the skin secretions of Odorrana schmackeri. Amolopkinin was found to elicit concentration-dependent contractile effects on isolated guinea pig ileum. cDNA clones encoding the precursor of amolopkinin were isolated by screening a skin cDNA library of A. loloensis and then sequenced. The amino acid sequences deduced from the cDNA sequences match well with the results from Edman degradation. Analysis of different amphibian bradykinin cDNA structures revealed that a deficiency of an18-nucleotide fragment (TCAAGAATGATCAGACGC in the cDNA encoding bradykinin from O. schmackeri) in the peptide-coding region resulted in absence of a di-basic site for trypsin-like proteinases and an unusual - APV - insertion in the N-terminal part of amolopkinin. This is the first report of a bradykinin-like peptide comprised of bradykinin with an insertion in its N-terminal part. Our results demonstrate the hypervariability of amphibian bradykinin-like peptides, as well as the diversity of antimicrobial peptides in amphibians.

  12. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth

    PubMed Central

    Blum-Johnston, Carla; Thorpe, Richard B.; Wee, Chelsea; Romero, Monica; Brunelle, Alexander; Blood, Quintin; Blood, Arlin B.; Francis, Michael; Taylor, Mark S.; Longo, Lawrence D.; Pearce, William J.; Wilson, Sean M.

    2015-01-01

    Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca2+-activated K+ (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca2+. Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca2+ signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca2+ responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-l-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes. PMID:26637638

  13. SerpinB1 Promotes Pancreatic β Cell Proliferation

    SciTech Connect

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  14. Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia.

    PubMed

    Jeske, Nathaniel A; Berg, Kelly A; Cousins, Joanne C; Ferro, Emer S; Clarke, William P; Glucksman, Marc J; Roberts, James L

    2006-04-01

    Metalloendopeptidases expressed in neural tissue are characterized in terms of their neuropeptide substrates. One such neuropeptide, bradykinin (BK), is an important inflammatory mediator that activates the type-2 BK receptor (B2R) on the terminal endings of specialized pain-sensing neurons known as nociceptors. Among several metalloendopeptidases that metabolize and inactivate BK, EP24.15 and EP24.16 are known to associate with the plasma membrane in several immortalized cell lines. Potentially, the colocalization of EP24.15/16 and B2R at plasma membrane microdomains known as lipid rafts in a physiologically relevant nociceptive system would allow for discrete, peptidase regulation of BK signaling. Western blot analysis of crude subcellular fractions and lipid raft preparations of cultured rat trigeminal ganglia demonstrate similar expression profiles between EP24.15/16 and B2R on a subcellular level. Furthermore, the treatment of primary cultures of trigeminal ganglia with inhibitors of EP24.15/16 led to the potentiation of several bradykinin-induced events that occur downstream of B2R activation. EP24.15/16 inhibition by N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-AlalTyr-p-aminobenzoate (cFP) resulted in a 1000-fold increase in B2R sensitivity to BK as measured by inositol phosphate accumulation. In addition, cFP treatment resulted in a 31.1+/-5.0% potentiation of the ability of BK to inhibit protein kinase B (Akt) activity. Taken together, these data demonstrate that EP24.15/16 modulate intracellular, peptidergic signaling cascades through B2R in a physiologically relevant nociceptive system.

  15. Bradykinin and matrix metalloproteinases are involved the structural alterations of rat small resistance arteries with inhibition of ACE and NEP.

    PubMed

    Rizzoni, Damiano; Rossi, Gian Paolo; Porteri, Enzo; Sticchi, Daniele; Rodella, Luigi; Rezzani, Rita; Sleiman, Intissar; De Ciuceis, Carolina; Paiardi, Silvia; Bianchi, Rossella; Nussdorfer, G G; Agabiti-Rosei, Enrico

    2004-04-01

    Increased vascular resistance is a hallmark of hypertension and involves structural alterations, which may entail smooth muscle cell hypertrophy or hyperplasia, or qualitative or quantitative changes in extracellular matrix (ECM) proteins. Since the renin-angiotensin-aldosterone system modulates these changes, we investigated the effects of 8 weeks of treatment with an angiotensin-converting enzyme (ACE) inhibitor, ramipril (RAM), or a dual ACE and neutral endopeptidase (NEP) inhibitor, MDL-100240 (MDL), on mesenteric small artery structure and ECM proteins in mRen2-transgenic rats (TGRs), an animal model of hypertension with severe cardiovascular damage. Thirty-five 5-week-old rats were included in the study: six TGRs received RAM; five TGRs RAM + the bradykinin receptor inhibitor, icatibant; six TGRs, MDL; and five TGRs MDL + icatibant, while eight TGRs and five normotensive Sprague-Dawley controls were kept untreated. Mesenteric small arteries were dissected and mounted on a micromyograph. The media-to-lumen ratio (M/L) was then calculated. Vascular metalloproteinase (MMP) content was evaluated by zymography. In untreated TGRs severe hypertension was associated with inward eutrophic remodelling of small arteries. Both RAM and MDL prevented the increase in blood pressure and M/L and decreased MMPs. Icatibant blunted the effect of MDL on BP, M/L and MMPs. Changes in collagenase activity induced by ramipril and MDL are associated with prevention of small artery structural alterations in TGRs. Furthermore, MDL-induced enhancement of bradykinin could play a role in both the prevention of vascular structural alterations and in the stimulation of MMPs.

  16. Local L-NG-monomethyl-arginine attenuates the vasodilator action of bradykinin in the human forearm.

    PubMed Central

    O'Kane, K P; Webb, D J; Collier, J G; Vallance, P J

    1994-01-01

    1. Studies in animals indicate that bradykinin relaxes blood vessels directly through an action on smooth muscle and indirectly through the release of endothelium-derived mediators. Its precise mechanism of action in the human arterial circulation is not yet known. 2. In this study the effects of a specific inhibitor of nitric oxide synthase, L-NG-monomethyl-arginine (L-NMMA) and noradrenaline on the vasodilator responses to bradykinin were examined in the forearm arterial bed of healthy volunteers. Noradrenaline was used as a control for vasoconstriction by L-NMMA; glyceryl trinitrate (GTN) as a control vasodilator acting independently of the NO synthase enzyme. 3. L-NMMA (4 mumol min-1; 5 min) alone reduced resting forearm blood flow by 44% (P < 0.01; n = 6) confirming that nitric oxide plays an important role in regulating vascular tone. 4. Bradykinin (10 and 100 pmol min-1; 3 min each dose) and GTN (2 and 5 nmol min-1; 3 min each dose) increased forearm blood flow in a dose-dependent manner (percentage changes 171 +/- 17% and 398 +/- 35%, and 176 +/- 21% and 268 +/- 42%, respectively; n = 6). 5. The response to bradykinin, but not that to GTN, was attenuated by L-NMMA compared with noradrenaline (P < 0.05; n = 6), suggesting that bradykinin-induced vasodilatation in the forearm is mediated, at least in part, by stimulating release of nitric oxide. PMID:7833219

  17. Bradykinin-induced bronchoconstriction: inhibition by nedocromil sodium and sodium cromoglycate.

    PubMed Central

    Dixon, C M; Barnes, P J

    1989-01-01

    1. The effects of inhaled nedocromil sodium and sodium cromoglycate on bradykinin-induced bronchoconstriction have been studied in a double-blind, placebo controlled study, in eight mild asthmatic subjects. 2. The subjects attended on four occasions. Fifteen minutes after drug pre-treatment a bradykinin challenge was performed. Increasing concentrations were inhaled until a greater than 40% fall in expiratory flow at 30% of vital capacity from a partial flow volume manoeuvre (V p30) was demonstrated. 3. Inhaled bradykinin (0.06-8.0 mg ml-1) caused dose-related bronchoconstriction with the geometric mean cumulative dose causing a 40% fall in V p30 (PD40) of 0.035 (95% CI: 0.02-0.07) mumol, after placebo inhalation, which was similar to that measured before the trial (0.04: 0.02-0.09 mumol). 4. Both nedocromil sodium (4 mg) and sodium cromoglycate (10 mg) gave significant protection (P less than 0.05) against bradykinin-induced bronchoconstriction (PD40 0.37: 0.19-0.72 mumol after nedocromil sodium and 0.22: 0.11-0.49 after sodium cromoglycate). 5. Since bradykinin-induced bronchoconstriction is probably neurally mediated we conclude that both nedocromil sodium and sodium cromoglycate have an action on neural pathways which may be useful in the control of asthma symptoms. PMID:2547408

  18. Afferent fibers involved in the bradykinin-induced cardiovascular reflexes from the ovary in rats.

    PubMed

    Uchida, Sae; Kagitani, Fusako; Hotta, Harumi

    2015-12-01

    Bleeding or rupture of the ovary often accompanies ovarian cysts and causes severe pain and autonomic responses such as hypotension. It would be expected that ovarian afferents contribute to cardiovascular responses induced by ovarian failure. The present study examined cardiovascular responses to noxious chemical stimulation of the ovary by bradykinin, an algesic substance released by tissue damage, and explored the role of ovarian afferents in the ovarian-cardiovascular responses in anesthetized rats. Non-pregnant adult rats were anesthetized with pentobarbital and artificially ventilated. The carotid artery was cannulated to monitor blood pressure and heart rate. Noxious chemical stimulation was achieved by applying a small piece of cotton soaked with bradykinin to the surface of the ovary for 30s. Application of bradykinin (10(-4) M) to the ovary decreased heart rate and blood pressure. These cardiovascular responses were not significantly influenced by severance of the vagal nerves or the superior ovarian nerve, but were abolished by severance of the ovarian nerve plexus (ONP). Application of bradykinin (10(-4) M) to the ovary evoked afferent activity of the ONP both in vivo and in vitro preparations. These results indicate that the decreases in heart rate and blood pressure following chemical noxious stimulation of the ovary with bradykinin are reflex responses, whose afferent nerve pathway is mainly through afferent fibers in the ONP.

  19. Enhanced bradykinin-stimulated phospholipase C activity in murine embryonic stem cells lacking the G-protein alphaq-subunit.

    PubMed Central

    Ricupero, D A; Polgar, P; Taylor, L; Sowell, M O; Gao, Y; Bradwin, G; Mortensen, R M

    1997-01-01

    The gene coding for the G-protein alphaq subunit was interrupted by homologous recombination in murine embryonic stem cells (alphaq-null ES cells) as detected by Southern analysis and reverse-transcriptase PCR. The bradykinin (BK) B2 receptor was stably transfected into wild-type (WT) alphai-2-null and alphaq-null ES cells. The B2 receptor bound BK with high affinity and mobilized Ca2+. BK also activated phospholipase C (PLC), as determined by total inositol phosphate (IP) accumulation in a Bordetella pertussis toxin- and genistein-insensitive manner. In WT and alphai-2-null ES cells, BK increased IP levels approx. 4-fold above baseline. Most interestingly, in alphaq-null ES cells, BK increased IP accumulation approx. 9-fold above baseline. Re-expression of alphaq in alphaq-null ES cells resulted in normalization of the BK-stimulated IP accumulation (4-fold above baseline). These results suggest that the B2 receptor activates PLC through more than one member of the Gq family. Additionally, the absence of alphaq alters the kinetics of IP generation, which may reflect intrinsic characteristics of individual members of the Gq family or a decreased susceptibility to heterologous regulation in the alphaq-null ES cells, thus allowing for a more sustained generation of IP. PMID:9581559

  20. Mechanisms of bradykinin-induced expression of connective tissue growth factor and nephrin in podocytes.

    PubMed

    Abou Msallem, J; Chalhoub, H; Al-Hariri, M; Saad, L; Jaffa, M A; Ziyadeh, F N; Jaffa, A A

    2015-12-01

    Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies.

  1. Analysis of argentinated peptide complexes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: Peptide = oxytocin, arg(8) -vasopressin, bradykinin, bombesin, somatostatin, neurotensin.

    PubMed

    Gupta, Shyam L; Dhiman, Vikas; Jayasekharan, T; Sahoo, N K

    2016-06-15

    The increased use of silver nanoparticles (AgNPs) for various biological applications, and over-expression of various peptide receptors in different tumors/cancer cells, necessitate the need for dedicated investigations on the intrinsic binding ability of Ag with various biologically important peptides for better understanding of AgNPs-peptide interactions and for the future development of contrasting agents as well as drugs for imaging/biomedical applications. The [M+(Ag)n ](+) complexes are prepared and characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Silver complexes of the peptides [M+(Ag)n ](+) , where M = oxytocin, arg(8) -vasopressin, bradykinin, bombesin, somatostatin, and neurotensin, have been investigated for their intrinsic Ag(+) -binding ability. Unusual binding of up to seven Ag(+) with these small peptides is observed. The mass spectra show n = 1-5 for bombesin and somatostatin, n = 1-6 for bradykinin and arg(8) -vasopressin, and n = 1-7 for oxytocin and neurotensin. In addition, oxytocin and arg(8) -vasopressin show the formation of dimers and their complexes [M2 +(Ag)n ](+) with n = 1-8 and n = 1-5, respectively. The possible amino acid residues responsible for Ag(+) binding in each peptide have been identified on the basis of density functional theory (DFT)-calculated binding energy values of Ag(+) towards individual amino acids. Mass spectrometric evidence indicates that the peptides, viz., oxytocin, arg(8) -vasopressin, bradykinin, bombesin, somatostatin, and neurotensin, show greater affinity for Ag(+) . Hence, they may be used as carriers for AgNPs in targeted drug delivery as well as an alternative for iodinated contrasting agents in dual energy X-ray imaging techniques. Radio-labeled Ag with these peptides can also be used in radio-pharmaceuticals for diagnostic and therapeutic applications. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Exudation of plasma and production of thromboxane in human bronchi after local bradykinin challenge.

    PubMed

    Arvidsson, P; Löfdahl, C G; Skoogh, B E; Lötvall, J

    2001-05-01

    Plasma exudation has been suggested to be an important component of the inflammatory response in asthma. Bradykinin elicits many of the features of asthma, including bronchoconstriction, cough, plasma exudation and mucus secretion. In an attempt to quantify local plasma exudation, we have employed a novel low-trauma technique with the aim of challenging and lavaging a central part of the bronchial tree, by selecting a medium sized bronchus. A fibreoptic bronchoscopy was performed in non-smoking healthy volunteers. The instrument was placed proximally in the right upper lobe bronchus. A plastic catheter, equipped with an inflatable latex balloon, was inflated with air (2-4 cmH2O). A solution (100 microl of either two different concentrations of bradykinin: 0.09 and 0.9 mg ml(-1) or normal saline) was instilled through the catheter and distal to the balloon. Eight minutes later a lavage procedure with 10 ml of saline was performed through the catheter. The procedure was then repeated twice, with the other solutions, but from the lingular and middle lobe bronchi. All solutions were given in a blinded fashion, and two different studies were performed. Lavage concentrations of albumin and IgG were quantified as measurements of plasma exudation. In our first study we found that bradykinin challenge significantly increased concentrations of albumin and IgG. In study two, there was no numeric increase in plasma proteins after local bradykinin challenge, but the concentration of thromboxane was significantly increased in lavages from bradykinin-challenged bronchi. Thus, local bronchial administration of bradykinin has the capacity to induce exudation of large plasma macromolecules into the bronchial lumen, as well as local thromboxane production.

  3. Specific immunotherapy with mugwort pollen allergoid reduce bradykinin release into the nasal fluid

    PubMed Central

    Grzanka, Alicja; Jawor, Barbara; Czecior, Eugeniusz

    2016-01-01

    Introduction A pathomechanism of allergic rhinitis is complex. A neurogenic mechanism seems to play a significant role in this phenomenon. Aim The evaluation of influence of specific immunotherapy of mugwort pollen allergic patients on the bradykinin concentration in the nasal lavage fluid. Material and methods The study included 22 seasonal allergic rhinitis patients. Thirty persons with monovalent allergy to mugwort pollen, confirmed with skin prick tests and allergen-specific immunoglobulin E, underwent a 3-year-long allergen immunotherapy with the mugwort extract (Allergovit, Allergopharma, Germany). The control group was composed of 9 persons with polyvalent sensitivity to pollen, who were treated with pharmacotherapy. Before the allergen-specific immunotherapy (AIT) and in subsequent years before the pollen seasons, a provocation allergen test with the mugwort extract was performed, together with collection of nasal fluids, where bradykinin concentration was determined according to Proud method. Results There were similar levels of bradykinin in both groups at baseline prior to therapy (AIT group: 584.0 ±87.2 vs. controls 606.3 ±106.5 pg/ml) and changes after allergen challenge 1112.4 ±334.8 vs. 1013.3 ±305.9 pg/ml as well. The bradykinin concentration in nasal lavage fluid after mugwort challenge in 1 year was lower in the AIT group (824.1 ±184.2 pg/ml vs. 1000.4 ±411.5 pg/l; p < 005) with a further significant decrease after the 2nd and 3rd year of specific immunotherapy. Significant reduction of symptoms and medications use was observed in hyposensitized patients. Conclusions A decreased level of bradykinin as a result of AIT suggests that some of the symptomatic benefits of AIT may be related to the reduced release of bradykinin into nasal secretions. These values correlate with clinical improvement within the course of treatment. PMID:27605897

  4. Bradykinin-like immunoreactive neuronal systems localized histochemically in rat brain.

    PubMed Central

    Corrêa, F M; Innis, R B; Uhl, G R; Snyder, S H

    1979-01-01

    Bradykinin-like immunoreactive structures were localized in rat brain by the indirect immunofluorescence method. Specificity of staining was demonstrated by: (i) the absence of fluorescence when preimmune serum was used, (ii) the disappearance of fluorescence when sera were preadsorbed with bradykinin, and (iii) the presence of identical staining with two different antisera. Immunoreactive neuronal cells are observed only in the hypothalamus, with especially dense clusters overlying the periventricular and dorsomedial nuclei. Fibers and varicose processes are observed in the periaqueductal gray matter, hypothalamus, perirhinal and cingulate cortices, the ventral portion of caudate-putamen, and the lateral septal area. Images PMID:375238

  5. [Treatment of drugs-associated non-hereditary angioedema mediated by bradykinin].

    PubMed

    Muller, Yannick; Harr, Thomas

    2016-01-13

    Angioedema is a deep intradermal or sub-cutaneous edema, which can be mediated by histamine, bradykinin or mixture of both components. The aims of this review are to describe the clinical approach and diagnosis of non-hereditary bradykinin-mediated angioedema induced by drugs such as: angiotensin-converting inhibitor, sartan, gliptins, rapamycin or some thrombolytic reagents and renin inhibitors. Furthermore, we will discuss the drug management of these angioedema, which is mainly based on C1 inhibitor concentrate or icatibant administration.

  6. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.1 Definitions. For purposes of this part— (a...

  7. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.1 Definitions. For purposes of this part— (a...

  8. 8 CFR 343b.1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Application. 343b.1 Section 343b.1 Aliens... NATURALIZATION FOR RECOGNITION BY A FOREIGN STATE § 343b.1 Application. A naturalized citizen who desires to obtain recognition as a citizen of the United States by a foreign state shall submit an application on...

  9. 45 CFR 5b.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Definitions. 5b.1 Section 5b.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS § 5b.1 Definitions. As... the designee of either such officer or individual. (j) Routine use means the disclosure of a record...

  10. 34 CFR 5b.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Definitions. 5b.1 Section 5b.1 Education Office of the Secretary, Department of Education PRIVACY ACT REGULATIONS § 5b.1 Definitions. As used in this part: (a... records to whom requests may be made, or the designee of either such officer or individual. (j) Routine...

  11. 32 CFR 242b.1 - Regents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Regents. 242b.1 Section 242b.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL... SCIENCES § 242b.1 Regents. (a) History and name. The Congress of the United States in the Uniformed...

  12. 32 CFR 242b.1 - Regents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Regents. 242b.1 Section 242b.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL... SCIENCES § 242b.1 Regents. (a) History and name. The Congress of the United States in the Uniformed...

  13. 32 CFR 242b.1 - Regents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Regents. 242b.1 Section 242b.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL... SCIENCES § 242b.1 Regents. (a) History and name. The Congress of the United States in the Uniformed...

  14. 32 CFR 242b.1 - Regents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Regents. 242b.1 Section 242b.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL... SCIENCES § 242b.1 Regents. (a) History and name. The Congress of the United States in the Uniformed...

  15. Enzymatic Assays for the Diagnosis of Bradykinin-Dependent Angioedema

    PubMed Central

    Defendi, Federica; Charignon, Delphine; Ghannam, Arije; Baroso, Remi; Csopaki, Françoise; Allegret-Cadet, Marion; Ponard, Denise; Favier, Bertrand; Cichon, Sven; Nicolie, Brigitte; Fain, Olivier

    2013-01-01

    Background The kinins (primarily bradykinin, BK) represent the mediators responsible for local increase of vascular permeability in hereditary angioedema (HAE), HAE I-II associated with alterations of the SERPING1 gene and HAE with normal C1-Inhibitor function (HAE-nC1INH). Besides C1-Inhibitor function and concentration, no biological assay of kinin metabolism is actually available to help physicians for the diagnosis of angioedema (AE). We describe enzymatic tests on the plasma for diagnosis of BK-dependent AE. Methods The plasma amidase assays are performed using the Pro-Phe-Arg-p-nitroanilide peptide substrate to evaluate the spontaneous amidase activity and the proenzyme activation. We analyzed data of 872 patients presenting with BK-dependent AE or BK-unrelated diseases, compared to 303 controls. Anti-high MW kininogen (HK) immunoblot was achieved to confirm HK cleavage in exemplary samples. Reproducibility, repeatability, limit of blank, limit of detection, precision, linearity and receiver operating characteristics (ROC) were used to calculate the diagnostic performance of the assays. Results Spontaneous amidase activity was significantly increased in all BK-dependent AE, associated with the acute phase of disease in HAE-nC1INH, but preserved in BK-unrelated disorders. The increase of the amidase activity was associated to HK proteolysis, indicating its relevance to identify kininogenase activity. The oestrogens, known for precipitating AE episodes, were found as triggers of enzymatic activity. Calculations from ROC curves gave the optimum diagnostic cut-off for women (9.3 nmol⋅min−1⋅mL−1, area under curve [AUC] 92.1%, sensitivity 80.0%, and specificity 90.1%) and for men (6.6 nmol·min−1⋅mL−1, AUC 91.0%, sensitivity 87.0% and specificity 81.2%). Conclusion The amidase assay represents a diagnostic tool to help physicians in the decision to distinguish between BK-related and –unrelated AE. PMID:23940538

  16. Genistein prevents calcium mobilization evoked by platelet-derived growth factor without affecting calcium release by cadmium or bradykinin

    SciTech Connect

    Rong-Ming Lyu; Barnes, S.; Smith, J.B. )

    1991-03-11

    Cadmium (Cd) strikingly increases ({sup 3}H)inositol trisphosphate and evokes a spike in cytosolic free Ca (Ca{sub i}) in human dermal fibroblasts as described previously. Cd apparently activates a membrane receptor by binding to a zinc site in its external domain. Two classes of receptors are known to induce inositol phosphate formation and release stored Ca: those that are coupled to phospholipase C via GTP-binding proteins, e.g., the bradykinin (BK) receptor; and those that are tyrosine kinases, e.g. the receptor for platelet-derived growth factor (PDGF). Cd, 100 nM BK, and 10 ng/ml PDGF increased Ca{sub i} from 142 {plus minus} 24 nM to 809 {plus minus} 36, 964 {plus minus} 74, and 401 {plus minus} 52 nM (n = 5), respectively. Cd and BK immediately increased Ca{sub i}, however, there was a lag between the addition of PDGF compared to 15 {plus minus} 1 sec for Cd and 9 {plus minus} 1 sec for BK (all n = 10). Genistein (40 {mu}M, 40 min), which selectively inhibits tyrosine kinases, had no significant effect on the Ca{sub i} spike evoked by Cd or BK. In the presence of genistein Cd and BK increased Ca{sub i} from 165 {plus minus} 14 nM to 726 {plus minus} 23 and 876 {plus minus} 31 nM (n = 4), respectively. In contrast to Cd and BK, PDGF only slightly increased Ca{sub i} in the presence of 40 {mu}M genistein. The concentration of genistein that inhibited the Ca{sub i} response to PDGF by 50% was 8 {mu}M. These findings suggest that the Cd triggers a G protein-coupled receptor rather than a tyrosine kinase.

  17. Hypotensive effects of hemopressin and bradykinin in rabbits, rats and mice. A comparative study.

    PubMed

    Blais, Paul-André; Côté, Jérôme; Morin, Josée; Larouche, Annie; Gendron, Gabrielle; Fortier, Audrey; Regoli, Domenico; Neugebauer, Witold; Gobeil, Fernand

    2005-08-01

    Hemopressin is a novel vasoactive nonapeptide derived from hemoglobin's alpha-chain as recently reported by Rioli et al. [Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS, et al. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J Biol Chem 2003;278(10):8547-55]. In anesthetized male Wistar rats, this peptide exhibited hypotensive actions similar to those of bradykinin (BK) when administered intravenously (i.v.), and was found to be metabolized both in vitro and in vivo by several peptidases, including the angiotensin-converting enzyme (ACE). In this study, these findings were expanded upon by examining: (i) the degradation kinetics following incubation with ACE purified from rabbit lung and (ii) the blood pressure lowering effects of HP and BK injected i.v. or intra-arterially (i.a.) in male rabbits, rats, and mice. Our findings demonstrate that, in vitro, HP and BK are both degraded by ACE, but at different velocity rates. Furthermore, both HP and BK induced transient hypotension in all animals tested, although the responses to HP relative to the administration sites were significantly lower (by 10-100-fold) on an equimolar basis compared to those of BK. In rabbits, the decrease of blood pressure induced by HP (10-100 nmol/kg) did not differ whether it was administered i.v. or i.a., suggesting an absence of pulmonary/cardiac inactivation in contrast to BK (0.1-1 nmol/kg). The in vivo effect of HP was significantly potentiated in rabbits immunostimulated with bacterial lipopolysaccharide (LPS), but was unaffected by both the B2 receptor antagonist HOE 140 (0.1 micromol/kg) and captopril (100 microg/kg), contrary to BK. Therefore, HP acts as a weak hypotensive mediator, which does not activate kinin B2 receptors, but uses a functional site and/or signaling paths appearing to be up-regulated by LPS.

  18. Local inhibition of converting enzyme and vascular responses to angiotensin and bradykinin in the human forearm.

    PubMed Central

    Benjamin, N; Cockcroft, J R; Collier, J G; Dollery, C T; Ritter, J M; Webb, D J

    1989-01-01

    1. The function of angiotensin converting enzyme was investigated in twenty-four healthy men. Forearm blood flow was measured under basal conditions and during administration of enalaprilat (a converting enzyme inhibitor) and/or peptide substrates of converting enzyme into the left brachial artery. Blood flow was compared in the two arms. 2. Enalaprilat had no effect on basal blood flow. The concentration of enalaprilat in venous blood from the control arm was low, and plasma renin activity was not increased, indicating that systemic inhibition of converting enzyme did not occur. 3. Effects of angiotensin and of bradykinin, administered intra-arterially, were limited to the infused arm. Enalaprilat (13 nmol min-1) inhibited converting enzyme in the infused arm, in which it caused approximately a 100-fold reduction in sensitivity to angiotensin I, while having no effect on the vasoconstriction caused by angiotensin II. Enalaprilat increased vasodilatation caused by bradykinin. 4. Aspirin, an inhibitor of cyclo-oxygenase, did not inhibit vasodilatation caused by bradykinin whether infused alone or with enalaprilat, indicating that these responses are not mediated by prostaglandins. 5. We conclude that under basal conditions neither conversion of angiotensin I to angiotensin II nor degradation of bradykinin determines resistance vessel tone in the human forearm. Converting enzyme may affect vascular tone in situations in which intravascular concentrations of peptides are increased over those present under basal conditions. PMID:2557432

  19. Suppression of Lipid Accumulation by Indole-3-Carbinol Is Associated with Increased Expression of the Aryl Hydrocarbon Receptor and CYP1B1 Proteins in Adipocytes and with Decreased Adipocyte-Stimulated Endothelial Tube Formation

    PubMed Central

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2016-01-01

    This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM) by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride accumulation in mature adipocytes in association with significantly increased expression of AhR and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2–related factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion, I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and obesity-associated disorders. PMID:27527145

  20. Effects of captopril on the human foetal placental circulation: an interaction with bradykinin and angiotensin I.

    PubMed Central

    de Moura, R; Lopes, M A

    1995-01-01

    1. The mechanism underlying the foetal toxicity induced by captopril is not well understood. Since bradykinin and angiotensin II appear to be important in the regulation of the placental circulation, experiments were performed to assess the effects of captopril on the vascular actions of these peptides on the human foetal placental circulation. 2. Full-term human placentas, obtained from normal pregnancy, were perfused with a modified Tyrode solution bubbled with O2 using a pulsatile pump. The placental perfusion pressure was measured with a Statham pressure transducer and recorded continuously on a Hewlett-Packard polygraph. 3. Bradykinin (0.1, 0.3 and 1.0 nmol) injected into the placental arterial circulation produced an increase in placental perfusion pressure in all experiments. This effect of bradykinin was significantly inhibited by indomethacin (3 x 10(-7) M). 4. Captopril (10(-7) M) significantly potentiated the pressor effect of bradykinin on the human placental circulation (n = 6). This effect of captopril was reversed by indomethacin (3 x 10(-7) M). 5. Angiotensin I (n = 6) and angiotensin II (n = 6), injected into the placental arterial circulation, both produced dose-dependent increases in placental perfusion pressure. The dose-response curves to angiotensin I (n = 6) were significantly displaced to the right by captopril in a concentration-dependent manner. 6. We suggest that the toxic effects of captopril on the foetus, rather than reflecting an inhibition of angiotensin II formation, may instead be related to a potentiation of the vasoconstrictor effect of bradykinin on the foetal placental circulation, thereby reducing blood flow and causing foetal damage. The reasons for this are discussed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7669485

  1. Plexin B1 inhibits MET through direct association and regulates Shp2 expression in melanocytes.

    PubMed

    Soong, Joanne; Scott, Glynis

    2013-01-15

    Plexin B1, the receptor for Semaphorin 4D (Sema4D), is expressed by melanocytes in the skin. We recently showed that Sema4D suppresses activation of the hepatocyte growth factor receptor, MET, in melanocytes, and that knockdown of Plexin B1 results in activation of MET. MET signaling mediates proliferation, survival and migration in melanocytes, and its activation is associated with transformation of melanocytes to melanoma. In this report we investigated the mechanism by which Plexin B1 inhibits MET activation. Our results show that Plexin B1 and MET exist as an oligomeric receptor-receptor complex in melanocytes, and that receptor association is increased by Sema4D. MET and Plexin B1 receptor complexes were identified along the cell body of melanocytes, and Sema4D increased receptor association on dendrites, suggesting that Sema4D regulates MET-dependent processes at precise locations on the melanocyte. Despite activation of MET, Plexin B1 knockdowns proliferated slowly and showed increased apoptosis compared with controls. Shp2, a non-receptor protein tyrosine phosphatase, translates growth and survival signals from MET and other receptor tyrosine kinases. Plexin B1 knockdowns had markedly lower levels of Shp2 compared with controls, and Sema4D upregulated Shp2 expression at the protein and message level in normal melanocytes. Functional studies showed that blockade of Shp2 activity abrogated MET-dependent activation of Erk1/Erk2 and Akt in melanocytes. These results suggest a complex role for Sema4D and Plexin B1 in orchestrating signaling from the MET receptor in melanocytes. Because Shp2 is a downstream adaptor protein for multiple receptors, Sema4D may control the effects of several growth factors on melanocytes through regulation of Shp2.

  2. SerpinB1 Promotes Pancreatic β Cell Proliferation.

    PubMed

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A; De Jesus, Dario F; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O'Donnell, Eileen; Kulkarni, Rohit N

    2016-01-12

    Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Association of Endophilin B1 with Cytoplasmic Vesicles.

    PubMed

    Li, Jinhui; Barylko, Barbara; Eichorst, John P; Mueller, Joachim D; Albanesi, Joseph P; Chen, Yan

    2016-08-09

    Endophilins are SH3- and BAR domain-containing proteins implicated in membrane remodeling and vesicle formation. Endophilins A1 and A2 promote the budding of endocytic vesicles from the plasma membrane, whereas endophilin B1 has been implicated in vesicle budding from intracellular organelles, including the trans-Golgi network and late endosomes. We previously reported that endophilins A1 and A2 exist almost exclusively as soluble dimers in the cytosol. Here, we present results of fluorescence fluctuation spectroscopy analyses indicating that, in contrast, the majority of endophilin B1 is present in multiple copies on small, highly mobile cytoplasmic vesicles. Formation of these vesicles was enhanced by overexpression of wild-type dynamin 2, but suppressed by expression of a catalytically inactive dynamin 2 mutant. Using dual-color heterospecies partition analysis, we identified the epidermal growth factor receptor on endophilin B1 vesicles. Moreover, a proportion of endophilin B1 vesicles also contained caveolin, whereas clathrin was almost undetectable on those vesicles. These results raise the possibility that endophilin B1 participates in dynamin 2-dependent formation of a population of transport vesicles distinct from those generated by A-type endophilins. Copyright © 2016. Published by Elsevier Inc.

  4. Stimulation of phosphatidylinositol hydrolysis, protein kinase C translocation, and mitogen-activated protein kinase activity by bradykinin in rat ventricular myocytes: dissociation from the hypertrophic response.

    PubMed Central

    Clerk, A; Gillespie-Brown, J; Fuller, S J; Sugden, P H

    1996-01-01

    In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin >> BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology

  5. Bradykinin-stimulated calcium influx in cultured bovine aortic endothelial cells

    SciTech Connect

    Schilling, W.P.; Ritchie, A.K.; Navarro, L.T.; Eskin, S.G. Univ. of Texas Medical Branch, Galveston )

    1988-08-01

    Bradykinin (BK)-stimulated release of endothelium-derived relaxing factor has been linked to a rise in cytosolic Ca{sup 2+} concentration and a change of K{sup +} permeability of the endothelial cell. In the present study, measurement of BK-induced changes in fura-2 fluorescence and {sup 86}Rb{sup +} efflux were used to monitor changes in cytosolic Ca{sup 2+} and K{sup +} permeability in cultured bovine aortic endothelial cells. In the presence of normal extracellular Ca{sup 2+}, BK induced a fourfold increase in cytosolic Ca{sup 2+}, which peaked at 20 s and declined within 1 min to a value that was 50% of the peak level. Subsequently, cytosolic Ca{sup 2+} decreased and approached basal levels within 8 min. In the absence of Ca{sup 2+}, BK produced a 1.5- to 2-fold increase in cytosolic Ca{sup 2+} that peaked within 20 s and declined to basal levels within 2 min. Addition of Ca{sup 2+} to the Ca-free reaction buffer 3-5 min after addition of BK resulted in a two-to three-fold increase in cytosolic Ca{sup 2+} that declined slowly back to basal levels. Thus Ca{sup 2+} influx can occur in response to BK at a time when there is minimal elevation of cytosolic Ca{sup 2+} above the resting level. Under all conditions tested, {sup 86}Rb{sup +} efflux paralleled changes in the cytosolic Ca{sup 2+}, suggesting that efflux occurred through Ca{sup 2+}-activated K{sup +} channels. Isosmotic substitution of Na{sup +} with N-methyl-D-glucamine did not affect the BK-stimulated changes in cytosolic Ca{sup 2+} or {sup 86}Rb{sup +} efflux, suggesting that Na{sup +}-Ca{sup 2+} exchange plays little role in the BK response. These results suggest that BK stimulates Ca{sup 2+} influx via a BK receptor-operated channel or a channel activated by some internal messenger other than Ca{sup 2+}.

  6. Bradykinin production and increased pulmonary endothelial permeability during acute respiratory failure in unanesthetized sheep.

    PubMed

    O'Brodovich, H M; Stalcup, S A; Pang, L M; Lipset, J S; Mellins, R B

    1981-02-01

    To investigate mechanisms of pulmonary edema in respiratory failure, we studied unanesthetized sheep with vascular catheters, pleural balloons, and chronic lung lymph fistulas. Animals breathed either a hypercapnic-enriched oxygen (n = 5) or a hypercapnic-hypoxic (n = 5) gas mixture for 2 h. Every 15 min blood gases, pressures, cardiac output, lymph flow (Qlym), plasma and lymph albumin (mol wt, 70,000), IgG (mol wt, 150,000), IgM (mol wt, 900,000), and blood bradykinin concentrations were determined. In both groups, cardiac output and pulmonary arterial pressures increased, whereas left atrial pressures were unchanged. Acidosis alone (arterial pH = 7.16, PaCO(2) = 81 mm Hg, PaO(2) = 250 mm Hg) resulted in a doubling of lymph flow, a small increase in protein flux, and a decrease in lymph to plasma protein concentration (L/P) ratio for all three proteins. Acidotic-hypoxic animals (arterial pH = 7.16, PaCO(2) = 84 mm Hg, PaO(2) = 48 mm Hg) tripled Qlym. In these animals the increase in lymphatic flux of albumin, IgG, and IgM was significantly (P < 0.05) greater than that seen in either the acidosis alone group or in animals where left atrial pressures were elevated (n = 5; P < 0.05). Also, their percent increase in flux of the large protein (IgM) was greater than for the small protein (albumin) (P < 0.05). With acidosis alone, only pulmonary arterial bradykinin concentration increased (1.27+/-0.25 ng/ml SE), whereas acidosis plus hypoxia elevated both pulmonary arterial bradykinin concentrations (4.83+/-1.14 ng/ml) and aortic bradykinin concentration (2.74+/-0.78 ng/ml). These studies demonstrate that hypercapnic acidosis stimulates in vivo production of bradykinin. With superimposed hypoxia, and therefore decreased bradykinin degradation, there is an associated sustained rise in Qlym with increased lung permeability to proteins.

  7. Bradykinin Production and Increased Pulmonary Endothelial Permeability during Acute Respiratory Failure in Unanesthetized Sheep

    PubMed Central

    O'Brodovich, Hugh M.; Stalcup, S. Alex; Pang, Leila Mei; Lipset, Joel S.; Mellins, Robert B.

    1981-01-01

    To investigate mechanisms of pulmonary edema in respiratory failure, we studied unanesthetized sheep with vascular catheters, pleural balloons, and chronic lung lymph fistulas. Animals breathed either a hypercapnic-enriched oxygen (n = 5) or a hypercapnic-hypoxic (n = 5) gas mixture for 2 h. Every 15 min blood gases, pressures, cardiac output, lymph flow (Qlym), plasma and lymph albumin (mol wt, 70,000), IgG (mol wt, 150,000), IgM (mol wt, 900,000), and blood bradykinin concentrations were determined. In both groups, cardiac output and pulmonary arterial pressures increased, whereas left atrial pressures were unchanged. Acidosis alone (arterial pH = 7.16, PaCO2 = 81 mm Hg, PaO2 = 250 mm Hg) resulted in a doubling of lymph flow, a small increase in protein flux, and a decrease in lymph to plasma protein concentration (L/P) ratio for all three proteins. Acidotic-hypoxic animals (arterial pH = 7.16, PaCO2 = 84 mm Hg, PaO2 = 48 mm Hg) tripled Qlym. In these animals the increase in lymphatic flux of albumin, IgG, and IgM was significantly (P < 0.05) greater than that seen in either the acidosis alone group or in animals where left atrial pressures were elevated (n = 5; P < 0.05). Also, their percent increase in flux of the large protein (IgM) was greater than for the small protein (albumin) (P < 0.05). With acidosis alone, only pulmonary arterial bradykinin concentration increased (1.27±0.25 ng/ml SE), whereas acidosis plus hypoxia elevated both pulmonary arterial bradykinin concentrations (4.83±1.14 ng/ml) and aortic bradykinin concentration (2.74±0.78 ng/ml). These studies demonstrate that hypercapnic acidosis stimulates in vivo production of bradykinin. With superimposed hypoxia, and therefore decreased bradykinin degradation, there is an associated sustained rise in Qlym with increased lung permeability to proteins. PMID:7007439

  8. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake.

    PubMed

    Pollard, Ricquita D; Blesso, Christopher N; Zabalawi, Manal; Fulp, Brian; Gerelus, Mark; Zhu, Xuewei; Lyons, Erica W; Nuradin, Nebil; Francone, Omar L; Li, Xiang-An; Sahoo, Daisy; Thomas, Michael J; Sorci-Thomas, Mary G

    2015-06-19

    Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system.

  9. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE PERSONAL...

  10. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE PERSONAL...

  11. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE PERSONAL...

  12. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE PERSONAL...

  13. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... and informally any matter within the Commission's jurisdiction concerning natural gas pipelines, oil...

  14. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... and informally any matter within the Commission's jurisdiction concerning natural gas pipelines, oil...

  15. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... and informally any matter within the Commission's jurisdiction concerning natural gas pipelines, oil...

  16. 45 CFR 73b.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Public Health Service, because of violation of the post-employment restrictions of the conflict of... 45 Public Welfare 1 2010-10-01 2010-10-01 false Scope. 73b.1 Section 73b.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION DEBARMENT OR SUSPENSION OF FORMER...

  17. 45 CFR 73b.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Public Health Service, because of violation of the post-employment restrictions of the conflict of... 45 Public Welfare 1 2012-10-01 2012-10-01 false Scope. 73b.1 Section 73b.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION DEBARMENT OR SUSPENSION OF FORMER...

  18. Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons.

    PubMed

    Katanosaka, Kimiaki; Banik, Ratan Kumar; Giron, Rocio; Higashi, Tomohiro; Tominaga, Makoto; Mizumura, Kazue

    2008-11-01

    Bradykinin (BK), a major inflammatory mediator, excites and sensitizes nociceptor neurons/fibers, thus evoking pain and hyperalgesia. The cellular signaling mechanisms underlying these actions have remained unsolved, especially in regard to the identity of channels that mediate acute excitation. Here, to clarify the contribution of transient receptor potential vanilloid 1 (TRPV1), a heat-sensitive ion channel, to the BK-evoked nociceptor excitation and pain, we examined the behavioral and physiological BK-responses in TRPV1-deficient (KO) mice. A nocifencive behavior after BK injection (100 pmol/site) into mouse sole was reduced in TRPV1-KO mice compared with wild-type (WT). A higher dose of BK (1 nmol/site), however, induced the response in TRPV1-KO mice indistinguishable from that in the WT. BK-evoked excitation of cutaneous C-fibers in TRPV1-KO mice was comparable to that in WT. BK clearly increased intracellular calcium in cultured dorsal root ganglion (DRG) neurons of TRPV1-KO mice, although the incidence of BK-sensitive neurons was reduced. BK has been reported to activate TRPA1 indirectly, yet a considerable part of BK-sensitive DRG neurons did not respond to a TRPA1 agonist, mustard oil. These results suggest that BK-evoked nociception/nociceptor response would not be simply explained by activation of TRPV1 and A1, and that BK-evoked nociceptor excitation would be mediated by several ionic mechanisms.

  19. Protective effect of bradykinin antagonist Hoe-140 during in vivo myocardial ischemic-reperfusion injury in the cat.

    PubMed

    Kumari, Rashmi; Maulik, Mohua; Manchanda, Subhash Chandra; Maulik, Subir Kumar

    2003-10-15

    The effect of icatibant (Hoe-140), a selective bradykinin receptor (B(2)) antagonist on myocardial ischemic-reperfusion injury was studied in open chest barbiturate anaesthetized cats. The left anterior descending coronary artery was occluded for 15 min, followed by 60 min of reperfusion. Saline or icatibant (200 microg/kg) was administered intravenously slowly over 2 min, 5 min before reperfusion. In the saline-treated group, myocardial ischemic-reperfusion injury was evidenced by depressed MAP, depressed peak positive and negative dP/dt and elevated left ventricular end-diastolic pressure and enhanced oxidative stress [elevated plasma thiobarbituric acid reactive substances (TBARS; a marker for lipid peroxidation), depressed myocardial GSH (reduced glutathione), superoxide dismutase (SOD), catalase] and depletion of adenosine triphosphate (ATP) along with rise in plasma creatine phosphokinase (CPK). Administration of icatibant resulted in complete hemodynamic recovery together with repletion of ATP and reduction in plasma TBARS without any significant change in myocardial SOD, catalase and GSH. The results of the present study suggest a protective role of icatibant in myocardial ischemic-reperfusion injury.

  20. Mechanisms underlying the relaxation response induced by bradykinin in the epithelium-intact guinea-pig trachea in vitro

    PubMed Central

    Schlemper, Valfredo; Medeiros, Rodrigo; Ferreira, Juliano; Campos, Maria M; Calixto, João B

    2005-01-01

    In this study, we investigated some of the signalling pathways involved in bradykinin (BK)-induced relaxation in epithelium-intact strips of the guinea-pig trachea (GPT+E). BK induced time- and concentration-dependent relaxation of GPT+E. Similar responses were observed for prostaglandin E2 (PGE2) or the combination of subthreshold concentrations of BK plus PGE2. The nonselective cyclooxygenase (COX) inhibitors indomethacin or pyroxicam, or the selective COX-2 inhibitors DFU, NS 398 or rofecoxib, but not the selective COX-1 inhibitor SC 560, all abolished BK-induced relaxation. The tyrosine kinase inhibitors herbimycin A and AG 490 also abolished BK-induced relaxation in GPT+E. The nonselective nitric oxide synthase (NOS) inhibitor 7-NINA concentration-dependently inhibited BK effects. BK-induced relaxation was prevented by the selective antagonists for EP3 (L 826266), but not by EP1 (SC 19221), EP1/EP2 (AH 6809) or EP4 (L 161982) receptor antagonists. Otherwise, the selective inhibitors of protein kinases A, G and C, mitogen-activated protein kinases, phospholipases C and A2, nuclear factor-κB or potassium channels all failed to significantly interfere with BK-mediated relaxation. BK caused a marked increase in PGE2 levels, an effect that was prevented by NS 398, HOE 140 or AG 490. COX-2 expression did not differ in preparations with or without epithelium, and it was not changed by BK stimulation. However, incubation with BK significantly increased the endothelial NOS (eNOS) and neuronal NOS (nNOS) expression, independent of the epithelium integrity. Our results indicate that BK-induced relaxation in GPT+E depends on prostanoids (probably PGE2 acting via EP3 receptors) and NO release and seems to involve complex interactions between kinin B2 receptors, COX-2, nNOS, eNOS and tyrosine kinases. PMID:15852038

  1. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis.

    PubMed

    Ren, Decheng; Zhou, Yingjiang; Morris, David; Li, Minghua; Li, Zhiqin; Rui, Liangyou

    2007-02-01

    SH2B1 (previously named SH2-B), a cytoplasmic adaptor protein, binds via its Src homology 2 (SH2) domain to a variety of protein tyrosine kinases, including JAK2 and the insulin receptor. SH2B1-deficient mice are obese and diabetic. Here we demonstrated that multiple isoforms of SH2B1 (alpha, beta, gamma, and/or delta) were expressed in numerous tissues, including the brain, hypothalamus, liver, muscle, adipose tissue, heart, and pancreas. Rat SH2B1beta was specifically expressed in neural tissue in SH2B1-transgenic (SH2B1(Tg)) mice. SH2B1(Tg) mice were crossed with SH2B1-knockout (SH2B1(KO)) mice to generate SH2B1(TgKO) mice expressing SH2B1 only in neural tissue but not in other tissues. Systemic deletion of the SH2B1 gene resulted in metabolic disorders in SH2B1(KO) mice, including hyperlipidemia, leptin resistance, hyperphagia, obesity, hyperglycemia, insulin resistance, and glucose intolerance. Neuron-specific restoration of SH2B1beta not only corrected the metabolic disorders in SH2B1(TgKO) mice, but also improved JAK2-mediated leptin signaling and leptin regulation of orexigenic neuropeptide expression in the hypothalamus. Moreover, neuron-specific overexpression of SH2B1 dose-dependently protected against high-fat diet-induced leptin resistance and obesity. These observations suggest that neuronal SH2B1 regulates energy balance, body weight, peripheral insulin sensitivity, and glucose homeostasis at least in part by enhancing hypothalamic leptin sensitivity.

  2. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    PubMed

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  3. Iodination of (Tyr8)-bradykinin-comparison of chloramine-T and lactoperoxidase techniques

    SciTech Connect

    Redman, L.W.; Tustanoff, E.R.

    1984-01-01

    Antigen-antibody kinetics were studied using a hapten which was iodinated by two unique procedures. Using bradykinin, a vasopressor hormone as a model peptide, radioactive iodination (/sup 125/I) of its 8-tyrosyl analogue was carried out both enzymatically and chemically using modified procedures. Two distinct chemical species were obtained which were characterized on a chromatographic, chemical as well as charge basis as a mono-iodinated form of (Tyr8)-bradykinin using the lactoperoxidase procedure and a di-iodinated entity using chloramine-T technique. The addition of a second iodine atom to the antigen lowers its immunoreactivity for its antibody and thus alters the kinetics of this reaction. Further experiments on the stability (temperature, time of storage, and chemical environment) of these iodinated peptides are described.

  4. B-1 cells temper endotoxemic inflammatory responses.

    PubMed

    Barbeiro, Denise Frediani; Barbeiro, Hermes Vieira; Faintuch, Joel; Ariga, Suely K Kubo; Mariano, Mario; Popi, Ana Flávia; de Souza, Heraldo Possolo; Velasco, Irineu Tadeu; Soriano, Francisco Garcia

    2011-03-01

    Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-α, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-α, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-α, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling.

  5. Formoterol and salbutamol inhibit bradykinin- and histamine-induced airway microvascular leakage in guinea-pig.

    PubMed Central

    Advenier, C.; Qian, Y.; Koune, J. D.; Molimard, M.; Candenas, M. L.; Naline, E.

    1992-01-01

    1. The effects of the beta 2-adrenoceptor agonists, salbutamol and formoterol, on the increase of microvascular permeability induced by histamine or bradykinin in guinea-pig airways have been studied in vivo. Extravasation of intravenously injected Evans blue dye was used as an index of permeability. The effects of salbutamol and formoterol on the increase in pulmonary airway resistance induced by histamine or bradykinin have also been studied. 2. The increase in pulmonary airway resistance induced by histamine or bradykinin was totally inhibited by salbutamol and formoterol. The ED50 of the two mediators were 0.59 +/- 0.21 (n = 5) and 0.20 +/- 0.14 (n = 5) micrograms kg-1 respectively for salbutamol, and 0.13 +/- 0.12 (n = 6) and 0.02 +/- 0.01 (n = 6) micrograms kg-1 respectively for formoterol. 3. Salbutamol (10 and 30 micrograms kg-1) and formoterol (1 and 10 micrograms kg-1) inhibited the increase of microvascular permeability induced by histamine (30 micrograms kg-1) in the guinea-pig airways. The inhibitory effect was predominant in the trachea and the main bronchi, with a maximum inhibition of 20 to 50%. The two drugs had little or no inhibitory effect on the other structures studied, viz. nasal mucosa, larynx, proximal and distal intrapulmonary airways. 4. Salbutamol and formoterol (1 and 10 micrograms kg-1) abolished the increase in microvascular permeability induced by bradykinin (0.3 micrograms kg-1). This inhibitory effect of two beta-adrenoceptor stimulants was predominant in the trachea and the nasal mucosa where it was observed with 1 microgram kg-1 of the beta-adrenoceptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1354535

  6. Bradykinin in Hemipepsis ustulata: A novel method for safely milking wasps.

    PubMed

    White, Shawn R; Kadavakollu, Samuel

    2016-07-01

    Wasp venom characterization is of interest across multiple disciplines such as medicinal chemistry and evolutionary biology. A simple method is described herein to milk wasp venom without undue risks to the researcher. The wasps were immobilized by cooling for safe handling, restrained, and their venom was collected on parafilm. Bradykinin from Hemipepsis ustulata was identified by LC-MS/MS during method verification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pulmonary oedema producing toxin from Mesobuthus tamulus venom augments cardio-respiratory reflexes through B2 kinin receptors.

    PubMed

    Alex, Anitha B; Akella, Aparna; Tiwari, Anil K; Deshpande, Shripad B

    2014-01-01

    The current study was undertaken to compare the effects of pulmonary oedema producing toxin (PO-Tx) isolated from Mesobuthus tamulus venom on cardio-respiratory reflexes with exogenously administered bradykinin (BK) and to delineate the type of BK receptors mediating these responses. Jugular venous injection of phenyldiguanide (PDG) in anaesthetized rats produced reflex bradycardia, hypotension and apnoea. The PDG-induced reflex was augmented (two folds) by PO-Tx. The pulmonary water content in PO-Tx treated group was also increased. The PO-Tx-induced reflex changes as well as pulmonary oedema were blocked by-Hoe-140 implicating the involvement of B2 kinin receptors. Exogenous BK also produced augmentation (two folds) of the PDG-induced reflexes and increased the pulmonary water content. The BK-induced augmentation was blocked by pre-treatment with des-Arg10 Hoe 140 (a B1 receptor antagonist) and Hoe 140 (B2 receptor antagonist). However, these antagonists did not prevent the development of BK-induced pulmonary oedema. Present results indicate that PO-Tx augmented the PDG-induced reflex responses similar to BK and the PO-Tx induced augmentation of reflexes is mediated through B2 receptors.

  8. Observation of B Meson decays to b1pi and b1K.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Tico, J Garra; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Pegna, D Lopes; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Vazquez, W Panduro; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H

    2007-12-14

    We present the results of searches for decays of B mesons to final states with a b1 meson and a charged pion or kaon. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 382x10(6) BB[over ] pairs produced in e+e- annihilation. The results for the branching fractions are, in units of 10(-6), B(B+-->b1(0)pi+)=6.7+/-1.7+/-1.0, B(B+-->b1(0)K+)=9.1+/-1.7+/-1.0, B(B0-->b1(-/+)pi(+/-))=10.9+/-1.2+/-0.9, and B(B0-->b1(-)K+)=7.4+/-1.0+/-1.0, with the assumption that B(b1-->omega pi)=1. We also measure charge and flavor asymmetries A(ch)(B+-->b1(0)pi+)=0.05+/-0.16+/-0.02, Ach(B+-->b1(0)K+)=-0.46+/-0.20+/-0.02, A(ch)(B0-->b1(-/+)pi(+/-))=-0.05+/-0.10+/-0.02, C(B0-->b1(-/+)pi(+/-))=-0.22+/-0.23+/-0.05, DeltaC(B0-->b1(-/+)pi(+/-))=-1.04+/-0.23+/-0.08, and A(ch)(B0-->b1(-)K+)=-0.07+/-0.12+/-0.02. The first error quoted is statistical, and the second systematic.

  9. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    SciTech Connect

    Catalán, Mabel; Smolic, Christian; Contreras, Ariel; Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer; Lavandero, Sergio; Velarde, Victoria; Díaz-Araya, Guillermo

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  10. MR fingerprinting with simultaneous B1 estimation

    PubMed Central

    Sawiak, Stephen J.

    2015-01-01

    Purpose MR fingerprinting (MRF) can be used for quantitative estimation of physical parameters in MRI. Here, we extend the method to incorporate B1 estimation. Methods The acquisition is based on steady state free precession MR fingerprinting with a Cartesian trajectory. To increase the sensitivity to the B1 profile, abrupt changes in flip angle were introduced in the sequence. Slice profile and B1 effects were included in the dictionary and the results from two‐ and three‐dimensional (3D) acquisitions were compared. Acceleration was demonstrated using retrospective undersampling in the phase encode directions of 3D data exploiting redundancy between MRF frames at the edges of k‐space. Results Without B1 estimation, T2 and B1 were inaccurate by more than 20%. Abrupt changes in flip angle improved B1 maps. T1 and T2 values obtained with the new MRF methods agree with classical spin echo measurements and are independent of the B1 field profile. When using view sharing reconstruction, results remained accurate (error <10%) when sampling under 10% of k‐space from the 3D data. Conclusion The methods demonstrated here can successfully measure T1, T2, and B1. Errors due to slice profile can be substantially reduced by including its effect in the dictionary or acquiring data in 3D. Magn Reson Med 76:1127–1135, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:26509746

  11. Large dynamic range relative B1+ mapping

    PubMed Central

    Hess, Aaron T.; Aljabar, Paul; Malik, Shaihan J.; Jezzard, Peter; Robson, Matthew D.; Hajnal, Joseph V.; Koopmans, Peter J.

    2015-01-01

    Purpose Parallel transmission (PTx) requires knowledge of the B1+ produced by each element. However, B1+ mapping can be challenging when transmit fields exhibit large dynamic range. This study presents a method to produce high quality relative B1+ maps when this is the case. Theory and Methods The proposed technique involves the acquisition of spoiled gradient echo (SPGR) images at multiple radiofrequency drive levels for each transmitter. The images are combined using knowledge of the SPGR signal equation using maximum likelihood estimation, yielding an image for each channel whose signal is proportional to the B1+ field strength. Relative B1+ maps are then obtained by taking image ratios. The method was tested using numerical simulations, phantom imaging, and through in vivo experiments. Results The numerical simulations demonstrated that the proposed method can reconstruct relative transmit sensitivities over a wide range of B1+ amplitudes and at several SNR levels. The method was validated at 3 Tesla (T) by comparing it with an alternative B1+ mapping method, and demonstrated in vivo at 7T. Conclusion Relative B1+ mapping in the presence of large dynamic range has been demonstrated through numerical simulations, phantom imaging at 3T and experimentally at 7T. The method will enable PTx to be applied in challenging imaging scenarios at ultrahigh field. Magn Reson Med 76:490–499, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26308375

  12. B-1a Lymphocytes Attenuate Insulin Resistance

    PubMed Central

    Shen, Lei; Chng, MH; Alonso, Michael N.; Yuan, Robert

    2015-01-01

    Obesity-associated insulin resistance, a common precursor of type 2 diabetes, is characterized by chronic inflammation of tissues, including visceral adipose tissue (VAT). Here we show that B-1a cells, a subpopulation of B lymphocytes, are novel and important regulators of this process. B-1a cells are reduced in frequency in obese high-fat diet (HFD)-fed mice, and EGFP interleukin-10 (IL-10) reporter mice show marked reductions in anti-inflammatory IL-10 production by B cells in vivo during obesity. In VAT, B-1a cells are the dominant producers of B cell–derived IL-10, contributing nearly half of the expressed IL-10 in vivo. Adoptive transfer of B-1a cells into HFD-fed B cell–deficient mice rapidly improves insulin resistance and glucose tolerance through IL-10 and polyclonal IgM-dependent mechanisms, whereas transfer of B-2 cells worsens metabolic disease. Genetic knockdown of B cell–activating factor (BAFF) in HFD-fed mice or treatment with a B-2 cell–depleting, B-1a cell–sparing anti-BAFF antibody attenuates insulin resistance. These findings establish B-1a cells as a new class of immune regulators that maintain metabolic homeostasis and suggest manipulation of these cells as a potential therapy for insulin resistance. PMID:25249575

  13. Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins.

    PubMed Central

    Huynh-Do, U; Stein, E; Lane, A A; Liu, H; Cerretti, D P; Daniel, T O

    1999-01-01

    Receptors of the Eph family and their ligands (ephrins) mediate developmental vascular assembly and direct axonal guidance. Migrating cell processes identify appropriate targets within migratory fields based on topographically displayed ephrin gradients. Here, EphB1 regulated cell attachment by discriminating the density at which ephrin-B1 was displayed on a reconstituted surface. EphB1-ephrin-B1 engagement did not promote cell attachment through mechanical tethering, but did activate integrin-mediated attachment. In endothelial cells, attachment to RGD peptides or fibrinogen was mediated through alphavbeta3 integrin. EphB1 transfection conferred ephrin-B1-responsive activation of alpha5beta1 integrin-mediated cell attachment in human embryonic kidney cells. Activation-competent but signaling-defective EphB1 point mutants failed to stimulate ephrin-B1 dependent attachment. These findings lead us to propose that EphB1 functions as a 'ligand density sensor' to signal integrin-mediated cell-matrix attachment. PMID:10205170

  14. The double life of a B-1 cell: self-reactivity selects for protective effector functions.

    PubMed

    Baumgarth, Nicole

    2011-01-01

    During their development, B and T cells with self-reactive antigen receptors are generally deleted from the repertoire to avoid autoimmune diseases. Paradoxically, innate-like B-1 cells in mice are positively selected for self-reactivity and form a pool of long-lived, self-renewing B cells that produce most of the circulating natural IgM antibodies. This Review provides an overview of the developmental processes that shape the B-1 cell pool in mice, outlines the functions of B-1 cells in both the steady state and during host defence, and discusses possible functional B-1 cell homologues that exist in humans.

  15. SH2B1 and IRSp53 proteins promote the formation of dendrites and dendritic branches.

    PubMed

    Chen, Chien-Jen; Shih, Chien-Hung; Chang, Yu-Jung; Hong, Shao-Jing; Li, Tian-Neng; Wang, Lily Hui-Ching; Chen, Linyi

    2015-03-06

    SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching.

  16. SH2B1 and IRSp53 Proteins Promote the Formation of Dendrites and Dendritic Branches*

    PubMed Central

    Chen, Chien-Jen; Shih, Chien-Hung; Chang, Yu-Jung; Hong, Shao-Jing; Li, Tian-Neng; Wang, Lily Hui-Ching; Chen, Linyi

    2015-01-01

    SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching. PMID:25586189

  17. Cyp1b1 exerts opposing effects on intestinal tumorigenesis via exogenous and endogenous substrates

    PubMed Central

    Halberg, Richard B.; Larsen, Michele Campaigne; Elmergreen, Tammy L.; Ko, Alex Y.; Irving, Amy A.; Clipson, Linda; Jefcoate, Colin R.

    2008-01-01

    Cytochrome P450 1B1 (Cyp1b1) metabolism contributes to physiological functions during embryogenesis, but also to carcinogenic activation of polycyclic aromatic hydrocarbons (PAH). We generated Cyp1b1-deficient mice carrying the Min allele of the Adenomatous polyposis coli gene. These Cyp1b1-deficient Min mice developed twice as many tumors as Min controls, which, however, remained similar in size and histology. Tumors from older (130 day) Cyp1b1-deficient Min mice exhibited focal areas of nuclear atypia associated with less organized epithelia. The metabolism of endogenous substrates by Cyp1b1, therefore, suppresses tumor initiation, but also affects progression. Treatment of Min mice with 7,12-dimethylbenzanthracene (DMBA) doubled both tumor multiplicity and size within 20 days, but not when mice lacked Cyp1b1. This was paralleled by an abnormal staining of crypts with β catenin, phospho-IKK, and ReIA, which may represent an early stage of tumorigenesis similar to aberrant crypt formation. Cyp1b1 deletion did not affect circulating DMBA and metabolites. Cyp1b1 expression was higher in the tumors compared to normal small intestines. Increased tumorigenesis may, therefore, arise from generation of DMBA metabolites by Cyp1b1 in the developing tumors. Benzo(a)pyrene (BP), which is similarly activated by Cyp1b1 in vitro, did not affect tumorigenesis in Min mice. By contrast, BP and DMBA each suppressed tumor multiplicity in absence of Cyp1b1. Cyp1b1 metabolism of DMBA and endogenous oxygenation products may each impact a tumor promoting NF-κB. activation, whereas Ah receptor activation by PAH effects suppression. Tumorigenesis may, therefore, depend on activation of PAH by Cyp1b1, and on off-setting suppression by Cyp1b1 of endogenous tumor-enhancing substrates. PMID:18794127

  18. Aflatoxin B1 in common Egyptian foods.

    PubMed

    Selim, M I; Popendorf, W; Ibrahim, M S; el Sharkawy, S; el Kashory, E S

    1996-01-01

    Samples of common Egyptian foods (17 nuts and seeds, 10 spices, 31 herbs and medicinal plants, 12 dried vegetables, and 28 cereal grains) were collected from markets in Cairo and Giza. A portion of each sample was extracted with chloroform, and the concentrated extract was cleaned by passing through a silica gel column. Aflatoxin B1 was determined by reversed-phase liquid chromatography with UV detection. The highest prevalence of aflatoxin B1 was in nuts and seeds (82%), followed by spices (40%), herbs and medicinal plants (29%), dried vegetables (25%), and cereal grains (21%). The highest mean concentration of aflatoxin B1 was in herb and medicinal plants (49 ppb), followed by cereals (36 ppb), spices (25 ppb), nuts and seeds (24 ppb), and dried vegetables (20 ppb). Among nuts and seeds, the prevalence of aflatoxin B1 was highest (100%) in watermelon seeds, inshell peanuts, and unshelled peanuts. The lowest prevalence and concentrations were in hommos (garbanzo beans). The highest concentrations of aflatoxin B1 were detected in foods that had no potential for field contamination but required drying during processing and storage, such as pomegranate peel, watermelon seeds, and molokhia.

  19. Remote ischaemic preconditioning down-regulates kinin receptor expression in neutrophils of patients undergoing heart surgery

    PubMed Central

    Saxena, Pankaj; Aggarwal, Shashi; Misso, Neil L.; Passage, Jurgen; Newman, Mark A. J.; Thompson, Philip J.; d'Udekem, Yves; Praporski, Slavica; Konstantinov, Igor E.

    2013-01-01

    OBJECTIVES Remote ischaemic preconditioning (RIPC) may protect distant organs against ischaemia-reperfusion injury. We investigated the impact of RIPC on kinin receptor expression in neutrophils following RIPC in patients undergoing coronary artery bypass grafting (CABG). METHODS Patients undergoing elective CABG with cardiopulmonary bypass (CPB) were randomized to RIPC (n = 15) or control (n = 15) groups. The study group underwent RIPC by inflation of a blood pressure cuff on the arm. Expression of kinin receptors, plasma concentrations of IL-6, IL-8, IL-10, TNF-α and neutrophil elastase were determined at baseline (before RIPC/sham), immediately before surgery (after RIPC/sham) and 30 min and 24 h after surgery. Plasma bradykinin levels were assessed before and after RIPC/sham, and at 30 min, 6, 12 and 24 h after surgery. Serum creatine kinase (CK), troponin I, C-reactive protein (CRP) and lactate levels were measured immediately prior to surgery and 30 min, 6, 12, 24 and 48 h after surgery. RESULTS Kinin B2 receptor expression did not differ between the groups at baseline (pre-RIPC), but was significantly lower in the RIPC group than in the control group after RIPC/sham (P < 0.05). Expressions of both kinin B1 and B2 receptors were significantly down-regulated in the RIPC group, and this persisted to 24 h after surgery (P < 0.001). Neutrophil elastase levels were significantly increased after surgery. There were no differences in CK, CRP, cytokine, lactate or troponin I levels between the groups. CONCLUSIONS RIPC down-regulated the expression of kinin B1 and B2 receptors in neutrophils of patients undergoing CABG. PMID:23814135

  20. Down-regulation of TGF-b1, TGF-b receptor 2, and TGF-b-associated microRNAs, miR-20a and miR-21, in skin lesions of sulfur mustard-exposed Iranian war veterans.

    PubMed

    Valizadeh, Mohadeseh; Mirzaei, Behnaz; Tavallaei, Mahmood; Noorani, Mohammad Reza; Amiri, Mojtaba; Soroush, Mohammad Reza; Mowla, Seyed Javad

    2015-01-01

    Sulfur mustard (SM) affects divergent cellular pathways including cell cycle, apoptosis, necrosis, and inflammatory responses. SM-induced lesions in skin include late-onset hyper-pigmentation, xerosis, and atrophy. It seems that TGF-b signaling pathway is a major player for SM pathogenesis. Here, we have employed a real-time polymerase chain reaction (PCR) approach to evaluate the expression alterations of all TGF-b variants and their receptors in skin biopsies obtained from 10 Iran-Iraq war veterans. Using specific LNA primers, the expression alteration of a TGF-bR2 regulator, miR-20a, and TGF-b downstream target, miR-21, was also assessed in the same samples Our real-time PCR data revealed a significant down-regulation of TGF-b1 and TGF-bR2, the major mediators of TGF-b signaling pathway, in skin biopsies of SM-exposed patients (p = 0.0015 and p = 0.0115, respectively). Down-regulation of TGF-b signaling pathway seems to contribute in severe inflammation observed in SM-exposed patients' tissues. MiR-20a and miR-21, as two important TGF-b associated microRNAs (miRNAs), were also down-regulated in SM-exposed skin lesions, compared to those of control group (p = 0.0003). Based on our findings, these miRNAs could be directly or indirectly involve in the pathogenesis of SM. Altogether, our data suggest the suitability of TGF-b1, TGF-bR2, as well as miR-20a and miR-21 as potential biomarkers for diagnosis and treatment of SM-exposed patients.

  1. Reversible desensitization of fibroblasts to cadmium receptor stimuli: evidence that growth in high zinc represses a xenobiotic receptor.

    PubMed

    Smith, L; Pijuan, V; Zhuang, Y; Smith, J B

    1992-09-01

    The xenobiotic Cd2+ triggers the production of inositol trisphosphate and releases stored Ca2+ in certain cell types, apparently by binding to a zinc site in the external domain of an "orphan" receptor (no known endogenous stimulus). Cd2+ and bradykinin evoke similar spikes in cytosolic free Ca2+. Growth in high Zn2+ (100-200 microM) abolished the free Ca2+ spike evoked by Cd2+ without affecting the spike produced by bradykinin. Growth in high Zn2+ almost abolished Cd(2+)-evoked production of [3H]inositol mono-, bis-, and trisphosphate. Bradykinin-evoked [3H]inositol phosphate production was not affected by growth in high Zn2+. Growth in high Zn2+ nearly prevented the stimulation of 45Ca2+ efflux by Cd2+ without affecting the stimulation of 45Ca2+ efflux by bradykinin or histamine. Removing Zn2+ from the culture medium and incubating the cells for several hours fully restored responsiveness to Cd2+. Cycloheximide, actinomycin D, or tunicamycin prevented the restoration of Cd2+ responsiveness, indicating that resensitization requires macromolecular synthesis. Growth in high Zn2+ reversibly abolished Ca2+ mobilization evoked by two additional stimuli: a decrease in extracellular pH or Na+ concentration. These findings support the hypothesis that the three stimuli (Cd2+ or a decrease in external pH or Na+ concentration) activate the same orphan receptor. Growth in high Zn2+ apparently desensitizes the cells to the Cd2+ receptor stimuli by repressing receptor synthesis.

  2. Comparative immunohistochemical localisation of GABA(B1a), GABA(B1b) and GABA(B2) subunits in rat brain, spinal cord and dorsal root ganglion.

    PubMed

    Charles, K J; Evans, M L; Robbins, M J; Calver, A R; Leslie, R A; Pangalos, M N

    2001-01-01

    GABA(B) receptors are G-protein-coupled receptors mediating the slow onset and prolonged synaptic actions of GABA in the CNS. The recent cloning of two genes, GABA(B1) and GABA(B2), has revealed a novel requirement for GABA(B) receptor signalling. Studies have demonstrated that the two receptor subunits associate as a GABA(B1)/GABA(B2) heterodimer to form a functional GABA(B) receptor. In this study we have developed polyclonal antisera specific to two splice variants of the GABA(B1) subunit, GABA(B1a) and GABA(B1b), as well as an antiserum to the GABA(B2) subunit. Using affinity-purified antibodies derived from these antisera we have mapped out the distribution profile of each subunit in rat brain, spinal cord and dorsal root ganglion. In brain the highest areas of GABA(B1a), GABA(B1b) and GABA(B2) subunit expression were found in neocortex, hippocampus, thalamus, cerebellum and habenula. In spinal cord, GABA(B1) and GABA(B2) subunits were expressed in the superficial layers of the dorsal horn, as well as in motor neurones in the deeper layers of the ventral horn. GABA(B) receptor subunit immunoreactivity in dorsal root ganglion suggested that expression of GABA(B1b) was restricted to the large diameter neurones, in contrast to GABA(B1a) and GABA(B2) subunits which were expressed in both large and small diameter neurones. Although expression levels of GABA(B1) and GABA(B2) subunits varied we found no areas in which GABA(B1) was expressed in the absence of GABA(B2). This suggests that most, if not all, GABA(B1) immunoreactivity may represent functional GABA(B) receptors. Although our data are in general agreement with functional studies, some discrepancies in GABA(B1) subunit expression occurred with respect to other immunohistochemical studies. Overall our data suggest that GABA(B) receptors are widely expressed throughout the brain and spinal cord, and that GABA(B1a) and GABA(B1b) subunits can associate with GABA(B2) to form both pre- and post-synaptic receptors.

  3. 7 CFR 1b.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.1 Purpose. (a) This part supplements the regulations for implementation of the National Environmental Policy Act (NEPA), for which regulations were published by the Council on Environmental Quality (CEQ) in 40 CFR parts 1500 through 1508. This...

  4. 7 CFR 1b.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.1 Purpose. (a) This part supplements the regulations for implementation of the National Environmental Policy Act (NEPA), for which regulations were published by the Council on Environmental Quality (CEQ) in 40 CFR parts 1500 through 1508. This part...

  5. 7 CFR 1b.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.1 Purpose. (a) This part supplements the regulations for implementation of the National Environmental Policy Act (NEPA), for which regulations were published by the Council on Environmental Quality (CEQ) in 40 CFR parts 1500 through 1508. This part...

  6. 7 CFR 1b.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.1 Purpose. (a) This part supplements the regulations for implementation of the National Environmental Policy Act (NEPA), for which regulations were published by the Council on Environmental Quality (CEQ) in 40 CFR parts 1500 through 1508. This part...

  7. 7 CFR 1b.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.1 Purpose. (a) This part supplements the regulations for implementation of the National Environmental Policy Act (NEPA), for which regulations were published by the Council on Environmental Quality (CEQ) in 40 CFR parts 1500 through 1508. This part...

  8. 32 CFR 242b.1 - Regents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SCIENCES § 242b.1 Regents. (a) History and name. The Congress of the United States in the Uniformed... to conduct the business of the Uniformed Services University of the Health Sciences, and designated this body “the Board of Regents of the Uniformed Services University of the Health Sciences,” referred...

  9. Presenilin-dependent intramembrane cleavage of ephrin-B1

    PubMed Central

    Tomita, Taisuke; Tanaka, Sayaka; Morohashi, Yuichi; Iwatsubo, Takeshi

    2006-01-01

    Background Presenilin-dependent γ-secretase cleavage of several transmembrane proteins, including amyloid-β precursor protein and Notch, mediates the intramembrane proteolysis to liberate their intracellular domains that are involved in cellular signaling. Considering γ-secretase inhibitors as therapeutics for Alzheimer's disease, understanding the physiologically and biologically important substrate for γ-secretase activity in brains is emerging issue. To elucidate the molecular mechanism and physiological role of γ-secretase, we screened candidate molecules for γ-secretase substrates. Results We show that ephrin-B1, that participates in cell-cell repulsive and attractive signaling together with its Eph receptor, constitutively undergoes ectodomain shedding and that the residual membrane-tethered fragment is sequentially cleaved by γ-secretase to release the intracellular domain. Furthermore, overexpression of membrane-tethered ephrin-B1 caused protrusion of numerous cellular processes consisted of F-actin, that required the preservation of the most C-terminal region of ephrin-B1. In contrast, soluble intracellular domain translocated into the nucleus and had no effect on cell morphology. Conclusion Our findings suggest that ephrin-B is a genuine substrate for γ-secretase and regulates the cytoskeletal dynamics through intramembrane proteolysis. PMID:16930449

  10. Subtype-specific role of phospholipase C-beta in bradykinin and LPA signaling through differential binding of different PDZ scaffold proteins.

    PubMed

    Choi, Jung Woong; Lim, Seyoung; Oh, Yong-Seok; Kim, Eung-Kyun; Kim, Sun-Hee; Kim, Yun-Hee; Heo, Kyun; Kim, Jaeyoon; Kim, Jung Kuk; Yang, Yong Ryul; Ryu, Sung Ho; Suh, Pann-Ghill

    2010-07-01

    Among phospholipase C (PLC) isozymes (beta, gamma, delta, epsilon, zeta and eta), PLC-beta plays a key role in G-protein coupled receptor (GPCR)-mediated signaling. PLC-beta subtypes are often overlapped in their distribution, but have unique knock-out phenotypes in organism, suggesting that each subtype may have the different role even within the same type of cells. In this study, we examined the possibility of the differential coupling of each PLC-beta subtype to GPCRs, and explored the molecular mechanism underlying the specificity. Firstly, we found that PLC-beta1 and PLC-beta 3 are activated by bradykinin (BK) or lysophosphatidic acid (LPA), respectively. BK-triggered phosphoinositides hydrolysis and subsequent Ca(2+) mobilization were abolished specifically by PLC-beta1 silencing, whereas LPA-triggered events were by PLC-beta 3 silencing. Secondly, we showed the evidence that PDZ scaffold proteins is a key mediator for the selective coupling between PLC-beta subtype and GPCR. We found PAR-3 mediates physical interaction between PLC-beta1 and BK receptor, while NHERF2 does between PLC-beta 3 and LPA(2) receptor. Consistently, the silencing of PAR-3 or NHERF2 blunted PLC signaling induced by BK or LPA respectively. Taken together, these data suggest that each subtype of PLC-beta is selectively coupled to GPCR via PDZ scaffold proteins in given cell types and plays differential role in the signaling of various GPCRs.

  11. A vote for robustness: Monitoring serum enzyme activity by thin-layer chromatography of dabsylated bradykinin products.

    PubMed

    Bayer, Malte; König, Simone

    2017-09-05

    High-end analytical methods provide excellent data but may lack the robustness required in large analytical studies. In particular complex chemical matrices may cause difficulties and increase the need for extensive sample preparation. For screening of patients we thus developed a low-tech assay to monitor bradykinin degradation by serum proteases. The bradykinin concentration mirrors the activity of angiotensin-converting enzyme (ACE). Dabsylated bradykinin (DBK) and its labeled fragments DBK1-8 and DBK1-5 were visualized by thin-layer chromatography using only 3μL of serum. Lower DBK1-5 levels indicated reduced ACE activity due to medication (ACE-inhibitors) or disease. Provided that purified DBK is available, the assay protocol itself is very simple and does not require any expensive high-end equipment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of the intra-arterial injection of bradykinin into the limbs, upon the activity of mesencephalic reticular units.

    PubMed

    Lombard, M C; Guilbaud, G; Besson, J M

    1975-02-01

    The changes in firing rate of mesencephalic reticular units after intra-arterial injection into the limbs of a potent nociceptive agent, bradykinin, were studied in cats (unanesthetized, immobilized with flaxedil and hyperventilated). 30 per cent of the d35 studied cells were affected, 56 per cent were excited, 23 per cent inhibited and 5 per cent had mixed effects. Among the 75 excited cells, the activation of 16 of them seemed to related to the arousa- processes (group A); for 56 cells the increase seemed dire-tly dependent on the nociceptive stimulation itself (group B). The changes of firing rate were repruducible; their latencies and durations were of the same order as the latencies and duration of the nociceptive reactions and painful sensation s, which have been obtained in animals and men after bradykinin injections. The modifications induced by bradykinin administration were suppressed by Ketamin and Thiopental.

  13. Expression of genes encoding antimicrobial and bradykinin-related peptides in skin of the stream brown frog Rana sakuraii.

    PubMed

    Suzuki, Hiroe; Iwamuro, Shawichi; Ohnuma, Aya; Coquet, Laurent; Leprince, Jérôme; Jouenne, Thierry; Vaudry, Hubert; Taylor, Christopher K; Abel, Peter W; Conlon, J Michael

    2007-03-01

    Peptidomic analysis of an extract of the skin of the stream brown frog Rana sakuraii Matsui and Matsui, 1990 led to the isolation of a C-terminally alpha-amidated peptide (VR-23; VIGSILGALASGLPTLISWIKNR x NH2) with broad-spectrum antimicrobial activity that shows structural similarity to the bee venom peptide, melittin together with two peptides belonging to the temporin family (temporin-1SKa; FLPVILPVIGKLLNGIL x NH2 and temporin-1SKb; FLPVILPVIGKLLSGIL x NH2), and peptides whose primary structures identified them as belonging to the brevinin-2 (2 peptides) and ranatuerin-2 (1 peptide) families. Using a forward primer that was designed from a conserved region of the 5'-untranslated regions of Rana temporaria preprotemporins in a 3'-RACE procedure, a cDNA clone encoding preprotemporin-1SKa was prepared from R. sakuraii skin total RNA. Further preprotemporin cDNAs encoding temporin-1SKc (AVDLAKIANIAN KVLSSL F x NH2) and temporin-1SKd (FLPMLAKLLSGFL x NH2) were obtained by RT-PCR. Unexpectedly, the 3'-RACE procedure using the same primer led to amplification of a cDNA encoding a preprobradykinin whose signal peptide region was identical to that of preprotemporin-1SKa except for the substitution Ser18-->Asn. R. sakuraii bradykinin ([Arg0,Leu1,Thr6,Trp8] BK) was 28-fold less potent than mammalian BK in effecting B2 receptor-mediated relaxation of mouse trachea and the des[Arg0] derivative was only a weak partial agonist. The evolutionary history of the Japanese brown frogs is incompletely understood but a comparison of the primary structures of the R. sakuraii dermal peptides with those of Tago's brown frog Rana tagoi provides evidence for a close phylogenetic relationship between these species.

  14. SH2B1 regulation of energy balance, body weight, and glucose metabolism.

    PubMed

    Rui, Liangyou

    2014-08-15

    The Src homology 2B (SH2B) family members (SH2B1, SH2B2 and SH2B3) are adaptor signaling proteins containing characteristic SH2 and PH domains. SH2B1 (also called SH2-B and PSM) and SH2B2 (also called APS) are able to form homo- or hetero-dimers via their N-terminal dimerization domains. Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins, including Janus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like growth factor-1 receptors, insulin receptor substrate-1 (IRS1), and IRS2. SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex. SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins. Accordingly, genetic deletion of SH2B1 results in severe leptin resistance, insulin resistance, hyperphagia, obesity, and type 2 diabetes in mice. Neuron-specific overexpression of SH2B1β transgenes protects against diet-induced obesity and insulin resistance. SH2B1 in pancreatic β cells promotes β cell expansion and insulin secretion to counteract insulin resistance in obesity. Moreover, numerous SH2B1 mutations are genetically linked to leptin resistance, insulin resistance, obesity, and type 2 diabetes in humans. Unlike SH2B1, SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis. The metabolic function of the SH2B family is conserved from insects to humans.

  15. Dynamic Transition States of ErbB1 Phosphorylation Predicted by Spatial Stochastic Modeling

    PubMed Central

    Pryor, Meghan McCabe; Low-Nam, Shalini T.; Halász, Ádám M.; Lidke, Diane S.; Wilson, Bridget S.; Edwards, Jeremy S.

    2013-01-01

    ErbB1 overexpression is strongly linked to carcinogenesis, motivating better understanding of erbB1 dimerization and activation. Recent single-particle-tracking data have provided improved measures of dimer lifetimes and strong evidence that transient receptor coconfinement promotes repeated interactions between erbB1 monomers. Here, spatial stochastic simulations explore the potential impact of these parameters on erbB1 phosphorylation kinetics. This rule-based mathematical model incorporates structural evidence for conformational flux of the erbB1 extracellular domains, as well as asymmetrical orientation of erbB1 cytoplasmic kinase domains during dimerization. The asymmetric dimer model considers the theoretical consequences of restricted transactivation of erbB1 receptors within a dimer, where the N-lobe of one monomer docks with the C-lobe of the second monomer and triggers its catalytic activity. The dynamic nature of the erbB1 phosphorylation state is shown by monitoring activation states of individual monomers as they diffuse, bind, and rebind after ligand addition. The model reveals the complex interplay between interacting liganded and nonliganded species and the influence of their distribution and abundance within features of the membrane landscape. PMID:24048005

  16. Effect of an inhaled neutral endopeptidase inhibitor, phosphoramidon, on baseline airway calibre and bronchial responsiveness to bradykinin in asthma.

    PubMed Central

    Crimi, N.; Polosa, R.; Pulvirenti, G.; Magrì, S.; Santonocito, G.; Prosperini, G.; Mastruzzo, C.; Mistretta, A.

    1995-01-01

    BACKGROUND--Bradykinin is a potent vasoactive peptide which has been proposed as an important inflammatory mediator in asthma since it provokes potent bronchoconstriction in asthmatic subjects. Little is known at present about the potential role of lung peptidases in modulating bradykinin-induced airway dysfunction in vivo in man. The change in bronchial reactivity to bradykinin was therefore investigated after treatment with inhaled phosphoramidon, a potent neutral endopeptidase (NEP) inhibitor, in a double blind, placebo controlled, randomised study of 10 asthmatic subjects. METHODS--Subjects attended on six separate occasions at the same time of day during which concentration-response studies with inhaled bradykinin and histamine were carried out, without treatment and after each test drug. Subjects received nebulised phosphoramidon sodium salt (10(-5) M, 3 ml) or matched placebo for 5-7 minutes using an Inspiron Mini-neb nebuliser 5 minutes before the bronchoprovocation test with bradykinin or histamine. Agonists were administered in increasing concentrations as an aerosol generated from a starting volume of 3 ml in a nebuliser driven by compressed air at 8 1/min. Changes in airway calibre were measured as forced expiratory volume in one second (FEV1) and responsiveness as the provocative concentration causing a 20% fall in FEV1 (PC20). RESULTS--Phosphoramidon administration caused a transient fall in FEV1 from baseline, FEV1 values decreasing 6.3% and 5.3% on the bradykinin and histamine study days, respectively. When compared with placebo, phosphoramidon elicited a small enhancement of the airways response to bradykinin, the geometric mean PC20 value (range) decreasing from 0.281 (0.015-5.575) to 0.136 (0.006-2.061) mg/ml. In contrast, NEP blockade failed to alter the airways response to a subsequent inhalation with histamine, the geometric mean (range) PC20 histamine value of 1.65 (0.17-10.52) mg/ml after placebo being no different from that of 1.58 (0

  17. Human SH2B1 mutations are associated with maladaptive behaviors and obesity.

    PubMed

    Doche, Michael E; Bochukova, Elena G; Su, Hsiao-Wen; Pearce, Laura R; Keogh, Julia M; Henning, Elana; Cline, Joel M; Saeed, Sadia; Dale, Anne; Cheetham, Tim; Barroso, Inês; Argetsinger, Lawrence S; O'Rahilly, Stephen; Rui, Liangyou; Carter-Su, Christin; Farooqi, I Sadaf

    2012-12-01

    Src homology 2 B adapter protein 1 (SH2B1) modulates signaling by a variety of ligands that bind to receptor tyrosine kinases or JAK-associated cytokine receptors, including leptin, insulin, growth hormone (GH), and nerve growth factor (NGF). Targeted deletion of Sh2b1 in mice results in increased food intake, obesity, and insulin resistance, with an intermediate phenotype seen in heterozygous null mice on a high-fat diet. We identified SH2B1 loss-of-function mutations in a large cohort of patients with severe early-onset obesity. Mutation carriers exhibited hyperphagia, childhood-onset obesity, disproportionate insulin resistance, and reduced final height as adults. Unexpectedly, mutation carriers exhibited a spectrum of behavioral abnormalities that were not reported in controls, including social isolation and aggression. We conclude that SH2B1 plays a critical role in the control of human food intake and body weight and is implicated in maladaptive human behavior.

  18. H/D exchange of gas phase bradykinin ions in a linear quadrupole ion trap.

    PubMed

    Mao, Dunmin; Douglas, D J

    2003-02-01

    The gas phase H/D exchange reaction of bradykinin ions, as well as fragment ions of bradykinin generated through collisions in an orifice skimmer region, have been studied with a linear quadrupole ion trap (LIT) reflectron time-of-flight (rTOF) mass spectrometer system. The reaction in the trap takes only tens of seconds at a pressure of few mTorr of D2O or CD3OD. The exchange rate and hydrogen exchange level are not sensitive to the trapping q value over a broad range, provided q is not close to the stability boundary (q = 0.908). The relative rates and hydrogen exchange levels of protonated and sodiated +1 and +2 ions are similar to those observed previously by others with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer system. The doubly and triply protonated ions show multimodal isotopic distributions, suggesting the presence of several different conformations. The y fragment ions show greater exchange rates and levels than a or b ions, and when water or ammonia is lost from the fragment ions, no exchange is observed.

  19. Kallikrein generates angiotensin II but not bradykinin in the plasma of the urodele, Amphiuma tridactylum.

    PubMed

    Conlon, J M; Yano, K

    1995-03-01

    Incubation of heat-denatured plasma from the urodele, Amphiuma tridactylum (three-toed amphiuma) or from the anurans Rana ridibunda (European green frog) and Rana catesbeiana (American bullfrog) with either glass beads, porcine pancreatic kallikrein or trypsin did not generate bradykinin-like immunoreactivity. However, peptides were generated in kallikrein-treated amphiuma plasma that contracted vascular rings from the bullfrog systemic arch and had a spasmogenic action on the bullfrog urinary bladder. These peptides which were not generated in trypsin-treated plasma, were purified to homogeneity by reverse-phase HPLC and their primary structures established as: Asp-Arg-Val-Tyr-Val-His-Pro-Phe ([Asp1,Val5]angiotensin II) and Asn-Arg-Val-Tyr-Val-His-Pro-Phe ([Asn1,Val5]angiotensin II). Incubation of synthetic [Asn1,Val5]angiotensin II with amphiuma plasma resulted in deamidation to [Asp1,Val5]angiotensin II. The data suggest, therefore that amphiuma plasma contains an L-asparagine amidohydrolase (asparaginase), as previously described for the eel. Although bradykinin-related peptides have been isolated from frog skin, this study provides evidence tha the kallikrein-kinin system may be absent from the blood of amphibia.

  20. Functional characterisation of a TLR accessory protein, UNC93B1, in Atlantic salmon (Salmo salar).

    PubMed

    Lee, P T; Zou, J; Holland, J W; Martin, S A M; Scott, C J W; Kanellos, T; Secombes, C J

    2015-05-01

    Toll-like receptors (TLRs) are indispensable components of the innate immune system, which recognise conserved pathogen associated molecular patterns (PAMPs) and induce a series of defensive immune responses to protect the host. Biosynthesis, localisation and activation of TLRs are dependent on TLR accessory proteins. In this study, we identified the accessory protein, UNC93B1, from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs aided by the conserved gene synteny of genes flanking UNC93B1 in fish, birds and mammals. Phylogenetic analysis showed that salmon UNC93B1 grouped with other vertebrate UNC93B1 molecules, and had highest amino acid identity and similarity to zebrafish UNC93B1. The salmon UNC93B1 gene organisation was also similar in structure to mammalian UNC93B1. Our gene expression studies revealed that salmon UNC93B1 was more highly expressed in spleen, liver and gill tissues but was expressed at a lower level in head kidney tissue in post-smolts relative to parr. Moreover, salmon UNC93B1 mRNA transcripts were up-regulated in vivo in spleen tissue from polyI:C treated salmon and in vitro in polyI:C or IFNγ stimulated Salmon Head Kidney-1 (SHK-1) cells. Initial studies into the functional role of salmon UNC93B1 in fish TLR signalling found that both wild type salmon UNC93B1 and a molecule with a site-directed mutation (H424R) co-immunoprecipitated with salmon TLR19, TLR20a and TLR20d. Overall, these data illustrate the potential importance of UNC93B1 as an accessory protein in fish TLR signalling.

  1. Predictive value of serum bradykinin and desArg9-bradykinin levels for chemotherapeutic responses in active tuberculosis patients: A retrospective case series

    PubMed Central

    Qian, Xu; Nguyen, Duc T.M.; Li, Yaojun; Lyu, Jianxin; Graviss, Edward A.; Hu, Tony Y.

    2016-01-01

    Background There is an urgent need for methods that can rapidly and accurately assess therapeutic responses in patients with active tuberculosis (TB) in order to predict treatment outcomes. Exposure to bacterial pathogens can rapidly activate the plasma contact system, triggering the release of bradykinin (BK) and its metabolite desArg9-bradykinin (DABK) to induce inflammation and innate immune responses. We hypothesized that serum BK and DABK levels might act as sensitive immune response signatures for changes in Mycobacterium tuberculosis (Mtb) burden, and therefore examined how serum levels of these markers corresponded with anti-TB therapy in a small cohort of active TB cases. Methods Nanotrap Mass-Spectrometry (MS) was used to analyze serial blood specimens from 13 HIV-negative adults with microbiologically confirmed active TB who were treated with first-line anti-TB chemotherapy. MS signal for BK (m/z 1060.5) and DABK (m/z 904.5) serum peptides were evaluated at multiple time-points (before, during, and after treatment) to evaluate how BK and DABK levels corresponded with disease status. Results Serum BK levels declined from pretreatment baseline levels during the early stage anti-TB therapy (induction phase) and tended to remain below baseline levels during extended treatment (consolidation phase) and after therapy completion. BK levels were consistent with induction phase sputum culture conversions indicative of decreased Mtb burden reflecting good treatment responses. Serum DABK levels tended to increase during the induction phase and decrease at consolidation and post-therapy time points, which may indicate a shift from active disease to chronic inflammation to a disease free state. Elevated BK and DABK levels after treatment completion in one patient may be related to the subsequent recurrent TB disease. Conclusions Our pilot data suggests that changes in the circulating BK and DABK levels in adult TB patients can be used as potential surrogate markers

  2. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  3. Amolopkinins W1 and W2--novel bradykinin-related peptides (BRPs) from the skin of the Chinese torrent frog, Amolops wuyiensis: antagonists of bradykinin-induced smooth muscle contraction of the rat ileum.

    PubMed

    Zhou, Xiaowei; Wang, Lei; Zhou, Mei; Chen, Tianbao; Ding, Anwei; Rao, Pingfan; Walker, Brian; Shaw, Chris

    2009-05-01

    Bradykinin-related peptides (BRPs) represent one of the most widespread and closely studied families of amphibian defensive skin secretion peptides. Apart from canonical bradykinin (RPPGFSPFR) that was first reported in skin extracts of the European brown frog, Rana temporaria, many additional site-substituted, N- and/or C-terminally extended peptides have been isolated from skin extracts and secretions from representative species of the families Ranidae, Hylidae, Bombinatoridae and Leiopelmatidae. The most diverse range of BRPs has been found in ranid frog skin secretions and this probably reflects the diversity and number of species studied and their associated life histories within this taxon. Amolops (torrent or cascade frogs) is a genus within the Ranidae that has been poorly studied. Here we report the presence of two novel BRPs in the skin secretions of the Chinese Wuyi Mountain torrent frog (Amolops wuyiensis). Amolopkinins W1 and W2 are dodecapeptides differing in only one amino acid residue at position 2 (Val/Ala) that are essentially (Leu(1), Thr(6))-bradykinins extended at the N-terminus by either RVAL (W1) or RAAL (W2). Amolopkinins W1 and W2 are structurally similar to amolopkinin L1 from Amolops loloensis and the major BRP (Leu(1), Thr(6), Trp(8))-bradykinin from the skin of the Japanese frog, Rana sakuraii. A. wuyiensis amolopkinins were separately encoded as single copies within discrete precursors of 61 amino acid residues as deduced from cloned skin cDNA. Synthetic replicates of both peptides were found to potently antagonize the contractile effects of canonical bradykinin on isolated rat ileum smooth muscle preparations. Amolopkinins thus appear to represent a novel sub-family of ranid frog skin secretion BRPs.

  4. B-1B excels in conventional role

    SciTech Connect

    Scott, W.B.

    1992-07-01

    A report is presented of an observational flight performed in a USAF B-1B to better understand the operational aspects of the aircraft's new conventional bombing mission as an integral element of a multiaircraft tactical strike package. The basic flight plan consisted of a standard takeoff and climb, cruising to the training area at 22,000 ft, descending for a 400 ft low-level run, making two simulated bomb drops, and climbing back to 25,000 ft for the return to base. Attention is given the new/enhanced avionics, the ALQ-161 defensive electronic warfare system and ripple-release Mk. 82 bombing procedures.

  5. Feasibility Study B-1 Power Controller.

    DTIC Science & Technology

    1979-11-01

    Study performed by the Autonetics Strategic Systems Division ( ASSD ) of Rockwell International on Contract N62269-79-C-0294. The objective of this study...Modify the design of the ASSD B-1 SSPC, Part Number 12880-507-1, to be a 115 Vac quadruple SSPC unit, with a SOSTEL compatible interface. 3.1.2 115 Vac...Primary Power Modifications. The ASSD SSPC Unit, Appendix A, contains four identical PC’s operating from 230 Vac primary power. Referring to Figure 1

  6. The role of ephrins-B1 and -B2 during fetal rat lung development.

    PubMed

    Peixoto, Francisca O; Pereira-Terra, Patrícia; Moura, Rute S; Carvalho-Dias, Emanuel; Correia-Pinto, Jorge; Nogueira-Silva, Cristina

    2015-01-01

    BACKGROUND/ AIMS: The knowledge of the molecular network that governs fetal lung branching is an essential step towards the discovery of novel therapeutic targets against pulmonary pathologies. Lung consists of two highly branched systems: airways and vasculature. Ephrins and its receptors, Eph, have been implicated in cardiovascular development, angiogenesis and vascular remodeling. This study aims to clarify the role of these factors during lung morphogenesis. Ephrins-B1, -B2 and receptor EphB4 expression pattern was assessed in fetal rat lungs between 15.5 and 21.5 days post-conception, by immunohistochemistry. Fetal rat lungs were harvested at 13.5 dpc, cultured during 4 days and treated with increasing doses of ephrins-B1 and -B2 and the activity of key signaling pathways was assessed. Ephrin-B1 presents mesenchymal expression, whereas ephrin-B2 and its receptor EphB4 were expressed by the epithelium. Both ephrins stimulated pulmonary branching. Moreover, while ephrin-B1 did not affect the pathways studied, ephrin-B2 supplementation decreased activity of JNK, ERK and STAT. This study characterizes the expression pattern of ephrins-B1, -B2 and EphB4 receptor throughout rat lung development. Our data highlight a possible role of ephrins as molecular stimulators of lung morphogenesis. Moreover, it supports the idea that classical vascular factors might play a role as airway growth promoters. © 2015 S. Karger AG, Basel.

  7. Postnatal development of presynaptic receptors that modulate noradrenaline release in mice.

    PubMed

    Schelb, V; Göbel, I; Khairallah, L; Zhou, H; Cox, S L; Trendelenburg, A U; Hein, L; Starke, K

    2001-10-01

    The objective of the study was to clarify the postnatal development of the following transmitter release-modulating receptors of noradrenergic neurons in mice: alpha2-adrenoceptors, muscarinic, opioid and cannabinoid receptors (inhibitory), beta-adrenoceptors and receptors for angiotensin II and bradykinin (facilitatory). Wildtype (NMRI) and in some cases alpha2A/D-adrenoceptor-deficient mice aged 1 day (P1) or 8-16 weeks (adults) were used. Hippocampal and occipito-parietal cortex slices and sympathetically innervated tissues (atria and vas deferens) were preincubated with [3H]-noradrenaline and then superfused and stimulated electrically. Stimulation led to distinct increases in tritium efflux which were abolished by tetrodotoxin or removal of calcium. Concentration-response curves of appropriate agonists and in the case of alpha2-autoreceptors antagonists were determined. For beta-adrenoceptors and angiotensin receptors, the interaction of agonists with antagonists was also examined. Results demonstrate that alpha2A/D-autoreceptors operate already at P1 whereas nonalpha2A/D-autoreceptors, presumably alpha2C, develop later. Of the various heteroreceptors, those of brain noradrenergic neurons (OP3 and ORL1) modulate the release of [3H]-noradrenaline at least as effectively at P1 as in adults. Those of peripheral sympathetic neurons (muscarinic, probably mainly M2, OP1, OP2, OP3, CB1, AT1 and B1), in contrast, operate less effectively or not at all at P1, with one exception: beta2-adrenoceptors increase the release of [3H]-noradrenaline (atria) to the same extent, irrespective of age. Overall, results indicate that brain and peripheral noradrenergic neurons release their transmitter already shortly after birth. Presynaptic receptor mechanisms mature differentially in the brain and the periphery. Moreover, the various presynaptic receptors differ in their postnatal development and may play differential roles at different ages.

  8. Ca(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells.

    PubMed Central

    Baron, A; Frieden, M; Chabaud, F; Bény, J L

    1996-01-01

    1. Using the cell-attached and inside-out modes of the patch-clamp technique, we studied the Ca(2+)-dependent ionic channels activated by bradykinin in cultured pig coronary artery endothelial cells to further understand electrophysiological events underlying cellular activation. 2. In the cell-attached mode, bradykinin (94 nM) activated two types of Ca(2+)-dependent channels: a high conductance K+ channel (285 pS in high symmetrical K+), whose open state probability was increased by depolarization, and a lower conductance inwardly rectifying non-selective cation channel (44 pS in high symmetrical K+). 3. The 285 pS K+ channel was half-maximally activated by cytosolic Ca2+ levels of 1.6 and 4.5 microM at +10 and -30 mV, respectively. Such local concentrations should be reached in the presence of bradykinin, which induces a mean maximal cytosolic Ca2+ rise of 1.3 microM. 4. The 285 pS K+ channel was inhibited by d-tubocurarine, which acted by reducing the mean open time duration (flickering pattern), finally reducing the channel conductance. 5. Divalent cations such as Ca2+ could flow through the 44 pS non-selective cation channel, with nearly the same permeability (P) as monovalent cations (PK: PNa: PCa = 1:1:0.7). 6. The cation channel appeared to be more sensitive to Ca2+ than the K+ channel, with a half-maximal open probability induced by 0.7 microM Ca2+ on the intracellular side of the membrane. 7. In contrast to the K+ channel, the cation channel mean open time was clearly increased by bradykinin. This effect was delayed compared with the increase in the channel open state probability and was rapidly lost in the inside-out configuration. Caffeine also activated the cation channel but more transiently than bradykinin and without any effect on the open duration. 8. In the absence of extracellular Ca2+, the bradykinin-induced increase in cytosolic free Ca2+ was shortened temporally by 52% and reduced in amplitude by 88%, whereas the bradykinin

  9. B-1 AFT Nacelle Flow Visualization Study

    NASA Technical Reports Server (NTRS)

    Celniker, Robert

    1975-01-01

    A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.

  10. Phe5(4-nitro)-bradykinin: a chromogenic substrate for assay and kinetics of the metalloendopeptidase meprin.

    PubMed

    Wolz, R L; Bond, J S

    1990-12-01

    Phe5(4-nitro)-bradykinin has been identified as a good synthetic substrate to study the kinetics and mechanism of action of the metalloendopeptidase meprin. No convenient substrate for kinetic analysis of the enzyme had been previously described. HPLC analyses indicated that meprin cleaved bradykinin and nitrobradykinin between Phe5 (or Phe5(NO2)) and Ser6. Reaction rates for bradykinin were determined by quantitative HPLC analyses, whereas rates for nitrobradykinin were measured by continuous monitoring of the spectral change that occurs at 310 nm when the Phe(NO2)-Ser bond is hydrolyzed. For nitrobradykinin and unmodified bradykinin, respectively, Km values were 281 and 425 microM, kcat values were 28 and 22 s-1, and kcat/Km values were 9.7 x 10(4) and 5.1 x 10(4)M-1. The two products of bradykinin hydrolysis were not substrates for the enzyme, but they were inhibitors. The initial rates of hydrolysis of nitrobradykinin increased linearly with enzyme concentration (0.09-2.2 micrograms/ml), and increased linearly with temperature in the range from 15 to 55 degrees C. Hydrolysis of the substrate was optimal at alkaline pH values. The cysteine endopeptidases papain and cathepsin L and the metalloproteases thermolysin, angiotensin-converting enzyme, and neutral endopeptidase (EC 3.4.24.11) also cleaved nitrobradykinin, but at different peptide bonds than meprin. The single cleavage of nitrobradykinin at the Phe(NO2)-Ser bond and the concomitant spectral shift that occurs at alkaline pH makes this a particularly suitable substrate for meprin.

  11. Chlormethiazole and utilization of vitamin B1 in chronic alcoholics.

    PubMed

    Majumdar, S K

    1980-10-01

    Blood vitamin B1 status as reflected by erythrocyte transketolase activation tests has been assessed in 12 chronic alcoholic (M = 8; F = 4; mean age +/- 53.4 +/- 12.9) both before and after treatment with chlormethiazole and parenteral polyvitamins including thiamine hydrochloride. 7 out of 12 patients (58.3%) were found to be deficient before treatment but all returned to normal after treatment. Mean +/- SD, of alpha ETK improved pre-treatment level of 1.174 +/- 0.135 to 1.009 +/- 0.009 after treatment with thiamine. Chlormethiazole did not seem to interfere with the utilization of thiamine. It is therefore concluded, that though structurally related to the thiazole nucleus of thiamine, chlormethiazole, like thiamine antagonists, does not antagonize the effect of the co-enzyme - thiamine pyrophosphate at the receptor sites on the apo-enzyme - transketolase.

  12. In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells.

    PubMed

    Geraldo, M M; Costa, C R; Barbosa, F M C; Vivanco, B C; Gonzaga, W F K M; Novaes E Brito, R R; Popi, A F; Lopes, J D; Xander, P

    2016-06-01

    Leishmaniasis is caused by Leishmania parasites that infect several cell types. The promastigote stage of Leishmania is internalized by phagocytic cells and transformed into the obligate intracellular amastigote form. B-1 cells are a subpopulation of B cells that are able to differentiate in vitro and in vivo into mononuclear phagocyte-like cells with phagocytic properties. B-1 cells use several receptors for phagocytosis, such as the mannose receptor and third complement receptor. Leishmania binds to the same receptors on macrophages. In this study, we demonstrated that phagocytes derived from B-1 cells (B-1 CDP) were able to internalize promastigotes of L. (L.) amazonensis in vitro. The internalized promastigotes differentiated into amastigotes. Our results showed that the phagocytic index was higher in B-1 CDP compared to peritoneal macrophages and bone marrow-derived macrophages. The in vivo phagocytic ability of B-1 cells was also demonstrated. Parasites were detected inside purified B-1 cells after intraperitoneal infection with L. (L.) amazonensis promastigotes. Intraperitoneal stimulation with the parasites led to an increase in both IL-10 and TNF-α. These results highlight the importance of studying B-1 CDP cells as phagocytic cells that can participate and contribute to immunity to parasites. © 2016 John Wiley & Sons Ltd.

  13. 118-B-1 excavation treatability test plan

    SciTech Connect

    Not Available

    1994-07-01

    The Hanford 118-B-1 Burial Ground Treatability Study has been required by milestone change request {number_sign}M-15-93-04, dated September 30, 1993. The change request requires that a treatability test be conducted at the 100-B Area to obtain additional engineering information for remedial design of burial grounds receiving waste from 100 Area removal actions. This treatability study has two purposes: (1) to support development of the Proposed Plan (PP) and Record of Decision (ROD), which will identify the approach to be used for burial ground remediation, and (2) to provide specific engineering information for receiving waste generated from the 100 Area removal actions. Data generated from this test also will provide critical performance and cost information necessary for remedy evaluation in the detailed analysis of alternatives during preparation of the focused feasibility study (FFS). This treatability testing supports the following 100 Area alternatives: (1) excavation and disposal, and (2) excavation, sorting, (treatment), and disposal.

  14. 118-B-1 excavation treatability test procedures

    SciTech Connect

    Frain, J.M.

    1994-08-01

    This treatability study has two purposes: to support development of the approach to be used for burial ground remediation, and to provide specific engineering information for the design of burial grounds receiving waste generated from the 100 Area removal actions. Data generated from this test will also provide performance and cost information necessary for detailed analysis of alternatives for burial ground remediation. Further details on the test requirements, milestones and data quality objectives are described in detail in the 118-B-1 Excavation Treatability Test Plan (DOE/RL-94-43). These working procedures are intended for use by field personnel to implement the requirements of the milestone. A copy of the detailed Test Plan will be kept on file at the on-site field support trailer, and will be available for review by field personnel.

  15. [Management of patients with bradykinin-mediated angioedema in oral and maxillofacial surgery].

    PubMed

    Rohart, J; Bouillet, L; Moizan, H

    2017-04-01

    Bradykinin-mediated angioedema (AE) is a rare disease characterized by recurrent cutaneous or mucosal angioedema. This hereditary or acquired disease is of rapid installation, non-pruritic, usually painless and can affect the face, lips, larynx, gastrointestinal tract or extremities. When the affected area involves the upper respiratory tract, laryngeal angioedema can lead to imminent death by asphyxia. This is the reason for the high mortality rate (30 %) in undiagnosed or improperly managed patients. High-risk situations in oral and maxillofacial surgery procedures should be identified preoperatively. Short-term prophylaxis must be carried-out prior to any procedure that may trigger an attack. A multi-site reference center (CREAK) has been created to help clinicians to manage this disease. This article reviews the pathophysiologic mechanisms, the clinical presentations, the possible treatments, the acute strategies for attacks and different prophylactic possibilities in oral and maxillofacial surgery. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. A novel assay to diagnose hereditary angioedema utilizing inhibition of bradykinin-forming enzymes.

    PubMed

    Joseph, K; Bains, S; Tholanikunnel, B G; Bygum, A; Aabom, A; Koch, C; Farkas, H; Varga, L; Ghebrehiwet, B; Kaplan, A P

    2015-01-01

    Hereditary angioedema types I and II are caused by a functional deficiency of C1 inhibitor (C1-INH), leading to overproduction of bradykinin. The current functional diagnostic assays employ inhibition of activated C1s; however, an alternative, more physiologic method is desirable. ELISAs were developed using biotinylated activated factor XII (factor XIIa) or biotinylated kallikrein bound to avidin-coated plates. Incubation with plasma was followed by detection of bound C1-INH. After standard curves were developed for quantification of C1-INH, serial dilutions of normal plasma were employed to validate the ability to detect known concentration of C1-INH in the plasma as a percent of normal. Hereditary angioedema (HAE) types I and II were then tested. The level of functional C1-INH in all HAE types I and II plasma tested was less than 40% of our normal control. This was evident regardless of whether we measured factor XIIa-C1-INH or kallikrein-C1-INH complexes, and the two assays were in close agreement. By contrast, testing the same samples utilizing the commercial method (complex ELISA, Quidel Corp.) revealed the levels of C1-INH between 0 and 57% of normal (mean, 38%), and 42 samples were considered equivocal (four controls and 38 patients). Diagnosis of HAE types I and II can be ascertained by inhibition of enzymes of the bradykinin-forming cascade, namely factor XIIa and kallikrein. Either method yields functional C1-INH levels in patients with HAE (types I and II) that are clearly abnormal with less variance or uncertainty than the commercial method. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Phylogeography of E1b1b1b-M81 haplogroup and analysis of its subclades in Morocco.

    PubMed

    Reguig, Ahmed; Harich, Nourdin; Barakat, Abdelhamid; Rouba, Hassan

    2014-01-01

    In this study we analyzed 295 unrelated Berber-speaking men from northern, central, and southern Morocco to characterize frequency of the E1b1b1b-M81 haplogroup and to refine the phylogeny of its subclades: E1b1b1b1-M107, E1b1b1b2-M183, and E1b1b1b2a-M165. For this purpose, we typed four biallelic polymorphisms: M81, M107, M183, and M165. A large majority of the Berber-speaking male lineages belonged to the Y-chromosomal E1b1b1b-M81 haplogroup. The frequency ranged from 79.1% to 98.5% in all localities sampled. E1b1b1b2-M183 was the most dominant subclade in our samples, ranging from 65.1% to 83.1%. In contrast, the E1b1b1b1-M107 and E1b1b1b2a-M165 subclades were not found in our samples. Our results suggest a predominance of the E1b1b1b-M81 haplogroup among Moroccan Berber-speaking males with a decreasing gradient from south to north. The most prevalent subclade in this haplogroup was E1b1b1b2-M183, for which diffferences among these three groups were statistically significant between central and southern groups. Copyright © 2014 Wayne State University Press, Detroit, Michigan 48201-1309.

  18. Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs

    PubMed Central

    Cardoso, João C. R.; Félix, Rute C.; Power, Deborah M.

    2014-01-01

    Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes. PMID:24651821

  19. Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs.

    PubMed

    Cardoso, João C R; Félix, Rute C; Power, Deborah M

    2014-01-01

    Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.

  20. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    PubMed

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers. © 2016 Authors; published by Portland Press Limited.

  1. In vivo Metabolism of Hydrolyzed Fumonisin B1 and Fumonisin B1

    USDA-ARS?s Scientific Manuscript database

    Fumonisin B1 (FB1) is the most prevalent fumonisin mycotoxin found in corn and corn-based foods. It inhibits ceramide synthase, disrupts sphingolipid metabolism and function, is toxic to animals, causes cancer in rodents, and induces neural tube defects in some mouse strains. Its human health effect...

  2. An Overview of B-1 Cells as Antigen-Presenting Cells

    PubMed Central

    Popi, Ana F.; Longo-Maugéri, Ieda M.; Mariano, Mario

    2016-01-01

    The role of B cells as antigen-presenting cells (APCs) has been extensively studied, mainly in relation to the activation of memory T cells. Considering the B cell subtypes, the role of B-1 cells as APCs is beginning to be explored. Initially, it was described that B-1 cells are activated preferentially by T-independent antigens. However, some reports demonstrated that these cells are also involved in a T-dependent response. The aim of this review is to summarize information about the ability of B-1 cells to play a role as APCs and to briefly discuss the role of the BCR and toll-like receptor signals in this process. Furthermore, some characteristics of B-1 cells, such as natural IgM production and phagocytic ability, could interfere in the participation of these cells in the onset of an adaptive response. PMID:27148259

  3. IL-15 temporally reorients IL-10 biased B-1a cells toward IL-12 expression.

    PubMed

    Kanti Ghosh, Amlan; Sinha, Debolina; Mukherjee, Subhadeep; Biswas, Ratna; Biswas, Tapas

    2016-03-01

    Interleukin (IL)-15 is known to strongly modulate T-cell function; however, its role in controlling mucosal immunity, including its ability to modulate B-1a cell ac